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ABSTRACT
This is a working paper for IFIP Working Group 2.5 {(Numerical Softwar
to stimulate discussion of a possible group project. The project is to
describe the facilities in a programming language that make it useful for
numerical computation. The facilities are classified and their importance
measured. This paper presents a framework for this project and is an irn:*i
draft of the facility descriptions. The opinions and ratings contaire? e

are those of the author and do not reflect a consensus of IFIP WG 2.°5.
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A

‘ SIGMIFICANCE AND EXPLANATION

1 Many prooramming languages being introduced are used primarilv in

%‘ & numerical applications, bhut there is no source to quide the lanauage designer

r ir selecting the facilities (capabilities) to be included. This working paper

) provides a framework for such a source and presents an initial draft of
material for ten topics. Facilities are described in general terms; as "what

\

‘ it should be possible to" rather than "this is how it should be included". I+

E is recognized that there are many ways to provide a facility within the design

L of a programming language. This working paper is part of the activities of

IFIP Working Group 2.5 (Numerical Software).

NTIS
. LDC T4%
Unnnounced
; Ju:iiflcatlon

| Accession For
i
i
|

! A
sy

—¥alladilitry codag
Asall end/or

The responsihility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.




<"""j@‘ﬁ-u~

e ,v,,’.n...- PRSI rr

Sy g TN -

1w

5.

6.

INTRODUCTION

CONTENTS

CLASSIFICATION OF FACILITIES

LIST OF TOPICS

INITIAL DRAFT OF FACILITY DESCRIPTIONS

Topic 1:
Topic 2:
Topic 3:
Topic 4:
Topic 5:
Topic 6:
Topic 7:
Topic 8:
Topic 9:
Topic 10:

Library Facilities

Array Definitions and Facilities

Vector-Matrix Algebra and Operations

Input/Output

Calculus Operators

Mathematical Function Definition and Manipulation
Inter-program Communication

Standard Mathematical Functions

Exception and Error Handling

Variable Types

INCOMPLETE DESCRIPTIONS

REFERENCES

n

~a % B



.

prs

L S

e DA e

— e — o o

PROGRAMMING LANGUAGE FACILITIEZ FGRE NUMERICAL COMPUTATICN

John Re. Rice

INTRODUCTION

New programminag languaces are still appearing and old ones are being
modernized. Fven though the bulk of the use of these languages is numerical,
there is no source to guide the lanquage designer in the selection of
facilities to ke included in a lanaguage. The aim here is to produce such a
source. Facilities are described in functional terms and there is no
intention to describe syntax or even the details of semantics. There is no
discussion of "general purpose" language facilities unless there is some
special aspect of this facility relevant to numerical comnutation. It is
recoanized that there are normally many ways to provide a given capability
within a particular programming language design. This working paper has been
motivated and stimulated by the report of Dekker [1979] where some of the
ideas expressed here are already found.

A framework is presented here for WG2.5 to consider for developing a
source useful to language designers. It is proposed to have a list of perhaps
20 topics and to discuss each in the following format: (a) brief general
definition, significance and background for the topic. (b) Rrief descriptions
of specific facilities that have been or would be useful for numerical
computation. (c) Examples of how such facilities have been or would be
included. The facilities are rated according to their estimated ease of
inclusion in a language; facilities already widely available are rated near
100; those that are premature within the present programming technology and/or

computer resource constraints are rated near 0. The facilities are also rated

Sponsored by the United States Army under Contract No. DAAG29-75-C-N024.




by importance; a rating near 100 means a language lacking this facilit ¢

unlikely to be used for significant numerical computation.
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2. CLASSIFICATION OF FACILITIES

The numerical values to be assigned to properties of the facilities
discussed will have considerable subjectivity. Furthermore, some facilities
are speculative in nature and there could well be unforeseen difficulties ~r
benefits from their inclusion in a language. WNevertheless, judgements shnul'
still be made. A guide is given to assigning numerical values for ease of f
inclusion and importance.

For ease of inclusion we consider two aspects: the actual effort to
include a facility and the frequency with which it is currently included. &
facility that recquires considerable effort to include and yet which is widelv
included would receive a high rating for ease of inclusion on the basis that
language designer is likely to put it in anyway.

Ease of Inclusion

Rating Description of Facility Inclusion

80-100 Widely available or something that should be relatively straight-
forward to do without a significant perturbation of the language
design or implementation (e.g. a new intrinsic function).

50-~85 Something currently missing from some important languages, but which
can be added with moderate effort and without a major change in the
language (e.g. inclusion of expressions in output statements or loor
control, inclusion of -bit data type).

30-60 Something which requires a major change to add to a language;
something which may substantially increase the ccmplexity of the
translator (e.g. completely dynamic storage allocation with garbage
collection, symbolic differentiation in a Fortran or Algol-60 like

lanquage). é




cmathira which changes the character of the lanauaace >

reaquire resources in translation or executiorn that are presentlv -
yenerallv available (e.a. inclusion of a ranae of agereral prohier
solvina statements, svmbolic and numerical manipulation of furctior -

and arrays of functions).

vor importance we simnly judae the overall usefulrness of a facility.

¢~ - Ir mind that aiven anv facility there are some proarams that do not use

2% and others which are helped areatly by it, The aspects of computing

~o~sidered in the evaluations are: (a) clarity and effort of programmina,

n) use of machine resources, (c) methodoloay for large scale projects

‘rortability, modularity, etce).

importance

Tating

Description

“A=1nn

£n-gn

3n=-50

T

Lack of this facility areatly complicates a wide variety of programs
and probably eliminates the language from consideration in numerical
computations.

A smaller percentaage of the numerical software will be affected but
the facility is still important enough to merit a redesign of the
lanquage in order to have it included.

A facility with relatively infreaquent use (only 3-8% of the programs)
or for which there is a straightforward (but perhaps obscure,
cumbersome or inefficient) means to accomplish the same result.
(Fxample: partitioning workspace through a dummy intermediate
subprogram.) Such facilities should be included, but miaht be -

sacrificed to other considerations of the language desian.

Mice, convenient at times, but not essential.




i . LIST OF TCPICS

.:‘,

3

T A suagested list of topics is given. There is considerable overlap at

i 3G p ? P

% s s .

; sorme points and discussions of one topic mav refer to those of others. In anv

; case, this overlap is alright as lona as no contradictions are createi. The 1

given order is random.

1. Library Facilities

2. Array Definitions and Manipulation
3. Vector-Matrix Algebra and Operations
4. Input/Output Facilities

5. Calculus Operators

6. Mathematical Functions Definition and Manipulation
7. Inter-program Communication

8. Standard Mathematical Functions

9. Exception and Error Handling
10, Variable Types

11. Environment Information

12. Precision Control

13. Declarations and Names

14. Problem Solving Statements

15. Storage Management

& 16. Data Structures
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2. INITIAL DRAFT OF FACILITY DESCRIPTIONS

TOPIC 1: Library Facilities

A. General Discussion

Numerical computation is normally supported by an extensive litrarv F
programs. The contents vary from yeneral purpose (e.g. sin(x), solve a li=e .
system of equations) to very specialized (e.g. calculate the thermal
conductivity of laminate of several materials). A typical user has access -
500-1000 library programs.

B. Facilities

1. Access to machine parameters. Many standard programs depend on paraneters

such as machine word length, characters per word or machine precisi-r. =

comprehensive set of these should be available within the computing

environment.

Rating: Ease = 95, Importance = &7

The paper of Ford (1978] gives a standard set of machine parameters.
These can be made available either as reserved names of the languaae or bv
calling an intrinsic library function. Some of these parameters are available
as by-products of functions to manipulate integer and floating point
variables, see Reid [1978], Brown {1979]. Mechanisms to provide this
information are used rather widely by those preparinag software targeted to
many machines, see Aird [1977] for an example.

2. Separate Compilation. The concept of a library itself depends on the

ability to independently develop subprograms for other, unknown proarams

to use.

Rating: Ease = 80, Importance = 90

Separate compilation is available in a number of languages, but missina

in some important ones. Those languages where it is missing are either
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designed for small scale computing or allow "extra-lingual" access tao
independently compiled programs, including programs from other languages.
This latter alternative is better than nothing, but clearly inadeaunate as -
is compiler and/or system dependent.

3. Dynamic Workspace Allocation. It is common for an algorithm to nee:d

temporary variables whose number is not known until execution. It shoull
be possible to obtain memory space for these variables.
Rating: Ease = 50, Importance = &I
The objective is to create an array ARPAY(I), I = 1 to N within a

subprogram when N 1is specified at execution time. Many languages allow
this, but if it is missing then a workspace arrav must be passed to the
subprogram. The majority of programmers do not understand how parameters are
passed between programs; they are particularly ignorant about array parameters
and thus passing workspace is particularly error prone. Those lanquaages whose
typing of arrays is so strona that it prevents passing them to separately
compiled subprograms are, of course, particularly inadequate for libraries.

4. Hiding Names. Library programs are sometimes themselves large programs
with many subprograms. The choice of names for or within these prcarams
should not affect a user's program,

Rating: Fase = 70, Importance = 30
Block structures may be used . to localize the existence of names and is
quite common. Group structures, as presently proposed for inclusion in the

next Fortran, are equally effective and are less constraining on the other

facilities within a language.
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r ToEIN Y Arvav ™finitions and fFacilities

fe  Teneril Nisc-usgion

rrave are the most fundamental Jata structure of nurerical

~arrntation. They permeate the mathematical anid phyvsical theorizs as well a:
arice naruarally in a wide variety of aloorithms. Tt is therefore importanr®
thar <recial at+tention he paid to provide versatile facilities for their use.
| “. Pacilities

J te “omplete Internal Specification. The internal representation of an

s
[

sm~nld contain complete information about its nature as well as its

value. Thus fll declared information (e.a. Type = Real, 3-Dimensions,

Symmetric Storage, Nimension Ranges = (10,10,5), Range Indexes = (IA,JA,KA))

) should be a part of the representation or directly available from the contex*
without any special effort on the part of the programmer. Any passing of tnre
arrav hetween programs would avtomatically carry alona this information.

LT Rating: Ease = 70, Importance = 7%

This facility is aimed at making true data types of arrays. At executio:

! time one knows all the information about numeric variables and this treatment

should extend to arrays. PRlock structure languages can accomplish this by

never allowing the use of a variahle to be "hidden" from its declarations.

2. Array Puilding and Subarray Extraction. It is common to build arravs

from pieces and to analyze or use them in parts. The most common situations
are to bhuild M-dimensional arrays from (M - 1)-dimensional ones, to "border”
4 niven array to enlarge it, to extract (N - 1)-dimensional arrays from
. -dimensional ones and to extract similar but smaller arravs from a given

ore, Pacilities are needed to do this naturally and directly. These
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“a~ilittes probaibly depend on the rresence of the arrav operations mentionc:
helow.
Rating: Ease = £S5, Importance = 3%

These facilities have been included in several languaaes and considerable
exprerience gained with their use, see NAPSS [1966], Raver [1271],: Paul
{1979, Such a set of facilities has been proposed for the next revision of
Fortran,

3. Array Operations. The hasic arithmetic operations should be extended

to arrays on an element by element basis. Thus C = A + B or A = A - B is
allowed provided the arrays conform. Similarly functions are extended to
arrays as loa(A) = array(log (aij)) if A= aij’ Finally, constants should
he "broadcast" within array expression so that, for example, 3 can be used for
the array with all elements = 3.

Rating: Ease = 65, Importance = &%

4. PRange Indices. A range index of an array is a variable whose value

is the current size of the array. Thus one might declare (in a clumsy form
for clarity)
Real Array A/Dimension = 1/Storage = 100/Range Index = NA/
Thus changing NA changes the working size of A as it would be used in a
calculation. If the language has full dynamic storage allocation, then the
storage information is not needed; it is particularly useful to explicitly
distinqguish between storage information and the working size of an array.
Rating: Ease = 60, Importance = 65

The VECTRAN language contains range indices in an environment without

dynamic storage allocation. A similar proposal has been made for the next

Fortran revision. People experienced in consulting with users of libraries

report that a significant percentage {30=50) of all the "non-trivial® : .




hasis.s. Then A * R and A 4+ 2 do not mean "A times R" and "A sauarei", ~-.

W

identity matrix could be represented by a generic (with respect *~ size ac
well as type) reserved word, a function such as IDENT(MN) or IDENT(A) (here
A determines type and size) or AO. The transpose can also be represenrtei I
a function or special operator. It is a delicate problem to choose rnatura!

syntax in a language that has both array operations and vector-matrix alaceb: :.

2. Matrix-Vector Algebra. A vector is considered to be an N x 1

matrix (column vector) and all matrix operations on vectors are interprete:
this wavye.
Rating: Ease = 60, Importarce = 7¢
It is natural to include vectors in the matrix algebra scheme and then
one must resolve the ambiguity of "x times y"; it is ¢ xiyi (dot product) or
the array A = {xiyj = aij}?

- . . 3. Submatrix Selection. A mechanism to select submatrices (includinag

row and column vectors).
Rating: Ease = 55, Importance = 40 -
See the remarks in Example 2, item 2.

B ‘ 4. Inverse Matrices and the Solution of Linear Equations. The matrix

inverse A~!

is to be included and one can express the solution of the
equations Ax =b as x = a~ b, A separate linear equation solution facilitw

might be provided for additional flexibility.

Rating: Ease = 50, Importance = &0

e

s The matrix inverse and solution of equations is a facility at a higher

level than commonly included in current "high" level languages. The code to

-
s

implement it is longer (50 plus statements in Fortran) and there is no truly

[y

reliable test for the failure of the operation (when the matrix is

-11~
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gi~mmlar). 2 siroular matrix falluvre is of a 3:-7arens = ooy rhge ot oo
exceptinns an? must ke indicated arrrooriatelv.

5. Matrix=Vector Constants. See Facilitv & of Example 2.

Ratinag: FEase = 75, Importance = 3f
See the remark for Fxample 2, item &,

A, Specialized Matrix Structures. In addition to the general full

~a3-rices, there is a variety of well identified and common structures: ha=nd,
syvmmetric, svmretric band. Special representations of these matrices are
sscential in many apnlications in order to efficientlv use computer time ar.
memorv. Such representations can be included in the language if appropriate
declarations ard operator varieties are included.
Ratina: Fase = 40, Importance = 40

The specialized matrix structures are important enough to have relevanrt
facilities included in major libraries. Thus a translation writer will have
little difficulty in implementing the matrix operations, but the complexity o*
declared types increases somewhat (e.g. REA], POSITIVE DFEFINITE BAND MATPRIV
A(1N0,10)). There is also the added compnlexity of checking compatibility in -
matrix/vector operations.

TOPIC 4: Input/Output

L. General Discussion

Mumerical computation naturally involves vectors, matrices and functions,
thus a language should facilitate input and output involving them.
R. Facilities

" 1. Tabular Output. One wants to say "TARLE X, DATA 1,DATA 2" or "TARIL

MATRIY" and automatically receive a reasonable table on the standard output .

device (printer). The dimensions of the table are determined by the working
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31res of rhe vectors or ratrices invelved; headinas are aiven alonag witi s
indexira,

ratinrgs Fase = a0, Imporsan..-
The sama facility for furctions is needed. There is a sliaht complicaticn i=

chcosing the ranage and increment; defaults and/or specifications (e.c. “TAkI
FIeT™ oN "0,67 ", should he imrlemented.
Rating: Ease = 9f, Importance = &§

This facility is prirarily to reduce to detailed and error-prone
specifications commonlv required to produce even a simple tahle. The
implementation of tabulation is not very difficult if fairly inflexible
formats are used. The tabulation of functions requires more information (the
range and, for multivariate functions, the independent variable plus,
possinly, values for other variables) and hence more complex syntax. Such
facilities have bheen included in a variety of systems.

2. Printer Plotting. The printer plotting facility is similar to the

tabulation facility above; a similar syntax could be used to produce "working
muality" plots of groups of vector (e.g. PLOT K VERSUS DATA 1, DATA 2) or
functions.
Rating: Ease = 80, Importance = 70

Printer plotting is currently a common library routine which should be
part of a numerical computation language. Even crude printer plots require
considerable thought (and code) to implement well, see [xxxx] for example
algnorithms.

3. Graphical System I/O. In addition to the common printer plotting

capability, one wants access to a system which gives much higher resolutions

and more capabilities. A detailed description of such capabilities is not




-

4iven; hopefully they will be rather common and somewhat standardized in *he
rear future.,

Rating: Ease = 50, Importance = "%

A connection to a graphical system essentially requires the very
widespread availability of facilities accessed from the language. The trend
in graphical systems is in this divection (see ([Synder, 1978}, [SIGGRAPH
Notices] for an example and for further discussion). The range of
capabilities possible within a graphics system is very broad and one of the
critical design points is to identify a useful subset that can be accessed
naturally and cogcisely. Universality of the language can be achieved by
having the graphical access default to printer plotting when no graphical
system is available.

4. Data Storage Access. Data in the form of vectors, matrices or just

groups of variable values should be available from the computer system data
storage facility. This capability is useful both for input and output.
Rating: Ease = 40, Importance = 35
The basic aim is to allow one to create or enter data into a computer
system, manipulate it and pass it from program to program with minimal
attention (on the programmer's part) to storage formats and related matters.
The basic facility needed here is.- much less than a general data base system in
that simple data structures are involved (agaregates of variables, vectors or
matrices) which are handled as integral units. Such facilities are commonly
available in file handling systems. As with access to a graphics system, the

crux of the design here is to identify a useful subset that can be accessed

naturally and concisely.

P

-14- 3
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TOPIC 5: Calculus Operators

A. General Discussion

The training of scientists and engineers includes an almnst universal
introduction to a number of basic operators which we loosely call the calcul:s
operators. Some of these (sum = I, product = ]I, max, min) are simple firite
operators which can be incorporated easily into a lanquaage. Others -
differentiation, integration, infinite summations and function extrema - ar.
algorithmically much more complex.

The operators of facilities 2 through 5 cannot be implemented by an
algorithm, their values are not computable functions (technically speakina) cf
their arguments. Their inclusion in a language thus represents a sianificant
new feature. Implicit in the ease ratings is the belief that the state of the
art allows one to implement them reliably. That is, in practice aood
estimates can be obtained in most cases; computational failure can be detecte.l
in most of the remaining cases and truly erroneous results are produced in a
very small fraction of the computations. The level of reliabilitv of these
implementations will be comparable to that of general numerical computation
and probably better than currently exists in most programs where such
operators are supposedly used. ~

Another new aspect of these operators is the complexity of the algorithms
used to implement them; they will. run to hundreds (and possibly thousands) of
statements in a language at the Fortran=-Algol level.

B. Facilities

1. The Finite Operators. The three most important are MAX, MIN and [

which operate on vectors or matrices. A range or domain must be used; vectors

and matrices are likely to have a range variable which can be used as



fefault. The product operator I 1s much less commenly s~ ', bt it ~iabt be

included for the sake of completeness. Extensions to other operators of a
similar nature (e.g. average, median) could also be incuded,
Rating: Fase = 90, Importance = 80
The finite operators are straightforward to include in a language and
their widespread occurrence makes it unreasonable to exclude them.

2. Differentiation. The derivative of a function of one variable may be

evaluated symbolically or estimated numerically. The difference between these
two choices is very large; both in the nature of the results obhtained and the
technigue of implemenfation. The partial derivative of a multivariate
function can be obtained by indicating which variable is to be considered as

the independent variable.

Pating (symbolic): Ease 40, Importance = 75

Rating (numerical): Ease 60, Importance 50

Differentiation is unigue in that a numerical implementation is tricky
while a symbolic implementation is not conceptually difficult. Technically
speaking, differentiation is an unbounded operator and this manifests itself
in practice by making the estimation difficult. On the other hand, it is
feasible to symbolically differentiate more or less arbitrary programs (see
"Crary, 1979], [Xedem, 1979]). Symbolic differentiation does recquire
substantial manipulation of the source text. This can be done at translation
time, hut this approach is not very compatitle with separate compilation.
Poth numerical and symbolic differentiation were implemented in the NAPSS
system [Poman, 196R], [Symes, 1967], [0ldehoeft, 1972] and it was found that

the symbholic implementation was significantly more efficient and significantly

more reliable,
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3. Inteagration. The intecral of a function of one variahle mav hre
estimated numerically or, in some cases, evaluated symbolically. The
difference between these two choices is as large as for differentiation, but
the talance ie considerably different. A syntax close to the mathematical one

r

f(x)dx

should be adopted. The function f(x) may depend on variables in addition
to X.

pating (symbolic): Fase = 30, Importance = 40

1§

Rating (numerical): Ease = 70, Importance 50

Integration is the classical example of a non-computable operator; one
can easily construct a function for any given algorithm which leads to zero
for the estimated value and for which the true value is 1. On the other hari,
very reliable algorithms exist for numerical integration, see [Lyness, 1979]
and cited works for more details. Great practical and theoretical advances
have heen made in symbolic integration since the 19A0s [Moses, 197R], but there
are still many functions which cannot be integrated so numerical integration
must be used often. In an ideal language, symbolic integration would be used
when it produces results cuickly and numerical integration otherwise.

4. Infinite Series Summation. An infinite series is of the basic form

} F(N)
N=0

where F 1is a function defined on the integers. F might depend on variables
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or nmarameters other than N. Symbolic methods of summation exist, but are
probably not feasibhle to use.
Rating: Fase = &5, Importance = 4n
Computational experience with infinite series is not very large, but it
seems plausible that the difficulty of implementing this operator reliably
lies somewhere between that of differentiation and integration.

TOPIC 6: Mathematical Function Definition and Manipulation

A. General Discussion

Functions are basic items in mathematical models and occur pervasively in
numerical computations. It is essential that special attention be paid to
providing adequate facilities for them.

B. Facilities

1. Natural bDefinitions. A function should be defined in a natural,

concise form. The definition should be an independent program unit with all
the programming language facilities available for the definition. It is
natural to have functions depend on both "independent variables" and
"parameters"; it is convenient, but not essential, that this distinction be
possible in the function definition.

Rating: Ease = 90, Importance = 90

Most current languages provide good facilities for defining functions.

The distinction between independent variables and parameters is not normally
made and this is reflected in the common difficulty in using something like a
library integration routine. The routine expects as argument f(x) and the
user has a function M(x,a,b,q) where a, b and g are parameters. Most

current languages force one to create an "intermediate" function from M

which can be passed to the integration routine.
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2. Functions as Program Variables. The common notation of scien-e

allows one to manipulate functions as separate entities
[e.g. h(x) = f(x) + A*(x2 + 3 sin(x))] and a programming lanquaae car al."
this also. Different choices are possible for the treatment of parameters,
that is, A in the above example could be fixed at the time h(x) is
assigned or it could continue to be an ordinary program variable (the latter
is the more logical). Functions should be passed between programs as sinale
entities in a natural way.
Rating: Ease = 30, Importance = A%

The natural manipulation of functions appears ‘¢ require some kind of
symbolic facility at execution timé. This is seen as a large burden on
languages that are compiled; some slightly limited manipulation facility is
probably possible through manipulating object code instead of source code.

This facility was included in NAPSS [1966].

3. Arrays of Functions. Function arrays fi(x) and fij(x) occur
frequently in applications (gradients, Jacobians, etc.). In principle,
f,(x) is the same as f(x,i) but, in practice, one wants to allow the
vector/matrix operations of the language to apply naturally to these special
kinds of functions. The rating assumes that functions are already includei in
the language.

Rating: Ease = 80, Importance = 5§
Arrays of functions were included in NAPSS [1966].

4. Mathematical Typing. Mathematics has a large number of schemes to

classify (or type) functions (e.g. analytic, polynomial, differentiable,

trigonometric). These types might or might not reflect anything about the
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rapresentarions o rte functions; tne information .=z 7 une 00 L o0=s ina the

functions within mathematical procedures.
Rating: Fase = 55, Imnortance = 40

I* is anticipated that more complete languages for numerical computation
will include some procedures for processina functions (e.g. integration,
differentiation). The alaorithms to accomplish this must either "be told" or
"disrcover" various properties of the functions; the additional information
available from even a modest typina facility can increase the efficiency of
trese algorithms dramatically. If the symbolic text is available at execution
time then this kind of information could be obtained by a symbolic scan.

TOPIC 7: Inter-program Communication

R. General nhiscussion

Inter-program communication is a "general" programming language feature,
but certain facilities are widely needed in numerical computations which are
frequently lacking. The facilities are usually needed by large programs or
litraries and the need is probably not restricted to numerical computation.
B. Facilities _

1. Global Declaration. A declaration like GLORAL A,B,XYZ,... should

make the variables named available to all progrswns present at translation
time,

Rating: Fase = R0, Importance = &N
Many larage numerical software projects involve a model of something which is
Aescribed by program variahle:. These variables are meaningful to everyone
working on the project and it is to bhe possible to agree on names for them and
then allow any program (of the project) to use any one of them as needed.

2. Partitioned Clobal Declarations. Global declarations are allowed to

have Aifferent scopes. Thus GLOBAL A,R; GLOBAL C,D could be used fo~ 10
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Pating: Fase = 70, Importance = 3
mhig Fa~ilitv is essentially the same as "Hiding Wames" for libraries. It is
useful for "tor down" organizations of proarams; the variables of programs to
handle the tail assembly of an airplane need not be aware of and should not
conflict with variables of the fuel supply systems.

3. Subprooram Avrgument Lists. The argument list of a subproaram car

include any variable of a program in a simple, direct way.

Rating: Ease = 55, Importance = 35
The essential information about any particular program variable should he
attached to the variable and passed to subprograms (or through other
communication mechanisms) along with the variable. Thus a matrix is passed
along with its dimension and range information.

4. 1Internal Procedures. A simple procedure (function) to be defineAd

inside a larger program. All the variables, definitions, etc. of the larger
program extend to the internal procedure.

Rating: Ease = A5, Importance = 50
This is a simple case of the block structure of Algol; separate compilation of
internal procedures would not occur, It is very natural to introduce such
procedures and sometimes cumbersome to simulate in a language like Fortran.

5. Variahle Argument Lists, Defaults. The number of arguments to a

subprogram should allow for default values for missing values. A mechanism to
identify arguments explicitly (instead of by position in the list) is needed.

Rating: Fase = 40, Importance = 50

A common problem is the necessity of lengthy arqument lists where most




_nvocations use only a part of the variables and yet valid values must Le
srovided for the unused arguments. A scheme like FUNCTION F(x,y,ARAR = I,
“RAR = 1.0, LENGTH = ZAP) would allow F(x,y) to be used. This approact
leads to complexity if only LENGTH is to be provided, e.g. F(x,y,,,17). An
alternative is to identify arguments (using the same syntax as above) so

that F(x,y) 1is equivalent to F(x,y,0,1.0,ZAP) and F(x,y,LENGTH = 17.) 1is
equivalent to F(x,y,0,1.0,17.). Note that this particular facility could be
:sed to provide a distinction between independent variables and parameters for

functions.

TOPIC 8: Standard Mathematical Functions

A. General Discussion

A large number of functions have been identified that are useful in
various branches of mathematics, statistics and science. They have
standardized definitions and are part of the "tools" of science in their
particular areas. )

B, Facilities

1. Elementary Functions. These functions include the trigonometric

(sine, cosine, secant, arctan, etc.), exponential and logarithm,
exponentiation and roots, simply evaluated (absolute value, modulus, etc.) and
the hyperbolic.

Rating: Ease = 95, Importance = 95
These functions are present in most current languages and there is a large
body of knowledge about their efficient evaluations [Hart et al., 1968},
[Fike, 1968]. These functions permeate scientific computation.

2., Higher Mathematical Functions. There is a large number of more

specialized functions, oftean called higher transcendental functions, which are




important to specific fields of scierce. Tre more common inclo:d. 7o
{ factorial), Bessel functions, Elliptic Integrals and Mathieu furnctic-s,
Rating: Ease = 90, Irp rearce
The inclusion of higher mathematical functions does not pose anv lanciace
design problems; there is an increased number of special names ani the s
library becomes larager as more of these are included. There are several
general references for these functions [Abramowitz and Stegun, 19647,
{Erdelyi, 195x-5y]. Careful analysis of evaluation techniques have bheer ~ale
for many of these functions {[Cody, 197x]; the Collected Algorithms c¢® the 1™
containing many instances. Some of the less common functions have never heer
analyzed for computer evaluation and are evaluated by formulas fror classi~a’

mathematical analysis.

TOPIC 9: Exception and Error Handling

A. GCeneral Discussion

A common situation in numerical computation is the use of multi-layere?
software where errors may occur in a program completely unknown to the
programmer, the operating system or the language translator. Thus the
language itself should have facilities to adequately detect errors and
exceptions and to transmit relevant information to the programmer. The fou:
basic types of errors are: (a) Arithmetic limits exceeded (overflow,
underflow, NAN (Not-A-Number) arithmetic), (b) Mathematical Frrors
(1.10, ¥Y=1., log(=2.3), J1/3(-4.5)), {c) System Errors {inadequate storage,

undefined I/0 media, time exceeded) and (d) Numerical Failures (2x = b

problem with A singular, sin(5050), solve x2 + 1=20).

B. Facilities

1. 1dentification of Error Type. A complete classification of errors is

defined and the type is identified in the error report. Relevant parameters
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A€ the error occuryence are rrovided (€.a. @raume v o oy o mhes e T vy v g,
data for svsterm rou*ine failures (had formats)).
-

Rating: Fase = TR, Importance

2. Identification of Error Locatiorn. The locatior of errors should he

reported in the programmer's terms (i.e. error at line 16 of program SIBICX,
called from line 14 of REST4).

Fating: Ease = 65, Importance = 80
Tke language imnlementation is to maintain a record at execution time of
rrsaram locations or to he able to reconstruct this information in almost all
circumstances (including things like "time exceeded", "onerator abort" or
"illegal input format"). Absolute address tracing through system loader
mapping tables is to be done by the computer, not people.

3. Message Transmission. Messages should be in the programmer's tervr:=

as much as possible. A software project.should have the ability to modify the
messages to put them in the context of the project.
Rating: Ease = 70, Importance = 7°

4. Frror Recovery Control. The error type should be available for test

bhefore an irreversible action is initiated. The lanquage should allow tests
on the type and permit the program to remedy or modify the situation without
aborting the entire computation.

Rating: Ease = 75, Importance = A0
Even such situations as "time exceeded" could transfer control to a user
program for a final, short computation. This option is nice for small or

individual projects, it is almost essential for robust, user oriented :

arnlication systems.




Torrc 1: variable Types

. Twrneral Discussion

Ma-tematics ras developred several number svstems that occur recularlv
numerical computation and there are number systems (e.g. different precisions®
t=at are relevant only to computation. In addition, there are non-numerical
tvpes (e.a. strings) that many programs need and there are mathematical data
structures (e.a. vectors, matrices, function arrays) that are variable types
various computationally important mathematical systems.

B. Facilities

1. Real Numbers. Numerical computation cannot occur without a
reasonarle real number facility.

Rating: Ease = 100, Importance = 1in?

Mngt meaninaful numerical applications reéﬁire a precision of 5 or so decimal
. A4igits and a numerical ranae of 10150 or so. Fight to ten digits of
i'recision appears to be an economical choice for the basic real number

arithmetic. See Reinsch [1979] for a detailed analysis of the properties

recuired of real number arithmetic.

- ?. Integer Numbers.

Rating: Ease = 100, Importance = 15
Integer arithmetic is traditional for programming languages, but there is
little evidence that it is necessary or even desirable in a langquage for
nurerical computation. This does not mean that certain integer oriented
operations (e.g. fractional part, modulus) can be omitted.

3. Higher Precision Real Arithmetic. Whatever the precision of the

. basic real arithmetic, there needs to bhe an additional level of precision.
Rating: Ease = 95, Importance = 90

The basic need for higher precision is to provide a mechanism for evaluating
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+he accuracy of numerical computations. This need is recognized in the desian
of many computers where hardware is present for double~precision. People who
require truly extended precision (50, 500 or 5,000 decimal digits) should have
access to a portable, unlimited precision package, e.g. Rrent (10771,

4. Complex Variables. A significant, but not large, proportion of

numerical applications require the complex number system.

Rating: Ease = 70, Importance = 5%
Note that if complex arithmetic is included then two levels of precision are
needed to provide for accuracy testing.

5. Character Strings. The basic operations (matching, concatenation,

. . etc.) for character strings are needed in providing user oriented output and
in manipulating data of various types.
Rating: FEase = 60, Importance = 50

6. Combinations. Variable types tend to refer to different attributes
and thus be natural candidates for combining. One can visualize "Triple
Precision Complex Positive Definite Band" matrices or "Integer *20 Complex
Polynomial" functions. The number of combinations (and effort of
implementation) grows rapidly with the number of basic types to be combined.
A language designer can attempt some general "type combination" mechanism or
make a decision on which combinations are worth including.

7. Mathematical Entities. .Variables like vectors, functions and

matrices are considered under other topic headings of this report.

-
i




£+ INCOMPLETE DESCRIPTIONS

TOPIC 11: Environment Information

1. Numeric Representations, Word Structure
2. Accuracy/Precision Information
3. System Information

TOPIC 12: Precision Control

1. General Context, levels
2. Variable Precision

TOPIC 13: Declarations, Words and Names

. 1. Declaration Methods
2. Reserved Words
3. Name Structure

TOPIC 14: Problem Solving Statements

- - R 1. Statement Appearance
, 2. Flexibility

TOPIC 15: sStorage Management

' 1. Block Storage Allocation/Deallocation
2. Dynamic Storage Allocation

TOPIC 16: Data Structures

1. Basic 1Types (Lists, Stacks, Queuves,..q)
! 2. Matrices

! ’ 3. Trees

y 4. Graphs
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