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ABSTRACT

This is a working paper for IFIP Working Group 2.5 (Numerical Softwar

to stimulate discussion of a possible group project. The project is to

describe the facilities in a programming language that make it useful for

numerical computation. The facilities are classified and their irrortance

measured. This paper presents a framework for this project and is an it"i

draft of the facility descriptions. The opinions and ratings contaire ' ,'-

are those of the author and do not reflect a consensus of IFIP WG 2.5.
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SIGtTIFICANCE AND EXPLANATION

'.any proaramming languages being introduced are used primarilv in

numerical applications, hut there is no source to guide the lanauaqe designr

in selecting the facilities (capabilities) to be included. This working paper

provides a framework for such a source and presents an initial draft of

material for ten topics. Facilities are described in general terms; as "what

it should be possible to" rather than "this is how it should be included". I.

is recognized that there are many ways to provide a facility within the design

of a programming language. This working paper is part of the activities of

IFIP Working Group 2.5 (Numerical Software).
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The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.
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1

PFOGRAYYI>'G LAYCG'ACE FACILI rIE3 FOF 'UVERICAL COMP!TTATION

John R. Rice

INTRODUCTIO"

New programmina languages are still appearing and old ones are being

modernized. Fven though the bulk of the use of these languages is numerical,

there is no source to guide the language designer in the selection of

facilities to be included in a languaqe. The aim here is to produce such a

source. Facilities are described in functional terms and there is no

intention to describe syntax or even the details of semantics. There is no

discussion of "general purpose" language facilities unless there is some

special aspect of this facility relevant to numerical commutation. It is

recoanized that there are normally many ways to provide a given capability

within a particular programming language design. This working paper has been

motivated and stimulated by the report of Dekker [1979] where some of the

ideas expressed here are already found.

A framework is presented here for WG2.5 to consider for developing a

source useful to language designers. It is proposed to have a list of perhaps

20 topics and to discuss each in the following format: (a) brief general

definition, significance and background for the topic. (b) Brief descriptions

of specific facilities that have been or would be useful for numerical

computation. (c) Examples of how such facilities have been or would be

included. The facilities are rated according to their estimated ease of

inclusion in a language; facilities already widely available are rated near

100; those that are premature within the present programming technology and/or

I computer resource constraints are rated near 0. The facilities are also rated

Sponsored by the United States Army under Contract No. DAAG29-75-c-fl024. -i -
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by importance; a ratitig near 100 means a language lackinQ this facilit-

unlikely to be used for significant numerical computation.

-2-
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2. CLASSIFICATION OF FACILITIES

The numerical values to be assigned to properties of the facilities

discussed will have considerable subjectivity. Furthermore, some facilitiez

are speculative in nature and there could well be unforeseen difficulties cr

benefits from their inclusion in a language. Nevertheless, judoements shou i

still be made. A guide is given to assigning numerical values for ease of

inclusion and importance.

For ease of inclusion we consider two aspects: the actual effort to

include a facility and the frequency with which it is currently included. A

facility that requires considerable effort to include and yet which is widely

included would receive a high rating for ease of inclusion on the basis that -

language designer is likely to put it in anyway.

Ease of Inclusion

Rating Description of Facility Inclusion

80-100 Widely available or something that should be relatively straiaht-

forward to do without a significant perturbation of the language

design or implementation (e.g. a new intrinsic function).

50-85 Something currently missing from some important languages, but which

can be added with moderate effort and without a major change in the

language (e.g. inclusion of expressions in output statements or looT,

control, inclusion of.bit data type).

30-60 Something which requires a major change to add to a language;

something which may substantially increase the conplexity of the

translator (e.g. completely dynamic storage allocation with garbage

collection, symbolic differentiation in a Fortran or Algol-60 like

language).

-3
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-. ~.-1t;n w1' ich chancyes the character of -i- anoiiaoP

reauire resources ir tranqlation or oxecutior. that arp presen+ 1v

-ienprallv available (e.o. inclusion of a range of ceneral nrobapr

solvino statements, svmbolic- and numerical manipulation of furc'ti:v

,and arrays of functions).

--r importance we simnly juldne the overall usefulness of a facility.

~mind that oi-en any facility there are some proarams that do not us,-

n! oth'ers which, Are helped oreatly by it. The aspects of computino

--idered in the evaluations are: (a) clarity and effort of programmino,

.use of machine resources, (c) methodolooy for large scale projects

'Z'Crtability, modularity, etc.).

1'portance

_:ting Description

"-inn( Lack of this facility qrreatlv complicates a wide variety of programis

and probably eliminates the languagre from consideration in numerical

computations.

r;-fl A smaller percentacre of the numerical software will be affected hut

the facility is still important enough to merit a redesign of the

language in order to have it included.

30-50 A facility with relatively infreguent use (only 3-8% of the programs)

or for which there is a straightforward (but perhaps obscure,

cumbersome or inefficient) means to accomplish the same result.

(Fxample: partitioning workspace through a dummy intermediate

subprogram'.) Such facilities shojuld be included, but might be

sacrificedI to other considerations of the language design.

-2!, Mice, convenient at times, but not essential.

-4-
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3. LIFT OF T7PICS

A sucoested list of topics is aiven. There is considerable overlap at

some points and discussions of one topic may refer to those of others. In a,-.

case, this overlap is alright as Iona as no contradictions are create!. The

given order is random.

1. Library Facilities

2. Array Definitions and Manipulation

3. Vector-Matrix Algebra and Operations

4. Input/Output Facilities

5. Calculus Operators

6. Mathematical Functions Definition and Manipulation

7. Inter-program Communication

R. Standard Mathematical Functions

9. Exception and Error Handling

10. Variable Types

11. Environment Information

12. Precision Control

13. Declarations and Names

14. Problem Solving Statements

15. Storage Management

16. Data Structures

-~~ ~~-5- m im
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2. INITIAL DRAFT OF FACILITY DESCRIPTIONS

TOPIC 1: Library Facilities

A. General Discussion

Numerical computation is normally supported by an extensive librarv 'f

programs. The contents vary from qeneral purpose (e.q. sin(x), solve a 14--;

system of equations) to very specialized (e.g. calculate the thermal

conductivity of laminate of several materials). A typical user has access

500-1000 library programs.

R. Facilities

1. Access to machine parameters. Many standard programs depend on paranete

such as machine word length, characters per word or machine precisi n.

comprehensive set of these should be available within the comnuting

environment.

Rating: Ease = 95, Importance - F

The paper of Ford [1978J gives a standard set of machine parameters.

These can be made available either as reserved names of the lanquaae or by

calling an intrinsic library function. Some of these parameters are availabi- ,

as by-products of functions to manipulate integer and floating point

variables, see Reid [1978], Brown [1979]. Mechanisms to provide this

information are used rather widely by those preparina software targeteH to

many machines, see Aird [1977] for an example.

2. Separate Compilation. The concept of a library itself depends on the

ability to independently develop subprograms for other, unknown proarams

to use.

Rating: Ease = 80, Importance = 0

Separate compilation is available in a number of languages, but missina

in some important ones. Those languages where it is missing are either

j _ _ _ _ _ _ _ _ -6-
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desiqned for small scale computing or allow "extra-lingual" access tc

independently compiled programs, including programs from other lanquaaes.

This latter alternative is better than nothinq, hut clearly inadenuate as

16
is compiler and/or system dependent.

3. Dynamic Workspace Allocation. It is common for an algorithm to nee!

temporary variables whose number is not known until execution. It shli

be possible to obtain memory space for these variables.

Rating: Ease = 50, Importance

The objective is to create an array ARPAY(I), I = 1 to N within a

subprogram when N is specified at execution time. Many languages allow

this, but if it is missing then a workspace array must be passed to the

subprogram. The majority of programmers do not understand how parameters are

passed between programs; they are particularly ignorant about array parameters

and thus passing workspace is particularly error prone. Those lanquaaes whose

typing of arrays is so strong that it prevents passing them to separately

compiled subprograms are, of course, particularly inadequate for libraries.

4. Hiding Names. Library programs are sometimes themselves large programs

with many subprograms. The choice of names for or within these proorams

should not affect a user's program,

Rating: Fase = 70, Importance = 30

Block structures may be used .to localize the existence of names and is

quite common. Group structures, as presently proposed for inclusion in the

next Fortran, are equally effective and are less constraining on the other

facilities within a language.

-7-



Arr y 1[1;2'tlons anfi Facilities

,-rravs are the most fundamental Aata structure of numerical

~-{ -uric.. They mermeate the mathematical anm physical theori-s as well i.a

a:-i~ naturally in a wide variety of alaorithms. It is therefore important

t1 i recial attention he raid to provide versatile facilities for their us.

:. acilities

Comrlete Internal Specification. The internal representation of 3-

- i contain complete information about its nature as well as its

a" iuep. Thus all declared information (e.a. Type = Real, 3-Dimensions,

Svmmetric Ftoraoe, Dimension Ranges = (1n,10,5), Range Indexes = (IA, JA,KA))

should be a part of the representation or directly available from the context

without any special effort on the part of the programmer. Any passing of t!-.

array between programs would automatically carry alona this information.

Rating: Ease = 7n, Importance = 7<

This facility is aimed at making true data types of arrays. At executic-

time one knows all the information about numeric variables and this treatmenr

should Pxtend to arrays. Plock structure languages can accomplish this by

ne,,er allowing the use of a variable to be "hidden" from its declarations.

2. Array Puilding and Subarray Extraction. It is common to build arravys

from pieces and to analyze or use them in parts. The most common situationr

are to build V-dimensional arrays from (N - 1)-dimensional ones, to "border"

*liven array to enlarge it, to extract (N - 1)-dimensional arrays from

'-dimensional ones and to extract similar but smaller arrays from a given

oT-. Pacilities are needed to do this naturally and directly. These

4a. 7~' - .



.A -I 1. ,,ha: v eren on t 'e rresence o tl e array operati nq mer., IO'(

be low.

Rating: Ease = 55, Importance

These facilities have been included in several ]anquaaes and cnnsiierabhl

exrerience gained with their use, see NAPSS r19661, Payer f19711,, Paul

r197:4 . Such a set of facilities has been proposed for the next revision -f

Fortran.

3. Array Operations. The basic arithmetic operations should be extenip

to arrays on an element by element basis. Thus C = A + B or A = A - B is

allowed provided the arrays conform. Similarly functions are extended to

arrays as loa(A) = array(log (a ij)) if A = aij. Finally, constants should

be "broadcast" within array expression so that, for example, 3 can be used for

the array with all elements = 3.

Rating: Ease = 65, Importance = 55

4. Range Indices. A range index of an array is a variable whose value

is the current size of the array. Thus one might declare (in a clumsy form

for clarity)

Real Array A/Dimension = 1/Storage = 100/Range Index = NA/

Thus changing NA changes the working size of A as it would be used in a

calculation. If the language has full dynamic storage allocation, then the

storage information is not needed; it is particularly useful to explicitly

distinguish between storage information and the working size of an array.

Rating: Ease = 60, Importance = 65

The VECTPAN language contains range indices in an environment without

dynamic storage allocation. A similar proposal has been made for the next

Fortran revision. People experienced in consulting with users of libraries

report that a significant percentage (30-s0) of all the "non-trivial"

-9-
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basis. Then A * R and A t 2 do not mean "A times P" an, "! s"A u . .

%: identity matrix could be represented by a generic (with resnect <: si7oA F

well as type) reserved word, a function such as IDENT(N) or IDEN'r(A) her.

A determines type and size) or A0 . The transpose can also be represert .

a function or special operator. It is a delicate problem to choose natural

syntax in a language that has both array operations and vector-matrix alc.p4.

2. Matrix-Vector Algebra. A vector is considered to be an N 1

matrix (column vector) and all matrix operations on vectors are interprete!

this way.

Rating: Ease = 60, Importance = 7

It is natural to include vectors in the matrix algebra scheme and then

one must resolve the ambiguity of "x times y"; it is Z xiy i  (dot product) nio

the array A = {xi y = a ij?

3. Submatrix Selection. A mechanism to select submatrices (includino

row and column vectors).

Rating: Ease = 55, Importance = 40

See the remarks in Example 2, item 2.

4. Inverse Matrices and the Solution of Linear Equations. The matrix

inverse A-  is to be included and one can express the solution of the

equations Ax = b as x = A-1b. A separate linear equation solution facility

might be provided for additional flexibility.

Rating: Ease = 50, Importance = 60

The matrix inverse and solution of equations is a facility at a hiqher

level than commonly included in current "high" level languaqes. The code to

implement it is longer (50 plus statements in Fortran) and there is no truly

reliable test for the failure of the operation (when the matrix is
--11-
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si- 71;1r~ 71 s ,u:ir -at ri'J f ailurp ic; of a f.r--t-, '

excenti-ms an -ust he in.icater anronriatelv.

9. Vatrix-Vector Constants. See Facility of acple 2.

Pat-ino: Ease = 79, Imnortance =

Sep the remark for Example 2, item .

r. Specialized Matrix Structures. In addition to the general full

--n'rlce , there is a variety of well identified and common structures: ,

5-,=etric, svmretric hand. Special representations of these matrices are

-csqential in many aprlications in order to efficiently use computer time an

memory. Such representations can be included in the language if appropriate

declarations and operator varieties are included.

Ratina: Ease = 40, Importance = 40

The specialized matrix structures are important enouqh to have relevar;T

facilities included in major libraries. Thus a translation writer will have

little difficulty in implementing the matrix operations, but the complexity (,f

declared types increases somewhat (e.g. REAL POSITIVE DEFINITE RAND MATPIv

A(In,10)). There is also the added complexity of checking compatibility in

matrix/vector operations.

TOPIC 4: Input/Output

A. reneral Discussion

Numerical computation naturally involves vectors, matrices and functiors,

thus a language should facilitate input and output involving them.

B. Facilities

1. Tabular Output. One wants to say "TAsLE X, DAA 1,DATA 2" or "TARi,

*IATRIY" and automatically receive a reasonable table on the standard output

ie-;ice (printer). The dimensions of the table are determined by the workinq

-12-
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r: \ trs or m'a tr i~s hoove;eadi'!ls are oiven aln i :

'~atinr.q: Ease , Thrra: -.

The sa"'e facility- for furctions is needed. There is a sliaht compli te' i

c2osinq the ranae and increment; defaults and/or specifications (e.-. ":A+!

Fr',r. flN [OF' ", should 'e imolemented.

Ratino: Ease = 5, Impurtanct 5

This facility is pri-arily to reduce to detailed and error-prone

specifications commonly reouired to produce even a simple table. The

implementation of tabulation is not very difficult if fairly inflexible

formats are used. The tabulation of functions requires more information (tt

ranqe and, for multivariate functions, the independent variable plus,

possihly, values for other variables) and hence more complex syntax. Such

facilities have been included in a variety of svstems.

2. Printer Plotting. The printer plotting facility is similar to the

tabulation facility above; a similar syntax could be used to produce "working

muality" plots of groups of vector (e.g. PLOT K VERSUS DATA 1, DATA 2) or

functions.

Rating: Ease = 80, importance = 70

Printer plotting is currently a common library routine which should be

part of a numerical computation language. Even crude printer plots require

considerable thought (and code) to implement well, see [xxxx] for example

*algorithms.

3. Graphical System I/O. In addition to the common printer plotting

capability, one wants access to a system which gives much higher resolutions

and more capabilities. A detailed description of such capabilities is not

-13-
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4iven; hopefully they will be rather common and somewhat standardized in the

rear future.

Rating: Ease = 50, Thportance =

A connection to a graphical system essentially requires the very

widespread availability of facilities accessed from the language. The trend

in graphical systems is in this direction (see (Synder, IQ78, [SIGCRAPH

Notices] for an example and for further discussion). The range of

capabilities possible within a graphics system is very broad and one of the

critical design points is to identify a useful subset that can be accessed

naturally and concisely. Universality of the language can be achieved by

having the graphical access default to printer plotting when no graphical

system is available.

4. Data Storage Access. Data in the form of vectors, matrices or just

groups of variable values should be available from the computer system data

storage facility. This capability is useful both for input and output.

Rating: Ease = 40, Importance = 35

The basic aim is to allow one to create or enter data into a computer

system, manipulate it and pass it from program to program with minimal

attention (on the programmer's part) to storage formats and related matters.

The basic facility needed here is. much less than a general data base system in

that simple data structures are involved (aggregates of variables, vectors or

matrices) which are handled as integral units. Such facilities are commonly

available in file handling systems. As with access to a graphics system, the

crux of the design here is to identify a useful subset that can be accessed

naturally and concisely.

tI
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TOPIC 5: Calculus Operators

A. General Discussion

The training of scientists and engineers includes an almost universal

introduction to a number of basic operators which we loosely call the calcli>'

operators. Some of these (sum = Z, product = R, max, min) are sinrle fi rte

operators which can be incorporated easily into a languaae. Others -

differentiation, integration, infinite summations and function extrema - at-

algorithmically much more complex.

The operators of facilities 2 through 5 cannot be implemente. by an

algorithm, their values are not computable functions (technically speakina) cf

their arguments. Their inclusion in a language thus represents a significant

new feature. Implicit in the ease ratings is the belief that the state o F

art allows one to implement them reliably. That is, in practice cood

estimates can be obtained in most cases; computational failure can be aetecte

in most of the remaining cases and truly erroneous results are produced in a

very small fraction of the computations. The level of reliability of these

implementations will be comparable to that of general numerical computation

and probably better than currently exists in most programs where such

operators are supposedly used.

Another new aspect of these operators is the complexity of the alqorithm

used to implement them; they will. run to hundreds (and possibly thousands) of

statements in a language at the Fortran-Algol level.

B. Facilities

1. The Finite Operators. The three most important are MAX, MIN and E

which operate on vectors or matrices. A range or domain must be used; vectors

and matrices are likely to have a range variable which can be used as

.15-

, mm~m3ms mmmwr, ...



4ef-ult. Te product operator is mucr. less commonnI it -iht he

included for the sake of completeness. Extensions to other operators of a

similar nature (e.g. average, median) could also be incuded.

Rating: Fase = Q0, Tmportance = PO

The finite operators are straightforward to include in a language and

their widespread occurrence makes it unreasonable to exclude them.

2. Differentiation. The derivative of a function of one variable may be

evaluater( symbolically or estimated numerically. The difference between these

two choices is very larqe; both in the nature of the results obtained and the

technique of implementation. The partial derivative of a multivariate

function can be obtained by indicating which variable is to be considered as

the independent variable.

Rating (symbolic): Ease = 40, Importance = 75

Rating (numerical): Ease = 60, Importance = 50

Differentiation is unique in that a numerical implementation is tricky

while a symbolic implementation is not conceptually difficult. Technically

speaking, differentiation is an unbounded operator and this manifests itself

in practice by making the estimation difficult. On the other hand, it is

feasible to symbolically differentiate more or less arbitrary programs (see

'Crary, 19791, [Kedem, 1979]). Symbolic differentiation does require

substantial manipulation of the source text. This can be done at translation

time, but this approach is not very compatible with separate compilation.

Roth numerical and symbolic differentiation were implemented in the NAPSS

system [Roman, 1968], [Symes, 1967], [Oldehoeft, 1972] and it was found that

the symbolic implementation was significantly more efficient and significantly

more reliable.

-16-
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3. :nte~tation. The intecra] of a function o one variale ma, he

estimated numericallv or, in some cases, evaluated symbolically. The

difference hetween these two choices is as large as for differentiation, :ut

the balance is considerahly different. A syntax close to the mathematical one
A

b
: f(x)dx

a

should be adopted. The function f(x) may depend on variables in additioT!

to x.

Pating (symbolic): Fase = 30, Importance 40

Rating (numerical): Ease = 70, Importance = 50

Integration is the classical example of a non-computable operator; one

can easily construct a function for any given algorithm which leads to zero

for the estimated value and for which the true value is 1. On the other hand,

very reliable algorithms exist for numerical integration, see [Lyness, 10791

and cited works for more details. Great practical and theoretical advances

have been made in symbolic integration since the 19AOs fMoses,197P], but there

are still many functions which cannot be integrated so numerical integration

must be used often. In an ideal language, symbolic integration would be used

when it produces results auickly and numerical integration otherwise.

4. Infinite Series Summation. An infinite series is of the basic form

I F(N)
N=O

where F is a function defined on the integers. F might depend on variables

-17-
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or narameters other than N. Sym'bolic methods of summation exist, but arro

probably not feasible to use.

Rating: Ease = 65, Importance =i

Computational experience with infinite series is not very large, hut it

seems plausible that the difficulty of implementing this operator reliably

lies somewhere between that of differentiation and integration.

TOPIC 6: Mathematical Function Definition and Manipulation

A. General Discussion

Functions are basic items in mathematical models and occur pervasively in

numerical computations. It is essential that special attention be paid to

providing adequate facilities for them.

B. Facilities

1. Natural Definitions. A function should be defined in a natural,

concise form. The definition should be an independent program unit with all

the programming language facilities available for the definition. it is

natural to have functions depend on both "independent variables" and

"oparameters"; it is convenient, but not essential, that this distinction he

possible in the function definition.

Rating: Ease = 90, Importance = 90

Most current languages provide good facilities for defining functions.

The distinction between independent variables and parameters is not normally

made and this is reflected in the common difficulty in using something like a

library integration routine.* The routine expects as argument f( x) and the

user has a function M(x,a,b,q) where a, b and q are parameters. most

current languages force one to create an "intermediate" function from M

which can be passed to the integration routine.

1y8
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2. Functions as Program Variables. The common notation of scien-,

allows one to manipulate functions as separate entities

[e.g. h(x) = f(x) + A*(x 2 + 3 sin(x))] and a programming lanauae car a*.

this also. Different choices are possible for the treatment of parameters,

that is, A in the above example could be fixed at the time h(x) is

assigned or it could continue to be an ordinary program variable (the latter

is the more logical). Functions should be passed between programs as sinale

entities in a natural way.

Rating: Ease = 30, Importance = r

The natural manipulation of functions appears to require some kind of

symbolic facility at execution time. This is seen as a large burden on

languages that are compiled; some slightly limited manipulation facility is

probably possible through manipulating object code instead of source code.

This facility was included in NAPSS (1966].

3. Arrays of Functions. Function arrays fi(x) and fij (x) occur

frequently in applications (qradients, Jacobians, etc.). In principle,

fi(x) is the same as f(x,i) but, in practice, one wants to allow the

vector/matrix operations of the language to apply naturally to these special

kinds of functions. The rating assumes that functions are already includei in

the language.

Rating: Ease = 80, Importance = 55

AArrays of functions were included in NAPSS [19661.

4. Mathematical Typing. Mathematics has a large number of schemes to

classify (or type) functions (e.g. analytic, polynomial, differentiable,

trigonometric). These types might or might not reflect anything about the

-19-
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functions within mathematical procedures.

Ratinq: Ease = 55, Imnortance 40

It is anticipated that more complete lanauaaes for numerical computatic'm

,,iil include some procedures for processing functions (e.g. integration,

differentiation). The algorithms to accomplish this must either "be told" or

"ais-over" various properties of the functions; the additional information

availahle from even a modest typino facility can increase the efficiency of

thPse algorithms dramatically. If the symbolic text is available at executior

time then this kind of information could be obtained by a symbolic scan.

TOPIC 7: Inter-program Communication

A. General Discussion

Inter-program communication is a "general" programming language feature,

but certain facilities are widely needed in numerical computations which are

frequently lacking. The facilities are usually needed by large programs or

libraries and the need is probably not restricted to numerical computation.

B. Facilities

I. Global Declaration. A declaration like GLORAL A,B,XYZ,... should

make the variables named available to all prograais present at translation

time.

Rating: Ease = 8O, Importance = Sn

Many larae numerical software projects involve a model of something which is

described by program variable .;. These variables are meaningful to everyone

working on the project and it is to he possible to agree on names for them and

then allow any program (of the project) to use any one of them as needed.
I'

2. Partitioned Clobal Declarations. Global declarations are allowed to

have different scopes. Thus GLOBAL A,P; GLOBAL C,D could be used fo- 10
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. the first 10 rroarams would not conflict with the variaVle

Patinq: Ease = 70, Importance = Ii

-';s -i4it' is essentially the same as "Hiding Names" for libraries. It is

useful for "tor down" orqanizations of proarams; the variables of progrars to

handle the tail assembly of an airplane need not be aware of and should not

conflict with variables of the fuel supply systems.

3. Subproaram Argument Lists. The argument list of a subproaram can

include any variable of a program in a simple, direct way.

Rating: Ease = 55, Importance = 35

The essential information about any particular program variable should he

attached to the variable and passed to subprograms (or through other

communication mechanisms) along with the variable. Thus a matrix is passed

along with its dimension and range information.

4. Internal Procedures. A simple procedure (function) to be definel

inside a larger program. All the variables, definitions, etc. of the larger

program extend to the internal procedure.

Rating: Ease = A5, Importance = 50

This is a simple case of the block structure of Algol; separate compilation of

internal procedures would not occur. It is very natural to introduce such

procedures and sometimes cumbersome to simulate in a language like Fortran.

5. Variable Argument Lists, Defaults. The number of arguments to a

subprogram should allow for default values for missing values. A mechanism to

identify arguments explicitly (instead of by position in the list) is needed.

Rating: Fase = 40, Importance = 50

A commor problem is the necessity of lengthy arqument lists where most

-21-



nvocations use only a part of the variables and yet valid values must he

*.ovided for the unused arguments. A scheme like FUNCTION V(x,y,APAR = ,

"PAP = 1.0, LENGTH = ZAP) would allow F(x,y) to be used. This approach

ltads to complexity if only LENGTH is to be provided, e.g. F(x,y,,,17). An

alternative is to identify arguments (using the same syntax as above) so

that F(x,y) is equivalent to F(x,y,0,1.0,ZAP) and F(x,y,LENGTH = 17.) is

equivalent to F(x,y,0,1.0,17.). Note that this particular facility could be

.sed to provide a distinction between independent variables and parameters for

functions.

TOPIC 8: Standard Mathematical Functions

A. General Discussion

A large number of functions have been identified that are useful in

various branches of mathematics, statistics and science. They have

standardized definitions and are part of the "tools" of science in their

particular areas.

B. Facilities

1. Elementary Functions. These functions include the trigonometric

(sine, cosine, secant, arctan, etc.), exponential and logarithm,

exponentiation and roots, simply evaluated (absolute value, modulus, etc.) and

the hyperbolic.

Rating: Ease = 95, Importance = 95

These functions are present in most current languages and there is a large

body of knowledge about their efficient evaluations [Hart et al., 19681,

[Fike, 1968]. These functions permeate scientific computation.

2. Higher Mathematical Fnctions. There is a large number of more

specialized functions, often called higher transcendental functions, which are
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,Mportant tn specific fields of scierce. The more ommon irn>:,, -

'factorial), Bessel functions, Elliptic Integrals and NMathieu funrir--.

Rating: Ease = 9n, I7F r - -

The inclusion of higher mathematical functions does not pose any 1an:a:'

desiqn problems; there is an increased number of special names ani

library becomes larger as more of these are included. There are severn."

general references for these functions [Abramowitz and Steaun, 1064

§Erdelyi, 195x-5y]. Careful analysis of evaluation techniques have bee-r 7 ,1

for many of these functions [Cody, 197x] ; the Collected Algorithms "' t -

containing many instances. Some of the less common functions have never b-e7

analyzed for computer evaluation and are evaluated by formulas fror classi-l

mathematical analysis.

TOPIC 9: Exception and Error Handling

A. Ceneral Discussion

A common situation in numerical computation is the use of multi-iavero'

software where errors may occur in a program completely unknown to the

programmer, the operating system or the language translator. Thus the

language itself should have facilities to adequately detect errors an('

exceptions and to transmit relevant information to the programmer. The foin

basic types of errors are: (a) Arithmetic limits exceeded (overflow,

underflow, NAN (Not-A-Number) arithmetic), (b) Mathematical Errors

(1.10, V-1., log(-2.3), J1 /3(-4.5)), (c) System Errors (inadequate storage,

undefined I/O media, time exceeded) and (d) Numerical Failures (Ax = b

problem with A singular, sin(50 5), solve x2 + 1 = 0).

B. Facilities

1. Identification of Error 7ype. A complete classification of errors is

defined and the type is identified in the error report. Relevant parameters
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2. Identification of Error Location. The location of errors shou!P be

re ,urted in the proarammer's terms (i.e. error at line 16 of prooram. qTT1CX,

called from line 14 of R, 4 .

Pating: Ease = 61, Imnortance = pn

The- lanciuage implementation is to maintain a record at execution time of

r-ioram locations or to be able to reconstruct this information in almost all

circumstances (including things like "time exceeded", "operator abort" or

"illegal input format"). Absolute address tracing through system loader

mappinq tables is to be done by the computer, not people.

3. Message Transmission. Messages should be in the proqrammer's te'T'

as much as possible. A software project should have the ability to modify thw

messages to put them in the context of the project.

Rating: Ease = 70, Importance = 71

4. Error Recovery Control. The error type should be available for tes

before an irreversible action is initiated. The lanquage should allow tests

on the type and permit the program to remedy or modify the situation without

aborting the entire computation.

Rating: Ease = 75, Importance = A0

Even such situations as "time exceeded" could transfer control to a user

proaram for a final, short computation. This option is nice for small or

individual projects, it is almost essential for robust, user oriented

annlication systems.
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[ ] : iable Tvves

.-e ,ra Discussirn

a--at1-.s '-as develoreO several number systems that occur recul ar1 v

namerica computatio- and there are number systems (e.g. different precisio:.'

t-.at are relevant only to computation. In addition, there are non-numerical

t'ves I e.n. strings) that many programs need and there are mathematical data

structores (e.n. vectors, matrices, function arrays) that are variable types

various computationally important mathematical systems.

B. Facilities

1. Peal Numbers. Numerical computation cannot occur without a

reasonahle real number facility.

Rating: Ease = 100, Importance = 100

Mrst reaninaful numerical applications require a precision of 5 or so decimal

liqits and a numerical ranae of in ± 5 0 or so. Eight to ten diqits of

precision appears to be an economical choice for the basic real number

arithmetic. See Reinsch [1979] for a detailed analysis of the properties

remuired of real number arithmetic.

2. Inteqer Numbers.

Rating: Ease = 100, Importance 15

Inteqer arithmetic is traditional for programming languages, but there is

little evidence that it is necessary or even desirable in a lanquage for

numerical computation. This does not mean that certain integer oriented

operations (e.g. fractional part, modulus) can be omitted.

3. Higher Precision Real Arithmetic. Whatever the precision of the

basic real arithmetic, there needs to be an additional level of precision.

Rating: Ease = QK, Importance = 90

The basic need for higher precision is to provide a mechanism for evaluatinq
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the accuracy of numerical computations. This need is recognized in the 'Iesicoi

of many computers where hardware is present for double-precision. People wh o

require truly extended precision (50, 500 or 5,000 decimal dioits) shoulr, h'a'.o

access to a portable, unlimited precision package, e.g. Brent r1q771.

4. Complex Variables. A significant, but not large, proportion of

numerical applications require the complex number system.

Rating: Ease = 70, Importance = 5

Note that if complex arithmetic is included then two levels of precision are

needed to provide for accuracy testing.

5. Character Strings. The basic operations (matching, concatenation,

etc.) for character strings are needed in providing user oriented output and

in manipulating data of various types.

Rating: Ease = 60, Importance = 50

6. Combinations. Variable types tend to refer to different attributes

and thus be natural candidates for combining. one can visualize "Triple

Precision Complex Positive Definite Band" matrices or "Integer *20 Complex

Polynomial" functions. The number of combinations (and effort of

implementation) grows rapidly with the number of basic types to be combined.

A language designer can attempt some general "type combination" mechanism or

make a decision on which combinations are worth including.

7. Mathematical En~tities. -Variables like vectors, functions and

matrices are considered under other topic headings of this report.
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5. INCOMPLETE DESCRIPTIONS

TOPIC 11: Environment Information

1. Numeric Representations, Word Structure

2. Accuracy/Precision Information

3. System Information

TOPIC 12: Precision Control

I. General Context, Levels

2. Variable Precision

TOPIC 13: Declarations, Words and Names

1. Declaration Methods

2. Reserved Words

3. Name Structure

TOPIC 14: Problem Solving Statements

1. Statement Appearance

2. Flexibility

TOPIC 15: Storage Management

1. Block Storage Allocation/Deallocation

2. Dynamic Storage Allocation

TOPIC 16: Data Structures

1. Basic Types (Lists, Stacks, Queues,...)

2. Matrices

3. Trees

4. Graphs
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