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ABSTRACT

The change of variable

I
(1) u(x ,t) = f O(x ,T)th

0
• for the temperature 0 in the one-phase Stefan problem leads to the evolution

inequality
(2) (u

~ 
— ~u — f) (z — U) > 0, for all z > 0

where u > 0 is required . This inequality is to hold over a space—time
domain D = ~2 x (O ,T

0
) with a Dirichle t boundary condition imposed on

2~Q x (0,T
0
) and a zero initial condition. In this paper we examine semi-

discretizations of (2) in time and in space and we derive the respective con-
vergence rates. The following explicit results are obtained :

(3i) h u
M 

— U 
2 

< CAt
L (D)

where u
M is the H1(c~)—valued, piecewise linear in time , interpolant obtained

f from the horizontal line, fully implici t Euler scheme applied to (2) with
At = T

0
/M; 

2
(3ii) hUh 

— 

2 
< Ch

L (D)
where U

h 
is the continuous time , finite element approximation obtained by

applying an integrated version of (2) to a translate of the finite dimensional
trial space of C° piecewise linear elements. The approximation scheme used
to define U

h 
appears to be new.
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SIGNIFIcANCE AND EXPLANATION

~anv physical phenomena are modelled by inequalities rather than equations.

In this report we examine a dynamic , or parabolic inequality, which character-

izes the charge of phase of a substance , e.g. , ice melting, under certain

assumptions. We obtain rates of convergence for certain approximation schemes

which separately discretize time and space. The rates, as well as one of the

schemes, appear to constitute new results in a subject which is still rather

undeveloped. Subsequent investigations are also contemplated for inequalities

related to different physical models.
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CONVERGENT APPBO XIMAT ION S IN PARABOLIC VA~ I A T I C N ? ~L
INEQUALITIES. I: ONE-PHASE STEFAN PROBLEM S

Joseph W. Jerome

§1. Int roduction.

Parabolic variational inequalities arise in various modelling pro~~1er ~ s-~ch a~
- phase transition via heat conduction , optimal stopping time problems , dynarTl —

obstacle problems and porous medium filtration problems. It is the purpose of t h i s

series of papers to define and analyze conve rgent discretizations for the afor ’-

mentioned problems beginnin g in this first  paper with the one-phase Stefan prob1~~ .,

formally equivalent to a dynami c obstacle problem. Although it might be r r e ferr ’~i

to treat all of these problems in a single theory, the special features of ea:~

make the unified convergence analysis awkward at best. In order to avoid subsequent

repetition , we shall restrict ourselves in this paper to the anal ysis of senidiscre-

tizations in space and time.

The one-phase Stefan problem has the formulation over a fixed space-time

domain D, •

--— - 1 (i )  u > O

(1.1) (ii) u
~~

_
~~

u — f .~~
O

• (iii) (u
~ 

— t~u — f)u = 0

subject to appropriate initial and boundary conditions (cf. Duvaut !4], Bensoussan

and Lions (1J, Frie,~nan and Kinderlehrer (6]). The Specification and development of
• - - p

this formulation will be given later in the introduction together with a statement

of the physical problem.

An exhaustive numerical analysis of (1.1) and other variational inequalities has

been given by Glowinski , Lions and Th~n~ 1i~ res [B) , though rates of convergence , and

certainly optimal rates of convergence, do not appear to have been derived in the

literature. For (1.1), we give a horizontal line analysis and a continuous time ,

finite—element analysis. ~* find it convenient , however , to work with the equivalent

~~onsored by the United States Army under Contract No. DAAG29-75—C-0024.
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f~croclation (cf. Theorem 2.4),

(i )  u > 0

- - ( i i)  (Tu + (u — r) — Thr — Tf > 0

( i i i )  + (u — r) — T~r — Tf]u = 0

-~o 2 , whe re r speci fies the boundary values of u and T = (_~ ) l is a smooth—

-
~ -j operator. The setnidiscretizations are defined directly in terms of (1.2). In

of the corresponding stationary or elliptic formulation associated with (1.1),

this amounts to minimizing

p 1.3 ) E(u) = ~
- (u,u) — (r ,u) 2 

— (1~r + f,u) —l2 L2(~ ) L (0) H (0)

over a convex set in L2(c~) rather than the usual quadratic energy form over a

convex set in H1 (~ ). Now in terms of the horizontal line, discrete time approxima-

tions , the use of (1.2) merely provides an efficient way of estimating the rate of

convergence , 0(~t), in L2 (D) (cf. Theorem 3.2). In this case, the approximations

based on (1.1) and (1.2) are identical. However , if (1.2) is used to define finite

element , continuous time approximations taken from the translate. r — ~~~~ , of the

C° piecewise linear trial space ~~~~ , with homogeneous boundary values, it is

possible that the L2 projections associated with (1.2) are not identical to the

H’ projections defined by (1.1). For equations, the projections coincide. Thus,

for elliptic equations, replacement of the energy by (1.3) leaves the finite element

approximation invariant, so long as the discrete H 1 norm is properly defined.

This carries over to parabolic equations (cf. [10)) but remains an open question for

inequalities.

In fact, the previous discussion has been highly simplified, since it proceeds

as if 2 were a polyhedral domain, compatible with the vanishing of elements of

on ~~~. Actually,  we shall assume that 0 is smoothly bounded to take advantage

of the known regularity of u in this case; thus, there is an accompanying boundary

laye r effect , well-known to be associated with h 312 convergence order in L 2 . We

— 2—
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shall avoid the boundary layer by using the L2 formulation of ( 1.2 )  to defi ne

finite element approximations indirectly (cf. (4.9)) in terms of non—negative definite ,

seif-adjoint approximations T
h 

of T, which map into M.~ rather than 
~
1n~ 

i.e.,

the trial functions are unrestricted on ‘•~~. The triangulation , thus, includes non-

simplicial elements near a:.. Of course , t h i s  removes any possibility that the L2

projection coincides with the H1 projection , but does permit the derivation of

0(h2) convergence in L2 (D), (cf. Theorem 4.3), provided the operators Th 
are

pointwise non—negative , which we explicitly assume (cf. (4.8i)). This always holds

for T(cf. Lensia 2.1) and , since T
b 

is defined as the composition of T and the

H~ projection E.g. always holds for Th in one space dimension, since Eh

coincides with the interpolation operator. It is of course possible that the point-

wise non-negativity hypothesis on the T
h 

masks certain boundary layer effects in

several Euclidean dimensions. In analyzing the finite element approximations defined

by the integration method just outlined, the reader should not confuse this method

with direct methods of least squares type, which effectively double the order.

I It is of some interest to compare the approach to the one—phase Stefan problem

using variational inequalities with that using the classical formulation

(i) e > o

(1.4) (ii) 0 = 0, on S ,

• • 30(iii) A cos (v,l
~
) — ti—), across S

for the temperature e of one of the two phases in a two—phase system such as water—

ice. The change of phase results from heat conduction through the phase of

positive temperature , which is separated from the phase OV~
t of fixed temperature

• 0 by the moving boundary; S is the time profile of this moving phase transition

boundary, A is the latent heat of fusion, v is the outward normal to

:~ • {(x ,t) : 8(x ,t )  = 0) and [.
~~~

.] represents the discontinuity of .
~~~

. across S

directed by v. The fundamen tal numerical work on (1.4) has been carried out by :~

—3—
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Meyer (cf. (12]) who devised un i formly convergent free boundar , a roxi rr a t l on  so-

An alternative approach, using the variational inequal i ty  formu 1at~ on ( 1.1’ ,

obtained by setting
t

u(x,t) = f 8(x ,T) d-r
0

and

0(x,0) , x c
f ( x ) =

—A , x /~~0

~as given by the writer in [9). It appears that the two approaches are equi :sl~ —~

with respect to asymptotic rates of convergence for the computation of

S Cx = x(t),t} in one space dimension. Indeed, for horizontal line semidiscre-

tizations, errors in computing x are of the order of the square root of errors i~-.

computing u; the latter is computed wi th accuracy ~t , giving a net accuracy of

v’~t . If the less regular variable 0 is used, the error in computing ~ is of

order V~~, yet accuracy in x is proportional to accuracy in B; the net result

is again accuracy of order ,1K~. This heuristic analysis has been confirmed in

- 4 
analytical studies of the one—phase Stefan problem by L. Caffarelli.

In the remainder of this section we shall discuss the precise formulation of th~

variational inequality to be used in the sequel. It can be shown (cf. 191 ) that (l.lr
a

is equivalent to a pointwise cone inequality (cf. Abstract) and thence to the

integrated version of this same inequality. More precisely, let homogeneous initial

datum and a boundary datum function r be specified satisfying

( i)  r X Wl~~ (O,T0;L
0
~(Q)) n

(1.5)
(ii) r(’,O ) = O  , r > O  in D

Define a convex set C by

(1.6) C (w € X V < r  in D , w (~ ,t) € H~~(0) , 0 < t <

Finally, let f be given satisfying

- 

4 ~ I
,
,
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(1.7) f € L (D )

Then a dynamical obstacle formulat ion of a parabolic var ia t ional  ine~ u~ l i t~

Solution v may be used to characterize u. It  may be w r i t t e n ,  1ncc r o r ~.t1 n~ ini~~~

and boundary conditions , as

(i) u r — v

(1.8) (ii) V € C , v (~~,0) = 0

(iii) f (v — Lw — f
0
) (w — v) > 0, for all w € C, a.e. in (O , T0

)
0

- 
Here,

(1.9) f
0 = r

~~
_
~~

r + f

Remark 1.1. The formulation (1.8) is convenient for piecewise linear finite elements.

It is immediately seen that (1.8) is equivalent to

(i) u € r — C , u(~ ,0) = 0
(1.10)

(ii) f (u — L~u — f) (z — u) > 0, for all z ~ r — C, a.e. in (0 , T0
)

0
which in turn is equivalent to ( 1.1) ,  augm .~nted by the in i t ia l  and boundary c o n d l t i , : . s ,

and to the non—integrated form of (1.10) .

Remark 1.2. Standard methods (c f .  Caffare l l i  and Friedman [ 3 ) )  show that  ( l . l~~ has

a unique solution provided f is C0, 0 < o < 1, in each of connected subdomains

and 
~l 

with common smooth boundary. In the case of the one-phase Stefan problem , 
—

00 and 0
1 

are the regions occupied initially by, say, water and ice. In t 3 1 it is

also shown that 0 = ii is continuous on U.

Remark 1.3. Throughout the paper we shall assume that ( 1.10) has a unique solut i- -n

U € r - C . In addition, we shall require some further regularity properties of u and

0. The hypothesis on u is described in (1.11) below . The hypotheses on a re

basically the existence of classical (Schauder) regularity theory and weak inaximurr

principles (cf. Lenrias 2.1, 2.2) as well as L
2 regularity theory (cf. (2.2)). We

- ~ 
, introduce (1.11) now. Although u

~~ 
exists only as a measure in U, it is to be

— I

‘-5—
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- x ’ ~ct~~d on :‘~~ - L-as1S  of explicit modulus of c o n t l n u i t - ’ estimates in [3), -eu ~~]ed with

a’ el , —~~nc ’on reDresontatlon (cf. cohn ( 1 1 ) )  for fundrrtental solution kernels

to - , t h a t  

(TU )
t t  

€ L
2
(D)

ore , once again, T = (_ ,1r 1 
when — 1 is viewed as an operator from H~~(~~) onto

h (a). The idea of replacing the hypothesis u~~ € L
2 
(D) by the weaker hypothesis

~I.1l) was introduced by the author and N. Rose in [10], where it is in fact proved

t:~at [TH(u)] € L
2
(D) for the discontinuous enthalpy H(~~).

_  

-6’- 
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and Equ iva l ent  F or mu l at i r o .

:000 tE- by T the inverse  of -1 lottoduced in section one . Thus T is an

~somor t ,’htsm of H 1
( )  onto H~~U). Also ,

-- a
( .  , Z ) 

— 
= (TZ ,Q)1 2 H 1 )) 1

de f ines  an inner  roduct  and norm on H ’ ( ,~~) , with the latter equivalent to the

standard norm . Here , ( • .~~~ ) denotes the duality pairing on H~~(0 ) x H
1
h~). T is

well—known to be a positive—definite , self—adjoint operator in L
2
(~l) when restricted

- - , to this space . One of the basic hypotheses on 0 is contained in our assumption that

T is an isomorphism of ~m 2
(ç() onto H

Zn
(2) I) H~~(l) for in ‘ 1:

(2.2) i l Tg j I  ( C~j g~J m—2 in > 1 .

H
m
(L) H (0)

As a first step in obtaining the formulation (1-2) we state the following familiar

type of maximum principle.

Lemma 2.1. T has the positivity property in the sense of Korovkin :

(2.3) g € L2(Q) , g 0 Tg > 0 ,

where the inequalities hold a.e. in 0.

Proof : Follows directly from [1 , Th~or~me 5.1, p. 83) or , alternatively, from the

classical maximum principle [7, p. 35] applied to the dense subset C Ol) of L
2
(0).

Lemma 2.2. Suppose u satisfies (1.10). Then u satisfies the initial condition,

(2.4) u (~~,0) = 0

- and for al l  0 < t < T
0
, the boundary condition ,

(2.5) u( ,t) = r(.,t), on 30

and the integrated inequality

(1) u > 0 , in 0

(2 .6 )  ( i i)  (TU )
~ 

+ U — TL~r — r — Tf > 0, in 0 , L
1’~

- • (i i i )  ff (Tu ) + u — T ~r — r — T f ] u = 0  .

0

- —7—  

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
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Proof :  ( 2 . 4 ) ,  (2.5) and (2.6i) are immediate and ( 2 . ( - i i -  f - l - ’~~~:’ r -- - - -

by applying T to

(2.7) u~ 
— t~u — f > 0

4

Note that here we use the equivalent characterization (1.1). ~.ow r.~ t o that h ,.

(2.6i ,ii) it suffices to prove

(2.8) f[(’ru) + u — m r — r — T f ] u < o
0

Thus , if

(2.9) (2
t 

= {x € 2 : u ( x , t )  >

then £l~ is open. Suppose t is f ixed and 2~ is any ball in sat isf~ inc

c %~~~. In particular , u(x,t) > c  > 0  for x s 
~~

. For almost a l l  t t (-? ,T
0
),

u (~~,t )  € C1(Q) so that , by the Schauder theory [7], Tu(•,t) € C2~~ (’) , sore

0 < a < 1. In particular, if i~ € C0(0~
) ,  1(8 > 0, there is an t > 0 such t h a t

c*T ( u ( ~~, t ) )  ‘ c, ~~~ .

Thus , the choice

z = u  —

leads to z € r — C and

f (u — ~u - f)rjiTh < 0
- - - 

~ 0 a

Since 1(~ 
is arbitrary , we may set 1)8 = r~ where io

n 
-* 1 in L

2 ( ’ i .  This leads to

J --‘
- f (u

~~
_ L w _ f ) T u

~~~
O

0

and then imeediately to (2.8) for almost all t € (0 , T0
) ,  and hence for all t by

standard continuity . •

Lemma 2.3. Suppose u satisfies (1.10). Then
’ 
u satisfies (2.4), (2.5) and (1.2)

‘I for all
0

Proof: It is enough to prove that

(2.10) {T(u — t~u — f)’}u < 0 in 0 < t < T ,

~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_ _ _ _ _



where ;
t 

is given by ( 2 . 9 )  . I t follows from (2 .~~) that

(~~. l l)  f {T(u~ — lu — f ) ’ (z — u )  > 0

— for all

Z u + i a  • supp w c 2 , 0 < z  € L2 6.)

- 
If 0~ is any compact subset of and z = u —  ~U’ , 0 <  t <  1 , we na e

(2.11),

0 > e 5 (T[u~ — t~u — f) ~~~~
A 0 - - *

Theorem 2 .4 .  The solution of ( 1 . 2 ) ,  ( l . l O i )  is unique . In p a r t i c ula r , i t  is o~ v e:, ho

so that (2.10) holds. U

the solution of (1.10).

Proof : If u
1 

and u
2 

are solutions of (1.2), (l.l0i), then

3u1
{T[ —

~~~
— — 

~u1 
= f]}(u

1 
— u2

) < 0

3u
- u

2
) > 0

Subtraction and integration over 0 gives

3 (u
1
—u~)

~ I•11 
— u2

) _1 + Cu
1 

— U
2

, U
1 

— u
2
) 2

Integration in t gives

(2.12) ~ lIu1(. ,t) - u
2
(.,t) II _

~c~ 
+ u

i 
- u2~ 2 

< ~

for 0 < t < T. Uniqueness is immediate from (2.12) and the remaining statement

follows from Lemma 2.3.

Remark 2.1. Lemmas 2.2 and 2.3 form the basis of a circle of equivalences for the

solution u of (1.10) as in section one. We note for fu ture  reference that the

- •  solution of (1.10) may be characterized by

-9-
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(i) U r — C , u ( ~~, 0) = 0 ,

2 . 13)
(ii)  J [(Tu ), + (u — r )  — Tir - Tf](z — u )  ~~0

f-o r a l l  0 e t < T
0 

and all z € L
2

C’) ,  z > 0.

3

- 
—10— ,

/

I 
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3. Horizonal Line Analysis.

Defin i t ion  3.1. Let H be a positive integer, let It = T
0
/M and set t = m2t ,

0 < in < t-~. With u 0 the given initial datum , let Cu }
M be the recursively— P — — 0 rn m=0

generated sequence of solutions of the elliptic variational inequalities

(i) u € r — Cin m rn
(3.1)

( i i )  I C  
u
rn 

U
~~~l - - f )  (~t - u )  > 0 , for all ~ € C

obtained formally from (1.7) by the identifications u (~~,t )  u and

U - uin m—l
( t )  . Here

Ci) r = r(.,t ) , f = f ( . ,t )rn rn in Zn
- - ( 3 . 2 )

(ii) C = {i)8 ~ W
2’ (0) : ~ < r }

• Remark 3.1. A unique solution u
rn € W

2’ (0) of (3.1) is known to exist , provided

f ( ~~,t) is piecewise C
0 in subdomains of 0 independent of t and separated by

a smooth boundary, as described in the introduction. Although the result of

Frehse [5] assumes a global C
0 

property for f(,t ) ,  modifications (cf. (9])

show that the piecewise result is true. This is, of course, the case of physical

interest. Appropriate modi fications of the result of Brezis and Kenderlehrer [2)

also yield the result .  The technical d i f f icul ty  involves the ~ 1oba l boundedness of

the second derivatives.

Leisna 3.1. The relation

(3.3) j  ~~~ 
Tl

~m~l 
+ U - Thr(~~,t )  - r - fmlum 0

~ ~~~~~ holds for all 1 < i n  <M .

Proof: This proceeds by a straightforward repetition of the proof of Lemma 2.2.

Theorem 3.2. There exists a constant C, independent of tt and given by (3.13)

below , such that



- (3 .4 )  max IIu( .tm) — u l I  2 
+ 

~ 
iIU(. ,t~

) — U ~ _ t - C ( t )

0~~ <M H (0) m=0 L ( ‘ )  
—

In particular , if u is the step function

(3 .5 )  u ~~~
(x , t )  = u (s) , x € (1 , rnt~t < t  < (in + l), t ,

for 0 < m < M - 1, then the estimate

(3.6) lu — u ~ lI 2 <C (L~t )
L CD)

- 
holds for some constant C.

Proof : Setting t = t in (2.6iii) gives, since u > 0,

(3 . 7) f .
~ 

(.,t )  + u ( , t )  — TAr (~~, t )  — r — f] (u(~ ,t )  
— u )  < 0

• -
. 

Simi larly, we obtain from- (3.3) the reverse inequality ,

- 

(3. 8) 
‘T

~m Thm_l 
+ ~ — T~r(~,t ) - r - f ]  (u(~ ,t )  

- urn
) > 0

For sin~~licity, we set

y = u (~ ,t ) — u

-

~~~~ ~ Then, subtraction of (3 .8 )  from (3 .7 )  y ields , aft:r an appropriate addition and

subtraction ,

m m ~~~1(Q) 
- 

~~~~ 
(Y~..~ ’Y~

) _~ + Ily 1 2

Tu(’,t) - TU (
~~~

tm_i) ~~u
~ At

(3.9) = ~~~ t ~~~~ C r )  — .~~~~ !. (trn)ldt}Y~

-

~~~ 

• 
— 

l tm t
3
2 •~~

- i 0 ta_lI at —

- - - 

= a m L2(Q) 
‘

- —12—
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where zm is defi ned by this equation. Mult ip ly ing th rough by ~t, making  use

the inequality

r 
(3.10) l (w ,z ) l  .~,~~l!w Il 2 

+ ~ Ilz I~ 
2

- 
- and summing on in = 1, . . . , k yields

(3.11) 
~ II~J(~ 

2
1 + 

~ 
lIY~ll 22 ~~ < 2 ~ 

!Z
m Ii 22 -

, H (0) m 1  L ( •~ ) m n l  L (

It remains to estimate the right hand side of (3.11). We have, by the Cauchy-Schwarz

- - 

inequality and the limiting integral form of the triangle ineaualitv ,

(3.12) Iz~I l 2 < 
~~~~~~~ 

~~ 
~~~~~ 

(. , o)  

L2 ( 2 ~ )

2
2 2 2at L (tm_1,tin;L ((3))

so that (3.4) follows with

(3.13) C L~ .11 2
at L CD )

- Finally, (3.6) follows via the triangle inequality from (3.4) and the estimate

M—1 ~~+l M—l 
tm+1 t 2

(3.14) ~ f 5 u ( , t) — u(.,t) 1
2 

= ~ S I I 5 ~ (r)drl
m=O t (3 rn—a t (3 t

m SI m

tM-l m+1
< A t  

~ 5 lIu~ 11 22 2
m=0 ta L (t,t l;L (0))

At2 Ilu~ Il 2
2L CD)

The theorem is now proved. •

t

-13-



~4 .  Contin t ~~ us Time Finite Element Approximation s.

For h > C , let Tb be a triangulation of the given domain 12. Thus ,

(4 . 1 ) = ur
TET h

where r is a typical (closed) element in the simplicial decomposition Tb ; in

particular , we permit nonsimplical elements near the boundary . Let M
~n denote the

linear space of continuous piecewise linear trial functions determined by Th :

(4.2) M,0 
= Cx € C(~) : x 1~ 

is linear Vr € Th }

Let E
h 

be the Ritz-Galerkin H1U1) projection defined by

(4 .3 )  (E~p, x) = (
~
,x) 1 for all x €

~41 ((3) H ((3)

fo r each fixed ~ € H1((2); here we use

(4 .4)  
1 = (V~ , Vi)8 ) 

2 + ._!_ j  ~ I I)8
- - 

~
---
~
-
~~~ H ((3 ) L (13) 1 1  ~

- 
which defines a norm equivalent to the standard H1((l) norm in the usual way (cf. [13)).

One sees easily that E.0 prese rves (integral) mean values over (3 and that is

1an orthogonal projection in H ((3). Finally, define the finite rank approximation

T
h 

of T by

(4.5) T
b = E

h
eT , H 1(() ) +

Remark 4.1. The mapping Tb
, defined by (4.5), is not the natural finite rank

projection associated with T; this would be obtained by defining E
h with respect to

(4 .6) = (V~,Viji) 2L ((3)

leading to a seif-adjoint, positive definite operator on &
~~. It is therefore some-

what surprising that T
h is self-ad joint and non—negative definite on L2(13)

1 8 ’ ~~~ ’ Lemma 4.1. Tb is seif—adjoi nt on L2 (() ) and satisfies

• 

—14—
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E

( 4 . 7 )  ( T g ,g)  > 0 , for all g € L2 ( )
°

Proof: Since T
b 

is bounded, the self-adjointness will follow from the symmetry

of Th. This, together with (4.7), follow from the following identities. Since T

is a Riesz mapping,

(T~g1~g2
)
2 

= (VEh~~l.
V
~~2

)2

so that, by (4.4), the mean value property of Eb
, and its role as an orthogonal

projection in

- (T~g1~g2) 2 
= (Eh~~l~

T
~2 )

H1((3) 
- 

~~~~~~ ~
,[ Eh~ 1 ~

• = (V~~1~~ ~~2
)~~~l

( ( 3 )  

- ~ ~( ~(
= (V~~Tg1,~~E~Tg2

) 2

•
The latter quantity is non—negative if g

1 g2 = g and the interchange of g1 and

g2 yields the symmetry of Th. •

Remark 4.2. Our basic finite element hypotheses are the following. For g a L
2 (Q)

Ci) g > 0 ~~~ > 0 (F~rovkin Positivity)

(4.8)
(ii) (T — T )g~J 2 

< ~~2 ll~ H 2h L ((3) L (ci)

holds for C independent of h. Note that (4.8ii) is a routine consequence of

(2.2) for in = 2 since, if w = Tg, then = T~g satisf i es W
h 

= Eh” The

order h2 approximation properties in L2 are well—known in this case (cf. [14]) .

We are now ready to define the continuous time finite element approximation Uh .

-~~ The approximation is based upon (2.13) and the intrinsic approximation properties of

the operators T
h.

Definition 4.1. The finite element , continuous time approximation Uh (O ,T0
) -

~

- I - C ii M.~ is defined to be the unique solution of the initial value problem ~- - ---~~- - - -

-15-
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(4.9i) I ((T~U~)~ + (tJ
h — r) — Th r — T

hf) ~~~ 
- 1

~h~ 
~~. o

for all x a r — C n H.0, 0 < t <

(4.9ii) Uh(0) = 0

Semark 4.3. Of course, it requires an argument to prove that (4.9) possesses a

unique solution. Uniqueness is established in a manner similar to that of the proof

of Theorem 2.4; in particular, (cf. (2.12)) it can be proved that

(4.10) 
~ 
(T~ (U1~~ 

— U2h l
~ 

Ul h  
— °2.h~L

2(Q)

t
+ I IIU1~~~ 

— U2 h  11 22 0

for any two solutions 01h  and U2 h  of (4.9), where (4.10) holds for each

0 < t < 
~~ 

Uniqueness follows from (4.10) and (4.7). An existence proof can be

constructed using the method of horizontal lines, wherein the time derivative in

(4 .9i ) is replaced by a backward divided difference , quite similar to the technique

in section three. There result stationary problems which are the gradi ent formula-

- ‘
~~ tions of quadratic minimization problems over closed convex subsets of L2 

( 1 2 ) .  The

step function (in time) sequence indexed by H = T/tIt can be shown to be bounded in

L2 (C) ) (actually , the finite dimensional af fine subspace r - %) and convergence

of a subsequence to a solution of (4.9) may be established by standard methods.

Lemma 4.2. Under the hypothesis (4.8i), the relation (4.9) holds for all x € r - C

and in particular for x — u.

Proof: Since is self—adjoint , (4.9i) is equivalent to

(4.11) / {( ( U
h

)t - fJ (Thx 
- ThU

b
) + ~tJ~ . V(ThX 

- T
hUh

)} > 0

for all x a r — C n Mb. We rewri te (4.1].) as

(4. 12) / {[~U~)~ - T~U~ ) + 
~~h 

V (~ - Th%)} >0  ,

for all c € Thr 
— Th(C n $.~~) — ~~~~ Th:1:mma will therefore follow, if we can

__________ ~ .1:. I4,~,=~=•~_ 
- 

—



prove that

(4.13) Th (r 
- C)  = T

ht<

from the self-adjointness of Tb. Here we have written

(4.14) = {x € H,
0 

: x > 0)

Since Th 
is assumed pointwise non—negative by (4.8i), (4.13) will follow i f , for

v a

- •  (4.15 ) {iI a M.
fl
,
~~

1 i T
hM.fl

}
~~~

{
~~

IT
h

v}

Here, the orthogonality in (4.15) is understood to be L
2 

orthogonality . To verif::

(4.15), let v a L2 ((3) , let ~J € M~ and suppose

IJ/ .L ThMb

By the proof of Lemma 4.1 we have

0 = (T *,q)) 2 IIvT 11 2
2h L ((3) h L ((3)

so that Th* 
is constant on 13. Thus, using the aforementioned proof once again we

have ,

0 — (
~~h

v,V’l’h~
) 
2 = (Thv , 14 ) 2L (13) L (13) •

I,—-
which verifies (4.15). The proof is completed.

We are now ready for the major result of this section.

Theorem 4.3. The finite element approximations defined by (4.9) are convergent to the

solution u of (1.10) with order h2 in L2(D), i.e.,

(4.16) 1k — U
h H 2 < Ch2

L CD)

- 
• for some constant C. ‘

Proof: Setting z = Uh in (2.l3ii) and x = u in (4.9i ) (Cf. Lemma 4 . 2 )  we

have

—17—



Ci ) [(Tu)~ + (u - r) - TAr - Tf](u - U
h
) ~~~

(4.17)
(i i )  5 [(T~U~ ),~ + (Ub — r) — T

hAr 
— T

hf] Cu — U
b

) > 0

Subtraction of (4.l7ii) from (4.17i ) gives, after some rearrangement,

I { T h Cu — U
h)t Cu — °h~~ 

+ f (U — U~ )

(4.18 )

f (u _ U
h
)(T

h
_ T)u

t
+ f ( u_ U

h
)C T _ T

h) (f+Ar )

Wri ting

(4.19) f (Th
u — U

h)t Cu - u
h
)} = 

~~~~ I Th Cu — U
h
) . Cu — Uh

) ‘

integrating in t from 0 to T
0 and using the non—negative definiteness of T

h

yield

(4.20) lu - 

~
3
h 11 2

2 ~ ~ lu - 

~h 
11 2

2L CD) . L CD)

1 2

L CD)

where we have applied the standard inequality (3.10) to the right hand side of (4.18).

The estimate (4.16) now follows immediately from (4.20) and (4.8ii) applied to

- - i g = U
t 

- f - Ar. The proof is now concluded.

— 18—
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ABSTRACT (Continued)

ii = ~ (0 , T~~) with a Dirichiet boundary condi t ion imposed on

~ (O,T0
) and a zero initial condition . In this paper we examine semi-

discretizations of (2) in time and in space and we derive the respective con-
vergence rates. The following explicit results are obtained :

(3i) h u
M 

— U 2 
< C~~~t

L (D)

4 N 1
‘.~:he re U is the Fl (Q)—valued ,  piecewise linear in time , interpolant obtained
from the horizontal line , fu l ly  implicit Euler scheme applied to (2 )  with

T
0
/M;

(3 i i )  h U h 
- 

2 
~~~ Ch 2

L (0)

where Uh is the continuous time , f in i t e  element approximation obtained by

apply ing an integrated version of (2) to a translate of the finite dimensional
- ~~~~~ trial space of C° piecewise linear elements. The approximation scheme used

to define U
h 

appears to be new.
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