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ABSTRACT
The change of variable

t
(1) u(x,t) = [ e(x,1)dr

0
for the temperature 6 in the one-phase Stefan problem leads to the evolution
inequality
(2) (ut =Shu = f)iz ~m) > 0, for all 2z >0

where u > 0 is required. This inequality is to hold over a space-time

domain D = Q x (O,TO) with a Dirichlet boundary condition imposed on
I x (O,To) and a zero initial condition. In this paper we examine semi-

discretizations of (2) in time and in space and we derive the respective con-
vergence rates. The following explicit results are obtained:

(31) R mlf o sese
L7 (D)

where UM is the Hl(Q)-valued, piecewise linear in time, interpolant obtained
from the horizontal line, fully implicit Euler scheme applied to (2) with

At = T /M;
¥ 2
(3ii) llu, - ull 5. W,
L" (D) | G
where Uh is the continuous time, finite element approximation obtained by

applying an integrated version of (2) to a translate of the finite dimensional
trial space of C° piecewise linear elements. The approximation scheme used

to define Uh appears to be new. .
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\} SIGNIFICANCE AND EXPLANATION
Many physical phenomena are modelled by inequalities rather than equations.

In this report we examine a dynamic, or parabolic inequality, which character-
izes the change of phase of a substance, e.g., ice melting, under certain
assumptions. We obtain rates of convergence for certain approximation schemes
which separately discretize time and space. The rates, as well as one of the
schemes, appear to constitute new results in a subject which is still rather
undeveloped. Subsequent investigations are also contemplated for inequalities

related to different physical models.

A
\“‘L‘Lb‘ 2 “LOM,

4vai] ma/o, 7

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.
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& CONVERGENT APPROXIMATIONS IN PARABOLIC VARIATIONAL
INEQUALITIES. 1I: ONE-PHASE STEFAN PROBLEMS

Joseph W. Jerome
Tiame §1. Introduction. 4

Parabolic variational inequalities arise in various modelling problems such a

0

phase transition via heat conduction, optimal stopping time problems, dynamic
obstacle problems and porous medium filtration problems. It is the purpose of this
series of papers to define and analyze convergent discretizations for the afore-
i mentioned problems beginning in this first paper with the one-phase Stefan problem,
formally equivalent to a dynamic obstacle problem. Although it might be preferred
to treat all of these problems in a single theory, the special features of each
make the unified convergence analysis awkward at best. In order to avoid subsequent
repetition, we shall restrict ourselves in this paper to the analysis of semidiscre-
tizations in space and time.

The one-phase Stefan problem has the formulation over a fixed space-time

domain D,

1) L F i sello B

’? (1.1) (ii) u s Aul = £ SN0,
}.L.,- (iii) (ut - A - flu=0 ,

subject to appropriate initial and boundary conditions (cf. Duvaut [4], Bensoussan

and Lions (1], Friedman and Kinderlehrer [6]). The specification and development of

this formulation will be given later in the introduction together with a statement

of the physical problem.

S An exhaustive numerical analysis of (l.1) and other variational inequalities has _ ’

been given by Glowinski, Lions and Trémolieres [8], though rates of convergence, and

certainly optimal rates of convergence, do not appear to have been derived in the

{
!
t
3 literature. For (1.1), we give a horizontal line analysis and a continuous time,

finite-element analysis. We find it convenient, however, to work with the equivalent

—r

4 Sponsored by the United States Army under Contract No. DAAG29-75-C-0024.
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formulation (cf. Theorem 2.4),
(1) WG

s (ii) ('m)t+ (Go=tr) s Phe=TF . 0.,
(iii) [('I‘u)t+ (u~-1xr) - TAr - Tflu=0 ,

on D, where r specifies the boundary values of u and T = (-A)-l is a smooth-
ing operator. The semidiscretizations are defined directly in terms of (1.2). 1In
terms of the corresponding stationary or elliptic formulation associated with (1.1),

this amounts to minimizing

1.3) E() =2 (ww) , - (), - (r+fu) _
L) L () H (Q)

over a convex set in LZ(Q) rather than the usual quadratic energy form over a
convex set in Hl(Q). Now in terms of the horizontal line, discrete time approxima-
tions, the use of (1.2) merely provides an efficient way of estimating the rate of
convergence, O0(At), in L2 (D) (cf. Theorem 3.2). 1In this case, the approximations
based on (1.1) and (1.2) are identical. However, if (1.2) is used to define finite
element, continuous time approximations taken from the translate, r - ﬁ.h, of the
C° piecewise linear trial space ﬁh' with homogeneous boundary values, it is
possible that the L2 projections associated with (1.2) are not identical to the
Hl projections defined by (1.1). For equations, the projections coincide. Thus,
for elliptic equations, replacement of the energy by (1.3) leaves the finite element
approximation invariant, so long as the discrete H-l norm is properly defined.
This carries over to parabolic equations (cf. [10]) but remains an open question for
inegualities.

In fact, the previous discussion has been highly simplified, since it proceeds
as if 2 were a polyhedral domain, compatible with the vanishing of elements of
o

Mh on 30. Actually, we shall assume that Q is smoothly bounded to take advantage

of the known regularity of u in this case; thus, there is an accompanying boundary

3/2

layer effect, well-known to be associated with h convergence order in L2. We

-2-




shall avoid the boundary layer by using the L2 formulation of (1.2) to define
finite element approximations indirectly (cf. (4.9)) in temms of non-negative definite,
self-adjoint approximations Th of T, which map into Mh rather than ﬁh' i.e.,
the trial functions are unrestricted on 30. The triangulation, thus, includes non-
simplicial elements near 52. Of course, this removes any possibility that the L2
projection coincides with the H1 projection, but does permit the derivation of
O(hz) convergence in Lz(D), {cf. Theorem 4.3), provided the operators Th are
pointwise non-negative, which we explicitly assume (cf. (4.8i)). This always holds
for T(cf. Lemma 2.1) and, since Th is defined as the composition of T and the
Hl projection Eh' always holds for Th in one space dimension, since Eh
coincides with the interpolation operator. It is of course possible that the point-
wise non-negativity hypothesis on the Th masks certain boundary layer effects in
several Euclidean dimensions. In analyzing the finite element approximations defined
by the integration method just outlined, the reader should not confuse this method
with direct methods of least squares type, which effectively double the order.

It is of some interest to compare the approach to the one-phase Stefan problem

using variational inequalities with that using the classical formulation

(1) et LS - e R o [

(1.4) (ii) 6=0, on s ,

4 g
(iii) A cos (v,lt) = lav], across S ,

for the temperature 6 of one of the two phases in a two-phase system such as water-

ice. The change of phase results from heat conduction through the phase Qt of

positive temperature, which is separated from the phase n\ﬁt of fixed temperature

0 by the moving boundary; S is the time profile of this moving phase transition

boundary, A 1is the latent heat of fusion, v is the outward normal to

{(x,t) : #6(x,t) = 0} and [%%J represents the discontinuity of a2 across S i

v
directed by v. The fundamental numerical work on (1.4) has been carried out by

3=
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Meyer (cf. [12]) who devised uniformly convergent free boundary ap-roximation scheme -, ’

An alternative approach, using the variational inequality formulation (1.1),

obtained by setting
;3
ulx,t) = [ 6(x,7)dr
0

8{x,0) - x'¢
f(x) =

-A s X £

5?0,

5‘20,

vas given by the writer in [9]. It appears that the two approaches are ecguivalent

with respect to asymptotic rates of convergence for
S : {x = x(t),t} in one space dimension. Indeed,
tizations, errors in computing x are of the order
computing u; the latter is computed with accuracy
VAt. If the less regular variable 6 is used, the

order /A_t, yet accuracy in x is proportional to

the computation of

for horizontal line semidiscre-
of the square root of errors in
At, giving a net accuracy of
error in computing 2 is of

accuracy in 8; the net result

is again accuracy of order /At. This heuristic analysis has been confirmed in

analytical studies of the one-phase Stefan problem by L. Caffarelli.

In the remainder of this section we shall discuss the precise formulation of the

variational inequality to be used in the sequel. It can be shown (cf. [9)) that (1.1)

is equivalent to a pointwise cone inequality (cf. Abstract) and thence to the

integrated version of this same inequality. More precisely, let homogeneous initial

datum and a boundary datum function r be specified satisfying

(1) reX=w’"0,T;L°(@) n L“(o,ro;wz'“(n)) f

(1.5)
(ii) x(-,0)=0 , r>0 in D .

Define a convex set (C by

(1.6) C={wex: w<r 1nD,w(-,t)eHé(Q) .0<t<'r0}.

Finally, let f be given satisfying

g
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(1.7) £ ¢ L7(D)
Then a dynamical obstacle formulation of a parabolic variational ineguality with
solution v may be used to characterize u. It may be written, incorporating initial
and boundary conditions, as

(1) B R e

(1.8) (ii) v el w0y =0 ',

(iii) [(v_ ~-4ov-£)(w-v) >0, forall weC, a.e. in (0,T,)
o t 0 o § 9]
Here,

. = - + %
(1.9) fo re Ar f

Remark 1.1. The formulation (1.8) is convenient for piecewise linear finite elements.
It is immediately seen that (1.8) is equivalent to

(1) gl S iR W S B e
(1.10)

(ii) f(ut Sus=AEiEn =) S BE, FEEoRC Al g e = €y« a.e. 'in (O,TO)
Q

which in turn is equivalent to (1.1), augmented by the initial and boundary conditions,
and to the non-integrated form of (1.10).

Remark 1.2. Standard methods (cf. Caffarelli and Friedman [3]) show that (1.10) has

a unique solution provided f is Ca, 0 < g <1, in each of connected subdomains

QO and nl with common smooth boundary. In the case of the one-phase Stefan problem,
no and Ql are the regions occupied initially by, say, water and ice. In [3] it is
also shown that 6 = u, is continuous on D.

Remark 1.3. Throughout the paper we shall assume that (1.10) has a unigue solution
uer-C. Inaddition, we shall require some further regularity properties of u and
2. The hypothesis on u is described in (1.11) below. The hypotheses on [ are
basically the existence of classical (Schauder).regularity theory and weak maximum

principles (cf. Lemmas 2.1, 2.2) as well as L2 regularity theory (cf. (2.2)). We

introduce (1.11) now. Although utt exists only as a measure in D, it is to be

Tl APl it A G weisrar . o 1%

e = T S T

e

g vm,:‘?._,‘“
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eXxpected on the basis of explicit modulus of continuity estimates in [3], coupled with
the well-known representation (cf. John [11]) for fundamental solution kernels
corresponding to -A, that

2
(1.11) (’I‘u)tt € L (D)

- , ; 1
Here, once again, T = (-A) : when -A 1is viewed as an operator from HO(Q) onto

h-l(f). The idea of replacing the hypothesis utt € LZ(D) by the weaker hypothesis
(1.11) was introduced by the author and M. Rose in [10], where it is in fact proved
2

that [TH(u)]tt € L (D) for the discontinuous enthalpy H(-).

-G
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32. Positivity and Equivalent Formulation.

Denote by T the inverse of -4 introduced in section one. Thus T 1is an

isomorphism of H-l(ﬁ) onto Hé(i). Also, 1

(2.1) (Bye8y) L =T,

g - -1 = £
defines an inner product and norm on H (%), with the latter eguivalent to the

-
=1 :
standard norm. Here, (-,-) denotes the duality pairing on Hé(ﬁ) N2 S as
. . 2 :
well-known to be a positive-definite, self-adjoint operator in L° (2) when restricted
- to this space. One of the basic hypotheses on ( 1is contained in our assumption that
; : % m-2 m d:
T 1is an isomorphism of H {9) onto H () n HO(Q) for ‘m-onil:
(2.2) lrgll ,  <clliall o, P m21
A H (@ H (2)

As a first step in obtaining the formulation (1.2) we state the following familiar

type of maximum principle.

Lemma 2.1. T has the positivity property in the sense of Korovkin:

2
' {2-3) grie L) 5 g 0™ rg- >0,
§*—«A where the inequalities hold a.e. in Q.
3
} Proof: Follows directly from [1, Théoréme 5.1, p. 83] or, alternatively, from the
i classical maximum principle [7, p. 35] applied to the dense subset Cw(ﬁ) of L2(Q). i
=S |
| Lemma 2.2. Suppose u satisfies (1.10). Then u satisfies the initial condition,
4 (2.4) e 0) =205
| A “and for all 0 < t < T, the boundary condition,
'é
} (2.5) U, t) = (s, t), on 89 -,
i
iﬁ and the integrated inequality !
f
t @y ws0 din g, 'i
! i
{ (2.6) (ii) (Tu)t a0 sl S 2 S PR T R e
L. [
_ > (111) f[(m)t+u-TAr-r-Tf]u=0 ‘
9]
b ¥ .
T i i
5 g 2
i i
E i
L3 7‘,
|
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Proof: (2.4), (2.5) and (2.6i) are immediate and (2.6ii) follows from lLemma ..
by applying T to

(2.7) u -~ Bu-f2>0

Note that here we use the equivalent characterization (1.1). MNow note that oV

(2.6i,ii) it suffices to prove

(2.8) fram) +u-tar -z -wfluco .
Q

Thus, if

(2.9) 2= {xen: utx,t) >0} ,

;AR 5 A R . ~r 5 .
then 9+ is open. Suppose t 1is fixed and Q, is any ball in Q, satisfying

5* < Q:. In particular, u(x,t) >c >0 for x e Q,. For almost all t « (0,T)),
u(-,t) € Cl(a) so that, by the Schauder theory [7], Tu(-,t) ¢ C2+ﬁ(3), some

0 <a<1l. In particular, if ¢ € CO(Q*)' ¥ >0, there is an € > 0 such that

eYT(u(-,t)) <c, on Q

.

*
Thus, the choice

2z =u - eyTu
leads to z e r - C and

[, - du-f)yTu <0 .
g,-F =

& : i " 2 :
Since Yy 1is arbitrary, we may set y = wn where wn =1 in L (R). This leads to

[, -su-fHTu <0
G =

and then immediately to (2.8) for almost all t € (O,To), and hence for all t byv
standard continuity. @ :
Lemma 2.3. Suppose u satisfies (1.10). Then u satisfies (2.4), (2.5) and (1.2)
for all 0 < t < To.

Proof: It is enough to prove that

(2.10) {Tlu, - 8u-fllu<o in @ , 0<t<T .

ghis s Ln



where Q: is given by (2.9). It follows from (2.6) that

(2.11) J{Tlu, - 2u - £}z - w) > 0
Q t =
for all
35 2
z=utw , suppwc R, 0xz¢€l ()
If Q, is any compact subset of 9: and z = u - guy, » 0 <€ <1, we have fror
Q,
2:11),

g {T[ut = Bu - flluy,
Q T
so that (2.10) holds. ®
Theorem 2.4. The solution of (1.2), (1.10i) is unique. In particular, it is given by
the solution of (1.10).

Proof: 1If u1 and u2 are solutions of (1.2), (1.10i), then

aul
{rI St Ay -l -uw) <0,
du
{7l =5 - Bu, - B}, ~ ) >0
Subtraction and integration over Q gives
( a(u;;uz), u = “2) -1 + (u1 Silge Uy S uz) 5 =D
H (@) 5 L (@) E
Integration in t gives
3 ”2 5 2
(2.12) =, (-, 8) = u_(-,t) + [ lu, = ul| e |- <) 0 i
- 2 —_
=i - R R st !

for 0 < t < T. Uniqueness is immediate from (2.12) and the remaining statement
follows from Lemma 2.3.

Remark 2.1. Lemmas 2.2 and 2.3 form the basis of a circle of equivalences for the
solution u of (1.10) as in section one. We note for future reference that the

solution of (1.10) may be characterized by s

T
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i
(1) wrep =00 v gile, 0)=05 <
] (2.13)
(1) J (M), + (a-x) -~ Tor - Te)2-w) 20 ,
- FiE
for all 0 <% <T0 and all z ¢ L (%), z > 0.
[ |
e all
>
.
ks
-
-
gt
]
L - e ¢ 7 & 3
g
- b
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3. Horizonal Line Analysis.

Definition 3.1. Let M be a positive integer, let At = TO/M and set tm = mAt,

| g g S r M
0 <m<M. With u = 0 the given initial datum, let .‘um}m=

0 be the recursively

0

generated sequence of solutions of the elliptic variational inequalities

[ ERNEE Dt S S o e
m m m
{3:2)
um " Ymel
(ii) Qf(———KE——-Aum-fm)(sﬁ-um)?_O, for all \;sCm ,
obtained formally from (1.7) by the identifications u(-,tm) o s and

- St |

Ju m m-1
SE e TR T v

SO T e T U
(3.2)

Wi € o= wew @ v} .

Remark 3.1l. A unique solution u e WZ'Q(Q) of (3.1) is kpown to exist, provided
£f(-,t) 1is piecewise c® in subdomains of independent of t and separated by
a smooth boundary, as described in the introduction. Although the result of
Frehse [5] assumes a global el property for f(-,t), modifications (cf. [9])
show that the piecewise result is true. This is, of course, the case of physical
interest. Appropriate modifications of the result of Brezis and Kenderlehrer [2]
also yield the result. The technical difficulty involves the global boundedness of
the second derivatives.

Iemma 3.1. The relation

mm % mm—l
(3.3) | I =Sigeeaiis g & Mt )ie = £ =0

Q
holds for all 1 <m < M.

Proof: This proceeds by a straightforward repetition of the proof of Lemma 2.2.
Theorem 3.2. There exists a constant C, independent of At and given by (3.13)

below, such that

=11~




M
2 2 2
(3.4) max |lu(-,t ) - u ||7_ + ] jutest) - u | At < C(at)
0.<meM = "gle) om0 e B L

In particular, if u is the step function

s,At

(3.5) (x,8) =u (x) , xe , mt <t < (m+1l)at ,

Ys, at
for 0 <m <M -1, then the estimate

(3.6) < c(at)

Ll us'“” )]

holds for some constant C.

Proof: Setting t = tm in (2.6iii) gives, since w2 0,

M : i > s : i
(3.7) ﬂf[ £ (otg) Hule) - Tart,t) - x - £, - u) <0 .

Similarly, we obtain from (3.3) the reverse inequality,

'mm B mm-l
(3.8) gj[ . G e ol LR S R CT SIS WP B

For simplicity, we set

Wk u(',tm) il B

Then, subtraction of (3.8) from (3.7) yields, after an appropriate addition and

subtraction,
b ) ST 2
e lyy ) g cmemeity ow ) ey |
At “m mHl'(m At m-1 mﬂl(m ; m LZ(Q)
Mu(e,t ) - Tale,t )
Y -1
-3 ‘r[ r At = = % (tm”ym
Q
1 ‘n . 3Tu Tu
(3.9) W T TEE =t ) lanly,
Q tln-l
€t e 2 :
= f{.—l' Gl te 2 (L ,0)a0drly
A 2 m
Q t'_lr at
= (y ,2z) ’
m'm Lzm)
-12-
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h

where z. is defined by this equation. Multiplying through by /t, making use

the inequality

(3.10) | w,2) | i%—”w”z + %_”2“2
and summingon m=1, . . . , k yields
k k
1 2 1 2 1 2
(3.11) 5 Ny Il 5. g ju fly ap iz Jroulle || at
e S s T S S N X
It remains to estimate the right hand side of (3.11). We have, by the Cauchy-Schwarz
i ] inequality and the limiting integral form of the triangle ineguality,
t t @
2
(3.12) llzmll 2 < ’AlT R ||3——?— GO R | B doar)?
t i3 ot L (Q)
m-1
i 2
3 Tuy 2
sell 17, 2
L7t et (@)
. so that (3.4) follows with
2
(3.13) c= 13342 .
: ot L (D)
- 4 Finally, (3.6) follows via the triangle inequality from (3.4) and the estimate
] M-l “mel , M1 fme s 5
(3.14) 8- f [l = ue,e]® = ] F1] 5 (na
ri»- : m=0 t Q m=0 t Q t -
m m m
M-l Smel 5
| swe Tt gl -
; S m=0 t. Lot L) i
j . ie® Hoolog .
| (D)
'; - The theorem is now proved. ® ’
i
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i4. Continuous Time Finite Element Approximations.

For h >0, let Th be a triangulation of the given domain Q. Thus,

(4.1) Q= vt
'l'e'l'h
where 1 1is a typical (closed) element in the simplicial decomposition T ; in

h
particular, we permit nonsimplical elements near the boundary. Let Mh denote the

linear space of continuous piecewise linear trial functions determined by Th:

(4.2) M, = {x e CQ) : X|T is linear ¥t ¢ Th} 3
Let Eh be the Ritz-Galerkin Hl (2) projection defined by

(4.3) (E ¢,Xx) = (¢,x) , for all x € 5
s gy I (@) "

for each fixed ¢ ¢ Hl (2); here we use

1
(4.4) (¢, ) = (Yo, V) +— [o [v ,
i () M e 1 Y

which defines a norm equivalent to the standard Hl (2) norm in the usual way (cf. [13]).
One sees easily that E:h preserves (integral) mean values over { and that Eh is
an orthogonal projection in Hl (2). Finally, define the finite rank approximation

ThofTby

-1
(4.5) N e T W

Remark 4.1. The mapping 'rh, defined by (4.5), is not the natural finite rank

projection associated with T; this would be obtained by defining Eh with respect to

(4.6) (v, ¥) = (Vo,Vy) 2 '

L™ (Q)

it @)

(o]
leading to a self-adjoint, positive definite operator on ﬂh It is therefore some-

what surprising that T is self-adjoint and non-negative definite on LZ(Q) . :

Lemma 4.1. 'rh is self-adjoint on Lz(ﬂ) and satisfies L

-14-




4.7 (T.g,9) > 0, Eop all g e LT ED
i

Proof: Since Th is bounded, the self-adjointness will follow from the symmetry
of Th. This, together with (4.7), follow from the following identities. Since T

is a Riesz mapping,

(Tog.g.) = (VE, Tg,,VTg,)
h”1 2L2(Q) h -1 2L2(Q)

so that, by (4.4), the mean value property of Eh' and its role as an orthogonal

projection in Hl(Q).

1
(T, 9,.,9,) = (E Tg,,T9,) sigeen R g | {79
i S i EpT9) S ikias dlal 4 E‘nln 2
- @I EmN) g (RS [ B,
H (Q) Q Q
= (VB Tg ,VET9,) , .

L ()

The latter quantity is non-negative if gl =g, = g and the interchange of 9 and

2

9, yields the symmetry of 'rh. L]

Remark 4.2. Our basic finite element hypotheses are the following. For g ¢ L2 (Q)
(i) 9>0=Tg >0 (Korovkin Positivity) ;

o | | 2 1q |
i) |j(r - 79| < ch ||g
b Sty @

holds for C independent of h. Note that (4.8ii) is a routine consequence of
(2.2) for m = 2 since, if w=Tg, then w_ =

h = "n9

order h2 approximation properties in I.2 are well-known in this case (cf. [14]).

satisfies Wi = Fhw. The

We are now ready to define the continuous time finite element approximation Uh'

The approximation is based upon (2.13) and the intrinsic approximation properties of
the operators Th'

Definition 4.1. The finite element, continuous time approximation Uh : [0,'1‘0] >

r=-Cn M’h is defined to be the unique solution of the initial value problem




..
o
9
i
{
L
;
§ |
B 1

r—Thf]()(-Uh) >0

h'h't

(4.9i) £ LRU), + @ ~x) ~ 2

for all xer-Cth,o<t<To 2

(4.9ii) Uh(O) =0
Remark 4.3. Of course, it requires an argument to prove that (4.9) possesses a

unique solution. Uniqueness is established in a manner similar to that of the proof

of Theorem 2.4; in particular, (cf. (2.12)) it can be proved that

ShE 7 e Vet B m 00
L™ (Q)
> 2
+ [0 HULh - Uz,h ”L2 (mds <0
for any two solutions Ul,h and Uz,h of (4.9), where (4.10) holds for each
Bt 'I'o. Uniqueness follows from (4.10) and (4.7). An existence proof can be

constructed using the method of horizontal lines, wherein the time derivative in
(4.9i) is replaced by a backward divided difference, quite similar to the technique
in section three. There result stationary problems which are the gradient formula-
tions of quadratic minimization problems over closed convex subsets of L2 (). The
step function (in time) sequence indexed by M = T/At can be shown to be bounded in
LZ(Q) (actually, the finite dimensional affine subspace r - M.h) and convergence
of a subsequence to a solution of (4.9) may be established by standard methods.
Lemma 4.2. Under the hypothesis (4.8i), the relation (4.9) holds for all x ¢ r - C
and in particular for x = u.

Proof: Since T, is self-adjoint, (4.9i) is equivalent to

h

(4.11) é {t), - £1(Tx - U + 70 . V(T x - T,0)} >0

for all xer -Cn M. We rewrite (4.11) as l

(4.12) !} Tl = B = B0 & WL < Mg Smud) >0,

forall {eTr=-T,(CnM)=THM. The lemma will therefore fol;.ow, if we can :
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prove that

+
(4.13) T, (r - C) = (i

from the self-adjointness of 'rh. Here we have written

+

(4.14) Mh={x£Mh: Xoa )

Since 'I'h is assumed pointwise non-negative by (4.8i), (4.13) will follow if, for
v € L2 Q),

(4.15) v e Moevd 'rhM.h} = {y L 'I‘hv}

Here, the orthogonality in (4.15) is understood to be L2 orthogonality. To verify

(4.15), let v € LZ(Q), let Y ¢ Mh and suppose

WJ.Tth .

j By the proof of Lemma 4.1 we have

S | ?
‘ : 0= (mu.w , = |yl
L (Q) L (R
g so that 'rhw is constant on Q. Thus, using the aforementioned proof once again we

- have,

0 = (VT,v,VT, y) = (T, v.{)

Pooaam 2

il i

which verifies (4.15). The proof is completed.
We are now ready for the major result of this section.
Theorem 4.3. The finite element approximations defined by (4.9) are convergent to the

solution u of (1.10) with order h2 in LZ(D), i.e.,

2
(4.16) fla - u || < Ch
i I:z (D) }

for some constant C.

Proof: Setting z = U in (2.13ii) and x = u in (4.9i) (cf. Lemma 4.2) we

2 i
. have

i | 0S5
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(i) ([(N)t+(u-r)-TAr-Tf)(u-Uh)iO
(4.17) 5
(i) f\ (MU, + @ -x) - TAr - T€l=-0) >0
Subtraction of (4.17ii) from (4.17i) gives, after some rearrangement,
- U - - -
j‘ -l -~ -3} {1 w=-1u)
(4.18) g
£ Wab ) - D+ fdu s B - M) Ax)
de¥ =h Q Q
Writing
| |
! 21 = e R
| (4.19) j;z{'rh(u S Bt R e jQTh(u B -tg-u) ,
=
integrating in t from O to To and using the non-negative definiteness of '1'h
yield
) 2 1 2
. (4..20) o -u 1%, <% fu-o
1 o B m
F 1 v
+5 |[(e-T ) - £ - ar) ||
2 h' 't Lz (D)
% where we have applied the standard inequality (3.10) to the right hand side of (4.18).
The estimate (4.16) now follows immediately from (4.20) and (4.8ii) applied to s
o] g =u - f - Ar. The proof is now concluded.
|
Hm- j - -
|
1
¢
!
i | *
| |
p
l",' ;
|
y
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g trial space of C° piecewise linear elements. The approximation scheme used
to define Uh appears to be new.
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