





MRC Technical summary pepet 2032 ADA 083814 6 CONVERGENT APPROXIMATIONS IN PARABOLIC VARIATIONAL INEQUALITIES. I. ONE-PHASE STEFAN PROBLEMS. NH (1) Joseph W. Jerome 14 MRC-TSR-2032

Mathematics Research Center University of Wisconsin-Madison 610 Walnut Street Madison, Wisconsin 53706

Jan

(Received November 27, 1979)

DAAG29-75-C-\$\$24

Approved for public release Distribution unlimited

ponsored by .S. Army Research Office P.O. Box 12211 esearch Triangle Park orth Carolina 27709

80 4 9

102

Aut

ELE' 6 1980

# UNIVERSITY OF WISCONSIN - MADISON MATHEMATICS RESEARCH CENTER

### CONVERGENT APPROXIMATIONS IN PARABOLIC VARIATIONAL INEQUALITIES. I: ONE-PHASE STEFAN PROBLEMS

Joseph W. Jerome

# Technical Summary Report #2032 January 1980

#### ABSTRACT

The change of variable

(1)

$$u(\mathbf{x},t) = \int_{0}^{t} \theta(\mathbf{x},\tau) d\tau$$

for the temperature  $\theta$  in the one-phase Stefan problem leads to the evolution inequality

(2) 
$$(u_1 - \Delta u - f)(z - u) > 0$$
, for all  $z > 0$ 

where  $u \ge 0$  is required. This inequality is to hold over a space-time domain  $D = \Omega \times (0,T_{\Omega})$  with a Dirichlet boundary condition imposed on

 $\partial \Omega \times (0, T_0)$  and a zero initial condition. In this paper we examine semi-

discretizations of (2) in time and in space and we derive the respective convergence rates. The following explicit results are obtained:

$$||\mathbf{U}^{\mathbf{M}} - \mathbf{u}||_{\mathbf{L}^{2}(\mathbf{D})} \leq C\Delta t ,$$

where  $U^{M}$  is the  $H^{1}(\Omega)$ -valued, piecewise linear in time, interpolant obtained from the horizontal line, fully implicit Euler scheme applied to (2) with  $\Delta t = T_{\Omega}/M$ ;

(3ii) 
$$||U_{h} - u||_{L^{2}(D)} \leq Ch^{2}$$
,

where U<sub>h</sub> is the continuous time, finite element approximation obtained by

applying an integrated version of (2) to a translate of the finite dimensional trial space of C° piecewise linear elements. The approximation scheme used to define  $U_h$  appears to be new.

AMS(MOS)Subject Classification - 65M20, 65N30, 76V05

Key Words - Parabolic variational inequalities, one-phase Stefan problem, horizontal line method, finite element method.

Work Unit Number 2 - Physical Mathematics

Sponsored by the United States Army under Contract No. /DAAG29-75-C-0024.

### SIGNIFICANCE AND EXPLANATION

Many physical phenomena are modelled by inequalities rather than equations. In this report we examine a dynamic, or parabolic inequality, which characterizes the change of phase of a substance, e.g., ice melting, under certain assumptions. We obtain rates of convergence for certain approximation schemes which separately discretize time and space. The rates, as well as one of the schemes, appear to constitute new results in a subject which is still rather undeveloped. Subsequent investigations are also contemplated for inequalities related to different physical models.

|    | Accession Jos<br>MTIS CRAAT<br>DDC TAS<br>Unannounced |
|----|-------------------------------------------------------|
|    | By                                                    |
| 01 | st Avail and/or<br>special                            |

The responsibility for the wording and views expressed in this descriptive summary lies with MRC, and not with the author of this report.

### CONVERGENT APPROXIMATIONS IN PARABOLIC VARIATIONAL INEQUALITIES. I: ONE-PHASE STEFAN PROBLEMS

Joseph W. Jerome

### §1. Introduction.

Parabolic variational inequalities arise in various modelling problems such as phase transition via heat conduction, optimal stopping time problems, dynamic obstacle problems and porous medium filtration problems. It is the purpose of this series of papers to define and analyze convergent discretizations for the aforementioned problems beginning in this first paper with the one-phase Stefan problem, formally equivalent to a dynamic obstacle problem. Although it might be preferred to treat all of these problems in a single theory, the special features of each make the unified convergence analysis awkward at best. In order to avoid subsequent repetition, we shall restrict ourselves in this paper to the analysis of semidiscretizations in space and time.

The one-phase Stefan problem has the formulation over a fixed space-time domain D,

(1.1)

(i)  $u \ge 0$ , (ii)  $u_t - \Delta u - f \ge 0$ , (iii)  $(u_t - \Delta u - f)u = 0$ ,

subject to appropriate initial and boundary conditions (cf. Duvaut [4], Bensoussan and Lions [1], Friedman and Kinderlehrer [6]). The specification and development of this formulation will be given later in the introduction together with a statement of the physical problem.

An exhaustive numerical analysis of (1.1) and other variational inequalities has been given by Glowinski, Lions and Trémolières [8], though rates of convergence, and certainly optimal rates of convergence, do not appear to have been derived in the literature. For (1.1), we give a horizontal line analysis and a continuous time, finite-element analysis. We find it convenient, however, to work with the equivalent

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024.

#### formulation (cf. Theorem 2.4),

(1.2)

(i)  $u \ge 0$ , (ii)  $(Tu)_t + (u - r) - T\Delta r - Tf \ge 0$ , (iii)  $[(Tu)_t + (u - r) - T\Delta r - Tf]u = 0$ ,

on D, where r specifies the boundary values of u and  $T = (-\Delta)^{-1}$  is a smoothing operator. The semidiscretizations are defined directly in terms of (1.2). In terms of the corresponding stationary or elliptic formulation associated with (1.1), this amounts to minimizing

(1.3) 
$$E(u) = \frac{1}{2} (u, u) - (r, u) - (\Delta r + f, u) + \frac{1}{2} (\Omega) + \frac{1}{2} (\Omega) - (\Delta r + f, u) + \frac{1}{2} (\Omega)$$

over a convex set in  $L^2(\Omega)$  rather than the usual quadratic energy form over a convex set in  $H^1(\Omega)$ . Now in terms of the horizontal line, discrete time approximations, the use of (1.2) merely provides an efficient way of estimating the rate of convergence,  $O(\Delta t)$ , in  $L^2(D)$  (cf. Theorem 3.2). In this case, the approximations based on (1.1) and (1.2) are identical. However, if (1.2) is used to define finite element, continuous time approximations taken from the translate,  $r - \mathring{M}_h$ , of the C° piecewise linear trial space  $\mathring{M}_h$ , with homogeneous boundary values, it is <u>possible</u> that the  $L^2$  projections associated with (1.2) are not identical to the  $H^1$  projections defined by (1.1). For equations, the projections coincide. Thus, for elliptic equations, replacement of the energy by (1.3) leaves the finite element approximation invariant, so long as the discrete  $H^{-1}$  norm is properly defined. This carries over to parabolic equations (cf. [10]) but remains an open question for inequalities.

In fact, the previous discussion has been highly simplified, since it proceeds as if  $\Omega$  were a polyhedral domain, compatible with the vanishing of elements of  $\mathring{\mathbb{A}}_{h}$  on  $\Im{\Omega}$ . Actually, we shall assume that  $\Omega$  is smoothly bounded to take advantage of the known regularity of u in this case; thus, there is an accompanying boundary layer effect, well-known to be associated with  $h^{3/2}$  convergence order in  $L^2$ . We

-2-

shall avoid the boundary layer by using the  $L^2$  formulation of (1.2) to define finite element approximations indirectly (cf. (4.9)) in terms of non-negative definite, self-adjoint approximations  $T_h$  of T, which map into  $N_h$  rather than  $\mathring{M}_h$ , i.e., the trial functions are unrestricted on  $\Im\Omega$ . The triangulation, thus, includes nonsimplicial elements near  $\Im\Omega$ . Of course, this removes any possibility that the  $L^2$ projection coincides with the  $H^1$  projection, but does permit the derivation of  $O(h^2)$  convergence in  $L^2(D)$ , (cf. Theorem 4.3), provided the operators  $T_h$  are pointwise non-negative, which we explicitly assume (cf. (4.8i)). This always holds for T(cf. Lemma 2.1) and, since  $T_h$  is defined as the composition of T and the  $H^1$  projection  $E_h$ , always holds for  $T_h$  in one space dimension, since  $E_h$ coincides with the interpolation operator. It is of course possible that the pointwise non-negativity hypothesis on the  $T_h$  masks certain boundary layer effects in several Euclidean dimensions. In analyzing the finite element approximations defined by the integration method just outlined, the reader should not confuse this method with direct methods of least squares type, which effectively double the order.

It is of some interest to compare the approach to the one-phase Stefan problem using variational inequalities with that using the classical formulation

(i)  $\theta_{+} = \Delta \theta, \quad \theta > 0$ ,

(ii)  $\theta = 0$ , on S ,

(1.4)

(iii) A cos  $(v, l_+) = [\frac{\partial \theta}{\partial v}]$ , across S ,

for the temperature  $\theta$  of one of the two phases in a two-phase system such as waterice. The change of phase results from heat conduction through the phase  $\Omega^{t}$  of positive temperature, which is separated from the phase  $\Omega \setminus \overline{\Omega}^{t}$  of fixed temperature 0 by the moving boundary; S is the time profile of this moving phase transition boundary, A is the latent heat of fusion,  $\nu$  is the outward normal to  $\{(x,t) : \theta(x,t) = 0\}$  and  $[\frac{\partial \theta}{\partial \nu}]$  represents the discontinuity of  $\frac{\partial \theta}{\partial \nu}$  across S directed by  $\nu$ . The fundamental numerical work on (1.4) has been carried out by

-3-

Meyer (cf. [12]) who devised uniformly convergent free boundary approximation schemes. An alternative approach, using the variational inequality formulation (1.1), obtained by setting

$$u(\mathbf{x},\mathbf{t}) = \int_{0}^{\mathbf{t}} \theta(\mathbf{x},\tau) d\tau ,$$

and

$$\mathbf{f}(\mathbf{x}) = \begin{cases} \theta(\mathbf{x},0) , \mathbf{x} \in \Omega_0 , \\ -\mathbf{A} , \mathbf{x} \notin \Omega_0 , \end{cases}$$

was given by the writer in [9]. It appears that the two approaches are equivalent with respect to asymptotic rates of convergence for the computation of  $S : \{x = x(t), t\}$  in one space dimension. Indeed, for horizontal line semidiscretizations, errors in computing x are of the order of the square root of errors in computing u; the latter is computed with accuracy  $\Delta t$ , giving a net accuracy of  $\sqrt{\Delta t}$ . If the less regular variable  $\theta$  is used, the error in computing  $\theta$  is of order  $\sqrt{\Delta t}$ , yet accuracy in x is proportional to accuracy in  $\theta$ ; the net result is again accuracy of order  $\sqrt{\Delta t}$ . This heuristic analysis has been confirmed in analytical studies of the one-phase Stefan problem by L. Caffarelli.

In the remainder of this section we shall discuss the precise formulation of the variational inequality to be used in the sequel. It can be shown (cf. [9]) that (1.1) is equivalent to a pointwise cone inequality (cf. Abstract) and thence to the integrated version of this same inequality. More precisely, let homogeneous initial datum and a boundary datum function r be specified satisfying

(i)  $\mathbf{r} \in \mathbf{X} = \mathbf{W}^{1,\infty}(\mathbf{0},\mathbf{T}_0;\mathbf{L}^{\infty}(\Omega)) \cap \mathbf{L}^{\infty}(\mathbf{0},\mathbf{T}_0;\mathbf{W}^{2,\infty}(\Omega))$ ,

(1.5) (ii)  $r(\cdot,0) = 0$ 

$$r(\cdot, 0) = 0$$
,  $r > 0$  in D

Define a convex set C by

(1.6)  $C = \{w \in X : w \leq r \text{ in } D, w(\cdot,t) \in H_0^1(\Omega), 0 < t < T_0\}$ . Finally, let f be given satisfying

-4-

$$f \in L^{\infty}(D)$$
 .

Then a dynamical obstacle formulation of a parabolic variational inequality with solution v may be used to characterize u. It may be written, incorporating initial and boundary conditions, as

(i) u = r - v,

(1.8) (ii)  $v \in C$ ,  $v(\cdot, 0) = 0$ ,

(iii)  $\int_{\Omega} (\mathbf{v}_{t} - \Delta \mathbf{v} - \mathbf{f}_{0}) (\mathbf{w} - \mathbf{v}) \ge 0, \text{ for all } \mathbf{w} \in C, \text{ a.e. in } (0, T_{0}).$ 

Here,

(1.7)

(1.9) 
$$f_0 = r_+ - \Delta r + f$$
.

<u>Remark 1.1</u>. The formulation (1.8) is convenient for piecewise linear finite elements. It is immediately seen that (1.8) is equivalent to

(1.10)

(i) 
$$u \in r - C$$
,  $u(\cdot, 0) = 0$ ,  
(ii)  $\int (u_{+} - \Delta u - f)(z - u) \ge 0$ , for all  $z \in r - C$ , a.e. in  $(0, T_{0})$ 

which in turn is equivalent to (1.1), augmented by the initial and boundary conditions, and to the non-integrated form of (1.10).

<u>Remark 1.2</u>. Standard methods (cf. Caffarelli and Friedman [3]) show that (1.10) has a unique solution provided f is  $C^{\alpha}$ ,  $0 < \alpha < 1$ , in each of connected subdomains  $\Omega_0$  and  $\Omega_1$  with common smooth boundary. In the case of the one-phase Stefan problem,  $\Omega_0$  and  $\Omega_1$  are the regions occupied initially by, say, water and ice. In [3] it is also shown that  $\theta = u_t$  is continuous on D.

<u>Remark 1.3</u>. Throughout the paper we shall assume that (1.10) has a unique solution  $u \in r - C$ . In addition, we shall require some further regularity properties of u and  $\Omega$ . The hypothesis on u is described in (1.11) below. The hypotheses on  $\Omega$  are basically the existence of classical (Schauder) regularity theory and weak maximum principles (cf. Lemmas 2.1, 2.2) as well as  $L^2$  regularity theory (cf. (2.2)). We introduce (1.11) now. Although  $u_{tt}$  exists only as a measure in D, it is to be

-5-

expected on the basis of explicit modulus of continuity estimates in [3], coupled with the well-known representation (cf. John [11]) for fundamental solution kernels corresponding to  $-\Delta$ , that

(1.11) 
$$(Tu)_{++} \in L^{2}(D)$$

Here, once again,  $T = (-\Delta)^{-1}$  when  $-\Delta$  is viewed as an operator from  $H_0^1(\Omega)$  onto  $H^{-1}(\Omega)$ . The idea of replacing the hypothesis  $u_{tt} \in L^2(D)$  by the weaker hypothesis (1.11) was introduced by the author and M. Rose in [10], where it is in fact proved that  $[TH(u)]_{tt} \in L^2(D)$  for the discontinuous enthalpy  $H(\cdot)$ .

-6-

## 52. Positivity and Equivalent Formulation.

Denote by T the inverse of  $-\Delta$  introduced in section one. Thus T is an isomorphism of  $H^{-1}(\Omega)$  onto  $H^{1}_{O}(\Omega)$ . Also,

(2.1) 
$$({\ell_1}, {\ell_2})_{H^{-1}(\Omega)} = \langle T \ell_1, \ell_2 \rangle$$

defines an inner product and norm on  $\operatorname{H}^{-1}(\Omega)$ , with the latter equivalent to the standard norm. Here,  $\langle \cdot, \cdot \rangle$  denotes the duality pairing on  $\operatorname{H}^{1}_{0}(\Omega) \times \operatorname{H}^{-1}(\Omega)$ . T is well-known to be a positive-definite, self-adjoint operator in  $\operatorname{L}^{2}(\Omega)$  when restricted to this space. One of the basic hypotheses on  $\Omega$  is contained in our assumption that T is an isomorphism of  $\operatorname{H}^{m-2}(\Omega)$  onto  $\operatorname{H}^{m}(\Omega) \cap \operatorname{H}^{1}_{0}(\Omega)$  for  $m \geq 1$ :

(2.2) 
$$\| \operatorname{Tg} \|_{H^{m}(\Omega)} \leq C \| g \|_{H^{m-2}(\Omega)} , m \geq 1 .$$

As a first step in obtaining the formulation (1.2) we state the following familiar type of maximum principle.

Lemma 2.1. T has the positivity property in the sense of Korovkin:

(2.3) 
$$g \in L^{2}(\Omega)$$
,  $g \ge 0 \Rightarrow Tg \ge 0$ ,

where the inequalities hold a.e. in  $\Omega$ .

Proof: Follows directly from [1, Théorème 5.1, p. 83] or, alternatively, from the classical maximum principle [7, p. 35] applied to the dense subset  $C^{\infty}(\tilde{\Omega})$  of  $L^{2}(\Omega)$ . Lemma 2.2. Suppose u satisfies (1.10). Then u satisfies the initial condition,

$$(2.4) u(\cdot, 0) = 0 ,$$

and for all  $0 < t < T_0$ , the boundary condition,

(2.5)  $u(\cdot,t) = r(\cdot,t)$ , on  $\partial \Omega$ ,

and the integrated inequality

(2.6)

(i)  $u \ge 0$ , in  $\Omega$ , (ii)  $(Tu)_t + u - T\Delta r - r - Tf \ge 0$ , in  $\Omega$ , (iii)  $\int_{\Omega} [(Tu)_t + u - T\Delta r - r - Tf]u = 0$ .

Proof: (2.4), (2.5) and (2.6i) are immediate and (2.6ii) follows from Lemma 2.1 by applying T to

(2.7) 
$$u_{t} - \Delta u - f \ge 0$$

Note that here we use the equivalent characterization (1.1). Now note that by (2.6i,ii) it suffices to prove

(2.8) 
$$\int_{\Omega} [(Tu)_t + u - T\Delta r - r - Tf] u \leq 0 \quad .$$

Thus, if

(2.9)  $\Omega_{\pm}^{t} = \{ \mathbf{x} \in \Omega : \mathbf{u}(\mathbf{x}, t) > 0 \} ,$ 

then  $\Omega_{+}^{t}$  is open. Suppose t is fixed and  $\Omega_{\star}$  is any ball in  $\Omega_{+}^{t}$  satisfying  $\overline{\Omega}_{\star} \subset \Omega_{+}^{t}$ . In particular,  $u(\mathbf{x},t) \geq c > 0$  for  $\mathbf{x} \in \Omega_{\star}$ . For almost all  $t \in (0,T_{0})$ ,  $u(\cdot,t) \in C^{1}(\overline{\Omega})$  so that, by the Schauder theory [7],  $Tu(\cdot,t) \in C^{2+\alpha}(\overline{\Omega})$ , some  $0 < \alpha < 1$ . In particular, if  $\psi \in C_{0}(\Omega_{\star})$ ,  $\psi \geq 0$ , there is an  $\varepsilon > 0$  such that

 $\epsilon \Psi T(u(\cdot,t)) < c$ , on  $\Omega_{\star}$ .

Thus, the choice

$$z = u - \epsilon \psi T u$$

leads to  $z \in r - C$  and

$$\int_{\Omega} (\mathbf{u}_{t} - \Delta \mathbf{u} - \mathbf{f}) \psi \mathbf{T} \mathbf{u} \leq 0 \quad .$$

Since  $\psi$  is arbitrary, we may set  $\psi = \psi_n$  where  $\psi_n \to 1$  in  $L^2(\Omega)$ . This leads to

$$\int_{\Omega} (\mathbf{u}_{t} - \Delta \mathbf{u} - \mathbf{f}) \mathbf{T} \mathbf{u} \leq \mathbf{0}$$

and then immediately to (2.8) for almost all t  $\epsilon$  (0,T<sub>0</sub>), and hence for all t by standard continuity.

Lemma 2.3. Suppose u satisfies (1.10). Then u satisfies (2.4), (2.5) and (1.2) for all  $0 < t < T_{a}$ .

Proof: It is enough to prove that

(2.10)  $\{T[u_{+} - \Delta u - f]\}u \leq 0 \text{ in } \Omega_{+}^{t}, 0 \leq t \leq T_{0},$ 

-8-

where  $\Omega_{+}^{t}$  is given by (2.9). It follows from (2.6) that

(2.11) 
$$\int_{\Omega} \{ T[u_t - \Delta u - f] \} (z - u) \ge 0$$

for all

$$z = u + \omega$$
,  $supp \omega \in \Omega$ ,  $0 \le z \in L^{2}(\Omega)$ 

If  $\Omega_{\star}$  is any compact subset of  $\Omega_{\pm}^{t}$  and  $z = u - \varepsilon u \chi_{\Omega_{\star}}$ ,  $0 < \varepsilon < 1$ , we have from (2.11),

$$0 \geq \varepsilon \int_{\Omega} \{ \mathbf{T}[\mathbf{u}_{t} - \Delta \mathbf{u} - \mathbf{f}] \} \mathbf{u} \chi_{\Omega_{\star}}$$

so that (2.10) holds.

Theorem 2.4. The solution of (1.2), (1.10i) is unique. In particular, it is given by the solution of (1.10).

Proof: If  $u_1$  and  $u_2$  are solutions of (1.2), (1.10i), then

$$\{ \mathbf{T} \begin{bmatrix} \frac{\partial \mathbf{u}_1}{\partial \mathbf{t}} - \Delta \mathbf{u}_1 - \mathbf{f} \end{bmatrix} \{ \mathbf{u}_1 - \mathbf{u}_2 \} \leq 0 ,$$

$$\{ \mathbf{T} \begin{bmatrix} \frac{\partial \mathbf{u}_2}{\partial \mathbf{t}} - \Delta \mathbf{u}_2 - \mathbf{f} \end{bmatrix} \{ (\mathbf{u}_1 - \mathbf{u}_2) \geq 0 .$$

Subtraction and integration over  $\Omega$  gives

$$\frac{\partial (u_1 - u_2)}{\partial t}, \ u_1 - u_2)_{H^{-1}(\Omega)} + (u_1 - u_2, \ u_1 - u_2)_{L^2(\Omega)} \le 0 \quad .$$

Integration in t gives

(2.12) 
$$\frac{1}{2} \| u_1(\cdot,t) - u_2(\cdot,t) \|_{H^{-1}(\Omega)}^2 + \int_0^t \| u_1 - u_2 \|_{L^2(\Omega)}^2 ds \le 0$$

for 0 < t < T. Uniqueness is immediate from (2.12) and the remaining statement follows from Lemma 2.3.

<u>Remark 2.1</u>. Lemmas 2.2 and 2.3 form the basis of a circle of equivalences for the solution u of (1.10) as in section one. We note for future reference that the solution of (1.10) may be characterized by

-9-

(2.13)  
(i) 
$$u \in r - C$$
,  $u(\cdot, 0) = 0$ ,  
(ii)  $\int [(Tu)_t + (u - r) - T\Delta r - Tf](z - u) \ge 0$ ,

for all  $0 < t < T_0$  and all  $z \in L^2(\Omega)$ ,  $z \ge 0$ .

-10-

## 53. Horizonal Line Analysis.

(3.1)

(3.2)

<u>Definition 3.1</u>. Let M be a positive integer, let  $\Delta t = T_0/M$  and set  $t_m = m\Delta t$ ,  $0 \le m \le M$ . With  $u_0 = 0$  the given initial datum, let  $\{u_m\}_{m=0}^M$  be the recursively generated sequence of solutions of the elliptic variational inequalities

(i) 
$$u_m \in r_m - C_m$$

(ii) 
$$\int_{\Omega} \left( \frac{u_{m} - u_{m-1}}{\Delta t} - \Delta u_{m} - f_{m} \right) \left( \varphi - u_{m} \right) \geq 0, \text{ for all } \varphi \in C_{m}$$

obtained <u>formally</u> from (1.7) by the identifications  $u(\cdot, t_m) \sim u_m$  and  $\frac{\partial u}{\partial t}(t_m) \sim \frac{u_m - u_{m-1}}{\Lambda t}$ . Here

(i) 
$$\mathbf{r}_{m} = \mathbf{r}(\cdot, \mathbf{t}_{m})$$
,  $\mathbf{f}_{m} = \mathbf{f}(\cdot, \mathbf{t}_{m})$ ,  
(ii)  $C_{m} = \{\psi \in W^{2,\infty}(\Omega) : \psi \leq \mathbf{r}_{m}\}$ .

<u>Remark 3.1</u>. A unique solution  $u_m \in W^{2,\infty}(\Omega)$  of (3.1) is known to exist, provided  $f(\cdot,t)$  is piecewise  $C^{\alpha}$  in subdomains of  $\Omega$  independent of t and separated by a smooth boundary, as described in the introduction. Although the result of Frehse [5] assumes a global  $C^{\alpha}$  property for  $f(\cdot,t)$ , modifications (cf. [9]) show that the piecewise result is true. This is, of course, the case of physical interest. Appropriate modifications of the result of Brezis and Kenderlehrer [2] also yield the result. The technical difficulty involves the global boundedness of the second derivatives.

Lemma 3.1. The relation

(3.3) 
$$\int_{\Omega} \left[ \frac{\mathbf{T}\mathbf{u}_{m} - \mathbf{T}\mathbf{u}_{m-1}}{\Delta \mathbf{t}} + \mathbf{u}_{m} - \mathbf{T}\Delta \mathbf{r}(\cdot, \mathbf{t}_{m}) - \mathbf{r}_{m} - \mathbf{f}_{m} \right] \mathbf{u}_{m} = 0$$

holds for all  $1 \leq m \leq M$ .

Proof: This proceeds by a straightforward repetition of the proof of Lemma 2.2. <u>Theorem 3.2</u>. There exists a constant C, independent of  $\Delta t$  and given by (3.13) below, such that

-11-

$$(3.4) \qquad \max_{\substack{0 \leq m \leq M}} \|u(\cdot,t_m) - u_m\|_{H^{-1}(\Omega)}^2 + \sum_{m=0}^M \|u(\cdot,t_m) - u_m\|_{L^2(\Omega)}^2 \Delta t \leq C(\Delta t)^2 .$$

In particular, if  $u_{s,\Delta t}$  is the step function

(3.5) 
$$u_{s,\Lambda t}(x,t) = u_m(x)$$
,  $x \in \Omega$ ,  $m\Delta t \leq t < (m+1)\Delta t$ ,

for  $0 \le m \le M - 1$ , then the estimate

$$\|\mathbf{u} - \mathbf{u}_{s,\Delta t}\|_{L^{2}(D)} \leq C(\Delta t)$$

holds for some constant C.

**Proof:** Setting 
$$t = t_m$$
 in (2.6iii) gives, since  $u_m \ge 0$ ,

(3.7) 
$$\int_{\Omega} \left[ \frac{\partial \mathbf{T} \mathbf{u}}{\partial \mathbf{t}} (\cdot, \mathbf{t}_{m}) + \mathbf{u}(\cdot, \mathbf{t}_{m}) - \mathbf{T} \Delta \mathbf{r}(\cdot, \mathbf{t}_{m}) - \mathbf{r}_{m} - \mathbf{f}_{m} \right] (\mathbf{u}(\cdot, \mathbf{t}_{m}) - \mathbf{u}_{m}) \leq 0$$

Similarly, we obtain from (3.3) the reverse inequality,

(3.8) 
$$\int_{\Omega} \left[ \frac{\mathbf{T}\mathbf{u}_{m} - \mathbf{T}\mathbf{u}_{m-1}}{\Delta \mathbf{t}} + \mathbf{u}_{m} - \mathbf{T}\Delta \mathbf{r}(\cdot, \mathbf{t}_{m}) - \mathbf{r}_{m} - \mathbf{f}_{m} \right] (\mathbf{u}(\cdot, \mathbf{t}_{m}) - \mathbf{u}_{m}) \geq 0 \quad .$$

For simplicity, we set

$$y_{m} = u(\cdot, t_{m}) - u_{m}$$

Then, subtraction of (3.8) from (3.7) yields, after an appropriate addition and subtraction,

$$\frac{1}{\Delta t} (\mathbf{y}_{m}, \mathbf{y}_{m})_{H}^{-1} (\Omega) = \frac{1}{\Delta t} (\mathbf{y}_{m-1}, \mathbf{y}_{m})_{H}^{-1} (\Omega) + \|\mathbf{y}_{m}\|_{L^{2}(\Omega)}^{2}$$

$$\leq \int_{\Omega} \left[ \frac{\mathrm{Tu}(\cdot, \mathbf{t}_{m}) - \mathrm{Tu}(\cdot, \mathbf{t}_{m-1})}{\Delta t} - \frac{\partial \mathrm{Tu}}{\partial t} (\mathbf{t}_{m}) \right] \mathbf{y}_{m}$$

$$= \frac{1}{\Delta t} \int_{\Omega} \left\{ \int_{\mathbf{t}_{m-1}}^{\mathbf{t}_{m}} \left[ \frac{\partial \mathrm{Tu}}{\partial t} (\tau) - \frac{\partial \mathrm{Tu}}{\partial t} (\mathbf{t}_{m}) \right] d\tau \right\} \mathbf{y}_{m}$$

$$= \int_{\Omega} \left\{ \frac{-1}{\Delta t} \int_{\mathbf{t}_{m-1}}^{\mathbf{t}_{m}} \int_{\mathbf{t}_{m-1}}^{\mathbf{t}_{m}} \frac{\partial^{2} \mathrm{Tu}}{\partial t^{2}} (\cdot, \sigma) d\sigma d\tau \right\} \mathbf{y}_{m}$$

$$= (\mathbf{y}_{m}, \mathbf{z}_{m})_{L^{2}(\Omega)},$$

(3.9)

where  $z_m$  is defined by this equation. Multiplying through by  $\Delta t$ , making use of the inequality

(3.10)  $|(\mathbf{w},\mathbf{z})| \leq \frac{1}{2} ||\mathbf{w}||^2 + \frac{1}{2} ||\mathbf{z}||^2$ 

and summing on  $m = 1, \ldots, k$  yields

$$(3.11) \qquad \frac{1}{2} \|\mathbf{y}_{\mathbf{k}}\|_{\mathbf{H}^{-1}(\Omega)}^{2} + \frac{1}{2} \sum_{m=1}^{\mathbf{k}} \|\mathbf{y}_{\mathbf{m}}\|_{\mathbf{L}^{2}(\Omega)}^{2} \Delta t \leq \frac{1}{2} \sum_{m=1}^{\mathbf{k}} \|\mathbf{z}_{\mathbf{m}}\|_{\mathbf{L}^{2}(\Omega)}^{2} \Delta t$$

It remains to estimate the right hand side of (3.11). We have, by the Cauchy-Schwarz inequality and the limiting integral form of the triangle inequality,

$$(3.12) \|\mathbf{z}_{\mathbf{m}}\|^{2} \leq \left[\frac{1}{\Delta t} \int_{\mathbf{t}_{\mathbf{m}-1}}^{\mathbf{t}_{\mathbf{m}}} \int_{\tau}^{\mathbf{t}_{\mathbf{m}}} \|\frac{\partial^{2} \mathrm{Tu}}{\partial t^{2}} (\cdot, \sigma)\|_{L^{2}(\Omega)}^{2} \mathrm{d}\sigma \mathrm{d}\tau\right]^{2} \\ \leq \Delta t \left\|\frac{\partial^{2} \mathrm{Tu}}{\partial t^{2}}\right\|_{L^{2}(\mathbf{t}_{\mathbf{m}-1}, \mathbf{t}_{\mathbf{m}}; L^{2}(\Omega))}$$

so that (3.4) follows with

(3.13) 
$$C = \left\| \frac{\partial^2 T_u}{\partial t^2} \right\|_{L^2(D)}^2$$

Finally, (3.6) follows via the triangle inequality from (3.4) and the estimate

$$(3.14) \qquad \sum_{m=0}^{M-1} \int_{t_m}^{t_{m+1}} \int_{\Omega} |u(\cdot,t) - u(\cdot,t_m)|^2 = \sum_{m=0}^{M-1} \int_{t_m}^{t_{m+1}} \int_{\Omega} |\int_{t_m}^{t} \frac{\partial u}{\partial t} (\tau) d\tau|^2$$
$$\leq \Delta t \sum_{m=0}^{N-1} \int_{t_m}^{t_{m+1}} ||u_t||^2_{L^2(t_m,t_{m+1};L^2(\Omega))}$$
$$= \Delta t^2 ||u_t||^2_{L^2(D)} .$$

The theorem is now proved.

#### 34. Continuous Time Finite Element Approximations.

For h > 0, let  $T_h$  be a triangulation of the given domain  $\Omega$ . Thus,

(4.1)

where  $\tau$  is a typical (closed) element in the simplicial decomposition  $T_h$ ; in particular, we permit nonsimplical elements near the boundary. Let  $M_h$  denote the linear space of continuous piecewise linear trial functions determined by  $T_h$ :

 $\overline{\Omega} = \bigcup_{\tau \in T_{\mathbf{b}}}$ 

(4.2) 
$$M_{h} = \{\chi \in C(\overline{\Omega}) : \chi_{|\tau} \text{ is linear } \forall \tau \in T_{h}\}$$

Let  ${\rm E}_{\rm h}$  be the Ritz-Galerkin  ${\rm H}^1\left(\Omega\right)$  projection defined by

(4.3) 
$$(E_{h}\varphi,\chi)_{H^{1}(\Omega)} = (\varphi,\chi)_{H^{1}(\Omega)}, \text{ for all } \chi \in M_{h}$$

for each fixed  $\varphi \in H^{1}(\Omega)$ ; here we use

(4.4) 
$$(\varphi, \psi)_{H^{1}(\Omega)} = (\nabla \varphi, \nabla \psi)_{L^{2}(\Omega)} + \frac{1}{|\Omega|} \int_{\Omega} \varphi \int_{\Omega} \psi ,$$

which defines a norm equivalent to the standard  $H^{1}(\Omega)$  norm in the usual way (cf. [13]). One sees easily that  $E_{h}$  preserves (integral) mean values over  $\Omega$  and that  $E_{h}$  is an orthogonal projection in  $H^{1}(\Omega)$ . Finally, define the finite rank approximation  $T_{h}$  of T by

(4.5) 
$$\mathbf{T}_{h} = \mathbf{E}_{h} \circ \mathbf{T} , \quad \mathbf{T}_{h} : \mathbf{H}^{-1}(\Omega) \to \mathbf{M}_{h}$$

<u>Remark 4.1</u>. The mapping  $T_h$ , defined by (4.5), is not the natural finite rank projection associated with T; this would be obtained by defining  $E_h$  with respect to

(4.6) 
$$(\varphi, \psi) = (\nabla \varphi, \nabla \psi)$$
  
 $H_0^1(\Omega)$   $L^2(\Omega)$ 

leading to a self-adjoint, positive definite operator on  $\Re_h$ . It is therefore somewhat surprising that  $T_h$  is self-adjoint and non-negative definite on  $L^2(\Omega)$ . Lemma 4.1.  $T_h$  is self-adjoint on  $L^2(\Omega)$  and satisfies

-14-

$$(T_h g, g)_{L^2(\Omega)} \ge 0$$
, for all  $g \in L^2(\Omega)$ 

Proof: Since  $T_h$  is bounded, the self-adjointness will follow from the symmetry of  $T_h$ . This, together with (4.7), follow from the following identities. Since T is a Riesz mapping,

$$(\mathbf{T}_{h}\mathbf{g}_{1},\mathbf{g}_{2})_{L^{2}(\Omega)} = (\nabla \mathbf{E}_{h}\mathbf{T}\mathbf{g}_{1}, \nabla \mathbf{T}\mathbf{g}_{2})_{L^{2}(\Omega)}$$

so that, by (4.4), the mean value property of  $E_h$ , and its role as an orthogonal projection in  $H^1(\Omega)$ ,

$${}^{T}_{h} {g}_{1}, {g}_{2} {}^{2}_{L^{2}(\Omega)} = ({}^{E}_{h} {}^{T} {g}_{1}, {}^{T} {g}_{2} {}^{1}_{H^{1}(\Omega)} - \frac{1}{|\Omega|} \int_{\Omega} {}^{E}_{h} {}^{T} {g}_{1} \int_{\Omega} {}^{T} {g}_{2}$$
$$= ({}^{E}_{h} {}^{T} {g}_{1}, {}^{E}_{h} {}^{T} {g}_{2} {}^{1}_{H^{1}(\Omega)} - \frac{1}{\Omega} \int_{\Omega} {}^{E}_{h} {}^{T} {g}_{1} \int_{\Omega} {}^{E}_{h} {}^{T} {g}_{2}$$
$$= (\nabla {}^{E}_{h} {}^{T} {g}_{1}, {}^{\nabla {}^{E}_{h} {}^{T} {g}_{2} {}^{1}_{L^{2}(\Omega)} .$$

The latter quantity is non-negative if  $g_1 = g_2 = g$  and the interchange of  $g_1$  and  $g_2$  yields the symmetry of  $T_h$ . • <u>Remark 4.2</u>. Our basic finite element hypotheses are the following. For  $g \in L^2(\Omega)$ (i)  $g \ge 0 \Rightarrow T_h g \ge 0$  (Korovkin Positivity) ;

(4.8)

(4.7)

(i) 
$$\| (\mathbf{T} - \mathbf{T}_{h}) \mathbf{g} \|_{L^{2}(\Omega)} \leq Ch^{2} \| \mathbf{g} \|_{L^{2}(\Omega)}$$

holds for C independent of h. Note that (4.8ii) is a routine consequence of (2.2) for m = 2 since, if w = Tg, then  $w_h = T_hg$  satisfies  $w_h = E_hw$ . The order  $h^2$  approximation properties in  $L^2$  are well-known in this case (cf. [14]).

We are now ready to define the continuous time finite element approximation  $U_h$ . The approximation is based upon (2.13) and the intrinsic approximation properties of the operators  $T_h$ .

<u>Definition 4.1</u>. The finite element, continuous time approximation  $U_h$ :  $[0,T_0] \rightarrow r - C \cap M_h$  is defined to be the unique solution of the initial value problem

-15-

(4.9i) 
$$\int_{0} [(T_{h}U_{h})_{t} + (U_{h} - r) - T_{h}r - T_{h}f](\chi - U_{h}) \ge 0$$

for all  $\chi \in r - C \cap M_h$ ,  $0 < t < T_0$ ,

(4.9ii)  $U_{\rm b}(0) = 0$ .

<u>Remark 4.3</u>. Of course, it requires an argument to prove that (4.9) possesses a unique solution. Uniqueness is established in a manner similar to that of the proof of Theorem 2.4; in particular, (cf. (2.12)) it can be proved that

(4.10)  $\frac{1}{2} (T_h [U_{1,h} - U_{2,h}], U_{1,h} - U_{2,h}]_{L^2(\Omega)}$ 

+ 
$$\int_{0}^{t} \| u_{1,h} - u_{2,h} \|_{L^{2}(\Omega)}^{2} ds \leq 0$$

for any two solutions  $U_{1,h}$  and  $U_{2,h}$  of (4.9), where (4.10) holds for each  $0 < t < T_0$ . Uniqueness follows from (4.10) and (4.7). An existence proof can be constructed using the method of horizontal lines, wherein the time derivative in (4.9i) is replaced by a backward divided difference, quite similar to the technique in section three. There result stationary problems which are the gradient formulations of quadratic minimization problems over closed convex subsets of  $L^2(\Omega)$ . The step function (in time) sequence indexed by  $M = T/\Delta t$  can be shown to be bounded in  $L^2(\Omega)$  (actually, the finite dimensional affine subspace  $r - M_h$ ) and convergence of a subsequence to a solution of (4.9) may be established by standard methods. Lemma 4.2. Under the hypothesis (4.8i), the relation (4.9) holds for all  $\chi \in r - C$  and in particular for  $\chi = u$ .

Proof: Since  $T_h$  is self-adjoint, (4.9i) is equivalent to

(4.11)  $\int_{\Omega} \{ [(\mathbf{U}_{h})_{t} - f] (\mathbf{T}_{h}\chi - \mathbf{T}_{h}\mathbf{U}_{h}) + \nabla \mathbf{U}_{h} \cdot \nabla (\mathbf{T}_{h}\chi - \mathbf{T}_{h}\mathbf{U}_{h}) \} \geq 0$ 

for all  $\chi \in r - C \cap M_h$ . We rewrite (4.11) as

(4.12) 
$$\int_{\Omega} \{ \{ (\mathbf{U}_h)_t - f \} (\zeta - T_h \mathbf{U}_h) + \nabla \mathbf{U}_h \cdot \nabla (\zeta - T_h \mathbf{U}_h) \} \ge 0$$

for all  $\zeta \in T_h r - T_h (C \cap M_h) = T_h M_h^+$ . The lemma will therefore follow, if we can

prove that

(4.13) 
$$T_h(r - C) = T_h M_h^+$$
,

from the self-adjointness of  $T_h$ . Here we have written

(4.14) 
$$M_h^+ = \{\chi \in M_h : \chi \ge 0\}$$

Since  $T_h$  is assumed pointwise non-negative by (4.8i), (4.13) will follow if, for  $v \in L^2(\Omega)$ ,

$$\{\psi \in \mathbf{M}_{h}, \psi \perp \mathbf{T}_{h}\mathbf{M}_{h}\} \Rightarrow \{\psi \perp \mathbf{T}_{h}\mathbf{v}\}$$

Here, the orthogonality in (4.15) is understood to be  $L^2$  orthogonality. To verify (4.15), let  $v \in L^2(\Omega)$ , let  $\psi \in M_h$  and suppose

$$\psi \perp T_h M_h$$
.

By the proof of Lemma 4.1 we have

$$0 = (\mathbf{T}_{\mathbf{h}} \boldsymbol{\psi}, \boldsymbol{\psi})_{\mathbf{L}^{2}(\Omega)} = \left\| \nabla \mathbf{T}_{\mathbf{h}} \boldsymbol{\psi} \right\|_{\mathbf{L}^{2}(\Omega)}^{2}$$

so that  ${\tt T}_h\psi$  is constant on  $\,\Omega.\,$  Thus, using the aforementioned proof once again we have,

$$0 = (\nabla \mathbf{T}_{\mathbf{h}} \mathbf{v}, \nabla \mathbf{T}_{\mathbf{h}} \psi)_{\mathbf{L}^{2}(\Omega)} = (\mathbf{T}_{\mathbf{h}} \mathbf{v}, \psi)_{\mathbf{L}^{2}(\Omega)}$$

which verifies (4.15). The proof is completed.

We are now ready for the major result of this section.

<u>Theorem 4.3</u>. The finite element approximations defined by (4.9) are convergent to the solution u of (1.10) with order  $h^2$  in  $L^2(D)$ , i.e.,

(4.16) 
$$\|u - v_h\|_{L^2(D)} \leq Ch^2$$

for some constant C.

Proof: Setting  $z = U_h$  in (2.13ii) and  $\chi = u$  in (4.9i) (cf. Lemma 4.2) we have

(i) 
$$\int_{\Omega} [(\mathbf{T}\mathbf{u})_{t} + (\mathbf{u} - \mathbf{r}) - \mathbf{T}\Delta\mathbf{r} - \mathbf{T}\mathbf{f}] (\mathbf{u} - \mathbf{U}_{h}) \leq 0$$
  
(ii) 
$$\int_{\Omega} [(\mathbf{T}_{h}\mathbf{U}_{h})_{t} + (\mathbf{U}_{h} - \mathbf{r}) - \mathbf{T}_{h}\Delta\mathbf{r} - \mathbf{T}_{h}\mathbf{f}] (\mathbf{u} - \mathbf{U}_{h}) \geq 0$$

Subtraction of (4.17ii) from (4.17i) gives, after some rearrangement,

$$\int_{\Omega} \{T_h(u - v_h)_t \cdot (u - v_h)\} + \int_{\Omega} (u - v_h)^2$$

$$\leq \int_{\Omega} (\mathbf{u} - \mathbf{U}_{h}) (\mathbf{T}_{h} - \mathbf{T}) \mathbf{u}_{t} + \int_{\Omega} (\mathbf{u} - \mathbf{U}_{h}) (\mathbf{T} - \mathbf{T}_{h}) (\mathbf{f} + \Delta \mathbf{r})$$

0.

Writing

(4.18)

(4.17)

(4.19) 
$$\int_{\Omega} \{T_{h}(u - U_{h})_{t} \cdot (u - U_{h})\} = \frac{1}{2} \frac{d}{dt} \int_{\Omega} T_{h}(u - U_{h}) \cdot (u - U_{h}) ,$$

integrating in t from 0 to  ${\bf T}_{\mbox{\scriptsize 0}}$  and using the non-negative definiteness of  ${\bf T}_{\mbox{\scriptsize h}}$  yield

(4.20) 
$$||u - v_h||_{L^2(D)}^2 \leq \frac{1}{2} ||u - v_h||_{L^2(D)}^2$$

+ 
$$\frac{1}{2} \| (\mathbf{T} - \mathbf{T}_{h}) (\mathbf{u}_{t} - \mathbf{f} - \Delta \mathbf{r}) \|_{L^{2}(D)}^{2}$$

where we have applied the standard inequality (3.10) to the right hand side of (4.18). The estimate (4.16) now follows immediately from (4.20) and (4.8ii) applied to  $g = u_t - f - \Delta r$ . The proof is now concluded.

-18-

#### REFERENCES

- A. Bensoussan and J. Lions, Applications Des Inéquations Variationelles En Contrôle Stochastique, Dunod, Paris, 1978.
- [2] H. Brezis and D. Kinderlehrer, The smoothness of solutions to nonlinear variational inequalities, Indiana University Math. J. 23 (1974), 831-844.
- [3] L. Caffarelli and A. Friedman, Continuity of the temperature in the Stefan problem, Indiana University Math. J. 28 (1979), 53-70.
- [4] G. Duvaut, Résolution d'un problème de Stefan (Fusion d'un block de glace à zero degré), C.R. Acad. Sc. Paris 276 (1973), 1461-1463.
- [5] J. Frehse, On the regularity of the solution of a second order variational inequality, Boll. U.M.I. 6 (1972), 312-315.
- [6] A. Friedman and D. Kinderlehrer, A one phase Stefan problem, Indiana University Math. J. 24 (1975), 1005-1035.
- [7] D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, New York, 1977.
- [8] R. Glowinski, J. Lions and R. Trémolières, Analyse Numerique Des Inequations Variationelles, Tome I, II, Dunod, Paris, 1976.
- [9] J. Jerome, Uniform convergence of the horizontal line method for solutions and free boundaries in Stefan evolution inequalities, Math. Methods in Applied Sciences, to appear.
- [10] J. Jerome and M. Rose, Error estimates for the multidimensional two phase Stefan problem, Exxon Research and Production Co. technical report, Houston, Texas, 1980.
- [11] F. John, Partial Differential Equations (3rd. ed.) Springer-Verlag, New York, 1978.
- [12] G. Meyer, One dimensional parabolic free boundary problems, SIAM Review 19 (1977), 17-34.
- [13] S. Sobolev, Applications of Functional Analysis in Mathematical Physics, Translations Amer. Math. Soc. Providence, R.I. 1963.

-19-

[14] G. Stang and G. Fix, An Analysis of the Finite Element Method, Prentice Hall, Englewood Cliffs, N.J., 1973.

JWJ/ck

| REPORT DOCUMENTATION PAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | READ INSTRUCTIONS<br>BEFORE COMPLETING FORM                                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| 1. REPORT NUMBER 2. GOVT ACCESSION N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | . 3. RECIPIENT'S CATALOG NUMBER                                                                    |
| 2032 AD-A083 814                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                  |
| 4. TITLE (and Subtitle)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5. TYPE OF REPORT & PERIOD COVERED                                                                 |
| Convergent Approximations in Parabolic Variational                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Summary Report - no specifi                                                                        |
| Inequalities. I: One-Phase Stefan Problems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | reporting period                                                                                   |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6. PERFORMING ORG. REPORT NUMBER                                                                   |
| 7. AUTHOR(a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8. CONTRACT OR GRANT NUMBER(s)                                                                     |
| Joseph W. Jerome                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DAAG29-75-C-0024                                                                                   |
| 9. PERFORMING ORGANIZATION NAME AND ADDRESS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10. PROGRAM ELEMENT, PROJECT, TASK                                                                 |
| Mathematics Research Center, University of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Work Unit Number 2 -                                                                               |
| 610 Walnut Street Wisconsin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Bhysical Mathematics                                                                               |
| Madison, Wisconsin 53706                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Filysical Flathematics                                                                             |
| 1. CONTROLLING OFFICE NAME AND ADDRESS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12. REPORT DATE                                                                                    |
| U. S. Army Research Office                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | January 1980                                                                                       |
| P.O. Box 12211                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 13. NUMBER OF PAGES                                                                                |
| Research Triangle Park, North Carolina 27709                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20                                                                                                 |
| 14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15. SECURITY CLASS. (of this report)                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | UNCLASSIFIED                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 15. DECLASSIFICATION / DOWNGRADING                                                                 |
| 16. DISTRIBUTION STATEMENT (of this Report)<br>Approved for public release; distribution unlimited.<br>17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different fo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | rom Report)                                                                                        |
| 16. DISTRIBUTION STATEMENT (of this Report)<br>Approved for public release; distribution unlimited.<br>17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, 11 different fo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | rom Report)                                                                                        |
| 16. DISTRIBUTION STATEMENT (of this Report)<br>Approved for public release; distribution unlimited.<br>17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different fo<br>18. SUPPLEMENTARY NOTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | rom Report)                                                                                        |
| 16. DISTRIBUTION STATEMENT (of this Report)<br>Approved for public release; distribution unlimited.<br>17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different fo<br>18. SUPPLEMENTARY NOTES<br>19. KEY WORDS (Continue on reverse side if necessary and identify by block numbe                                                                                                                                                                                                                                                                                                                                                                             | rom Report)                                                                                        |
| <ul> <li>DISTRIBUTION STATEMENT (of this Report)</li> <li>Approved for public release; distribution unlimited.</li> <li>DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different for the supplementary notes</li> <li>SUPPLEMENTARY NOTES</li> <li>KEY WORDS (Continue on reverse side if necessary and identify by block number Parabolic variational inequalities. one-phase Ste</li> </ul>                                                                                                                                                                                                                                                                     | fan problem, horizontal line                                                                       |
| <ul> <li>DISTRIBUTION STATEMENT (of this Report)</li> <li>Approved for public release; distribution unlimited.</li> <li>DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different for the supplementary notes</li> <li>SUPPLEMENTARY NOTES</li> <li>KEY WORDS (Continue on reverse side if necessary and identify by block number Parabolic variational inequalities, one-phase Stemethod, finite element method.</li> </ul>                                                                                                                                                                                                                                       | oon Report)<br>*)<br>fan problem, horizontal line                                                  |
| <ul> <li>16. DISTRIBUTION STATEMENT (of this Report)</li> <li>Approved for public release; distribution unlimited.</li> <li>17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different for the supplementary notes</li> <li>18. SUPPLEMENTARY NOTES</li> <li>19. KEY WORDS (Continue on reverse side if necessary and identify by block number Parabolic variational inequalities, one-phase Stemethod, finite element method.</li> <li>10. ABSTRACT (Continue on reverse side if necessary and identify by block number The change of variable t</li> </ul>                                                                                                    | nom Report)<br>n)<br>fan prôblem, horizontal line                                                  |
| <ul> <li>16. DISTRIBUTION STATEMENT (of this Report)</li> <li>Approved for public release; distribution unlimited.</li> <li>17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different for the supplementary notes</li> <li>18. SUPPLEMENTARY NOTES</li> <li>19. KEY WORDS (Continue on reverse side if necessary and identify by block number Parabolic variational inequalities, one-phase Stemethod, finite element method.</li> <li>10. ABSTRACT (Continue on reverse side if necessary and identify by block number The change of variable <ol> <li>u(x,t) = ft θ(x,t)</li> </ol> </li> </ul>                                                              | rom Report)<br>r)<br>fan problem, horizontal line<br>)<br>r)dr                                     |
| 16. DISTRIBUTION STATEMENT (of this Report)<br>Approved for public release; distribution unlimited.<br>17. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, 11 different is<br>18. SUPPLEMENTARY NOTES<br>18. SUPPLEMENTARY NOTES<br>19. KEY WORDS (Continue on reverse side if necessary and identify by block number<br>Parabolic variational inequalities, one-phase Stemethod, finite element method.<br>10. ABSTRACT (Continue on reverse side if necessary and identify by block number<br>The change of variable<br>(1) $u(x,t) = \int_{0}^{t} \theta(x, t) = \int_{0}^{t} \theta(x, t) dt = 0$                                                                 | nom Report)<br>n)<br>fan prôblem, horizontal line<br>n)<br>() dt<br>problem leads to the evolution |
| 16. DISTRIBUTION STATEMENT (of this Report)<br>Approved for public release; distribution unlimited.<br>17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different for<br>18. SUPPLEMENTARY NOTES<br>19. KEY WORDS (Continue on reverse side if necessary and identify by block number<br>Parabolic variational inequalities, one-phase Stemethod, finite element method.<br>10. ABSTRACT (Continue on reverse side if necessary and identify by block number<br>The change of variable<br>(1) $u(x,t) = \int_{0}^{t} \theta(x, t)$<br>for the temperature $\theta$ in the one-phase Stefan prince<br>inequality<br>(2) $(u_t - \Delta u - f)(z - u) \ge 0$ , it | fan problem, horizontal line<br>)<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()            |

### ABSTRACT (Continued)

domain  $D = \Omega \times (0,T_0)$  with a Dirichlet boundary condition imposed on  $\partial \Omega \times (0,T_0)$  and a zero initial condition. In this paper we examine semidiscretizations of (2) in time and in space and we derive the respective convergence rates. The following explicit results are obtained:

$$||\mathbf{U}^{\mathbf{M}} - \mathbf{u}||_{\mathbf{L}^{2}(\mathbf{D})} \leq C\Delta t$$

where  $U^{M}$  is the  $H^{1}(\Omega)$ -valued, piecewise linear in time, interpolant obtained from the horizontal line, fully implicit Euler scheme applied to (2) with  $\Delta t = T_{\Omega}/M$ ;

$$\|\mathbf{U}_{\mathbf{h}} - \mathbf{u}\|_{\mathbf{L}^{2}(\mathbf{D})} \leq \mathbf{Ch}^{2}$$

where  $U_h$  is the continuous time, finite element approximation obtained by applying an integrated version of (2) to a translate of the finite dimensional trial space of C° piecewise linear elements. The approximation scheme used to define  $U_h$  appears to be new.