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ABSTRACT

We study periodic solutions of the nonlinear Hamiltonian system wit-

n degrees of freedom:

ki =  H (x,p) + g.(t)
ap. 2.

(H)
aHP =i---- (x,p) + h. (t)

the Hamiltonian H being convex and super quadratic in both variables,

and the forcing terms being T-periodic with mean value zero. We prove

that, if these forcing terms lie within bounds which we explicitly compute,

system (H) has some T-periodic solution, which we also locate explicitly.
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SIGNIFICANCE AND EXPLANATION

This is the second in a series of two papers, the purpose of which is

to stud, forced oscillations of a large class of nonlinear conservative

systems. The novelty of the approach is that we do not suppose the oscil-

lations to be small.

The systems we are interested in are described by equations of the

following type:

IV
(H) xi + (x ... , = f.(t) 1 < i < n

11

where the potential V is assumed to be convex with respect to all vari-

ables, and has the origin as an equilibrium point. A typical one-

dimensional example is a spring: it will be linear if it follows Hooke's

law, F = a, sublinear if it follows the law F = at. for some

(0,1), and superlinear if its law is F = at for some e > 1.

In a previous report, in collaboration with F. Clarke, we studied

equations (H) for sublinear systems, and found that T-periodic oscillations

will exist for any T-periodic forcing terms f.. This is in sharp contrast
1

to the linear case, where the resonance values of T have to be excluded.

In this paper, the superlinear case is studied. It is found that

T-periodic oscillations will exist provided the forcing terms f. are1

T-periodic, have mean value zero, and fall within some range. This range

(not necessarilly small) is computed explicitly, and bounds are given for

the oscillations.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.
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FORCED OSCILLATIONS OF NONLINEAR HAMILTONJIAN SYSTE::S, II

Ivar Ekeland*

§- INTRODUCTION.

Hamilton's equations, for a system with n degrees of freedom, are:

(H) (-b,k) - H' (t,x,p) = f(t) r PR2 n

We refer to periodic solutions of (H) as oscillations. They are free if f

identically zero, forced otherwise. Of course, the forcing term f itself w2.l

required to be periodic, although this by itself will not imply that (H) has a erio~i-

solution.

This paper studies forced oscillations for a particular type of nonlinear

Hamiltonian aystems. The origin will be an equilibrium, and the Hamiltonian itself

will be convex and superquadratic in all variables (x,p) together. For instance,

H(x,p) = (E x. + Z p) , with 8 > 1, will do. An example of such a system is a

taut spring,which does not follow Hooke's law, F = k, force proportional to length,

but the law F = kie with e > 1.

Free oscillations for such systems were first studied by Rabinowitz (J8], 9]).

The author obtained similar results ([6]), by using a variational method devised b.:

F. Clarke and himself for convex subquadratic Hamiltonians ((2], (3]).

This paper, although self-contained, borrows heavily from the latter approach.

It relies on a dual version of the least action principle, stated here as proposition

2.2, but which can be found also in the papers (3], 16], and particularly [4]. The

associated variational problem is shown to have a local minimum (proposition 3.1),

which gives rise to a periodic solution of the original Hamiltonian system.

Indeed, one can view this paper as a sequel to ( ], which treated forced oscilr

lations for convex subquadratic Hamiltonians. It is interesting to note that, in

*CEREMADE, Universiti Paris-Dauphine, 75775 Paris Cedex 16 /
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latter case, periodic solutions to (H) exist for any forcing term. This is no longer

1 2 1 2
true for quadratic Hamiltonians, such as Pi + r .ixi because of the onset of

resonance.

"Nor is it true in the case we are dealing with, a superquadratic Hamiltonian. We

are able to show the existence of a periodic solution to system ( ) only if the forcing

term f has zero mean, and is smaller than some bound, not necessarily small, which we

compute explicitly (propositions 3.1 and 4.2).

We do not know what happens beyond this bound. A more detailed analysis shows the

following. The periodic solutions we find give local minima of the dual action

integral, and converge towards the equilibrium solution when the forcing term goes to

zero. on the other hand, with a few more assumptions on H, there will be another

kind of periodic solutions, which correspond to saddle-points of the dual action

integral, and which converge to a non-constant solution when the forcing term goes to

zero. Now, when the forcing term increases, it may well be that these two kinds of

periodic solution, which are well apart when f is small, begin interfering, and

finally destroy each other. That, at least, is what the behaviour of the dual action

integral would suggest.

-2-
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II - THE DUAL ACTION INTEGRAL.

We are investigating the differential system:

(H) u(t) f 93H(t,u(t) + f(t)

The function H :]R x × 2n *R is the Hamiltonian. In the two following sections,

II and III, it will always be assumed that H(t,u) is measurable in t, convex and

continuous in u, with:

(i) H(t,u) > H(t,0) = 0 for all (t,u)

and that there are constants k > 0 and S > 2 such that:

k S
(2) H(t,u) <-- liuJ for all (t,u)

(3) Yt, r-1 Min{H(t,u) juj = r} - +0 as r -

The symbol 3H(t,u) denotes the subdifferential of the function u' - H(t,u') at

2nthe point u e m2, in the sense of convex analysis (see (10] or [7]). It is defined

by:

(4) v e aH(t,u) - Vu', H(t,u') > H(t,u) + (u' - u,v)

We denote by a a linear operator which, in some appropriate base of

I 2n =n xn can be written as:

(0 Id]

-Id 0

In other words, in that particular base, u e I2n  is written u = (x,p), and

a(u) = (p,-x). The xi, 1 < i < n, are position variables, and the pi, 1 < i < n,

t -1momentum variables. We have of course a - a a -.
The function f : IR - ]R2n is the forcing term. It will be assumed to be

integrable over every bounded interval.

A solution of the differential inclusion (H) is an absolutely continuous function

2nu : 3R -Rn , with derivative ii, such that relation (H) holds for almost every t.

Of course, if f is continuous and H is differentiable in u, the derivative H'

being continuous in (t,u), then u becomes a classical C solution of the

differential equation:

-3-



U = OH' (t,u) + f(t)

Setting u = (x,p) and f = (g,h), we get the familiar form of the "ami .

system (H):

kxi= (t,x,p) + gi (t)

pi=--. (t,x,p) + h. (t)1

Our investigation of system (H) will rely on the dual approach initiated in -1

and developed in [3], [4], [6]. First, we have to introduce the Fenchel

conjugate G(t,-) of the convex function H(t,.-) (for the time being, t is -'t a

parameter, pegged at some given value):

(7) G(t,v) = Sup{(v,u) - H(t,u) iu e I2nI

In the case where H(t,-) is differentiable, this definition reduces to the

familiar formula for the Legendre transform: G(t,v) = (v,u) - H(t,u), with v= h (t

Formula (7), however, will hold even in non-differentiable cases, with the following

results:

Lemma 2.1. The function G : 3R xR 2n , 3R is measurable in t, convex and continuous

in v. It satisfies the following inequalities, where a = T - is the conjugate

exponent of 8:

(8) G(t,v) > G(t,O) = 0 for all (t,v)

(9) G(t,v) > 1.a 1v for all (tv)
osk

Moreover, the three following relations are equivalent:

(10) u E 3G(t,v)

(11) v e aH(t,u)

(12) G(t,v) + H(t,u) (u,v)

Proof. Convexity and lower semi-continuity of G(t,), as well as the Fenchel

reciprocity formulas (10)" (11)," (12), are classical properties, which can be found

in [10] or (7]. Measurability ith respect to t is proved in [7], chapter 7, or in

the paper (11). We check the remaining properties by using the definition (7) of G.

__"___"____ 
--_
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t!
Because of condition (2), the function G(t,.) is finite at every, point F

Since it also is convex, it must be continuous.

We have by condition (1):

G(t,v) > (v,0) - H(t,0) = 0

G(t,0) = Sup - H(t,u) = 0

u

Hence formula (8). Now for (9), using inequality (2)

k 2n,
G(t,v) > Sup{(v,u) - s u F

= Sup Sup {(v,u) - s s
s>0 IuI=s

= Sup {s vI kB s',
s>0

The dual action integral can now be written:

(13) I(v) = f ( t)(t)) + G(t,-oyC'(t) + of(t)) dt
0 2

It was introduced in ( ], where its critical points where related to solutions

of system (H). We shall investigate it anew, both to make the paper self-contained and

to account for some differences in the analytical setting.
2n 2n

We shall be working in the function spaces La(0,T;IR 2 n ) and L'(0,T;IRn ), and

denoting by 11" CL and j1" II the corresponding norms. We are particularly interested

in the Sobolev space Wl' (0,T, ,2n), and its closed subpace E defined by:

T T
a 32n) t t-0 fvtd(14) v e E- v e L (0,T:IR n ) and f (t)dt = 0 f v(t)dt

0 0

The norm of v in E will be defined to be 111 . The dual action integral (13)

now defines a functional I on E. Our next results relates local minima of I to

solutions of (H) satisfying u(0) - u(T).

Note that the integrand in formula (13), i.e. the function

1
(15) L(t,v,w) - c (ow,v) + G(t,-w + of(t))

-5-
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on I P2n , 'R2n is neither convex nor differentiable in (v,('). In the search. for

4. local minima of the integral I over E, the classical Euler-Lagrange and trans-

versality conditions will not be applicable. However, the necessary conditions of

Clarke [1] will be available. We state:

Proposition 2.2. Assume v is a local minimum of the dual action integral I over

2nThen there is some vector 1 R cuci that the translate u defined by

u(t) = v(t) + is a solution of the Hamiltonian system (H) on the time interval

(0,T] satisfying the boundary condition u(0) - u(T).

Proof. Let v be a local minimum for I over E. Using the terminology of (11, this

implies that v is a weak local minimum of the variational problem:

T
Inf f L(t,v(t),&(t))dt

(16) 0

v(0) = v(T)

The integrand L is given in formula (15); it is locally Lipschitz in (vv), so

that the necessary conditions of [11 hold. They tell us that there exists an absolutely

continuous function 2 : [0,T] -3JR2n  such that:
1

(17) X(t) = L -O(t) a.e.
2

1
(18) ?(t) =-1-ov(t) + oaG(t,-)G (t) + of(t)) a.e.

2

(19) (O) = X(T)

In the particular case when G is CI , differentiating (18) with respect to time

and comparing with (17) yields the usual Euler-Lagrange equations, while (19) is the

usual transversality condition.

We then define a function u : (0,T] - Rn by:

1
(20) u(t) = -v(t) - A(t)

2

Equation (17) tells us that C= , so that u = v + E for some constant , 2n.

Equation (18) we rewrite as follows:

(21) u(t) f 3G(t,-oa(t) + of(t)) a.e.

-6-
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We invert this equation by Fenchel's reciprocity formula (10) (1)

(22) -(t)+ 'f(t) C MH(t,u(t)) a.e.

Since i ,this gives equation (H) for u:

(23) i(t) f oYaH(t,u(t)) + f(t) a.e.

Finally, conditions (19) and (20) yield u(O) =u(T).

-7



I

§III - PERIODIC SOLUTIONS.

We recall the differential system we are dealing with:

(H) u(t) OaH(t,u(t)) + f(t) a.e.

under the assumptions that 4(t,u) is measurable in t, convex cortinuo i :

(1) H(t,u) > H(t,O) = 0 all (t,u)

(2) H(tu) u with k > 0 and > 2

(3) lim Min H(t,u) =

r- ul-r

From now on, the forcing term f and the Hamiltonian H(-,u) (for each fixe5

u ) 2n ) are assumed to be T-periodic functions of t, for some given -.

will show that, if the forcing term f is not too large, and has mean zero, thrz I(

T-periodic solution to system (H).
-l .-1

Recall that a is the conjugate exponent of B, i.e. a + = . We thx

introduce some constants, the actual values of which can be computed from

(4) b(B) = (27) - 2/6

a-i -1

(5) c(B) = (2 - a)(2a- 2)(2-U(b(B))
2 - c

1 -

(6) d(B) . 2 -a b(S)2
- a

-B 2 (0-1) T

proposition 3.1. Assume 1l, <c(S)k- 2 T B ( a2), nd f f(t)dt = 0. Consiaer
0

the ball B in E defined by:

-0 2 (B-1)

(7) v e - 1iv - fjl < d(S)k8 2TB (-2)

The dual action integral I then attains its minimum relative to B. Any point

v e S where this minimum is attained satisfies the sharper estimate:

C(S B-

:(0)L N1W fl,_ l a



Before starting the proof, we bring the origin to f in the space L

get more convenient expressions for the dual action integral I and the -all B.

set ii = - f, and hence w = v - F, where F(t) is the primitive of f(t) st!

mean zero:

T
(9) (t) = f(t) and f F(t)dt = 0

0

2 (5-1)

(52 - -2)The ball B now is defined by fl'ifl < d(P)k T The funct:onal 1

becomes, in the new coordinates for E:

I(w) f {2(oa(t) + of(t),w(t) + F(t)) + G(t,-w(t)) dt
0

!( af,F) + (J ,F) + a, 0,w) + f Gft,-0 (t)) dt.
2 20

The brackets denote the duality pairing between L (0,T;F 
2n ) and L4(O,T;Z2n.

The first term, a constant, can be disregarded for minimization purposes. The functicnal

to investigate thus becomes:

T

(10) 1(w) = (A,F) + 1 (Qww) + f G(t,-oMz(t))dt
0

We now proceed in two steps:

Step 1. I(w) > 0 for all w E DB.

We estimate I from below. Formula (10) yields:

1 T
(11) Y(w) >-H0 Hn[[F[I 8 - LIoArI [lwIIS+ f G(t,-o-;(t))dt.

a 2- 0

Using lemma 2.1, we go further:

(12) 1(w) 2 a 6 ao

Because of formula (2.51, we see that a is an isometry, so that fO fl =

The evaluation of 1IwfI8 in term of f1fI10 and of JIFIf in terms of 1< presents

us with a special problem.

-9-A
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T

The map - w, with I w(t)dt = 0, from L' to L , is a linear continuous
0

operator. When A = 1 and 3 = =, it is readily seen to have norm 1. When a = 2

and 2 = 2, it is known to have norm - (see [31 or [41). Using the convexity

theorem of Marcel Riesz (see [51 for instance), we conclude that in the case where

1 < 2, its norm is at most expl-2B"Log(i.)I, which is b(S)T'1 8.

Inequality (12) now becomes:

- T2/B b(S) 2/811 12 .1 jjc j
(13) 1(w) > -b( )T2"fllfll lillI -1- b(8)r 2 +1 IIaka C•

Now consider the function P(s) of the real variable s:

(14) ~ (s) - -b (8) T2 1 fI 1s b(B)/T2 1 s 2 + 1cL

Clearly P(0) = 0, and ;' (0) < 0. We want to solve the equation 4(s) 0 with

s > 0. After simplifying by s, this becomes:

L 1 T-2/B etl
(15) 2+ a b(S)

I -2/8 a-I
In other words, we seek the intersection of the curve s _ - - s with

aka )

the straight line s - jjfjj + Is. This is easily done. We first seek out the point
1

s on the curve where the slope of the tangent is L; there will be two points of

intersection s1  ar, s2  if the given line lies under the tangent, none if it lies

above:

(16)
c-0

01 s so0 s

It
,.~<,



The computation gives:
-- 2

T- 2/Sa- 1 t-2 1 = kcb(B) c-2 (a_2 )

(17) A CL- s O =0 ., hence sO 2(1)

T-2/S -

(18) 1 T 2 -c- _ 1 T- 2 / 0 c-i 2 - T 2/ o

!;- -8 o - So
r b(S) 0 A a b(B) 0 cr b(S)

The equation p(s) = 0 will have two different roots s2 > S, > 0 provided that2 1I

f c o , that is:

1 c-i c 2

(19) Ilf!Jc< (2-cr) (ab(a)) -2(2cr- 2)a-
2 ka - 2 T 8 ( a- 2 )

The graph of p then looks like:

p(s)

(20) 0s

The result now follows inmediately from the estimate T(w) > %o(jlwjI), a nd the

fact that s o  lies between sl and s 2 .

Step 2. I attains its minimum on B.

Let w be a minimizing sequence in B:
n

S(21) 1(w) nfI(v.){, le .

*1 ~-11-
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- 2 (.--!)(-2

The sequence 'i belongs to the ball with radius d'S)k T
aC

0 in L . Since this space is reflexive, there is a subsequence w , whir:-
n

weakly to some w belonging to the same ball:

(22) -, r weakly in LO

(23) W, w strongly in L

(24) w e B

The strong convergence of the w n, follows from the compactness of the mar

from L to L . The weak convergence (22) yields imediately:

(25) (anF) a io,F)

Moreover, we have:
(26) (on,,w, (oi,w) -O, - o ,w)+ , 'Wn -w>.

n n n n

The first term goes to zero because the v , converge weakly, and the second one

goes to zero because the tn, are uniformly bounded and the wn, converge stroncl-.:

(27) 1 (a;, ., (0",w)
2 n n 2

Finally, by known properties of non-negative convex integrands (see [7] or [11]),

we have:

T T
(28) lim inf I G(t,-o* n,(t))dt > G(t,-o'i(t))dt

0 0

Adding up (25), (27), (28), and comparing them with formulas (10) and (21), we get:

(29) I(w) <_ Inf{Y(w')Iw' e B} .

Since w e B, equality must hold in (29), proving that w is a minimizer in B.

Conclusion. The minimizers satisfy estimate (8).

From formula (10), we see that Y(0) - 0. Since 0 e B, we see that I(w) q

for any minimizer w of I on a. This implies that Ilwll 0 must lie between 0 and

the first positive root *l of i. Figure (16) gives us by inspection the desired

estimate:

- Ilf0a
(30) a1 < 9- 8 0  .

-12-



Corollary 3.2. Assume f and H(.,u) are T-periodic, with:

T -6 2 (6-1)
0 an < c 5-k2  ( -2)(31) J fct)dt-o and __fl. _c(B)k T

0

Then the Hamiltonian system (H) has at least one T-periodic solution u such that:

(3 2 ) I N , - f li 0 2 I f, 0

Proof. In proposition 3.1, we have found some v e E which minimizes I on B, and

which is interior to B because of estimate (8). Clearly v is a local minimum for

I on E, so that we can apply proposition 2.2. The result follows immediately;

estimate (32) follows from (8) and the relation = . /

We will refer to the T-periodic solutions found in this way as solutions of type

CE). When there is no forcing term, f - 0, this type (E) solution is simply u = 0,

rest at equilibrium. When the forcing term f is small, estimate (31) tells us that

the solution u is almost constant. With a few more assumptions on H, and the

equation u e 3G(-ai + of), it can in fact be proved that u is small. For instance:

Corollary 3.3. Assume moreover that there is some constant c 0 such that

Ivi > clulo-l for all v alH(t,u). Then, in addition to (32) the T-periodic

solutions of type (E) satisfy the following estimate:

Proof. We have -6OMt) - flt)) e 31(t,ult)), so that:

-B B

(34) lu(t)16 < cI l i6(t) - f(t) 'l

Integrating over [0,T] yields the desired result. /

Wl conclude this argument with two remarks. First, note that the estimate (8) is

very rough, and more elaborate calculations will yield better ones. For instance, it

is clear from figure (16) thast l - °(Ilfl ( a ' l ) )  (using Landau's symbol 0), so

that, when o.flI 0, we have the estimate Ili- fl-" 0(11f11), which is

certainly better than (32).

-13-



Note also that the preceding argument will carry over, with suitable modifications,

to the case S = 2. However, we then fall within the scope of the paper 4l, to which

we refer for results.

-14-
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IV- OTHER HAIILONIANS.

We now wish to extend the preceding results to other Hamiltonians, which do not

31 l -1 2n.
satisfy the inequality H(t,u) < k~!uK - over all of 3R

We begin with Hamiltonians which satisfy this condition in a neighbourhood of the

origin only. For the sake of simplicity, we shall assume that the Hamiltonian H does

not depend on t. Throughout, we assume that H' (0,0) = 0.

Proposition 4.1. Assume that there is a neighbourhood U of the origin in ]R2n  such

that H is C2 on U, the second derivative H"(u) being positive definite for

u # 0, and satisfying, for some constants b > a > 0 and 8 > 2:

(1) alul -2Iv 2 < (H"(u)v,v) < bluJ
8 -21vf 2 , all u C U, v C2n.

Then, for any T > 0, there is some E > 0 such that, whenever 11f1,< E, with

T
f fdt = 0, the Hamiltonian system (H) has some periodic solution lying inside U.
0

Proof. We can always assume that U is a ball with radius n > 0. It follows from the

assumptions that H is convex on U. Now consider a ray t -tu from the origin, with

uj= 1. As long as 0 < t < n, we have tu e U, and, setting y = 8-2:

t

(H'(tu),v) = f (H"(su)u,v)ds
0

t

> f as'lvlds - a ty~llvi
0 Y+I

t

f bs'ylvids = t lvl
0

Hence, for all u e U:

(2) a(Y + 1)- lul +l < I"' (u) 1. b('r + 1)-llul +l

Integrating once more yields, for all u e U:

(3)ui
" = 

a (u)<b lul
"

(y+l)(y+2) - (y+1)(y+2)

It is now simply a matter of finding a convex function H : 30 JR, satisfying

(2) and (3) over all of R'n , and coinciding with H on U. This being done, we apply

I
-15-



to H corollaries 3.2 and 3.3, with Y = y + 2. It follows from estimateF. '.

(3.33) that if lIfl is small enough, the periodic solution u we have found for

(4) u(t) = oH(u(t)) + f(t)

will lie entirely inside U, so that H' (u(t)) = H' (u(t)) for all t. It follows t:

it is actually a solution of:

(5) (t) = H' (u(t)) + f(t) /

We now turn to another class of Hamiltonians, of particular importance for aprlica-

tions. These are the Hamiltonians which split as:

(6) H(t,x,p) = p2 + V(t,x)

Such Hamiltonians are con in classical mechanics. The first term is kinetic

energy, the second one potential energy. Because the first term is quadratic, the%_

cannot satisfy growth conditions such as (2.2)-(3.2), even locally.

However, results similar to proposition 3.1 and its corollaries still hold, with

slight modifications. The growth assumptions now will be made directly on the potential

V : 3R x1n -It. We shall assume it to be:

(7) measurable in t, convex continuous in x

(8) V(t,x) > V(t,0) - 0, all (t,x)

(9) V(t,x) < k'Icx8 , all (tx), some k > 0 and 8 > 2

(10) Vt, Kin V(t,x) -o+- when r - -

IxI-r

We introduce new constants:

1 a-l

(11) c' (B) c(2- a) (c2/b(0)2
1 ) a-2(2a- 2)

1

(12) d'(0) a 1 B
B b(O)

Proposition 4.2. Assum V satisfies conditions (7) to (10), and:

T Z-_ (0+2) (0-1)

(13) f f(t)dt 0 and IlfIleOc'()k0-2 T B(B-2)

0

"16-



Then the Hamiltonian system:

(14) ({(p p,-JV(t,x)) + (O'f(t))

has at least one solution (x,p) such that:

(15) x(O) = x(T) and p(O) = p(T)

(16) <l2-f! f : =

Proof. Denote by v = (y,q) the dual variable of u = (x,p). We can easily comp;t+

G(y,q) for this case:

12(17) G~y,q) = Sup {xy + pq - p - V(t,x):

x,p
i2

= Sup {xy - v(t,x)i + sup fpq - 12
x p

12= v*(t,y) + -q

Here V*(t,.) is the Legendre transform of the function V(t,-). It is convex,

continuous, minimum at the origin, and satisfies the estimate:

(18) V*(t,u) > 1 lyl a

aka

The dual action integral now is:

T
(19) I(y,q) = f {-q + L-y + V*(t,_04 + of)}dt

0

on the space E defined by:

T T

(20) C e L2 (0,T;J), f jdt = 0 = f ydt
0 0

T T
(21) C L (0,T;Mn), f 4dt = o= f qdt

o o

We wish to prove that the functional I has a local minimum on E. For this, we

have to estimate it from below. We first write it slightly differently:

T 2 T f
(22) I(y,q) - ( - q)2 dt + { q + V*(t,-4 + f)}dt

0 0

q 21 + q)7

-17-



He re

T
S--q + V*(t,-q + f)Idt(23) 3(q) = [ _.2.
0

Using inequality (18) we get an estimate for J:
> 1 2 1

(24) J(q) _--y ll2 + - oat
cik

Call F the primitive of f which has mean value zero, and set q' = q - F. We

get, denoting by brackets the duality pairing between L (0,T;mn ) and L (0,t;,n):

(25) J(q) >-(FF) + (F,q'> - !(q',q') +

TO go further, we need to estimate Ilq'!j3 and 1FII in terms of 14l cc and
T T

Taking into account the normalization conditions, f q'dt = 0 = f 4'dt, we get
0 0

lq' 112 <_ 1 114' II2 and Jig' II. < 1141' II.. Using the convexity theorem of M. Riesz again,
,T -2/8

we get ifq' 1 8< I- for 2 < 8 < -. Transposing, we get, for 1 < a < 2:

(26) jq' I1a< 1 -2/8 ,

Similarly

(27)~~~ ~ JI 1 t -2/ 1 j[f j
(27)

Writing this back into inequality (25) yields:

(28) J(q) > (114'f 11) - I (F,F)

where the function of the real variable s is given by:

(29) _() T -2/B , T2/81 T -2/T2/ b()S2 12/ lfl T/b(Bs _ - - T b)s+ - s(29 a(S 2- 2 ak a

8+2 8+2

-2/ b()T 8 -1 -2/ 8 b( 8 ) T $ s 2 
+

2 a-  I

This is the same function as P(s) of formula (3.14), with the coefficient b(8)

changed to T- 2b(8)/2 and the exponent 2/8 changed to (8 + 2)8 . It follows

that, provided:

1 a-1 a 8+2

(30) Ilf l , < (2 - ali-2/Sb(8)2-ll a-212o, 2) '-2 k a-2 T$(a-2)

~1

-1-,



.,c: ".,'i2l h:ave :

__ +2t

(31) (s') , with s; 4- )

.rom then on, we proceed as in the proof of proposition 3.1. Going back to equation

(22), we have:

(32) I(y,q) - q f , )
-2 - 2 "

Provided condition (30) is satisfied, the functional : will attain its minimum

relative to the cylinder C in E defined by:

(33) C = C(y,q) e EI ![4- f < s;

We show as in proposition 3.1 that this minimum is attained at an interior point,

indeed that condition (16) holds. The proof of proposition 2.2 then carries over to

this case, showing that some translate (x,p) of (y,q) is a T-periodic solution of

the Hamiltonian system (14). /

Of course, in the case where the potential V(t,x) is differentiable with respect to

x, a more compact way to write system (14) is Newton's equation:

(34) :W + V' (t,x) = f(t)

Let us give a simple example to illustrate proposition 4.2. The n-dimensional

sv.tem of differential equations:

n 2
(35) i + ax. x. = f. (t) 1 < i < n, a > 0

j 1 ] -3

will have a T-periodic solution, provided the forcing terms f. all are T-periodic,

have mean zero, and satisfy:

T fi ( t ) 22/3dt < c (1/2T 9 / 4

(36) If! 4/3=I i ( dt Ma T

This solution will satisfy the estimate:

(37) 1!IZ- f " ' f
4/3 - 4/3

I

-19-
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Another estimate follows immediately by substituting equation fl:

T n 2 2 1 .
(38) 4 I ()Idt f 1

All this follows from proposition 4.2, with the exponent - = 4 and th -

ii V{) a ! 212 Here c' (4) = d' (4) = (5)3/2-60.

Finally, we can adapt the proof of proposition 4.1 to the particular case of

classical Hamiltonians, to get the following result:

Proposition 4.3. Assume V (0) = 0 and there is a neighbourhood V of the ori:;. -:

IRn such that v is C
2  

on V, the second derivative V"(x) being pcsitive defi:nt

for x # 0, and satisfying, for some constants bl > a' > 0 and 5 > 2:

(39) a' ixi-21Y 2 _< (V"(x)yy) < b' lxiy-21yj 2, all x ev, y c ip

Then for any T > 0, there is some c > 0 such that, whenever f' ,,

T
f fdt = 0, the Hamiltonian system:
0

(40) " e av(x) + f(t) a.e.

has some periodic solution lying inside U.

-

-20-
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