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ABSTRACT

We study periodic solutions of the nonlinear Hamiltonian system with

n degrees of freedom:

. _ OoH

x, = 35; (x,p) + gi(t)
(H)

. _ _oH

p, = axi (x,p) + hi(t)

the Hamiltonian H being convex and super quadratic in both variables,
and the forcing terms being T-periodic with mean value zero. We prove
that, if these forcing terms lie within bounds which we explicitly compute,

system (H) has some T-periodic solution, which we also locate explicitly.
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SIGNIFICANCE AND EXPLANATION
This is the second in a series of two papers, the purpose of which is
to studv forced oscillations of a large class of nonlinear conservative
systems. The novelty of the approach is that we do not suppose the oscil-
lations to be small.

The systems we are interested in are described by equations of the

following type:

~

(H) K, 4 = (X, ,...0x ) = £, (8) 1 <i<n.
3%, 1 n i - -

where the potential V 1is assumed to be convex with respect to all vari-
ables, and has the origin as an equilibrium point. A typical one-
dimensional example is a spring: it will be linear if it follows Hooke's
law, F = ai, sublinear if it follows the law F = ale for some

~ € (0,1), and superlinear if its law is F = aQe for some 6 > 1.

In a previous report, in collaboration with F. Clarke, we studied
equations (H) for sublinear systems, and found that T-periodic oscillations
will exist for any T-periodic forcing terms fi. This is in sharp contrast
to the linear case, where the resonance values of T have to be excluded. -

In this paper, the superlinear case 1is studied. It is found that
T-periodic oscillations will exist provided the forcing terms fi are
T-periodic, have mean value zero, and fall within some range. This range
(not necessarilly small) is computed explicitly, and bounds are given for

the oscillations.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.




FORCED OSCILLATIONS OF NONLINEAR HAMILTONIAN SYSTEMS, II
- Ivar Ekeland*
§I - INTRODUCTION.
-k Hamilton's equations, for a system with n degrees of freedom, are:

(H (-b,%) - H' (t,x,p) = £(t) ¢ R

We refer to periodic solutions of (H) as oscillations. They are free if ¢ .-
identically zero, forced otherwise. Of course, the forcing term f itself will =«
required to be periodic, although this by itself will not imply that (H) has a perioadi-
solution.

This paper studies forced oscillations for a particular type of nonlinear
Hamiltonian aystems. The origin will be an equilibrium, and the Hamiltonian itself

" will be convex and superquadratic in all variables {x,r) together. For instance,
2

5 + I pi)e, with 6 > 1, will do. An example of such a system is a

H(x,p) = (I x
taut spring,which does not follow Hooke's law, F = k{, force proportional to lengtih,
but the law F = kz® with o > 1.

Free oscillations for such systems were first studied by Rabinowitz ([8], ([2]).
The author obtained similar results ({6}), by using a variational method devised bv
F. Clarke and himself for convex subquadratic Hamiltonians ([2], [3]).

This paper, although self-contained, borrows heavily from the latter approach.
It relies on a dual version of the least action principle, stated here as nroposition
2.2, but which can be found also in the papers {3], [6], and particularly [(4]. The
4ok associated variational problem is shown to have a local minimum (proposition 3.1},

which gives rise to a periodic solution of the original Hamiltonian system.

Indeed, one can view this paper as a sequel to [ ], which treated forced oscily

lations for convex subquadratic Hamiltonians. It is interesting to note that, in

i 'CEREMADB, Université Paris-Dauphine, 75775 paris Cedex 16
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latter case, periodic solutions to (H) exist for any forcing term. This is no longer
1 2 1 2 ‘ A
true for quadratic Hamiltonians, such as Y z pi + 5-5 uixi, because of the onset of
3 resonance.
¢ Jor is it true in the case we are dealing with, a superquadratic Hamiltonian. We |
- &

are able to show the existence of a periodic solution to system ( ) only if the forcing
term f has zero mean, and is smaller than some bound, not necessarily small, which we
i compute explicitly (propositions 3.1 and 4.2).

We do not know what happens beyond this bound. A more detailed analysis shows the
following. The periodic solutions we find give local minima of the dual action .
integral, and converge towards the equilibrium solution when the forcing term goes to
zero. On the other hand, with a few more assumptions on H, there will be another
kind of periodic solutions, which correspond to saddle-points of the dual action
integral, and which converge to a non-constant soclution when the forcing term goes to
zero. Now, when the forcing term increases, it may well be that these two kinds of
periodic solution, which are well apart when £ is small, begin interfering, and

finally destroy each other. That, at least, is what the behaviour of the dual action

integral would suggest.
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311 - THE DUAL ACTION INTEGRAL.

We are investigating the differential system:
(H) G(t) € o3H(t,ult) + £(t)

The function H : R XRzn +R is the Hamiltonian. In the two following sections,
I1 and III, it will always be assumed that H(t,u) is measurable in t, convex and

continuous in u, with:
(1) H(t,u) > H(t,0) = 0 for all (t,u)

and that there are constants k > 0 and 8 > 2 such that:
kB g
(2) H(t,u) < 5 Ju| for all (t,u)
(3) vt, r-lMin{H(t,u)! ful = r} » 4= as r ~= .

The symbol dH(t,u) denotes the subdifferential of the function u' + H(t,u"') at
the point u e ]Rzn, in the sense of convex analysis (see (10] or {7}). It is defined
by:

(4) v € 3H(t,u) = wu', H(t,u') > H(t,u) + (' - u,v)

We denote by ¢ a linear operator which, in some appropriate base of

RZn = ]Rn X ]Rn can be written as:
Q 1d
(5) o=
-I1d 0
In other words, in that particular base, u € Rzn is written u = (x,p), and
ofu) = (p,-x). The X0 1 <i <n, are position variables, and the P 1 <ic<n,

. t -1
momentum variables. We have of course o= g = -q,

The function f : R —»Rzn is the forcing term. It will be assumed to be
integrable over every bounded interval.

A solution of the differential inclusion (H) is an absolutely continuous function
u: R -»Rzn, with derivative 0, such that relation (H) holds for almost every ¢t.

Of course, if f 1is continuous and H is differentiable in u, the derivative H'

being continuous in (t,u), then u becomes a classical Cl solution of the

differential equation:




a = GH'(t,u) + f(t) .
Setting u = (x,p) and f = (g,h), we get the familiar form of the Ham:1*

system (H):

- §

X . (t,x,p) +qi(t)
1

. N

P; =" (t,x,p) + hi(t)

Our investigation of system (H) will rely on the dual approach initiated in '[!
and developed in [3], [4], [6). First, we have to introduce the Fenchel
conjugate G(t,-) of the convex function H(t,-) (for the time being, t 1is just a
parameter, pegged at some given value):

(7) G(t,v) = sup{(v,u) - H(t,u)|u € M

In the case where H(t,-) is differentiable, this definition reduces to the
familiar formula for the legendre transform: G(t,v) = (v,u) = H{t,u), with w=1H"'I(t,
Formula (7), however, will hold even in non-differentiable cases, with the following
results:

lemma 2.1. The function G : R XR2n -+ R is measurable in t, convex and continuous

in v. It satisfies the following inequalities, where a = is the conjugate

8=1
exponent of B:
(8) Gi{t,v) > G(t,0) = 0 for all (t,v)
1 a
(9) G(t,v) > = |v| for all (t,v)
e

Moreover, the three following relations are equivalent:

(10) u € G(t,v)
(11) v € 3H(t,u)

a2) G(t,v) + H(t,u) = (u,v)

Proof. Convexity and lower semi-continuity of G(t,-), as well as the Fenchel
reciprocity formulas (10) ** (11) ** (12), are classical properties, which can be found
in [10) or (7]. Measurability vwith respect to t is proved in [7], chapter 7, or in

the paper [11). We check the remaining properties by using the definition (7) of G.

-4-
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Because of condition (2), the function G(t,-) is finite at every point < ¢ F
Since it also is convex, it must be continuous.
We have by condition (1):

G(t,v) > (v,0) = H(t,0) =0

G(tlo) Sup - H(tru) =0

u

Hence formula (8). Now for (9), using inequality (2)

8
G(t,v) > sup{(v,u) - k? |uie\u e B0
g
= sup Sup {(v,u) - )LS_ se}
520 |ul=s
= sup {s|v]| - % 5
$>0
. 1y 8/(8-1)
ALY (-3l /

The dual action integral can now be written:

by
(13) Iv) = f {l {a¥(£),v(t)) + G(t,—o¥(t) + af(t))}dt

s 2
It was introduced in [ ), where its critical points where related to solutions
of system (H). We shall investigate it anew, both to make the paper self-contained and
to account for some differences in the analytical setting.
: . : [V 2n 8 2n
We shall be working in the function spaces L (0,T;R ) and L"(0,T;R ), and
denoting by |- ”a. and |- ”8 the corresponding norms. We are particularly interested
in the Sobolev space wl"’(o,'r, Rzn), and its closed subspace E defined by:
2 T T
(14) ve Emve L*0,T:R") and [ v(t)at = 0= [ v(t)at
o [}
The nom of v in E will be defined to be ||~'z|[a. The dual action integral (13)
now defines a functional I on E. Our next results relates local minima of I to

solutions of (H) satisfying u(0) = u(T).

Note that the integrand in formula (13), i.e. the function

(15) L(t,v,w) = % (ow,v) + G(t,-ow + of (t))

-fa
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2n . . . . . -
on R R ~ R2n is neither convex nor differentiable in (v,Vv). In the search for

local minima of the integral 1 over E, the classical Fuler-Lagrange and trans-
versality conditions will not be applicable. However, the necessary conditions of

Clarke [1] will be available. We state:

Proposition 2.2. Assume Vv is a local minimum of the dual action integral I over E.

Then there is some vector £ € IR2n zuehi that the translate u defined by

u(t) = v{t) + ; is a solution of the Hamiltonian system (H) on the time interval
{0,T) satisfying the boundary condition u(0) = u(T).
Proof. let v be a local minimum for I over E. Using the terminology of (1], this

implies that v is a weak local minimum of the variational problem:

T
Inf [ L(t,v(t),¥(t))at
(16) 0

v(0) = v(T)

The integrand L is given in formula (15); it is locally Lipschitz in (v,¥), so

that the necessary conditions of [1] hold. They tell us that there exists an absolutely

continuous function i : [0,T) *Rzn such that:

(17 Ae) = ;—oo(c) a.e.
(18) A(t) =-§ ov(t) + odG(t,-ov(t) + of(t)) a.e.
(19) A(0) = A(T)

In the particular case when G is cl, differentiating (18) with respect to time
and comparing with (17) yields the usual Euler-Lagrange equations, while (19) is the

usual transversality condition.

We then define a function u : [0,T] >R by:

(20) uf{t) = > v(t) - ox(t)

N

. . 2
BEquation (17) tells us that U=V, so that u = v + £ for some constant £ ¢ R n

Equation (18) we rewrite as follows:

(21) u(t) € 3G(t,~oV(t) + of(t)) a.e.




We invert this equation by Fenchel's reciprocity formula (10) = (11):

(22) ~3¥(t) + af{t) € 3M(t,u(t)) a.e.
Since 1 = v, this gives equation (H) for u:
- . (23) G(t) € odH({t,ult)) + £(t) a.e.

Finally, conditions (19) and (20) yield u(0) = u(D).

-7-
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§III - PERIODIC SOLUTIONS.

We recall the differential system we are dealing with:
(H) a(t) € coH(t,u(t)) + £(t) a.e.
under the assumptions that 4{t,u) is measurable in t, convex cortiruous ir =,
(1) H(t,u) > H(t,0) =0 all (t,u)

]6 with k >0 and o > 2

B
2) H(t,u) :"T lu

(3) lim Min H(t,u) = +=
r~ |ul=r

From now on, the forcing texrm f and the Hamiltonian H(-,u) (for each fixe:l
u € R2n) are assumed to be T-periodic functions of t, for some given 7
will show that, if the forcing term £ is not too large, and has mean zero, thers i< &
T-periodic solution to system (H).

Recall that a is the conjugate exponent of 8, i.e. a = + & = = 1. We then

introduce some constants, the actual values of which can be computed from

(4) b(g) = (2m)"/#
a1 =L
) c(8) = 2 - a)(2a ~ 2)2 % (ab(8))2®
1
227% 35
©) a® = (3 »®
-8 _2 (D) .
. 8-2. B (-2 ,
Proposition 3.1. Assume ||fH“<_c(8)k T , and [ f(t)dt = 0. Consider
[}
the ball B in E defined by:
-8 _2 (8-1)
Q) ven=|v- £ <awk?r f ®-2)

The dual action integral I then attains its minjmum relative to B. Any point

v e B where this minimum is attained satisfies the sharper estimate:

. d(8) 2
(®) e - £ll, < ey el = g2 liEll - 7




Before starting the proof, we bring the origin to f in the space . , 3. 3

get more convenient expressions for the dual action integral I and the tail B.

set w=v - f, and hence W=v - F, where F(t) is the primitive of £{t) ..%
- - mean zero:

T

(9) F(t) = £(t) and [ F(t)at = 0 .
0

-2 2 (:-1)

: < . R=2 2 (c=2)

The ball B now is defined by Hwﬂ < dif)k T . T™e functional! I

becomes, in the new coordinates for E:

T
1w = f {%’-(c\k(t) + Of(t),w(t) + F(t)) + G(t,-dﬁ(t))}dt
5 j

1 1 T
={~2—(cf,F)+(3v'z,F>+-2—<0\'v,w)+f G(t,-cﬁ(t))}dt.
0

. . 2 N 27
The brackets denote the duality pairing between LJ(O,T;]P %y ana LYo, T:R ).

to investigate thus becomes:
1 T
310} Tw) = (oW, F) + = (ow,w) + J G(t,-ow(t))at
0]
We now proceed in two steps:

Step 1. Tw) >0 for all we 3B.

We estimate I from below. Formula (10) yields:
an T 2 ~llovllelly = Flowllyhwllg + [ ot movtenas

Using lemma 2.1, we go further:

- . 1.
(12) T > -lowll ligll, - 5 lowll

1 TE]
[wll g+~ llow]] > .
8 aka @

Because of formula (2.5), we see that o is an isometry, so that Hcs’v|‘|a= Hw"\l ]

The evaluation of ”w”B in terms of ”Gr“a and of ”FHB in temms of [f«¥ = prosents

{ us with a special problem.

The first term, a constant, can be disregarded for minimization purposes. The functicnal
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T
The map w - w, with ,f w(t)dt = 0, from 1* to LB, is a linear continuous

operator. Vhen 1 =1 and 3 = =, it is readily seen to have norm 1. When a = 2
and : = 2, it is known to have norm _)—1;; (see [3) or [4]). Using the convexity
theorem of Marcel Riesz (see [5]) for instance), we conclude that in the case where

1 <3 <2, its norm is at most exp]-ZB—lmg(g%)l, which is b(B)TZ/B.

Inequality (12) now becomes:

= 2/8 . 1 /8.2 1l TR}
as T > -b@ 1 el ol - Fo@PPlal « 22l
ak
Now consider the function ¢ (s) of the real variable s:
(14) ¢(s) = b Clle] s - %b(e)rz’ssz N
Clearly ¢(0) = 0, and ¢'(0) < 0. We want to solve the equation ¢(s) = 0 with

s > 0. After simplifying by s, this becomes:

-2
(15) hell +L2s =L 2 /8
a 2 ak® b(8)
1 T—Z/B a=-1 :
In other words, we seek the intersection of the curve s -+ = S_(TZT s with
ak
the straight line s ~» ”f”u+ %- s. This is easily done. We first seek out the point
S5 on the curve where the slope of the tangent is %; there will be two points of
intersection sl ard 52 if the given line lies under the tangent, none if it lies
above:
1
1
(] !
t 1\
(16) | |
c 1 '
0 N \
I 1
'
f 1 '
el b7 /0 ;
t | ! ]
\ ] 1 1
1 { ! ' -
o] s:l ] so 52 s




. The computation gives:

G L A R

1

—_— 2
~2/3 a, a-2 5+
T a=-1 a-2 1 ak b(B) 8 (a=2)

a7 BB _a % -2 "M %7 2e-n| T
- &
‘ 18 ol T8 1 ad T ar 2-07F aa
0 i b(8) 0 & b(g) "0 ak® b(B) "0

The equation ¢(s) = 0 will have two different roots s_ > s

Well P
|Jf|;1i co, that is:
1 e-l & __2
- -2 .o ~2
(19) el < @ o (ab(8) ¥ 2 (20 - 2)%72 k72 g8
The graph of ¢ then looks like:
~
¢ (s)
- 3 ' s
(20) 2 LN
s s

The result now follows immediately from the estimate I(w) > ¢(||w||a), and the

fact that so lies between s1 and 52.

X Step 2. I attains its minimum on B.

lLet LA be a minimizing sequence in B:

P oz

(21) Ttw ) » Inf{I(w)|we B} .

"
=11-
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BLN
_—
+
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&
The sequence &n belongs to the ball with radius d/8)k T = an

X a s ; . .
0 in L°. Since this space is reflexive, there is a subsequence wn, wrnich moree e

weakly to some w belonging to the same ball:

(22) W, ~ % weakly in 1%
n

(23) W, *w strongly in LB

(24) weéeB.,

The strong convergence of the Vo follows from the compactness of the map
from 1* to LB. The weak convergence (22) yields immediately:
(25) (c-;:n,,?) + {ow,F)

Moreover, we have:

(26) (m:ln.,wn')-(ofv,w)-(ov'ln' -o\;r,w)-f(o\'vn.,wn. -w) .

The first temm goes to gero because the \'vn, converge weakly, and the second one

goes to zero because the w

g are uniformly bounded and the w ., converge strongl::

@7 %-(cn‘:n,,wn, ) > 2 oww)

Finally, by known properties of non-negative convex integrands (see [7] or [11]),

we have:
T T

(28) lim inf | Glt,~ow ,(t))at > [ G(t,-ow(t))dt .
0 [¢]

Adding up (25), (27), (28), and comparing them with formulas (10) and (21), we get:
29) I(W) < If{I(w')|w* e B} .

Since w e B, equality must hold in (29), proving that w is a minimizer in B.
Conclusion. The minimizers satisfy estimate (8).

Prom formula (10), we see that I(0) = 0. Since O € B, we see that I(w) <0
for any minimizer v of I on B. This implies that llw||, must 1ie between o0 ana

the first positive root s, of ¢. Figure (16) gives us by inspection the desired

1
estimate:

(30) 8. <8=g




i

o

Corollary 3.2. Assume f and H(-,u) are T-periodic, with:

-8

T —_— -
(31) | f(t)at = 0 and ||£||uic(8)k5-2'r
0

L L]
~f~
ol
il
N
~|—

Then the Hamiltonian system (H) has at least one T-periodic solution u such thac=:

(32) lla - ell, < z25 el -

Proof. 1In proposition 3.1, we have found some v ¢ E which minimizes I on B, and
which is interior to B because of estimate (8). Clearly v is a local minimum for
I on E, so that we can apply proposition 2.2. The result follows immediately;

estimate (32) follows from (8) and the relation U = v. /

We will refer to the T-periodic solutions found in this way as solutions of type

(E). when there is no forcing term, £ = 0, this type (E) solution is simply u = 0,
rest at equilibrium. Wwhen the forcing term f is small, estimate (31) tells us that
the solution u is almost constant. With a few more assumptions on H, and the
equation ue 3G(-ou + of), it can in fact be proved that u is small. For instance:
Corollary 3.3. Assume moreover that there is some constant c¢ > 0 such that

|ﬂ°1

jvi _>_c|u for all v e 3H(t,u). Then, in addition to (32) the T-periodic

solutions of type (E) satisfy the following estimate:

1 2 B-1
(33) lall,< [E 525 Nell [FF

Proof. We have -o(d(t) - £(t)) € 3H(t,u(t)), so that:

=8 B_
(34) luer|® < BT Jae) - 202 (BT

Integrating over [0,T] yields the desired result. /

We conclude this argument with two remarks. First, note that the estimate (8) is
very rough, and more elaborate calculations will yield better ones. For instance, it
is clear from figure (16) that s = 0(||£[|}/*1?) (using Landau's sympor ©0), so
that, when [[£]|_+ 0, we have the estimate ||a - £]| = o(lle|h), which is

certainly better than (32).

13~
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Note also that the preceding argument will carry over, with suitable modifications,

to the case 3 = 2. However, we then fall within the scope of the paper (4], to which

we refer for results.
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;IV ~ OTHER HAMILTONIANS.

We now wish to extend the preceding results to other Hamiltonians, which do not

s - 2
satisfy the inequality H(t,u) :kB!u! 2 1 over all of R°".

We begin with Hamiltonians which satisfy this condition in a neighbourhood of the
origin only. For the sake of simplicity, we shall assume that the Hamiltonian H does
not depend on t. Throughout, we assume that H'(0,0) = 0.

Proposition 4.1. Assume that there is a neighbourhood U of the origin in R2n such
that H is C2 on U, the second derivative H"{u) being positive definite for
u # 0, and satisfying, for some constants b >a >0 and B > 2:

(1) aIuls-zlvlz < {H"(u)v,v) _<_b|u]6'2]v[2, all ue U, ver",

Then, for any T > 0, there is some € > 0 such that, whenever ”f”ai €, with

T
j' fdt = 0, the Hamiltonian system (H) has some periodic solution lying inside U.
]

Proof. We can always assume that U is a ball with radius n > 0. It follows from the
assumptions that H is convex on U. Now consider a ray t—+tu from the origin, with
lu] = 1. As longas 0 <t <n, we have tue U, and, setting y = 8-2:

4

[ " (swu,vids
0

(H* (tu),v)

t +1
> [ as'lvlas = —2— " ||
2! Y

+1
t Y b v+l
:I bslvlds=mt |v|.
0
Hence, for all u e U:
(2) aly + 1)-'1']11[Y+1 <ler | < bty + 1)-]'|u|""'1
Integrating once more yields, for all u e U:
u Y+2 u Y+2
3) 2 il ten W P EENETD

It is now simply a matter of finding a convex function H: R + R, satisfying

(2) and (3) over all of R", and coinciding with H on U. This being done, we apply

-15~




o g

to H corollaries 3.2 and 3.3, with B = vy + 2, It follows from estimates /-, - i :

(3.33) that if ||£||0l is small enough, the periodic solution u we have found for

4) G(t) = of’ (u(t)) + £(t)

will lie entirely inside U, so that H'(u(t)) = H' (u(t)) for all t. It follows ¢

it is actually a solution of:
5y u(t) = oH' (u(t)) + £(t) . /
We now turn to another class of Hamiltonians, of particular importance for aprlica-

tions. These are the Hamiltonians which split as:
1 2
6) H(t,x,p) = TP+ vit,x) .

Such Hamiltonians are common in classical mechanics. The first term is kinetic
energy, the second one potential energy. Because the first term is quadratic, thev
cannot satisfy growth conditions such as (2.2)-(3.2), even locally.

However, results similar to proposition 3.1 and its corollaries still hold, with
slight modifications. The growth assumptions now will be made directly on the potential

V:RXK +IR. We shall assume it to be:

(7) measurable in ¢, convex continuous in x
(8) v(t,x) 3V(t,0) = 0, all (t,x)
k® 8
9 vie,x) < 5 |x]°, all (t,x), some k>0 and B >2
(10) vt, Min V(t,x) + +» when r + o
xi=r

We introduce new constants:

1 a=1
a1 e () = (2 - a)lan” 2 Bp(g)2~t) ¥ 2 2q - 2) *72
2/8|2=a
' - (dr _
a2) are) = |3 s

Proposition 4.2. Assume V satisfies conditions (7) to (10), and:

T =8 _ (B+2) (8-1)
13) [ f(t)at = 0 ana ||f||°_<_c.(3,k8-2.r B(6~2)
o

-16-
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Then the Hamiltonian system:
(14) (x,p) € (p,-3V(t,x)) + (0,£(t))

has at least one solution (x,p) such that:

(15) x{(0) = x(T) and p(0) = p(T)

16) s _ gl ar ey - 2 . \

( lle f"a:c'(é) £ t =2 £ “

Proof. Denote by v = (y,q) the dual variable of u = (x,p). We can easily compute

G{y,q) for this case:

a”n Gly,q) = Sup {xy + pq - %pz - vit,x)"
X,p
1 2
= sup {xy - v{t,x)} + sup {pq - 5P
x p

1
vE(t,y) + z—q2 .

Here V*(t,*) 1is the Legendre transform of the function V(t,-). It is convex,

continuous, minimum at the origin, and satisfies the estimate:

(18) vt > 2 |y]®
- a
ak

The dual action integral now is:

T
. 1. .
(19) Ity,@) = [ {-yq + -2-y2 + V*(t,-0d + of)}dt
0
on the space E defined by:
2 n T T
(20) yeLmR), [ gat =0 = [ yat
0 0
a n T T
(21) geL(OmR), [ ddt=0=[ qat .
0 0

We wish to prove that the functional I has a local minimum on E. For this, we

have to estimate it from below. We first write it slightly differently:

1 2 T 12
(22) My =5 [ G -@at+ [ (-33° + vaee,-q + £ lae
0 0

1ie 2
=3ly -aly+ 5@ .




e AT gy

T
(23) Q) = f (-§q2 +UR(E,- + £))dE .

J
o]
Using inequality (18) we get an estimate for J:

1 2 1 . :
(24) J@ >~3llall;+ :k—ullq - £]l3.

Call F the primitive of f which has mean value zero, and set q' =q - F. We

get, denoting by brackets the duality pairing between e (O,T;]Rn) and LB(O,t:Rn):

(25) 3(Q) :-;—w,w+<p,q'>-;—<q'.q'>+—l;l!é' .
ak

To go further, we need to estimate lla’ Ha and ”Fuu in terms of ”é{'l{a and “5“1
T

T
Taking into account the normalization conditions, j’ g'dt = 0 = f g'dat, we get
o] o
llq* ”2 < ET_n_ fla ”2 and ||q' “wi '_ZI'_ flg* ”m Using the convexity theorem of M. Riesz again,
we get ||q’ Hsig--n-z/s for 2 < B8 < », Transposing, we get, for 1 < a < 2:
T -2/8.
(26) fatll < 5= " llar iy
Similarly
T -2/8
(27) el <3 w2 lell,

Writing this back into inequality (25) yields:

{28) a@ > wlgll) - ;—w,p)

where the function ¢ of the real variable s is given by:

(29) V) =-3 281l 1 Pprs - 2T B Bypys? L S0
o 2 2 a
ok
812 Bs2
-77-2/6 b(R) T B ”f” s~ l‘"‘Z/B b(B) T B s2 + _:_l_sa
2 o 2 2 a.ka

This is the same function as ¢(s) of formula (3.14), with the coefficient b(8)
changed to n'z/sb(s)/z and the exponent 2/8 changed to (8 + 2)8_1. It follows

that, provided:

1 el o _ge -
(30) Iell < @ - o) tar 2 Bomr2™h) "2 (20 - 2) ¢72 272 8 (a-2)




we will have:

v 1

—_— 242
L =0/ L 3=2
. R i YOS R v
(1) . (a")) Y, with 53 = —T“—'T T

From then on, we proceed as in the proof of proposition 3.1. Going back to equation
(22), we have:
(32) ty,e) 231y - a2 sdla- el

Provided condition (30) is satisfied, the functional I will attain its minimum
relative to the cylinder C in E defined by:
(33) c= {(y,q) € EI !ié-flia < syl

We show as in proposition 3.1 that this minimum is attained at an interior point,
indeed that condition (16) holds. The proof of proposition 2.2 then carries over to
this case, showing that some translate (x,p) of (y,q) 1is a T-periodic solution of
the Hamiltonian system (14). /

Of course, in the case where the potential V(t,x) is differentiable with respect to
X, a more compact way to write system (14) is Newton's equation:
(34) ¥+ v'(t,x) = £(t) .

let us give a simple example to illustrate proposition 4.2. The n-dimensional

system of differential equations:
o 2 .

(35) X, +ax, ) x,=f(t) 1<i<n, a>o0
i i j i - -

will have a T-periodic solution, provided the forcing terms fi all are T-periodic,

[,

have mean zero, and satisfy:

n

| T
(36) IIf['4/3= {cj) (izl £,(%)

3/4 vy,
2]2/3dt <c'l@a 1/2'1‘ 9/4

~—.

This solution will satisfy the estimate:

[T

: (37) EEESPUNERHE

4/3 °




t,
?
$
&
£

e

Another estimate follows immediately by substituting equatior. (37':

'1/4

x.(t)z)zdt] < (Lo A
1 —'a

4/3

T n

Go) Ielly= |1 [
0 ti=1

All this follows from proposition 4.2, with the exponent : = 4 and ¢the

n
Vix) = 34-1[ ! "i]z . Here c¢'(4) =da'(@) = () - 6.06.
1

i=

Finally, we can adapt the proof of proposition 4.1 to the particular case of
classical Hamiltonians, to get the following result:

Proposition 4.3. Assume V'(0) = 0 and there is a neighbourhood ' of the origin

n s 2 s : e
R such that v is C° on |, the second derivative V"(x) being pcsitive defir:e.

for x # 0, and satisfying, for some constants b' > a' >0 and 5 > 2:

- 8-
(39) a' |x|s 2|y|2 < (V*(x)y,y) < b'[x] 2Iy|2, all xe¢ UV, y e B
Then for any T > 0, there is some ¢ > 0 such that, whenever ''fi' -« ., wit:
T
f fdt = 0, the Hamiltonian system:
(o]
(40) X € V(x) + £(t) a.e.

has some periodic solution lying inside U.
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