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ABSTRACT
A simple derivation of Glassman's general N fast Fourier transform, and
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P

SIGNIFICANCE AND EXPLANATION

The discrete Fourier transform is the basis for several accurate
techniques for the numerical solution of partial differential equations. The
fast Fourier transform, an algorithm which allows one to compute rapidly the
discrete Fourier transform, makes these techniques computationally
efficient. This paper attempts to present a lucid description of one fast
Fourier transform, the fast Fourier transform presented by Glassman.

In the past people have frequently been content to compute rapidly the
discrete Fburie; transform of vectors whose length is a power of two.
Glassman's fast Fourier transform allows rapid computation of the discrete

Fourier transform of vectors of arbitrary length.
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l . A SIMPLE DERIVATION OF GLASSMAN'S GFNERAL N FRET FCOUFIEFR TRANEFI;

Pk
. . Warren F. Ferguson, Jr.
! . 1. Introduction
el
Let the N-~vector v be the discrete Fourier transform (DFT) of the N-vector u,
- i.e., the components Vi of v are computed from the components ui of u hy tre rule
N
v, = E u w(k-1)(£ " for k= 1,2,0e0,N
k LN
‘ L=1
|
\
| where
| .
o wy = exp{-2n/=1/n}
|
is a principle N-th root of unity. It is easily demonstrated that the components of u
can be recovered from the components of v by the rule
N
1 =(k=1)(2-1)
“1 N X vkwN for £ = 1,2,404,N &
k=1
The N-point DFT matrix WN is defined to be the matrix of order N whose entry in
row i, column j |is
- (i=1)(3-1)
u) -
N
Therefore the relations between u and v presented above can be written as
v =Wu and =2 Wov
. N “Ex
' where ﬁN denotes the matrix obtained by replacing each entry of Vi hy its complex

conjugate.
A fast Fourier transform (FFT) is generally considered to be any algorithm which

rapidly computes the DFT of a given vector. One of the most popular FFTs was rresente?® ‘-

Sponsored by the United States Army under Contract No. DAAG29-75-C-N024, This
material is based upon work supported by the National Science Foundation unia»
Grant No. MCS§78-09525.
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Cooley and Tukey [3] in 1965. Their algorithm combutes the DFT of an N-vector using

. + aee
N (R1 + R + Rk)

2
complex operations, where one operation denotes one multiplication followed by one
addition, whenever N admits the representation

N = R1R2 oo P\(
as a product of K positive integers R1,R2,...,RK. Since the publication of their
article numerous authors have presented other FFTs, each requiring approximately the sarme
number of complex operations. One notable exception is the FFT of Winoarad [7!.

In this paper I will present a description of Glassman's [$5]) FFT. This description of
Glassman's FFT differs from one presented by Drubin [4] only in the definition of the
tensor product. (However, neither Glassman nor Drubin presented a FORTRAN program which
computes the DFT of a given N~vector.) I define the tensor product A B of two
matrices A, B to be the matrix which, when partitioned into blocks the size of A, has
Abi,j as the entry in block row i and block column 3j. In the appendix of this paper 1T
have presented proofs of three well known properties possessed by this tensor product.

Glassman's FFT computes the DFT of an N-vector using the same number of complex
operations as the Oooley-Tukey FFT. The main advantage of Glassman's FFT is that it is
easily coded, a fact which should be compared with Singleton's [6] FFT. The main
disadvantage of Glassman's FFT is that it requires an N-vector of working storage to
compute the DFT of an N-vector. I will show how one can, to some extent, eliminate this
disadvantage.

I would also like to mention that de Boor [1) has recently presented an FFT that :is

also easily described and coded.

-2-
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2. Factorization of the Discrete Fourier Transform Matrix

Consider the DFT matrix WPQ where P,0 are two positive integers.
Partition the i-th row of wpo into Q groups of P successive entries. The

entries in the g-th group are

[w(i-1)(0+(q-1)P). w(i-1)(1+(q-1)P). . u’(1-1)(P-1+(C§-1)f‘)]
PO P g Poe e ed gy |

Each member of this group contains the common factor
(i-1)(g-1)P (i=1)(a=-1)
w =
PO Q
therefore the gq-th group admits the representation

(i=1)(gq=1)_(P,Q)
Wey Yi

.

where

(i=1)(P=1)4

P,Q) _ i-1)(0 (i=-1)(1
! Q)=[m(1 Hoy =1, o 1

i PQ PQ
denotes the first P entries in the i~-th row of wPO'

¢« o7 W

Next, partition the rows of WPQ into P groups of Q successive rows. The rows in

the p-th group are

w( 0 +(p=-1)0)(0)

(P,0) , ool 0 +H(p=112)(Q-1) (P,Q)
0 w

Yie(p-tro’ = * 7 Y9 1+(p=1)0

@@= 1+(p=110) (0)_ (P,0)

. , o{@=1+(p=1)0) (Q-1)_(P,Q)
o] Q+(p-1)0°

RN 0+(p=1)0

Observe that each member of this group contains the term

(p~1)Q
=‘|,
“o

therefore the p-th group admits the representation

(P, Q)
71+(p-1)Q u
ERS {18 Wl .
0 O+(p=1)0

Here the matrix in square brackets is a block Adiagonal matrix, each block a 1 x P matrix,

where the i-th diagonal block is




[ S

(P, )
i+(p=1)0

and Ip is the identity matrix of order P.
These results allow us to prove the followino

lemma: The DFT matrix L admits the factorization ‘

_ (P,Q)
wp,Q' F {xpa wQ}
where
(P,Q) _ (i=1)(0)  (i=1)(1) . =1 {P=1)y
Yy -[wPQ ,wpQ : ..,wm )
denotes the first P entries in the i-th row of WPQ' and
’Y(p,Q) |
+10)Q (B
(P ar (00
gy | T — me)
Q+(1)0
Y(P.Q)
1+(P—1)Q\\ ‘Y(p'Q)
Q#(p-1)Q-j

is a PO x Q0 block matrix with 1 x P blocks.,

Proof: From the definition of F(P*®) we find that the p-th group of Q successive rows

of
F(P'Q){IP an) -
is ,
Y:E;gng
y (PrO) {1, wQ} '
o+(p=-1)0

which our previous computations have shown to be the p-th group of 0 successive rows »f

p

WPQ‘ Since p was arbitrary we therefore conclude that

- (PO} .
pr ¥ {Ips wQ} .

The matrix F(P'Q) defined in the above lemma has several interesting limitina cases,

in particular

(1,0

F(P'” =W, and F =1

=8 *
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These observations aid us in the proof of the following

Theorem. Let N admit the representation

N = R,‘R2 ces Ry

as a product of K positive integers RysRpraee, Py Then Wy admits the representacinn
=F F_ oo
wN 12 FK

as a product of K sparse matrices F,,Fz,...,Fk where

(R, ceeR))
Fo=I, . 8F " e
1777 -1

(The products Ry ¢ee Ry y for L =1 and R;,q «c¢c Ry for L = K are defined to be 1.}
Proof: The previous lemma, with P = R, and ¢ = Ry +«s Ry, states that

b

" = F1{IR1 ewkzn.%

Therefore the identity
W= Fyoees 1-*1‘_1{1‘{1_"%’1 8w )
holds for L = 2. Let us suppose the identity holds for some L < K. The previous lemma,

with p = RL and Q = RL+1 «es Ry, states that

1
’

(R eesR )
F L’FT..+1 pk {IR aw

L K L RL+1“.P\(

and so

I 2w =
R1.'.RL-1 RL...RK l L RL+1...%

Consequently, if the identity holds for some L ¢ K then it holds for L + 1 too.
Therefore the identity must hold for L = K, i.e.
WN = F1F2 coe FK

where we have noted that

e w =1 e F =F . [}

IR1..-RK_1 R, RieeeR o, K
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A FORTRAN Implementation of Glassman's Fast Fourier Transform

The previous theorem, due to Glassman, allows us to easily code a FFT.

W u
N

with the result stored over u, we only need apply the factors F1,F?,...,FK

: u

to

in the reverse order.

Suppose that we have just applied the factor

(C,A)
L+1 s ®F

u, where (A = after, R = hefore, and C = current)
A=RL+2 e Pk ’
B =R, +oo R, and

C=PR .

Then we should next apply the factor

to

u. This computation can be described as
1. A+ AXC
2. let C be the divisor R, of B
3. B+ R/C
(c,a)
u

. -
4 u }B ®F

For to corrute ‘

of

W

te

N

Since the order of the divisors R1’R2""'RK of N is unimportant we find that the

entire algorithm may he described as

1. A« ¢
2. B €N
3. C ¢




o <

s w—— e,

I L B

6. let C > 1 be a divisor of B
T B ¢« B/C
f. u+«l @ F(C'A)u
B
9. endwhile .

With the exception of steps 6 and 8, each step of this algorithm can be directly
implemented in FORTRAN. Observe that step 6 admits the expansion
6.1 C+ 2
6.2 While B module C# 0 do
6.3 cC=C+1
6.4 endwhile
into steps that can be directly implemented in FORTRAN. We next consider the expansion of
step 8.
Let the product RS of the integers R,S be a divisor of N. For any N-vector w
we define w(R) o be the FORTPAN array of dimension (R,N/R) which is equivalent to
w, and w'RsS) o be the FORTRAN array of dimension (R,S,N/RS) which is equivalent to

we. This definition merely implies that

(R) _

1,5 = Yit(3-nr’ 2nd

W RS
i3,k i+(j-1)R+(k~1)RS

V=1, ® F(C'A)u

denote the result of the computation described in step 8. As shown in the appendix we find
that

W3 o (BT

or equivalently that

RE fc J(B)L(C,A)
7L Mk

for i=1,2,4¢0,B and 3 = 1,2,+44,ACe 1If we express j in the form

-7~




j = jA + (3C - YAr,

with 1 ¢ jA < A and 1« ]C < 7, then the nonzero entries 1n the -~-t% vou -6 - '
are the numbers

(§=1102=1)

AC
in columns k = £ + (1p - 1)C for & = 1,2,40.,Cc We therefnre find *has
(™ i S m (3,=1+(3=DAE=D)
. f

v, . = u, . w
1,]A+(jc-1)A 2=1 1,2+(]A-1)C AC

or equivalently that

j =14+ {3 = -
JEAY E L(BO) w()" 14(3o=1A) (£=1)
R . ! ,
1edparde gen 1,£,3A AcC
for i = 1,2,.4.,B, jp = 1,2,.04,A and j. = 1,2,...,C. Consequently, step 2 admits tre
expansion

8.1 For jc =1,2,¢s.,C

8.2 For jp = 1,2,e04,A

8.3 For i = 1,2,¢44,B

- JBA) € W(BO) w"A"*(jc")A)‘i")
i,JAJc 221 l’E'JA AC

8.5 Next i

8.6 Next 3,

8.7 Next Jq
into steps that can be directly implemented in FORTRAN.

Figure 1 presents a FORTRAN version of Glassman's FFT, For comparison we precent
de Boor's [1] FFT in Figure 2. I have found that Classman's FFT runs several nercent
faster than de Boor's FFT on the University of Wisconsin's UNIVAC 1110, This increase 1~
speed is probably due to the fact that the loop structure used in "lassmar's FPT ~a- =ov
efficiently he implemented in FORTRAN than the loop structure used in Je Tocr's vo7, 7

increase in speed would therefore vanish if one were to hand code hoth FFT's gsi~c =<

lanauage.

-



by
:
U M*W

LN

e

O PN NCT AN -

A INIAIARAIINIIONAOIIDIND Y

)

20

30

an

1)

s22g=2 FFY s==ss=2

SHAQNUTTI F FET(* 1, Cal-TNR SUW-TA)
TATERER

CAMBLFY '(NY,-NRK (V)

| PRTICAL TLVDSR

wwe TVPIT gue
Mo, THTEGER
' eee A COMPLEX NaVFATNR TN AF TRANSFTAMEN
INVRS 4 | PRTCAL VARTARLF

wee NITPHT aue

" see THE DFT AF U1 TF [MVRS IS _FALSF, , OR
M TTMFS THE TNVERSE RFY AF LI T1F INVRS
1s  TRIF,

wen WARKTNG STORAGE wnw

WNRK A CAMPLEX NeVFETNR

INTEGER 4,R,C
LAGTCAL THU

TF (B, AT,1) 60 TN 39
1F (INH) RETLUIRN
AL LI £ TR
HETY 8 wNRK(T)
CNNTIMIE

RETHRN §
A 8 Cuh .

&
ne uan Ce?,R S
TF (“nR(A, 0y ,FR, 0y A TN §n g
CONTINUF Ay D
53
Rz R/C N o
55
T TRy CALL R aSHM (A, R C,1,wnPe, 12yBS) &c’y?
TE (MNT, Ty CALL BLASL(8,R, €, LARK, I, Tt VRE) o
Tyl = '.:'ﬂY.T\v” [g) »:,
5
e TN 9n _L:
b
&
Enn a:"'g
Figure 1 é§?5$
&
-9-




!
¢
s ,

- -
L3O P APV AN -
® o ® 5 2 0 0 0 90 0 @

— -
&N
* e @

PONPON
o wn
"

[
O B~
* s

NN
-o
. ®

NNy
N
® @

Ny
e
*® o s @

A NN N
-2 BN 3
-

P AL N ]
P U SN -
e o 0o v 0 e

(2 Xia Na Xo No B Wal

10
2n

30
40

STEET Nt S Sez=s

SHRQOUTTINE RIAS MR, R, C,UTY, HAIT, TAYRS)
TYTEGFR a,R,r

CAMPLEY UTNER,C,AY, )T (R, A, )

LAGICAI, TuyDe

THIS SURRAHTYIYE T8 CALLEN FROW SHRANITIANF oFFTe

COMPLEX NFLYa,QMEGA, QUM
PATA YRAPT/6_ 2A%) ASINT 179ga,

ANGLE u TWNPT/FLNAT CAnC)
DELTA rVPLX(COS(AUGLF),-SIN(ANGLE))
TF (INVRS) RELTA = CONJG(NELTA)

OMEGA ® CMPLYX(1,,0,)
DA 4o ICey,C
nO 3N Yamy,a
£H 20 Ingy,R
SuM m HIN(IR,C,TA)
No 10 JcR=3,C
JC = Celsnitn
Sim g UINCIR,IC,T2) o OMEGARS!M
CANTINUE
UAUTCIR,TA,IC) = Sim
CONTIMUIR
NMEGA = NELTAGOMEGA
CANTINMUE
CONTTINLE

RETHAN

ENR

Figure 1 - Cont'd.

-10-

gty




TAOYINAIONOOIIONIONANNAAMAN

10

20

3n

an

Sn

=gz FFY ss3=z

CHLLLID S48 1 EET (N, wNR¥, THVRE)
INTRGER

CAMBILEY 1My wDRK ()Y

tNGYIC A AL A -0

ane IMPUT aee

g sep INTEGER

" eee A FAMPLEX NaVECTN® TN AF TRANSFNRMER
INVRS . A LNGICAL VARTARLE

sae OUTPUY wwue

u ese THE DFT OF Y IF TNVRS 1S ,FALSF, , OF
N TIMES THE TNVEFRSE NFY nF 1) IF INVRS
18 TRUF,

ead WORKING STYORAGE waw

WORK A CNMPLEX NeVECTOR

INTEGER A,8,¢
LNGICAL TNU

IF (R,GT,1) 6O TO 39
TF (THHY RETURN
PN 28 tet,nN
UET) = WNRK(T)
CONTTINUE
RETURN

A 8 Aef

NN 4n Ce2,R
IF (van¢R,CY,ER_0) GN TN S0

CONTINIIE

R g RYyr

TF ¢ TROY CALI NERPNB(A,R,C,11, wPRK, TNVRS)
TE 6,0 NT Ty CALL DERPAR(A,R, L, wORK, 11, TVVRS)
T o= 'NHT.]’\AI‘

o T0

Ean

L N Al




:
]
222z NERMAND  zoses
1. SURRAUTINF ‘*tnﬂ(‘.b(‘,g,f,h]‘h,l"‘lIY,YD\,‘DG\
2. INTFGER A,P,¢
3, CNMPLEY 11y fA,R,CY,tnaTea,r, Ry
u, LNATEAL Tavos
s, c
L8 o
- EY 7. c
R [ THTS SHRRALITIVE TS FALLEN FRAM SHARNIITINF aFF Ty
9, c
10, c
11, o
- 12, CAMPLEX OVEGA,DELTA, St
:Z, . DAYTA TWNPI/4,2R31 RG30T 179%A,
.
15, ANGLE = TWnoT/ FLOAT(asC)
16, DELYA & CMPLY(COSCANGLE) ,wSTINCANGLE))
}z. " IF (TMVRS) NELTA & CONJRENELTA)
[ ]
19, OMEGA & CMPLX(1,,0,)
20, DO 40 ICsy,C
210 LLER T, Tamy, A
: 22, DN 20 YRmy,R
. 23, St = HIN(Ta,1B,C)
24, DO 106 JCcRs=p,C
25, JE 8 CelaJCR
26, St g UINCIA,TR,JC) 4 NMEGAaSUM
27, 10 CONTINIE
28, HOUY(IA,TC,18) & SM
29, 20 CANTINUE
30, OMEGA 8 NELTARDOMEGA
31, 30 CONTINUE
32, 40 CONTINUE
- 33, c
34, RETURN
| 3s, c
36, Evn.

Figure 2 - Cont'd.

-12=




o e R 1-("#.9'4

4. Conclusion

special values of N into Glassman's FFT. Recall that

W = FF,  «us F

: N 172 k
} where
H
F =1 W, o
y g k RRyeeeRy o ® R
! i, Therefore any FFT which computes the DFT of an R -vector can be used when the factor

is to be applied to the vector beina transformed.

-13-

Tt * Observe that Glassman's FFT requires an N-vector of working storage to compute the °F7
of an N-vector, for during the computation
uel @ plCAYy
B
we need an N-vector to store the result
v=r1_8rp %y,
As explained in the following paragraph, this N-vector of working storage can be replaced
by a C-vector of working storage at the expense of additional computational effort.
let P(C'A) denote the permutation matrix of order AC which sends row
- ‘ jc + (jA - 1)C of the vector w into row jA + (jc - 1)A of the vector p(C/RAY .
Consequently
I @ P(C,A)v =1 p(C,A)F(C,A)u
B B
7 where pS(C/AIR(C/A) 35 a plock diagonal matrix with C x C blocks. Therefore the
computation
- ue 1 ar SRy
B
can be replaced by the equivalent computation
u+I @ p{CrAI(CR),
T
wer oAy,
B
Ccareful consideration reveals that this latter sequence of calculations requires only a
J . C-vector of working storage.

It is also possible to incorporate any FFT which computes the DFT of an N-vector for

",
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Appendix: Some Properties of the Tensor Product
We have defined the tensor product A ® B of two matrices A,B as the matrix which,

when partitioned into blocks the size of A, has Abi,j as the entry in block row i and

block column j.
Consider now any N-vector w. If R is a divisor of N we define w P to he the

FORTRAN array of dimension (R,N/R) equivalent to w, i.e.

JR
i,3 i+(3=1)R

With these definitions in mind let us now prove the following
Property 1: let A,B be rectangular matrices where A is a R x C matrix. Then
v = (A @ B)u
if and only if
v(R) - Au(C)BT
Proof: Let
v=(A@&@Bu.

From the definition of the tensor product A® B we observe, for each i, that
(R) (c) (c)
v = Ab, .u_ A b u, .} .
*,i z i, *,3 = {2 i,3°*,3
b 3
The sum within the curly brackets is easily identified as the i-th column of
u(C)BT

.
congseguently we infer that

v(R) - Au(C)BT .
The proof of the converse is obtained by reversing the argument presented above. L]

Carl de Boor [2] has noted that this property allows one to easily compute
v=(Af Bu

given u. For if A is an R x C matrix then

v(R) = Au(C)BT = {B(Au(C))T}T

.

consequently programs which applv A and B to vectors can easily be used to apply A @R

to vectors. This property also allows us to easily prove the following




;

e T ot v

Property 2: Let the products A1A2 and B182 he defined. Then
(A1A2) ] (P1BZ) = (A1 ] 81)(1'\2 [ ] Bz) .
Proof: Let Ak be an Rk X Ck matrix for k = 1,2. Observe that Cy = Ry because the
product AqR, is defined. ILet u be an arbitrary vector and define
w={(anr)e (BE)|u .

Property 1 implies that

(R1) (c,) T (c.)
w = (A1A2)u (5182) = A1(A2u B .

'B

-4

T
2

If we define

then property 1 implies that

2 2°. T
\'4 = Azu Bz , and
R
H(R1) - v( 2)BT
1 1

since Cy = Rz. Using property 1 once more we find that
w = (A1 a 81)v , and so

w = (A1 [ ] B1)(A20 Bz)u .

. Congsequently, for an arbitrary vector u we have

{(aa) @ (BB }u = (a 8 8)(n, 8 Bu,
therefore
(A1A2) [ ] (5132) - (A1 [ ] B1)(I\2 L] 82) .
The last tensor product property that we will need is described as follows.
Property 3: For arbitrary matrices Aq Ay and A,
A1l (Az.Ag)' (A1OA2)OA3 .
Proof: Let A, be an Rk x Ck matrix for k = 1,2, and 3., let e;m be the B-vector

(k)

obtained by replacing the i-th component of the zero B-vector by 1. let a i,
’

denote the

entry of A, in row i and column 4., Observe that




-———— —~——

Ak = . i,9%1 for ¥ = 1,2,3 .
iJ5 e] 3
[ ]
Consequently
(R,) (C T (P_) (C)T (p ) (C )T
- (1) _(2)_(3) 1 177, 2 27 : 3 37
Ao A, en) =Ta alale ey L8 e e L85 %
and
(R,) (C,)T (R,) (C T (R,) (C)T
(1) _(2)_(3) 1 1 2 2771, - 73 370
(A1 e Az) 8 A Z ai,jak,l m,n([ei ej 8 e, e L I .
From the easily verified identity
(R.) (C)T (R,) (C,)T (R,) (C)T
1 1 2 2 3 371y 2
[e1 ej e e, 8 (e e i) =
(R} (COT (R,) (C)T (R,) (C)T
1 1 2 2 T 3 3
([eg e efe “ e gfe e
we deduce that
!
A1.(A2.A3)=(A1.A2).A3. ]

-16-
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