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A simple derivation of Glassman's general N fast Fourier transform, an(

corresponding FORTRAN program, is presented. This fast Fourier transform is

based upon a representation of the discrete Fourier transform matrix as a
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SIGNIFICANCE AND EXPLANATION

The discrete Fourier transform is the basis for several accurate

techniques for the numerical solution of partial differential equations. The

fast Fourier transform, an algorithm which allows one to compute rapidly the

discrete Fburier transform, makes these techniques computationally

efficient. This paper attempts to present a lucid description of one fast

Fourier transform, the fast Fourier transform presented by Glassman.

In the past people have frequently been content to compute rapidly the

discrete Fourier transform of vectors whose length is a power of two.

Glassman's fast Fourier transform allows rapid computation of the discrete

Fourier transform of vectors of arbitrary length.
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IL
A SIMPLE DERIVATION OF GLASSMAN'S CFNEPPL N FAST r'FIEP z'-; sF"'

Warren F. Ferguson, Jr.

1. Introduction

Let the N-vector v be the discrete Fourier transform (DFT) of the N-vector i,

i.e., the components vk of v are computed from the components u, of u by the ru1c

vk = 7 u(k-1)(IX) for k = 1,2,...,N
t=1

where

W F exp{-2T/-T/N}

N

is a principle N-th root of unity. It is easily demonstrated that the components of u

can be recovered from the components of v by the rule

1 N v -(k-1)(X-l) for I = 1,2,...,N
k=1

The N-point DFT matrix WN is defined to be the matrix of order N whose entry in

row i, column j is

(i-1) (j-1)

Therefore the relations between u and v presented above can be written as

v = WU and u - v
Nu NN

where WN denotes the matrix obtained by replacing each entry of 
1
'7N by its complex

conjugate.

A fast Fourier transform (FFT) is generally considered to be any alaorithm whic
"

rapidly computes the DFT of a given vector. One of the most popular FFTs was rrescne e ,
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Cooley and Tkey (3] in 1965. Their alorithm comnutes the DFT of an N-vector sina

N . (RI + R + ... + R

complex operations, where one operation denotes one multiplication followel hy one

addition, whenever N admits the representation

N = R1R2 ... R

as a product of K positive integers R1 ,R2 ,.  ,R. Since the nublication of their

article numerous authors have presented other FFTs, each requiring approximately the same

number of complex operations. One notable exception is the FFT of Winoqrad [71.

In this paper I will present a description of Glassman's [5) FFT. This description of

Glassman's FFT differs from one presented by Drubin [4) only in the definition of the

tensor product. (However, neither Glassman nor Drubin presented a FORTRAN program which

computes the DFT of a given N-vector.) I define the tensor product A B of two

matrices A, B to be the matrix which, when partitioned into blocks the size of A, has

Abi, j as the entry in block row i and block column j. In the appendix of this paner I

have presented proofs of three well known properties possessed by this tensor product.

Glassman's FFT computes the DFT of an N-vector using the same number of complex

operations as the Cooley-Tukey FFT. The main advantage of Glassman's FFT is that it is

easily coded, a fact which should be compared with Singleton's [6] FFT. The main

disadvantage of Glassman's FFT is that it requires an N-vector of working storage to

compute the DFT of an N-vector. I will show how one can, to some extent, eliminate this

disadvantage.

I would also like to mention that de Boor [I? has recently presented an FFT that is

also easily described and coded.
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2. Factorization of the Discrete Fourier Transform Matrix

Consider the DFT matrix W .where P,Q are tw.o positive inteqers.

Partition the i-th row of W O into Q groups of P successive entries. The

entries in the q-th group are

[)i1(O+(q-1 )P); (i-i) ( +(q-1 )P) i)(P+q-))

Each member of this group contains the commnon factor

therefore the q-th group admits the representation

where

'V ''PQ

denotes the first P entries in the i-tb row of W Pg

Next, partition the rows of W PQ into P groups of Q successive rows. The rows in

the p-th group are

0 +(p-1)Q)(O) y(PT,o) (0 +(p-1)QH(Q-1) (PQ)
1+(p-1)Q Q'1(-)

Q-+pIQ( (P,Q) Q+(-))Q)(P) I
Observe that each member of this group contains the term

W (P-
1
)Q

therefore the p-th group admits the representation

['~iQ0 
pI 0

Ferp the matrix in square brackets is a block Miaaonal matrix, each block a I x P matrix,

where the i-th diagonal block is

-3-
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and 1p is the identity matrix of order P.

These results allow us to prove the followina

Lemma: The DFT matrix WPQ admits the factorization

ffiQ F (P'Q) (I p aWwpQ =F

where

Y (P,Q) r (i-1)(0) W(i-1)(1) W(i-1)(P-1) ]

i PQ PQ PQ

denotes the first P entries in the i-th row of WP,, and

(P,Q)

(PQ) +()Q (p,)

(PQ)

F~,Q +(PI)Q Y (P,Q)

L +(P-I )Q

is a PQ x Q block matrix with I x P blocks.

Proof: From the definition of F
(p
'
0 ) 

we find that the p-th group of Q successive ro=ws

of

F -PQ)(I PaW Q

F )(PWQ) 1
Yl+(p-1)Q 

(p,Q) p I W Q-o+p-vo )

which our previous computations have shown to be the p-th group of D successive rows n

WpQ. Since p was arbitrary we therefore conclude that

S= (P'O)zp a

The matrix F(P'
0 -) 

defined in the above lemma has several interesting limitin ca z,

in particular

F(P,1) ?(1.0)
F Vp and F =I

-- ,A



These observations aid us in the proof of the followina

Theorem. Let N admit the representation

N = R1R2 ... RY

as a product of K positive integers Rl,R2 ...,PK. Then W N admits t
1
'e representati- n

W - F F ... F
N 1 2 K

as a product of K sparse matrices F1 ,F2,...,Fx where

L IR...RL_
F 1 L-1 RL'L1.. X

(The products R, ... RL.j for L 1 and RL+1 - Ry. for L = X are defined to he 1.)

Proof: The previous lermma, with P R 1 and Q =R 2 ... RX, states that

WN=FI{IR WR2 .

Therefore the identity
W=F * L{IWR.R}

WN F 1 "'" "L-IiIRI" L-I L "K

holds for L = 2. Let us suppose the identity holds for some L < K. The previous lemma.

with P =R L  and Q = ... R., states that

(R'
F(L'RL+I ".. R!K )

L K RL L+I... R'I

and so

R a WR.--R 'FL PiR...R 0WR I
I ... L-1 'L' K 1 L L+1 K

Consequently, if the identity holds for some L K then it holds for L I too.

Therefore the identity must hold for L = K, i.e.

WN FF 2 ... FK

where we have noted that
(P K,

I R ... . ...RY , F )= a

..... .....



3. A FORTRAN Impleri'.tation of Glassman's r~ast Fourier Transform

The previous theorem, due to Glassman, allows us to easily code a FFT. F'or to comr'ut-

W u
N

with the result stored over u, we only need apply the factors F1,F 2 1.. IF K of V N

u in the reverse order.

Suppose that we have just applied the factor

F 1 * 9F(CIA)

to u, where (A =after, R = before, and C =current)

C RL+ 1

Then we should next apply the factor

FL IB/RLkF

to u. This computation can be described as

1. A +A xC

2. Let C be tt'e divisor RLof B

3. R + S/C

4. u + !S F(CIA) U

Since the order of the divisors R1.R 2 1... IRK of N is unimportant we find that the

entire alqorithm may he described as

1. A + 1

2. B +N

3. C +1

4. While B > 1 do

5.A+A r

-6-4



6. Let C>1I be adivisor of B

7. B -B/C

P. u +1 9 F(C,A)u

9. endwhile

With the exception of steps 6 and 8, each step of this algorithm can he directly

implemented in FORTRAN. Observe that step 6 admits the expansion

6.1 C + 2

6.2 While B modulo C $ 0 do

6.3 C =C+ 1

6.4 endwhile

into steps that can be directly implemented in FORTRAN. we next consider the expansion of

step B.

let the product RS of the integers R,S be a divisor of N. For any N-vector w

we define w (R) to be the FORTRAN array of dimension (R,N/R) which is equivalent to

w, and w(R,S) to be the FORTRAN array of dimension (R,S,N/RS) wbich is equivalent to

W. This definition merely implies that

wiR =wi ,-) andi,j i(-)

(R,S)
Wi,j,k wi+(j-1)R+(k-1)RS

Lest

(C,A)
v-I Pt9F u

* t denote the result of the computation described in step 8. As shown in the appendix we find

that

v(B) u(B) F(C,JA)T

or equivalently that

(B AC iBF CAI ii ki kIB (~~A

for i =1,2,. ..,B and j =1,2,... ,AC. If we express j in the form



J =JA
+ 

( C- 1)A ,
= A -C

with 1 4 A A and 1 4 , then the nonzero ertries in t -P

are the numbers

j-1)rt-i)

AC

in columns k = £ . (i - 1)c for £ = 1,2,...,C. We terefor fin -- at

C (J
I () A Cv i'j+( -1)A J'- uiz+(j I ICI AC

or equivalently that

*(,A) C (B,C) (jA-1+(jc
-
1
)
A
) (

t
-
1
)

iI'3'C = I ui,,ljA AC
A =1 A

for i = 1,2,...,B, JA = 1,2,...,A and JC - 1,2,...,C. Conseouently, step ad its

expansion

8.1 For C= 1,2. C

8.2 For j. = 1,2,...,A

8.3 For i = 1,2,...,B
( B A ) C ( (, C ( -+ ( j C 

1 ) A ) ( 
t -

1 )

.4. * I u (PIC ' A C
i' AA C X=1 i, ~JA AC

8.5 Next i

8.6 Next JA

8.7 Next JC

into steps that can be directly implemented in FORTRAN.

Figure 1 presents a FORTRAN version of Glassman's FFT. For corparison we pr-r-.

de Boor's (1] FFT in Figure 2. I have found that Glassman's FFT runs several ercent

faster than de Poor's FFT on the University of Wisconsin's TNIVAC 111". Thi ircrea-

speed is probably due to the fact that the loop structure used in -s r' - -

effiriently be implemented in FORTRAN than the loop structure used in le 7,r's t. - -

increase in speed would therefore vanish if one were to han code hoti- rFTs .

lanauage.
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4. Conclusion

Observe that Glassman's FFT requires an N-vector of working storage to compu-e t-e TFT

of an N-vector, for during the computation

u + 1 0 F (CA)u

we need an N-vector to store the result

v= I F (CA)

As explained in the following paragraph, this N-vector of working storage can be replaced

by a C-vector of working storage at the expense of additional computational effort.

Let p(CA) denote the permutation matrix of order AC which sends row

JC + (jA - 1)C of the vector w into row jA + (Jc - 1)A of the vector P (CA)w.

Consequently

(CA) (CA) (CA)
IB ap v=IBQ F u

where P(C'A)F(CA) is a block diagonal matrix with C x C blocks. Therefore the

computation

U I F (CA)u

can be replaced by the equivalent computation

U + I B a P(C'A) F(CA)u

u + IB a P(C'A) U

Careful consideration reveals that this latter sequence of calculations requires only a

C-vector of working storage.

It is also possible to incorporate any F'T which computes the DFT of an N-vector for

special values of N into Glassman's FFT. Recall that

N 1F2 . k

where

k k-1

Therefore any FFT which computes the DFT of an Rk-vector can be used when the factor =x.

is to be applied to the vector beina transformed.

-13-
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Appendix: Some Properties of the Tensor Product

We have defined the tensor product A 2 S of two matrices A,B as the matrix which,

when partitioned into blocks the size of A, has Ab i~ as the entry in block row i ani

block column j.

Consider now any N-vector w. If R is a divisor of N we define w
(P ) 

to he the

FORTRAN array of dimension (R,N/P) equivalent to w, i.e.

(R)
w,

j  i WI+(j-I)R

With these definitions in mind let us now prove the followinq

Property 1: Let A,B be rectangular matrices where A is a R x C matrix. Then

v = (A 2 B)u

if and only if

(R) (C) T
v Au B

Proof: Let

v = (A S A)u

From the definition of the tensor product AS B we observe, for each i, that

(R) (C) (C)l
v.,i = 1 i u.,j •Al bJu, •

The sum within the curly brackets is easily identified as the i-th column of

(C) T
u B.

consequently we infer that

C( R) =u(C)BT.
v =Au B

The proof of the converse is obtained by reversing the argument presented above. a

Carl de Boor [21 has noted that this property allows one to easily compute

v - (A B B)u

given u. For if A is an R x C matrix then

v
(
R) _ Au(C) {B(Au(C))T}T

conseouently programs which apply A and B to vectors can easily be used to apply A B P

to vectors. This property also allows us to easily prove the following

-14-
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Property 2: Let the products AIA 2  and B1B2  be defined. Then

(A A2 ) S (PIB2) 
=
(A1  B)(A 6 B(1A2 ) P1 B2 (A1 9B1 2 2

Proof: Let Ak be an R matrix for k = 1,2. Observe that C1 = because the

product AIA 2  is defined. Let u be an arbitrary vector and define

w = {(A IA 2) 8 (BIB2)}U

Property 1 implies that

(RI) (C2) )T(C2TT

w = (A A)u (B ) A(A 2u B)B T
1 2 1B2 1 2u 21

If we define

v = (A2 0 2)u

then property 1 implies that

a

(R2) (C2) T
v =A2u B2 ' and

S(B) (R2) T

w =Av B 1

since C1 = R2. Using property I once more we find that

Sw - (Ag B )v , and so

w = (A1 0 B )(A2  B 2)u

Consequently, for an arbitrary vector u we have

{(AA 2 ) a (B B 2)u = (A 1 B )(A 2 a 2)u

therefore

(A A ) • (B B2 ) - (A • B )(A a B

1 2 1 2 1 2 2

The last tensor product property that we will need is described as follows.

Property 3: For arbitrary matrices A1, A2  and A3

A1 • (A2 S A3 ) - (A1 • A 2 ) A3

Proof: Let Ak be an R x Ck matrix for k = 1,2, and 3. Let e B) be the B-vector
k

obtained by replacing the i-th component of the zero B-vector by 1. Let a(k) denote the

entry of Ak in row i and column J. Observe that

-15-



A

M ) (Ph) (Ck)T
A , e for k = 1,2,3

Consequently

( 2) (3) (P (C I)T (P 2) (C 2)T ) (P 3 )

2  3 i,jak,Lmn e e. 2 e k e e n

and

1(2) (3) (RI (C I)T (P2 ) (C 2)TI (R3 1  (C 3 )T

(AOA)S = Aas,(n[e, e [e e e e

From the easily verified identity

(R1 ) (C1 )T (R2 ) (C 2)T (p ) (C 3)T

[ei ej ] 8 ([e k e2 ] [em en J

(R I ) (C)T (R2 ) (C2 )T (R 3 ) (C 3)T

([ei eCj 1 [ek e , [in e

we deduce that

AS (AS2 A3 ) = (A1 • A2) 
• 

A3  U

-16-

Ow

I &



REFERENCES

1. C. de Boor, PFT as nested multiplication, with a twist, Mathematics Research Center,

University of Wisconsin-Madison, Technical Summary Report 01968 (1979).

2. C. de Boor, Efficient computer manipulation of tensor products, Mathematics Research

Center, University of Wisconsin-Madison, Technical Summary Report #1810 (1978).

3. J. W. Cooley and J. W. Tukey, An algorithm for the machine calculation of complex

Fourier series, Math.Comp. 19 (1965), pp. 297-301,

4. M. Drubin, Kronecker product factorization of the FFT matrix, IEEE Trans. on

Computers, C-20 (1971), pp. 590-593.

5. J. A. Glassman, A generalization of the fast Fburler transform, IEEE Trans. on

Computers, C-19 (1970), pp. 105-116.

6. R. C. Singleton, Algorithm 339: An algol procedure for the fast Fourier transform

with arbitrary factors, Comm. Assoc. Coup. Mach. 11 (1968), pp. 776-779.

7. S. Winograd, on computing the discrete Fburier transform, Math. comp. 32 (lQ7R),

pp. 175-199.

WEF/ecr

a1
-17-



SECURITY CLASSIFICATION OF THIS PAGE (V/on Dale Entered)

FATFUIRTASOM6 EFRIGOG EPORT NUMBER2092

7. AUTHOR(&) 8. CONTRACT OR GRANT NUMBER(&;

Warren E. Ferguson, Jr. DAAGZ9-7 5-C-0024
MCS78-0952 5

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT. TASK
Mathmatcs eseach entr, Uivesit ofAREA & WORK UNIT NUMBERS

Mathmatis Reearc CeterUnivrsit ofWork Unit Number 8-
610 Walnut Street Wisconsin Computer Science

Madison, Wisconsin 53706 _____________

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

December 1979
See Item 18 below. 13. NUMBER OF PAGES

17
14MO-NITORING GENCY NAME II AODRESS(if differen~t from Controlling Office) IS. SECURITY CLASS. (of this report)

UNCLASSIFIED
IS&. DECLASSIFICATION,'OOWNGRADING

SCHEDULE

16. DISTR-BUTION STATEMENT (of thls Roeort)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, It dillferent been Report)

III. SUPPLEMENTARY NOTES

U. S. Army Research Office National Science Foundation
P. 0. Box 12211 Washington, D. C. 20550
Research Triangle Park
North Carolina 27709

* 19. KEY WORDS (Continue on revers aids it necesary and identify by block nuenbor)

FFT

Fast Fourier transform factorization

Discrete Fourier transform

20.XT iAC T (Conitnue, on rover"e oids if necessary and identify by block numnber)

A simple derivation of Glassman's general N fast Fourier transform, and

corresponding FORTRAN program, is presented. This fast Fourier transform is

based upon a representation of the discrete Fourier transform matrix as a

* product of sparse matrices.

DD 1JA N 73 1473 EDITION OF I NOV 06 1O0SOLE? UYASIFE

SECURITY CLAMIPICAIION OF ?NIS PACE (Whlen 00ta Enforst


