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ABSTRACT

This paper deals with a simple computational approach to the analysis of
dynamical systems involving intermittent motion in which the velocities involved
can be discontinuous due to impulsive forces, impact, mass capture, and mass
release. The sequence of these events may not be known ahead of time, and may
in fact be one of the things we wish the computer to determine.

The dynamical equations are formulated using a logical function method due
to P. Ehle. The resulting system of ordinary differential equations with
discontinuous coefficients is integrated using a standard computer code in
regions where the coefficients are continuous. When discontinuities occur,
jump conditions across the discontinuity are used to express the new velocities
in terms of the old, and the ordinary differential equation solver is simply
restarted with new initial conditions.

To illustrate the simplicity of the approach, the method is applied to a
dynamical system of ten masses considered by Ehle. The computer code and

numerical results are included.

AMS (MOS) Subject Classifications: 65L05, 70.34, 70.65

Key Words: Mechanical systems, Intermittent motion, Heaviside step-functions,
Logical functions, Jump conditions, Equations of motion, Dynamical
analysis, Computer program

Work Unit Number 3 (Applications of Mathematics)
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SIGNIFICANCE AND EXPLANATION

L Apart from the work by Ed Haug and his students at the University of 3
Iowa, surprisingly few references seem to exist on the computer calculation i
i

' of complicated mechanical systems involving intermittent motion, particularly :

when the sequence of events is not known beforehand. P. Ehle has formulated

such problems using a "logical function" approach involving Heaviside step

functions and their derivatives. He then smooths out the discontinuities
so that the resulting ordinary differential equations can be integrated
directly by a standard computer code. We avoid the somewhat arbitrary
choice of smoothing parameters, the calculation of the smoothing functions
in the transition regions, and the step-size adjustment through the transi-
tion regions, by dealing with the discontinuities directly by using jump

: conditions across the discontinuities. A computer code is included for an

example considered by Ehle, to illustrate the simplicity of the method.
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COMPUTER CALCULATION OF MECHANISMS INVOLVING INTERMITTENT MOTINLD

1 . B. Noble and H. S. Hung

' 1. Introduction.

There seem to be rather few published articles dealing with computational metids

for the analysis of dynamical systems involving intermittent motion in which the

velocities involved can be discontinuous due to impulsive forces, imparr, mass cajture,

and mass release. Bickford [1) uses analytic and graphical methods to design such

mechanisms, but he does not use computer simulation. The book by Levy and Wilkinson [7]

deals with the computer analysis of dynamical systems, including situations in which

masses come into contact with elastic 'stops'.

[P

During the last few years extensive work has been carried out by Professor EQ Haug

and his students at the University of Towa in connection with the computer calculation

of complicated mechanical systems with intermittent motion. 1In the earlier work

(see, for instance, (4], [5] and [6]) it is assumed that the order of the sequence of

events is known a priori. In a complex mechanism, the sequence of events may be

highly design dependent, and it may be one of the things that we wish the computer

program to discover. P. Ehle [2] has introduced a "logical function" method consi:zting :

of two distinct steps to deal with this latter type of situation:

The discontinuities are represented in the equations of motion by

Step 1.

Heaviside step functions and their derivatives. The arguments of these logical fun.-

tions can involve space, velocity, or time, whichever is physically appropriate. Tho

motion is represented by one single set of equations over the entire interval of time

under consideration.

The discontinuities are smoothed ocut by an ingenious but somewhat

Step 2.

arbitrary procedure. The resulting system of ordinary differential equations involves

continuous coefficients so that it can be inteqrated directly by standard computer

codes.

Sponsored by the United States Army under Contract No. DAAG29-75-C~0024.
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The present paper adopts the logical function approach in Step 1, but, instead
of Step 2, deals directly with the resulting system of ordinary differential equations
involving discontinuous functions. In regions where the coefficients are smooth, the
equations are integrated using a standard computer software code for solving systems
of ordinary differential equations. When discontinuities occur, the jump conditions
across the discontinuities are used to express the new velocities in terms of the old,
and the ordinary differential equation solver is simply started with new initial condi-
tions. The method is easy to implement and avoids the somewhat arbitrary choice of
smoothing parameters, the calculation of the smoothing functions in the transition
regions, and the step-size adjustment through the transition regions that are required
in Ehle's approach.

A simple example is discussed in Section 2 to illustrate the essential points
of our approach.

In Section 3 we apply our method to the complicated example considered by Ehle
in Chapter 4 of his thesis [2). The results confirm that our method is easily imple-
mented. In order to facilitate a comparison with Ehle's treatment, we use his nota-
tion, and the computer runs are carried out using his numerical parameters, with minor
changes noted later. In order to make the present paper self-contained (and also to
save the reader the labor of extracting the relevant information from Ehle's thesis),
we define in complete detail in Appendices B and C the symbols used in Section 3 below.
Our computer code is given in Appendix D.

Most of Ehle's thesis is devoted to sensitivity analysis for the complicated
mechanism in Section 3 below. A sensitivity analysis using the method in this paper

would be the next natural step in the present work.

T




2. A Simple Example.

Consider the idealized situation in Figure 1 which will illustrate most of the
points required for the analysis of the complicated mechanism in Section 3. Motion
is in the x-direction only. The mass A, position x = x(t), is attached to a massless
spring with spring constant kA‘ The unstressed length of the spring is Xg. When

the mass A reaches position x = x (for the first time only), an impulsive force

1
of magnitude F acts on it. The mass B is initially at rest. When mass A reaches

mass B (at x = xz), the two masses lock together, and move as one. The equations

of motion are as follows.

m.x = kA(x - xo) + PS(t - tl), 0<x<x

A 2’

where tl denotes the (unknown) instant when mass A reaches x -

Figure 1. A Simple System




The effect of the impulsive force Fé(t - tl) is to produce a jump F/m, in

velocity at t = t the position x(t) changing continuously in t at t = ¢

1’ 1’
This can be seen by integrating (2.1) between tl - A and tl + 4, then letting

A + 0, which gives
mAx(t'.1 +0) - mAx(tl - 0) =F
where we use an obvious notation. A double integration shows similarly that

x(i:1 +0) = x(tl -0 .

Por x, <x <x we have

2 3’

(nA + na)x = kA(x - xo) .
From conservation of momentum as the mass lllA reaches x = X, and picks up
see that
mAx(t;2 -0) = (mA + u\B)x(t2 + 0) ,
and again the displacement is continuous, x(t:2 -0) = x(t.2 + 0).

For x > x we have

3!

(llA + "B); = kA(x - xo) + kix - x3) .

Subsequently (2.4) holds whenever x < x; and {(2.6) whenever x > x

Following Ehle, we use the Heaviside step-function to write the above three

3°

equations as one single equation. We define, for any u,

0, u<o,
H(u) =
1, u>o0.

We also require the following step-function. Suppose that u is some time-dependent

quantity such that u <0 for 0 <t <T and that u > 0 for the first time at

t=T+¢ (¢ arbitrarily small). We then define
<t<T,
H (u) =
1 T,

i.e. for t> 1T, H (w) is alvays 1 regardless of the size of u.




In terms of these logical step-functions we can rewrite equations (2.1), (2.4),
(2.6) as:

q .

—_ - - - - - .7

3 {[mA + Hl(x xz)mB]x) = kA(x xo) + Fé(t tl) + H(x x3)k(x x3) . (2

Here tl is the time when x = X, for the first time.

As discussed in connection with (2.2), (2.3), the effect of the impulsive form
Fé(t - tl) is to produce a discontinuity in velocity at t = tl. The effect of the

term involving Hl(x - x2) can be seen by integrating (2.7) between t = tz - A and

t=t¢t, + A, where the mass is at x = x at time t =t

2 2 2! then letting 4 -+ O.

This gives precisely (2.5). The right~hand side of (2.7) is a continuous function of

x, t as x passes through Xqe

Our procedure for solving (2.7) numerically is to use a standard computer code

for numerical integration of a system of ordinary differential equations in time

intervals in which the mass is not changing and the impulsive force at ¢t = tl is not

acting.
The numerical integration is started with initial conditions x(0) = 0 and

%(0) = 0. We check at each step whether «x > x Whenever this condition is satisfied

1
for the first time, we take the impulsive force F into account by restarting the

numerical integration with new initial conditions given by (2.2), (2.3). After this

point we need not check further whether x > x,- (The impulsive force occurs only once.)

To take into account the mass change at x = x we similarly check at each step

2'

of the numerical integration whether x > x when this occurs for the first time,

2°
we restart the numerical integration with new initial conditions given by (2.5).

After this point, masses A and B are locked, Hl(x - x,) 1is always 1, and it is

2
no longer necessary to check whether x > Xye

Finally, the term H(x - xs)k(x - x3) is a continuous function of x and does
not require restarting the program with new initial conditions. The term k(x - x3)

is simply added on the right of the equation when x > x The additional term is a

3°

continuous function of x which is handled directly by the program, i.e., it is not




necessary to restart the differential equation integration as for the other two
discontinuities.
In the above example we have assumed that x) > x5,

acts before mass B is captured by mass A, If the computer program is arranged so

i.e., the impulsive force

[
.
that the conditions "x > x.?", "x > %,?" are both checked at each time step starting i

1 2

at t = 0, and the program is restarted with appropriate initial conditions depending

on which condition is satisfied first, then the program will work whether x < x2

or x, > xz. This illustrates one of the main points of the method, that it is not

necessary to know the sequence of events ahead of time.

. bt ot

Note that the above example discussed the treatment of only some of the possible
discontinuous situations due to impulsive forces, impact, mass capture and mass

release. For the standard treatment of such discontinuities one could refer to (8],

for instance.

.
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-
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3. Computer Calculation of A Complicated Mechanical System.

{a) Description of the mechanism. We shall compute by our method the motion of the

mechanism considered by Ehle in Chapter 4 of his thesis [2]. Schematic diagrams are
given in Figure 2 which refers to time t = 0, and Figure 3 which refers to a later
time. Masses 1 - 10 move parallel to the x-axis as indicated; in addition, mass 8
can rotate about an axis parallel to the x-direction, this rotation being controlled
by a pin C moving in a slot AB (a cam motion) as shown.

There are only seven equations of motion since at any one time there are only
seven independent moving bodies. Bodies 3,.,.,7 are simply the masses Mare..om,
in Figure 2. Masses 8, 9, 10 are attached to either mass 1 or mass 2 at any given
instant of time. We shall use the terminology ‘body 1' ('body 2', respectively) to
S

rB_, M, M + respec-—

1" 8" "9° 10

tively) moving as single bodies at a given instant of time. The exact distribution

refer to the appropriate combination of m (mz. LAY m

9" 10

of m_, m , m between bodies 1 and 2 is controlled by the positions and velocities

8 9 10

of bodies 1 and 2 (see equations (3.1)). At time ¢t = 0 body 2 has mass LY and in

Ehle's notation, body 1 has mass n + 20(m9 + mlo). In view of the subsequent

motion it is convenient to say that at time ¢t = 0, body 1 consists of a mass Ml

to which mB. m9. mlo are attached, i.e., we introduce a new symbol Ml such that

the mass of body 1 at time t =0 is M +m_+m_ +m

) Ryt mg v m, (e

M1 =m + 19(m9 + mlo) - ma)-

The position of body i in the x-direction is measured by a co-ordinate X,

such that x, = i at t = 0. This co-ordinate system is chosen to ensure that no X,

is ever negative (see [2]), p. 66 for more details). The velocity of body i is

denoted by x

T
Two types of spring~damper pairs are involved in the mechanical system under
consideration. Using Ehle's notation, let FI1J denote the force exerted by spring-

damper pair J on body I. 1In one type, the spring-~damper pair is connected to

bodies I and J and FIJ is proportional to the extension or compression of the

et A, e it e o b e b
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spring plus a damper force proportional to the velocity difference between Lhe ends
(FMOUNT, F16, F17, F24, F45, FS6). In the other type, the force is proportional to
the compression of the spring plus the damper force. When the distance between the
bodies is less than the static or free length of the spring, but when the separation
of the bodies exceeds the static length of the spring, the spring loses contact with
one of the bodies and FIJ = O (F12BAR, F12BB, F23, F23BAR, F27).

At time t = 0, body 2 is in its extreme right position (see Figure 2); also
Fl6, F56, F45, F24, F12BB and F17 are in compression, and the corresponding forces
balance. The pin P is pulled to release body 7; the spring force F27 is inactive
since the spring-~damper pair attached to the right side of body 7 is some distance
from body 2. The spring force F17 is active; the spring-damper pair between bodies 1
and 7 pushes body 1 to the left and body 7 to the right. Since the mass of body 7 is
much less than the mass of body 1, the velocity of body 7 is much greater than that
of body 1. Bodies 2, 4, S, 6 also move due to spring forces. Body 3 is centered in
its slot in body 2, and does not move initially.

When the stiff spring on the right side of body 7 strikes body 2, the impulsive

forces F F (as shown in Figure 3) act on bodies 1, 2 respectively. At the same

S ,
1 time, the mass of body 1 is decreased by mlo.
From this point onwards we shall not attempt to des :ribe the motion in words,
because it is in fact clearer and simpler t; quote the equations used by Ehle in (2]
to describe the motion (see (3.1) below).
The objective here is to predict the time histories of the displacements,
velocities, and forces associated with each independent rigid body that occurs in one
cycle of motion of the mechanism, the end of the cycle being determined when the

right spring on mass 2 strikes mass 1.

(b) Equations of motion for the mechanism. We simply quote the following first order

differential equations of motion used by Ehle in his thesis [2]:

-10~




{EMB{I) x Y(I)} = NF(I)

dt Y(I + 7)) = Y(I)

with initial conditions:

In equations (3.1),

(1) Y(I), Y(I + 7) are the velocity and position respectively of body I.
Y(I) = %(I)
’ I=1,...,7.

Y(I +7) = x(I)
{(2) EMB(I) is the mass of body I:
[ EMB(1) = EM(1) + 20 x (EM(9) + EM(10)) - ELG(1l) x (EM(9) + EM(10))
+ (1 - ELG(7)) x EM(7) - ELG(2) x EM(10) + ELG(3)
x {(EM(8) + EM(9) + EM(10)) - ELG(4) x (EM(8) + EM(9)) ,

EMB(2) = EM{2) + ELG(9) x EM(8) + ELG(10) x EM(9)

+ (ELG(11l) - ELG(3)) x (EM(9) + EM(10))

EMB(I) = EM(I) for I = 3,...,7 ,

where EM(I) is simply the mass I with numerical values as follows:

EM(1) .1925, EM(2) = .0182, EM(3) = .00696, EM(4) = EM(5) = EM(6) = .001383,

EM(7) = .002121, EM(8) = .004037, EM(9) = EM(10) = .0004037. (There is a misprint

in Ehle's thesis, where EM(2) is given as 0.182.) (Note that we uée EM(I) and
EMB(I) to distinguish mass I and mass of body I; Ehle use only EM(I) in his thesis
to denote mass I. Otherwise we use Ehle's notation.)

(3) NF(I) is the net force on body 1I1:




NF (1) = F16 + FMOUNT + ELG(7) X F17 + ELG(8) * F12BAR
+ ELG(16) x F12BB - ELG(5) x FGAS + ELG (&) » FCAM
NF(2) = F24 + ELG(13) x F23 + ELG(14) x F23BAR + ELG(15) x F27
+ ELG(8) x F21BAR + EIG(l16) x F21BB
- ELG(5) x (0.9 x FGAS) - ELG{(12) x FCAM
NF(3) = ELG(13) X F32 + ELG(14) x F32BAR
NF(4) = F42 + F45
NF (5) = F54 + F56

NF(6) = F65 + F61

NF(7) = ELG(7) x F71 + ELG(15) x F72
where
FGAS 1is the impulsive force on body 1, shown as Fl in Figure 3,
FCAM is the axial cam force acting between bodies 1 and 2,
F1J is the force on body I due to the spring~damper pair attached to body J
(similarly for FMOUNT, F12BAR, F12BB and F23BAR].

All these forces are described and explained in detail in Appendix B. Note that
FGAS and FCAM are not taken into account in exactly the way in which they appear in
NF(l) and NF(2) of equations (3.1); they are dealt with by the special but simple i
method discussed below and as shown in the program in Appendix D.
(4) The ELG(I) appearing in the expressions for EMB(I) and NF(I) are what Ehle 4
called "logical function groups" which are used to switch masses and forces in and out;
they are algebraic combinations of Heaviside step-functions EL(I). The definitions
of ELG(I) and EL(I) are tabulated and described in detail in Appendix C.

Note that the fourteen equations in (3.1) are for bodies 1-7 only; bodies 8, 9
and 10 do not have separate equations because they do not have separate degrees of 4
freedom - their positions, as mentioned by Ehlé, are determined by the positions cof

bodies 1 and 2. Note also that in Ehle's thesis [2] two equations, in addition to

those in (3.1), involving logical step functions and their derivatives, must be

0 i

-12-
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1
. introduced to properly account for two locked-on logical functions of time. For 4 1
I :
; details see [2], p. 74. We avoid this by the use of IF-statements in the computer
program.
' {(c) Numerical solution of the equations of motion. For the numerical selution of the
system of equations of motion (3.1), the EPISODE package [3], a variable step and
variable order ODE solver, is used. This algorithm will select automatically the
appropriate step-size to meet a given criterion. Because of the requirement of this
algorithm, the system of equations (3.1) is put into the form:
1 Ly = F I=1,...,14 (3.2)
“ dt ’ ’ ’
where
F(I) = NF(I)/EMB(I) {
3 I=1,...,7 .
F(I +7) =Y(I)
These equations will be processed as they stand when FCAM is not active, i.e.,
when ELG(6) = ELG(12) = 0. Our method of dealing with FCAM is somewhat different E
from that used by Ehle. FCAM has the form (see Appendix B, where the values of A, B ;
are given):
4 3
FCAM = A Ic [Y(2) - y(1)] + B,
so that when FCAM is active, i.e., when ELG(6) = ELG(12) = 1, the first two equa-
tions in (3.2) have to be solved simultaneously for dY¥(l)/dt and dY(2)/dt, leading to:
. a .
at Y(1) = F(1) {
a (3.3 :
ac Y(2) = F(2) P
where
F(1) = (A22 x Bl - Al2 % B2)/D h
: E
F(2) = (All x B2 - A21 x Bl1)}/D k
with 5§
D = All x A22 - A2l x Al2 ,
All = EMB(1) + A, Al2 = -A, Bl.= NF(1) + B ,

13~

A21 = -A, A22 = EMB(2} + A,

B2 = NF(2) ~ B . .




Equations (3.3) replace the first two equations of (3.2) when FCAM 1is active.

Our procedure is to use EPISODE to solve (3.2) in time intervals in which the
mass is not changing, and the impulsive forces (Fl = FGAS, and F2 = 0.9 X FGAS)
are not acting. But whenever a mass changes or the impulsive forces occur, the jump
conditions across the discontinuities (deduced as for the simple example in Section 2)
are used to express the new velocities in terms of the old and the ODE solver is
simply restarted with new initial conditions.

We integrate (3.2) for one cycle of motion with the EPISODE options:

(1) The variable step, variable order implicit Adams method in combination with

the functional (fixed point) iteration method,

(2) Relative error control,

{3) Relative error of 1 in 10-5.

These are indicated by MF = 10, IERROR = 3 and EPS = 1.0D-5, respectively in the
program in Appendix D.

The essence of our numerical procedure can be found in the flow chart in Figure 4.
(Refinements like the impulsive and cam forces are easily added.) Note that we check
whether the masses change, and print out results, at steps of At in time, where At
is chosen by the programmer. During any one of these steps, the differential equation
solver automatically adjusts the step-size that it has to use to obtain the required
accuracy, and these step-sizes may be considerably less than At.

The entire computer program (apart from EPISODE) is given in Appendix D.

(d) Discussion of numerical results. Figures 5~10 below show the graphs presented by

Ehle in [2] for motion of the mechanism described above, together with the graphs
obtained by the method of this paper (dotted lines). We have used exactly the same
equations and constants as Ehle with one exception, namely the force terms F23 = -F32
and F23BAR = -F32BAR, as discussed in the next paragraph and in Appendix B.

With one exception, the results are in general agreement, including the sequence

of events and the chattering of the spring 27 with body 2. The exception is the motion

=14~
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EETCECE

; STORE MASSES OF
: ALL MOVING BODIES

NEW OUTPUT TIME
= OLD OUTPUT TIME + At

CALL ODE SOLVER
(COMPUTE RIGHT-HAND
SIDES AS NECESSARY)

END
OF A CYCLE
OF MOTION?

SWITCH 'ON' OR 'OFF’
THE HEAVISIDE STEP FUNCTIONS

COMPUTE THE LOGICAL
FUNCTION GROUPS

COMPUTE NEW MASSES
OF ALL MOVING BODIES

DO
ANY MASSES
CHANGE

i NO

COMPUTE NEW INITIAL VALUES
i FOR EQUATIONS OF BODIES
WHICH HAS MASS CHANGE

! THROUGH JUMPJCONDITIONS

PRINT 3
RESULTS 4

Figure 4. A Generalized Flowchart for Intermittent Motion
Problems using Logical Step~FPunctions

~
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of body 3, the springs attached to which are in intermittent contact with body 2.
The value 60 of the damping constant in F23 and F23BAR used by Ehle produced a
highly damped motion of body 3 in our program. Our results given in Fiqure 7 were
obtained using a damping constant of 2.

The sequence of events 1s shown in detail in Figure 11, which describes 32
intermittent contacts at times t.,...,t

1

below. The criteria involved at each of these times can be found in the definitions

32" These times are tabulated in Figure 12

of the corresponding logical groups which are described in detail in Appendix C.
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i t

i

0 0.0000  (Initial time)

0.0126
0.0127

0.0128

0.0130

0.0146

0.01%6

0.0161
0.0173

9
10
11
12
13
14
15
16
17
18
19
20
21
22
21
24
25
26
27
28
29

0.0187
0.0203
0.0221
0.0227

0.0237
0.0262
0.0278
g.0308
0.0316

0.0326
0.0338
0.0344
0.0345
0.0353
0.0364
0.0365
0.0425
0.0429
0.0441
0,051%
0.0533
30 0.0583
1 0.0625
32 0.0629 (End of a cycle of motion) =a

Figure 12. Timem of the Logical Events
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E 4. Summary and Concluding Remarks.

A straightforward method has been presented for the dynamic analyeis of mechar s

involving intermittent motion.

1. By using the Heaviside step functions, complicated loygic associated with disaor-

tinuities in the equations of motion is incorporated systematically into the

problem formulation, following the methods introduced by Ehle, but differinag tro-

them in detail.

Jump conditions are required to get across the discontinuities but these are

easily implemented in the program.

No a priori knowledge of the order of logical events is required.

Our method is easy to program. The program itself is simple; most of the program

is just computing the forces and switching Heaviside step functions ‘on' or ‘otf’.

The validity of the mecthod has been demonstrated for a complicated and realistic

10-mass mechanical system, the solution involving 32 intermittent contacts (ser

Figure 11}.

We integrate the system of egquas

Computational efficiency of the method is good.

tions of motion by using EPISODE (the variable step and variable order ODE solver)

with S-place accuracy and relative error control fram t =0 to t = 0.003

which is one cycle of motion of the mechanism, the cpu time on a UNIVAC 1110

(Note that our version of EPISODE uses double precision,

computer is 36 seconds.

Single precision should suffice, which would reduce the time required.)

Stability of the numerical solution does not scem to be a problem.

The point of the present paper is that we have adopted the logical function

approach of Ehle for dealing with discontinuous motion, but we have dealt with

discontinuities directly via jump conditions, instead of smoothing out the discon-

tinuities as done by Ehle [2]. A table of comparison between Fhle's approach

and ours is presented in Appendix A.
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APPENDIX A

TABLE OF COMPARISON BETWEEN EHLE'S APPROACH AND OUR APPROACH

Ehle's Approach

Use Heaviside step and Dirac delta
functions systematically in the

formulation of equations of motion.

Discontinuities are smoothed out by
13 : * s

using "logical functions " (i.e.,

smooth approximations to Heaviside

step functions and their derivatives).

Locked-on logical functions are
dealt with via additional ordinary

differential equations.

To put equations of motion into
standard form required by the ODE
solver, Dirac delta functions would

appear.

To deal with the logical functions,
the transition zone width € is
chosen arbitrarily; extra time steps
must be taken t:..rough the transition
zone to calculate the logical func-

tions which involves additional

step-size adjustment.

Our Approach

We follow Ehle in this respect, but write
equations in such a way that we use only
Heaviside step functions (no Dirac delta

functions) except for the impulsive force.

Discontinuities are dealt with directly

by using straightforward jump conditions.

.

Locked-on logical functions are dealt

with via simple computer logic.

This does not occur in our method.

Dealing with the Heaviside step functions
is straightforward -- we simply switch

them 'on' or 'off' at each time step.

0 ) 35
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6. Not so efficient computationally. Efficient computationally.

7. Program seems complicated. Program simple (see Appendix D).

*
Note on Ehle's smoothed Heaviside function:

If u 1is the argqument, the smooth representation EL wused by Ehle in [2] for the

Heaviside step function in the equations of motion is:

% (|u|3 + u3)

EL = H(u} =
P+ u-€¢|®- w-ad

where € is the precise width of the transition zone. Note that the representation
EL is asymmetrical about u = % €. Symmetry is desirable, and this is easily accomplishez
by multiplying the square bracket in the denominator of EL by a factor of 0.5.

-28=
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APPENDIX B

DEFINITIONS OF FORCE TERMS IN EQUATIONS OF MOTINN

The forces FGAS and FCAM presented in the equations of motion (3.1) arc defined

as follows:

* *
FGAS = 1.2 x 8(t - t ), where t is the time at which the impulsive forces F,

and F2 shown in Figure 3 are initiated.

FCAM = A X é%-[Y(Z) - ¥(1)]) + B, where

A= GAMLOC2 X ENRT X ELP2 ,

B = -GAMLOCzX ENRT x ELP x ELPP x (Y(2) - v(l))z.

GAMLOC = 0.3927,

ENRT = 10.5 x 107/ + ELG(1) x 107/ ,

LT T -
ELP = 2 (cpsroc) SIM(gpsroc [Y(8) = Y(9) + 0.991671) ,
2
S . . 1 _ -
ELPP = 5 (mooos)  COS(gparos [Y(8) - ¥(9) + 0.991671) ,

EPSLOC = 0.075.

(For details see Appendix D in [2].)

The equation of motion

We next tabulate the various spring and damper forces.

of a single mass is simply mx + cx + kx = f. The damping constants c¢ for the 4

mechanism considered are less than the critical damping value, i.e., c2 < 4km.

= 9.53 X Y(1)

- 1)

FMOUNT = =300 x (Y(8)

Force from spring-damper pair acting between ground and left hand side of body 1.

- 0.13 x (Y(1) - Y(2))

F12BAR = =-10000 x (Y(8)

- Y(9) + 0.66667)

Force on body 1 from spring-damper pair attached to the left side of body 2. )

F12BB = -20000 x (Y(8) - Y(9) + 0.99967648) - 25 x (Y(1) =~ Y(2))

Force on body 1 from spring-damper pair attached to the right side of body 2.

X (Y (L) = Y(eh?

F16 = ~76.8 x (Y(B) - ¥(13) + 5.08425) - (0.0217 x SQRT(2 x EM(5) x 76.8))

Force on body 1 from spring-damper pair between bodies 1 and 6.



F17 = =15 x (Y(8) - Y(14) + 6.5) = (0.98 x SQRT(2 X EM(7) x 15)) x (Y(1l) ~ Y(7))
Force on body 1 from spring-damper pair between bodies 1 and 7.

F23 = =20000 x (Y{(9) - Y(10) + 1.016667) ~ 2 x (Y(2) - Y(3))

Force on body 2 from spring-damper pair attached to right side of body 3.

F23BAR = =-20000 x (Y(9) ~ Y(10) + 0.98333) - 2 x (Y(2) - Y(3))
Force on body 2 from spring-damper pair attached to left side of body 3.
F24 = =76.8 x (Y(9) - Y(11) + 1.91575) - (0.0217 x SQRT(2 x EM(5) x 76.8)) x (Y(2) - Y(4))
Force on body 2 from spring-damper pair between bodies 2 and 4.
F27 = =20000 x (Y(9) - Y(14) + 5.16667) - 36 x (Y(2) - y(7))
Force on body 2 from spring-damper pair attached to right side of body 7.
F45 = =76.8 x (Y{11l) - Y(12) + 0.91575) - (0.0217 x SQRT(2 x EM(5) x 76.8)) x (Y(4) - Y(5))
Force on body 4 from spring-damper pair between bodies 4 and 5.
F56 = -76.8 x (Y(12) - Y(13) + 0.91575) - (0.0217 x SQRT(2 x EM(5) x 76.8)) x (Y(5) - Y(6))
Force on body 5 from spring-damper pair between bodies 5 and 6.
F21BAR = -F12BAR
F21BB = -F12BB
F32 = -F23
F32BAR = =F23BAR
42 -F24
-F45
-F16
-F56
-F17
-F27
(Note that in F23 and F23BAR we use a damper constant of 2 instead of 60 used by
Ehle. Also Ehle uses, instead of the above F23BAR,

F23BAR = 20000 x (Y(9) - Y(10) - 0,98333) + 60 x (¥Y(2) - ¥(3)).)




APPENDIX C

DEFINITIONS OF LOGICAL GROUPS AND LOGICAL STEP FUNCTIONS

IN EQUATIONS OF MOTION

The logical groups ELG(I) that appear in equations (3.1) are expressed in terms
of logical step functions EL(I) and are interpreted in terms of physical events as
follows:

ELG (1) = EL(1) x EL{(4) x (1 - EL(15))
Mass of body 1 is decreased by EM(9) + EM(10).
ELG(2) = EL(2)
Mass of body 1 is decreased by EM(10).
ELG(3) = EL(3) x ELG(l)
Mass of body 1 is increased by EM(8) + EM(9) + EM(10).
ELG(4) = EL(19) x EL(20)

Mass of body 1 is first decreased and then increased by EM(8) + EM(9).

ELG(5) = ELG(2)

ELG(6) EL(7) x EL(8) = EL(9) x EL(10) + EL(11) x EL(12) - EL(13) x EL(14)

Cam force between bodies 2 and 8 is active.
ELG(7) = 1 - ELG(1)
Left spring-damper on body 7 is pushing body 1 to the left.
ELG(8) = EL(18)
Left spring-damper on body 2 is in contact with body 1.
ELG(9) = EL(19)
Mass of body 2 is increased by EM(8) at end of unlocking and is decreased by
EM(8) at start of locking.
ELG(10) = EL(20) x (EL{19) - EL(21))
Mass of body 2 is first increased by EM(9) and is later decreased by EM{9).
ELG(11) = ELG(1)

Mass of body 2 is increased by EM(9) + EM(10).

31~
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ELG(12) = ELG(6)

ELG(13) = EL(22)

Right spring-damper on body 3 is in contact with body 2.

ELG(14) = EL(23)

Left spring-damper on body 3 is in contact with body 2.

ELG(15) = EL(24) x ELG(7)

Right spring-damper on body 7 is in contact with body 2.

EIG(16) = EL(15)

Right spring-damper on body 2 is in contact with body 1.

The logical step-functions that form the logical groups, their arguments, and

their physical event associations are given below. Note that

AY(D) - ¥(I) = (D - Y@ - (m -y |, -

EL{(1l) = B(Y(9) - Y(8) - 0.7292)

EM(9) + EM(10) when A(Y(8) - Y(9)) = 3.25".

Mass of body 1 is decreased by

EL(2) = H(Y(14) - ¥Y(9) - 5.16667)

Mass of body 1 is decreased by EM(10) when impulsive forces Fl and F2 are

activated where A{Y(14) - Y(9)) = 2",

EL(3) = H(Y(9) - Y(8) - 0.91667)

Body 8 contacts body 1 for start of locking when A(Y(8) - Y(9)) = 1",

S st e s st

EL(4) = H(Y(2) - Y(1))

Body 8 contacts body 1 for start of locking when Y(2) - Y(1) > 0.

EL(7) = EL(3)

EL(8) = EL(4)

EL(9) = H(Y(9) - Y(8) - 0.99167)

Locking stops when A(Y(8) - Y(9)) = 0.1":

BL(10) = H(Y{2) ~ Y(1)) = EL(8)

Locking stops when Y(2) - ¥Y(1) > 0.




EL(11) = H(Y(8) - Y(9) + 0.99167) = 1 - EL(9)}
Unlocking begins when A(Y(8) ~ Y(9)) = 0.1".

EL(12) = H(Y(1l) - ¥(2)) = 1 - EL(8)

Unlocking begins when Y(2) - Y(1) < O.
EL(13) = H(Y(8) - Y(9) + 0.91667) = 1 - EL(3)
Unlocking ends when A(Y(8) - ¥(9)) = 1", %
EL(14) = H(Y(1l) - Y(2)) = EL(12)

Unlocking ends when Y(2) - Y(l) < O.

EL(15) = H(Y(9) - Y¥(8) - 0.99899)

Right spring on body 2 is in contact with body 1 when A(Y(8) ~ Y(9)) > O.
EL(18) = H(Y(8) - Y(9) + 0.66667)

Left spring on body 2 begins contact with body 1 when A(Y(8) - Y(9)) = 4".
EL(19) = H(Y(8) - Y(9) + 0.91667) = EL(13)

Mass of body 2 is increased by EM(8) + EM(9) + EM(10) when A(Y(8) - Y(9)) =
EL(20) = H(Y(1) - Y(2))

Body 9 remains attached to body 1 until Y(2) - Y(1) < O.
EL(21) = H(Y(8) -~ Y(9) + 0.79167)

Body 8 is decreased by EM(9) when A(Y(9) - Y(8)) = 2.5".
EL(22) = H(Y(10) - Y(9) - 1.01667)

Right spring-damper on body 3 contacts body 2 when A(Y(9) - Y(10)) = 0.2".
EL(23) = H(Y(9) -~ Y(10) + 0.98333)

Left spring~damper on body 3 contacts hody 2 when A4(Y(9) - Y(10)) = 0.2".
EL(24) = H(Y(14) ~ Y(9) - 5.16667) = EL(2)

Right spring-damper on body 7 contacts body 2 when A(Y(14) - ¥(9)) = 2".




APPENDIX D e -
COMPUTER PROGRAM FOR THE CALCULATION OF THE TEN~MASS MECHANICAL SYSTEM

€8 PRI AY FNP YeE NYMNAMIC ANALYSIS NF aN INTERMITTENY MOTION MPCHANISM
r (1) 1Y '8 A TErevASS SYSTFEM

¢ (2) TWF FRRER OF YWF SFOUENCE OF EVFNTS 18 NOT_KNOWN A PRIORY
¢

r

: Y PLICIY fnuURIE PRECISINN(AeH,0=7)
; INTERER EL,FLC :
i Prupss Nt yol14),ELL24) ,ELG(16),EM(10),E4B(10),0LDEMB(10) '
Chnevpn B LB 6,KEL2,EM,EMR ‘
¢ 1'PLT rava
¢ YESSFE V(T .
NAYA FY“/n _1928D0,0,01R2N0,0,0069600,3«0,0013A3D0,0,00212100,
R0 _NIUATTINA, e, 000403700/ ]
c THITTAL VELNCITIES (YOCI),T21,7) AND INITIAL OISPLACEMENTS o
¢ (vN (1), 187,148)s o _ I
T T DatA y8/Tan oph,1,000,2,000,%,000,4,000,5,000,6,000,7,000/
r T<TTTAl RELATIVE VELNCITIES AND RELATIVE DISPLACEMENTS OF INTEREST: ,
NATA DX2Y),NXIX2,DATX2,NVIVE,DX6XE,X1M1/640,000/ !
€ INTTTAL VALUES FOR LOGICAL FUNCTION GROUPS ELG(TY :
DATA FIG /620,1,R00,1/
r TNTPYAL VALIF FrR MFL2, A COUNTER TO COUNT THF NUMBER OF TIMES
TTE T ELEPY SWYTERES ANy
DATA KEL2/0/
3 c Trtal TIME ALLOWED,TTL,AND TIME STEP FOR PRINTING OUTPUY,TSTEPy
: DaTA TYL,TSTEP/0,1000,0,000100/
¢ VALUES OF M, T0,TO0UT,EPS,IFRROR,MF FOR THE DRIVER SUBROUTINE DRIVE OF
r EPISNNF, THE 0,N.E, SOLVER USFD IN THIS PROGRAMg )
TURRTA R T0,TANT,EPS, JTERROR,MF/7{4,240,000,1,008,3,107

[
£ PRIMT WEANTNG ANE NUTPUT RESULTYS AT INITIAL TVIME
; ~ (6,701) 10, DX s OX * ’ . .
: 201 FOAEAAT(LIH] 19X, T, 10%,'10(x2eX]=])?,a%,'100(X3eX2al)"',S5%,'40(XTeX B
#2m8) SN, 10,1 {VTmV]) ', 06X, '10(X6=X125),6X,*10(X1w8)",//15%,D10,83, P
“hfTn,5) P
C CNMPUTF “ASS NF RODY T, EMA(T), AY INITIAL TIME g
EvAE1ISEM(1)420,0D00CFM(9)+EM(10)) i3
Bn 11 1z2,7 i3
EvR(T)SEM(]) .
11 CnrTINMDE i3
TeTSTORF V8§ NF RONTES 1 AND 2, AND RFSEY THE MASY CHANGE T i
r INDIC2TCR, MALTER, TO ZERDN ;
i nn 12 11,2 P
PIPEMARCTYSEMR(T) i 3
12 CANTYINMNIUE
Mai TFRe0 i ]
r RESEY TADEX and Wo FAR SUBROUTINE DRIVE
I*rEYm
H«.j.m}.m
F I~ ASF M3 ] '
3 30 TNUTRTNTHTSTEP
; IFCTANT LB, TTL) GO 7O 13 e
TwotfECH,P0) T T -
P02 BrDMAT(//Y TINTAL TIME ALLOWFD EXCEEDS!,//)
ST~p

PO

;o PBIS Pa o 1 055T QUALITY PRAGSIGARTE
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A ELEL Y R ] Y
NF THE FOe HY/RTgk (Y,T)s ARGUMENTS OF DRIVE AREg
e THE NHMEERQ OF F3LIATYANS o
Tre Tub INTTTAL VALTUE OF T,ANA IS USED FOR INPUY ONLY ON YHE FIRYY
caLt, NN NUTPUT, TO 1S THE OUTPUY VALUE OF T
=ne THE STEP STZF W, KO IS USED ON INPUY FOR TME STFP SIZ2E YO BE

TYYFIPYEIT FOR YRE FIRSY STEP, UN YHE FIRSY CALL
Yhe A VECINR nF {ENGTH M FOR THE DEPENDENT VARIABLE VY
T5%e THE NEYY NUTPUY VALUE OF T e
FSe YWF [(ACAL FRAOR YOUEWANCY PARAMETER
1FRINFe THE FRQNR CONTROL INNICATOR
“fe THE METHON FLAG

M NAAYAD Y

—FYT"Fv= 1% TNYEGER FUIG USED FOR YNPUY AND DUYPUY
13 relL PRIVE(N,TN,H0,Y0,TNUT,EPS, IERROR,MF, INDEX)
c EX!T 1F ERRNR

CIFCTONEXER,NY GO YOO J4 T T
ADTTF(6,203) INDEX
203 FNeMAT(//' ERANR RETURN WITH INDEXZ!,13//)

adal
C SWITCH tnet OR 'OFF! OF LOGICAL FUNCTIONS EL(I) ACCORDING YO CRITERIA
14 PX213YN{9)eYON(R)
T DV EVO YR VAT T
¥322Y0(10)eY0(9)
NY722Y0(14)emy((9)

T 15 1=Y,20
FltT)=9
15 COM T INUE I
T YRR 2Y S0, 729200, GE,0,000) ECTIYRY
TF(XT72=S,16667N0,LT,0,0D0) GO YO 16
£l (2121

KFTPERFL 2]
1A TF(NX21=0,91667D0,GE,0,000) EL(3)a1
1F 6NV21,GEL0,0D0) ELC4)aY
FUCTVEFLTYT
ELIRYSEL (4)
1F(NX21=0,99147D0,GF,0,0D0) EL(9)s1

FELTINYEFT UR)
ELC11)=i=F{ (9)
ELCI?)z1eE( (R)

T URIOURYRYSEC Y
FLI1a)ZEL (12)
IF(NY21=0,99R99D0,GE,0,000) EL(1S5)s{

FLOIOISEL (1Y)
TF(enNVv2l1,GE,0,000) EL(20)m1
‘YF(BHY?T?N‘

IFIDX32a1 ,N166TD0O, GE o ono) EL(22)8)
rrt-nxs?oo 9R333D00, GE. «0D0) EL(23)m1

FlfIU)lfl(Z)
€ THECK END OF A CYCLE OF MOTION OF THE MECHANISN

IFCELCISY NEL1,.0R, FLG(I) NE,1) GO T0 1Y

f COMPIITE AXD ﬂnYPUY‘wFSUETF
NY2X18(Y0(9)ey0(A)a] 0D0)*10,0D0
NYIX2=(YO(10)aY0 ()] ,0D00)*100,000
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NYIX28(YN(14)aY0(Q)=S5,0ND)e10,0R0
DVIVIE(YO(TY=v0(1))20,1D0
OYeY12(Y0(13)nv0(B8)=5,000)210,000
X1M12(Y2(8)e1 ,0D0)21N,ND0
WRITF(6,204) T0,Du2X1,DX3¥2,0XTX2,NPVIVE,DX6X],X1M]
208 FNEMATEY #FND OF A CYCLE®',N8,3,6D16,5)
STNp
C COMPUTE LOGICAL FUNCTION GROUPS ELG(I])
17 ELGC1)SFL CYIRFLEUYIR(1mELC1S))
EIGe)=FL (3)*FLG(Y)
ELG(O)SFL(19)«FL(20)
ELG(S)BELG(2)
FLG(OISELC?)wr L (B)EL(O)oFL LINYSEL (11)2ELCI12Y0EL(13)0FEL (1)
ELG(T)S1=tLG(Y)
ELG(RYZEL(1R)
FLG(9)SEL(19)
FLG(I0)REL(2D0)(FL(19)=EL(21))
ELG(I1)BFLG ()
ELG(12)2FL:(6)
FLG(13)=EL (22)
FLA(IA)RFL (23) .
ELG(1SIZFL (24)*ELG(T)
FLGC(16)ZEL(IS)
¢ COMPUTE TME “ASS NF BODIFS § AND 2
“TFR(IISEM(1I*20 000N (FM(IIFEM(TOIISELGCIIR{EM(O)#F (IO Vel 1,000
t-ELG(?))tFM(?)-FLGIZ)QF“(10)OFLG(S)O(FH(G)OF“(Q)OEM(10))-ELG(U"
«{EM(RISEM(9)) o
EVR(2)SFM(IISELG (I *EM(BIGELG IO *EM(9)IaTFLGC11) B L GEY))ntFM(Q)
eefFr(10))
€ SPECTAL TREATYMENT FOR THE IMPULSIVE FORCE FGAS 3 IF KEL2m) COMPUTE
C NEW INTTIAL VALUFS YHAROUGH JUMP CONDITYONS AND LOCK ON ELGC2Yy
C OTHFRWTSE, CONTINUE COMPUTATION
IF(KEL2,NE, 1) GO TO SO -
Yo (1)Y= (OLPEMB(IY®YO(1)=1,2D00) 7EFB(T)
YO(2)S(NLDEMB(2)2YN(2)=0 ,9D0*] ,2D0)/EMR(2)

ELG(2)8}Y —
MALTERS]
i 60 TO 7v
i € CHECK ~ASS CHANGE OF BODTES 1 AND 23 IF YES, COMPUTE MNEW INITTAL
ALl NRDIIGH ™ N ] , T

S0 D0 20 I=i,?
1F(DABS(EMB(I)=OLOEMR(T)) LE,1,00=15) GO TO 20
sy
YOCI)SOLNEMBR(T)aYO(2)/EMR(T)
20 CONTINUE
¢ COMPU AN utPUY UL .
70 OX2X18(Y3(Q)=v0(B8)el, ON0)NI0,0ON0 -
DXIA28(Y0(10)aY0(9)=] 0D0)*100,000
[] - 5, *{0, 000
DVIVIS(YO(7)ey0(1))20,100
nxoxt-rvo¢|3)-vo(e)-s 000)*10,000
X{mis(val *
TE(MALTER, !D 1) GO Tn 60
N!!TEtO.ZOS) TO,DXXY,0X3IX2,DxTX2,0VIVL,OX6X],X{M]

=36~

B




.

2nE FORMAY(ISY,P10,3,6D16,5)

G T 30
oY WRTITE(h,2046) TO,NDX2XY, Dl‘XZ,Dl7X? DV7IV],DX6X1,XiM]

296 FNAVAT(T «Mag§ CFANGE T,010,3,6016,%)

anoTIN 40
Enp

-~

SURRANTINE NIFFIN IS CALLED RY DRIVF TO COMPUTE YDOTsF(Y,T) OF LENGTH
N FNR GIVEN VALUES NF T AND v OF LENGTH N

SHARAITTIRE RIEFON(N, Y, Y, VOOTY -~ -~
TSP [CIT DOUKLE PRECISTINN(AeH,0e?)
IVTEGER FLLFLG

NYRENS TN YN, YOT(N)
NTMENSTOM F1a)ELCR4),ELGC16),FM(10),E“R(10),0LDEMR(10)
COMAN BL,FLG,KEL2,EM,FUR

CAMPUTE FOPCFS IN THE FIRSY Y EAUATIONS 0F MOTION

FMNLINTZe3G0,0n0a(Y(B)e] ,0N0)=9,53N0aY (1)
rnzann--xnooo'ono.(v(a)-vtq)oo 6666700)-0 tsoo-rvca)-vt?))

Fi2 . . g

F163076. ARNe (Y (A)=Y(13)45, 0843500 (0,021 7D0ADSART (2, 0008EMC5) 76,
.Ann))-tvfil-vlb))
FT,;;'g.nﬁo.(V(gy.y(Ta).5;500}5(0.qaoo‘ns@ﬂ?t?.ﬂOOtFM(?)tlS.ODO))'
(v (1)=Y(?))

‘233-200“0 poo.(V(Q)-V(lﬂ,Q!.0‘666700).2 00D0#(Y(2)=Y(3))

28 E 1) - -

FPuze76, ﬂ“"‘(v(°)-vt|l)0| 9157500) (o, O?IIDOtGSORY(Z 0DO*EFM(S)IeT6,

*%"0))0(V(?)-V(0\)

F272=20000, D0 (VYT9) =V {T1A)45,1566670N)e36,000e(Y(2)e¥ (7))
UN3eT6,AROR(Y(11)=Y(12)¢0,91575N0)=(0,0217D0O*DSORY(2,0ND00EM(S)eTb

* AR (Y (U)=Y(K))

FHeseTh, - . ®*l0,0 .
2 ARDYIYIR(Y(S)ev (b))

FP1RARSeF | 2RAR

F2IAAEeFTI2RR " — ~ ~ — 7 "7

FS?I.??}

F3P2RAREeF2IAAR

FU7¥=¥ 70
FS4zeFuUS
FhizmF1p

R T T T i ] e

FlizeF17
Fr22=F27
' o »
FO1)R(F164FMOUNTOELG(T)IWF174ELG(R)*F12BARMELG(16)2F12RB)/EMALY)
F(?)-(FZaoFLGc!!)-FZ!oclG(ln).FESRARQELG(18)-F27otLG(G)Q?Z!BAROELG
AITAYRFZYRRY/EMRTZY -
F(IIS(FLG(13)aF32¢ELG(14)«FI2RAR) /EMB(Y)
F(a)s(Fu2+FuS)/EMA(Y)

YISTUTFSTFFSHY7ENNTS) e
F(AYm(FOSeF6!)/ENRLE)
FUTIR(ELGIT)FTI4ELG15)aFT2)/EMB(T)

€ SPFUTAT TREXTWFNY FON FPCA¥™ ,YHE CA™ FORCE

IFLELG(6) ,EQ,D) GO 10 30
Pi1s3,. 14159265300
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FOS OCar, 07800 T R
ClsPl/8PSLEC

AXIX28YIR)aY(Q)eN Q9LATND

ELP80 ,SNNaCIanSIN(CleNX1X2)
FLPPRN,SD0aC 1 ef1oNCOS(CLaDXYIX2)
GAM{ ("Cu(,33927Nn0

ENPTRIN SPeTeFLG(1In1,0NaT
ARGAMLOCOGAM NCRENRT e | Pt P

ARaGAMLNCeGAM NCAENRTFLPeFLPPe(Y(P)mY(())ue2
AL1SEMR(1) 94

Al P2s=a

A2lamid

PRI

[

AQ2uF MR (2)+4 ' T
AIsK(1)eEMR (1) ¢R
B2uF (2)wEMR(2) =B
DaAli1aA22=0210A12
Fi1)m(A2?aRiwal2aB2) /D
F(2)s(A11aB2mpa212R])/D

] I6M § L]

30 DO 10 Is=i,?

FlleT)ay ()

50 TCONTINUE

FOUAYTONS OF MOYTON

—L . C STORE THE RIGHT SINES OF THE EGUATIONS OF MOTION IN VECTOR vhOT

DO 20 1s1,14

VOAYTTYsF(T) -

20 CONTINUE

¢
C _THIS DuMMy VERSIO
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] 1T, Y, PDO,NT)
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