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ABSTRACT

This paper deals with a simple computational approach to the analysis of

dynamical systems involving intermittent motion in which the velocities involved

can be discontinuous due to impulsive forces, impact, mass capture, and mass

release. The sequence of these events may not be known ahead of time, and may

in fact be one of the things we wish the computer to determine.

The dynamical equations are formulated using a logical function method due

to P. Ehle. The resulting system of ordinary differential equations with

discontinuous coefficients is integrated using a standard computer code in

regions where the coefficients are continuous. When discontinuities occur,

jump conditions across the discontinuity are used to express the new velocities

in terms of the old, and the ordinary differential equation solver is simply

restarted with new initial conditions.

To illustrate the simplicity of the approach, the method is applied to a

dynamical system of ten masses considered by Ehle. The computer code and

numerical results are included.

AMS (MOS) Subject Classifications: 65L05, 70.34, 70.65
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SIGNIFICANCE AND EXPLANATION

Apart from the work by Ed Haug and his students at the University of

Iowa, surprisingly few references seem to exist on the computer calculation

of complicated mechanical systems involving intermittent motion, particularly

when the sequence of events is not known beforehand. P. Ehle has formulated

such problems using a "logical function" approach involving Heaviside step

functions and their derivatives. He then smooths out the discontinuities

so that the resulting ordinary differential equations can be integrated

directly by a standard computer code. We avoid the somewhat arbitrary

choice of smoothing parameters, the calculation of the smoothing functions

in the transition regions, and the step-size adjustment through the transi-

tion regions, by dealing with the discontinuities directly by using jump

conditions across the discontinuities. A computer code is included for an

example considered by Ehle, to illustrate the simplicity of the method.
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COMPUTER CALCULATION OF MECHANISMS INVOLVING TNTERMITTENT MOTVYW%.

B. Noble and H. S. Hung

1. Introduction. 4

There seem to be rather few published articles dealing with computational ret:,.o-.
* I

for the analysis of dynamical systems involving intermittent motion in which the

velocities involved can be discontinuous due to impulsive forces, impa-r, mass caltur,

and mass release. Bickford i] uses analytic and graphical methods to design such

mechanisms, but he does not use computer simulation. The book by Levy and Wilkinson [71

deals with the computer analysis of dynamical systems, including situations in which

masses come into contact with elastic 'stops'.

During the last few years extensive work has been carried out by Professor Ed Haug

and his students at the University of Iowa in connection with the computer calculation

of complicated mechanical systems with intermittent motion. In #-he earlier work

(see, for instance, (4], [5] and [61) it is assumed that the order of the sequence of

events is known a priori. In a complex mechanism, the sequence of events may be

highly design dependent, and it may be one of the things that we wish the computer

program to discover. P. Ehle (21 has introduced a "logical function" method consiLtinki

of two distinct steps to deal with this latter type of situation:

Step 1. The discontinuities are represented in the equations of motion b%

Heaviside step functions and their derivatives. The arguments of these logical fun,--

tions can involve space, velocity, or time, whichever is physically appropriate. Th.,

motion is represented by one single set of equations over the entire interval of time

under consideration.

Step 2. The discontinuities are smoothed out by an ingeniou but somewhat

arbitrary procedure. The resulting system of ordinary differential equations involves

continuous coefficients so that it can be integrated directly by standard computer

codes.

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024.
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The present paper adopts the logical function approach in Step 1, but, instead

of Step 2, deals directly with the resulting system of ordinary differential equations

involving discontinuous functions. In regions where the coefficients are smooth, the

equations are integrated using a standard computer software code for solving systems

of ordinary differential equations. When discontinuities occur, the jump conditions

across the discontinuities are used to express the new velocities in terms of the old,

and the ordinary differential equation solver is simply started with new initial condi-

tions. The method is easy to implement and avoids the somewhat arbitrary choice of

smoothing parameters, the calculation of the smoothing functions in the transition

regions, and the step-size adjustment through the transition regions that are required

in Ehle's approach.

A simple example is discussed in Section 2 to illustrate the essential points

of our approach.

In Section 3 we apply our method to the complicated example considered by Ehle

in Chapter 4 of his thesis 12). The results confirm that our method is easily imple-

mented. In order to facilitate a comparison with Ehle's treatment, we use his nota-

tion, and the computer runs are carried out using his numerical parameters, with minor

changes noted later. In order to make the present paper self-contained (and also to

save the reader the labor of extracting the relevant information from Ehle's thesis),

we define in complete detail in Appendices B and C the symbols used in Section 3 below.

Our computer code is given in Appendix D.

Most of Ehle's thesis is devoted to sensitivity analysis for the complicated

mechanism in Section 3 below. A sensitivity analysis using the method in this paper

would be the next natural step in the present work.
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2. A Simple Example.

Consider the idealized situation in Figure 1 which will illustrate most of the

points required for the analysis of the complicated mechanism in Section 3. Motion

is in the x-direction only. The mass A, position x = x(t), is attached to a massless

spring with spring constant kA. The unstressed length of the spring is x0 . When

the mass A reaches position x - x I  (for the first time only), an impulsive force

of magnitude F acts on it. The mass B is initially at rest. When mass A reaches

mass B (at x = x2), the two masses lock together, and move as one. The equations

of motion are as follows.

mAx = k A(x - x0 ) + F5(t - ti), 0 < x < x2  (2.1)

where t denotes the (unknown) instant when mass A reaches x1 .

1

II I
I II

k k

Figure 1. A Simple System
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The effect of the impulsive force F6(t -t is to produce a jump F/mA in

velocity at t - t1, the position x(t) changing continuously in t at t = t1.

This can be seen by integrating (2.1) between tI - A and t 1 + A. then lettinq

A 0, which gives

'Ac(tl + 0) - m ktl - 0) - F (2.2)

where we use an obvious notation. A double integration shows similarly that

x(t I + 0) - x(t I - 0) (2.3)

For x2 < x < x3 ' we have

(MA + mB)x - kA(X -x) (2.4)

From conservation of momentum as the mass mA  reaches x = 2 and picks up mB, we

see that

YA( -  ) - (mA + mB)'(t 2 + 0) , (2.5)

and again the displacement is continuous, x(t 2 - 0) = x(t + 0).
2 2

For x> x V we have

( +a +m)= kA(x - x 0 ) + k(x - X3 ) • (2.6)

Subsequently (2.4) holds whenever x < x 3  and (2.6) whenever x > x 3 .

Following Ehle, we use the Heaviside step-function to write the above three

equations as one single equation. We define, for any u,

0 , u < 0,
H(u)

We also require the following step-function. Suppose that u is some time-dependent

quantity such that u < 0 for 0 < t < T and that u > 0 for the first time at

t - T + (C arbitrarily small). We then define

O,' t < T,

HI1(u) 1: t T ,

i.e. for t Io T, H (u) is always 1 regardless of the size of u.

-4-



In terms of these logical step-functions we can rewrite equations (2.1), (2.4),

(2.6) as:

dt A (x - x 2 )mJi kA(x-x0) + 
P6(t-t) + H(x-x )k(x-x (2.7!

Here t1  is the time when x = x1 for the first time.

As discussed in connection with (2.2), (2.3), the effect of the impulsive form

F6(t - t I) is to produce a discontinuity in velocity at t = t . The effect of the

term involving H (x - x 2 ) can be seen by integrating (2.7) between t = t2 - A and

t - t2 + 4, where the mass is at x = x2 at time t = t2, then letting A .0.

This gives precisely (2.5). The right-hand side of (2.7) is a continuous function of

x, t as x passes through x3.

Our procedure for solving (2.7) numerically is to use a standard computer code

for numerical integration of a system of ordinary differential equations in time

intervals in which the mass is not changing and the impulsive force at t = tI  is not

acting.

The numerical integration is started with initial conditions x(0) = 0 and

i(O) = 0. We check at each step whether x > x1 . Whenever this condition is satisfied

for the first time, we take the impulsive force F into account by restartinq the

numerical integration with new initial conditions given by (2.2), (2.3). After this

point we need not check further whether x > xI. (The impulsive force occurs only once.)

To take into account the mass change at x - x2 , we similarly check at each step

of the numerical integration whether x > x2 . When this occurs for the first time,

we restart the numerical integration with new initial conditions given by (2.5).

After this point, masses A and B are locked, Hl(X - x2 ) is always 1, and it is

no longer necessary to check whether x > x2 •

Finally, the term H(x - x3 }k(x - x3) is ., continuous function of x and does

not require restarting the program with new initial conditions. The term k(x - x3 )

is simply added on the right of the equation when x > x3 . The additional term is a

continuous function of x which is handled directly by the program, i.e., it is not

-5-



necessary to restart the differential equation integration as for the other two

discontinuities.

In the above example we have assumed that x > x2 , i.e., the impulsive force

acts before mass B is captured by mass A. If the computer program is arranged so

that the conditions "x > x ?", "x > x 2 7" are both checked at each time step starting

at t - 0, and the program is restarted with appropriate initial conditions depending

on which condition is satisfied first, then the program will work whether xI < x

or x, > x 2 . This illustrates one of the main points of the method, that it is not

necessary to know the sequence of events ahead of time.

Note that the above example discussed the treatment of only some of the possible

discontinuous situations due to impulsive forces, impact, mass capture and mass

release. For the standard treatment of such discontinuities one could refer to [8],

for instance.



3. Computer Calculation of A Complicated Mechanical System.

(a) Description of the mechanism. We shall compute by our method the motion of the

mechanism considered by Ehle in Chapter 4 of his thesis [2]. Schematic diagrams are

given in Figure 2 which refers to time t = 0. and Figure 3 which refers to a later

time. Masses 1 - 10 move parallel to the x-axis as indicated; in addition, mass 8

can rotate about an axis parallel to the x-direction, this rotation being controlled

by a pin C moving in a slot AB (a cam motion) as shown.

There are only seven equations of motion since at any one time there are only

seven independent moving bodies. Bodies 3,... ,7 are simply the masses m 3 ,... ,m7

in Figure 2. Masses 8, 9, 10 are attached to either mass 1 or mass 2 at any given

instant of time. We shall use the terminology 'body 1' ('body 2', respectively) to

refer to the appropriate combination of mi M8' '9' 10 (m2, m 8 , m9 , M10 , respec-

tively) moving as single bodies at a given instant of time. The exact distribution

of M8 , i 9, in0 between bodies I and 2 is controlled by the positions and velocities

of bodies 1 and 2 (see equations (3.1)). At time t - 0 body 2 has mass m2, and in

Ehle's notation, body 1 has mass m1 + 20(m + m ). In view of the subsequent
1 9 10

motion it is convenient to say that at time t - 0, body 1 consists of a mass M

to which m8 , M9 , M are attached, i.e., we introduce a new symbol M1 such that

the mass of body 1 at time t - 0 is M + m + m + M (i.e.,
1 a 9 10

M1 f MI + 19(m9 + M 10 8

The position of body i in the x-direction is measured by a co-ordinate x.

such that x. - i at t = 0. This co-ordinate system is chosen to ensure that no x.

is ever negative (see [2), p. 66 for more details). The velocity of body i is

denoted by :i"

Two types of spring-damper pairs are involved in the mechanical system under

consideration. Using Ehle's notation, let PIJ denote the force exerted by spring-

damper pair J on body I. In one type, the spring-damper pair is connected to

bodies I and J and FIJ is proportional to the extension or compression of the

-7-



C)C

4

ko 3:



~-0 0 -- 4

+Z

all

6.o
440

14

rTIw



spring plus a damper force proportional to the velocity difference between Lhe ends

(FMOUNT, F16, F17, F24, F45, F56). In the other type, the force is proportional to

the compression of the spring plus the damper force. When the distance between the

bodies is less than the static or free length of the spring, but when the separation

of the bodies exceeds the static length of the spring, the spring loses contact with

one of the bodies and FIJ = 0 (F12BAR, F12BB, F23, F23BAR, F27).

At time t = 0, body 2 is in its extreme right position (see Figure 2); also

F16, F56, F45, F24, F12BB and F17 are in compression, and the corresponding forces

balance. The pin P is pulled to release body 7; the spring force F27 is inactive

since the spring-damper pair attached to the right side of body 7 is some distance

from body 2. The spring force F17 is active; the spring-damper pair between bodies 1

and 7 pushes body 1 to the left and body 7 to the right. Since the mass of body 7 is

much less than the mass of body I, the velocity of body 7 is much greater than that

of body 1. Bodies 2, 4, 5, 6 also move due to spring forces. Body 3 is centered in

its slot in body 2, and does not move initially.

When the stiff spring on the right side of body 7 strikes body 2, the impulsive

forces FI , F2  (as shown in Figure 3) act on bodies 1, 2 respectively. At the same

time, the mass of body 1 is decreased by ml0.

From this point onwards we shall not attempt to des:ribe the motion in words,

because it is in fact clearer and simpler to quote the equations used by Ehle in [2]

to describe the motion (see (3.1) below).

The objective here is to predict the time histories of the displacements,

velocities, and forces associated with each independent rigid body that occurs in one

cycle of motion of the mechanism, the end of the cycle being determined when the

right spring on mass 2 strikes mass 1.

(b) Equations of motion for the mechanism. We simply quote the following first order

differential equations of motion used by Ehle in his thesis [2]:

-10-



df [EMB(I) x Y(I)H = NF(I)
, I 1,. .,7(3.1)

d Y(I + 7) = Y(I)

with initial conditions:

Y(I) = 0 * =1. 7

Y(I + 7) = I

In equations (3.1),

(1) Y(I), Y(I + 7) are the velocity and position respectively of body I.

Y(I) ,..(I)

SY( + 7) = x(I)

(2) EMB(I) is the mass of body I:

EMB(1) EM() + 20 x (EM(9) + EM(1O)) - ELG(l) x (EM(9) + EM(1O))

+ (I - ELG(7)) x EM(7) - ELG(2) x EMO() + ELG(3)

* %EM(8) + EM(9) + EM(10)) - ELG(4) x (EM(8) + EM(9))

EMB(2) = EM(2) + ELG(9) x EM(8) + ELG(10) x EM(9)

+ (ELG(II) -ELG(3)) x (EM(9) + E4(l0))

EMB(I) EM(I) for I = 3,...,7 ,

where EM(I) is simply the mass I with numerical values as follows:

EM(1) = .1925, EM(2) = .0182, EM(3) - .00696, EM(4) - EM(5) - EM(6) = .001383,

EM(7) = .002121, EM(8) = .004037, EM(9) - EM(10) = .0004037. (There is a misprint

in Ehle's thesis, where EM(2) is given as 0.182.) (Note that we use EMNI) and

EMB(I) to distinguish mass I and mass of body I; Ehle use only EMCI) in his thesis

to denote mass I. Otherwise we use Ehle's notation.)

(3) NF(I) is the net force on body I:

-11-



NF(1) F16 + FMOUNT + ELG(7) x F17 + ELG(8) F12BAR

+ ELG(16) x F12BB ELG(5) x FGAS + ELG((,) FC&M

NF(2) F24 + ELG(13) x F23 + ELG(14) x F23BAR + ELG(15) F27

+ ELG(8) X F21BAR + ELG(16) x F21BB

- ELG(5) x (0.9 x FGAS) - ELG(12) FCAM

NF(3) = ELG(13) x F32 + ELG(14) x F32BAR

NF(4) = F42 + F45

NF(5) = F54 + F56

NF(6) - F65 + F61

NF(7) = ELG(7) x F71 + ELG(15) x F72

where

FGAS is the impulsive force on body 1, shown as F in Figure 3,

FCAM is the axial cam force acting between bodies 1 and 2,

FIJ is the force on body I due to the spring-damper pair attached to body J

(similarly for FMOUNT, Fl2BAR, F12BB and F23BAR).

All these forces are described and explained in detail in Appendix B. Note that

FGAS and FCAM are not taken into account in exactly the way in which they appear in

NF(l) and NF(2) of equations (3.1); they are dealt with by the special but simple

method discussed below and as shown in the program in Appendix D.

(4) The ELG(I) appearing in the expressions for EMB(I) and NF(I) are what Ehle

called "logical function groups" which are used to switch masses and forces in and out;

they are algebraic combinations of Heaviside step-functions ELI). The definitions

of ELG(I) and ELI) are tabulated and described in detail in Appendix C.

Note that the fourteen equations in (3.1) are for bodies 1-7 only; bodies S, q

and 10 do not have separate equations because they do not have separate degrees of

freedom - their positions, as mentioned by Ehle, are determined by the positions of

bodies 1 and 2. Note also that in Ehle's thesis [21 two equations, in addition to

those in (3.1), involving logical step functions and their derivatives, must be

-12-



introduced to properly account for two locked-on logical functions of time. For

details see [2], p. 74. We avoid this by the use of IF-statements in the comluter

program.

(c) Numerical solution of the equations of motion. For the numerical solution vf ',1-

system of equations of motion (3.1), the EPISODE package [3), a variable ste[ and

variable order ODE solver, is used. This algorithm will select automatically the

appropriate step-size to meet a given criterion. Because of the requirement of thi-

algorithm, the system of equations (3.1) is put into the form:

- = F(I), I = 1,...,14 (3.2)

dt

where

FIM = NF(I)/EMB(I)

F(I + 7) = Y(I)

These equations will be processed as they stand when FCAM is not active, i.e.,

when ELG(6) = ELG(12) = 0. Our method of dealing with FCAM is somewhat different

from that used by Ehle. FCAM has the form (see Appendix B, where the values of A, B

are given):

FCAM = A [Y(2) - Y(1)] + B

so that when FCAM is active, i.e., when ELG(6) = ELG(12) = 1, the first two equa-

tions in (3.2) have to be solved simultaneously for dY(1)/dt and dY(2)/dt, leading to:

{ A Y(1) = F(1)
dt

d (.SY(2) = F(2)

where

F(1) = (A22 x BI - A12 x B2)/D

F(2) - (All x B2 - A21 x Bl)/D

with

D - All x A22 - A21 x A12

All - DIB(l) + A, A12 -A, B1 = NF(1) + B

A21 - -A, A22 - EMB(2) + A, B2 = NF(2) - B

-13-



Equations (3.3) replace the first two equations of (3.2) when FCAM is active.

Our procedure is to use EPISODE to solve (3.2) in time intervals in which the

mass is not changing, and the impulsive forces (F1 . FGAS, and F2 - 0.9 x FGAS)

are not acting. But whenever a mass changes or the impulsive forces occur, the jump

conditions across the discontinuities (deduced as for the simple example in Section 2)

are used to express the new velocities in terms of the old and the ODE solver is

simply restarted with new initial conditions.

We integrate (3.2) for one cycle of motion with the EPISODE options:

(1) The variable step, variable order implicit Adams method in combination with

the functional (fixed point) iteration method,

(2) Relative error control,

(3) Relative error of 1 in 10- 5 .

These are indicated by MF = 10, IERROR = 3 and EPS = 1.OD-5, respectively in the

program in Appendix D.

The essence of our numerical procedure can be found in the flow chart in Figure 4.

(Refinements like the impulsive and cam forces are easily added.) Note that we check

whether the masses change, and print out results, at steps of At in time, where At

is chosen by the programmer. During any one of these steps, the differential equation

solver automatically adjusts the step-size that it has to use to obtain the required

accuracy, and these step-sizes may be considerably less than At.

The entire computer program (apart from EPISODE) is given in Appendix D.

(d) Discussion of numerical results. Figures 5-10 below show the graphs presented by

Ehle in [21 for motion of the mechanism described above, together with the graphs

obtained by the method of this paper (dotted lines). We have used exactly the same

equations and constants as Ehle with one exception, namely the force terms F23 = -F32

and F23BAR = -F32BAR, as discussed in the next paragraph and in Appendix B.

With one exception, the results are in general agreement, including the sequence

of events and the chattering of the spring 27 with body 2. The exception is the motion

-14-
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of body 3, the springs attached to which are in intermittent contact with body 2.

The value 60 of the damping constant in F23 and F23BAR used by Ehle produced a

highly damped motion of body 3 in our program. Our results given in Figure 7 were

obtained using a damping constant of 2.

The sequence of events 15 shown in detail in Figure 11, which describes 32

intermittent contacts at times ti,... ,t32. These times are tabulated in Figure 12

below. The criteria involved at each of these times can be found in the definitions

of the corresponding logical groups which are described in detail in Appendix C.
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it.

0 0.0000 (Initial I imv)

1 0.012A,

2 0.0127

4 0.0128

4 0.0 1 10

[ 5 O. 0 !4o

6 0.015'6

0.0161

8 0.0173

9 0.0187

10 0.0203

11 0.0221

12 0.0227

13 0.0237

14 0.0262

15 0.0278

16 0.0308

17 0.031b

18 0.0326

19 0.0338

20 0.0344

21 0.0345

22 0.0353

23 0.0364

24 0.0365

25 0.0425

26 0.0429

27 0.0441

28 0.0515

29 0.0533

30 0.0583

31 0.0625

32 0.0629 (End of a cycle of motion)

Pigure 12. Times of the Loqical I. vnts
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4. Summary and Concluding Remarks.

A straightforward method has been presented tor thf dyn.imic riAIW1 M, i-if i,

involving intermittent motion.

I. By using the Heaviside step functions, complicated logic associ t.1 with ii -

tinuities in the equations of motion is incorporated systemat i ally into lh,.

problem formulation, following the methods introduced by Ehle, but difftr1i,1 r,"

them in detail.

2. Jump conditions are required to get. across the discontinuities but the-.e a,

easily implemented in the program.

3. No a priori knowledge of the order of logical events is required.

4. Our method is easy to program. The program itself is simple; most of th, F1r14tir:

is just computing the forces and switching Heaviside step functions 'on' o 'otf'.

5. The validity of the method has been demonstrated for a complicated and rai|. ,ti,

10-mass mechanical system, the solution involving 32 intermittent contacts

Figure 11).

6. Computational efficiency of the method is good. We integrate the system of elua-

tions of motion by using EPISODE (the variable step and variable order ()II: sclvet-

with 5-place accuracy and relative error control from t = 0 to t 0-040

which is one cycle of motion of the mechanism, the cpu time on a VNIVAC 1110

computer is 36 seconds. (Note that our version of EPISODE uses double |ioc-.,wi,.

Single precision should suffice, which would reduce the time required.)

7. Stability of the numerical solution does not seem to be a problem.

8. The point of the present paper is that we have adopted the loqical function

approach of Ehle for dealing with discontinuous motion, but we have dealt with

discontinuities directly via jump conditions, instead of smoothing out th,, dison-

tinuities as done by Ehle [2]. A table of comparison between V:hl's approac h

and ours is presented in Appendix A.
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APPENDIX A

TABLE OF COMPARISON BETWEEN EHLE'S APPROACH AND OUR APPROACH

Ehle's Approach Our Approach

I. Use Heaviside step and Dirac delta We follow Ehle in this respect, but write

functions systematically in the equations in such a way that we use only

formulation of equations of motion. Heaviside step functions (no Dirac delta

functions) except for the impulsive force.

2. Discontinuities are smoothed out by Discontinuities are dealt with directly
*

using "logical functions% (i.e., by using straightforward jump conditions.

smooth approximations to Heaviside

step functions and their derivatives).

3. Locked-on logical functions are Locked-on logical functions are dealt

dealt with via additional ordinary with via simple computer logic.

differential equations.

4. To put equations of motion into This does not occur in our method.

standard form required by the ODE

solver, Dirac delta functions would

appear.

5. To deal with the logical functions, Dealing with the Heaviside step functions

the transition zone width C is is straightforward -- we simply switch

chosen arbitrarily; extra time steps them 'on' or 'off' at each time step.

must be taken t. rough the transition -,

zone to calculate the logical func-

tions which involves additional

step-size adjustment.
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6. Not so efficient computationally. Efficient computationally.

7. Program seems complicated. Program simple (see Appendix D).

Note on Ehle's smoothed Heaviside function:

If u is the argument, the smooth representation EL used by Ehle in 12] for the

Heaviside step function in the equations of motion is:

(1U13 _ u3)
EL = H(u) =

u13 + [Lu-el - (u-E) 3

where e is the precise width of the transition zone. Note that the representation

EL is asymmetrical about u = e. Symmetry is desirable, and this is easily accoil]ish '

by multiplying the square bracket in the denominator of EL by a factor of 0.5.
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APPENDIX B

DEFINITIONS OF FORCE TERMS IN EQUATIoNS nF MOTION

The forces FGAS and FCAM presented in the equations of motion (3.1) arL defined

as follows:
*

FGAS = 1.2 x 6(t - t ), where t is the time at which the impulsive forces F,

and F2  shown in Figure 3 are initiated.

FCAM = A x - [Y(2) - Y(l)] + B, where
dt

A 
= GAMILOC

2 x ENRT x ELP
2

2 2
B = -GAMLOC xENRT x ELP x ELPP x (Y(2) - Y(l))

with

GAMLOC = 0.3927,

-7 -7
ENRT = 10.5 x 10 + ELG(l) x 10

ELP = Tr ) SIN( ff IY(8) - Y(9) + 0.99167])
2 EPSLOC EPSLOC

2

ELPP = - t ) COS( IT [Y(8) - Y(9) + 0.99167])
2 EPSLOC EPSLOC

EPSLOC = 0.075.

(For details see Appendix D in [2].)

We next tabulate the various spring and damper forces. The equation of motion

of a single mass is simply mx + cx + kx = f. The damping constants c for the

2mechanism considered are less than the critical damping value, i.e., c 4km.

FMOUNT = -300 x (Y(8) - 1) - 9.53 x Y(1)

Force from spring-damper pair acting between ground and left hand side of body I.

F12BAR = -10000 x (Y(8) - Y(9) + 0.66667) - 0.13 x (Y(l) - Y(2))

Force on body 1 from spring-damper pair attached to the left side of body 2.

F12BB = -20000 x (Y(8) - Y(9) + 0.99967648) - 25 x (Y(1) - Y(2))

Force on body 1 from spring-damper pair attached to the right side of body 2.

F16 = -76.8 x (Y(8) - Y(13) + 5.08425) - (0.0217 x SQRT(2 x EM(5) x 76.8)) x (Y() - Y(O )

Force on body I from spring-damper pair between bodies I and 6.
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F17 = -15 x (Y(8) - Y(14) + 6.5) - (0.98 x SQRT(2 x EM(7) x 15)) x (Y(1) - Y(7))

Force on body I from spring-damper pair between bodies 1 and 7.

F23 = -20000 x (Y(9) - Y(IO) + 1.016667) - 2 x (Y(2) - Y3))

Force on body 2 from spring-damper pair attached to right side of body 3.

F23BAR = -20000 x (Y(9) - Y(10) + 0.98333) - 2 x (Y(2) - Y(3))

Force on body 2 from spring-damper pair attached to left side of body 3.

F24 = -76.8 x (Y(9) - Y(11) + 1.91575) - (0.0217 x SQRT(2 x EM(5) x 76.8)) x (Y(2) - Y(4))

Force on body 2 from spring-damper pair between bodies 2 and 4.

F27 = -20000 x (Y(9) - Y(14) + 5.16667) - 36 x (Y(2) - y(7))

Force on body 2 from spring-damper pair attached to right side of body 7.

F45 = -76.8 x (Y(II) - Y(12) + 0.91575) - (0.0217 x SQRT(2 x EM(5) x 76.8)) x (Y(4) - Y(5))

Force on body 4 from spring-damper pair between bodies 4 and 5.

P56 = -76.8 x (Y(12) - Y(13) + 0.91575) - (0.0217 x SQRT(2 x EM(5) x 76.8)) x (Y(5) - Y(6))

Force on body 5 from spring-damper pair between bodies 5 and 6.

F21BAR = -Fl2BAR

F21BB -Fl2BB

r32 = -F23

F32BAR = -F23BAR

P42 = -F24

F54 = -F45

P61 = -F16

F65 = -F56

F71 = -F17

F72 = -F27

(Note that in F23 and F23BAR we use a damper constant of 2 instead of 60 used by

Ehle. Also Ehle uses, instead of the above F23BAR,

F23BAR - 20000 x (Y(9) - Y(10) - 0.98333) + 60 x (Y(2) - Y(3)).)
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APPENDIX C

DEFINITIONS OF LOGICAL GROUPS AND LOGICAL STEP FUNCTIONS

IN EQUATIONS OF NOTION

The logical groups ELG(I) that appear in equations (3.1) are expressed in terms

of logical step functions EL(I) and are interpreted in terms of physical events as

follows:

ELG(1) = EL(l) x EL(4) x (1 - EL(15))

Mass of body 1 is decreased by EM(9) + EM(UO).

ELG(2) = EL(2)

Mass of body I is decreased by EM(10).

ELG(3) = EL(3) x ELG(1)

Mass of body 1 is increased by EM(8) + EM(9) + EM(1O).

ELG(4) = EL(19) x EL(20)

Mass of body I is first decreased and then increased by EN(8) + EN(9).

ELG(5) = ELG(2)

ELG(6) = EL(7) x EL(8) - EL(9) x EL(10) + EL(ll) x EL(12) - EL(13) x EL(14)

Cam force between bodies 2 and 8 is active.

ELG(7) = 1 - ELG(1)

Left spring-damper on body 7 is pushing body 1 to the left.

ELG(8) = EL(18)

Left spring-damper on body 2 is in contact with body 1.

ELG(9) = EL(19)

Mass of body 2 is increased by EM(8) at end of unlocking and is decreased by

EM(8) at start of locking.

ELG(10) = EL(20) x (EL(19) - EL(21))

Mass of body 2 is first increased by EN(9) and is later decreased by BH(9).

ELG(1l) - ELG(1)

Mass of body 2 is increased by EM(9) + E(10).
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ELG(12) - ELG(6)

ELG(13) - EL(22)

Right spring-damper on body 3 is in contact with body 2.

ELG(14) = EL(23) I
Left spring-damper on body 3 is in contact with body 2.

ELG(15) = EL(24) x ELG(7)

Right spring-damper on body 7 is in contact with body 2.

ELG(16) - EL(15)

Right spring-damper on body 2 is in contact with body 1.

The logical step-functions that form the logical groups, their arguments, and

their physical event associations are given below. Note that

A(YUI) - Y(J)) (Y(I) - Y(J))It - (Y(I) - Y(J)

EL(I) = H(Y(9) - Y(8) - 0.7292)

Mass of body I is decreased by EM(9) + EM(10) when A(Y(8) - Y(9)) = 3.25".

EL(2) = H(Y(14) - Y(9) - 5.16667)

Mass of body 1 is decreased by EM(1O) when impulsive forces F1  and F2  are

activated where 6(Y(14) - Y(9)) - 2".

EL(3) - H(Y(9) - Y(8) - 0.91667)

Body 8 contacts body I for start of locking when A(Y(8) - Y(9)) = 1".

3L(4) - H(Y(2) - Y(l))

Body 8 contacts body 1 for start of locking when Y(2) - Y(l) > 0.

L(7) - EL(3)

L(S) - IL(4)

EL(9) - H(Y(9) - Y(8) - 0.99167)

Locking stops when A(Y(S) - Y(9)) - 0.1".

RL(lO) - H(Y(2) - Y(M)) - EL(S)

Locking stops %Men Y(2) - Y(l) 2 0.
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ZL(11) - H(Y(8) - Y(9) + 0.99167) 1 I - EL(9

Unlocking begins when A(Y(8) - Y(9)) = 0.1.

EL(12) - H(Y(1) - Y(2)) - 1 - EL()

Unlocking begins when Y(2) - Y(1) < 0.

EL(13) = H(Y(8) - Y(9) + 0.91667) = 1 - EL(3)

Unlocking ends when A(Y(B) - Y(9)) - 1".

EL(14) = H(Y(1) - Y(2)) - EL(12)

Unlocking ends when Y(2) - Y(1) < 0.

EL(15) = H(Y(9) - Y(B) - 0.99899)

Right spring on body 2 is in contact with body 1 when A(Y(8) - Y(9)) > 0.

EL(18) = H(Y(8) - Y(9) + 0.66667)

Left spring on body 2 begins contact with body 1 when A(Y(8) - Y(9)) = 4".

EL(19) = H(Y(8) - Y(9) + 0.91667) - EL(13)

Hass of body 2 is increased by UK(8) + E3(9) + EM(10) when A(Y(8) - Y(9)) = 1".

EL(20) = H(Y(l) - Y(2))

Body 9 remains attached to body 1 until Y(2) - Y(1) < 0.

EL(21) - H(Y(8) - Y(9) + 0.79167)

Body 8 is decreased by EM(9) when A(Y(9) - Y(8)) 2.5".

EL(22) - H(Y(10) - Y(9) - 1.01667)

Right spring-damper on body 3 contacts body 2 when A(Y(9) - Y(10)) - 0.2".

EL(23) - H(Y(9) - Y(10) + 0.98333)

Left spring-damper on body 3 contacts body 2 when A(Y(9) - Y(10)) 0.2".

EL(24) - H(Y(14) - Y(9) - 5.16667) - EL(2)

Right spring-damper on body 7 contacts body 2 when A(Y(14) - Y(9)) = 2".
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APPENDIX D_

COMPUTER PROGRAM FOR THE CALCULATION OF THE TEN-M4ASS MECHANICAL SYSTEM

------------------- r '' rip 1.4 flnvAjkC 6NALYSIS OF AN INTERMITTENT MOTION MECHANISM
r ( I I 1 T 4 A T F oi MA SS SYSTE m

r 7 a mr fliqE'Fw oF ,.IF SrooENCE OF EVFNTS IS NOT K(NOWN A__ kORI

7 'PLY1 I rlrlagl PQECTSIO'.(A.H#O-7)

r OsPqFF r>AA i

C T'ITTT41 VEtLOCrITIES CYO(I)pTalll) AND INITIAL OISPLACEMENT5

_DATA YA7*.rA10O,.ono,.56o 0130 000,bODO 06
C TYTAl. r-ELATIVE VELOnCITIES AND RELATIVE DISPLACEMENTS Of INTERESTS

fl&TA MX2W1.flW3Y2,DX?XZ2flV7V1.flx6x1.xIMI/6*O 000/
c 1 TTTAL vAL'JES FOR 01GICAL FUINCTTON GROUPS EL6CI)S

r YKTVT.'L V1ALi'F CrQ KFLZ. A COUNTER TO COUNT THE NUMBER OF TIMES
C Elt %WTS~TC -ES flNJ

OVVA 0(L2/fl/
r IrTAL TP'E 4LL0I'iEOTTL#AN0 TIME STEP FOR PRINTING OUTPUT@TSTFPI

DATA TTLTSTEp/'o.1OC0,0.OOO1Do/
r YAL'JfS nF P,Tfl,TOUT,EPSIFRROR.*'F FOR THE DRIVER SUBROUT14E DRIVE Of
f fPEPn"F, TWE O..SOLVER USFD IN THISPROGRAMs

C PPIPi? hFfArn1G £'~C OUTPUT RESULTS AT INITIAL TIME
ATMfE,71) Tfl.OX2XI ,pK3X2,DK7X2?,'V7V1,OK6X1.XiMI

C CnmkP')TF mASS nF RoDY To FmA(I)p AT INITIAL TIME

Dn l 11 Iz,7

rSO$F -A e 1j19TPETI ANM 2, AND RESET THE MASSCHNG
f INOIC5TCQ# mALTER, TO ?FPO

n1j r~mF(T)al~mFCIJ
12 rnmtyTi.I

I r r F Ya

F. YNCREASF TwE TIMF STEP FOR 4EXT OUJTPUT AND CHECK TOTAL TIME
3A TnlhjtTMTflJTSTfP

IF(TnltT.Lt.TTL) Gn TO 13

P'1 ~r~~T(#'TOTAL TIME ALLOwED EYCIEDS1.#J)

PASA: j~ SS

4D j .-- d- b-i -34 -- __-bo



r AL.1 1I.;l - 01ITTIiE flRTVE flF FPTSflDE TO 30LYF THE EGYATIONS Of MOlTION
r rF THE F,)P. -)Y/r1..4(Y T)f ARGUMENTS Or DmjVr AREe
r , . 1.4 %timsqa nF F,'LIATyflNS __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Tr.. 'iIF 1,41TAL, V41 iN IS SE FOR I4PUT ONLY ON THE FIRST-
C CALL. n% o'JTPII?, TO TS THE nUTPUT VALUE OF T
r T'4E STFP 8TZr H, NO IS USED ON INPUT FOR THE STEP SIZE TO SE

ATTFwPTfFORC' THE FIW315T 3TF ON TME FIR5T CALL
c Yfl- t VrTn nF tlENGTH MI FOR THL DEPENDENT VARIABLE Y

r "0jT T'4E 'JFT OUTP1UT VALUE OF T____________
r F 0k. '4F L hf-T- L 0"-T0CWWCWRME ER
r TFP11R~. TH~E Fcqr1P CONTRt1L THAYCATOR
r ?It TH~E '

4ET'4On FLAG,
r 41,~ PTEGFO FLAGs U3rEi FUR INPUT AND OUTPUT

11 rtI.L !'TVU( ,Tfl,H0,YO.TnUT.EPS.!ERRORMF.!NOEK)
C EKTT IF FPQnQ

;4cTTF(6v,?O1) INJDEY

2()3 Ff)D"AT//I FRpflR RETURN WITH INDXu,13/,)

C S-TTC' on,' OR OFF' LOF LOGICAL FUNCTIONS EL(I) ACCORDING To CRITERIA

rif7?3vYOCl/,Yo(9)

TFVfl W1O77flD7ETOupoa, 00) LrI.1-
TFCPX7g-5.IbbbTDO*LT.,ODO) GO TO 1b

16' TF(fPx21-O.91bh7nO.GE.O.0DO) EL(3)21
TFf')V2jGE.O.oflO) EL(4321

TF(('w?1-O,991&7DO.Gf.O.lDO) ELR9)sl

EL(II)Ut-FL (9)
fE1 P)x1.EL(A) ________________________

IFUIY?1l.fl.QAQQO.9E.O.OD0) ELCIS)s1

FL(IOIutL(13)
TFC.0V?1.GF,.OODO) ELCZO)2I

TF~nX32.l.01bb70GE.0,0Oo) EL(22)81
TF C. 3P+o.9A333Dfi.GE,OOFO0) ELC?3)61
F I IFJU .71 WT7

f rHFCI( Fn OF A CvCLEt OF MOTION OF THE MECHANISM
rrCE(19.NE1.rP.EGCI.NE1) 0 TO 1T

flv2yx u(yo(9).yo(A).1.ooo)IOODO
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nwsx ( O( 13) aVO (a) u51 ~of3*1j0

2F)4 ~fFrS~~ aFtjfl OF A CYCLF*10,60b1Ei.51
S~nP

C COMPUTIE LOGICAL FtjivCT1N GROUJPS EtG(I)

EL ,( C)srLfC1 Q) *FL(2')

FLG(b)XEL(7)*FLS)EL(9)*FL(fl),ELt11)*EL(12).EL(13)*FL1ih)
ELGC7)m1-tLG(01

FLG(9)2fL(19)

EL G(1fl uLGQ?)I(L(9- 2)
EL,( I ?I UFL rC(6)
FLGMIJ .7 ((b
FLr.(14)*FL (23)
ELr-(15)urt.(24)*ELG(7)

f COMPU'TE TmF mAS3 OF BOlDIES I AND) 2

.- EL9(7)1*FM(7)OFLG(2)*FM(101,FLG(3)*(Fm(S),fm(9)Em(10)-ELGCo'*

*+O10))
C SPECIAL TREATMlrNT FOR THE iMPULSIVF FORCE FGAS i IF MELIsI COM'PUTE
C NEW INITIAL VALUES THROUGH JUMP CONJDITIONS AND LOCK ONJ ELGC211
C OTHERWISE, CONTINUE COMPLITATTON

IF(KEL2,NE.1) GO TO 50
YO (I W OLnE MR( I)*Y ( )-I.2~r8
YOCI)u(OLOEmPtZ)*YOC?)wO.900*1 .2DO)/EwR(?)

C O THEC MASCANEO BDE AND ?I IF YES* COMPOTE NEW 7 NJ TIAL

t VALUES TNROllGH JUMP CONDITIONSUOTHERWT3E, CONTI-NUE---
SO 00 20 la1e?

IE(OSS(MR().OOFMAY))LE~.00tS)GO TO 20

20 CnNIINUE __

CCOMPUTE AND) OUTPUTRSLT

0X3X2u(Y0(10).YO(9)-I ,ODO)*100.000

OnXIECoYO(13).YOCS).'5.000)*10O~o0
9IMIS(yace)a -.0001*fl,QDQ
!E(MALTMRE0.11 00 TO 60
WRITEC60205) Toonfx2E1 .03X2,OME2,OVTVI .ox6KI * X1-I
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215F0RFAT(l5WmfllO 1.6nTlb 5)
G~ilTit 1o

b"' wTTF(6*?n6) TOOX2x1.OK1X2.DX7XP1 DV7V1,DX6X1 .NIHI

r .SJFRhrfl(iTA4F OTFFIiksIS CLLED RY RJVFTO COmPUTE YDOTsFfYvT, OF LENGTH
r N Fflu GIVEN VAL'IFV, f1F T AN'i V OF LENGTH N

ImPI ICIT nn(11HLF PRECSTflN(A.H,0.7)
-- TIJTGEQ Ft.FLG

nM-NTP' V(N) , flDT(NJ

c C'mwP(TtE-F-fPCr Ik' THE PTRSTV7 V7UA1'ONX flTF '4CYTU

F1Bbo0.nn pflp*( V gI)1w(9] eUY667bIfIOJ *i5*OO* Y(I)-Y()

P21s-200f0.SrOo*eYQ9)-v(1i)*, .0666700).R.OOOO.((C?1-YC3))

F7l 1*-F ?A

111( ?RRITrwA 2T
F(1)s.F3 1)FPFL(4*lRA)FB
F S zPF4?+F4S)1[MR(4)

C PC iju AmP1TfVT~w -TE-C 'ORg

IM G631,c o o3
P181141592530

un~'".y: i': jrv 31t5 ? Tt P-fh7- t~1p5U~I~TU . - ~



EL Pao. rsnn6C I C I drnwiw)

GAMLOCW I ( Q?r-7 G ) Io-
Aw.mOCG nC.ENJPT.EL P*LP
RA.C.*'4L0C.GAMfC4ATFLPFLPP.CV(ePI.Yft)),a?

OSAIlI*A22-A~i eAt2
F(I )x(A2*RjsA12*82)/fl

C COMPUTE THE RIG.HT SlrfES MF TMF LAT-7F 7elUATONS wuTIIF
30 00 t0 18107

It CbNf I NUE
C STORE THE RIGHT STOES OF THE EQUATTONS OF MnTTO4J IN VECTOR YnnT

no 20 Ist.1u

20 CONTINUE
RETURN

C THIS DUMMY VERSION 07 PEoE~v 13 REOUIRFD 'R THE nor SOt V1o EPSOE
uURntITIME PEfTERV(#4vTYPO.NO)

RETURN
E HOi
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release. The sequence of these events may not be known ahead of time, and may

in fact be one of the things we wish the computer to determine.
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2C ABSTRACT - Cont'd.

The dynamical equations are formulated using a logical function method due to

P. Ehle. The resulting system of ordinary, differential equations with discontinuous

coefficients is integrated using a standard computer code in regions where the

coefficients are continuous. When discontinuities occur, jump conditions across

the discontinuity are used to express the new velocities in terms of the old, and

the ordinary differential equation solver is simply restarted with new initial

conditions.

To illustrate the simplicity of the approach, the method is applied to a

dynamical system of ten masses considered by Ehle. The computer code and numerical

results are included.




