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NRC Technical Summary Report #2025

M4OVING-WEIGHTED-AVERAGE SMOOTHING
EXTNDED TO THE EXTREMITIES OF THE DATA

T, N. E, Greville

Lo( ition Actual reading Correct reading

Page 19,, bottom line, upper limit
of summation NtS rn-8

Page 24, equation (8.10) (-i)15g-11

Page 24g last displayed equation Q - j Q -j + 1

Page 55, Table 6:
I-1 asI MI -. 000046 .0o104o
I- i, j - 4 -. 064956 -.089936
I - 2, j - 1 .130190 -. 073930

On Page 13 it would be desirable to replace the line following equation (5.3)

by the followings

converges in som'e part of the complex plane. (Note that it

follows from properties (1)-(4) that t depends only on

and Is independent of N.)
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ABSTRACT

The use of a symmetrical moving weighted average of 2m + 1 terms to

smooth equally spaced observations of a function of one variable does not

yield smoothed values of the first m and the last m observations, unless

additional data beyond the range of the original observations are available.

By means of analogies to the Whittaker smoothing process and some related

mathematical concepts, a natural method is developed for extending the

smoothing to the extremities of the data as a single overall matrix-vector

operation having a well defined structure, rather than as something extra

grafted on at the ends.
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SIGNIFICANCE AND EXPLANATION

* !The use of a moving weighted average of 2m + 1 terms to smooth

equally spaced observations of a function of one variable does not

yield smoothed values of the first m and the last m observations,

unless additional data beyond the range of tha original observations

are available. Using Toeplitz matrices, Laurent series, and analogies

to the Whittaker smoothing process, we develop a natural method of

extending the smoothing to the extremities of the data.
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MOVING-WEIGHTED-AVERAGE SMOOTHING
EXTENDED TO THE EXTREMITIES OF THE DATA

T. N. E. Greville

2. INTRODUCTZON

A time-honored method of saoothinq equallv spaced observations of a

function of one variable to remove or reduce unwanted irregularities is the

moving weighted average (lWA). An example is Spencer's 15-term average

(Macaulay 1931; Henderson 1938), which can be expressed in the form

" 320( 3Yx-7 - 6Yx-6 -
5 'x-5 + 3YXj4 + 2 1yx-3 + 46 Yx-2 + 6 7Yx-l

7 4yx + 67y X+1 + 46y x+2 + 21yx+ + 3yx+ - 5Yx+5 - 6Yx+6  3x 7 '

+74 f +2 x+3 x+4 5 ~+ 6  3yx+7

(1.1)

where yx is the observed value corresponding to the argument x, and ux

is the corresponding adjusted value. Actuarial writers commonly refer to

such smoothing as "graduation."

More generally (Schoenberg 1946) a symmetrical MWA is of the form

Ux j M cj Yx1j (1.2)

where m is a given positive integer and the real coefficients c are such

that c_j - c J and

-j.I cml 1.

Such averages have a long history that is not widely known. One of the ear-

liest writers on the subject was the Italian astronomer G. V. Schiaparelli

(1866), who is remembered chiefly for his observations of the planet Mars.

Futher contributions were made by the Danish actuary and mathematician

3. P. Gram and the Danish astronomer T. N. Thiele, both of whom played major

roles in the early development of statistical theory. The majority of publi- V
cations on this subject have appeared in English and Scottish actuarial jour-

nale starting with John Finlaison in 1829 (see Maclean 1913). Probably the

first writer to make a systematic investigation of such averages was the

Amrican mathesmtician Z. L. De Forest (1873, 187S, 1876, 1577). Nis work,
Tfrvlejpj of Teanhiaal ,-- ty f iT7&.
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published in obscure places, was rescued from total oblivion largely through

the efforts of Hugh H. Wolfenden (1892-1968), who also made important contri-

butions to the subject (Wolfenden 1925). E. T. Whittaker (1923) suggested an

alternative method of smoothing, which has been widely employed, especially

by actuaries, and will be referred to extensively later, because of numerous

analogies to the MWA procedure. The first writer to apply sophisticated

mathematical tools to the study of these averages was I. J. Schoenberg (1946,

1948, 1953), who introduced the notion of the characteristic function of an

MWA, and utilized it to formulate a criterion for judging whether a given

average can properly be called a "smoothing formula." This criterion will be

discussed in Section 11.

2. THE PIOBLEM OF SMOOTHING NEAR THE EXTREMITIES OF THE DATA

When MWA's have been used by actuaries, the argument x is usually age

(of a person) in completed years. When they are used for smoothing economic

time series, x denotes the position of a particular observation in a time

sequence. The latter area of application appears to stem largely from the

work of Frederick R. Macaulay (1931), who was the son of an actuary.

In either case, a serious disadvantage of the method is that it does not

produce adjusted values for arguments too near the extremities of the data.

For example, suppose Spencer's 15-term average is used to smooth monthly data

extending from 1970 through 1976. The formula does not give smoothed values

for the first 7 months of 1970 or the last 7 months of 1976 unless data can

be obtained for the last 7 months of 1969 and the first 7 months of 1977.

Clearly, acquisition of data extending farther into the past is less of a prob-

lem than acquisition of future data.

Actuaries in North America seem to have largely abandoned the use of

MWA's in favor of Whittaker's method, which does not have the disadvantage

m2-



described. It is likely that British actuaries may still use these averages

to some extent. They appear to be currently employed by economic and demo-

graphic statisticians (Shiskin and Eisenpress 1957; Shiskin, Young, and

Musgrave 1967).

Various suggestions have been made (De Forest 1877; Miller 1946; Greville

1957, 1974a) for dealing with the problem of adjustment of data near the ex-

tremities, but none of them has won general acceptance. De Forest's (1877,

p. 110) suggestion is so relevant to the subject of the present paper that it

is worth quoting in full:

"As the first m and the last a terms of the series cannot be reached

directly by the formula (of 2m + I terms), the series should be graphically

extended by m terms at both ends, first plotting the observations on paper

as ordinates, and then extending the curve along what seems to be its probable

course, and measuring the ordinates of the extended portions. It is not neces-

sary that this extension should coincide with what would be the true course

of the curve in those parts. The important part is that the m terms thus

added, taken together with the m + 1 adjacent given terms, should follow a

curve whose form is approximately algebraic and of a degree not higher than

the third."

Elsewhere (Greville 1974a) I have proposed extrapolating the observed

data by fitting a least-squares cubic to the first m + 1 values and a similar

cubic to the last m + 1 observations. Though my proposal was made before I

had noted the passage just quoted from De Forest, it is very much in the spirit

of his suggestion; it is not a long step from graphic to algebraic extra-

polation.

Another approach (Greville 1957) regards the adjustment process as a

matrix-vector operation. We write

-3-



u = Gy , (2.1)

where y is the vector of observed values, u is the corresponding vector

of adjusted values, and G is a square matrix. If a specified symmetrical

MWA of 2m + 1 terms is to be used wherever possible, then the nonzero

elements of G , except for the first m and the last m rows, are merely

the weights in the moving average, these weights moving to the right as one

proceeds down the rows of the matrix. In the first m and the last m rows

special unsymmetrical weights, determined in some appropriate manner, must be

inserted. The matrix approach and the extrapolation approach are not wholly

unrelated, since the final results of the extrapolation approach can be ex-

pressed in matrix form.

It is the purpose of the present paper to show that when a given sym-

metrical MWA is being employed and fulfills certain minimal requirements, there

is a natural, preferred method of extending the adjustment to the extremities

of the data, strongly suggested by the mathematical properties of the weighted

average. This natural method of extension seems to have eluded previous

writers on the subject, as indeed it eluded me during the many years I have

thought about the matter. The preferred method of extension has the inter-

esting property that it can be arrived at either through the matrix approach

or the extrapolation approach. In the latter case, one must employ a special

extrapolation formula uniquely determined by the given MWA. Though the two

approaches appear to be quite different, they will be shown in Section 8 to be

mathematically equivalent, and they will give identical results except for

rounding error. In the matrix approach the treatment of the values near the

ends becomes an integral part of a single overall operation, and not something

extra grafted on at the ends. It is especially fitting that it should be

published now, since the centennial of De Forest's death occurs in the 1980's.

-4-



In my own thinking I arrived at the procedure first through the matrix

approach, guided largely by extensive analogies to the Whittaker process

(which is most conveniently expressed in matrix terms). It was only later

that I became aware that identical results could be obtained by means of an

extrapolation algorithm. Though the matrix approach provides greater insight

into the rationale behind the procedure, the extrapolation approaach is simpler

computationally. Therefore, we shall first describe and illustrate the extra-

polation algorithm, and shall then motivate and justify the procedure by means

of the matrix approach. This investigation has led to some interesting mathe-

matical developments (Greville and Trench 19791 Greville 1979; Greville 1980)

that have been published elsewhere in a more general context and will be cited

here as the need arises.

The extrapolation approach is merely a computational short cut, and nearly

always the extended values obtained by its use are highly unrealistic if re-

garded as extrapolated values of the function under observation. (The reader

will note that the quotation from De Forest earlier in this section contains

a similar admonition.) This fact is irrelevant, but has seriously "turned

off" some users. Hereafter I shall therefore avoid the use of the words

"extrapolate" and "extrapolation," and shall speak of "extension," "extended

values," and "intermediate values."

It is emphasized that the procedure to be described (or any other proce-

dure for completing the graduation) is recommended for use only when addi-

tional data extending beyond the range of the original observations are not

available.

Probably so readers will be primarily concerned with the application

of the method to nmerical data, and will have less interest in its mathe-

matical development. Such readers will find the information they require in

-5-(



the following Sections 3 and 4. on the other hand, readers who ma', wi S:

pursue the mathematical derivation first and leave computational details

later may skip Sections 3 and 4 and pass at once to Section 5.

3. THE EXTENSION ALGORITHM

A weighted average of the form (1.2) will be called exact for the degree

r if it has the property that, in case all the observed values y- in (1.-

should happen to be the corresponding ordinates of some polynomial P (x - j)

of degree r or less, then

U Yx = P(x)
x

but there is some polynomial of degree r + 1 for which this is not the case.

In other words, an average that is exact for the degree r reproduces without

change polynomials of degree r or less, but not in general those of higher

degree. If the weights are symmetrical, r must be odd, and we may write

r - 2s - 1. This implies that r < 2m + 1 , and therefore s < m

For a simple (unweighted) average, r - 1. For the overwhelming majority

of JWA's used in practice, r = 3. The preference for cubics has a long his-

tory. De Forest (1873, p. 281) suggests that "a curve of the third degree,

which admits a point of inflexion ... is ... better adapted than the common

parabola to represent the form of a series whose second difference changes its

sign."

We shall use the notation of the calculus of finite differences, wherein

E is the "displacement operator" or "shift operator" defined by

Ef(x) - f(x + 1)

and 6 is the "central difference" operator defined by

6f(x) - f(x + 1/2) - f(x - 1/2), (3.1)

so that

6 2f(x) - f(x + 1) - 2f(x) + f(x - 1)

-6-



If the weighted average (1.2) is exact for the degree 2s - 1, it can be

written in the form

ux = - 1) 6 q(E)]y x , 3.2)

where q(E) is of the form
M-s

q(E) I q. E3 (3.3)
j=-M+s

with q_j = q. In a typical smoothing formula q(E) has only positive co-

efficients, but this is not necessarily the case. If q(z) is multiplied by

z to eliminate negative exponents, the resulting polynomial is of degree

2m - 2s. Because of the symmetry of the coefficients, it is a reciprocal

polynomial. In other words, if p is a zero of the polynomial, it follows
-I

that p is a zero. In general, we shall make the assumption that this

polynomial has no zeros on the unit circle. The case in which it does have

such zeros is mainly of theoretical interest and is briefly referred to in

Section 7.

Let p(z) denote the polynomial of degree m - s with leading coef-

ficient unity whose zeros are the m - s zeros of z M-Sq(z) located within

the unit circle. In general, some or all of these zeros are complex, but

they must occur in conjugate pairs, so that p(z) has real coefficients. Now

we define a polynomial a(z) of degree m and its coefficients a. bym J

a(z) = (z - s)s p(z) = zm - I a. zm-j. (3.4)j=l J

Suppose the given data consist of N - Q - P + I given values extending

from x = P to x = Q. We assume that N >2m + 1, so that at least one

smoothed value is obtained by direct application of the given MWA. Then we

obtain m intermediate values to the left of x - P by successive applica-

tion of the recurrence
m

YX M j~l ai Yx+jO

Similarly, m intermediate values to the right of x - Q will be obtained by

-7-
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the analogous recurrence
m

YX = =aj Yx-j
ja

Finally, application of the synetrical MWA of 2m + 1 terms to the N + 2m

observed and intermediate values gives adjusted values u for x = P

P + 1,...,Q.

For example, Spencer's 15-term formula (1.1) can be expressed in the form

(3.2) with s = 2, where

-4 -3 -2 2q(E) (3E- 5 + 18E + 59E + 137E + 242E-I + 318 + 242E + 137E

3 4 5+ 59E + 18E + 3E5).

Using a computer program to find the zeros of z5 q(z), constructing the poly-

nomial p(z), and finally applying the formula (3.4), we obtain for Spencer's

15-term formula

7 6 5 4 3 2a(z) = z - .961572z - .372752z - .015904z + .123488z + .125229z

+ .075887z + .025624.

The coefficients are rounded to the nearest sixth decimal place, except that

the final digits of the coefficients of z3 and z2 have been adjusted by

one unit to make the sum of the coefficients exactly zero.

Note that in the trivial case s = m , q(z) is a constant and p(z) is

unity. Thus the algorithm reduces to extrapolation of the observed data by

sth differences (i.e., by fitting a polynomial of degree s - 1 to the first

s observations and a similar polynomial to the last s observations).

* As a numerical illustration, Spencer's 15-term average has been applied

to some meteorological data. Table 1 and Figure A show the observed and

graduated values of monthly precipitation in Madison, Wisconsin in the years

1967-71. No adjustment has been made for the unequal length of the months.



4. TABLES OF MOVING-AVERAGE AND EXTENSION COEFFICIENTS

Tables 2 and 3 show the coefficients in the MWA and the corresponding

extension coefficients (that is, c. and a.) for 21 weighted averages that

have appeared in the literature. Table 2 is devoted to the class of averages

known to actuaries as minimum-R 3 formulas and to economic statisticians as

"Henderson's ideal" formulas. They are discussed more fully in Section 8.

The values in Table 2 are shown to six decimal places. In both instances, a

few final digits have been adjusted by one unit to make the sum exactly unity.

The moving-average coefficients are given to the nearest sixth decimal place

except for the slight adjustments mentioned; rounding error in the computation

of the extension coefficients may have introduced further small errors in some

instances.

Table 3 is concerned with 11 moving averages derived by various writers

on an ad hoc basis and known by the names of their originators. The source

notes for this table do not attempt to cite the earliest publication of the

formula in question, but merely indicate a convenient reference where it can

be found. All these averages are exact for cubics except Hardy's, which is

exact only for linear functions. The coefficients in the averages of Table 3

are rational fractions with relatively small denominators, and the user will

probably find it convenient to use as weights the integers in the numerators

of the coefficients, dividing by the common denominator as the final step.

The column headings, therefore, are c multiplied by the common denominator.

In both Tables 2 and 3 advantage has been taken of the symmetry of the

coefficients cj to reduce the length of the columns by approximately one-

half. The manner of using the tables may be illustrated by taking Spencer's

15-term average as an example. Equation (1.1) shows the calculation of the

moving averages. The intermediate values yx for x - P - I to p - 7 are

-9-



calculated successively by the formula

Yx= 96 15 72yx+l + .372 7 52yx+2 + .0 1 590 4 yx+3 -
12 34 8 8yx+4 - 12522

- o075887y+ 6 - .025624y

The intermediate values for x = Q + 1 to Q + 7 are calculated by the iden-

tical formula except that the plus signs in the subscripts are changed to

minus signs.

The extension procedure drastically reduces the number of values that

need to be tabulated for a given weighted average, and makes it possible, for

example, to give complete information about 21 such averages in the reasonably

compact Tables 2 and 3. However, the user who intends to apply a single

weighted average to many data sets may prefer to tabulate the atypical ele-

ments of the smoothing matrix G for that weighted average, and so avoid the

extra step of calculating the intermediate values. For the benefit of such

users, a method of calculating the atypical rows of G will now be described.

We observe that the nonzero elements of each row of G except the first m

and the last m rows are merely the coefficients c. of the MWA centered
3

about the diagonal element. The elements in the first m rows of G , ex-

cept for the first m columns, follow from the symmetry of G , and if

G = (gi) we have

gii " cj-i"
This leaves only the square submatrix of order m in the upper left corner

to be calculated. Let c denote the constant qm-s/pm- , where pM-s is

the term free of z in the polynomial p(z) , and let Al - (alj) denote the

square matrix of order m given by

0 for i > J

ai -for i - j
!j -a J-i  for i < j

-10-



Then the required submatrix in the upper left corner of G is given by

I - cA 1  ,

where the superscript T denotes the transpose. The similar submatrix in the

lower right corner of G contains the same elements, but with the order of

both rows and columns reversed. Justification for this procedure lies in the

fact that F = I - G is a symmetric Trench matrix (see the following Section

5).

5. THE GRADUATION MATRIX

In order to describe the unique graduation matrix G of (2.1) that

arises when the preferred method of overall graduation is used, it is neces-

sary to define certain special classes of matrices. A square matrix

Si= (m ),j= will be called a band matrix if there are nonnegative inte-

gers h and k such that mi = 0 whenever j - i > h and also whenever

i - j > k . Note that we have started the numbering of rows and columns with

0 rather than 1 . M will be called strictly banded if, in addition,

h + k < N . In all the banded and strictly banded matrices to be discussed

in this paper, h and k will be equal.

M is called a Toeplitz matrix if all the elements on each stripe are

equal, where a stripe (Thrall and Tornheim 1957) is either the principal diag-

onal of the matrix or any diagonal line of elements parallel to the main diag-

onal. In other words, M is a Toeplitz matrix if there exists a sequence

tN tN+l,...,tN  such that for all i and j

mij - tj- i

A strictly banded matrix will be called a Trench matrix if it has a spe-

cial structure that will now be described. Let M x) denote the generating

function of the elements of the ith row: thus,
N

M i x W. -0 . .



Then M is a Trench matrix if
i
±W I -jA~x) Bx~j (0 i <k)

j=0

M.Cx) - A(x)B(1/x) (k < i < N - h) (5.1)
N

]B(llx) (A x (N - h < i <N),
j=N-i

h k
where A(x)= a xj and B(x) - 8.x3 are given polynomials of degree

j-o j-0 i
h and k , respectively, with ao8o 1 0 . In all the applications of Trench

matrices to be made in this paper, h = k and the coefficients a. and 8.J )

are real. Careful examination of (5.1) reveals that a Trench matrix is u -

Toeplitz. By this is meant that the Toeplitz property

m -Mi+l,j+l ij

holds so long as neither of these elements is contained in the k by h sub-

matrix in the upper left corner of M or in the h by k sukmatrix in the

lower right corner. The converse, however, is not true. A strictly banded,

quasi-Toeplitz matrix is not necessarily a Trench matrix. In a Trench matrix

the elements of the special corner sukmatrices must be related in a particular

way to those of the main part of the matrix as indicated by (5.1).

Greville and Trench (Greville and Trench 1979; Greville 1979, 1980) have

studied the properties of Trench matrices. In the joint paper they have shown

that a strictly banded matrix has a Toeplitz inverse if and only if it is a

nonsingular Trench matrix, and further that a Trench matrix is nonsingular if

and only if A(x) and B(l/x) have no common zero.

A rectangular matrix K of N - s rows and N columns will be called a

differencina matrix if it transforms a column vector into the column of sth

finite differences of the elements of the vector. Evidently the nonzero ele-

ments of each row of K are the successive binomial coefficients of order s

with alternating signs, and the nonzero elements of K form a diagonal band

from the upper left to the lower right.

-12-



The following theorem describes the smoothing matrix G of the natural

extension.

Theorem 5.1. Let a given MWA of 2m + 1 terms be exact for the degree

2s - 1 (with s < m) and such that q(z) has no zeros on the unit circle

and qo > 0 . Then, for every N > 2m + 1 , there is a unique square matrix

G of order N having the following five properties:

(1) If y is any vector of observed values and u = Gy is regarded as

the corresponding vector of graduated values, the elements of u , except the

first m and the last m , are merely the graduated values that would be ob-

tained by the use of the given MWA.

(2) G is strictly banded with h = k = m.

(3) G is of the form

G = I - K DK (5.2)

for some square matrix D of order N - s.

(4) D is nonsingular and has a Toeplitz inverse.

(5) If D - (t ij), with t = t i  , then the series

St z ,  (5.3)

converges in some part of the complex plane.

The unique matrix G so determined has the following properties:

(6) D is unique and G and D are synetric.

(7) The nonzero elements of the first m and the last m rows of G

depend only on the given MKA and do not depend on N . A similar statement

applies to the nonsero elements of the first m - a and the last m - s rows

of D



(8) D is a Trench matrix with B(x) - A(x). Moreover,

q(x) - A(x) A(l/x) (5.4'

and the m - s zeros of A(x) are those zeros of q(x) that are outside the

unit circle.

(9) F = I - G = KT DK is a (singular) Trench matrix characterized by

the polynomials

i(x) - fi(x) - (x- l) s A(x)

(10) The series (5.3) converges to [q(z)] -1  in an annulus containing

the unit circle.

We shall defer the proof of this theorem until after some explanation and

motivation have been given. We begin with a numerical example, which may help

to clarify the relationships involved. Then we shall seek to justify the im-

position of the five properties that uniquely determine the graduation matrix

G . In Section 7 we shall prove the theorem, and in Section 8 we shall show

how the extension algorithm can be rationalized and prove that it is mathe-

matically equivalent to the matrix formulation.

For virtually all the MWA's likely to be used in practice the elements

of the square sukmatrices of order m in the upper left and lower right cor-

ners of G are irrational. However, for convenience of illustration, we have

contrived an example with rational elements. This is the MWA,

1
ux - g-(2y x-2 + YX- + 3yx + Yx+l + 2yx+2)'

which is exact only for linear functions and is unlikely to be used in a prac-

tical situation. However, it does satisfy Schoenberg's criterion (see Section

11) for a satisfactory smoothing formula. Here m - 2, s - 1, q(x) -
1 (-x-1
1(2x 5+2x), and A(x) (2 + x). For N- 7,

-14-



5 2 2 0 0 0 0

2 4 1 2 0 0 0

2 1 3 1 2 0 0
1

G0 2 1 3 1 2 0
9

0 0 2 1 3 1 2

0 0 0 2 1 4 2

0 0 0 0 2 2 5

4 2 0 0 0 0

2 5 2 0 0 0

1 0 2 5 2 0 0D = -
0 0 2 5 2 0

0 0 0 2 5 2

o 0 0 0 2 4

1 -1/2 1/4 -1/8 1/16 -1/32

-1/2 1 -1/2 1/4 -1/8 1/16

1/4 -1/2 1 -1/2 1/4 -1/8

T = 3 -1/8 1/4 -1/2 1 -1/2 1/4

1/16 -1/8 1/4 -1/2 1 -1/2

-1/32 1/16 -1/8 1/4 -1/2 1

Finally,

t - 3(- 1/ 2)Ivi

and it is easily verified that the series (5.3) does in fact converge to

[q(z)] = 9(2z + 5 + 2z) for 1/2 < z < 2 . So long as N > 5 , the

corresponding results for any value of N could easily be written down.

Let us now look at the five properties that uniquely determine G . The

first of these is no more than a restatement of the problem to be solved. The

second is a reasonable requirement and amounts to saying that the proposed

method of graduation is a "local" procedure: the graduated value of a given

observation is not to depend on other observations removed from it by a dis-

tance greater than m
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Conditions (3), (4), and (5) are not so obviously appropriate, but are

strongly suggested by analogies tothe Whittaker graduation method. In order

to make these analogies clear, that method is briefly described in the fol-

lowing section.

6. THE WHITTAKER ANALOGIES

The objective of the Whittaker process (Whittaker 1923; Henderson 1924)

is to choose graduated values u (j - P, P + 1,...,Q) in such a way as to

minimize the quantity

Wj(uj - y,) + g u (S , (6.1)

imp imp
where the positive weights WJ , the positive constant g , and the positive

integer s are chosen a priori by the user. The solution is most conven-

iently expressed in matrix notation as follows (Greville 1957, 1974a). Let

W denote the diagonal matrix of order N whose successive diagonal elements

are the weights WJ , let u and y be defined as in Section 2, and let K

be the differencing matrix of Section 5. Then, the expression (6.1) can be

written in the form

T T
(u - y) W(u - y) + g(Ku) Ku . (6.2)

It is easily seen (Greville 1974a) that (6.2) is smallest when u satisfies

(W + gKT K)u - NY (6.3)

It is not difficult to show (Greville 1957, 1974a) that the matrix in the left

member of (6.3) is nonsingular (in fact, positive definite) and therefore

u - (N + g3T x)-l wY.

The Whittaker method has several interesting properties. Comuonly the

weight W is taken as the reciprocal of an estimate of the variance of the

ith observation. When this is done, the graduated values are constrained to-

ward the observations where these are reliable, and toward the form of a poly-

nosial of degree s - 1 where the observations are less reliable. The method
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has the interesting *moment" property
Q Q
j j Muj1  W 3f* ivy (v-o,1,...,s-1).

:Imp I-P

Even in the case of equal weights (equivalent to taking W - I) it has been

found to be a serviceable method. The ability to choose the constant g at

will enables the user to decide how gentle or how drastic he wants the smooth-

ing to be. The remaining discussion will be limited to that case, so that

u - U + gKT K) - y.

Thus, in terms of (2.1) we have for "unweighted" Whittaker graduation

G- I+gK T K)"1

It is then easily verified (Noble 1969, page 147) that

G - I - K.T'(g"1 1 + KT)-1 K.

This is of the form (5.2) with
D- (g 1  -1

so that property (3) of Theorem 5.1 is also a property of the unweighted

Whittaker method. It follows also that

D-1. 9-1 1 + 10? (6.4)

and, if we recall the definition of K in Section 5, it is not difficult to

see that KKT  is a Toeplitz matrix. In fact, if KKT - (L ), we have
ij

X.ij . -i . where

tv u(_l) V ( 28)
V 5+VS2s

with the understanding that ( 2) vanishes for J < 0 and for j > 2s.

Therefore

D- 1 = (tij) - i

where

t M (-1 (23)- (6.5)
v o s+V

6 o being a Ironecker symbol. Thus the unweighted Whittaker method has prop-

erty (4). Finally, in the Whittaker method D71  given by (6.4) is a band
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matrix, and therefore the series (5.3) with t given by (6.5) is finit %d

converges everywhere except at the origin. We have, in fact,
zv  -l s 1/ z-1/2)2s

t z -1 +(-1) (z 1 / 2 -

As the Whittaker method is a highly regarded graduation procedure, these

analogies constitute a strong argument in favor of the natural extension of

HWA graduation. Further arguments are provided by the stability theorem of

Section 11 and the optimal property of R ("reduction of error") for the0

top and bottom rows of G described in Section 10.

7. PROOF AND DISCUSSION OF THE MAIN THEOREM

Proof of Theorem 5.1. Under the hypotheses of Theorem 5.1, we shall

first construct a matrix G having the properties (1) to (10), and shall

then show that it is uniquely determined by properties (1) to (5).

As pointed out in Section 3 , if p is a zero of q(z), it follows

from the symmetry of the coefficients that p 1  is a zero. As there are no

zeros on the unit circle, there are m - s zeros inside the unit circle and

the same number outside. As any complex zeros must occur in conjugate pairs,

there is a polynomial A(z) with real coefficients whose zeros are the m - s

zeros of q(z) outside the unit circle. Moreover, the coefficients of A(z)

can be normalized so that

q(z) - A(z) A(1/z) (7.1)
in-s

If A(z) - aj , we have
j-O i-

%- a. (7.2)

Since, by hypothesis, q. > 0 , the positive sign holds in (7.2) and (7.1).

Now, let D be given by property (8)t that is, D is the Trench matrix

in which the polynomial A(z) of (7.1) plays the role of both A(x) and

B(W) in (5.1). It follow, from (S.1) that D is uyetric. As the zeros of

A(s) are all outside the unit circle, those of A(l/s) are all inside. Thus,



they have no common zero, and it follows (Greville and Trench 1979) that D

is nonsingular and D-1 is Toeplitz. This verifies property (4), and it

follows (see Greville 1979) that the series (5.3) is a "reciprocal" of q(z)

at least in the sense that if it is formally multiplied by q(z), the product

is unity. It is shown in the paper cited that the series (5.3) converges in

some part of the complex plane if (and, under the constraints imposed by (5.4),

only if) A(x) is chosen in the manner prescribed by property (8). It is

shown further that, when this is done, (5.3) converges to [q(z)] - I in an

annulus bounded by circles of radii p and p- , where p is the minimum

absolute value of the zeros of A(x). This verifies properties (5) and (10).

It will be noted, incidentally, that the elements of D-1 depend only on

A(x) and not on N . Increasing N merely extends the sequence {t I with-

out changing the elements already determined.

Now, let G be given by (5.2), so that property (3) holds. The symmetry

of G follows from that of D , and property (9) also follows (see Leima 1

of Greville 1980). Property (7) is a consequence of (5.1) and property (1)

follows from (3.2), (5.1), and property (9). Property (2) follows from the

fact that F is a Trench matrix.

To prove uniqueness we assume that properties (1) to (5) hold. It then

follows from properties (2) and (3) tat D is strictly banded with h -k

m - s. Because of the structure of K , it is not difficult to see that if D

had a nonzero element outside the specified band, G would necessarily have

one or more elements outside the band prescribed by property (2). Since, by

property (4), D )a- a Toeplitz inverse; it is a Trench matrix (Greville and

Trench 1979).

Let A(x) and B(x) be the polynomials of degree m - s associated with

D - (d ), and let M+s

d(x) - d xV - Aix) B(1/x).

i-n



Then, by (5.1),

dj -dj_ i

except in the square submatrices of order m - s in the upper left and

lower right corners of D . But it follows from (5.2) (see Lemma 1 of Greville

1980) that F - (fi) - I - G - KT DK is a (singular) Trench matrix charac-
ii

ternzed by the polynomials i(x) - (x - 1)8 A(X) and B(x) - (x - 1)s B(x).

If

B(x) AWx)(l/x) -) (x1"2 -(-I/)2s d(x) v '
VM-vi--n

it follows that

fij d j-i

except in the square suhmatrices of order m in the upper left and lower right

corners of F . But it follows from (3.2) and property (1) that, with the

possible exception of the elements of the first m and the last m rows of
ii xii in (-C 1 / 2  -x 1 / 2 2s

F , fij is the coefficient of x in (- I ) qx). There-

fore d(x) - qx), and so

dij " qj-i (7.3)

except in the first m - s and the last m - s rows of D ,and

q(x) - A(x) B(l/x) . (7.4)

Now, (7.3) and the fact that D is a Trench matrix (and has the quasi-

Toeplitz property) uniquely determine all its elements except those of the two

special corner submatrices of order m - s. It has been shown elsewhere

(Greville 1979) that, in general, these corner elements can be chosen in a

(finite) number of ways, corresponding to the possible ways of factoring the

polynomial x as q(x) of degree 2m - 2s as the product of two polynomials,

ACx) and 3?-* B(I/x) of degree m - s with real coefficients. (Two fac-

torizations are considered different only if the set of zeros of A(x) is

different.) Property (8) prescribes a unique factorization, and therefore

G is uniquely determined by properties (1) to (4) and (8). But it has been

shown (Greville 1979) that if qWz) is given and (7.3) and (7.4) hold,
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properties (8) and (5) are equivalent. Thus, G is uniquely determined by

properties (1) to (5). s

At the beginning of Theorem 5.1 two general hypotheses concerning the

given MWA were introduced: that q is positive, and that q(z) has no
q0

zeros on the unit circle. These will now be discussed. It follows from (7.2)

that qo # 0 ; it is either positive or negative. Typically, the coefficients

q. are all positive and q is the largest. No reasonable MWA could have

q. negative. In fact, it will be shown in Section 11 that an MWA with nega-

tive qo cannot satisfy Schoenberg's criterion for a satisfactory smoothing

formula.

MWA's with zeros of q(z) on the unit circle are also uncommon (I know

of no example in the published literature), but it is easy to construct such

formulas, and the presence of such zeros does not of itself suggest any in-

herent defect in the MWA. However, when there are such zeros, property (5)

of Theorem 5.1 cannot hold (see Greville 1979), and no single preferred method

of extending the graduation to the ends of the data is clearly indicated. The

case of zeros of q(z) on the unit circle is of no practical importance, and

its inclusion in Theorem 5.1 would have made the theorem messy and complicated.

The curious reader might wish to consult Greville's (1979, 1980) Manitoba

Conference papers for discussion of the mathematical questions involved.

8. DEVELOPMENT OF THE NATURAL METHOD THROUGH THE EXTENSION AIZORITHM

This section has two objectivest first, to show that the extension algo-

rithm of Section 3 is mathematically equivalent to the matrix approach of

Sections 5 and 7 , and second, to provide a heuristic argument for the natural

extension of the graduation that is a partial alternative to the five deter-

mining properties listed in Theorem 5.1.

Because of the symetry of the coefficients qj of q(z), and the fact

that it has no zeros on the unit circle, there is, if q0 > 0 , a polynomial
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Alz) of degree m - s with real coefficients such that (5.4) holds. If

m > s , there is more than one such polynomial. Let the polynomial
m

A(z) = &. zj  (8.1)
j=0 J

of degree m be defined by

A(z) = (z - l) s A(z) (8.2)

Then it follows from (3.2) that

Ux = Yx - A(E) A(E - l) Y (8.3)

Thus it would be possible to perform the graduation by means of the following

three steps:

1. Operate on the sequence (y with A(E- ) to obtain the sequence

of values of i(E 1 ) yx

2. Operate on the latter with A IE) to obtain the sequence of values

of A(E) AE - ) Yx which may be thought of as corrections to the observed

values Yx

3. Subtract each of the latter values from the corresponding value of

YX to obtain the graduated values u x
x*NOW, suppose the sequence {yx} is extended backward to x = P - m and

forward to x = Q + m by imposing the conditions

ACE) YX= 0 (x = P - 1, P - 2, ... , P - m) (8.4)

and

ACE-) YX = 0 (x - Q + 1, Q + 2, ... , Q + m). (8.5)

These extensions make it possible to calculate by the main formula graduated

values ux over the entire range x - P, P + 1, ... , Q. For x- P, P + 1,

P + m- 1, (8.1) and (8.3) give

mYx"- ux A (E) yx = Yx-J
In view of (8.4) this reduces to

X-P
Y-u" xj Au£)y . (8.6)
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A similar argument applies for x - Q, Q - 1, ... , Q - m + 1, with A(E) and

A(E) interchanged, and we have there

Y u - A A(E- )  (8.7)X =0 JY~

If we write F = (f ij), it follows from (8.6) and (8.7) that

y - u Fy

where F is the (singular) Trench matrix characterized by two polynomials of

degree m both equal to A(x). But in view of property (8) of Theorem 5.1,

this is exactly the matrix F = I - G of property (9) of that theorem. Thus

the two approaches give the same result if the polynomial A(x) is the same

in both cases. Therefore let us consider the choice of A(x) in the present

context.

For a moment let us think of the sequence ty X} as extended indefinitely

to the left of x = P rather than only as far as x = P - m. Then, the gen-

eral solution of (8.-.
m-s

Y P1 (x) + I bj r. (8.8)

where rI , r2, .... r are the zeros of A(x), P (x) is an arbitrary poly-
in " -s 1

nomial of degree less than s , and bI, b2, ... , bins are arbitrary con-

stants. If A(x) has multiple zeros, (8.8) is replaced by a slightly differ-

ent expression, but the end result is the same.

Similarly, the general solution of (8.5) is
m-s

Yx " P2
Ix) + ej r . (8.9)

Let us now impose the conditions that A yx with yx given by (8.8) shall approach

zero as x tends to --, and that A8 Yx with y given by (8.9) shall ap-

proach zero as x tends to - . Since A(x) must satisfy (5.4), it is clear

that these conditions are satisfied if and only if A(x) is chosen so that

its zeros are the m - s zeros of q(x) that are outside the unit circle.

Clearly, this in the choice of A(x) prescribed by Theorem 5.1. Moreover,
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A(x) chosen in this manner is closely related to the polynomial p(x) of

Section 3. In fact,
M-8

A(x) - rnX p(l/x),M-S

and consequently,

M-s

where a(x) is defined by (3.4). Thus, with this choice of A(x), (8.4) and

(8.5) are equivalent to the extension algorithm of Section 3.

We note in passing that the computational short cut involving extended

values has an analogue in the case of Whittaker smoothing. Especially in

actuarial literature, the Whittaker smoothing process is sometimes called the

difference-equation method because the difference equation

U + (-1) 6 U M y (8.10)x x x

holds for x - P + s, P + s + 1, ... , Q - s. Aitken (1926) pointed out that

(8.10) is satisfied for x = P, P + 1, ... , Q if we annex at each end of the

data set s extrapolated values of both y and ux satisfying the condi-

tions

Ux = Yx (x P- J, x = Q + J j - 1,2, ... s),

A Ux- 0 (x = P- J, x- Q- j; j - 1, 2, ... , s).

However, this observation is not helpful from a computational point of view.

The attempt to utilize it merely increases from N to N + 2s the order of

the linear system to be solved.

A final comment regarding motivation of the extension algorithm may be

in order. Elsewhere (Greville 1957) I referred to the notion of the "smooth

space." This is the space of vectors y such that Gy - y , the space of

vectors that are unchanged by the graduation process. For the Whittaker proc-

ess it is the space of "polynomial vectors" of degree less than s
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In a strict mathematical sense, the smooth space is the same for the

graduation procedure considered here, but in reality the situation is more

complicated. Equation (8.3) shows that if (8.4) should hold "across the

board," all the graduated values, to the extent that they can be calculated

by the main formula without extension, would be equal to the observed values.

Of course, the result would be similar if (8.5) should hold "across the board."

Now, the two conditions (8.4) and (8.5) are not equivalent. The corresponding

conditions in the Whittaker case are the vanishing of the sth finite differ-

ences of the observed values, which are equivalent because of the symmetry of

the (binomial) coefficients in the expressions for these finite differences.

The coefficients of A(x) have no such symmetry.

These observations suggest that the true analogue of the Whittaker proc-

ess is arrived at by using the different criteria (8.4) and (8.5) at the two

ends of the data. As previously noted, there are in general different ways

of choosing A(x) so that

A(E) A^(E- ) (-) s  q(E)

and we have made the unique choice that makes the extension a "stable" opera-

tion at both ends.

9. SPECIAL CLASSES OF MOVING AVERAGES

Of particular interest are those moving averages known to actuaries as

uinimum-R 3 formulas and to economic statisticians as "Henderson's ideal"

formulas. For a given number of terms 2m + 1, this is the average (1.2),

exact for the third degree, for which the quantity

S(A 3 c) 2  
(9.1)

j-m-3
is smallest (with the understanding that c - 0 for a> a). The "smoothing

coefficient" R3 is defined as the quantity obtained by dividing (9.1) by 20

and taking the square root. The divisor 20 is chosen because this is the
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value of (9.1) for the trivial case of (1.2) in which c 1 and c - 0

0

for j # 0.

The rationale for minimizing (9.1) may be explained as follows (Greville

1974a). If, for some x , u , U 1 , ux 2, and u are all given by (1.2)
x X x2 X+3

(which is the case for x = P + m to Q - m - 3, inclusive), then
m

A =-m (3 c x+j+3 . (9.2)
j=-m-3

It has been customary to regard the smallness (in absolute value) of the third

differences of the graduated values as an indication of smoothness. Therefore

3
(9.2) suggests that smoothness is encouraged by making the quantities A C.

numerically small, and minimizing (9.1) is a way of doing this. The formula

corresponding to (9.2) for a general order of differences is
m

AU = (-1) (As CA Y (9.3)x JU-M- SJS

and the general formula for R- is5

a (A c)2/(2S) (9.4)
' s j -m-s

There is some question whether Henderson's contribution warrants attach-

ing his name to the "ideal" weightad averages. De Forest (1873) treated ex-

tensively the formulas that minimize R4 . The concept of choosing the co-

efficients c. in order to minimize R3  seems to have been first mentioned

by G. F. Hardy (1909). These averages were fully discussed by Sheppard (1913)

slightly earlier than by Henderson (1916). However, Henderson does seem to

have been the first to give an explicit formula for the coefficient cj in

the weighted average minimizing R3  (Henderson 1916, p. 43; Macaulay 1931,

p. 54; Henderson 1938, p. 601 Miller 1946, p. 71; Greville 1974a, p. 18). If

we write k - m + 2, so that the weighted average has 2k - 3 terms, the for-

mula is

3151(k - 1)2 2 ](k12 j2l)lk + 112 j 23k2 - 126 2

315(- k-) i k -)[k )-1 (3 --- .- (1.)
Bk(k 2 - 1)(4k - 1)(4k - 9)(4k2 - 25) (
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Weighted averages that minimize Rs have been discussed from other points

of view by Wolfenden (1925), Schoenberg (1946), and Greville (1966, 1974b).

Also deserving of special mention are the averages (exact for cubics) that

minimze R, sometimes called "formulas of maximum weight" or "Sheppard's ideal"

formulas. These are sometimes applied to physical measurements when the errors

of observation can be regarded as random "white noise" (see discussion of "re-

duction of error" in Section 10). The weights are given by

. = 3(3m2 + 3m - 1) - 15 2
C. -n
3 (2m - 1)(2m + 1)(2m + 7) *

Weighting coefficients c. and extension coefficients a. for minimum-RSJ 3
(Henderson's ideal) averages of 5, 7, ..., 23 terms are given in Table 2.

10. COMPARISON WITH OTHER METHODS. PRACTICAL CONSIDERATIONS

If a symmetrical MWA exact for the degree 2s - 1 is being used to smooth

the main part of the data, it can easily be deduced, either from the extension

algorithm described in Sections 3 and 8 or from the matrix formulation of

Theorem 5.1 that the unsymmetrical weightings proposed for smoothing the first

m and the last m observations are exact only for the degree s - 1. Por

example, all the averages represented in Tables 2 and 3 with the exception of

Hardy's are exact for cubics, and therefore their extensions to the ends are

exact only for linear functions. Hardy's weighted average is exact for linear

functions and its extension only for constants.

The Whittaker process has a similar property. At a sufficient distance

from the ends of the data, polynomials of degree 2s - 1 are "almost" re-

produced by that process. In support of this rather loose statement the fol-

lowing heuristic argument is advanced. For the Whittaker process
T ( -l" -

G U + gK TK) -- I- gGX K.

Thus, if y is the vector of observed values, the vector of corrections to

these values is

-gGK TKy.

amid . .. ...... .



,T
Now, the nonzero elements of K K, with the exception of the first s and

the last s rows, are binomial coefficients of order 2s with alternating

Tsigns. Therefore the components of K Ky, except for the first s and the

last s , are (2s)th differences of those of y (or their negatives if s is

odd). Thus, if y is a vector of equally spaced ordinates of a polynomial

of degree 2s - 1, KT Ky is a vector of zeros except for the first s and

the last s components. The components of GKT Ky are graduated values of

Tthose of K Ky, and therefore should be very small at some distance from the

extremities of the data. Finally, multiplication by g , even though g is

typically large, should give small corrections at a sufficient distance from

the ends of the data.

Some users may consider the reduction in degree of exactness near the

ends a disadvantage of the natural method of extension. Before I became aware

of the natural method, 7 had proposed (Greville 1974a) a different method of

extension (already mentioned in Section 2) that does not have this particular

disadvantage (though it has other shortcomings). This involves extrapolation

by a polynomial of degree 2s - 1 fitted by least squares to the first m + 1

observations. A similar polynomial is fitted to the last m + 1 observations

for extrapolation at the other end of the data. There may be a gain in sim-

plicity by using a single method of extrapolation for all symmetrical weighted

averages, so that the extrapolated values depend only on the number of terms

in the main formula. However, there is a loss in that the extension method

is no longer tailored to the particular symmetrical average used.

Like the natural method of extension, the method using extrapolation by

least squares can be collapsed into a single matrix G . When this is done,

the band character of the smoothing matrix is maintained, but the symmetry is

lost. Though the matrix approach is less convenient for computational
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UMOP. . . -

purposes, the differences between the two methods are best elucidated by

comparing the first m rows of the respective matrices G . This is done

in Tables 4 and 5 for the case of the 9-term "ideal" formula. Here m = 4,

but for convenience the fifth row is also shown. Its elements would be re-

peated in the subsequent rows, moving successively to the right, until we

come to the last four rows. While an average of as few as 9 terms would sel-

dom be used in practice, this is a convenient illustration.

As previously indicated, the first m and the last m rows of G may

be regarded as exhibiting unsymmetrical weighted averages which are to be

used near the ends of the data to supplement the symmetrical average used

elsewhere. The coefficients that appear in the last m rows are the same as

those in the first m rows, but the order is reversed, both horizontally and

vertically. It should be noted that the coefficients in the supplemental

averages depend only on those of the underlying symmetrical average. They do

not depend on N , the nmber of observations in the data set (which is the

Order of G ).

The coefficients in the supplemental weighted averages based on least-

squares extrapolation, exhibited in Table 5, show two undesirable features.

These are negative coefficients of substantial numerical magnitude, and suc-

cessive waves of positive and negative coefficients as one proceeds from left

to right along the rows. The number of such waves would increase as the num-

ber of terms in the underlying formula increases.

In striking contrast is the character of the coefficients of the natural

extension. Like the coefficients in the underlying symetrical formula, each

row exhibits A peak in the vicinity of the main diagonal of the matrix, taper-

ing off to a single group of negative coefficients of reduced size near the

edge of the band.
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In the least-squares method only a very small correction is made tj tb

initial observed value. The corresponding correction in the natural methc

is more substantial.

The "second-difference correction" is the coefficient of the second-

difference term when the formula is expressed in terms of increasing orders

of differences in the form

ux =yx+CA 2 Y x-h + ° "u =y y+c

The coefficient c does not depend on the subscript x - h, in which there

is some freedom of choice. For the formulas based on least-squares extra-

polation, which are exact for cubics, the fourth-difference correction is

similarly defined.

Some writers (Miller 1946; Wolfenden 1942; Greville 1974a) have regarded

the observed values y as the sum of "true" values U and superimposedx x
random errors e . If it is assumed that the errors e for different x

x x
2

are uncorrelated, and have zero mean and constant variance a for all x

then the variance of the error in the smoothed value u is R2 0 , where R2
x 0 0

is obtained by taking s - 0 in (9.4). Thus, R may be interpreted as theo0

ratio of reduction in the standard deviation of error that results from appli-

cation of the weighted average.

While the assumptions underlying the preceding analysis may be ques-

tioned, nevertheless a good case can be made that, for any weighted average,

R should be less than unity. Since R2  is the sum of the squares of the
0 0

coefficients in the average, R can never be less than the maximum of the0

absolute values of the coefficients. Thus, an average cannot be considered

satisfactory if the absolute value of any coefficient is equal to or greater

than unity.
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When the graduation is extended to the extremities of the data, these

remarks apply not only to the main formula but also to the unsymmetrical for-

mulas to be used near the ends. Tables 4 and 5 illustrate the fact that there
I

is a strong tendency for R to become large as we approach the extremities

of the data.

In this connection, the natural extension has an important optimal prop-

erty. Let us suppose that the main formula is given and satisfies the general

hypotheses of Theorem 5.1. That is, it is symmetrical, qo > 0 , and q(z)

has no zeros on the unit circle. Further we suppose that c > -1. The latter0

assumption is not a strong one; a negative value of c is most unusual in
0

any case, and we have previously stated that an average is not satisfactory

if the absolute value of any coefficient is equal to or greater than unity.

In addition we assume that G is symmetric and has properties (1) to (4) of

Theorem 5.1. As we shall see in Section 11, there are cogent reasons for

thinking that G should be symmetric.

Under these conditions we have seen that in general there are a number

of possible choices of the polynomial A(x). It will be shown that R for

the top row of G is smallest when A(x) is chosen in the unique manner pre-

scribed by Theorem 5.1.

Since G is symmetric and qo > 0 , the coefficients of A(X) and B(x)

can be normalized so that B(x) - Ax). Using the notation of Sections 7 and

8, let
m

x) - (x- 1)s A x) 1 0 xj

Then, the middle weight of the MWA is one minus the constant term in the ex-

pansion of i(x) i(l/x), or in other words,
m

.. 'l.. . . .. (10.1)
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Now, since 00 a , the nonzero elements in the top row of G are, suc-

cessively, 1 -0 -a a "a a . Therefore, R2 for this
0 o 1 I 0 -o m 0

top row is given by

R2 - 1 - 2a2 + a 2 S l - 2 (1 + c ), (10.2)
0 0 0 0 0

where S denotes the summation contained in (10.1). Now, let r, r2, ... ,

r denote the zeros of A(x), so that
m-s m-s

A2) W a T (x- r.)

and let
A = (-1)m+1 l~ .

is rj
j-1

Then,

a =A , a rn-s
o -s m m-s

, 2 2 2 2C =-a a =A , a0 -A 0L
m O m rn-S M-S

A2
so that a 0 Ac , and (10.2) becomes

o rn

R2 - 1 - Xc (1 + c )
o m 0

In this expression, c and c are given; A is the only variable. More-o m
-2

over, Ac = a is positive, and 1 + c is positive, since c > -1.
m 0 0 0

2
Therefore R is smallest when IJ is largest, which is clearly the case

0

when the zeros of A(x) are the m - s zeros of q(x) that are largest in

absolute value, namely, those outside the unit circle.

Thus the smoothing matrix G of the natural extension would still be

uniquely determined if, in Theorem 5.1, we replaced property (5) by the re-

quirements that G be sysmetric and that R°  for the top row of G be as

small as possible subject to the other conditions imposed. It appears that

the requirement that G be syietric can be dropped if stronger conditions

are imposed an q(z), but the algebraic onplication of the proof is greatly

increased.

As indicated in Section 9, it has lon been custcoary to regard a gradua-

tiou as smooth if the third differences of the graduated values are small in
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absolute value. If G - (gij), we have
N

%P+i-il j 9ij YP~j-1 °

and therefore
NAs  As

AUp+i-i = YP+j-A i gij (10.3)
j=l - i

where the subscript of A indicates that the differences are taken with re-

spect to i (i.e., down the columns of the matrix). If one avoids the corner

submatrices, the nonzero elements g ij in (10.3) are merely coefficients in

the underlying symmetrical average, and (10.3) reduces to (9.3). This was

the rationale underlying the derivation of the minimum-R averages.
s

Of course, if G is symmetric, it makes no difference whether the dif-

ferences are taken horizontally or vertically. When the symmetry of G is

not assumed, care must be exercised. Many years ago (Greville 1947, 1948) I

published what purported to be coefficients in supplemental averages to be

used near the ends of the data in conjunction with minimum-R3 and minimum-R4

symmetrical averages. The symmetry of G was not assumed, and I made the

error of deriving the unsymmetrical coefficients by minimizing their third and

fourth differences taken horizontally. The tables in question are therefore

based on an incorrect assumption. Further it may be mentioned in passing that

in the 1947-8 formulation the diagonal band character was not maintained,

since the supplemental averages contained the full 2m + 1 terms.

Table 6 shows, for the natural and least-squares extensions of the 9-term

minimum-R 3 formula, those third differences of the matrix elements, taken

vertically, that involve elements of the first five rows. The entries in the

fifth row of Table 6 would be repeated in subsequent rows, moving successively

to the right. Casual inspection of the table shows that the third differences

are numerically smaller for the natural extension. All of these third differ-

ences are less than 0.14 in absolute value. Two of those for the least-squares
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extension exceed 0.7 in absolute value.

It is instructive to compare the natural extension with the least-

squares extension for the numerical example of Section 3. Though neither

extension is recommended for use when additional data are available beyond

the range of the original data set, nevertheless it may be of interest,

purely for purposes of illustration, to choose a numerical example in which

such additional data are available, and this has been done.

Table 7 and Figures B and C complement Table 1 and Figure A, showing,

for the first seven months of 1967 and the last seven months of 1971, the

observed values of precipitation in Madison, Wisconsin, and the graduated

values obtained by i) natural extension of Spencer's 15-term average,

(ii) least-squares extension of the same average, and (iii) use of additional

data. It will be noted that the least-squares extension is strongly con-

strained toward each of the two terminal observations (January 1967 and

December 1971). This may be explained by the fact that all the values yX

in (1.2) that entered into the calculation of these graduated values are in-

cluded in either the m + 1 observations to which the least-squares cubic

was fitted or the m extrapolated values obtained from the same cubic. On

the other hand, the natural extension and the least-squares extension are very

close together at the interface with the graduated values calculated in the

standard manner. Thus, for the months of July 1967 and June 1971, all but one

of the values y entering into the computation (1.2) are identical for the

two methods.

For the months closer to the interface the graduated values obtained by

introducing additional data are close to those of the natural extension. This

is because the supplemental unsymmetrical averages produced by the natural ex-

tension (unlike those of the least-squares extension) give relatively small
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weight to the observations more remote from the one being graduated (as does

the underlying symmetrical formula). For example, the values for the natural

extension and those obtained by the use of additional data are indistinguish-

able in Figure B for April to July 1967. In the last months of 1971 the devia-

tion is greater because the first two months of 1972 were exceptionally dry.

This could not have been predicted from the data for preceding months.

Table 8 gives certain parameters for the various symmetrical weighted

averages that have been mentioned previously. The column headed "Error" re-

quires explanation. This is the error committed when the formula in question

is used to "smooth" a polynomial of degree 4 . This naturally tends to in-

crease with the number of terms in the formula. Both R and R tend to

0

decrease with increasing number of terms. Though the "ideal" formulas have

been derived to minimize R3 , they tend to produce small values of R as
0

well. In only one instance (Vaughan) does a "name" formula have a smaller

R than the "ideal" formula of the same number of terms. The late Hubert
0

Vaughan was a remarkably keen analyst of MWA smoothing.

It may be mentioned in passing that some writers (e.g., Henderson 1938)

call the reciprocal of R the "weight" and the reciprocal of R3 the
03

(smoothing.) "power."

11. THE STABILITY THEOREM

Schoenberg (1946) defined the characteristic function of the MWA (1.2)

as

W(t = m c eijt

For a symmetrical MWA this is a real function of the real variable t , and

can be expressed in the alternative form
M

*(t) T Z coo jt

It is periodic with period 2w and equal to unity for t - 2wn for all
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integers n

The effect of MWA's in eliminating or reducing certain waves has been

noted (EIphinstone 1951; Hannan 1970). If the input to the smoothing process

is a sine wave, which may be represented in the form

yx = C cos(rx + h) , (11.2)

it can be shown by simple algebraic manipulation that

ux = y @ (2w/w)

where w = 2n/r is the period of yx . Thus, if 0(21t/w) = 0 , the wave is

annihilated by the smoothing process; the amplitude is severely reduced if it

is close to zero. Thus MWA smoothing is related to the "filtering" processes

considered by Wiener (1949) and others.

Schoenberg (1946) defined a smoothing formula as an MWA whose character-

istic function O(t) satisfies the condition

10(t)l < 1 (11.3)

for all t. Thomde (1965) calls (11.3) "von Neumann's condition" without,

however, citing any specific publication of von Neumann. Later Schoenberg

(1948, 1953) suggested the stronger condition

lj(t)l < 1 (0 < t < 20. (11.4)

Lanczos (see Schoenberg 1953) pointed out that (11.4) is obtained by requiring

that every simple vibration (11.2) be diminished in amplitude by the transfor-

mation (1.2). The results of Section 5 of the present paper suggest an alter-

native definition of a smoothing formula. Using the subscript N to empha-

size the fact that the order of G is the number of observations in the data

set, we shall say that an extension of (1.2) by means of a smoothing matrix

G is stable if the limit

GN - lim Gn
N N

exists for all N . Schoenberg (1953, footnote 3) suggested a relationship
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between (11.3) and the conditions for existence of the infinite power of a

matrix (Oldenburger 19401 Dresden 1942), but he did not elaborate the connec-

tion. In the theorem of this section we shall attempt to do so.

In Section 7 we promised to justify the hypothesis in Theorem 5.1 that

q > 0 by showing that if the characteristic function of a symmetric MWA

satisfies (11.3) and q(z) has no zeros on the unit circle, then q0 > 0

Consider the real function

(t) 1- (t) (11.5)

and note that (11.3) is equivalent to

0 < 4Q(t) < 2 (11.6)

for all t. From (3.1), (3.2), and (11.1) it follows that

s 2s it 2it*(t) - (-l) (2i sin it) q(ei) - (4sin2 4t) s q(et), (11.7)

itand therefore (11.6) implies that q(ei ) is nonnegative for 0 ' t 2r. In

fact, it is positive, since q(z) has no zeros on the unit circle, and by

continuity it is positive for t - 0 as well. In other words, q(l) 0

Now let the polynomials A(x) and B(x) be chosen so that q(x) - A(x) B(l/x)

and the zeros of B(l/x) are the reciprocals of those of A(x). This is alway -

possible because of the symmetry of the coefficients of q(x). Moreover, the

coefficients in those polynomials can be normalized, as in the proof of Theorem

5.1, so that (7.1) and (7.2) hold, and therefore

2
q(l) - ±[A(l) 2

Since q(l) is positive, the positive sign holds in (7.1) and (7.2), and con-

sequently qo > 0 .

Before stating the theorem that elucidates the relationship of condition

(11.3) to the smoothing matrix G , we need to describe certain results pub-

lished elsewhere that will be used in the proof. In a recent paper (Greville

1980) 1 have studied bounds for eigenvalues of Hermitian Trench matrices
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(which become symmetric Trench matrices when the elements are real).

polynomials that characterize a real symmetric Trench matrix H are A(x)

and B(x) of degree h , we have seen that the coefficients can be normaliz'V

so that either B(x) = A(x) or B(x) = -A(x). If the minus sign holds, one

can consider the symmetric Trench matrix -H. It is sufficient, therefore,

to consider the case in which B(x) = A(x).

Let A(x) be given and consider the family of symmetric Trench matrices

HN of order N (N > 2h + 1) characterized by A(x) and B(x) - A(x). Let

GN = I - HN,

where p is a positive constant, and let

h(x) - A(X) A(l/x).

Then it is shown that h(x) is real and nonnegative on the unit circle, and

has a maximum thereon, which we denote by M. Then Corollary 1 of the cited

paper states that the limit GN exists for all N if and only if

< 2/M

and no zero of A(x) is inside the unit circle unless it is also a zero of

A(l/x). A particular application of Lemma 1 of the same paper yields the

result that if D is a Trench matrix characterized by the polynomials A(x)

Tand B(x), then K DK (with K defined as in Section 5) is a (singular)

5Trench matrix characterized by the polynomials A(x) = (x - 1) A(x) and

B(x) - (x - 1)s B(x). For convenience in the proof of the theorem that fol-

lows, we shall refer to Corollary 1 and Lemma 1 of the paper cited as merely

"Corollary 1" and "Lemma 1."

Theorem 11.1. Let a symmetrical MWA (1.2) be given and let the asso-

ciated smoothing matrix GN  for all N > 2m + 1 be symmetric and have

properties (1) to (4) of Theorem 5.1. Then the family of matrices GN in

stable if and only if (11.3) holds and the polynomial A(x) associated with

the matrix D has no zero inside the unit circle.
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Proof. From the hypotheses stated in the first sentence of the theorem

we can deduce certain properties of the matrices F and D by reasoning

similar to that used in the uniqueness part of the proof of Theorem 5.1.

First we note that the hypotheses of the present theorem differ slightly from

those of Theorem 5.1. We have added the hypothesis that G is symmetric,

and have omitted the restrictions on q(x). However, the reader should note

carefully that the latter omission is occasioned only by the fact that these

restrictions are implied by the symmetry of G in conjunction with other hypo-

theses. The symmetry of G implies that of F . As the rows of K are lin-

early independent, it has full row rank and therefore has a left inverse, say

L (see Ben-Israel and Greville 1974, Lemma 1.2). Therefore,

LT FL = L KT DKL = D

and consequently D is symmetric.

As in the uniqueness part of the proof of Theorem 5.1, it follows from

property (4) that D is a nonsingular Trench matrix. If it is characterized

by the two polynomials A(x) and B(x) of degree m - s, then

q(x) - A(x) B(1/x)

as in the earlier proof. As D is real and symmetric, the coefficients in

these polynomials are real and can be normalized so that

B(x) - ±A(X). (11.8)

As we have omitted the hypothesis that qo > 0 , some ambiguity remains about

the sign of the right member of (11.8) until further hypotheses are introduced,

and we have

q(x) - ±A(x) A(l/x). (11.9)

Now, the symmetry and nonsingularity of D and the requirement that

A(x) have real coefficients imply that q(x) has no zeros on the unit circle.

As we have seen, symmetry of D implies (11.9), and nonsingularity implies
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(Greville and Trench 1979) that A(x) and A(1/x) have no common zero. Now,
-i

if q(x) has a zero on the unit circle, say x , then x is also on the

unit circle, so that A(x) must have a zero on the unit circle; call it p

Then p is a zero of A(l/x), and is a zero of A(x), since A(x) has

real coefficients. But ; therefore A(x) and A(l/x) have a common

zero. Thus the supposition that q(x) has a zero on the unit circle is false.

Now, suppose that (11.3) holds and A(x) has no zeros inside the unit

circle. Then it follows from the discussion following (11.7) that the posi-

tive sign holds in (7.1) and (7.2), and therefore in (11.9). By Lemma 1, F

is a singular Trench matrix characterized by the polynomials

A(x) - B(x) - (x - 1) s A(x) (11.10)

Let

f(x) -iA(x) i(l/x) - (x 1 2 - 1/2)2s q(x).

Then,

it
Let H dente the 4(t) f f(e ) 1.1

Let M denote the maximum value of f(x) on the unit circle. Then by (11.6)

M ' 2, or

1 < 2/m. (11.12)
Consequently, by Corollary 1, the family of matrices GM is stable.

Conversely, suppose that the family {GN} is stable, in addition to the

hypotheses in the first sentence of the theorem. Since GN  is symetric,

its eigenvalues are real, and stability implies (oldenburger 1940; Dresden

1942) that all its eigenvalues are in the half-open interval (-1,1). In

other words, all the eigenvalues of FN  are in (0,2) for all N. Now, if

v is an arbitrary column vector of real elements, it is well known that the

minimum value of the Rayleigh quotient vT Fv/v T v is the (algebraically)
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smallest eigenvalue of F . Suppose the minus sign holds in (11.8) and let

v be the unit vector with 1 as its first element and all the other elements

0 . By (11.10), the constant term of i(x) is (-l)s 6o, and the Rayleigh
2

quotient is -a , which is negative since a # 0 by the definition of a0 0

Trench matrix. Thus, F has a negative eigenvalue, in contradiction to the

statement that all its eigenvalues are in (0,2). Therefore the supposition

that the minus sign holds in (11.8) is false.

Since the positive sign holds in (11.8), F belongs to the class of mat-

rices to which Corollary 1 applies. Thus stability of the family GN implies

that A(x) has no zero inside the unit circle unless it is also a zero of

A(l/x). But a common zero of A(x and A(l/x) would imply that D is sin-

gular, which would contradict property (4). Therefore A(W) has no zero in-

side the unit circle. Stability implies further that (11.12) holds, where M

is defined as before, and this implies in turn that M < 2, which, in view of

(11.11), is tantamount to (11.6) and therefore to (11.3). 5

It is easily verified that G , when it exists, is the orthogonal pro-

jector on the eigenspace of G associated with the eigenvalue 1 , that is

the space of N-vectors whose components are successive equally spaced ordi-

nates of polynomials of degree s - 1 or less.

There is a curious unsolved mathematical problem concerning the stability

theorem. It will be recalled that the symmetry of G was not included in the

hypothesis of Theorem 5.1. Rather this was a consequence of the general hypo-

theses and the five defining properties. However, in Theorem 11.1 the sym--

metry of G is hypothesized. While symmetry of the main part of G follows

from the symmetry of the coefficients in the main formula and properties (1)

to (4), the special corner submatrices are not symmetric unless A(x) is

chosen so that 9(x) - A(x). When the characteristic function of the given
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MWA satisfies (11.3), we might wish to replace property (5) by the i -

ment that the family GN be stable, and still hope to have G uniquely

determined. At present this appears to require the additional hypothesis tht -

G be symmetric, because tlh proof of stability (Greville 1980) involves ex-

tensive use of the well known relation between Rayleigh quotients and eigen-

values that holds only for Hermitian (including symmetric) matrices. If

q(z) has a number of zeros (none, we assume, on the unit circle), there are,

in general, some possible extensions with unsymnetric corners. I conjecture

that there is, in such a case, no unsymmetric stable extension, but I have not

been able to prove this; nor have I been able to find a counter-example to the

conjecture. Thus the possibility exists (though I think it unlikely) that

some symmetrical MWA (with qo > 0 and no zeros on the unit circle) might

have more than one stable extension, the unique symmetric one and an unsym-

metric one as well.

It may be mentioned, however, that there are cogent reasons for thinking

that G should be symmetric. A square matrix is called persymetric if it is

symmetric about its secondary diagonal. It is called centrosymmetric if it is

symmetric about the center of the matrix: thus C - (c ) is centrosymmetricii

if c.. = c for all (i,j). Now, it is easily seen that of the
13 N-J+l,N-i+l

three properties of symmetry, persymmetry, and centrosymmetry, any two imply

the third. G is necessarily persymmetric, because G - I - F, where F is

a Trench matrix, and every Trench matrix is persynmetric (see Greville and

Trench 1979). Therefore, if G is not symmetric, it is not centrosymmetric.

Now, if G is not centrosymmetric, this means that reversing the order of the

observed values would not merely reverse the order of the smoothed values, but

would cause different numerical values to be obtained. For example, the ele-

ments of the bottom row of G would not be those of the top row in reverse
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order. The formula for smoothing the last observation would not be the mirror

image of the one for smoothing the first observation, but would be a different

formula. This would seem to be an undesirable characteristic of the smoothing

process.

12. SMOOTHING FORMULAS IN THE STRICT SENSE AND AN OPTIMAL PROPERTY

Under certain conditions the smoothing procedure described herein can be

shown to minimize a certain "loss function" analogous to the Whittaker crite-

rion. In a slightly more general form of the Whittaker smoothing method

(Greville 1957) one minimizes the sun of the squares of the departures of the

smoothed values from the observed values plus a specified quadratic form in

the sth differences of the smoothed values. In matrix terms, one minimizes

(u - y) (u - y) + (Ku) HKu , (12.1)

where H is a given positive definite matrix of order N - s. Minimization

of this expression leads to the equation

(I + KT HK)u = y

which has a unique solution for u since I + KT HK is positive definite.

I showed (Greville 1957) that this graduation method has the interesting prop-

erty that if roughness (opposite of smoothness) is measured by the term

T(Ku) HKu, smoothness is always increased by the graduation. By Theorem 5.22

of Noble (1969),

T -1 T -1 T -1
(I + HK) - -K(H + KK K.

The last expression is of the form (5.2) and suggests that the use of an MWA

with the natural extension might be regarded as a generalized Whittaker

smoothing process if

D = (H + KKT)

Solving for H gives

H (D - KKT)- . (12.2)
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We are led to inquire, therefore, under what conditions an MWA is such

that the right member of (12.2) for the natural extension is positive definite

for all N . We note in passing that

--1 -l KKT

is a Toeplitz matrix.

Schoenberg (1946, p. 53) remarks that it is desirable for an efficient

smoothing formula, one that achieves adequate smoothness without producing

unnecessarily large departures from the observed values, to have its charac-

teristic function satisfy the stronger condition

0 < *(t) < 1 (12.3)

for all t . This remark seems to have been little noted in the years since

its publication. We shall call an MWA a smoothing formula in the strict

sense if its characteristic function satisfies (12.3).

Lemua 12.1. Under the natural extension of a given MWA, D"1 - KKT is

nonsingular if and only if G is nonsingular, and H defined by (12.2) is

positive definite if and only if G is positive definite.

Proof. If

G - I - K7 DK, (12.4)

as in (5.2), then by Noble's theorem

-I T -1 T -1
G -I + K(D K) K (12.5)

provided G and D are nonsingular. Under the natural extension, D is

always nonsingular by property (4). In the procf of Noble's theorem, the

nonsingalarity of D7I - KKT is shown to follow from that of G and D

an the other hand, if D"I - K T is nonsingular, multiplication of the right

members of (12.4) and (12.5) gives the identity. This proves the first

statement of the lemma.
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Now let H be positive definite. We have shown that

G- I+ K HK.

Then, if v is an arbitrary nonzero real vector,

vT G- v = v v + (Kv)T HKv. (12.6)

The second term of the right member of (12.6) is nonnegative, since H is

positive definite, and the first term is positive. It follows that G

and therefore G , is positive definite.

Conversely, let G be positive definite. Applying Noble's theorem to

(12.2) gives

T -1 T -1 T
H=D+DK(I-K DK) K D =D+DKG K D.

Now, we note that under the natural extension D is positive definite

(Greville 1980, Theorem 1), since all the zeros of A(x) are outside the unit

T
circle. Thus, the same argument used previously shows that vT Hv > 0 for

every nonzero real vector v , and so H is positive definite. U

Theorem 12.2. Under the natural extension of a given MWA, H is posi-

tive definite for all N if and only if *(t) satisfies (12.3).

Proof. By Leuma 12.1, H is positive definite if and only if G is

positive definite; therefore we need consider only the positive definiteness

of G . we recall that G = I - F , where F is a singular, symmetric Trench

matrix characterized by two identical polynomials equal to A(x). Since all

the zeros of A(x), with the exception of +1 , are outside the unit circle,

F is positive semidefinite (Greville 1980, Theorem 1), and if

f(x) - A(x) (l/x),

then

M(t) - f (it) - IA(eit)1 2

is nonnegative for all t . Let N denote the maximum of *(t).
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Let 0(t) satisfy (12.3). Since 0(t) - 1 - V(t), it follows Lhat

0 < W(t) < 1 (.2 7)

for all t . Therefore M < 1 , and it follows (Greville 1980, Theorem 2)

that for all N all eigenvalues of F are nonnegative and less than unity.

Since the eigenvalues of G are 1 minus those of F , all of the former are

positive for all N , and therefore G is positive definite for all N

Conversely, let G be positive definite for all N . Then all its eige

values are positive for all N, and consequently those of F are less than

unity (but not less than zero, since F is positive semidefinite). Since M

is the limit of the largest eigenvalue as N approaches infinity (Greville

1980, Theorem 2), M < 1. Therefore (12.7) holds, and it is equivalent to

(12.3). a

It is easy to construct an MWA that is a smoothing formula in the strict

sense. However, none of the weighted averages in common use fall in this

class. As a practical matter, the smoothing effected by such formulas is

likely to be too "gentle." In particular, using the properties of Jacobi

polynomials, I have shown elsewhere (Greville 1966) that the characteristic

functions of all minimum-R averages assume negative values in (0, 2).5

Thus no such formula is a smoothing formula in the strict sense.

There is, however, one family of moving averages, mentioned in the liter-

ature but not in general use, that are smoothing formulas in the strict sense.

This is the limiting case of the minimum-R formulas as s approaches infin-
5

ity (Greville 1966). In finite-difference form, the minimum-R MA of

2m + 1 terms, exact for the degree 2s - 1 , is

u x - 2(m-+) l (-4) J(m S ) 6 2j YX
J0O

where the operator p is defined by

lif (x) - [f(x + ) + f(x

so that V2 = 1 + 6 2. The characteri-tic function is
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2(m--slj

*(t) - (cos it) 2 (m (m+ )  (..) s i n 2 t,

i1a

which is nonnegative in 0 < t < 2w, with a single zero of multiplicity

2(m - s + 1) at t = ..

It may be mentioned that, in the case where W(t) assumes some negative

values (and G and H are nonsingular), though the expression (12.1) does

not have an extremum, the natural extension of the graduation does corre-

spond to a saddle point of (12.1). It is not clear what significance this

observation may have.
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1. lothly Precipitation (Inches), Madison, Visconsin, 1967-71.

Observed Graduated Observed Graduated
year am month Value Value Year and Mouth Value Value

_ - - - m mm

1967 January 1.63 1.1 1969 July 4.28 3.81
February 1.17 1.63 August o.96 3.1?
March 1.49 2.24 September 1.35 2.33
April 2.5? 2.88 October 2.65 1.56
Nay 3,53 3.42 November 0.70 1.o6
June 6.46 3.74 December 1.66 0.82
July 2.51 3.85 1970 January o.44 0.90
August 2.71 3.75 February 0.16 1.25
September 2.68 3.42 March 1.1? 1.78
October 5.52 2.92 Awll 2.53 2.39
November 1.83 2.31 May 6.09 2.94
December 1.89 1.69 June 2.26 3.37

1%68 January o.56 1.31 July 2,462 3.63
February 0.49 1.36 August 0.9 3.69
March 0.59 1.8? September 8.82 3.50
April 4.18 2.69 October 2.65 3.20
mhy 2.02 3-" November 1.06 2,74
June ?.82 3.91 December 2.12 2.28
Juy 2.54 3.92 1971 January 1.48 1.94
August 2.58 3.511 February 2.59 1.76
eptember 4.45 2.97 March 1.252 1.74

October 0.85 2.45 April 2,2 1.81
November 1.7 1.99 Nay 0.98 1.93
December 2.89 1,64 June 2.27 2.02

969 January 2.26 1.56 July 1,65 2.13
February 0.18 1.81 August 3.96 2.24
Much 1.47 2,35 September 1.87 2140
April 2,72 3.13 October 1.30 2.63
thY 3.4 3.81 November 3.48 2.84
Ju4 7.96 *.05 December 3.64 3.28

$=Us3l Obsesrv values from U, S. Department of Commerco, National

Oeaie and Atmospheric Administration, Envirounmental Data Service,

14=2 Cl matolo-dial Data. Annual Summary with Comparative Data.

hlAlson. Vieconsin. 1972, National Climstia Center, Asheville, N. C.,

-1973.
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2. Noriag-Aerage C..fflalrnLsa(aj and fttenalam

Coefficients (a~ of Niniama-R, (N'Hndrson's Ideal')

Avezages of 5 to 23 Term Exact for Cubics

Wumber of Terms
V9 n1 23

3~a 3  c3  & & £i & S

0 .5594*40 .141258M .331140 .2779441 .24W358

1 929370 2 .2937o6 i.6isoy. .266557 1.352613 .238693 1.160811 .214337 1.0M6301

2 -. o73126 -1 .058711 -. 236068 .8470 *n4696 .141268 .281079 .147356 .360880

3 -. 06741 -. 381L966 -. 009873 -.28M231 .035723 -. 140968 .0651492 -. 021625

41 m.424 -.180078 -.026792 -. 204545 0 -. 160909

5 -.027864 -909637? -. 027864 -. 138330

6 -. 019350 -. 056317

aftloulated by foruula (9.5).
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2. Noving-Averago Coeffllentsa (j) aM Extension

Coefflcients (aj) of Nlnimua-R3 ('"enderson's Idel")

Aweges of 5 to 23 Terms Exact for Cubic& (continued)

Number of Terms

15 17 19 21 23

.1 C Lj Cj L C1  ,L1  C1  ,L] Ci ,Lj.

0 .211542 .189232 a17266 .1562170 .1*4"0

1 .193742 .903661 .176390 .813444 .161691 .739580 .149136 .678000 .138318 .625880

2 .151590 .397295 .141112 .410885 -134.963 .412090 .128123 .406195 .1219419 .397207

3 .082918 .06.4731 .092293 .124932 .096658 .166162 .097956 .193174 .097395 .212501

4 .024028 -.100710 .042093 -. 0434356 .0541685 .00509? .063038 904.6016 .068303 .075236

5 -.014134 -. 1354425 .002467 -. 1106442 .017474 -. 078255 .029628 -. 04.6290 .038933 -. 015313
6 -. 0299 -. 09W4 -.01M86 -. o62123 -.0o815 -. 099972 .oo119 -. 0840 .301343 -.06327

7 -. 013730 -. 035128 -. 020370 -. 065896 -. 018972 -. 081843 -. M2896 -. 084711 -.0049 8 -. 0?8737

8 -. 009961 -. 023052 -.016601 -. 0471O3 -. 017614 -. 063086 -.014527 -. 070064

9 -. 007378 -.015756 -. 13455 -. o." -. 0M568? -. 048977

10 -@003370 -.011134 -.010918 -. 025714

11 -. OOOM8 -. 008092

a
Calculated by forma (9.5).
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3. Koving-Average Coeff Icient (cj) eM Nxtension

Coefficlents (a3 ) of Solosted Moving Avoeros

Spencer

kecaulae lS-Termub Vea6ibmnm Huty Mighaa* Karup f

i 6c 3cA a A 1250. 1~ a l2001 al 12501 A 6 25c 3 a A

0 182 74 25 2J4 25 125

1 1i1 ,919760 67 .961572 24 .86JU08 22 .7988 24 .859550 114 .820240

2 12? .393023 46 .372752 21 AM218 17 .386211 18 .399283 87 A40924

3 72 .053273 21 .03.5904 7 .028721 10 .12432n 10 .08701.0 53 .111.622

4 17 -- 13111 3 -,123488 3 -. 076050 14 -. 023648 3 -. 072738 21 -. 047133

5 -17 -. 1401442 -5 -. 125229 0 -107285 0 -. 06oe7 0 -. 1045 0 -. 102.91

6 -19 -. 084512 -6 -,075887 -2 -092723 -2 -. 079459 -2 -- 093953 -8 -. 091791

7 -10 -. 029971 -3 -. 0256%24 -3 -. 059753 -2 -. 04932? -2 -. 035312 -9 -. 060239

a -1 -.016o03 -1 -. 019343 -6 -. 028636

9 -2 -. 007496

%mul~a 1931, p. 35 footaote 2.

lbfto€ul&y 1931, p. 551 leMmA.n 1938, p. 53.

1"ew',on 19%, p. 53.

%enimon 19%@ p. 331 Ieajain aM Raycocks 19?o, p. 238.

*ndmc 1938, p. 53.

MeterocAw 1938. P. 53-



3. Newin-Avor.e Coefficients (cj) and Etension
coefficients (aj) of Selected Moving Averages (coatinued)

Spe KarO I Vaughan 3  I

anwsrv g  21-To Vave-Cuttig Forma AJ  Kenchinton

,1OOS., a, 350o0 al 65c a1 144O.5 aA 385i ,A

0 1688 60 5 le a5

1 1579 ,70'.? ?47 5 , 24 5 -O0M96 179 ,593256 J 4 .52770

2 2325 ,A.06808.7 . 8 , 076 .368o 170 ,396M1 91 .370688

S950 o1799 3 ,1672M1 ? ,26790 19 230238 36 .236"5

1. 5A1 .0W15 18 .009253 7 .106506 115 .096761 30 .128638

5 225 -. 054586 6 -.069703 6 WM" 72 -.000657 22 .043118

6 -4 -,06371 -2 -. 091 3 4. -,ooe6 29 -.06oo6 13 -,8390

7 -12 . -. 256 -5 -. 076165 1 -. 0?545 -5 -. 063321 5 -. 053902

8 -135 -. 0"368 -5 -. 0051 -1 -. 097M8? -4 -,79 96 -1 -. 067080

9 -110 -o03L120 -3 -. O2502 2-o069O - -,056"2 -5 -. 0648"

10 -41 -012.428 -1 -,O6 03 -2 -,06=.6 -19 -. 0285P -6 -. 050323

-11 1 -.-014M -6 -,o0 95 -5 -,032035

12-3 -. 015626

13 -1 -. 00"

%amiew am Nesbitt 1965. p. 1s.

Swama 1931, P. sog Manwsm 1938, P. 53.

%3mjma amd Eapos 1970. p. 239.

u.4O m3. P. 1.37.
&Uin I m. 16,p. 53.

-52-



Ch 00 0

ii 0 001

* 0

PEI

114
* S



*
* 00 0

@ 000 0 0

A) C.. 0

'F'4 M4

-S4-



InI

0 S 00



T. b enlc of 15-Tern SPSe. Gradutio of NdlM Precipitation

hta to First Seven &M Last Seven Neathbo by Different 1ethods

Extension of Graduation by

Te and Observed Natural Least-Squares Additional
Ninth Value Mthad Cubl Data

1.63 1.11 1.62 1.56
Prbhur 1.17 1.63 0,.98 1,8.

. 1, 9 2,w 1.3? 2.29

AWUd 2,57 2,8 2.3 2.85

FAy 3.53 312 3.07 3.36

in646 3.4 3.61 340

J42 231 3065 38 3684

1971

aU 2.2? 208 2.00 2.05

July 1.65 2.3 203 2.23

Avgvst 3.96 2k2.02.39

Seloember 1.67 2,4o .9? ,.51

osoer 1.30 2.63 2.08 2,50

November 3,46 2,84 2.58 S.31

December 3.64 3.28 .3.85 2.0'.



m. lazneteas of the Symmetrical Voeghted Averages Listed In Tables 2 ad 3

Dignation of Tomn 0 3 cr

3Ia~mm- (Neder..'. Ideal)o 5 .7045 .2735 -. 0736

I ,59n. .n41.7 -.2%4

9 .5323 .051 -. 766
11 .6 .0331 -1576

33 .4515 .Gek -.886

15 *.234 M3 . 4.85e

Am.100 .003 7.56

it .J"0 .0066 -U.

t 3636 10048 -16.564

33 .M8 .067 -4.56
beuay 1 .. 27) .01657 ,,..S2

Spumoe. 15 .. 389 ,659 -3.866
Veslham I5 .1.c .0651 -5.81.

37 ."M .0 54 " .

17 Am Smos 1262 -i70

31..1? 1 12 .017 M".464i

amp ;.,9 ..40 M?. 8.4
n .iro .oo z -1..%,

S,371 o00626 -12."4

am*$, wave-out"m 33 o332 .a .2lo.832

~m A .31.15 .0,.05

I I3! ami -S7 -

,+ ! -57-i
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