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Tl No Eo 'creV’.lle

1';2‘ ation | Actual reading Correct reading

Page 19, bottom line, upper limit

of summation nts B~8
Page 24, equation (8,10) (<2)° e(-1)*®
Page 24, last displayed equation Q-J Q- j+1
Page 55, Table 6:

i=], 35=1 , -.000046 » 001040

i - 1' J = u -.m56 -00899¥

1 - 2' J - 1 0130190 -0073930

6n page 13 it would be desirable to replace the line following equation (5.3) 1
by the following:

converges in some part of the complex plane, (Note that it
follows from properties (1)-(4) that ty depends only on P
and is indeperdent of N.)
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ABSTRACT

The use of a symmetrical moving weighted average of 2m + 1 texrms to
smooth equally spaced observations of a function of one variable does not
yield smoothed values of the first m and the last m observations, unless
additional data beyond the range of the original observations are available.
By means of analogies to the Whittaker smoothing process and some related
mathematical concepts, a natural method is developed for extending the
smoothing to the extremities of the data as a single overall matrix-vector
operation having a well defined structure, rather than as something extra

grafted on at the ends.
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SIGNIFICANCE AND EXPLANATION )

1 The use of a moving weighted average of 2m + 1 terms to smooth

equally spaced observations of a function of one variable does not
yield smoothed values of the first m and the last m observations,
unless additional data beyond the range of thz original observations
are available. Using Toeplitz matrices, Laurent series, and analogies

i
to the Whittaker smoothing process, we develop a natural method of é
extending the smoothing to the extremities of the data. ;
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MOVING-WEIGHTED-AVERAGE SMOOTHING .
EXTENDED TO THE EXTREMITIES OF THE DATA

T. N. E. Greville

1. INTRODUCTION
A time-honored method of smoothing equallv spaced observations of a
function of one variable to remove or reduce unwanted irregularities is the
moving weighted ave:a.ge {MWA) . An example is Spencer's l5-term average

(Macaulay 1931; Henderson 1938), which can be expressed in the form

1
“x - -—-320(-3;1,‘_7 - Syx_s - Syx_s + 3yx -d + 21;("‘_3 + 46yx_2 + 675("__1

+ My, + 6Ty, 6y, 0+ 2y w3 ¥ Wyrg = Vs = Sy T W)

(1.1)
where Yy is the observed value corresponding to the argument x, and u,
is the corresponding adjusted value. Actuarial writers commonly refer to
such smoothing as “graduation."

More generally (Schoenberg 1946) a symmetrical MWA is of the form

1
u = (]
X ju-m

3 Yyey v 1.2)

where m is a given positive integer and the real coefficients cj are such
that ¢ , = c, and
575 -

c, =1 .
3-2-’

Such averages have a long history that is not widely known. One of the ear-
liest writers on the subject was the Italian astronomer G. V. Schiaparelli
(1866), who is remembered chiefly for his observations of the planet Mars.
Futher contributions were made by the Danish actuary and mathematician

J. P. Gram and the Danish astronomer T, N. Thiele, both of whom played major
roles in the early development of statistical theory. The majority of publi-
cations on this subject have appeared in English and Scottish actuarial jour-
nals starting with John Finlaison in 1829 (see Maclean 1913). Probably the
first writer to make a systematic investigation of such averages was the

American mathematician E. L. De Porest (1873, 1875, 1876, 1877). His work,
=

ponsored by the vu‘t. Army under Contract No. DAAG29-75-C-0024.

—_——i, NGy




- e iR o =

published in obscure places, was rescued from total oblivion largely through
the efforts of Hugh H. Wolfenden (1892-1968), who also made important cont:ri-
butions to the subject (Wolfenden 1925). E. T. Whittaker (1923) suggested an
alternative method of smoothing, which has been widely employed, especially
by actuaries, and will be referred to extensively later, because of numerous
analogies to the MWA procedure. The first writer to apply sophisticated
mathematical tools to the study of these averages was I. J. Schoenberg (1946,
1948, 1953), who introduced the notion of the characteristic function of an
MWA, and utilized it to formulate a criterion for judging whether a given
average can properly be called a "smoothing formula." This criterion will be

discussed in Section 1ll.

2. THE PROBLEM OF SMOOTHING NEAR THE EXTREMITIES OF THE DATA

When MWA's have been used by actuaries, the argument x is usually age
(of a person) in completed years. When they are used for smoothing economic
time series, x denotes the bosition of a particular observation in a time
sequence, The latter area of application appears to stem largely from the
work of Frederick R. Macaulay (1931), who was the son of an actuary.

In either case, a serious disadvantage of the method is that it does not
produce adjusted values for arguments too near the extremities of the data.
For example, suppose Spencer's l5-term average is used to smooth monthly data
extending from 1970 through 1976. The formula does not give smoothed values
for the first 7 months of 1970 or the last 7 months of 1976 unless data can
be obtained for the last 7 months of 1969 and the first 7 months of 1977.
Clearly, acquisition of data extending farther into the past is less of a prob-
lem than acquisition of future data.

Actuaries in North America seem to have largely abandoned “he use of

MWA's in favor of Whittaker's method, which does not have the di:adiantaqc
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described. It is likely that British actuaries may still use these averages

to some extent, They appear to be currently employed by economic and demo-

gt

graphic statisticians (Shiskin and Eisenpress 1957; Shiskin, Young, and
Musgrave 1967).

Various suggestions have been made (De Forest 1877; Miller 1946; Greville

1957, 1974a) for dealing with the problem of adjustment of data near the ex-

tremities, but none of them has won general acceptance. De Forest's (1877,

p- 110) suggestion is so relevant to the subject of the present paper that it
is worth quoting in full:

"As the first m and the last m terms of the series cannot be reached
directly by the formula (of 2m + 1 terms], the series should be graphically
extended by m terms at both ends, first plotting the observations on paper
as ordinates, and then extending the curve along what seems to be its probable
course, and measuring the ordinates of the ex*ended portions. It is not neces-
sary that this extension should coincide with what would be the true course
of the curve in those parts. The important part is that the m terms thus
added, taken together with the m + 1 adjacent given terms, should follow a
curve whose form is approximately algebraic and of a degree not higher than
the third.”

Elsewhere (Greville 1974a) I have proposed extrapolating the observed
data by fitting a least-squares cubic to the first m + 1 values and a similar
cubic to the last m + 1 observations. Though my proposal was made before 1 \
had noted the passage just quoted from De Forest, it is very much in the spirit
of his suggestion; it is not a long step from graphic to algebraic extra-
polation.

Another approach (Greville 1957) regards the adjustment process as a

matrix-vector operation. We write




u = Gy , (2.1)
where y is the vector of observed values, u is the corresponding vector
of adjusted values, and G is a square matrix. If a specified symmetrical
MWA of 2m + 1 terms is to be used wherever possible, then the nonzero
elements of G , except for the first m and the last m rows, are merely
the weights in the moving average, these weights moving to the right as one
proceeds down the rows of the matrix. In the first m and the last m rows
special unsymmetrical weights, determined in some appropriate manner, must be
ingerted. The matrix approach and the extrapolation approach are not wholly
unrelated, since the final results of the extrapolation approach can be ex-
pressed in matrix form.

It is the purpose of the present paper to show that when a given sym-
metrical MWA is being employed and fulfillscertain minimal requirements, there
is a natural, preferred method of extending the adjustment to the extremities
of the data, strongly suggested by the mathematical properties of the weighted :
average. This natural method of extension seems to have eluded previous
writers on the subject, as indeed it eluded me during the many years I have
thought about the matter. The preferred method of extension has the inter-
esting property that it can be arrived at either through the matrix approach
or the extrapolation approach. In the latter case, one must employ a special %
extrapolation formula uniquely determined by the given MWA. Though the two
approaches appear to be quite different, they will be shown in Section 8 to be
mathematically equivalent, and they will give identical results except for
rounding error. In the matrix approach the treatment of the values near the :
ends becomes an integral part of a single overall operation, and not something
extra grafted on at the ends. It is especially fitting that it should be

published now, since the centennial of De Forest's death occurs in the 1980's.
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In my own thinking I arrived at the procedure first through the matrix
approach, guided largely by extensive analogies to the Whittaker process
(which is most conveniently expressed in matrix terms). It was only later
' that I became aware that identical results could be obtained by means of an
extrapolation algoritﬁm. Though the matrix approach provides greater insight
into the rationale behind the procedure, the extrapolation apprcach is simpler

computationally. Therefore, we shall first describe and illustrate the extra-

polation algorithm, and shall then motivate and justify the procedure by means
of the matrix approach., This investigation has led to some interesting mathe-
matical developments (Greville and Trench 1979; Greville 1979; Greville 1980)

that have been published elsewhere in a more general context and will be cited

here as the need arises.
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The extrapolation approach is merely a computational short cut, and nearly
always the extended values obtained by its use are highly unrealistic if re-
garded as extrapolated values of the function under observation. (The reader
will note that the guotation from De Forest earlier in this section contains
a similar admonition.) This fact is irrelevant, but has seriously “turned
off” some users. Hereafter I shall therefore avoid the use of the words
"extrapolate” and "extrapolation," and shall speak of "extension," "extended
values,” and "intermediate values."

It is emphasized that the procedure to be described (or any other proce-
dure for completing the graduation) is recommended for use only when addi-
tional data extending beyond the range of the original observations are not
‘ available.

Probably some readers will be primarily concerned with the application
of the method to numerical data, and will have less interest in its mathe- !

matical development, Such readers will find the information they require in




the following Sections 3 and 4. on the other hand, readers who may wis: -

pursue the mathematical derivation first and leave computational details

later may skip Sections 3 and 4 and pass at once to Section 5,

3. THE EXTENSION ALGORITHM

A weighted average of the form (1.2) will be called exact for the degree

r if it has the property that, in case all the observed values yx-j in (1.7

should happen to be the corresponding ordinates of some polynomial P(x - j)
of degree r or less, then

uo=y = P(x) ,
but there is some polynomial of degree r + 1 for which this is not the case.
In other words, an average that is exact for the degree r reproduces without
change polynomials of degree r or less, but not in general those of higher
degree. If the weights are symmetrical, r must be odd, and we may write
r =2 -1, This implies that r < 2m + 1 , and therefore s <m .,

For a simple (unweighted) average, r = 1, For the overwhelming majority
of MWA's used in practice, r = 3, The preference for cubics has a long his-
tory. De Forest (1873, p. 28l) suggests that "a curve of the third degree,
which admits a point of inflexion ... is ... better adapted than the common
parabola to represent the form of a series whose second difference changes its
sign.,"”

We shall use the notation of the calculus of finite differences, wherein
E 4is the "displacement operator" or "shift operator" defined by

Ef(x) = f(x + 1) ,

and § is the "central difference" operator defined by

Sf(x) = £(x + 1/2) ~ £(x ~ 1/2),

822(x) = £(x + 1) = 2£(x) + £lx = 1) .




If the weighted average (1.2) is exact for the degree 28 - 1, it can be

written in the form

s 28 3

u = 1 - (-1)" 6§ q(E)lyx ' (3.2) ]
where gq(E) is of the form g ;
m=s ; i ;
q(E) = ] a, £’ (3.3) { k

j==m+s 3 :

with q-j = qj. In a typical smoothing formula q(E) has only positive co-

efficients, but this is not necessarily the case. If q(z) is multiplied by
Z" ° to eliminate negative exponents, the resulting polynomial is of degree i
2m - 2s. Because of the symmetry of the coefficients, it is a reciprocal

polynomial. 1In other words, if p is a zero of the polynomial, it follows

that p“l is a zero. In general, we shall make the assumption that this

polynomial has no zeros on the unit circle. The case in which it does have
such zeros is mainly of theoretical interest and is briefly referred to in
Section 7.

Let p(z) denote the polynomial of degree m - s with leading coef-
ficient unity whose zeros are the m - s zeros of zm-sq(z) located within
the unit circle. 1In general, some or all of these zeros are complex, but
they must occur in conjugate pairs, so that p(z) has real coefficients. Now
we define a polynomial a(z) of degree m and its coefficients aj by

a(z) = (z - 1)°p(z) = 2" - ? a, z 3 (3.49)
j=1

Suppose the given data consist of N = Q - P + 1 given values extending
from x =P to x = Q. We assume that N > 2m + 1, so that at least one
smoothed value is obtained by direct application of the given MWA, Then we

obtain m intermediate values to the left of x = P by successive applica-

tion of the recurrence

?

Yy, = a, Y, . ..

b j=1 J Tx+]

Similarly, m intermediate values to the right of x = Q will be obtained by
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the analogous recurrence

?

Y, = a.y
b =1 j
Finally, application of the symmetrical MWA of 2m + 1 terms to the N + 2m )

x=j °

observed and intermediate values gives adjusted values u for x =P,
P+1,...,Q.
For example, Spencer's l5-term formula (1.1l) can be expressed in the form

(3.2) with s = 2, where

3 1l

+ 137872 4+ 242871 4 318 + 242E + 1372

+ S9E° + 18ET + 3E).

(E) = ==~ (3E° + 1882 + 598~
q 320

Using a computer program to find the zeros of z5 g{z), constructing the poly-
nomial p(z), and finally applying the formula (3.4), we obtain for Spencer's
15-term formula

a(z) = 2’ - .9615722° - .3727522> - .0150042% + .1234882° + .1252292°

+ .075887z + .025624.
The coefficients are rounded to the nearest sixth decimal place, except that
the final digits of the coefficients of z3 and 22 have been adjusted by
one unit to make the sum of the coefficients exactly zero.

Note that in the trivial case s =m , g(z) is a constant and p(2) is
unity. Thus the algorithm reduces to extrapolation of the observed data by
sth differences (i.e., by fitting a polynomial of degree s - 1 to the first
8 observations and a similar polynomial to the last s observations).

As a numerical illustration, Spencer's 15-term average has been applied f

to some meteorological data. Table 1l and Figure A show the observed and

graduated values of monthly precipitation in Madison, Wisconsin in the years

1967-71. No adjustment has been made for the unequal length of the months.
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4. TABLES OF MOVING~AVERAGE AND EXTENSION COEFFICIENTS

Tables 2 and 3 show the coefficients in the MWA and the corresponding
extension coefficients (that is, cj and aj) for 21 weighted averages that
have appeared in the literature. Table 2 is devoted to the class of averages
known to actuaries as minimum-R3 formulas and to economic statisticians as
"Henderson's ideal" formulas. They are discussed more fully in Section 8.

The values in Table 2 are shown to six decimal places. 1In both instances, a
few final digits have been adjusted by one unit to make the sum exactly unity.
The moving-average coefficients are given to the nearest sixth decimal place
except for the slight adjustments mentioned; rounding error in the computation
of the extension coefficients may have introduced further small errors in some
instances.

Table 3 is concerned with 11 moving averages derived by various writers
on an ad hoc basis and known by the names of their originators. The source
notes for this table do not attempt to cite the earliest publication of the
formula in question, but merely indicate a convenient reference where it can
5e found. All these averages are exact for cubics except Hardy's, which is
exact only for linear functions. The coefficients in the averages of Table 3
are rational fractions with relatively small denominators, and the user will
probably find it convenient to use as weights the integers in the numerators
of the coefficients, dividing by the common denominator as the final step.

The column headings, therefore, are ¢, multiplied by the common denominator.

b i

In both Tables 2 and 3 advantage has been taken of the symmetry of the i
coefficients cj to reduce the length of the columns by approximately one-
half. The manner of using the tables may be illustrated by taking Spencer's :

15-term average as an example. Equation (1.1) shows the calculation of the E

moving averages. The intermediate values y, for x=p - 1 to P~ 7 are

4
H
B
s
¢




calculated successively by the formula
Y, = .961572yx+l + .372752yx+2 + .015904yx+3 - .123488;()“_4 - .12522¢
- .075887yx+6 - '025624Yx+7 .
The intermediate values for x =Q + 1 to Q + 7 are calculated by the iden-
tical formula except that the plus signs in the subscripts are changed to
minus signs.,

The extension procedure drastically reduces the number of values that
need to be tabulated for a given weighted average, and makes it possible, for
example, to give complete information about 21 such averages in the reasonably
compact Tables 2 and 3. However, the user who intends to apply a single
weighted average to many data sets may prefer to tabulate the atypical ele-
ments of the smoothing matrix G for that weighted average, and so avoid the
extra step of calculating the intermediate values. For the benefit of such
users, a method of calculating the atypical rows of G will now be described.
We observe that the nonzero elements of each row of G except the first m
and the last m rxows are merely the coefficients cj of the MWA centered
about the diagonal element. The elements in the first m rows of G , ex-
cept for the first m columns, follow from the symmetry of G , and if
G = (gij) we have

gij = cj-i .
This leaves only the square submatrix of order m in the upper left corner

to be calculated. Let ¢ denote the constant qm_s/bm_s. where Ppes is

the term free of 2z in the polynomial p(z) , and let A = (aij) denote the

square matrix of order m given by
0 for 1> 3§

aij =41 for i =3

-a for {1 <3 .

=i




Then the required submatrix in the upper left corner of G 1is given by
T
I‘CAlAlp
where the superscript T denotes the transpose. The similar submatrix in the
lower right corner of G contains the same elements, but with the order of
both rows and columns reversed, Justification for this procedure lies in the

fact that F =1I - G is a symmetric Trench matrix (see the following Section

5).

5. THE GRADUATION MATRIX
In order to describe the unique graduation matrix G of (2.1) that
arises when the preferred method of overall graduation is used, it is neces-

sary to define certain special classes of matrices. A square matrix

M= (mij ?,j=0 will be called a band matrix if there are nonnegative inte-
gers h and Xk such that mij = 0 whenever j - i > h and also whenever

i -3 >k . Note that we have started the numbering of rows and columns with
0 rather than 1 . M will be called strictly banded if, in addition,

h +k <N . In all the banded and strictly banded matrices to be discussed

in this paper, h and k will be equal.

M is called a Toeplitz matrix if all the elements on each stripe are

equal, where a stripe (Thrall and Tornheim 1957) is either the principal diag-
onal of the matrix or any diagonal line of elements parallel to the main diag-
onal. In other words, M is a Toeplitz matrix if there exists a sequence

t-N't-N+l""’tN such that for all i and 3j

mij = tj-i .

A strictly banded matrix will be called a Trench matrix if it has a spe-

cial structure that will now be described., Let Mi(x) denote the generating

function of the elements of the ith row: thus,
N
M (x) = ] m, X .
i 520 i3

1
y
3
1
b1




Then M is a Trench matrix if

( i -3
A(x) ] B.x (0<i<k)
j=0
Mi(x) = { aA(x)B(1l/x) (k <i<N-=h) (5.1)
N
BU/X) ]  ax N-h<iz<N),
‘ jeN-i 3

where A(x) = % ajxj and B(x) = E B.xj are given polynomials of degree
=0 j=0

h and k , respectively, with GOBO # 0 . In all the applications of Trench
matrices to be made in this paper, h = k and the coefficients aj and Bj
are real. Careful examination of (5.1) reveals that a Trench matrix is quasi-
Toeplitz. By this is meant that the Toeplitz property

Biel, 941 T My
holds so long as neither of these elements is contained in the k by h sub-
matrix in the upper left corner of M or in the h by k submatrix in the
lower right corner. The converse, however, is not true. A strictly banded,
quasi-Toeplitz matrix is not necessarily a Trench matrix. In a Trench matrix
the elements of the special corner submatrices must be related in a particular
way to those of the main part of the matrix as indicated by (5.1).

Greville and Trench (Greville and Trench 1979; Greville 1979, 1980) have
studied the properties of Trench matrices. In the joint paper they have shown
that a strictly banded matrix has a Toeplitz inverse if and only if it is a
nonsingular Trench matrix, and further that a Trench matrix is nonsingular if
and only if A(x) and B(l/x) have no common gzero.

A rectangular matrix X of N -3 rows and N columns will be called a

differencing matrix if it transforms a column vector into the column of sth

finite differences of the elements of the vector. Evidently the nonzero ele-
ments of each row of X are the successive binomial coefficients of order s
with alternating signs, and the nonzero elements of K form a diagonal band

from the upper left to the lower right.

e - B o e
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The following theorem describes the smoothing matrix G of the natural

extension.

Theorem 5.1, Let a given MWA of 2m + 1 terms be exact for the degree
2s =~ 1 (with s <m) and such that q(z) has no zeros on the unit circle
and q, >0 . Then, for every N > 2m + 1 , there is a unique square matrix
G of order N having the following five properties:

(1) 1f y is any vector of observed values and u = Gy is regarded as
the corresponding vector of graduated values, the elements of u , except the
first m and the last m , are merely the graduated values that would be ob-
tained by the use of the given MWA.

(2) G is strictly banded with h = k = m,

(3) G is of the form

G=1I-K DK (5.2)

for some square matrix D of order N - s.
(4) D is nonsingular and has a Toeplitz inverse.

-1

(5) 1f D~ = (t with t,. =t -’ then the series

130 13 7

Z tvzv, (5.3)
V=

converges in some part of the complex plane.

The unique matrix G so determined has the following properties:

(6) D is unigque and G and D are symmetric,

(7) The nonzero elements of the first m and the last m rows of G
depend only on the given MWA and do not depend on N . A similar statement
applies to the nonzero elements of the first m -~ s and the laat m - 8 rows

of D .




(8) D is a Trench matrix with B(x) = A(x). Moreover,

q(x) = A(x) A(l/x) (5.4°
and the m - s zeros of A(x) are those zeros of q{(x) that are outside the
unit circle.

(9) F=1-G= K? DK is a (singular) Trench matrix characterized by
the polynomials

Alx) = B(x) = (x - 1D° ax) .

(10) The series (5.3) converges to [q(z)l.1 in an annulus containing

the unit circle.

We shall defer the proof of this theorem until after some explanation and
motivation have been given. We begin with a numerical example, which may help
to clarify the relationships involved. Then we shall seek to justify the im-
position of the five properties that uniquely determine the graduation matrix
G . 1In Section 7 we shall prove the theorem, and in Section 8 we shall show
how the extension algorithm can be rationalized and prove that it is mathe-
matically egquivalent to the matrix formulation.

For virtually all the MWA's likely to be used in practice the elements
of the square submatrices of order m in the upper left and lower right cor-
ners of G are irrational. However, for convenience of illustration, we have
contrived an example with rational elements., This is the MwA,

Y * %-(Zyx_z *Yr * 3yx + Yeer * 2yx+2)'
which is exact only for linear functions and is unlikely to be used in a prac-
tical situation. However, it does satisfy Schoenberg's criterion (see Section
11) for a satisfactory smoothing formula. Here m= 2, g = 1, q(x) =
1

% (2" + 5 + 2x), and A(x) = %-(2 +X). For N=7,

~14-
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Finally,

t = sy,
and it is easily verified that the series (5.3) does in fact converge to
[q(z)]-l =9z +5+ 2207t for 1/2 <2z <2 . Solong as N >5 , the
corresponding results for any value of N could easily be written down.

Let us now look at the five properties that uniquely determine G . The
first of these is no more than a restatement of the problem to be solved. The
second is a reasonable requirement and amounts to saying that the proposed
method of graduation is a "local® procedure: the graduated value of a given
observation is not to depend on other observations removed from it by a dis-

tance greater than m .,

=15=-




Conditions (3), (4), and (5) are not so obviously appropriate, but are
strongly suggested by analogies tothe Whittaker graduation method. In order
to make these analogies clear, that method is briefly described in the fol-

lowing section.

6. THE WHITTAKER ANALOGIES
The objective of the Whittaker process (Whittaker 1923; Henderson 1924)

is to choose graduated values u, (j = P, P +1,...,Q) in such a way as to

3

minimize the quantity
Q

Q-s
2 8 2
Y w, =y)°+g ] °%up®, (6.1)
L R B sop 3

where the positive weights W, , the positive constant g , and the positive

b
integer s are chosen a priori by the user. The solution is most conven-
iently expressed in matrix notation as follows (Greville 1957, 1974a). Let
W denote the diagonal matrix of order N whose successive diagonal elements

are the weights W, , let u and y be defined as in Section 2, and let K

3
be the differencing matrix of Section 5. Then, the expression (6.1) can be
written in the form
(u - y)T Wlu - y) + g(!tu)'r Ku . - (6.2)
It is easily seen (Greville 1974a) that (6.2) is smallest when u satisfies
W+ gK Kus=wy. (6.3)
It is not difficult to show (Greville 1957, 1974a) that the matrix in the left
member of (6.3) is nonsingular (in fact, positive definite) and thereéore
u= W+ gk KL wy.
The Whittaker method has several interesting properties. Commonly the

weight W, is taken as the reciprocal of an estimate of the variance of the

3
jth observation. When this is done, the graduated values are constrained to-
ward the observations where these are reliable, and toward the form of a poly-

nomial of degree s - 1 where the observations are less reliable. The method




has the interesting “"mowent" property
2 v 2 v
Z W. ju Z W. jy (v=10,1,...,8 = 1).
Even in the case of equal weights (equivalent to taking W = I) it has been
found to be a serviceable method. The ability to choose the constant g at
will enables the user to decide how gentle or how drastic he wants the smooth-
ing to be. The remaining discussion will be limited to that case, so that
u= (I + gx? l()-1 Y.
Thus, in terms of (2.1) we have for "unweighted" Whittaker graduation
G=(L+g8 0T,
It is then easily verified (Noble 1969, page 147) that
G=1-K(gt1+xxh 1k
This is of the form (5.2) with
p=(g i+,
s0 that property (3) of Theorem 5.1 is also a property of the unweighted

Whittaker method. It follows also that
1l

-1

plaglrex, (6.4)

and, if we recall the definition of K in Section 5, it is not difficult to

see that xx? is a Toeplitz matrix., In fact, if xx? - (!.i ), we have

3

% = { e where

ij J
v, 28

L, = (-1) (s+v) ’
with the understanding that (3;) vanishes for j < 0 and for j > 2s.
Therefore

-1

D = (tu) - tj_i ,
where

=1 v ,28
t,omg S, + =Y (), (6.5)

60v being a Kronecker symbol. Thus the unweighted Whittaker method has prop-

erty (4), PFinally, in the Whittaker method D-l given by (6.4) is a band

«l7=
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matrix, and therefore the series (5.3) with tv given by (6.5) is finit  ~d

converges everywhere except at the origin., We have, in fact,

v 172 _ z-l/Z)Zs

o0
T ot 2'agle-1)® (2 :
V=00 v
As the Whittaker method is a highly regarded graduation procedure, these
analogies constitute a strong argument in favor of the natural extension of
MWA graduation. Further arguments are provided by the stability theorem of
Section 1l and the optimal property of Rb ("reduction of error") for the

top and bottom rows of G described in Section 10.

7. PROOF AND DISCUSSION OF THE MAIN THEOREM

Proof of Theorem 5.1. Under the hypotheses of Theorem 5.1, we shall

first construct a matrix G having the properties (1) to (10), and shall
then show that it is uniquely determined by properties (1) to (5).
As pointed out in Section 3 , if p is a zero of q{(z), it follows

from the symmetry of the coefficients that p"1 is a zero. As there are no

zeros on the unit circle, there are m - s 2eros inside the unit circle and . i
the same number outside. As any complex zeros must occur in conjugate pairs,

there is a polynomial A(z) with real coefficients whose zeros are them - s
zeros of q(z) outside the unit circle. Moreover, the coefficients of A(z)

can be normalized so that

q(z) = ta(z) a(l/z) . (7.1)
m=s
If aA(z) = Z aj e ¢ we have
i=0 nis 2
= a . (7-2)
1 sm0 3

Since, by hypothesis, 9, > 0 , the positive sign holds in (7.2) and (7.1).
Now, let D be given by property (8): that is, D is the Trench matrix
in which the polynomial A(z) of (7.1) plays the role of both A(x) and

B(x) 4in (5.1). It follows from (5.1) that D is symmetric. As the zeros of

A(z) are all outside the unit circle, those of A(l/s) are all inside. Thus,




they have no common zero, and it follows (Greville and Trench 1979) that D

) , -1 . R
is nonsingular and D 1s Toeplitz. This verifies property (4), and it

follows (see Greville 1979) that the series (5.3) is a “reciprocal® of q(z)

] at least in the sense that if it is formally multiplied by q(z), the product

. A e

is unity. It is shown in the paper cited that the series (5.3) converges in
some part of the complex plane if (and, under the constraints imposed by (5.4),

only if) A(x) is chosen in the manner prescribed by property (8). 1It is

shown further that, when this is done, (5.3) converges to [q(z)]-l in an
annulus bounded by circles of radii p and p-l, where p is the minimum
absolute value of the zeros of A(x). This verifies properties (5) and (10).
It will be noted, incidentally, that the elements of D-l depend only on

A(x) and not on N . Increasing N merely extends the seguence {tv} with~

out changing the elements already determined.

3
i
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Now, let G be given by (5.2), so that property (3) holds. The symmetry
of G follows from that of D , and property (9) also follows (see Lemma 1
of Greville 1980). Property (7) is a consequence of (5.1) and property (1)
follows fram (3.2), (5.1), and property (9). Property (2) follows from the
fact that F is a Trench matrix.

To prove uniqueness we assume that properties (1) to (5) hold. 1It then
follows from properties (2) and (3) that D is strictly banded with h = k =

m - s. Because of the structure of K , it is not Aifficult to see that if D ;

I had a nonzero element outside the specified band, G would necessarily have
one or more elements outside the band prescribed by property (2). Since, by P ;

) property (4), D .a- a Toeplitz inverse, it is a Trench matrix (Greville and

Trench 1979). | \

+

Let A(x) and ia(x) be the polynomials of degree m - 8 associated with

D= (dij)' and let
m4s v .
dx) =} A x =alx) Bl/x).
ve==M+8

=19




Then, by (5.1},

G =d

except in the square submatrices of order m = s in the upper left and
lower right corners of D . But it follows from (5.2) (see Lemma 1 of Greville

1980) that F = (fi )= I -G= K? DK is a (singular) Trench matrix charac~

3
terized by the polynomials A(x) = (x - 1)® a(x) and B(x) = (x - 1)°® B(x).

1f

V2 _ Y28 at0= § 4 x",

d(x) = Alx) Ba/x) = (-1)° (x
it follows that
£33 7 %1
except in the square submatrices of orxrder m in the upper left and lower right
corners of F . But it follows from (3.2) and property (1) that, with the

possible exception of the elements of the first m and the last m rows of

F , fij is the coefficient of xj-i in (-l)s(x]'/2 - x—1/2)25 q{x). There-
fore d(x) = q(x), and so

dij = qj—i (7.3)
except in the first m - s and the last m - s rows of D, and

q(x) = A(x) B(l/x) . (7.4)

Now, (7.3) and the fact that D is a Trench matrix (and has the quasi-
Toeplitz property) uniquely determine all its elements except those of the two
special corner submatrices of order m - s. It has been shown elsewhere
(Greville 1979) that, in general, these corner elements can be chosen in a

(finite) number of ways, corresponding to the possible ways of factoring the
m-

polynomial x

Alx) ana ™° B(l/x) of degree m - 8 with real coefficients. (Two fac-

* q(x) of degree 2m - 28 as the product of two polynomials,

torizations are considered different only if the set of zeros of A(x) is
different.) Property (8) prescribes a unique factorization, and therefore
G 4is uniquely determined by properties (1) to (4) and (8). But it has been

shown (Greville 1979) that if g(x) is given and (7.3) and (7.4) hola,

-20-
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properties (8) and (5) are equivalent. Thus, G is uniquely determined by

properties (1) to (5). .

H
i
:

At the beginning of Theorem 5.1 two general hypotheses concerning the
given MWA were introduced: that q, is positive, and that gq(z) has no
zeros on the unit circle. These will now be discussed. It follows from (7.2)
that q, # 0 ; it is either positive or negative. Typically, the coefficients
qj are all positive and q, is the largest. No reasonable MWA could have
q, negative. In fact, it will be shown in Section 11 that an MWA with nega-
tive 9, cannot satisfy Schoenberg's criterion for a satisfactory smoothing

formula.

MRz o el Bl £ 0

MWA's with zeros of q(z) on the unit circle are also uncommon (I know

of no example in the published literature), but it is easy to construct such

o S w e

formulas, and the presence of such zeros does not of itself suggest any in-
herent defect in the MWA. However, when there are such zeros, property (5)

of Theorem 5.1 cannot hold (see Greville 1979), and no single preferred method
of extending the graduation to the ends of the data is clearly indicated. The
case of zeros of gq(z) on the unit circle is of no practical importance, and
its inclusion in Theorem 5.1 would have made the theorem messy and complicated.
The curious reader might wish to consult Greville's (1979, 1980) Manitoba

Conference papers for discussion of the mathematical questions involved.

8. DEVELOPMENT OF THE NATURAL METHOD THROUGH THE EXTENSION ALZORITHM
This section has two objectives: first, to show that the extension algo-
rithm of Section 3 is mathematically equivalent to the matrix approach of

Sections 5 and 7 , and second, to provide a heuristic argument for the natural

extension of the graduation that is a partial alternative to the five deter-
mining properties listed in Theorem 5.1.

Because of the symmetry of the coefficients qj of q(z), and the fact

that it has no zeros on the unit circle, there is, if 9, > 0 , a polynomial

-2)~
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A(z) of degree m - s with real coefficients such that (5.4) holds. 1If

m > s , there is more than one such polynomial. Let the polynomial

- 2 3
A(2) = Z a, z
j=0

of degree m be defined by
A s
A(z) = (z - 1) a(z) .
Then it follows from (3.2) that
-~ ~ -l
u, =y, - A(E) A(E ™) Yy o (8.3)
Thus it would be possible to perform the graduation by means of the following
three steps:
1. Operate on the sequence {yx} with S(E-l) to obtain the sequence
of values of K(E-l) Y, -
2. Operate on the latter with K(E) to obtain the sequence of values
A A =1
of A(E) a(E ™) Yy + which may be thought of as corrections to the observed
values Y, -
3. Subtract each of the latter values from the corresponding value of
Yy to obtain the graduated values u, .
Now, suppose the sequence {yx} is extended backward to x =P - m and
forward to x = Q + m by imposing the conditions

A(E) y, =0 (X=P-1,P=2, 0., P=-m) (8.4)

AE) y =0 (xmQ+1,Q+42 oo, 04m. (8.5
These extensions make it possible to calculate by the main formula graduated
values ux over the entire range x =P, P+1, ..., Q. For x =P, P + 1,
eeey P+ m~-1, (8.1) and (8.3) give

yx-ux-




A similar argument applies for x =Q, Q -1, .e., Q=-m+ 1, with A(E) and ]

PP

A(E‘l) interchanged, and we have there
x4
Y, - u = jzo aj A(E 7) Yx+j . (8.7)

If we write F = (fij), it follows from (8.6) and (8.7) that

e WA AB

Y - u=Fy,
where F is the (singular) Trench matrix characterized by two polynomials of
degree m both equal to A(x). But in view of property (8) of Theorem 5.1,

this is exactly the matrix F = I - G of property (9) of that theorem. Thus

the two approaches give the same result if the polynomial A(x) is the same

4 i in both cases. Therefore let us consider the choice of a(x) in the present
context.

; For a moment let us think of the sequence {yx} as extended indefinitely

to the left of x = P rather than only as far as x = P - m. Then, the gen-

eral solution of (8.«
m=-s

; X
! = 8.8
- Y, = Py(x) + jzl bj . (8.8)

i where Lyr Tyr sees X are the zeros of A(x), Pl(x) is an arbitrary poly-

i nomial of degree less than s , and bl' bz, ceny bm-s are arbitrary con-
. stants. If A(x) has multiple zeros, (8.8) is replaced by a slightly differ-

ent expression, but the end result is the same.

Similarly, the general solution of (8.5) is

, Y, = P,(x) + :zi e ,;x . (8.9)
Let us now impose the conditions that Asyx with Yy given by (8.8) shall approach
zero as X tends to ==, and that A% Yy with Yy given by (8.9) shall ap-
proach zero as x tends to = , Since A(x) must satisfy (5.4), it is clear
that these conditions are satisfied if and only if A(x) is chosen so that _.i

its zeros are the m - s zeros of q(x) that are outside the unit circle,

Clearly, this is the choice of A(x) prescrided by Theorem 5.1. Moreover,

It

-tk Gy 8

223=




.

OO

A(x) chosen in this manner is closely related to the polynomial p(x) of

Section 3. In fact,

Alx) =a % pl/x),
and consequently,
Rx) =a __ x"° all/x) ,

where a(x) is defined by (3.4). Thus, with this choice of A(x), (8.4) and
(8.5) are equivalent to the extension algorithm of Section 3.

We note in passing that the computational short cut involving extended
values has an analogue in the case of Whittaker smoothing. Especially in
actuarial literature, the Whittaker smoothing process is sometimes called the
difference-equation method because the difference equation

w + 1% 6% =y (8.10)
holds for x = P+ 8, P+ 8+ 1, ..., Q- s, Aitken (1926) pointed out that
(8.10) is satisfied for x =P, P+ 1, ..., 0 if we annex at each end of the
data set s extrapolated values of both Yy and u, satisfying the condi-
tions

u =y, (x=P=-3j, x=0Q0+3j; =1, 2, ..., 8),
A"ux-o (x=P-3,x=Q0<~3;73=1,2, ..., 8).
However, this observation is not helpful from a computational point of view.
The attempt to utilize it merely increases from N to N + 28 the order of
the linear system to be solved.

A final comment regarding motivation of the extension algorithm may be
in order. Elsewhere (Greville 1957) I referred to the notion of the "smooth
space,” This is the space of vectors y such that Gy = y , the space of
vectors that are unchanged by the graduation process. For the Whittaker proc-

ess it is the space of "polynomial vectors"” of degree less than s .

-24-
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In a strict mathematical sense, the smooth space is the same for the
graduation procedure considered here, but in reality the situation is more
complicated. Equation (8.3) shows that if (8.4) should hold "across the
board," all the graduated values, to the extent that they can be calculated
by the main formula without extension, would be equal to the observed values.
Of course, the result would be similar if (8.5) should hold "across the board."
Now, the two conditions (8.4) and (8.5) are not equivalent. The corresponding
conditions in the Whittaker case are the vanishing of the sth finite differ-
ences of the observed values, which are equivalent because of the symmetry of
the (binomial) coefficients in the expressions for these finite differences.
The coefficients of ﬂ(x) have no such symmetry.

These observations suggest that the true analogue of the Whittaker proc-
ess is arrived at by using the different criteria (8.4) and (8.5) at the two
ends of the data. As previously noted, there are in general different ways
of choosing A(x) so that

Am Ae™ = -1 6% qm ,
and we have made the unique choice that makes the extension a "stable" opera-

tion at both ends.

9. SPECIAL CLASSES OF MOVING AVERAGES
Of particular interest are those moving averages known to actuaries as
minimum-R3 formulas and to economic statisticians as "Henderson's ideal"
formulas. For a given number of terms 2m + 1, this is the average (1.2),

exact for the third degree, for which the gquantity

T 3.2
I @ e (9.1)
juem=3 ]

is smallest (with the understanding that c, = 0 for |3j| > m). The "smoothing

3

coefficient™ R, is defined as the quantity obtained by dividing (9.1) by 20

3
and taking the square root. The divisor 20 is chosen because this is the

[P




value of (9.1) for the trivial case of (1.2) in which c, = 1 and cJ -0
for 3j # 0.
The rationale for minimizing (9.1) may be explained as follows (Greville

, and u are all given by (1.2)

1974a). 1If, for some x , ux, u 43

x+1’ Ux+2
(which is the case for x =P +m to Q - m - 3, inclusive), then
3 T o,,3
A u = - Z (A" c)) vy
j==m=3 )
It has been customary to regard the smallness (in absolute value) of the third

differences of the graduated values as an indication of smoothness. Therefore
(9.2) suggests that smoothness is encouraged by making the quantities A3 cj
numerically small, and minimizing (9.1) is a way of doing this. The formula

corresponding to (9.2) for a general order of differences is

m
S S 8
8" u, = (-1) I «(a C5) Yyises (9.3)
j=-m-s
and the general formula for Rs is
2 T s .2, 2s
Ro= I (a e ) /g, (9.4)

jm-m-s
There is some question whether Henderson's contribution warrants attach-

ing his name to the "ideal" weighted averages. De Forest (1873) treated ex-

tensively the formulas that minimize R4 .
efficients cj in order to minimize R3 seems to have been first mentioned

by G. F. Hardy (1909). ' These averages were fully discussed by Sheppard (1913)

The concept of choosing the co-

slightly earlier than by Henderson (1916). However, Henderson does seem to

have been the first to give an explicit formula for the coefficient ¢, in

3

the weighted average minimizing R {Henderson 1916, p. 43; Macaulay 1931,

3
p. 54; Henderson 1938, p., 60; Miller 1946, p. 71; Greville 1974a, p. 18). 1If
we write k = m + 2, so that the weighted average has 2k - 3 terms, the for-

mula is

st - »2 - 3Ya? - 3tk 12 - 13 ox - 16 - 1137
3 ek(k? - 1) (4k? - 1) (4x? - 9) (4x? - 25)

.« (9.5)

i ko e
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Weighted averages that minimize Rs have been discussed from other points
of view by Wolfenden (1925), Schoenberg (1946), and Greville (1966, 1974b).

Also deserving of special mention are the averages {(exact for cubics) that

minimize Ro’ sometimes called "formulas of maximum weight" or "Sheppard's ideal" :
formulas. These are sometimes applied to physical measurements when the errors ‘
of observation can be regarded as random "white noise" (see discussion of "re~

duction of error" in Section 10). The weights are given by !

c. = 3(3m2 +3m -1) ~ 15j2
i (2m = 1) (2m + 1) (2m + 3)

Weighting coefficients cj and extension coefficients aj for minimum-R

3

(Henderson's ideal) averages of 5, 7, ..., 23 terms are given in Table 2.

10. COMPARISON WITH OTHER METHODS. PRACTICAL CONSIDERATIONS

If a symmetrical MWA exact for the degree 2s - 1 is being used to smooth
the main part of the data, it can easily be deduced, either from the extension
algorithm described in Sections 3 and 8 or from the matrix formulation of
Theorem 5.1 that the unsymmetrical weightings proposed for smoothing the first
m and the last m observations are exact only for the degree s - 1. For
example, all the averages represented in Tables 2 and 3 with the exception of
Hardy's are exact for cubics, and therefore their extensions to the ends are
exact only for linear functions. Hardy's weighted average is exact for linear
functions and its extension only for constants.

The Whittaker process has a similar property. At a sufficient distance
from the ends of the data, polynomials of degree 2s - 1 are "almost" re-
produced by that process. In support of this rather loose statement the fol-~
lowing heuristic argument is advanced. For the Whittaker process

G=(1I+gK O} = 1-gek® K.
Thus, if y is the vector of observed values, the vector of corrections to

these values is

-gGRT KY .




Now, the nongzero elements of KT K, with the exception of the first s and
the last s rows, are binomial coefficients of order 2s with alternating
signs. Therefore the components of KT Ky, except for the first s and the
last s , are (2s)th differences of those of y (or their negatives if s is
odd). Thus, if y is a vector of equally spaced ordinates of a polynomial
of degree 2s -1, KT Ky is a vector of 2zeros except for the first s and
the last s components. The components of GKT Ky are graduated values of
those of KT Ky, and therefore should be very small at some distance from the
extremities of the data. Finally, multiplication by g , even though g is
typically large, should give small corrections at a sufficient distance from
the ends of the data.

Some users may consider the reduction in degree of exactness near the
ends a disadvantage of thé natural method of extension. Before I became aware
of the natural method, T had proposed (Greville 1974a) a different method of
extension (already mentioned in Section 2) that does not have this particular
disadvantage (though it has other shortcomings). This involves extrapolation
by a polynomial of degree 2s - 1 fitted by least squares to the first m + 1
observations. A similar polynomial is fitted to the last m + 1 observations
for extrapolation at the other end of the data. There may be a gain in sim-
plicity by using a single method of extrapolation for all symmetrical weighted
averages, so that the extrapolated values depend only on the number of terms
in the main formula. However, there is a loss in that the extension method
is no longer tailored to the particular symmetrical average used.

Like the natural method of extension, the method using extrapolation by
least squares can be collapsed into a single matrix G . When this is done,
the band character of the smoothing matrix is maintained, but the symmetry is

lost. Though the matrix approach is less convenient for computational




purposes, the differences between the two methods are best elucidated by
comparing Qhe first m rows of the respective matrices G . This is done

in Tables 4 and 5 for the case of the 9-term "ideal" formula. Here m = 4,
but for convenience the fifth row is also shown., Its elements would be re-
peated in the subsequent rows, moving successively to the right, until we
come to the last four rows. While an average of as few as 9 terms would sel-
dom be used in practice, this is a convenient illustration.

As previously indicated, the first m and the last m rows of G may
be regarded as exhibiting unsymmetrical weighted averages which are to be
used near the ends of the data to supplement the symmetrical average used
elsewhere. The coefficients that appear in the last m rows are the same as
those in the first m rows, but the order is reversed, both horizontally and
vertically. It should be noted that the coefficients in the supplemental
averages depend only on those of the underlying symmetrical average. They do
not depend on N , the number of observations in the data set (which is the
order of G ),

The coefficients in the supplemental weighted averages based on least-
squares extrapolation, exhibited in Table 5, show two undesirable features.
These are negative coefficients of substantial numerical magnitude, and suc-
cessive waves of positive and negative coefficients as 6ne proceeds from left
to right along the rows. The number of such waves would increase as the num-
ber of terms in the underlying formula increases.

In striking contrast is the character of the coefficients of the natural
extension, Like the coefficients in the underlying symmetrical formula, each
row exhibits a peak in the vicinity of the main diagonal of the matrix, taper-

ing off to a single group of negative coefficients of reduced size near the

edge of the band.

L




In the least-squares method only a very small correction is made to th
initial observed value. The corresponding correction in the natural methc.
is more substantial.

The “second-difference correction" is the coefficient of the second-
difference term when the formula is expressed in terms of increasing orders
of differences in the form

u =y + cA2 Yy + .. .

x x x-=h
The coefficient ¢ does not depend on the subscript x - h, in which there
is some freedom of choice. For the formulas based on least-squares extra-
polation, which are exact for cubics, the fourth-difference correction is
similarly defined.

Some writers (Miller 1946; Wolfenden 1942; Greville 1974a) have regarded
the observed values y, as the sum of "true" values Ux and superimposed
random errors e, * If it is assumed that the errors e for different x
are uncorrelated, and have zero mean and constant variance 02 for all =x ,
then the variance of the error in the smoothed value ux is Ri 02 ., where Ri
is obtained by taking s = 0 in (9.4). Thus, Rb may be interpreted as the
ratio of reduction in the standard deviation of error that results from appli-
cation of the weighted average.

wWhile the assumptions underlying the preceding analysis may be ques-

tioned, nevertheless a good case can be made that, for any weighted average,

Ro should be less than unity. Since R: is the sum of the squares of the

cosfficients in the average, Rb can never be less than the maximum of the
absolute values of the coefficients. Thus, an average cannot be considered

satisfactory if the absolute value of any coefficient is equal to or greater

than unity.
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When the graduation is extended to the extremities of the data, these
remarks apply hot only to the main formula but also to the unsymmetrical for-
mulas to be used near the ends., Tables 4 and 5 illustrate the fact that there
is a strong tendency for Ro to become large as we approach the extremities
of the data.

In this connection, the natural extension has an important optimal prop-
erty. Let us suppose that the main formula is given and satisfies the general
hypotheses of Theorem 5.1. That is, it is symmetrical, 9, >0, and q(z)
has no zeros on the unit circle. Further we suppose that <, > =1. The latter
assumption is not a strong one; a negative value of <, is most unusual in
any case, and we have previously stated that an average is not satisfactory
if the absolute value of any coefficient is equal to or greater than unity.

In addition we assume that G is symmetric and has properties (1) to (4) of
Theorem 5.1. As we shall see in Section 11, there are cogent reasons for
thinking that G should be symmetric.

Under these conditions we have seen that in general there are a number
of possible choices of the polynomial A(x). It will be shown that Rb for
the top row of G is smallest when A(x) is chosen in the unique manner pre-
scribed by Theoxem 5.1.

Since G is symmetric and q, > 0, thg coefficients of A(x) and B(x)
can be normalized so that B(x) = A(x). Using the notation of Sections 7 and
8, let

m
A) = (x-D%a00 = ] & x .
jm0 3
Then, the middle weight of the MWA is one minus the constant term in the ex-~
pansion of A(x) A(l/x), or in other words,

c =1~ 7§ &; . (10.1)

i=0

=31




Now, since Bo = o ' the nonzero elements in the top row of G are, suc-

s ~ A A ~ 2 o
cessively, 1 - &, &o &1 P &O Gyr eeep -8 & . Therefore, R, for this
top row is given by

RR=1-282+82s=1-3a0+c)H, (10.2)
o] o] o] [o] (o]

where S denotes the summation contained in (10.1). Now, let IR PYRERRY

r denote the zeros of A(x), so that
n=s
A(x) = @ s _J—rrl (x - rj) .

=1 °

o m
so that &§=Acm » and (10.2) becomes

Ri =] - Acm(l + co) .
In this expression, <, and c, are given; A is the only variable. More-
over, Acm = &2 is positive, and 1 + co is positive, since co > =1,
Therefore Ri is smallest when |A| is largest, which is clearly the case
when the zZeros of A(x) are the m - 8 zeros of g(x) that are largest in
absolute value, namely, those outside the unit circle.

Thus the smoothing matrix G of the natural extension would still be
uniquely determined if, in Theorem 5.1, we replaced property (5) by the re-
quirements that G be symmetric and that Ro for the top row of G be as
small as possible subject to the other conditions imposed. It appears that
the requirement that G be symmetric can be dropped if stronger conditions
are imposed on q(z), but the algebraic ocomplication of the proof is greatly
increased.

As indicated in Section 9, it has long been customary to regard a gradua-

tion as smooth if the third differences of the graduated values are small in
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absolute value. If G = (gij)' we have
N
Ypyi-1 T jzl 935 Ypaj-1 *
and therefore

s N
A

(10.3)

Ypei-1 = .Zl Yp4j-1 8 935 ¢
where the subscript of A indic:tes that the differences are taken with re-
spect to i (i.e., down the columns of the matrix). If one avoids the corner
submatrices, the nonzero elements gij in (10.3) are merely coefficients in
the underlying symmetrical average, and (10.3) reduces to (9.3). This was

the rationale underlying the derivation of the minimum-Rs averages.

Of course, if G is symmetric, it makes no difference whether the dif-
ferences are taken horizontally or vertically. When the symmetry of G is
not assumed, care must be exercised. Many years ago (Greville 1947, 1948) I
published what purported to be coefficients in supplemental averages to be
used near the ends of the data in conjunction with minimum—R3 and minimum-R4
symmetrical averages. The symmetry of G was not assumed, and I made the
error of deriving the unsymmetrical coefficients by minimizing their third and
fourth differences taken horizontally. The tables in question are therefore
based on an incorrect assumption. Further it may be mentioned in passing that
in the 1947-8 formulation the diagonal band character was not maintained,
since the supplemental averages contained the full 2m + 1 terms.

Table 6 shows, for the natural and least-squares extensions of the 9-term
nininun-n3 formula, those third differences of the matrix elements, taken
vertically, that involve elements of the firat five rows. The entries in the
fifth row of Table 6 would be repeated in subsequent rows, moving successively
to the right. Casual ingpection of the table shows that the third differences

are numerically smaller for the natural extension. All of these third differ-

ences are less than 0.14 in absolute value. Two of those for the least-squares




extension exceed 0.7 in absolute value.

It is instructive to compare the natural extension with the least-
squares extension for the numerical example of Section 3. Though neither
extension is recommended for use when additional data are available beyond
the range of the original data set, nevertheless it may be of interest,
purely for purposes of illustration, to choose a numerical example in which
such additional data are available, and this has been done.

Table 7 and Figures B and C complement Table 1 and Figure A, showing,
for the first seven months of 1967 and the last seven months of 1971, the
observed values of precipitation in Madison, Wisconsin, and the graduated
values obtained by (i) natural extension of Spencer's l5-term average,

(ii) least-squares extension of the same average, and (iii) use of additional
data. It will be noted that the least-squares extension is strongly con-

strained toward each of the two terminal observations (January 1967 and

December 1971). This may be explained by the fact that all the values Yy

in (1.2) that entered into the calculation of these graduated values are in-~
cluded in either the m + 1 observations to which the least-squares cubic
was fitted or the m extrapolated values obtained from the same cubic. On
the other hand, the natural extension and the least-squares extension are very
close together at the interface with the graduated values calculated in the
standard manner. Thus, for the months of July 1967 and June 1971, all but one
of the values v, entering into the computation (1.2) are identical for the
two methods,

For the months closer to the interface the graduated values obtained by
introducing additional data are close to those of the natural extension. This
is because the supplemental unsymmetrical averages produced by the natural ex-

tension (unlike those of the least-squares extension) give relatively small




weight to the observations more remote from the one being graduated (as does
the underlying symmetrical formula). For example, the values for the natural
extension and those obtained by the use of additional data are indistinguish-
able in Figure B for april to July 1967. 1In the last months of 1971 the devia-
tion is greater because the first two months of 1972 were exceptionally dry.
This could not have been predicted from the data for preceding months.

Table 8 gives certain parameters for the various symmetrical weighted
averages that have been mentioned previously. The column headed "Error" re-
quires explanation. This is the error committed when the formula in question
is used to "smooth" a polynomial of degree 4 . This naturally tends to in-
crease with the number of terms in the formula. Both Ro and R3 tend to
decrease with increasing number of terms. Though the "ideal" formulas have
been derived to minimize R3 + they tend to produce small values of R° as
well. In only one instance (Vaughan) does a "name" formula have a smaller
Ro than the "ideal"™ formula of the same number of terms. The late Hubert
Vaughan was a remarkably keen analyst of MWA smoothing.

It may be mentioned in passing that some writers (e.g., Henderson 1938)

call the reciprocal of Ri the "weight" and the reciprocal of R3 the

(smoothing) "power."

1l. THE STABILITY THEOREM

Schoenberg (1946) defined the characteristic function of the MWA (1.2)

m
oe) =} ¢, e, (11.1)

jm-m 3
For a symmetrical MWA this is a real function of the real variable t , and

can be expressed in the alternative form
m
o) = [ o
i=-m
It is periodic with period 27 and equal to unity for t = 2wn for all

cos jt .




integers n .

The effect of MWA's in eliminating or reducing certain waves has been
noted (Elphinstone 1951; Hannan 1970). 1If the input to the smoothing process
is a sine wave, which may be represented in the form

Yy = C cos{rx + h) , {11.2)
it can be shown by simple algebraic manipulation that

u o=y, ¢ (21/w) ,
where w = 2n/r is the period of Y, Thus, if ¢(27/w) = 0 , the wave is
annihilated by the smoothing process; the amplitude is severely reduced if it
is close to zero., Thus MWA smoothing is related to the "filtering" processes
considered by Wiener (1949) and others.

Schoenberg (1946) defined a smoothing formula as an MWA whose character-

istic function ¢(t) satisfies the condition

[¢(0)| <1 (11.3)
for all t. Thomée (1965) calls (11.3) "von Neumann's condition" without,
however, citing any specific publication of von Neumann, Later Schoenberg
(1948, 1953) suggested the stronger condition

o)) <1 (0 <t < 2m. (11.4)
Lanczos (see Schoenberg 1953) pointed out that (11.4) is obtained by requiring
that every simple vibration (11.2) be diminished in amplitude by the transfor-
mation (1.2). The results of Section 5 of the present paper suggest an alter-
native definition of a smoothing formula. Using the subscript N to empha-
size the fact that the order of G 1is the number of observations in the data
set, we shall say that an extension of (1.2) by means of a smoothing matrix

G 1is stable if the limit

L n
GN = 1lim GN
n+o

exists for all N . Schoenberg (1953, footnote 3) suggested a relationship

e, e




between (11.3) and the conditions for existence of the infinite power of a
matrix (Oldenburger 1940; Dresden 1942), but he did not elaborate the connec-
tion. 1In the theorem of this section we shall attempt to do so.

In Section 7 we promised to justify the hypothesis in Theorem 5.1 that

q. > 0 by showing that if the characteristic function of a symmetric MWA

0
satisfies (11.3) and q(z) has no zeros on the unit circle, then q, 0.
Consider the real function

yit) = 1 = ¢(t)
and note that (11.3) is equivalent to

0 < y(t) <2
for all t. From (3.1), (3.2), and (11.1) it follows that

vie) = (-D® (21 sin 3% (e’T) = wsin? 10)® qe'h), (11.7)

and therefore (1l1.6) implies that q(eit) is nonnegative for 0 <« t < 27, In

fact, it is positive, since g(z) has no zeros on the unit circle, and by

continuity it is positive for t = 0 as well. In other words, qfl) > 0 .

Now let the polynomials A{x) and B(x) be chosen so that q(x) = A(x) B{1/x)

and the zeros of B(l/x) are the reciprocals of those of A(x). This is always
possible because of the symmetry of the coefficients of q(x). Moreover, the
coefficients in these polynomials can be normalized, as in the proof of Theorcem
5.1, so that (7.1) and {7.2) hold, and therefore
Q1) = a2,

Since q(l) is positive, the positive sign holds in (7.1) and (7.2), and con-
sequently 9, >0 .

Before stating the theorem that elucidates the relationship of condition
(11.3) to the mmoothing matrix G , we need to describe certain results pub-
lished elsewhere that will be used in the proof. 1In a recent paper (Greville

1980) @ have studied bounds for eigenvalues of Hermitian Trench matrices
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(which become symmetric Trench matrices when the elements are real). i ‘in
polynomials that characterize a real symmetric Trench matrix H are A(x)
and B(x) of degree h , we have seen that the coefficients can be normaliz~~
so that either B(x) = A(X) or B(x) = -A(x). If the minus sign holds, one
can consider the symmetric Trench matrix =-H. It is sufficient, therefore,
to consider the case in which B(x) = A(x).

Let A(x) be given and consider the family of symmetric Trench matrices
H  of order N (N > 2h + 1) characterized by A(x) and B(x) = A(x). Let

N

GN=I-}JH

N’
where u is a positive constant, and let

h(x) = A(x) A(1l/x).
Then it is shown that h(x) is real and nonnegative on the unit circle, and

has a maximum thereon, which we denote by M. Then Corollary 1 of the cited

paper states that the limit GN

exists for all N if and only if

U :_2/M
and no zero of A(x) is inside the unit circle unless it is also a zero of
A(l/x). A particular application of Lemma 1 of the same paper yields the
result that if D is a Trench matrix characterized by the polynomials A(x)
and B(x), then KT DK (with K defined as in Section 5) is a (singular)
Trench matrix characterized by the polynomials A(x) = (x - 1)% A(x) and
B(x) = (x -~ 1)° B(x). For convenience in the proof of the theorem that fol-
lows, we shall refer to Corollary 1 and Lemma 1 of the paper cited as merely

"Corollary 1" and "Lemma 1."

Theorem 11i,1. Let a symmetrical MWA (1.2) be given and let the asso-

ciated smoothing matrix G, for all N > 2m + 1 be symmetric and have

N
properties (1) to (4) of Theorem 5.1. Then the family of matrices GN is
stable if and only if (11.3) holds and the polynomial A(x) associated with

the matrix D has no zero inside the unit circle.

- 33-
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Proof. From the hypotheses stated in the first sentence of the theorem

v S bl R 4

we can deduce certain properties of the matrices F and D by reasoning %

similar to that used in the uniqueness part of the proof of Theorem 5.1.

First we note that the hypotheses of the present theorem differ slightly from
those of Theorem 5.1. We have added the hypothesis that G is symmetric, E ;
and have omitted the restrictions on gq(x). However, the reader should note
carefully that the latter omission is occasioned only by the fact that these
restrictions are implied by the symmetry of G in conjunction with other hypo-~
theses. The symmetry of G implies that of F . As the rows of K are lin-
early independent, it has full row rank and therefore has a left inverse, say
L (see Ben~Israel and Greville 1974, Lemma l.2). Therefore,
LTFL=LTKTDKL=D,
and consequently D is symmetric.

As in the uniqueness part of the proof of Theorem 5.1, it follows from
property (4) that D is a nonsingular Trench matrix. If it is characterized
by the two polynomials A(x) and B(x) of degree m - s, then

q(x) = a(x) B(1/x) ,
as in the earlier proof., As D is real and symmetric, the coefficients in

these polynomials are real and can be normalized so that

i

B(x) = *a(x). (11.8)

As we have omitted the hypothesis that q, > 0 , some ambiguity remains about
the sign of the right member of (11.8) until further hypotheses are introduced,
and we have

q(x) = tA(x) A(l/x). (11.9)

Now, the symmetry and nonsingularity of D and the requirement that
A(x) have real coefficients imply that gq{(x) has no zeros on the unit circle.

As we have seen, symmetry of D implies (11.9), and nonsingularity implies ;

G
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(Greville and Trench 1979) that A(x) and A(l/x) have no common zero. Now,
if q(x) has a zero on the unit circle, say X, then x;l is also on the

unit circle, so that A(x) must have a zero on the unit circle; call it ¢

e s

Then p-l is a zero of A(l/x), and p is a zero of A(x), since A(x) has

real coefficients. But Ss p-l; therefore A(x) and A(l/x) have a common

- zero. Thus the supposition that q(x) has a zero on the unit circle is false.

vk e e -

Now, suppose that (11.3) holds and A(x) has no zeros inside the unit
circle. Then it follows from the discussion following (11.7) that the posi-
tive sign holds in (7.1) and (7.2), and therefore in (11.9)., By Lemma 1, F
is a singular Trench matrix characterized by the polynomials

Afx) = B(x) = (x - 1)° a(x). (11.10)

DO

£(x) = Alx) BL/x) = (2 = xV228 oy,

S

Then,

vie) = £(eit). (11.11)

o eae A a1y e

Let M denote the maximum value of f£(x) on the unit circle. Then by (11.6)
M2, o0r

1< 2/M, (11.12)
Consequently, by Corollary 1, the family of matrices GN is stable.

Conversely, suppose that the family {GN} is stable, in addition to the

hypotheses in the first sentence of the theorem. Since GN is symmetric,

its eigenvalues are real, and stability implies (0Oldenburger 1940; Dresden
1942) that all its eigenvalues are in the half-open intexrval (-1,1). 1In
lothor words, all the eigenvalues of F“ are in (0,2) for all N. Now, if
v is an arbitrary column vector of real elements, it is well known that the

minimum value of the Rayleigh quotient vT rv/vr v is the (algebraically)

-40-




smallest eigenvalue of F . Suppose the minus sign holds in (11.8) and let

v be the unit vector with 1 as its first element and all the other elements
0 . By (11.10), the constant temm of A(x) is (-1)° a_, and the Rayleigh
quotient is -ai , which is negative since a, # 0 by the definition of a
Trench matrix. Thus, F has a negative eigenvalue, in contradiction to the
statement that all its eigenvalues are in [0,2). Therefore the supposition
that the minus sign holds in (11.8) is false,

Since the positive sign holds in (11.8), F belongs to the class of mat-
rices to which Corollary 1l applies. Thus stability of the family GN implies
that A(x) has no zero inside the unit circle unless it is also a zero of
A(l/x). But a common zero of A(x) and A(l/x) would imply that D is sin-
gular, which would contradict property (4). Therefore A(x) has no zero in-
side the unit circle., Stability implies further that (11.12) holds, where M
is defined as before, and this implies in turn that M < 2, which, in view of
(11.11), is tantamount to (11.6) and therefore to (11.3). .

It is easily verified that Gw, when it exists, is the orthogonal pro-
jector on the eigenspace of G associated with the eigenvalue 1 , that is
the space of N-vectors whose components are successive equally spaced ordi-
nates of polynomials of degree s - 1 or less.

There is a curious unsolved mathematical problem concerning the stability
theorem. It will be recalled that the symmetry of G was not included in the
hypothesis of Theorem 5.1. Rather this was a consequence of the general hypo-
theses and the five defining properties. However, in Theorem 1ll.l the sym-
metry of G is hypothesized. While symmetry of the main part of G follows
from the symmetry of the coefficients in the main formula and properties (1)
to (4), the special corner submatrices are not symmetric unless A(x) is

chosen so that B(x) = A(x). When the characteristic function of the given




MWA satisfies (11.3), we might wish to replace property (5) by the : Juirvc-
ment that the family GN be stable, and still hope to have G uniquely
determined. At present this appears to require the additional hypothesis th:+
G be symmetric, because thc proof of stability (Greville 1980) involves ex-
tensive use of the well known relation between Rayleigh quotients and eigen-
values that holds only for Hermitian (including symmetric) matrices. If

qg{(z) has a number of zeros (none, we assume, on the unit circle), there are,
in general, some possible extensions with unsymmetric corners. I conjecture

that there is, in such a case, no unsymmetric stable extension, but I have not

been able to prove this; nor have I been able to find a counter-example to the

conjecture. Thus the possibility exists (though I think it unlikely) that
some symmetrical MWA (with q, > 0 and no zeros on the unit circle) might
have more than one stable extension, the unique symmetric one and an unsym-
metric one as well.

It may be mentioned, however, that there are cogent reasons for thinking
that G should be symmetric. A square matrix is called persymmetric if it is

symmetric about its secondary diagonal. It is called centrosymmetric if it is

symmetric about the center of the matrix: thus C = (cij) is centrosymmetric

if €53 = CN-j+l,N-i+l for all (i,j). Now, it is easily seen that of the
three properties of symmetry, persymmetry, and centrosymmetry, any two imply
the third. G is necessarily persymmetric, because G = I - F, where F is
a Trench matrix, and every Trench matrix is persymmetric (see Greville and
Trench 1979). Therefore, if G is not symmetric, it is not centrosymmetric.
Now, if G is not centrosymmetric, this means that reversing the order of the
observed values would not merely reverse the order of the smoothed values, but

would cause different numerical values to be obtained. For example, the ele-

ments of the bottom row of G would not be those of the top row in reverse




order. The formula for smoothing the last observation would not be the mirror
image of the one for smoothing the first observation, but would be a different
formula. This would seem to be an undesirable characteristic of the smoothing

process.

12. SMOOTHING FORMULAS IN THE STRICT SENSE AND AN OPTIMAL PROPERTY
Under certain conditions the smoothing procedure described herein can be

shown to minimize a certain "loss function" analogous to the Whittaker crite-
rion. In a slightly more general form of the Whittaker smoothing method
(Greville 1957) one minimizes the sum of the squares of the departures of the
smoothed values from the observed values plus a specified quadratic form in
the sth differences of the smoothed values. In matrix terms, one minimizes

(u - y)T (u=-y)+ (Ku)T HKu , (12.1)
where H is a given positive definite matrix of order N - s, Minimization
of this expression leads to the equation

(I + KT HR)u =y ,
which has a unique solution for u since I + KT HK is positive definite.
I showed (Greville 1957) that this graduation method has the interesting prop-
erty that if roughness (opposite of smoothness) is measured by the term
(xu)T HKu, smoothness is always increased by the graduation. By Theorem 5.22
of Noble (1969), _

1+K HO w1 - KT+ DLk
The last expression is of the form (5.2) and suggests that the use of an MWA
with the natural extension might be regarded as a generalized Whittaker
smoothing process if

b= 2t xD)L,

Solving for H gives

(12.2)
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We are led to inquire, therefore, under what conditions an MWA is such

that the right member of (12.2) for the natural extension is positive definite

for all N . We note in passing that

I ..

H

is a Toeplitz matrix.
Schoenberg (1946, p. 53) remarks that it is desirable for an efficient
smoothing formula, one that achieves adequate smoothness without producing
unnecessarily large departures from the observed values, to have its charac-
teristic function satisfy the stronger condition
0 < ¢(t) <1 (12.3)

for all t . This remark seems to have been little noted in the years since

its publication., We shall call an MWA a smoothing formula in the strict

sense if its characteristic function satisfies (12.3).
Lemma 12.1, Under the natural extension of a given MWA, D"l - KK is
nonsingular if and only if G is nonsingular, and H defined by (12.2) is
positive definite if and only if G is positive definite.
Proof. 1If
T
G=I-K DK, (12.4)
as in (5.2), then by Noble's theorem

clare ot - )tk . (12.5)

provided G and D are nonsingular, Under the natural extension, D is

always nonsingular by property (4). In the procf of Noble's theorem, the

nonsingularity of D-l - xx? is shown to follow from that of G and D .

On the other hand, if D-l - xx? is nonsingular, multiplication of the right

membexrs of (12,4) and (12,5) gives the identity. This proves the first

statement of the lemma.
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Now let H be positive definite. We have shown that

¢cl=1+x uk.

Then, if v is an arbitrary nonzero real vector,

v G.1 v = vT v + (Kv)T HKv. (12.6)
The second term of the right member of (12.6) is nonnegative, since H is
positive definite, and the first term is positive. It follows that G '

and therefore G , is positive definite.

Conversely, let G be positive definite. Applying Noble's theorem to

(12.2) gives

- -1 T
H=D+‘DK(I-KTDK)1KTD=D+DKG K D.

R

Now, we note that under the natural extension D is positive definite i ]

(Greville 1980, Theorem 1), since all the zeros of A(x) are outside the unit

sk

circle. Thus, the same argument used previously shows that vT Hv > 0 for ‘ ]
every nonzero real vector v , and so H is positive definite. . g

Theorem 12,2, Under the natural extension of a given MWA, H is posi-

tive definite for all N if and only if ¢(t) satisfies (12.3).

Proof. By Lemma 12,1, H is positive definite if and only if G is
positive definite; therefore we need consider only the positive definiteness
of G . We recall that G=I - F , where F is a singular, symmetric Trench
matrix characterized by two identical polynomials equal to A(x). Since all
the zeros of A(x), with the exception of +1 , are outside the unit circle,

F is positive semidefinite (Greville 1980, Theorem 1), and if
£(x) = A(x) All/x),
then
vit) = £0e'®) = [a(eh|?

is nonnegative for all t . Let M denote the maximum of p(t).




Let ¢(t) satisfy (12.3). Since ¢(t) = 1 - y(t), it follows ihat
0 <y(t) <1 (L2 7)

for all t . Therefore M < 1 , and it follows (Greville 1980, Theorem 2)
that for all N all eigenvalues of F are nonnegative and less than unity.
Since the eigenvalues of G are 1 minus those of F , all of the former are
positive for all N , and therefore G is positive definite for all N .

Conversely, let G be positive definite for all N . Then all its eige
values are positive for all N, and consequently those of F are less than
unity (but not less than zerc, since F is positive semidefinite), Since M
is the limit of the largest eigenvalue as N approaches infinity (Greville
1980, Theorem 2), M < 1. Therefore (12.7) holds, and it is equivalent to
(12.3). s

It is easy to construct an MWA that is a smoothing formula in the strict
sense, However, none of the weighted averages in common use fall in this
class. As a practical matter, the smoothing effected by such formulas is
likely to be too "gentle." 1In particular, using the properties of Jacobi
polynomials, I have shown elsewhere (Greville 1966) that the characteristic
functions of all min:l.mum—Rs averages assume negative values in (0, 2n).
Thus no such formula is a smoothing formula in the strict sense.

There is, however, one family of moving averages, mentioned in the liter-
ature but not in general use, that are smoothing formulas in the strict sense.
This is the limiting case of the minimum-Rs formulas as s approaches infin-
ity (Greville 1966). In finite-difference form, the ninimun-R. MWA of

2m + 1 terms, exact for the degree 28 -1 , is

s-1

u 2 (m=s+l) ) (-a)~3 (843, 2
3=0 )

where the operator . is defined by

u

% Yy ¢

uf(x) = [£(x + ) + £(x - §)) ,

so that u2 =1 + £62 . The characterirtic function is

st

e




m-s+j)

( sin2J it,

s=-1
o(t) = (cos 3t)2®5*1) ¢

j=0

which is nonnegative in O < t < 27, with a single zero of multiplicity

————r

2(m - s } 1) at t =7,

It may be mentioned that, in the case where ¢(t) assumes some negative
values (and G and H are nonsingular), though the expression (12.1) does
not have an extremum, the natural extension of the graduation does corre-
spond to a saddle point of (12.1)., It is not clear what significance this

observation may have.
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1. Monthly Precipitation (Inches), Madison, Visconsin, 1967-71,

Observed Graded
Yalue Yalue Value Value

1.63 .11 h,28 3.81
1.17 1.63 0,96 3.17
1.9 2,24 1,35 2.33
2.5? 2,88 2,65 1,56
3.53 3.2 0.70 1.06
6.“ 3.7“ 1.66 0.82
2,51 0,44 0,90
2.71 ’ 0016 1.25
2,68 3.42 1,17 1,78
5.52 2,53 2,39
1.83 6,09 2,9
2,26 3.37

2,42 3.63

0.97 3.69

8,82 3.50

2.65 3,20

1,06 2,7%

Decenber 2,12 2,28

1.9%

Februsxry 1.76

¥arch 1.7“‘

Aml 1.81

May 1,93

June 2,02

July 2,13

August, 96 2,24

Septender 2,40

October 2,63

November 2,84

Decesber 3.64 3.28

SOURCE: Obssrved values from U, S, Department of Commexrce, National
Oceanic and Atmospheric Administration, Environmental Data Service,

Joca) Climatologica) Pata, Annua) Summary with Comparative Data,
Dadison, Visconsin, 1972, National Climatic Center, Asheville, X, C.,
1973,




2, Noving-Average cm1eim-a(c ) and Extension
Coefficients (a J) of Minimin-Ry (*Henderson's ldeal”)
Averages of 5 to 23 Teras Exact for Cubics

—— Number of Terms
] ? 9 1 13
) -—oj a; oy 3y °y 8y ey . cy 8y
d 559440 412588 IN1k0 277944 . «240058

1 ,293706 2 ,293706 1,6180%4 ,266557 1,352613 .23B693 1.,160811 ,214337 1.016301
2 -, 073426 -1 058741 -.236068 ,118470 ,114696 .141268 ,281079 ,l47356 360880
=c058741 -,361966 =,009673 =,287231 035723 =.140968 065492 ~,021625
=, 040724 -,180078 ~,026792 -,204545 0 ~-,160909

<o 0278614 =,096377 -,027864 -,138330

=4019350 -,056317

N W P

Scalculated by formla (9.5).




2, Noving-Average Coefficients (¢ j) and Extension
Coefficients (a J) of Mnhun-ns‘( *Henderson's Ideal®)
Averages of S to 23 Terms Exact for Cubics (continued)

Number of Teras

15

1?

19

22

23

°3 4

Ci Cj

ci .L

°y 24

o3

J
0
1
2
3

4

211542
A937h2 903661
.16590% 397295
«062918 064751
024028 ~,100710

5 =. 08134 -,135485
6 -, 025499 -, 09442k -,018640 -,106213 -,008155 -,099972
? =-.013730 ~,035128 -,020370 -,065896 =,018972 -,081843 ~,012R96 -,084711 ~,004948 -,078737
=+009961 -,023052 =,016601 =,047103 ~,017614 =,063086 =-,014527 -,070064
=e007378 =,015756 ~, 013455 -, O34MlL -,015687 -,048977

9
10
n

189232

2176390 B134uL
151112 410885
«092293 ,124932
+042093 -,043456
« 002467 -,110644

171266

161691 ,739580
J134965 412090
096658 ,166162
054685 005097

017474 ~,078255

«156470

149136 678000
128423 ,L4OGUYS
«097956 190174
063038 , 046016
029628 -, 046290
»003119 -,084020

«144060

138218 625880
121949 397207
«097395 .212501
068303 075236
«038933 -.015313
«013430 -,063927

«o 005570 «,011134 -,010918 -,025714
=, 004278 -,008092

%Calculated by formila (9.5).

=50~

me A r——.

-y "

sithAan o i




i o AP B S TR T R R R

3. MNoving-Aversge Coefficients (c J) and Extension
Coefficients (a J) of Selected Moving Aversges

lleuuhy‘

Spencer

b

15=Tera 4

Vealhouse® Haxdy lﬂ.ghu.n. Kmp‘

5

3%

32°°:L .y 125:1 8, 12°°.1 ., 1250j 8, 64‘25::j y

182
(919760
+39302)
« 055273

-1
- 240u62
-, 084512
«-,02997M

0
1
2
)
b
5
6
7
8
9

%
67

F1 25
22 24
17 18 ,39928) 87
10 10 087040 53
3 -072738 21
-, 104527 o
-+093953
-. 0552
=, 019343

125
+859550 114

a3
24
21

?

3
0

.820240
Jh02924
114622
=, 047133
=¢102491
=4 091791
-4060239
-4 028636
- 007496

«961572
372752
+ 015904
-0125488
~e125229
-, 075887
- 025624

+739988
386211
«128325
-, 023648
-,080087
=+ 079459
- 049327
018003

«885108
21982
28721
=, 076050
-.107285
-.09272
-.05975)

-2
-3

“Yacawlay 197, p. 55, foctacte 2,

‘lhuuhy 1931, p. 55 Hendersom 1938, p. 53.

“Henderson 1938, p. 5.

Yenderson 1938, p. 53) Benjanin and Kaycocks 1970, p. 238.
*Henderson 1938, p. 53.

Tiendersen 1938, . 53,




3. Noving-Aversge Coefficients (c,) and Extensien
Coefficients (a J) of Selected Moving Averages (continued)

Andrews®

Sponenh
21=Tera

Haxdy 1

Wave-Cutting

Yaughan 3
Formula A

Konchlngtonk

10080c 'y

8y

3500,

8y 65°L a, IM_L a,

38501 a,

3
°
1
2
3
»
L
6
?
8
9

10

e

12
1

1688
1579
1325

950

700747

60
5
&7

»
18

s

= & O NN N O \n

[ S 3

480996
«368708
«2679%0
+166506
<072964
-y 008222
«. 075054
=4 097387
=+ 009039
=, 062006
»o 00996

182
179
170
19
1ns

7
29
-5
-26
-29
«19
-4

+593256
+ 396409
+230238
096261
«+000857
=+ 060076
-.083321
=« 07959
=, 056662
=+ 028557
=+007595

b5
b
]
%
30
22

527740
«370688
0236445
+128638
+043118
-+ 018390
=+ 053902
=+ 057080
=, 064844
=.050323
= 032035
-, 015626
=+ 004429

Santrevs and Feabitt 1963, 3. 128,
.tudu 1971, p. 51 Nendexson 1938, p. 53,

13a3nin and Rayoocks 1970, p. 239,

Svanghan 1933, ». .
Ryeaterson 1938, . S3.
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| 9. Extension of 15-Tern Spencer Craduation of Madison Precipitation
% "Data to First Seven and Last Seven Months by Different Methods

Extension of Graduation by
Year and Observed HNatural Least-Squares Additional

Honth Value Nethod Cubie Data
1967
January 1.63 .1 1.62 .56
Pebruary 1.17 1.63 0.98 1.8%
March 1.9 2,28 1.3 2,29
Apct) 2,57 2,0 2.3 2,85
Moy 3.5 .02 3.0? 3.3
June 606 M p N1 3.70
My 2.0 ) 3.8% " 3.82 3.8%
19N
June 2.27 2,02 2,00 2,05
My 1.65 2,13 2,0 2,2)
August 3.96 2.2 . 2,00 2,%
: Septesder 1,87 2,80 1.9 2,9
Ovtcber 1,30 2.6 2,08 2.50
| Bovesber 3.08 2,04 2,58 2.3
Deceaber 3.64 3.28 - 3.85 2,06




'8, Parsmsters of the Syrmetrical Weighted Averages Listed in Tables 2 and )}

Designation Ctems Mo Ry Errer

Windmun-Ry (Hendersen's $deal)s [ 7045 2735 -.0736‘

? S oy -20"

9  S® 058 768"

n M8 Jon et

13 s, .0 268"

B an .a» ssst

12 Ao L0095  -7,608°

19 806 L0066 1.kt

n 6% o8  -16.58"

B e 006 2308

Necanlay LI Y B X

Spencer 15 M a6 =06

Yoolhouse 15 N2 06 s
Naxdy 7 wom a0 gde?o 320t

Eighan 17 M2 .an -6

Karwp 1 A% .05 7.8

Andrevs n 7 0068 <as9e"

Spencer n g L0086  -12,68"

Baxdy, wave-cutting 5] (%)) - «aSh -ﬁ0.86~

Vaughas A 2 M5 L0050 266"

Zenchington 2 pr@ oM 22,080
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