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In this paper the central distributional results of classical extreme

value theory are obtained, under appropriate dependence restrictions, for

maxima of continuous parameter stochastic processes. In particular we prove

the basic result (here called Gnedenko's Theorem) concerning the existence

of just three types of non-degenerate limiting distributions in such cases,

and give necessary and sufficient conditions for each to apply. The

development relies, in part, on the corresponding known theory for

stationary sequences.

The general theory given does not require finiteness of the number of

upcrossings of any level x. However when the number per unit time is a.s.

finite and has a finite mean U(x), it is found that the classical criteria

for domains of attraction apply when p(x) is used in lieu of the tail of the

marginal dastribution function. The theory is specialized to this case and

applied to give the general known results for stationary normal processes

(for which u(x) may or mvw not be finite).

A general Poisson convergence theorem is given for high level

uperossings, together with its implications for the asymptotic distributions

of rth largest local maxima.

.......
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1. Introduction.

In this paper we shall be concerned primarily with asymptotic

distributional properties of the maximum

M(T) = sup{C(t): 0 t 5 T}

of a continuous parameter stationary process {(t): t 01. A great deal is

known about such properties in the important special case when the process

is normal (cf. [2], [16]). Our purpose here is to delineate the types of

limiting behavior which are possible when the process is not necessarily

normal, obtaining, in particular, versions of the central results of

classical extreme value theory which apply in this context.

The classical theory is concerned with properties of the maximum

= max( l, 2 ,'-n) of n i.i.d. random variables as n becomes large.

Central to the theory is the result which asserts that if Mn has a

non-degenerate limiting distribution (under linear normalizations), i.e. if

P{a (M - b) S x) * G(x) for sequences {a> 0},{b 1, then G must be one of

only three general types:

Type I G(x) - exp(-e - < x <

Type 11 G(x) - exp(-x ) x > 0 > 0

Type III G(x) - exp -(-x)M x < 0

(linear transformations of the variable x being permitted). This result,

which arose from work of Frechet [5] and Fisher and Tippett [4], was later

given a complete form by Gnedenko (6] and is here referred to as "Gnedenko's

Theorem."
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Gnedenko also obtained necessary and sufficient conditions for the

domains of attraction for each of the three limiting types. These and other

versions obtained subsequently (cf. [7]) concern the rate of decay of the

tail l-F(x) of the distribution F of each Cn as x increases. B

A further result--trivially proved in the classical case--is that for

any sequence {u1, T > 0, PMo tu %U)..eT if and only if 1 - F(un) Tin.

This is sometimes useful in calculation of the constants anbn in Gnedenko's

Theorem (when un = x/an + bn).

In more recent years there has been considerable interest in extending

these and other results of the classical theory to apply to stationary

sequences which exhibit a "decay of dependence" which is not too slow. In

particular the early work of Watson [17] concerning convergence of P{M .%unn n

applied under m-dependence, Loynes [14] proved Gnedenko's Theorem under

strong mixing assumptions, and Berman [1] obtained detailed results for

normal sequences under a mild condition involving correlation decay. More

recently we have obtained a theory (cf. [9]) involving weak "distributional

mixing" conditions, which unifies these results and provides a rather

satisfying extension of the classical distributional theory to include

stationary sequences.

It is not too surprising that such an extension is possible for

stationary sequences, at least under suitable dependence restrictions. What

may seem surprising at first sight is that a corresponding theory is

possible for continuous parameter stationary processes. However this

becomes intuitively clear by recognizing that the maximum up to time n, say,

is just the maximum of n random variables--the "submaxima" in the fixed

intervals (i-1, i), 1 9 i 1 n. Our procedure will be, in fact, to use the



existing theory for stationary sequences by means of (a slightly modified

version of) this precise approach. The sequence results which will be

needed are stated in Section 2.

In Section 3 we will obtain Gnedenko's Theorem for continuous parameter

stationary processes, showing under appropriate conditions that if

PfaT(M(T)-bT) S x) - G(x) as T

for some constants aT>O,bT, then G must be one of the extreme value forms.

In Section 4 we obtain a related result--again extending a classical

theorem--to give necessary and sufficient conditions for the convergence of

P{M(T)luT) for sequences not necessarily of the form uT mx/aT + bT

implicit in Gnedenko's Theorem.

As a corollary of this result we obtain necessary and sufficient

criteria for the domains of attraction occurring in Gnedenko's Theorem. In

the classical i.i.d. sequence case, the criteria for domains of attraction

involve the rate of decay of the marginal distribution l-F(x) as x

increases. For the present case the very same criteria apply, provided

l-F(x) is replaced by another function *(x). For processes whose mean

number U(x) of upcrossings of any level x is finite, the function O(x) is

precisely p(x), a readily calculated quantity.

The general theory will not require that the mean number of upcrossings

of a level per unit time be finite, and accordingly will include the class

of stationary Gaussian processes with covariances of the form

r(-r) - 1 - cI I0 + o(ITjf) as T 0 for 0 < a < 2. In Section S we consider

such processes, as well as (possibly non-Gaussian) cases for which the mean

number of upcrossings per unit time is finite. Finally in Section 6 we note

L., &
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the general Poisson limit for the point processes of upcrossings of

increasingly high levels and its implications regarding limit theorems for

the distribution of the rth largest local maximum of C(t) in 0 S t ! T.

2. Two results for stationary sequences.

As noted, our development of extremal theory for stationary processes

will rely in part on the existing sequence theory. Specifically we shall

require the following definitions and results (which may be found e.g. in

[10]).
Let (n) be a stationary sequence and write F...i ..xn) for the

joint distribution function of For brevity write also F .

to denote Fi..in(U , u ...u) a P%"ilu ... Isu. if fun ) is a sequence of

real constants, we say that the sequence n satiaefies the (dependence)
n

condition D(un) if for each n, 1 S i 2... <i 1J,.<j, !5
p n, jl- i ,

(2.1) IFi (U) Fi l i (u n)F. V I(u <

i p 1 p... i , n j, .. * 3 pt n,

where

(2.2) a, 0 for some sequence L = 0 as n -
n, 1n n

Note that on,, can (and will) be taken to be decreasing in I for each n

by simply replacing it by the smallest value it can take to make (2.1) hold

(i.e. the maximum value of the left-hand side of (2.1) over all allowable

sets of integers i1 ...ip , J...jp, . Note also that (2.2) may then be shown

equivalent to the condition (cf. (12] for proof)

(2.3) an,nA O as n for each A > 0
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The condition D(Un) indicates a degree of "approximate independence" of

members of the sequence separated by increasing distances. However this

condition, which we refer to as "distributional mixing," is clearly

potentially far less restrictive than, for example, "strong mixing." In the

case of normal sequences, it is in fact satisfied when the covariance

sequence {r I tends to zero even just fast enough so that r logn - 0.

nn

The following result is basic to the sequence theory and will be

required in later sections.

Lemma 2.1. Let {&n be a stationary sequence eatief ing D{un) for a given

sequence (un) of constants and write Mn ax(& h for and

integer k z 1 (writing []to denote integer part),

P{Mn- Un p1{M [n/k] sun) -P. 0 aw n o..

This lemma indicates a degree of independence between the [n/k] maxima

when the first n integers are divided into k groups. We shall also need the

sequence form of Gnedenko's Theorem, which is given (e.g. in [10]) as follows:

Theorem 2.2. Let {n be a etationary sequence such that Mn - max(C l,2 ...Ed

satisfies P{an (Mn-bn) 5 x} -, G(x) as n for some non-degenerate d.f. G

and constants (an>O),{bnI. Suppose that D(Un) holds for aZZ u of the form

x/a n + bn -, < x < -. hen G is one of the three extree value

distributional types.

The other classical result quoted--concerning convergence of P{( Un }

for arbitrary sequences (u.I--s also important and holds under appropriate

conditions for stationary sequences {%)}. This will not be discussed here

since the corresponding continuous parameter result will be independently

derived.
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3. Gnedenko's Theorem for stationar processes.

As indicated above, it will be convenient to relate the maximum M(T) of

the continuous parameter stationary process C(t) to the maximum of n terms

of a sequence of "submaxima." Specifically if h > 0 we write

(3.1I) CI" sup(E(t) : (i-I)h s t S ih}

so that for n = 1,2,3...

(3.2) M(nh) max( . .

The following preliminary form of Gnedenko's Theorem (involving

conditions on the C-sequence) is immediate.

Theorem 3.1. Sztpoes that for some fr ilies of oonetante{ aT>O},{bT} we

have

(3.3) P{aT(M(T)-bT) : xl * G(x) as T

for sorme non-degenerate G, and that the QCi sequence defined by (3.1)

satisfies D(un) whenever un a x/anh + bnh for some fixed h > 0 and aLl real

x. Then G is one of the three extrwie value types.

Proof. Since (3.3) holds in particular as T .- through values nh and the

%-sequence is clearly stationary, the result follows by replacing En by Cn

in Theorem 2.2 and using (3.2). 0

Corollary 3.2. The result holds in partioldar if the D(un) oonditions are

replaoed by the assumption that {C(t)) is strongly . Po' then the

seqene (C n ) is strongly miwing and satisfies D(un). 0
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We now introduce the continuous analog of the condition D(%), stated

in terms of the finite dimensional distribution functions F ti . of F nto

(again writing F t1... t n u) for F t 1I... % (u ... U).

Vie oo,,ditton Dc(UT) Witt be said to hold for the proe... Q(t) and the

famiZy of oonetante {uT: T>O0), with Maspeot to a family {qT. - 0, if for

any points s I< S2** <.csp t 1**. Ctp, belonging to (kqT~: 0 f.kqT sT) and

satisfying t- 8 2! T we have

(3.4) P~**~ 1 *~ (uf) - Fs (ur) Ft t Y S~) 'LT~y

where OLT, YT 0 for some sequence y ao(T) or, equivalently, where

(3.5) OTAJT ' asT4

for each X > 0.

The DVun condition for {Cn) required in Theorem 3.1 will now be

related to D c(uTr) by approximating crossings and extremes of the continuous

parameter process, by corresponding quantities for a sampled version. To

achieve the approximation we require two conditions involving the maximum of

Q(t) in fixed and in very small time intervals. These conditions are given

here in a form which applies very generally--readily verifiable sufficient

conditions for important cases are given in Section S.

Specifically we suppose that there is a function *(u) such that, for

h > 0,

(3.6) 1lim sup M1Ufjj2- S 1
Ulm
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and that for each a > 0, there is a family of constants q q a (u) - 0 as

u such that

(3.7) lir P{t(0)<u, u )<u , M(q)>ul - 0 as a 0
uNSU q*(u)

Note that Equation (3.6) specifies an asymptotic upper bound for the

tail distribution of the maximum in a fixed interval, whereas (3.7) limits

the probability that the maximum in a short interval exceeds u, but the

process itself is less than u at both endpoints. The following result now

enables us to approximate the maximum in an interval of length h by the

maximum at discrete points in that interval.

Leama 3.3.

i) If (3.6) holds, then P(M(q)>u} = o *(u) as u - for any

q = q(u) - 0. Also P{&(O)>u} = oip(u)

(ii) If (3.6) and (3.7) both hold, and I is an interval of length h,

then there are constants X suoh that
a

(3.8) 0 S tim sup[P{ (jq)!u-, jqeIl - P{M(I)su}]/*(u) : X - 0 as a 0u- a

where q - q a (u) is as in (3.7), the oonvergence being uniform in all intervals

of this fixcd length h.

Proof. If (3.6) holds and q -0 as u -, then for any fixed h > 0, q is

eventually smaller than h and P{M(q)>u} ! P{M(h)>u}, so that

lim sup P{M(q)>u)/*(u) 9 lm sup P((h)>u}/*(u) 5 h by (3.6)
U""D Ulmn

from which it follows that P{M(q)>u}/*(u) - 0, as stated. The remaining

statement of Mi) also follows since P({(O)>u} : P{M(q)>u).



Suppose now that (3.6) and (3.7) both hold and that I is an interval of

fixed length h. The interval I consists of no more than h/q subintervals of

the form ((j-l)q, jq), together with (possibly) a shorter interval at each

end. The difference in probabilities in (3.8) is clearly non-negative and

(using stationarity) dominated by

a " hP{(O)<u, E(q)<u, M(q)>u) + 2P{M(q)>u}
a,u q

The desired result (ii) now follows from (3.7) and (i) by writing

Xa = lim supX a,u 0

It is now relatively straightforward to relate D(un) for the sequence

4n) Ito the condition Dc(uT) for the process E(t), as the following lemma

shows. (In this we use the (potentially ambiguous) notation D(unh) to mean

D(vn) with v = Unh)

Lemma 3.4. Suppose that (3.6) holds with some function *(u) and let {qa(u)l

be a fni y of constants for each a > 0 with qa(u)>O, qa(u) -O as u - -,

and such that (3.7) holds. If Dc(uT) is satisfied with respect to the

fm ly qT = q a(uT) for each a > 0, and Ti(uT) is bounded, then the sequence

{Cn ) defined by (3.2) eati fiee D(Unh) for h > 0.

Proof. For a given n, let i1<i2...<ip< J l...<Jp ,<n , J- ip? L. Write

It• a(ir-l)h' irh] , Js= [(s-l)h , Js h]. For brevity let q denote one of the

families (qa(e)l and

p p
A n { (q) un, JqEIlr ,  A- n (i rU
qr=l ral r

pt pg

B sn {&(jq)!unh, JqcJs) ,  Bs n ({ Su
qm s.1 sol is n
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It follows in an obvious way from Lemma 3.3 that

0 5 lim sup(P(A qnB ) P(AnB)) :9 lrn sup(p4p')*J(u nh))a

S fl(ha S q~

for some constant K (since nh*D(unh) is bounded) and where A0 as a -~0.

Similarly

lii supjP(A )-P (A)I1:SKX a lrn supIP(B q)-PCB)ISIOKX

Now

IP(AnB) -P(A)P(D)l S JP(AnB) -P(A q B q)I + IP(A q nB) - P(A q)P(B q)1

(3.9) + P(A q)IP(B q) P(B)t + P(B)IP(A q - (~

R ~ + IP(A nB q) P (%) )P(B q)I

where lrn sup R naS MKX

Since the largest jq in any I ris at most i Ph, and the smallest in any

J is at least (J-l)h, their difference is at least (I-l)h. Also the

largest jq in J does not exceed i,,h S nh so that from (3.4) and (3.9)

(3.10) IP(AnB) - P (A) P(B) I SR +
n,a nh,(t-I)h

(in which the dependence of a On a is explicitly indicated). Write now

a if{R a+ n() h 'Since the left-hand side of (3.9) does not

depend on a we have

IP(AnB) -P(A)P(B)! s o,.



which is precisely the desired conclusion of the lemm, provided we can show

that lim *"A 0 for any X~ > 0 (cf. (2.3)). But for any a > 0
*n

n nn na +nh, (Xn-l)h n a nh, Xnh

whenn i suficintlylare (snce (a) decreases in L), and hence by (3.5)

urn sup eA*, !5 3KXa

and since a is arbitrary and X a 0 as a 0, it follows that a*, 0a

desired. 0

The general continuous version of Gnedenko's Theorem is now readily

restated in terms of conditions on &(t) itself.

Theorem 3.S. With the above notation for the stationaryi process &(t)

satisfyjing (3.6) for some j~unction s, uppose that, for aome families of

constants {aT>0l, {bTl,

P~a.F(M(T)-bT) S x) G(x)

for a non-degenerate G. Suppose that TIP(uTr) is bounded and D,(uT) holds for(u a x/aT + bT for each real x, with respect to families of constnts

(qaCu)) satisfying (3.7). Then G is one of the three extreme value

distributional types.

*Proof. This follows at once from Theorem 3.1 and Leina 3.4. 0
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As noted the conditions of this theorem are of a general kind, and more

specific sufficient conditions will be given in the applications in

Section 5.

4. Convergence of P{M(T)SuT}.

Gnedenko's Theorem involved consideration of P{aT{M(T)-bT1 : x), which

may be rewritten as P{M(T)<uT) with uT = 1 x + bT. We turn now to the

question of convergence of P{M(T)<uT} as T - - for families uT which are

not necessarily linear functions of a parameter x. (This is analogous to

the convergence of P(Mn<un) for sequences, of course.) These results are

of interest in their own right, but also since they make it possible to

simply modify the classical criteria for domains of attraction to the three

limiting distributions, to apply in this continuous parameter context.

The discussion will be carried out in terms of so-called "£-upcrossings"

of a level by the stationary process--a concept originally introduced by

Pickands [15] to deal with extremes of processes whose sample functions were

so irregular that the "ordinary" upcrossings could be infinite in number in

a finite interval. (Here we make essential use of this concept whether the

process is irregular or not.)

Briefly, if e > 0, C(t) is said to have an e-upcrossing of u at a point

t 0 if C(t) : u for all t in the interval (t0-E, t0), but C(t) > u for some

point t i (t0 , t0*+n) for each n > 0. Since the interval (t0- , t0 ) contains

no upcrossings, the number of £-upcrossings in a unit interval does not

exceed 1/c. We write N Cut) , Nu (r) for the number of c-upcrossings in

the intervals (O,t), I respectively and i€,u -EN ,u(I) so that "

EN C,u(t) a tE,u . The following small result Indicates some connections

between c-upcrossings and maxima.

.... .. . . .. . ..... ... . ... ...... .. ... ... ..... . . ..... ... I.I l ll.
:
....ll. .. ... . .. .. . ...... .. . ..... . ....... . ... . . .. .. .. . .
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Lows 4. 1.

Mi For h > 0, P(M (h) >u) a Uh

(ii) hu hu 2 P(N(2h)>ul - P{14(h)>u).

(tMi) If (3.6) hoZda (i.e. i. sup P{M(h)>u1/(h*~(u)) :5 1 for some 0~(u),
I4

h > 0) then lii sup Mh u/*(u) s 1.
U4m

(iv) If

(4.1) P (M (h) >u) -h* (u) as u -for 0 < h <h0

then I 'U ,- gs(u) for alt (euffioientZy s&wZZ) c > 0.

Proo. SnceclerlyNh~u(h) iseither zero or one, we have

h hu -EN hu(h) - P{hu(h)ull : P{M(h)>ul

so that Mi follows at once. To prove (ii) we note that

P{M(2h)>ul e. P(t4(h)>ul + P(Nhu(h,2h)"l}

-P{M(h)>u) + hljhu

If (3.6) holds (iii) follows at once from Mi.

Finally, if (4.1) holds, the conclusion of (iv) follows from (iii) and

the inequality (ii), which gives

Our main purpose is to demonstrate the equivalence of the relations

PfM(h) > uT T/T and P{M(T)su T} O under appropriate conditions. The
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following condition will be referred to as D (uT), and is analogous to D'

conditions required for similar purposes for sequences (cf. [10]).

If {uT } is a given family of constants .the condition D (uT) will be

said to hold (for the process {C(t)} satisfying (4.1)) if

(4.2) liT sup TI , (u 1)I 0 as e 0
eT

We now state and prove the first part of the desired equivalence.

Theorem 4.2. Suppose that (4.1) hoZd for some fUnction * and Zet {uT} be a

f'i4y of constants such that De(U1.) hoUd (with respeot to a f@aiZiy (q)

satisfying (3.7)), and that Dc'(uT) ho~ds. Then

(4.3) 7V(uT) -I. t > 0

'ipzies

(4.4) P{M(T);uT) ,e

Proof. Let 0 < h < h0 (cf. (4.1)), and let n,k be integers, writing

nt a [n/k]. By Lemma 3.4, the sequence of "submaxima" (n } defined by

(3.1) satisfies DCUnh) and hence, from Lema 2.1,

(4.S) P{M(nh)sunh) - Pk{M(nIh)u ) 0 as n4

Now writing Unh ' u, Lemma 4.1 (1) gives

n'nh,u s P{N(n'h)>u) x n'P(M(h)>u) n'h*(u)

so that
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(4.6) 1 -nlh*(u)(1.o(1)) S P{M(n'h):su) s 1 - n'hp nn,hu

But n h* (u) anho (u ,h)/k -0 T/k by (4.3). Further

nh - Iih]*nh

Tlhu (nh Tuh V (ufh)
T Unh

so that letting n in (4.6) and using DCI(uT) we have

1 - '/k !5 li. in P(M(n'h)su) 9 ii, sup P{M(n'h)sul

S1 - r/k + 0(1/k)

By taking kh powers and using (4.S) we see that

(1 -T/k) k :9 lrn inf P(J4(nh)!gul S li sup P(M(nh)!gul : (1-T/k+o(1/k)) k

and hence, letting k * ,that

(4.7) P{M(nh)Sunh) e -

Now if n is chosen so that nh s T < (n.1)h, and if Unh uT

P(M(nh)su UT) P{M(nh)!sulh) + P{unf<M(nh)SuT}

where the last term does not exceed

nP(unhM(h)(uT Y n[(M(h)> unhl P{M(h)>uT)]

* Th (140 (1 )) - (.(1)
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by (4. 1) and (4.3). Since nh '-T this clearly tends to zero. A

corresponding calculation where u nh > u.F thus shows from (4.7) that

P{t4(nh)!suT *-

with T [n/h]. Finally

S P{M(T)SuT) +. PfM(nh)S5uTCM(T)1

But the event t4(nh) g u T < t4(T) implies that the maximum in the interval

[nh,(n~l)h] exceeds uT, which has probability P{M(h)>uT), giving

P(M(nh)SuT) - P(i(huT) :9 P{?4(T)S uT) :5 P{M(nh):9uTn

from which (4.4) follows since PfM(h)>uT} - hr/T +* 0.0

In our treatment of the converse result it will be convenient to use

the innocuous further assumption

(4.8) *(uT) - 4 (u[T/h]h ) as n

(for some given h > 0). This assumption is possibly dispensable but

certainly commonly holds (e.g. when qJ(u T) -(2 log T) h for stationary

normal processes) and, of course, always holds if the function UT is

replaced by the step function uf/hih I constant between consecutive points nh.

The first step of the derivation exhibits approximate independence of

maxima in disjoint intervals.
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Lema 4.3. mppose that (4.1) oA for and let {uT} be a famiZy of

oonetante (.atisfing (4.8) for. me b > 0) suoh that Dc(uT) ho Zd ith

wespeot to a fmily (q) stie.,-lioW (3.7) and uah that T*(uT) is bounded.

Lot

(4.9) P(56(T)%uT }  a-

for aeMe T > 0. Me.nfov k l1,2...

(4.10) PfM(T/k)suT) e• T/ k as T .

Proof. As in the previous result the assumptions surrounding DC(uT) imply

that

(4.11) P{M(nh)Su) - P k(M(n'h)<u) - 0 as n -o

where n' C (n/k] and u - Unh. Now if n a [T/h] it, is readily checked that

[n/k]h S T/k < ([n/k]+l)h, so that

P{M(T/k):u) S P{M(n'h)su) e• T / k

by (4.5) (which holds here by the same argument as in Theorem 4.2), and

(4.9) with T * nh. But also

P(M(T/k)Su) 2 P{M((n'l+)h)Su}

SP{M(n'h)su} - P{M(n'h)Su<M((nt+l)h))

z P{M(n'h)su) - P(M(h)>u"

The first term on the right tends to o"T/k, and the second is asymptotically

equivalent to h*(Unh) - n' [nh*(%uh)] 4 0 since T*(uT) is bounded. Hence

we have
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(4.12) P{M(T/k)!sunh) O, /

But it follows simply that u nh may be replaced by uTi. in (4.12) to give

the desired result since if, for example, Unh~ uT. we have

0 S P{M(T/k)SuT) - P{M(T/k)Sunh)

(4.13) = P{unh< (k)Zu T

S (n/k)P(Unh< M (h):Su T ) + P(M(h)>unhl

since if the maximum in (0, T/k) lies between Unh and uT this must also

occur in one of the first n' intervals C(i-l)h, ih) or in (n'h, T/k). The

first term of (4.13) is readily seen to be

(nh/k)[*(unh)(lo(l)) - *(uT)(l+o(l))]

which is easily seen to tend to zero by (4.8) since nh(u nh) is bounded.

Boundedness of nh*(unh) also implies that the second term of (4.13) tends

to zero. A corresponding calculation applies for unh a uT so that

P{M(T/k)!u T ) - P{M(T/k):guh} - 0, giving the desired result. 0

Lema 4.4. Under the acne aesraptiona as in Lema 4.3 we have

I lie SupIP{M(eT)SuT} - e'I-j _ 0 as c - 0

Proof. Choose the integer k depending on £ > 0, so that 1 E .

Then

P(M(T/k)su.tT) s P{M(CT)u}uT ) 9 P(M(T/(k+l))Su T )
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By subtracting e from each term, and using the facts fro Lems 4.3 that

P{M(T/k)lu.su eT/k , P{M(T/(k~l)) u;}-e "T/(l), we see that

li supIP{M(cT)5uT) - e I maxtle 'T/(k l) _ OCTl o-T/ke'CT) i

But

le-T/(k+l) -CT[I S . e-T(C- 1/(k~l)),
-=C E[i-• t ¢ "€Io())

which tends to zero as C . 0. Similarly .1e -
T /k  e'¢t * 0 so that the

desired result follows. 0

The next lemma gives a conclusion which is interesting in itself and

from which the main result will follow immediately.

Lemma 4.5. Again suppose that the conditions of Lmm 4.3 hoZd. Then

(4.14) li. supTcT , - TI * 0 as c -, 0

Proof. By Lemma 4.1 (i),

P{M(2cT)> uT ) S P{M(cT)>uT } + CnTuTtI

so that

Tp lT ![P(MN(cT)SuT) - e-CTI

* °+1f-2€ - P{M(2c1T),UT}] + 1 e-2c- CTI
[ e"¢t - - t]
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giving

lim inf[TT T, : Ile-ET 0-2T -T]

T-W eT-.T C

lim supIP{t4(eT)SuT} - eCTI
T--

- .lirn supIJPi(2se: T)'}- i-26TI

The latter two terms tend to zero as e 0 by Lema 4.4, so that

liminf(T u  - T] > a 0 as e - 0
cTIuT C

Similarly from the inequality cTuCT,uT ! P{M(ET)>u T} (Lemma (4.1) (i)) it

follows that

HiM sUp[TucT,, - T] s bC

where b 0 as e O. Since if lim inf n k X and lim supBn < A it is

easily shown that lim supIBni : max(IXIIAI), we have

lim supITiT - TI s max(Ia C,Ibcl) ,

which tends to zero as C -- 0, giving the conclusion of the lemma. 0

It will be noted that (4.14) is very similar to the condition D (UT)

and follows as a conelusion from the assumption P{M(T)SuT) - eT under

appropriate conditions. For this we do not require that D (UT) hold. If

we now do assume that DC(uT) holds we immediately obtain the main converse

result.
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Theorem 4.6. SUppoae that (4.1) hoZde for some 0 and let {uT } be a fosiZy

of conatants (eatisAing (4.8) for aome h > 0) such that Dc CuT) ho Id with

,eapeot to a family (q) sati f ing (3.7). Suppose aleo that DC(uTr) holds.

Am (4.4) implies (4.3).

Proof. Since Tu S T/(CT) a 1/E it is implicit in the assumption

D'(UT) that T*(uT) is bounded. Thus the conditions of the previous lemmac

are satisfied if (4.4) holds and hence

lia suplTIT - T 0 as c 4 0
T- 'T T

But Dc(uT) requires that

limr supITU _ - T(uT) 1 0 as £ 0T-1- e , UT

from which it follows simply that T*(uT) T T, as required. 0

Theorems 4.2 and 4.6 may be related to the corresponding results for

i.i.d. sequences in the following way.

Theorem 4.7. Let {uT } be a faily of constants such that the conditions

of Theov.l 4.6 hold, ZO1 0 < A < 1, and lot h be ohoeenasein (4.1)

and (4.8). Ten

(4.1S) P{M(T) suTl - p as T 4-

if and only if there is a sequence (C n) Of i-ii. randm variables with

oownon d.f. F satisfyring I1- F(u) - h#I(U) as u- and such that
A

*n 0 ax3 C Cn1,2 Cn satisfies
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Proof. If there is an i.i.d. sequence { n} with comon d.f. F such that

(4.16) holds then (as noted in the introduction) we have 1 - F(unk) - Tin,

where p = e T. Since 1 - F(u) - hq,(u) we have ~(Un) - T/nh, from which

(by (4.8)) *$(UT) - T/T. Hence Theorem 4.2 gives P{M(T)!guT) + e-T so that

(4.15) holds.

Conversely if (4.15) holds it follows from Theorem 4.6 that

IVUT + and hence lh)(unh) -1 -r. Let {r I be i.i.d. random variables

with the same dM. F, say, as t4(h), so that by (4.1)

1 (unh) -hi(NhO - T/n

A
from which it follows that Mn = max( VC2-cn. satisfies

P{M: un) -~ e- = p, as required. 0

These results show how the function j may be used in the classical

criteria for domains of attraction to determine the asymptotic distribution

of M(T). We write V(G) for the domain of attraction to the (extreme value)

d.f. G, i.e. the set of all d.f.'s F such that F n(x/an + bn) - G(x) for

some sequences (a >01,bn n

Theorem 4.8. Suppose that the conditions of Theorem 4.6 ho~d for aLL

fami~ies UT -x/aT + b~j- < x < -o, when {aT>O},{bT argie

constants and

(4.17) P~aT(t4(T)-bT) !g x) G(x)

*1 Then



(4.18) vp(u) 1- F(u) as u for some Fc eP(G) 2

Conversely if (4.1) holds and *j(u) satisfies (4.18) there are families of

constants {aT>0),{bT such that (4.17) holds, provided that the conditions

*of Theorem 4.6 are satisfied for each uT = x/aT +b T'. -- < x < ~

Proof. If (4.17) holds, together with the conditions stated, Theorem 4.7

shows that

A
Pla nh (Mfn-b nh) x} - G (x)

A

where M nis the maximum of n i.i.d. random variables with a common d.f. Fos

say, and where h~o(u) - 1 - F0 (u) as u - ,and FOc V(G). We may choose

1
a d.f. F such that 1 - F(u) a F(1- .F0 (u)) when u is large and the classical

domain of attraction criteria show that F E D(G). But 4i(u) -l1- F(u) as

desired, showing (4.18).

Conversely if (4.18) holds and h > 0 we may choose F £ V(G) such that

hip(u) - 1 - F 0 ()and hence define an i.i.d. sequence { n I with common

d.f. Fos A n -max( 1,C2.. rn ) , such that

(AP{a'(M n- b') :9 xI - G (x)

for some constants a'I> 0 ,b'I. Define a1.=a I, b a=b' for nh :5 T < (n+1)h,nn n T n

n = 0,1,2.... Then (4.16) holds with 0 a G(x). If the conditions of

Theorem 4.6 hold for each UT ax/aT + b T then (4.15) holds, which yields

(4.17).0
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S. Particular classes of processes.

In this section we first show how the conditions required for the

previous theory may be simplified when the mean number U(u) of upcrossings

of each level u by (t) per unit time is finite, and then briefly indicate

applications to stationary normal processes (whether or not u(u) <

Throughout Nu (I) (Nu (t)) will denote the number of upcrossings of the level

u in the interval I (or in (O,t) respectively).

First we write for q > 0

(5.1) q Cu) - P{f(O)< u< (q)1/q

Clearly I qCu) : P{Nuq)k O/q : 'Nu~q)/q - p. Further, it is readily

shown (by a standard dissection of the unit interval into subintervals of

length q) that

(5.2) 0 (u) 0 lim I (u)q40 q

which, for now, we assume finite for each u. It is apparent from (5.2) that

j1(u) may, at least in principle, be readily calculated from the bivariate

distributions of the process. It may also happen (as for many normal

processes) that I q(u) ~ j(u) as u . when q depends on u, q a q(u) 4 0.

For greater flexibility we shall use the following variant of such a

property. Specifically we shall assume, when needed, that for each a > 0

there is a family {qa(u) - 0 as u . a. such that (with q. q a(u) , M)

(5.3) lim inf I (u)/V 2 Vu q a a

where Va  1 as a 0 0. As indicated below, for many normal processes we

may take qa(u) a/u and more generally as aP{C(O)>u)/ji(u)



27

We shall assume as 
needed that

(5.4) P{W(O)>u} - o a(u) as u e ,

which holds under general conditions. For example, it is readily verified

if for some q f q(u) 4 0 as u - ,

P{C(O)>u, ()u
(S.S) lim sup P Q( -C 1

since (5.5) implies that li, inf qI (u)/P{&CO)>u) > 0, from which it
q

follows that P{E(O)>u}/I q(u) - 0, and hence (5.4) holds since

I (u) : 1(u).
q

We may now recast the conditions (3.6) and (3.7) in terms of the

function ii(u).

Lema 5.1.

(i) Suppoee p (u) < f for each u and that (S.4) (or the euffieient

condition (S.5)) holde. Then (3.6) ho.. with *(u) - uiu).

(ii) If (5.3) hoZd (for eome fa ily (q (u))) then (3.7) holde with
a

(u)- I(u).

Proof. Since clearly

P(M(h)>u) i P{Nu(h)>Ij + P(F(O)>u) : ph * PfE(O)>u) ,

(3.6) follows at once from (5.4), which proves ().

Now if (5.3) holds, then with qqa(u) , V=P(u),

P((0)<u, C(q)<u M(q)>u) P(C(O)<u, M(q)>u} - P(O)<u< C(q))

s P{Nu(q)l) - qI q(u)

9e q q uqva(1+0(1) )
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so that

li sup P{E(O)<u, (q)<u,M(q)>u)/(ql) s 1 - a

which tends to zero as a -o 0, giving (3.7). 0

In view of this lemma, Gnedenko's Theorem now applies to processes of

this kind using the more readily verifiable conditions (5.3) and (5.4), as

follows.

Theorem 5.2. 2*eoawm 3.5 holZd foi. a stationary procesa (t) with

O(u) = lj(u) < - for eaoh u if the oonditions (3.6) and (3.7) are replaoed

by (5.4) and (S.3). 0

Finally, the condition Dc(uT) may, in certain circumstances, be

replaced by a sufficient condition involving the second moment of Nu(I) when

this is finite. This condition is not necessarily simpler to verify, but

the second moment involved may usually be obtained in terms of (integrals

containing) the joint densities of the process and its derivative at two

general points t1,t2 .

Lemma 5.3. Suppose that for the stationary prooees C(t), EN2 (1) < -,and
n

for a given family {u) . (UT1,

(S.6) I lim sup ENu(cT)(Nu(cT)-l) -,0 a e 0 -

Then Q(t) eatisfie. Dc (uT), with *(u) - 1(u) ENu (1).
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Proof. Clearly, writing 1A - (UT),

0 S TO- u E(Nu(eT).NCTu(cT))0 s ( -eT,u )

Now if Nu(eT) > 1, N (cT) - Nr(cT) S N (CT)(Nu(cT)-l). Also

Nu(cT) - N c T) is zero if Nu(T) - 0 and is zero or I if Nu(CT) =I,

the latter case requiring that N (-cT,O) 1 1 also. Hence we have

0 S E(Nu(cT) - NET,u(eT ) ) 5 ENu(cT)(Nu(eT)-l) P(N(2cT)>l}

sENu(eT) (Nu(cT)-I) + ENu(2eT) (Nu(2cT)-I)

so that Dc(uT) follows by applying (5.6) twice (once with 2e replacing c). 0

For stationary normal processes, finiteness of EW2(1) requires a little

more than existence of the second spectral moment used to ensure finiteness

of pi (cf. [3]). We turn now to the consideration of stationary normal

processes, but will not restrict attention to those for which even

a ENu (1) is finite. Specifically we assume that t(t) is a (zero mean)

stationary normal process with covariance function

(5.7) r(T) - 1 - CiTIci + oITI1 as T - 0

for some a, 0 < a : 2. (The case at a 2 gives u < i.) There is a

considerable literature dealing with extremal properties of such processes,

and of slightly more general cases (which could be included here) in which

the term ITI' is multiplied by a slowly varying function as T + 0

(cf. (2), (16]). Of course a number of the same arguments (which in some

cases are rather intricate) used in these papers are required to verify our
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general conditions here. We will not attempt to reproduce these arguments

but rather to simply indicate the basic considerations used and where they

may be found. However it will be convenient to summarize these results as a

theorem even though formal proofs are not given.

Theorem 5.4. Let E(t) be a sero mean stationarz normal prooess with

covariance function r(t) satisfyging (5.7). Mhen

(i) (3.6), and in fact (4.1), hold with *(u) a Cl/a H u 2/a (u)/u,

in whIioh # i. the standard nwvZ density C is as in (5.7), and

H is a oonetant depending only on a.
-2/

(ii) (3.7) hoZde with qa (u) au 2 /C.

(iii) D c (uT) hotds with respect to a fami~y (q) if T*I(uTr) is bounded

and

(s.8) T I r(kq)le (lr(q) - 0 as T
q AUTkq 9 T

for each A > 0. This holds, in partiouZar if TICuT) is

bounded (with i defined as in (i)) and r(t) log t - 0 as t * .

(iv) If r(t) log t 0 and T*(uT) T > >0, then Dl(uT) holds and

P(M(T)SuT e "

(M) If r(t) log t 9 0, M(T) has the limiting distribution given by

P{aT(M(T)-bT) S x) - e• e -x

T = (2 log T)%

bT - (2 log T) + (2 log T) "4 (€- )log log T

+ log(2 W.A C1/0 H)).
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Indications and sources of proof.

() A derivation of (4.1) (from which (3.6) follows) appears in

several developments of the normal theory (e.g. Theorem 2.1 of [16]). In

the case a - 2, (3.6) is incidentally simply obtained from "Rice's formula"2 /
* [(-r"Co))/2]e~u 2.

(U) This may be shown, for example, along the lines of Lea 2.4 of

[16], although a more direct derivation is obtainable from the normal theory

given by Lindgren and Rootzen in [13].

(iii) The proof of this involves a standard calculation using "Slepian's

Lena" (cf. Lema 3.5 of [15]), from which it follows that for two sets of

standard normal random variables 1 n "n with covariance matrices

[A ij], vii] , IXij IZ lijl

I, s.,)) - P { ni)}l s K S - o"2/(l'IixI0)

jJul i<j iJ

In this application (using the notation of (3.4)), the C are identified

with the r.v.'s C(Sl)... Usp). (t... C(tp,) and the ni with p~p'

standard normal r.v.'s having the same correlations except that

cov(Cs i ) C(t)) is replaced by zero for Isisp, sJsp,.

The fact that boundedness of T#(uT) together with r(t) log t - 0

implies (S.8) follows by standard calculations (cf. [1] or Lema 3.1 of (13]).

(iv) If r(t) log t + 0 and TV(UT))+ T > 0 then D€'(uT) may be

obtained from arguments leading to Theorem 3.1 of [15], though it seems

likely that a shorter route via our Lema 3.3 may be possible. It then

UT
follows from Theorem 4.2 that P(M(T)suT) e'-. Of course any proof (of

which there are several) that r(t) log t 4 0 and Ti(u) . T implies that
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P(M(T)Su T) must also imply that De(uT) holds by virtue of our

Lemsa 4.5. That is D'(u T ) may be regarded as a neoesaary condition for

(4.3) to imply (4.4).

(v) This follows at once from the (relatively) straightforward

verification of the fact that T[V(u T ) -* T - e"  when uT = x/a T + bT , using

the above results. 0

6. Poisson and related properties.

In this section we shall just briefly indicate the Poisson properties

associated with high level upcrossings. We confine the discussion to the

case where the number Nu(I) of upcrossings in a bounded interval I has a

finite mean, writing again i = u(u) a EN (1). Cases where this is not so

are similarly dealt with in terms of c-upcrossings.

Our objective is to show, under D€ and D' conditions, that the point
c

process of upcrossings of a high level takes on a Poisson character--as is

well-known in the case when the stationary process E(t) is normal. Since

the upcrossings of increasingly high levels will tend to become rare, a

normalization is required. To that end we consider a time period T and a

level uT , both increasing in such a way that Tp -T , (uaIt(uT)), and

define a normalized point process of upcrossings by

for each interval (or more general Borel set) I, so that, in particular,

(6.1) E4Cl) - NrCT) - T.
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This shows that the "intensity" (i.e. meen number of events per unit

time) of the (normalized) upcrossing point process converges to T. Our task

is to show that the upcrossing point process actually converges (weakly) to

a Poisson process with mean T.

The derivation of this result is based on the following two extensions

of Theorem 4.2, which are proved by similar arguments to those used in

obtaining Theorem 4.2.

Theorem 6.1. Unde the oonditio of o 4.2, if 0 < I and uT T,

then

(6.2) P(M(eT) r uTJ ee as T - 0

Theorem 6.2. If 11012-. 1.k ar diseoint subint.aLe of [0,1] and

I; TI {: t/T eI then udenr the ooditiona of Aeorm 4.21 if 1T r,

k k
*(6.3) n 1(Ip*uT} - T P{M(Ipn...) -~0

jal Jul

so that by Teorm 6.1

k -TrE
(6.4) P( n (N(IP)SUT))

Whom0 e i as £ toment'of TV laJ S k.0

It is now a relatively straghtforward matter to show that the point

processes X converge (in the full sense of week convergence) to a Poisson

process N with intensity T.
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Theorem 6.3. Under the oonditione of Teorm 4.. if Tp T whe e

p P(uT), then the faniZy Nf of (nomuZied) point prooesse of spopoainge

of uT on the unit intervaZ oonvewz. in distribution to a Poisson prooese N

with intensitj T on the unit interva a. T. .

Proof. By Theorem 4.7 of [8] it is sufficient to prove that

(i) ENT((ab]) * EN{(ab]} = t(b-a) as T * - for all a,b,

0 s a S b s 1.
n

(ii) P{N4(B)=O}. P{N(B)-O} as T + for all sets B of the form u Bi

where n is any integer and B. are disjoint intervals

(ai, b 1] c (0.1].

Now (i) follows trivially since

EN4{(a.b]J - uT(b-a) * t(b-a)

To obtain (ii) we note that

0 S P(N4(B)aO) - P{M(TB)suT}

SP{Nu(Th)., M(TB)> ur}

S P(C(T&i)>UT).

n
since if the maximua in TB a u (Tait Tb1] exceeds uT , but there are no

upcrossings of uT in these intervals, then C must exceed u at the initial

point of at least one such interval. But the last expression is just

.0r) as T . Hnce
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(l*r(B)O) - lP{(TS)S U) 0 
3S

.... - -?iQ ai ) .But P(K(TB)s UT~) P( Pn (14(TBSuT} by Theorem 6.2 so that

(ii) follows since P{N(B)=O) * • . D

Corollary. If Bt ar'e dejoint (Boaet) eubeete of the unit introa, and

if the boundary of eaoh B. haszero Lebseue measure then

ri
n -Tra~ i) [TmCBi) ]

PfNf(Bt)r i , l-n - It a r

where m(Bi) denotes the Lebeegue measure of B.

Proof. This is an immediate consequence of the full weak convergence proved

(cf. Lemna 4.4 of [8]). 0

The above results concern convergence of the point processes of

upcrossings of uT in the unit interval to a Poisson process in the unit

interval. A slight modification (requiring Dc and D to hold for all

families uOT in place of uT for all 0 > 0) enables a corresponding result

to be shown for the upcrossings an the whole positive real line, but we do

not pursue this here. Instead we show how Theorem 6.3 yields the asymptotic

distribution of the rth largest local maximm in (0,T).

Suppose, then, that C(t) has a continuous derivative a.s. and define

N' (T) to be the number of local maxima In the interval (0,T) for which the

* process value exceeds u, i.e. the nmber of downcrssing points t of zero by

C' in (0,T) such that C(t) > u. Clearly Nu(T) I Nu(T) - 1 since at least

me local maxim. occurs between two upcrossings. It is also reasonable to
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expect that if the sample function behavior is not too irregular that there

will tend to be just one local maxima between most successive upcrossings

of u when u is large, so that N1(T) and N CT) will tend to be approximately
U, U

equal. The following result makes this precise.

Theorem 6.4. With the above notation .et { T) be constants suoh tat

TP(TI(U))-I T > 0. Suppose that ENI(l) is f-znite for seaoh u and that

EN 1 (1) - ui(u) as u en. rn ,,iting u - u, EINu(T) - Nu(T)I 0.

If also the conditions of Theorem 6.3 hold (so that

P{Nu(T)=r) e Tr/r) it follows that P{Nu(T)=r} * e'Tr/rl

Proof. As noted above, N'(T) k Nu(T) - 1, and it is clear, moreover, that

if N(T) = N CT) - I, then CT) M u. Hence

EIRU( - Nu(T)I I EN'I(T) - Nu(T)) . 2P{%'(T) = Nu(T) - 1)

S TEN'(l) - vT + 2P(,(T)>u)

which tends to zero as T * - since P((T)>uT) a P((0)>uT.} 0 and
TEN' (1) - IiT U T[(Io(l)) - 1] * 0, so that the first part of the theorem

UT

follows. The second part now follows immediately since the integer-valued

r.v. N'(T) - Nu(T) tends to zero in probability, giving P(N'(T) a Nu(T)} - 0e

and hence P{N' (T)=r) - P(N (T)ur} + 0 for each r. D

Now write N(r) (T) for the rth largest local mamam in the interval
(0,T). Since the events {N(r)(T)su),{N,(T)<r) are identical we obtain the

following corollary:
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Corollary 1. bdaa the donditionw of the thimo37

r-1

* PIMr(T)u% e L TS/s . 0
Sul

As a further corollary we obtain the limiting distribution of MC (T)

in terms of that for MCT).

Corollary 2. Suppoeo that P{aT(M(T)-bT) ' x} I G(x) and that the

conditione of Teorem 4.6 hoZd ith uT n x/aT bT for each reaZ x (and = .

S*po.. a~eo that ENu'(l) - ENuC1) as u~w Then

r-I
(6.5) P{ST(M r)(T)-bT) < x) G(x) [-log G(x)]S/si

s=O

where GCx) > 0 (and sero if G(x) - 0).

Proof. This follows from Corollary 1 by writing GCx) = e since

Theorem 4.6 implies that Tp + .0

Note that for a stationary normal process with finite second and fourth

spectral moments X it may be shown (Section 11.6 of [3]) that

EN'I() - .#a(u,/A) + (xA4 / [2  [1O-u(,A)I

where A A A 2 and 0 is the standard normal d.f., so that clearly

EN1 1)- 1as u -0.

The relation (6.S) gives the asymptotic distribution of the rth largest

local maximm N(r)(T) as a corollaT of the Poisson result, Theorem 6.4.

This Poisson result may itself be generalized to apply to joint convergence



38

of upcrossings of several levels to a point process in the plane composed of

successive "thinnings" of a Poisson process. From a result of this kind it

is possible to obtain the joint asymptotic distribution of any number of the

M(r)(T), and also of their time locations.
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