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In this paper the central distributional results of classical extreme

value theory are obtained, under appropriate dependence restrictions, for

maxima of continuous parameter stochastic processss. In particular we prove

the basic result (here called Gnedenko's Theorem) concerning the existence

of just three types of non-degenerate limiting distributions in such cases,

and give necessary and sufficient conditions for each to apply. The

development relies, in part, on the corresponding known theory for

stationary sequences.,

The general theory given does not require finiteness of the number of

However when the number per unit time is a.s.

upcrossings of any level x.

finite and has a finite mean u(x), it is found that the classical criteria

for domains of attraction apply when u(x) is used in lieu of the tail of the

The theory is specialized to this case and

margina{gd!siribution function,

apﬁiie& to give the general known results for stationary normal processes

(for which u(x) may or may not be finite).

A general Poisson convergence theorem is given for high level

upcrossings, together with its implications for the asymptotic distributions
th

of r~ largest local maxima,
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1. Introduction.

In this paper we shall be concerned primarily with asymptotic

distributional properties of the maximum
M(T) = sup{E(t): 0stsT}

of a continuous parameter stationary process {E(t): t20}. A great deal is
known about such properties in the important special case when the process
is normal (cf. [2], [16]). Our purpose here is to delineate the types of
limiting behavior which are possible vwhen the process.is not necessarily
normal, obtaining, in particular, versions of the central results of
classical extreme value theory which apply in this context.

The classical theory is concerned with properties of the maximum
Mn = max(El,Ez,...En) of n i.i.d. random variables as n becomes large.
Central to the theory is the result which asserts that if "n has a
non-degenerate limiting distribution (under linear normalizations), i.e. if

P{an(Mn-bn) < x} + G(x) for sequences {an>0},{bn}, then G must be one of

only three general types:

Type I G(x) = exp(-e”X) o< x < ®

Type II . G(x) = exp(-x"™ x>0

Type III G(x) = exp -(-x)® x<0

(linear transformations of the variable x being permitted). This result,
which arose from work of Frechet [5] and Fisher and Tippett [4], was later
given a complete form by Gnedenko [6] and is here referred to as "Gnedenko's

Theorem."
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Gnedenko also obtained necessary and sufficient conditions for the
domains of attraction for each of the three limiting types. These and other
versions obtained subsequently (cf. [7]) concern the rate of decay of the
tail 1-F(x) of the distribution F of each En as x increases.

A further result--trivially proved in the classical case--is that for
any sequence {“n}’ >0, P{Mnsun}-' e;r if and onlf if 1 - F(u)~ t/n.
This is sometimes useful in calculation of the constants an,bn in Gnedenko's
Theorem (when u, = x/an + bn).

In more recent years there has been considerable interest in extending ;;
these and other results of the classical theory to apply to stationary é
sequences which exhibit a '""decay of dependence" which is not too slow. In i
particular the early work of Watson [17] concerning convergence of P{Mnsun} |
applied under m-dependence, Loynes [14] proved Gnedenko's Theorem under
strong mixing assumptions, and Berman [1] obtained detailed results for
normal sequences under a mild condition involving correlation decay. More
recently we have obtained a theory (cf. [9]) involving weak "distributional
mixing" conditions, which unifies these results and provides a rather
satisfying extension of the classical distributional theory to include
stationary sequences.

It is not too surprising that such an extension is possible for

stationary sequences, at least under suitable dependence restrictions. What

may seem surprising at first sight is that a corresponding theory is
possible for continuous parameter stationary processes. However this
becomes intuitively clear by recognizing that the maximum up to time n, say,
is just the maximum of n random variables--the ''submaxima” in the fixed

intervals (i-1,1), 1 € 1 € n. Our procedure will be, in fact, to use the




existing theory for stationary sequences by means of (a slightly modified
version of) this precise approach. The sequence results which will be

% ' needed are stated in Section 2.

In Section 3 we will obtain Gnedenko's Theorem for continuous parameter

stationary processes, showing under sppropriate conditions that if

P{aT(M(T)-bT) S x}+G(x) as T + =

for some constants a,_>0,b.,, then G must be one of the extreme value forms.
8729, 0¢

In Section 4 we obtain a related result--again extending a classical
theorem--to give necessary and sufficient conditions for the convergence of
P{M(T)SuT} for sequences not necessarily of the form Uy = x/a, + by

implicit in Gnedenko's Theorem.

As a corollary of this result we obtain necessary and sufficient g
criteria for the domains of attraction occurring in Gnedenko's Theorem. In E
the classical i.i.d. sequence case, the criteria for domains of attraction

. involve the rate of decay of the marginal distribution 1-F(x) as x
increases. For the present case the very same criteria apply, provided
1-F(x) is replaced by another function Y(x). For processes whose mean
number u(x) of upcrossings of any level x is finite, the function ¥(x) is
precisely u(x), a readily calculated quantity.

The general theory will not require that the mean number of upcrossings
of a level per unit time be finite, and accordingly will include the class
of stationary Gaussian processes with covariances of the form

r(1) =1 - clt|° +0(|t]* as T+ 0 for 0 <a < 2. In Section 5 we consider

such processes, as well as (possibly non-Gaussian) cases for which the mean

number of upcrossings per unit time Zs finite. Finally in Section 6 we note

v
T




the general Poisson limit for the point processes of upcrossings of
increasingly high levels and its implications regarding limit theorems for

the distribution of the r':h largest local maximum of £(t) in 0 s t s T. *

2. Two results for stationary sequences.

As noted, our development of extremal theory for stationary processes
will rely in part on the existing sequence theory. Specifically we shall
require the following definitions and results (which may be found e.g. in :
[10]). i

Let {£_} be a stationary sequence and write F. . (x,...x_) for the
n 11. . '1n 1 n ]
joint distribution function of Ei ...-'P.i . For brevity write also Fi N (u)
1 .’n ] ~1°"""n
. (U,u...u) = P{Ei Su...& su}. If {u )} is a sequence of
1- i, 1 i n
real constants, we say that the sequence {En} satisfiea the (dependence)

to denote Fi

B

econdition D(un) if for each n, 'lsil<iz...<ip<jl...<jp,Sn, jl' i 22,

P

2.1) |F,;

i j ,(un) B l:i

. (u_)F.
1"'1pji"'Jp NS TN | M, PR

. (W) sa
1 P 1°0dge B n,%

p L
where |

(2.2) o + 0 for some sequence £ =0 as n >+ = ,
n,!.n : n

Note that o n.g Can (and will) be taken to be decreasing in & for each n
» .
by simply replacing it by the smallest value it can take to make (2.1) hold
(i.e. the maximum value of the left-hand side of (2.1) over all allowable

sets of integers il...ip » jl...j . Note also that (2.2) may then be shown

p'
equivalent to the condition (cf. [12] for proof)

(2.3) an,nk" 0 as n+o for each A >0 , R




The condition D(u ll) indicates a degree of "approximate independence" of

members of the sequence separated by increasing distances. However this
condition, which we refer to as '"distributional mixing," is clearly
potentialiy far less restrictive than, for example, "strong mixing."” In the
case of normal sequences, it is in fact satisfied when the covariance

sequence {r n} tends to zero even just fast enough so that r_ logn + 0.

The following result is basic to the sequence theory and will be i

required in later sections. i

Lemma 2.1. Let {En} be a stationary sequence satisfying D{un} for a given i
sequence {un} of constants and urite M = max(§;,§,...5 ). Then for any |
integer k 2 1 (writing [ ] to demote integer part),

X . .
P{MnSun} - P {M[n/k]sun} +0as n+w»,

This lemma indicates a degree of independence between the [n/k] maxima
when the first n integers are divided into k groups. We shall also need the

sequence form of Gnedenko's Theorem, which is given (e.g. in [10]) as follows:

Theorem 2.2. Let {En} be a stationary sequence such that M, = max(€;,E,...E)

satisfies P{an(Mn-bn) < x} + G(x) a8 n + @ for some non-degenerate d.f. G ‘
and constants (an>'0}.{bn} . Suppose that D(u,) holds for all u of the form
x/a,+ b, -©<x <o, Then G is one of the three extreme value :
distributional types. -

The other classical result quoted--concerning convergence of P{Mns un}
for arbitrary sequences {un}--"ls also important and holds under appropriate
conditions for stationary sequences {En}. This will not be discussed here

since the corresponding continuous parameter result will be independently

derived.

\"‘1.
&
)




3. Gnedenko's Theorem for stationary processes.

. As indicated above, it will be convenient to relate the maximum M(T) of
the continuous parameter stationary process E(t) to the maximum of n terms

of a sequence of "submaxima." Specifically if h > 0 we write

(3.1) g, = sup{E(t): (i-Dhsts<ih}

so that for n = 1,2,3...,

(3.2) M(nh) = max(%),85,--5,) -

The following preliminary form of Gnedenko's Theorem (involving

conditions on the [-sequence) is immediate.

Theorem 3.1. Suppoee that for some families of constants {a.r>0},{b.r} we

have

(3.3) P{a.r(M(T)-b.r) S x}+G(x)as T+

for some non-degenerate G, and that the {ci} sequence defined by (3.1)
eatisfies D(un) whenever u, = x/anh + bnh for some fizxed h > 0 and all real
Xx. Then G is one of the three extreme value types.

Proof. Since (3.3) holds in particular as T + = through values nh and the
:n-sequence is clearly stationary, the result follows by replacing En by Cn
in Theorem 2,2 and using (3.2). 0

Corollary 3.2. The result holds in partioular if the D(un) conditions are
replaced by the assumption that {E(t)} fe stromgly mixing. For then the
sequence {:n} ts strongly mixing and satisfies D(u ).




We now introduce the continuous analog of the condition D(un). stated

¢ ©°f E(V)

in terms of the finite dimensional distribution functions Ft
. 1... n

(again writing F (u) for F (u...u).

t .-.t t .o t

1 n I""*™n
The oondition Dc(“T) will be said to hold for the procese E(t) and the

family of constante {u.r: T >0}, with reepect to a family {qT-» 0}, if for

1
satisfying t, - sp 2 1, we have

any points $,< 8,0 < sp<t AR tp, belonging to (kq.r: OSkq.rS‘l') and

6.4 Ipsl...sptl...tp,(u'l‘) ) Fsl...sp("‘r) Ftl...tp,(“'r)I < %y

where xr Y + 0 for some sequence Yo = o(T) or, equivalently, where
»
T

(3.5) a,rM.*Ols'l‘*w

for each A > 0.

The D(u,) condition for {Cn} required in Theorem 3.1 will now be
related to Dc(u.l.) by approximating crossings and extremes of the continuous
parameter process, by corresponding quantities for a sampled version. To
achieve the approximation we require two conditions involving the maximum of
g£(t) in fixed and in very small time intervals. These conditions are given
here in a form which applies very generally--readily verifiable sufficient
conditions for important cases are given in Section S§.

Specifically we suppose that there is a function Y(u) such that, for
h>0,

P{Mh>u}sl.

(3.6) lim sup m

urdeo

A 5 o
b

P
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and that for each a > 0, there is a family of constants q = qa(u) + 0 as

u + « such that

(3.7 tin sup PlE(0)<u, gﬁ&;“a"(@’“} +0as a+0.

Note that Equation (3.6) specifies an asymptotic upper bound for the
tail distribution of the maximum in a fixed interval, whereas (3.7) limits
the probability that the maximum in a short interval exceeds u, but the
process itself is less than u at both endpoints. The following result now
enables us to approximate the maximum in an interval of length h by the

maximum at discrete points in that interval.

Lemma 3.3.

(1) If (3.6) holde, then P{M(q)>u} = oy(u) ae u + = for any
q = q(u) » 0. Also P{E(0)>u} = oy(u).

(it) If (3.6) and (3.7) both hold, and 1 is an interval of length h,
then there are constants Ay such that

(3.8) 0's lim sup[P{E(jqQ)su, jqeI} - PIM(D)sull/Y(u) s A;» 0 as a~0,
udoo

where q = qa(u) i8 ae in (3.7), the convergence being uniform in all intervals

of this fixecd length h.

Proof. If (3.6) holds and q + 0 as u + =, then for any fixed h > 0, q is

eventually smaller than h and P{M(q)>ul} < P{M(h)>u}, so that

lim sup P{M(q)>u}/¥(u) < lim sup P{M(h)>ul}/¥(u) < h by (3.6) ,
U~ ue

from which it follows that P{M(q)>u}/y(u) + 0, as stated. The remaining

statement of ({) also follows since P{£(0)>u} s P{M(q)>u}.
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Suppose now that (3.6) and (3.7) both hold and that I is an interval of
fixed length h. The interval I consists of no more than h/q subintervals of
the form ((j-1)q, jq), together with (possibly) a shorter interval at each
end. The difference in probabilities in (3.8) is clearly non-negative and
(using stationarity) dominated by

xa u %p{g(oyu , E(Q<u, M(q)>u} + 2P{M(q)>u} .

The desired result (i) now follows from (3.7) and (%) by writing

)‘a = lilll;_‘:up )‘a,u . 0

It is now relatively straightforward to relate D(unj_ for the sequence
{Cn} to the condition Dc(u.r) for the process £(t), as the following lemma
shows. (In this we use the (potentially ambiguous) notation D(unh) to mean

D(vn) with Vo= unh')

Lemma 3.4. Suppose that (3.6) holde with some function Y(u) and let {qa(u)}
be a family of congtante for each a > 0 with qa(u)>0, qa(u)+0 as u + o,
and euch that (3.7) holde. If Dc(u.l.) i@ eatiafied with respect to the
family qp = qa(u.l.) for each a > 0, and le(u.l.) 18 bounded, then the sequence
{c } defined by (3.2) eatisfies D(uy,) for h > 0.

Proof. For a given n, let 11<12...<ip<j1...<3 <N, gy - 1p2 L. Write

o , P
I.» [(1r-1)h , irh] s Js' [(js-l)h , jsh]. For brevity let q denote one of the

families {qa(')} and

b —— e e e e -
P P
3 Aq=r21{£(jq)sunh »jael }, Asr:I(cirSunh}
B " 321{“’“)‘ U jaeJ }, B= 321{;sz u, b ‘
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It follows in an obvious way from Lemma 3.3 that

0 s lim sup(P(Aanq) - P(AnB)} < 1lim sup(p*p')u)(unh)xa

| 1 n-e

< mp(unh)xa s KA‘

for some constant K (since nhw(unh) is bounded) and where Xa + 0as a-+0.

Similarly
lim suplP(Aq)-P(A)lsma , lim suplp(aq)-P(B)lsxxa
Now

|P(AnB) - P(A)P(B)| s |P(AnB) - P(Aanq)l * IP(Aanq) - P(Aq)P(Bq)l
(3.9) + PAYIP(BY - P(BY| + P(BY[P(AY) - PCA)]

=R o+ IP(AMB) - P(AIP(RY)]

where lim sup R a $ 3K,
n-o ne

Since the largest jq in any Ir is at most iph. and the smallest in any
Js is at least (j-1)h, their difference is at least (R-1)h. Also the
1
largest jq in Jp, does not exceed jp,h < nh so that from (3.4) and (3.9)

(a)
(3.10) [P(AnB) - P(A)P(B)| < Ro,a * %ah, (2-1)h

(in which the dependence of “T L on a is explicitly indicated). Write now
(a)
ar g " inf(ln.. * O (he l)h} Since the left-hand side of (3.9) does not

depend on & we have

|P(AnB) - P(AYP(B)]| s o '

S




which is precisely the desired conclusion of the lemma, provided we can show

that lim a* an " 0 for any A > 0 (cf. (2.3)). But for any a > 0
e M A '

(a) (a
a;\,kn s Rn,a * o‘nh.(}\n-l)h s Rn,a * c‘nh,!s)mh

when n is sufficiently large (since a,f.ai decreases in £), and hence by (3.5)

»

3 *
ln;;up “n,ln < 3K>\a ,

and since a is arbitrary and )‘a + 0 as a + 0, it follows that a; > 0 as
?

desired. a

The general continuous version of Gnedenko's Theorem is now readily

restated in terms of conditions on E(t) itself.

Theorem 3.5. With the above notation for the statiomary process E(t)
satiefying (3.6) for some funotion Yy, suppose that, for some families of
congtants {a.r>0}.{b.r},

P{aT(M(T)-bT) < x} + G(x)

for a non-degenerate G. Suppose that 'Na(u.l.) i8 bounded and Dc(“'l‘) holds for
Up = X/ay + by, for each real x, with respect to families of oonstants
{q‘(u)} satiafying (3.7). Then G ig one of the thrse extreme value
distributional types.

Proof. This follows at once from Theorem 3.1 and Lemma 3.4.
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As noted the conditions of this theorem are of a general kind, and more
specific sufficient conditions will be given in the applications in

Section 5.

4, Convergence of P{M(T)SuT}.

Gnedenko's Theorem involved consideration of P{aT{M(T)-bT} < x}, which
may be rewritten as P{M(T)SuT} with up = a}lx + by. We turn now to the
question of convergence of P{M(T)SuT} as T » » for families U, which are
not necessarily linear functions of a parameter x. (This is analogous to
the convergence of P(MnSun) for sequences, of course.) These results are
of interest in their own right, but also since they make it possible to
simply modify the classical criteria for domains of attraction to the three
limiting distributions, to apply in this continuous parameter context.

The discussion will be carried out in terms of so-called "e-upcrossings"
of a level by the stationary process--a concept originally introduced by
Pickands [15] to deal with extremes of processes whose sample functions were
so irregular that the "ordinary" upcrossings could be infinite in number in
a finite interval. (Here we make essential use of this concept whether the
process is irregular or not.)

Briefly, if € > 0, £(t) is said to have an e-upcrossing of u at a point
to if E(t) S u for all t in the interval (to-e, to), but £(t) > u for some
point t ¢ (to, t°+n) for each n > 0. Since the interval (to-E, to) contains
no upcrossings, the number of e€-upcrossings in a unit interval does not
exceed 1/e . We write Ne,u(t)’ Ne,u(r) for the number of e-upcrossings in
the intervals (0,t),I respectively and He,u ™ ENe,u(l) so that

ENe u(t) = t"e,u‘ The following small result indicates some connections
»

between e-upcrossings and maxima.




Lomma 4.1..
(i) Por h > 0, P{M(h)>u} 2 h"h,u .
(i) hyy 2 P{M(2h)>u} - P{M(h)>u}.
(iii) If (3.6) holds (i.e. lim sup P{M(h)>u}/(h¥y(u)) < 1 for some Y(u),
ure
h > 0) then 1lim sup /¥(u) s 1.
m SUP Uy

(iv) If
(4.1) P{M(h)>u} ~ hy(u) as u + = for 0 < h < h

then ue,u ~ Y(u) for all (sufficiently emall) € > 0.

'

Proof. Since clearly Nh u(h) is either zero or one, we have
LT ENh’u(h) = P{Nh’u(h)-l} < P{M(h)>u}

so that (7) follows at once. To prove (ii) we note that

P{M(2h)>u} < P{M(h)>u} + P{Nh u(h,2h)z 1}
= P{M(h)>u} + LT
If (3.6) holds (i71) follows at once from (Z).

Finally, if (4.1) holds, the conclusion of (iv) follows from (iZ%) and

the inequality (%), which gives

eY(u) ey(u)

| aod

lin inf 4 V() m[p{uczepu} _ P{M(g)>u}] -
u.m »

Our main purpose is to demonstrate the equivalence of the relations

P{M(h)>u.r} ~ t/T and P{M(T)s “T} + ¢”' under appropriate conditions. The




following condition will be referred to as Dé(uT), and is analogous to D'

conditions required for similar purposes for sequences (cf. [10]).

If {u.l.} is a given family of constants.the condition Di(uy) will be

said to hold (for the process {£(t)} satisfying (4.1)) if

(4.2) lim sup Tju -Y(u)| >0ase+0. ;
Tow eT up) |

e )

We now state and prove the first part of the desired equivalence.

Theorem 4.2. Suppose that (4.1) holde for some fumetion Y and let {u.r} be a

family of constants such that D (uy) holds (with respect to a family (q)
satisfying (3.7)), and that D! (uy) holds. Then

(4.3) TW(uy) + T > 0

implies

(4.4) PM(T)su,l » o7 . s

Proof. Let 0 < h < ho (cf. (4.1)), and let n,k be integers, writing

n' = [n/k]. By Lemma 3.4, the sequence of 'submaxima' ({_} defined by
n

(3.1) satisfies D(unh) and hence, from Lemma 2.1,

(4.5) P(Mmh)su )} - P*M('M)su )+ 0 as nv e

Now writing Uy = W Lemma 4.1 () gives

By, S POKTR)>ul s nP{MCR)>u} ~ n'hi(u)

s0 that
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(4.6)  1-n'hp(u)(1+0(1)) s P{M(n'h)Sul s 1 - nthu -

. But n'hy(u) = nhtb(unh)/k + t/k by (4.3). Further

%
| I n*hy - Bhpy - v(u )]+ B y,)
n'h,u k “nh u, nh X "'nh
k'n

so that letting n + » in (4.6) and using Dé(u.r) we have

1 - t/k s lim inf P{M(n'h)su} s 1lim sup P{M(n'h)su}
n o ne

s 1-1/k + o(1l/k) .

th

By taking k=~ powers and using (4.5) we see that

(-1/K0K < 1im inf P{M(nh)Su} s lim sup P{M(nh)su} s (1- T/k +o(1/k))¥

and hence, letting k + =, that

4.7) P{M(nh)su_ } + 7" . f ﬂ

Now if n is chosen so that nh £ T < (n+l)h, and if Unh < Uy,

i P{M(nh)s u.l.} = P{M(nh)sunh} + P{unh< M(nh)Su.l.}

where the last term does not exceed
nP{unhsu(h)<u.r} - n[P{M(h)>unh} - P{M(h)>u1.}]

- (2 asom)) - BEavoan)]

o4
Y
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by (4.1) and (4.3). Since nh ~ T this clearly tends to zero. A

corresponding calculation where u nh > Uy thus shows from (4.7) that

P{M(nh)< u.l.} +> et

with T = [n/h]. Finally

P{M(T)s u.l.} < P{M(nh)Su.l.}

< P{M(T)Su,r} + P{M(nh)Su,l.< M(T)} .

But the event M(nh) < u,. < M(T) implies that the maximum in the interval |

T
[nh, (n+1)h] exceeds u,, which has probability P{M(h)> u.l.}. giving

P{M(nh)Su.r} ~ P{M(h)>u.l.} < P{M(T]su.l.} < P{M(nh]SuT} ,
from which (4.4) follows since P{M(h)> u.r} ~ ht/T + 0. 0 *

In our treatment of the converse result it will be convenient to use

the innocuous further assumption

(4'8) W(u‘r) ~ W(u[T/h]h) as n +

(for some given h > 0). This assumption is possibly dispensable but

certainly commonly holds (e.g. when w(u.r) ~ (2 log 1‘)!’ for stationary

e

normal processes) and, of course, always holds if the function U is
replaced by the step function un. /h)h* constant between consecutive points nh.
The first step of the derivation exhibits approximate independence of ’

maxima in disjoint intervals.
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Lemma 4.3. Suppose that .(4.1) holds for some y and let {uy} be a family of
oonstants (satisfying (4.8) for some h > 0) suoh that Dc(u.r) holds with

. respect to a family (q) eatisfying (3.7) and such that TY(u;) ie bounded.
Let
(4.9) PM(TISu ) + "

for some T > 0, Then for k = 1,2...
(4.10) PIM(T/K)S ur) + ek g Tow ,

Proof. As in the previous result the assumptions surrounding D c(u.l.) imply

that

[ VRN S S S

(4.11) P{M(nh)su} - PX{M(n'h)su} + 0 as n +

where n' = [n/k] and u = u - Now if n = [T/h] it is readily checked that
[n/k]h s T/k < ([n/k])+1)h, so that

P{“(T/R)SU} < P{M(nlh)Su} -> e'T/k ;

by (4.5) (which holds here by the same argument as in Theorem 4.2), and
(4.9) with T = nh. But also

P{M(T/k)su} 2 P{M((n'+1)h)su}
= P{M(n'h)su} - P{M(n'h)su<M((n'+1)h)}
2 P{M(n'h)su} - P{M(h)>u} .

The first term on the right tends to e'" k ..and the second is asymptotically

equivalent to hﬁ(unh) ~ n'llnhw(unh)] + 0 since 'w(u.r) is bounded. Hence

we have
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(4.12) PIM(T/K)S U, } + otk

But it follows simply that U, Bay be replaced by ur in (4.12) to give .

the desired result since if, for example, U S up we have

0 s PM(T/K)Su.} - PIM(T/K)Su )

(4.13) = P{unh< M(T/K)s u,l.}

; < (n/k)P{unh< M(h)SuT} + P{M(h)>unh}

since if the maximum in (0, T/k) lies between u nh and up this must also

occur in one of the first n' intervals ((i-1)h, ih) or in (n'h, T/k). The

first term of (4.13) is readily seen to be

| (nh/K) [¥(up) (1+0(1)) - $(ug) (1+0(1))] ,

which is easily seen to tend to zero by (4.8) since nhw(unh) is bounded.

Boundedness of nhu:(unh) also implies that the second term of (4.13) tends

to zero. A corresponding calculation applies for Uh 2 u., so that

T
P{M(T/K)s “1‘} - P{M(T/kJSunh} + 0, giving the desired result. 0

Lemma 4.4. Under the same assumptions as in Lemma 4.3 we have

lim sup|P{M(eT)s u.l.} - e’“l +0as €+0.
T

M)

Proof. Choose the integer k depending on € > 0, so that T:%T <€ < ,1(- .

Then ' .

P{M(T/k)su.r} '3 P{M(eTJSuT} < P{M('r/(ku))su.r} .




By subtracting e €T from each term, and using the facts from Lesms 4.3 that

-t/k -1/ (k+1)

P{M(T/X)< u.l.}-ve , P{M('l‘/(k+1))5u.r}*e » we see that

lim suplP{M(eT)su.r} - s ux[le't/(k'l)-e'etl R |e'T/k-e'er|] .
Teoo

But

é_le-r/(kd) - e s _‘1_:_“ - e-'r(e-l/(kq))l

= %[1 - e'T(E'E(l*o(l)))] ,

which tends to zero as € + 0. Similarly ;1:-|e"r/k - ¢ €| + 0 so that the

desired result follows. 0

The next lemma gives a conclusion which is interesting in itself and

from which the main result will follow immediately.

- Lemma 4.5. Again suppose that the conditions of Lemma 4.3 hold. Then
(4.18) lim sup|Tu -1+ 0as €+0.
Tow  CloYp

Proof. By Lemma 4.1 (1),

P{M(ZeT)>u.l.} < P{M(t-:'l‘)>u.r} + ‘“‘e‘r,u.r

s0 that

-T2 2{PMEDsu} - ]

I, . . %[,-Ze'r - P{M(2eT)su.}) + %[e-ET - e ey,

© o n




. . 1, -t -26T
i u:-..:.nf[me'r.“? -T2 gle e - 1] .
]
1 . -€T
- = 1im sup|P{M(eT)su.} - .
E z T_mvtpl (eMsuy} - e

.;*'2€T l .

M=

lim sup|P{M(2eT)su,} -
T-+oo
The latter two terms tend to zero as € + 0 by Le;a .4;4. so that

lim inf[Ty -T}2a_ +0as €+0.
T4 e‘l‘,u.r €

Similarly from the inequality €Tu < P{M(e‘l‘)>u.r} (Lemma (4.1) (%)) it

E:'l',u.r
follows that

1im sup[me.r.uT - 1] s be

T .

where be + 0 as € + 0, Since if 1lim inf Bn 2 A and lim sup Bn < A it is

easily shown that lim sup|8n| s max(|A[,|A]), we have

i

li;:uplmeT’% -t s max(la_],Ib_]) .
which tends to zero as € + 0, giving the conclusion of the lemma. 0

It will be noted that (4.14) is very similar to the condition Dé(“'r)

and follows as a conrlusion from the assumption P{M(T)su.l.} + et

under
appropriate conditions. For this we do not require that D":(u.r) hold. If
we now do assume that D":(u.r) holds we immediately obtain the main converse

result.




Theorem 4.6. Suppose that (4.1) holds for some Y and let {u,} be a family

of constante (satiefying (4.8) for some h > 0) such that Dc(u.r) holde with
* respect to a family (q) satisfying (3.7). Suppose also that D2 (up) holds.
Then (4.4) implies (4.3).

Proof. Since Tuer uy S T/(eT) = 1/e it is implicit in the assumption
»

D":(u.r) that Tib(u.r) is bounded. Thus the conditions of the previous lemma

are satisfied if (4.4) holds and hence

lim sup|Tu -T|+0as e+>0.
Too

eT,u.r

But D":(u.r) requires that

e R M X AN R 4 e A 1t

lim sup|Tu

m Sup|Ther,u, - To(u)| + 0 as €+ 0,

from which it follows simply that ‘N;(u.l.) + T, as required.

Theorems 4.2 and 4.6 may be related to the corresponding results for

i.i.d. sequences in the following way.

Theorem 4.7. Let {u.l.} be a family of constants such that the conditionms
of Theorem ¢.6 hold, let 0 < p < 1, and let h be chosen as in (4.1)
and (4.8). Then

(4.15) P{M(T)su.r} +pag T+w

if and only if there is a sequence {t;n} of i.i.d. random variables with
comon d.f. F satiefying 1 - F(u) ~ hy(u) ae u + » and such that

A
Mn - nx(cl.zz. . .cn) satisfies
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4 P{A } +
(4.16) Mnsunh o .

Proof. If there is an i.i.d. sequence {;n} with common d.f. F such that

(4.16) holds then (as noted in the introduction) we have 1 - F(unk) ~ 1/n,

-T

where p = e Since 1 - F(u) ~ hy(u) we have w(unh) ~ t/nh, from which

T so that

(by (4.8)) ¥(u;) ~ T/T. Hence Theorem 4.2 gives P{M(T)< u,l.} + e
(4.15) holds.

Conversely if (4.15) holds it follows from Theorem 4.6 that
TW(up) > T and hence nhy(u )+ T. Let {cn} be i.i.d. random variables

with the same d.f. F, say, as M(h), so that by (4.1)

1- F(unh) ~ hdt(unh) ~ 1t/n ,

A
from which it follows that Mn = max(l;l,l;z...l;n) satisfies

P{Mns un] + e ' = p, as required. a

These results show how the function § may be used in the classical
criteria for domains of attraction to determine the asymptotic distribution
of M(T). We write D(G) for the domain of attraction to the (extreme value)
d.f. G, i.e. the set of all d.f.'s F such that F“(x/an+ bn) + G(x) for

some sequences {an> 0},bn .

Theorem 4.8. Suppose that the conditione of Theorem 4.6 hold for all
familiee up = x/agp + by, -=<x<®, when {a.r>0},{b.r} are given

aonstante and

(4.17) P{nT(M(T)-bT) $ x} + G(x) .

Then
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(4.18) Y(u) ~1 - F(u) a8 u + o for gome F ¢ D(G) .

Conversely if (4.1) holde and Y(u) satisfies (4.18) there are families of
eonstants {a.r>0},{b.r} such that (4.17) holds, provided that the conditions

. of Theorem 4.6 are satisfied for each uy = X/ap + by, -®<x <o,

Proof. If (4.17) holds, together with the conditions stated, Theorem 4.7

shows that

A
P{anh(Mn- bnh) < x} » G(x)

where ﬁn is the maximum of n i.i.d. random variables with a common d.f. FO'
say, and where hy(u) ~ 1 - Fo(u) as u + o, and Fo € D(G). We may choose
a d.f. F such that 1 - F(u) = %(1'_’:0(“)) when u is large and the classical
domain of attraction criteria show that F ¢ D(G). But Y(u) ~ 1 - F(u) as
desired, showing (4.18).

Conversely if (4.18) holds and h > 0 we may choose F0 € D(G) such that
hY(u) ~ 1 - Fo(u) and hence define an i.i.d. sequence {cn} with common

d.f. Fo, ﬁn= max(cl,cz...t;n), such that

P{ar"(ﬁn- bl;) < x} » G(x)

LY ', 1 =a'
for some constants ay 0, bn Define aT a, b.r

n=0,1,2.... Then (4.16) holds with p = G(x). If the conditions of

=bt'l for nh < T < (n+l)h,

Theorem 4.6 hold for each up = x/a,l. + b'l‘

(4.17). 0

then (4.15) holds, which yields

e A it PESTIO AR
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5. Particular classes of processes.

In this section we first show how the conditions required for the
previous theory may be simplified when the mean number p(u) of upcrossings
of each level u by £(t) per unit time is finite, and then briefly indicate
applications to stationary normal processes (whether or not u(u) < ),
Throughout Nu(I) (Nu(t)) will denote the number of upcrossings of the level
u in the interval I (or in (0,t) respectively).

First we write for q > 0

(5.1) Iq(u) = P{E(0)<u<E(q)}/q .

Clearly Iq(u) < P{Nu(q)kl}/q < ENu(q)/q = u. Further, it is readily

shown (by a standard dissection of the unit interval into subintervals of
length q) that
(5.2) p(u) = 1lim I_(u) ,

a0 4
which, for now, we assume finite for each u. It is apparent from (5.2) that
d(u) may, at least in principle, be readily calculated from the bivariate
distributions of the process. It may also happen (as for many normal
processes) that Iq(u) ~ y(u) as u + » when q depends on u, q = q(u) + 0.
For greater flexibility we shall use the following variant of such a
property. Specifically we shall assume, when needed, that for each a > 0

there is a family {qa(u) + 0 as u + »} such that (with 9= Qg (u) , u=u(u))

(5.3) liminf I_(W/u 2 v
w9 a

where v, * 1 as a + 0. As indicated below, for many normal processes we

may take q (u) = a/u and more generally as aP{E(0)>u}/u(u) .




We shall assume as needed that
(5.4) P{E(0)>u} = ou(u) as u =+ o,

which holds under general conditions., For example, it is readily verified

if for some q = q(u) >+ 0 as u +» =,

(5.5) lin sup PE@QpLE@>u)

y-—ro

since (5.5) implies that lim inf qu(u)/P{E(0)>u} > 0, from which it
u-be
follows that P{£(0)> u}/Iq(u) + 0, and hence (5.4) holds since
I < .
q(u) u(u)
We may now recast the conditions (3.6) and (3.7) in terms of the

function u(u).

Lemma 5.1.
(1) Suppose u(u) < » for each u and that (5.4) (or the sufficient
econdition (5.5)) holds. Then (3.6) holds with Y(u) = u(u).
(ii) If (5.3) holds (for some family {qa(u) }) then (3.7) holds with
¥(u) = u(u).

Proof. Since clearly

P{M(h)>u} < P{Nu(h)zl} + P{E(0)>u} < uh + P{E(0)>u} ,

(3.6) follows at once from (5.4), which proves (%).
Now if (5.3) holds, then with q-qa(u) » usu(u),

P{§(0)<u, £(q)<u, M(q)>u} = P{E(0)<u, M(q)>ul} - P{E(0)<u<E(q)}
3 P{Nu(q)zl} - qlq(u)

< uq - uqv, (1+0(1))

ey jﬂ' N Ll
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so that
lim sup P{£(0)<u, E(Q)<u, M(Q)>ul/(qu) s 1 - v, , .
u-e
which tends to zero as a + 0, giving (3.7). 0 *

In view of this lemma, Gnedenko's Theorem now applies to processes of
this kind using the more readily verifiable conditions (5.3) and (5.4), as

follows.

Theorem 5.2. Theorem 3.5 holds for a statiomary process E(t) with
Y(u) = u(u) < » for each u if the conditions (3.6) and (3.7) are replaced
by (5.4) and (5.3). 0

Finally, the condition D::(“'r) may, in certain circumstances, be
replaced by a sufficient condition involving the second moment of Nu(l) when
this is finite. This condition is not necessarily simpler to verify, but
the second moment involved may usually be obtained in terms of (integrals
containing) the joint densities of the process and its derivative at two

general points tty.

Lemma S5.3. Suppose that for the stationary process E(t), EN:(I) < o, and

for a given family {u} = {u.r} ,

(5.6) % n: sup EN,(€T) (N,(€T)-1) + 0 as €0,
=»00

Then E(t) satisfies Dé(u.r), with Y(u) = uu) = ENu(l) . . i:




Proof. Clearly, writing u = u(u.l.),

0 T(u-k o )= %E(Nu(e‘r)-ne.r.u(e‘r)) )

€T,u

Now if Nu(e'r) > 1, Nu(e'r) - Ne’l‘,u(ﬂ) 4 Nu(e'r) (Nu(e‘r)-l). Also

Nu(e'l‘) - N (eT) is zero if Nu(e'l') = 0 and is zero or 1 if Nu(e'l') =1,

e€T,u
the latter case requiring that Nu(-s‘l‘,O) 2 1 also. Hence we have

0 s E{Nu(e'l') - N (€T} < ENu(e'r) (N,(eT)-1) + P{N(2eT)>1}

€T,u

< ENu(e'l‘) (Nu(e'r) -1) + ENu(ZeT) (Nu(ZeT) -1)

so that Dc(“'l‘) follows by applying (5.6) twice (once with 2¢ replacing €). D

For stationary normal processes, finiteness of EN‘Zl(l) r;quires a little
more than existence of the second spectral moment used to ensure finiteness
of u (cf. [3]). We turn now to the consideration of stationary normal
processes, but will not restrict attention to those for which even
U= ENu(l) is finite. Specifically we assume that £(t) is a (zero mean)
stationary normal process with covariance function
la

(5.7 r(t) =1-Clt|®+o)r|* as T+ 0

for some a, 0 <a <2, (The case o = 2 gives u < ».) There is a
considerable literature dealing with extremal properties of such processes,
and of slightly more general cases (which could be included here) in which
the term |t|%® is multiplied by a slowly varying function as t + 0

(cef. [2], [16]). Of course s number of the same arguments (which in some

cases are rather intricate) used in these papers are required to verify our

i i e e it e

ke e B b i s 1 i




general conditions here. We will not attempt to reproduce these arguments
but rather to simply indicate the basic considerations used and where they
may be found. However it will be convenient to summarize these results as a

theorem even though formal proofs are not given.

Theorem 5.4. Let E(t) be a sero mean stationary normal process with
covariance function r(t) satisfying (5.7). Then
() (3.6), and in fact (4.1), hold with Y(w) = c/*H u?® gu)/u,
in which ¢ is the standard normal density C is ae in (5.7), and
H, 18 a oonetant depending only om a.
(ii) (3.7) holds vith q (u) = au™2/%,
(iid) D (up) holds with respect to a family {q} if ™ (uy) i8 bounded
and

w2/ [r(ka) )

+ 0 ag T+

3 M‘zm Ir(ka) |e
for each X > 0. Thie holds, in partioular, if N(u,r) ie
bounded (with ¢ defined as in (1)) and r(t) log t + 0 as t + =,

(iv) If r(t) log t + 0 and N(u,) + 7 >0, then Dy (ug) holds and
PIM(T)su,} + 7"
(v) If r(t)log t + 0, M(T) has the limiting distribution given by

p{a.l.(n('r)-b.r) < x} =+ e“-x

where

0= (210g MY

by = (2 1og 1% + (2 10 TV {(1-])10g 105 7
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Indications and sources of proof.

(Z) A derivation of (4.1) (from which (3.6) follows) appears in
several developments of the normal theory (e.g. Theorem 2.1 of [16]). In
the case a = 2, (3.6) is incidentally simply obtained from '"Rice's formula"
b= [renanle s 2,

(ii) This may be shown, for example, along the lines of Lemma 2.4 of
[16], although a more direct derivation is obtainable from the nofml theory
given by Lindgren and Rootzen in [13].
(1ii) The proof of this involves a standard calculation using "Slepian's
Lemma" (cf. Lemma 3.5 of [15]), from which it follows that for two sets of

standard normal random variables £.,...£ ,n,... with covariance matrices
1 n® MMy

[xij] s [vij] ’ Ixij |2 '”ﬁl

-u2/(1+|)‘ij|)

n n
P{n (E;sw) - P{n (nsw} s kK [ A, - v, |a-22)"
I j-ltsj u) j:1(nj w}H igjl 15 - gyl Q- e

In this application (using the notation of (3.4)), the Ei are identified
with the r.v.'s £(s,)... E(sp). £cty)... E(tp,) and the n, with pep'
standard normal r.v.'s having the same correlations except that
cov(£(s,), E(tj)) is replaced by zero for 1sisp, 1sjs<p’.

The fact that boundedness of ‘Nt(u.r) together with r(t) log t + 0
implies (5.8) follows by standard calculations (cf. [1] or Lemma 3.1 of [13]).
(iv) If r(t) log t = 0 and ‘N;(u.r) + T >0 then Dé(“'l‘) may be
obtained from arguments leading to Theorem 3.1 of [15], though it seems
likely that a shorter route via our Lemma 3.3 may be possible. It then

follows from Theorem 4.2 that P{N(T)su.r} + T, Of course any proof (of

which there are several) that r(t) log t + 0 and 'N(n.r) + T implies that
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P{M(T)Su.r} + o7 must also imply that Dé(u.l.) holds by virtue of our
Lemma 4.5. That is Dé(u.r) may be regarded as a neceseary condition for
(4.3) to imply (4.4).

(v) This follows at once from the (relatively) straightforward

X

verification of the fact that N(u.r) + T = ¢~ when up = x/a.l. * b'l‘ , using

the above results. O

o A e = s A BB A2t 4N T 5

6. Poisson and related properties.

In this section we shall just briefly indicate the Poisson properties
associated with high level upcrossings. We confine the discussion to the
case where the number Nu(l) of upcrossings in a bounded interval I has a
finite mean, writing again u = u(u) = ENu(l). Cases where this is not so
are similarly dealt with in terms of €-upcrossings.

Our objective is to show, under D, and Dé conditions, that the point

s s e

process of upcrossings of a high level takes on a Poisson character--as is
well-known in the case when the stationary process £(t) is normal. Since .

the upcrossings of increasingly high levels will tend to become rare, a

normalization is required. To that end we consider a time period T and a
level Ur, both increasing in such a way that Tu=T, (u-u(u.r)), and i

define a normalized point process of upcrossings by

$(I)=N_ (TI), (N§(t) =N (tT)
N3 (D) “'r( ), (N3( "'r( )

for each interval (or more general Borel set) I, so that, in particular,

(6.1) ENA(1) = ENJ(T) = UT > T .
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This shows that the "intensity" (i.e. mean mmber of events per unit
time) of the (normalized) upcrossing point process converges to 1. Our task
is to show that the upcrossing point process actually converges (weakly) to
a Poisson process with mean T.

The derivation of this result is based on the following two extensions
of Theorem 4.2, which are proved by similar arguments to those used in

obtaining Theorem 4.2.

Theorem 6.1. Under the conditions of Theorem 4.2, if 6 <1 and uT + 1,
then

(6.2) . PM(OT)S W} > e g T, o

Theorem 6.2. If I),1 are disjoint subintervales of [0,1] and

zo-olk

I;- 'I'Ij- {t: t/T € 1} then under the conditions of Theorem 4.2, if uT + <,
ok K
. 6.3) P{j:l M(I;)m:.l.} - jfl P{M(I;)su.l.} +0, {

8o that by Theorem 8.1

-k -'l'}:ei
(6.4) P{jnlm(r;)su.r)} + 0 »

where 6

j 6 the lemgth of 1,, 1555 k. 0

It is now a relatively straightforward matter to show that the point

processes N{. converge (in the full sense of weak convergence) to s Poisson

process N with intensity t. o
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Theoren 6.3. Under the conditione of Theorem 4.2, if Tu + T where

B = u(ug), then the family Ny of (normalized) point processes of uperossings

of ugp on the unit interval comverges in distribution to a Poisson procese N .
with intensity T on the unit interval as T + =,

Proof. By Theorem 4.7 of [8] it is sufficient to prove that
(i) EN.?.{(a,b]} + EN{(a,b]} = T(b-a) as T + « for all a,b,
0sasbsl], |
(ii) P(N{.(B)-O} + P{N(B)=0} as T + » for all sets B of the fora BBi

1
where n is any integer and Bi are disjoint intervals

(a5, b5] < (0,1].

Now (i) follows trivially since {

ENA{(a,b]} = uT(b-a) + T(b-a) .

To obtain (ii) we note that

0< P{N.'l'.(B)-o} - P{M(TB)SuT}

= p{uu('rs)-o » M(TB)> u.r} -

n
s 121 P {E(‘l'ai)>u.r}

n

since if the maximum in TB = v (T‘i’ ‘rbil exceeds u,, but there are no
i=}

upcrossings of Uy in these intervals, then £ must exceed u at the initial {

point of at least one such interval. But the last expression is just

nP{§(0)>us} + 0 as T+ . Hence ) }
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P{N.‘l'.(B)-O} - P{N(TB)Su.r} + 0.

L ¥, . ~T, -a, )
But P{M(TB)s u.l.} = P{i"lmmi)‘“T}. -0.0{?1 i by Theorem 6.2 so that

=1L, - aii - e
(ii) follows since P{N(B)=0} = e . . 0
Corollary. If B, are diejoint (Borel) subsets of the unit :r:ntm:al and

tf the boundary of each Bi has sero Lebesgue measure then

T
. n (e, (m,)] !
P{N.I.(Bi)-ri , 1sisn} » 11-[1 e —r—i!—-

where m(B;) denotes the Lebesgue measure of B, -

Proof. This is an immediate consequence of the full weak convergence proved
(cf. Lemma 4.4 of [8]). 0

The above results concern convergence of the point processes of
upcrossings of up in the unit interval to a Poisson process in the unit
interval. A slight modification (requiring Dc and Dé to hold for all
families Ugr in place of Uy for all 6 > 0) enables a corresponding result
to be shown for the upcrossings on the whole positive real line, but we do
not pursue this here. Instead we show how Theorem 6.3 yields the asymptotic

distribution of the rth

largest local maximum in (0,T).

Suppose, then, that {(t) has a continuvus derivative a.s. and define
ll"'('l') to be the number of local maxima in the interval (0,T) for which the
process value excoeds u, i.e. the number of downcrossing points t of zero by
€' in (0,T) such that £(t) > u. Clearly N"l('l') 2 N“(‘I‘) - 1 since at least

one local maximm occurs between two upcrossings. It is also reasonable to

s
ke
R




expect that if the sample function behavior is not too irregular that there
will tend to be just one local maxisum between most successive upcrossings
of u when u is large, s0 tlut N'(‘l‘) nnd N ('l‘) will tond to be approximately
equal. The following result makes this precise.

Theorem 6.4. With the above notation let {u.r} be oonstants euch that

’m(-'l'u(u.r)) + 1> 0. Suppose that EN"‘(i) i8 finite for each u and that

EN! (1) ~ u(u) as u+=. Then, uriting uy = u, E[N!(T) - nu(r)l +0.

If also the conditions of Theorem 6.3 hold (so that

PN, (T)=r} + e "tT/r!) it follows that PN (T)=r} + e Tt /rt .

Proof. As noted above, Nn'a(n 2 Nu('l‘) - 1, and it is clear, moreover, that

if N"‘(T] = Nu('l’) - 1, then £(T) > u. Hence

EINV(T) - N ()] = E(NL(T) - N (DD} + 2P{NJ(T) = N,(T) - 1}

< TENI(1) - uT + 2p{g(T)>ul ,

which tends to zero as T + « since P{E(T)>u.l.} = P{E(0)>u.l.} + 0 and
TEN"'T(I) - uT = uT{(1+0(1)) - 1] + 0, so that the first part of the theorem
follows. The second part now follows immediately since the integer-valued
TV, N"l('l‘) - Nu('l') tends to zero in probability, giving P{N"l('r) » Nu(T)} +0

and hence P{Nt"('r)-r} - P{Nu('l')-r} + 0 for each r. 0

Now write “(r) (T) for the rﬂ' hrgnt locn -xim in tho interval
(0,T). Since the events {I(') (T)su) {N'(T)< r} are identical we obtain the
following corollary:




Corollary 1. Under the oonditioms of the theorem

r-1
p{n(™) (Msug} + et § ts1 .
s=]
As a further corollary we obtain the limiting distribution of M(r) (m

in terms of that for M(T).

Corollary 2. Suppose that P{aT(M(T)-bT) < x} + G(x) and that the
conditions of Theorem 4.6 hold with u, = x/a.r + b, for each real x (and Y = u).
Suppose also that EN;(1) ~ EN (1) as u +=. Then |

r-1
6.5  PlaMP(Mm-b) < x}+ 6 ] [-10g 6(0]1%/st ,
v s=0

where G(x) > 0 (and zero if G(x) = 0).

Proof., This follows from Corollary 1 by writing G(x) = e”" since
Theorem 4.6 implies that Ty + 1. o

Note that for a stationary normal process with finite second and fourth

spectral moments l2,7\4 it may be shown (Section 11.6 of [3]) that

BNI(1) = uo(ud,/8) ¢ (A2 [1 - du(r/8))

where A = A4 - Ag and ¢ is the standard normal d.f., so that clearly
EN&(I) ~u a8 u+owo,

The relation (6.5) gives the asymptotic distribution of the rth

largest
local maximm M(’) (T) as a corollary of the Poisson result, Theorem 6.4.

This Poisson result may itself be gemeralized to apply to joint convergence
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of upcrossings of several levels to a point process in the plane composed of
successive "thinnings' of a Poisson process. From a result of this kind it
is possible to obtain the joint asymptotic distribution of any number of the

u(® (T), and also of their time locations.
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