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ABSTRACT

A multiple objective fuzzy linear programming approach to the

capital budgeting problem is developed. Since much of the available

data in any capital budgeting decision situation is either of an

imprecise or ill-defined nature, a mathematical optimization technique

is required that is capable of incorporating this inherent uncertainty.

Fuzzy linear programming provides an effective methodology for this

analysis.

Specifically, a mathematical model is developed which utilizes

fuzzy linear programming as a solution technique for the research and

development program or project selection problem. In addition, an

exchange heuristic, a modified form of C. C. Petersen's exchange

algorithm, is presented.
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CHAPTER 1

INTRODUCTION

1.1 Purpose of the Research

The objective of the research documented in this thesis is the

application and demonstration of a method for analysis of management

decisions involving multiple objectives and constraints which are of a

vague or ill-defined nature.

The traditional capital budgeting problem involves a single

objective deterministic approach to the allocation of limited resources

among available investment opportunities. The selection from among the

various investment possibilities is such that the total return from the

investment is maximized. In contrast to the traditional problem

formulation, real-world capital investment decision analysis invariably

encompasses nondeterministic systems involving multiple and usually

conflicting objectives.

Investment selection or program selection in research and

development planning is a multifaceted decision regularly faced by

decision makers in government, industry, and the military. The

constantly expanding nature of technological development necessitates

decisions that involve multiple objectives in the decision criteria.

Simply maximizing total return is an unrealistic and oversimplified

decision criterion.

The complex selection process of research development programs

may include the consideration of numerous factors, some of which are

monetary while others are nonmonetary in nature. Influencing factors,
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whose primary concern is not income generating, are demonstrated in

safety and environmental considerations, which are inherent in

virtually all business decisions today. The decision maker is clearly

faced with a decision situation which is characterized mathematically

as multiple criteria decision making.

Many mathematical programming techniques have been employed as

a means of solving the capital budgeting problem; and, specifically,

the investment or program selection problem has received a great deal

of attention. A relatively new multiple objective optimization tech-

nique is fuzzy linear programming.

Fuzzy linear programming with its foundation in the theory of

fuzzy sets is an optimization methodology designed for problems that

are either too vague or too ill-defined to allow analysis by classical

mathematical techniques. The inherent uncertainty which is ever

present in any capital investment decision is the motivating influence

in an examination of the applicability of fuzzy linear programming as

a solution technique for the capital budgeting problem.

The design of this study encompasses five main objectives.

These are:

1. Review various mathematical programming methodologies

so as to establish applicability to the capital

budgeting problem.

2. Evaluate the applicability of fuzzy linear programming

A as a solution technique for the capital budgeting

4 problem.

-A I___ _ _ _ _.. ,
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3. Develop a fuzzy linear integer programming algorithm

to solve the capital budgeting problem.

4. Apply the fuzzy linear integer programming algorithm

to a representative problem.

5. Discuss extensions of this study and identify

additional areas to which fuzzy programming

techniques have applicability.

1.2 Organization of the Paper

This paper is organized as follows. Chapter 2 includes a

historical perspective of various methodologies that have been employed

as solution techniques for the capital budgeting problem. In Chapter

3, the basic elements of the theory of fuzzy sets are reviewed.

Decision making in a fuzzy environment is discussed, and the model of

fuzzy linear programming is presented in Chapter 4. In Chapter 5, the

fuzzy capital budgeting model is presented along with the solution

algorithm. Two example problems are solved. The results of the study

are reviewed in Chapter 6, as well as possible extensions, and

additional areas of applicability are suggested.



CHAPTER 2

HISTORICAL PERSPECTIVE OF THE CAPITAL BUDGETING PROBLEM

2.1 General

Decision makers have always sought a means of analyzing

alternative investment possibilities in an efficient manner. The

past twenty-five years have seen the development of analytical

techniques to provide this analysis. The development of numerous

quantitative analysis techniques has provided decision makers with a

framework to more efficiently conduct this analysis. The usefulness

of these quantitative techniques has been greatly extended with the

ever-increasing accessibility of computers. While the computer's

capability to analyze and store data has increased tremendously, the

cost has steadily decreased. Today, the use of computer technology

is widespread. Since the cost of many computers is no longer pro-

hibitive, many small industries are utilizing quantitative analysis

techniques that previously were reserved for government and large

industries.

The classical approach to the analysis of alternate investment

possibilities has been the maximization or minimization of a single

objective function. Traditionally, this objective has been the

maximization of profits or the minimization of costs. A significant

amount of discussion has been generated concerning the classical

approach and its inapplicability to today's complex decisions [1-11].

The basis of single objective function mathematical modelling is lost

when it is recognized that real decision makers do not attempt to
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optimize a single objective function. Rather, a solution is sought

that satisfies the numerous objective functions that characterize a

decision process. The solution is a compromise from among the various

objective functions [5, 10, 12, 13]. The compromise is the result of

the real-world limitations imposed on decision makers.

2.2 Survey of Related Literature

The multiple objective function optimization technique of fuzzy

linear programming is a relatively new approach to multiple criteria

decision making. Zimmnrmann [9, 10, 11] has shown the mathematical

feasibility of this approach and its application to the media selection

problem originally posed by Charnes et al. [14]. Two extensive bibli-

ographies have been published on works related to fuzzy systems

[15, 16]. A search of the literature failed to identify additional

works dealing with the application of fuzzy linear programming as a

multiple objective optimization technique. Kickert [17] has recently

published a work detailing the various fuzzy theories and their impact

on decision-making processes. Yager [18] discusses an eigenvector

approach to the multiple objective optimization problem using fuzzy

sets. There is increasing interest in multiple criteria decision

making; and, correspondingly, a great deal of literature is available

related to this work. The following paragraphs summarize a survey of

the current literature on multiple criteria decision making, with an

-emphasis toward the capital budgeting problem.

A conference proceedings including numerous works on multiple

criteria decision making was published by the University of South

Carolina. A bibliography on multiple criteria decision making is

included [19].
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One mathematical programming technique that has been utilized

for years as an optimization technique is linear programming. Charnes

and Cooper [20] demonstrated an early use of linear programming as a

solution technique for the problem of allocating funds. In recent

years, multiple objective linear programming techniques have been

developed. Benayoun, Larichev, de Montogolfier, and Tergny [21]

discuss a methodology of using linear programming with multiple

objectives. Belenson and Kapur [22] present an algorithm for solving

multi-criteria linear programming problems with several examples. A

multi-objective linear programming methodology has been presented by

Evans and Steuer [1].

Goal programming is another robust optimization technique for

dealing with decision problems involving multiple objectives. This

technique was developed by Charnes and Cooper in the early 1950's

[23]. Goal programming is an effective modelling methodology which

affords an analysis of problems involving multiple, and possibly,

conflicting objectives. The methodology requires an assignment of a

priority to each objective. This priority assignment is a preemptive

prioritization of the objectives in accordance with the priorities of

the decision maker. Lee [13] published the first book entirely devoted

to linear goal programming. Ijiri [24] in his work developed the

, concept of preemptive prioritization of objectives. Numerous applica-

tions of goal programming are available. These include capital

budgeting optimization (4, 5, 8, 25, 26]; manpower planning [27];

academic planning, financial planning, and economic planning [13];

antenna array design and transportation problem [5]; and media
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planning [14]. Survey works of goal programming have been published

by Kornbluth [28] and Ignizio [3].

Integer and nonlinear goal programming algorithms have been

developed and have realized many successful applications [5, 29].

Research is continuing to extend goal programming into the area of

stochastic analysis. Contini [30] has demonstrated the mathematical

feasibility of such an approach.

Interactive programming is yet another multi-criteria program-

ming approach currently being utilized. The decision maker in this

approach is required to specify trade-offs between the various

-. objective functions. The process of specifying trade-offs is continued

in a successive manner until no further trade-offs are desired by the

decision maker. Geoffrion, Dyer, and Feinberg [31] demonstrate the

application of interactive programming, while Zionts and Wallenius [32]

present an overview of the interactive programming method as applied

to the multiple criteria problem. Dyer [33] has also proposed an

* interactive goal progranning technique, while Steuer [34, 35] has

.!- I proposed an interactive approach to multiple objective linear

*programming.

Numerous other mathematical programming techniques have been0

discussed as solution methods for the multiple criteria decision

, problem. One technique that has received a great deal of attention

is integer programming. The literature has many examples of the

successful application of integer programming. Seward, Plane, and

Hendrick [36] present an application in the area of allocating

municipal funds for fire protection, Armstrong and Willis [37] discuss

its use in the selection of water projects in California, and Nackel,

Mg.

, .. Z
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Goldman, and Fairman [38] demonstrate the use of integer programming

in an example in the health care field. Chiu and Gear [39] present a

stochastic integer programming approach to the research and development

project selection problem.

A few of the other mathematical programming techniques with

applications in the multiple criteria decision-making area are branch

and bound procedures, dynamic programming and heuristic programming.

Shih [401 has written on a branch and bound method, Kepler and

Blackman [41] have demonstrated the use of dynamic programming in the

selection of research and development projects, and Petersen [42, 43]

has developed heuristic algorithms using exchange operations to solve

the capital budgeting problem.

The recognition of the inherent risk and uncertainty in capital

budgeting problems has been presented in many works in the literature.

Hillier [44] presents a basic model for capital budgeting of risky

interrelated projects. Stochastic analysis was initially proposed by

Charnes and Cooper [45]. Their technique was termed chance-constrained

programming. Healy [46] and Armstrong and Balintfy [47] have pre-

sented chance-constrained programing algorithms. Odom and Shannon [48]

and Park and Theusen [49] have recently published works aimed at risk

resolution in the capital budgeting decision analysis. Utility theory

has also been a frequently employed technique in multicriteria decision

making. Recent works in the literature include: Crawford, Huntzinger,

and Kirkwood's [50] use of multiattribute utility theory in the

selection of components of an electrical transmission system, and

Keefer's [51] multiobjective analysis of research and development

projects through the use of a multiattribute utility function.
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The increased use of multiple criteria decision analysis is

evident in the literature. Many excellent overviews of multiple

objective optimization techniques are available. MacCrisuon [521 has

analyzed the various techniques that are not mathematical programming

approaches. These approaches involve either weighting factors methods,

sequential elimination methods, or spatial proximity methods. Easton

[2] reviews a variety of multivalued alternative weighting methods.

Ignizio [3] reviews goal programming as a multiple objective optimiza-

tion technique. Plane [53] presents integer programming and network

analysis techniques, and Hax [54] discusses the use of decision

analysis. Two survey papers [55, 56] discuss the use of the various

decision-making techniques as related specifically to the capital

budgeting problem.

The development of new approaches to the multiple criteria

decision problem and the variety of applications of the more estab-

lished techniques indicate a tremendous interest in multiple criteria

optimization methodologies.

I
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CHAPTER 3

BASIC FUZZY SET THEORY

3.1 The Decision-Making Process

The analysis of alternative courses of action culminating in a

decision is an extremely complex process for the human mind. The

complexity of real-world decision problems far exceed the capacity of

the human mind to formulate and subsequently arrive at a reasonable

solution [12]. The essence of a decision is that the decision maker

is able to exercise his prerogative. Obviously, then, the decision

maker must be faced with a situation involving several alternatives

about which information is available. This information may be of a

precise or exact type, or it may be vague or ill-defined. An effective

decision-making process is normally an iterative process with a feed-

back capability so that, at various stages, additional information may

enter into the analysis. The decision-making process with feedback is

shown in Figure 1.

Decision making utilizing the multiple objective optimization

technique of fuzzy linear programming is an effective methodology in

which to employ this feedback process. Prior to any elaboration on

fuzzy linear programming, a brief discussion of the basic principles

of fuzzy set theory is necessary.

3.2 Fuzzy Set Theory

The theory of fuzzy sets was developed in response to a need

for a conceptual framework to deal with problems which were either too

K,!K
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complex or too ill-defined to allow analysis by classical mathematical

techniques.

Classical mathematics are much too rigid to be utilized in the

optimization of systems that are humanistic in nature. These systems

are composed largely of human perceptions and human judgments. Such

systems are those in the fields of economics, psychology, sociology,

linguistics, management science, medicine, law, philosophy, and others

whose basic tenents are imprecise or fuzzy in nature.

The theory of fuzzy sets is founded on the theory of classes.

Events may be viewed as in a continuum with respect to their membership

or nonmembership in a class. The degree of membership in a class is

the fundamental concept in the theory.

Classical mathematics' precise formulation of decision situa-

tions does not allow for the inclusion of a decision maker's

judgmental capability. The concepts of fuzzy set theory create an

overlap of the decision maker's judgmental ability and his quantitative

analysis capabilities. The judgmental capability of the human mind

analyzes a situation in an imprecise or approximate manner.

This imprecise or approximate analysis is necessitated by the

complexity of today's managerial decision requirements. Real-life

problems present themselves daily in vague or ill-defined ways. Many

phenomena exist such ;is "satisfactory profits," "adequate return on

investment," or "better productivity." None of these problems could

be defined in precise mathematical terms. Instead, they would be

twisted so as to conform to a precise mathematical optimization

itechnique; and, therefore, the derived solution may or may not be
4 accurate. In our attempts to understand and optimize systems which

K ______________________
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are composed of various humanistic subsystems, the solutions obtained

may pretend a higher degree of preciseness than is actually possible

to achieve in the real system [57].

Fuzzy set theory provides a formal mathematical theory to

analyze systems that are vague or inexact, with the vague or inexact

nature defined by a fuzzy set [58].

3.3 Basic Definitions of the Theory of Fuzzy Sets

Zadeh [57] introduced the theory of fuzzy sets through the

theory of sets, a generally universal mathematical theory. A set is

defined as consisting of a finite or infinite number of elements [59].

The characteristic function of a set enables us to discuss the

membership of the set in terms of functions. To define the character-

istic function of a set, let A be a subset of the universe [60].

The function XA , the characteristic function, can only take on the

values 0 or 1. If the universe is X {x} , then ) is defined by

the following:

A(X) = 1 if xeA

XA(x) - 0 if xCA

Zadeh [57] utilized this concept of the characteristic function

in his development of fuzzy set theory. Instead of the characteristic

function being limited to only taking on the values 0 or 1, it is

generalized to assume an infinite number of values between 0 and 1.

The basic definitions of fuzzy set theory which are important

in the development of fuzzy linear programming will be presented in

the following pages. These definitions are summarized from presenta-

tions by Zimmermann [9, 10, 11, 161 and Kickert [171.

4. 1 i- .*
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Fuzzy Set - A class with a continuum of grades of membership.

Let X be a space of points (objects), with a generic

element of X denoted by x, then, X - {x) The

fuzzy set A in X is characterized by a membership

function kA(X) which associated with each point in X

a nonnegative real number whose supremum is finite, with

A(x) representing the grade of membership of A in X

This is represented as:

A - [x, 1iA(x)I2xEX} ,

where p A(x) is the membership function of A in X

Example: In the field of psychology, and specifically

related to learning theory, the concepts of performance,

learning, motivation, and anxiety are critical in the

prediction of the outcome of any learning acquisition task.

Let

! X - {0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 1001

be possible scores which an individual may attain on a

learning acquisition task. Fuzzy set A, "Motivation

Levels Affecting Learning Acquisition," may be defined

for a certain individual as:

A - {(l0, 0.2), (20, 0.4), (30, 0.6), (40, 0.65),

(50, 0.7), (60, 0.75), (70, 0.85),

(80, 1.0), (90, 0.9), (100, 0.8)1

Fuzzy set B, "Anxiety Levels Affecting Learning

Acquisition," may be stated in a similar manner for the

same individual as follows:
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B = (10, 0.1), (20, 0.3), (30, 0.5),

(40, 0.60), (50, 0.65), (60, 0.75),

(70, 0.85), (80, 0.95), (90, 1.0),

(100, 0.85)}

Graphically, these two fuzzy sets are shown in Figure 2.

Intersection - In set theory, the intersection of two sets

A and B , written AnB , is the set C containing

all elements common to A and B . In fuzzy set theory,

the membership function of AnB is defined as:

(x) Min [A(X), B(X)] for all xeX

Example: In the learning theory example, the fuzzy set

representing the intersection of fuzzy sets A and B

would be the fuzzy set C . Fuzzy set C is defined as:

C {(10, 0.1), (20, 0.3), (30, 0.5),

(40, 0.60), (50, 0.65), (60, 0.75),

(70, 0.85), (80, 0.95), (90, 0.90),

(100, 0.80)}

Union - In set theory, the union of two sets A and B

written AUB , is the set D containing all elements

in either A or B , or both. In fuzzy set theory,

the membership function of AuB is defined as:

P(x) - Max [A(x), UB(X)] for all xEX

Example: In the learning theory example, the fuzzy set

representing the union of fuzzy sets A and B would

be the fuzzy set D . Fuzzy set D is defined as:

* 1i _ _ __..._ _ _ ------ _ _ _ _. _ _ -' -_ _;
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D 1(0, 0.2), (20, 0.4), (30, 0.6),

(40, 0.65), (50, 0.7), (60, 0.75),

(70, 0.85), (80, 1.0), (90, 1.0),

(100, 0.85))

The union of fuzzy sets A and B is displayed in

Figure 3, and the intersection of the two fuzzy sets

is shown in Figure 4.

Equality - Two fuzzy sets are equal if

UA(X) UB(x) for all xEX

Normality - The definition of the membership function did

not limit the values U(x) could assume. If the

supremum of the membership function equals 1, then

the fuzzy set is called normal. This is defined as:

Sup W A(X) 1

A fuzzy set can be normalized by dividing p A(x) by

Supx Vi1(x)

Algebraic Product- The algebraic product of two fuzzy sets

A and B is denoted AB and is defined in terms of

the membership functions of the fuzzy sets A and B

• nAB(x) - A(x) - 'B(x)

Algebraic Sum - The algebraic sum of two fuzzy sets A and

-B is denoted by (A + B) and is defined in terms of

the membership functions of the fuzzy sets A and B

11U+B (x u (X) + BX) - 11A(X) Bx

W W + I' A UJW(V )

" AB)A B
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D (x)

Figure 3. Union of Fuzzy Sets A and B

ht
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C W)

0.0 --

Figure 4. Intersection of Fuzzy Sets A and B
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Containment - The fuzzy set definition of containment is

analogous to the set theory definition of a subset.

Fuzzy set A' is contained in fuzzy set B' if the

membership function of A' is less than or equal to

that of B' everywhere on X

The basic definitions presented are sufficient for the discussion

:1~i of fuzzy linear integer programming; however, there are many more

concepts in the overall theory of fuzzy sets. For a more extensive

treatment of the theory of fuzzy sets, Kaufmann [61] presents a complete

review of the general theory of fuzzy sets.

A



CHAPTER 4

DECISION MAKING IN A FUZZY ENVIRONMENT

4.1 Fuzzy Decisions

In traditional decision making, the optimal decision is the

selection of the activity or program with the highest desirability.

In fuzzy decision making, the objective function(s) as well as the

constraints may be fuzzy sets, each characterized by their membership

functions. The optimal decision in the fuzzy environment is the fuzzy

set formed by the intersections of the fuzzy sets describing the

objective function(s) and constraints. Figure 5 illustrates the fuzzy

decision process.

The region of intersection is a fuzzy set representing those

activities which simultaneously satisfy the objective function(s) and

the constraints. A solution to this fuzzy situation would be to select

that point in the region of intersection with the greatest desirability

or the highest degree of membership in the fuzzy set formed in the

fuzzy decision. The selection of this solution point is analogous to

the geometric representation of a solution to a linear programming

problem (621. The determination of the solution to the linear pro-

gramming problem involving the intersection of n fuzzy sets is one

of the basic principles in the development of fuzzy linear integer

programming.

I

... &
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4.2 Fuzzy Linear Programming

The extension of fuzzy set theory into linear programming was

utilized by Zimmermann [9]. The development of the fuzzy linear

programming problem is as follows:

Start with the traditional vector minimization problem.

Minimize Z - C x

Subject to Ax < b

x > 0

The fuzzy version of this same linear programming problem is:

x > 0

where

C is the vector of coefficients of the objective functions,

b is the vector of constraints,

A is the coefficient matrix, and

Z is the vector of aspiration levels of the fuzzy objectives

and constraints.

The membership function i(x) is defined such that it complies with

the definition of a fuzzy set [57], that is, a real number in the

interval (0,1).

1 if Ax<b and Cx<Z is satisfied
P(x)

0 if Ai < b and Cx < Z is strongly violated.

The concept of an objective function being strongly violated or weakly

violated is an important aspect of the decision-making process in a

A fuzzy environment. The membership function in Figure 6 will be utilized
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to illustrate this principle. Let this membership function be referred

to as p(x) . In the interval CD , the membership function (x) is

completely satisfied. The function describing the fuzzy set in this

interval either achieves the aspiration level or exceeds it. In the

interval BC , the membership function p(x) is weakly violated. In

this interval, the aspiration level is not achieved; however, the

functional evaluation is greater than the lowest admissible value

(Point B). The decision in this interval lies within the range of

acceptable solutions as specified by the decision maker. In the

interval AB , the membership function 1(x) is strongly violated.

In this interval, any decision would lie wholly outside the acceptable

range of solutions, since the functional evaluation of the fuzzy set

would be less than the lowest admissible value, as specified by the

decision maker.

If we let the fuzzy set B represent the intersection of the

fuzzy sets representing the objective functions and the constraints,

then the membership function of fuzzy set B is:

The intersection of these two fuzzy sets is defined by the min operator

to be:

U(Bx) - Min pi ; x>O .

, The maximizing decision is simply

Max Min [pi(Bx)i]
x>O i

which minimizes the maximum violation of the membership function.

If the solution technique is to be linear programming, the

following assumptions are necessary (11]:
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1. All objective functions must have a specified

aspiration level. The objective functions are

expressed in the form

C X < Zi  i - 1, 2, ... , n

io

2. If the objective functions are in the same form as

the constraints, then the problem may be formulated

in the following form:

Ax < b

where

A is the matrix of coefficients, and

b is the vector of aspiration levels of the

objectives and the right-hand side values

of the constraints.

3. The functions are assumed to be linear over the

interval of consideration.

Given that assumption number (3) is satisfied, the linear

membership function of fuzzy set B , the solution set of the inter-

section of the fuzzy sets representing the objectives and the con-

straints is:

1 if (Bx) < bi'

(Bx) i -b,
xi 1 di if bi < (Bx) < b' +

Bdi i~ i di

0 if (Bx)i > bi + di

i

- ' ' '-- = ' " .. .. : ' "' '[:I lll'i l l l l I II III I I i i ,," ,;;-"..'i "-
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where

i indicates the ith row of matrix B or b'

B is A , the coefficient matrix, augmented by the

rows of the objective functions,

b' is the vector of the right-hand side values augmented

by the upper bounds of the objective functions, and

di is the subjectively selected value of admissible violation.

By substituting

b B
bl' - and B! i

i d. d

into the function pB(x) , the maximizing decision then becomes:

Max Min [b'' - (B'x)i]
x>0 i

or

Max %D(x)
z>O

where I1D(x) represents the membership function of the fuzzy set

Irepresenting the decision set.

It has been shown that the solution to this problem is equivalent

to the following linear programming problem [9, 10, 11]:

Maximize X

Subject to X<b'- , i O, , ..., n

X>0

To demonstrate a continuous fuzzy linear programming problem,

consider the following example:

"k A _ __ _ _ __ _ _
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Maximize Z - 4x1 + 6x2 + 8x3 + lox4

Subject to x + 3x2 + 4x3 + 2x4  < 40

3x1 + 2x2 + 3x3 + 6x4  < 60

4x + x + 2x + 3x4  50

Solving this linear progranming problem with the IBM MPSX mathematical

programing system, the resulting program

x - (0, 8.57, 0, 7.14)

and

Z 122.86

The problem when formulated into the fuzzy linear programming

equivalent utilizing the subjectively selected di values follows.

The aspiration levels and the lowest admissible values as well as the

allowable admissible ranges are shown in Table IV.l.

Table IV.. Selected Values for Fuzzy Transformations

0 1 di

Objective function 115 140 25

First constraint 50 40 10

where

11- 0 decision maker specified lowest

admissible value,

p- 1 decision maker specified aspiration level,

d decision maker specified range of
acceptable values. 4
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The resulting fuzzy linear programming formulation is:

Maximize A

Subject to A < -4 .6 +0.16x + 0.24x + 0.32x +0.4x1 2 3 4

< 5 - O.lx -0.3x -0.4x -0.2x
*234

3x + 2x 2 + 3x 3 + 6x 4  < 60

4xI + x2 
+ 2x 3 

+ 3x 4  < 50

L The solution to the fuzzy linear programming formulation is

compared to the linear programming solution in Table IV.2. The fuzzy

linear programming problem was solved using the IBM MPSX mathematical

programming system.

Table IV.2. Summary of Calculations

Linear Fuzzy Linear
Programming Programming
x = 0.0 x 1 0.0

x - 8.57 x2  10.59

x3 = 0.0 x3  0.0

x = 7.14 x4 = 6.47

Z - 122.86 Z 128.24

The first advantage of fuzzy programming is that the decision

maker is not required to specify in a precise manner the parameters of

a decision situation. The decision maker is able to specify ranges of

acceptability for those objective and constraint functions represented

by fuzzy sets. In this example problem, the flexibility obtained in
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the use of fuzzy linear programming enabled the decision maker to

realize a greater return.

The second advantage of fuzzy programming is the ease with which

it can be converted into a conventional mathematical programing

problem. This is important due to the current availability of many

mathematical programming techniques and algorithms [17].

f

Ai



CHAPTER 5

ZERO-ONE CAPITAL BUDGETING ALGORITHM

5.1 The Capital Budgeting Problem

The traditional capital budgeting problem involves a single

objective function deterministic approach to the allocation of limited

resources among available investment opportunities. This approach

differs greatly from most real-world capital budgeting problems.

Actual resource allocation distribution procedures involve an analysis

which is by necessity nondeterministic and sensitive to numerous con-

flicting interests. Due in part to this divergence between the

traditional mathematical model of the capital budgeting problem and

the necessities of real-world decision making, a significant amount

of discussion has been generated concerning the traditional approach

and its applicability to today's complex decision-making procedures

[1-11].

The solution to the capital budgeting problem obtained in a

model which seeks a compromise from among the numerous objective

functions which represent the decision situation is a more viable

methodology to characterize today's complex decision-making situations

. [5, 10, 12, 13]. Rather than a single objective function model of

the capital budgeting problem, the general multiple objective function

model takes on the following form::4

\il
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n
Maximize rkj xj k = 1, 2, ... , K

Ji-I

Subject to c x <b Vi
ji j _

xj - (o,1)

where the terms are defined as:

SI ( 1 if the j th alternative is selected

xJ 0 if the jth alternative is not selected,

rkj - return on objective k from alternative j

c j - requirement of resource i by alternative j , and

bi = limitation of resource i

Many multiple objective optimization techniques have been

employed in the solution of this problem; these were discussed in

Chapter 2.

5.2 Fuzzy Linear Integer Programming/Exchange Heuristic Algorithm

An algorithm is developed which combines the principles of fuzzy

linear programming and Petersen's [42] exchange heuristic to solve the

multiple objective capital budgeting problem. The algorithm is

intended to solve the following capital budgeting problem:

n
Maximize j rkj x k - , 2, K

n

Subject to I c  b Vi

xj

where the terms are defined previously.

I- 2
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The algorithm is a three-phase solution technique which

incorporates an interactive process between the analyst and the

decision maker in Phase 1. In Phase II, a fuzzy linear integer problem

is solved. Phase III, the exchange heuristic, is utilized if a 0,1

solution was not obtained in Phase II.

5.3 The Algorithm

5.3.1 Phase I: Determination of aspiration levels and the

lowest admissible values. Phase I of the algorithm is intended to be

an interactive process between the analyst and the decision maker. In

this phase, K successive linear programming problems are solved,

where K is the number of fuzzy objectives. The constraint set is to

remain constant throughout the evaluations. In this manner, each

objective function yields the highest attainable value possible. This

value will be referred to as the Aspiration Level.

The lowest admissible value for each function is determined from

the Icograms which yield the aspiration levels for the other K-1

functions. The value determined to be the lowest admissible value when

subtracted from the aspiration level yields the allowable tolerance

interval for each objective function.

The calculated values for the aspiration levels, lowest admiss-

ible values, and the tolerance intervals should then be reviewed by the

decision maker. It rests with the decision maker to provide the

- analyst with the values to continue the algorithm in Phase II. This

interactive process is critical to the fundamental concept of fuzzy

programming, that the theory of fuzzy sets combines the quantitative

aspects of optimization with the judgmental abilities of decision

makers.
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The programming procedure utilized to complete this phase is

the IBM PSX Linear Programming technique. Appendix A discusses the

IBM MPSX system in greater detail.

5.3.2 Phase II: Determination of a fuzzy linear integer

programming solution. In Phase II, a fuzzy transformation is carried

out on each fuzzy function, and a linear integer programming problem

is solved to maximize the value of the membership function.

The fuzzy transformation depends on the type of function under

consideration. The three possibilities are shown in Table V.1. The

di and di are the selected upper and lower bounds of the tolerancei i _p e

interval specified by the decision maker. Graphically, these three

functions are shown in Figures 7, 8, and 9.

Table V.1. Fuzzy Transformations

Type Objective

I. Equal or exceed bi X 1 bj d(Zx)i

i

II. Equal or less than b < I -

Sdi

• bj (Zx),,III. Equal b i  a. X < 1

and
(Zx)i - b'

bd<

| II IIII IIII_ _II_ _. ... , __, .. ' :
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Figure 7. Membership Function for Type I Objective
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x'

Figure S. Membership Function for Type II Objective
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The fuzzy linear integer programing problem formulation

typically may be expressed as follows:

Maximize X

Subject to X < 1 , i - , ... , K

di

and (Ax)i < bi

x <1 Vj

where (Ax)i  is the set of rigid constraint functions,

and each variable has an upper bound of 1.0

If the solution to this linear programming problem is satisfac-

tory to satisfy the 0-1 restrictions, then the algorithm terminates;

otherwise, proceed to Phase III.

5.3.3 Phase III: Determination of an exchange heuristic 0-1

solution. The exchange heuristic, a modified form of Petersen's [42],

is composed of three major steps:

i. Determination of an initial solution.

ii. Determination of a fitback solution.

iii. Utilize exchange operations progressively to

improve the solution so as to finally achieve

at least a local optimum.

Determination of an Initial Solution - The initial solution is

obtained after ranking each variable based on the value of

the ratio T /R given n variables and m objective1; functions, where T is the summation of the coefficient

1-'L~------*-- -
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values of each variable in the fuzzy objectives, and
- n

R is defined as [ (cij/bi) j - 1, 2, ... , n
ji,'l

The variables with the highest values of the ratio

T /R are placed at the top of the ranking list.

Variables are rejected from the bottom of the list until

ththe rejection of the K variable causes satisfaction of
K-1
I c bi  for all rigid constraints. The initial

Jl
solution is comprised of those variables ranked 1 through

K-1

Determination of a Fitback Solution - In general,

following the selection of an initial solution, there

will be some degree of slack for each constraint. The

fitback solution selects from the initially nonselected

variables ranked K + 1 to n , one or more that can be

included with the selected variables without violating

any constraint.

Exchange Operations - The alternatives in the sets of

selected and nonselected variables are ranked according

to their T value. In the set of selected variables,

the variables are ranked starting with the lowest value

first, while in the set of nonselected variables, variables

are ranked with the highest value first.

The search procedure is a two-step process. For

each exchange, it is determined if tbh exchange under

consideration would cause an improvement in the membership
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function. If an improvement is noted, then the

feasibility of the exchange is examined.

The set of exchanges is divided into two groups.

The first search consists of the 2/1, 1/1, and 1/2

exchanges, while the second search considers 3/1, 3/2,

and 3/3 exchanges. In each case, the first number refers

to the number of variables selected from the set of

nonselected variables.

The sequencing of the variables in the sets of

selected and nonselected variables is performed to reduce

the number of searches necessary to obtain a solution.

The sequence allows for the examination of the most profit-

able exchanges first. Then, if an exchange is advantageous,

the search is reduced due to dominance. In ordering the

sets of selected and nonselected variables, the search

proceeds naturally from the most advantageous exchanges to

" least advantageous exchanges.

5.4 Example of Three-Phase Algorithm

The three-phase algorithm is most easily explained via an

example. Consider a problem in which the decision-making situation is

characterized by two fuzzy objective functions and three rigid

constraint functions. Assume this decision has the following problem

formulation:

j.j

.&.. & - :
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Maximize Z1 3x1 + 5x2 + 5x3 + x4
Maximize Z2 = x + x3 + x4

Subject to 2x 1 + x2 + 3x3 + x4 <  6

x1 + 2x2 + 4x3 + 2x4  < 5

3x +2x 2 + x3 + x4  < 41 2 3 4

Xj - (0,1)

5.4.1 Determine the Aspiration Level and Lowest Admissible

Value for each objective. To calculate the aspiration level of the

objective functions, the optimization technique of linear programming

is utilized. Solving a linear programming problem to maximize each

objective function subject to the same set of constraint functions

yields the highest attainable value of the solution or the aspiration

level. Thus, for the example:

(a) Maximize Z 3x1 + 5x 2 +1 2 4

Subject to 2x + x2 + 3x + x4 < 6
1 2 3 4-

S1 + 2x2 + 4x3 + 2x4  < 5

1 2 3 4-i311 + 2x 2 + 13 + xC4  _< 4

Solution: Z - 9.55

x1  - 0.45 x3 - 0.64

x2 - 1.00 x4 - 0.0
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(b) Maximize Z - xI + x3 + x4

Subject to 2x1+ x2 + 3x3 + x 4  6

x + 2x2 + 4x3 + 2x4  < 5

3x1 + 2x2 + x3 + x4 < 4

Solution: Z2 - 5.36

x = 0.82 x3 = 0.55

x2 = 0.0 x4 - 1.00

To calculate the lowest admissible value for each of n objec-

tive functions, evaluate each objective function with the other n - 1

linear programming solution programs. Select as the lowest admissible

value for each objective function the minimum resulting evaluation.

Thus, for the example:

(a) Evaluate objective function Z1 with the program

obtained in Item (b) of the determination of the

aspiration level.

Z11(0.82,0,0.55,1.0) = 3x1 + 5x2 + 5x3 + x4

Z Z(LAV) - 6.21

(b) Evaluate objective function Z2 with the program

obtained in Item (a) of the aspiration level.

Z 2 1(0 .4 5 ,1.0,0.64 ,0) x 1 + x3 + x4

2(LAV) - 1.09

The results of Phase I of the algorithm are summarized in

A _Table V.2.
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Table V.2. Summary of Calculations in Phase I

Objective Lowest Admissible Tolerance

Function Aspiration Level Value Interval

Z 9.55 6.21 3.34

Z2  5.36 1.09 4.27

5.4.2 Phase II: Fuzzy linear integer programming formulation.

The initial step in the fuzzy linear integer programming problem

formulation is to determine the type of objective function and transform

the objective function as appropriate. The fuzzy transformations were

shown in Table V.1. Thus, for the example:

Since both fuzzy functions are Type I functions, the trans-

formations are as follows:

[9.55 - (3xI + 5x2 + 5x3 + x4)]
Z: X < 1- 3.34

X < 1 - (2.85 - 0.8982x1 -
1 .4 97x2 - 1.497x3 - 0.299x4)

X - 1.85 + 0.8982x + 1.497x2 + 1.497x + 0.299x1 23 29 4)

[5.36 - (x1 + x3 + 4x4)]
2 < 1- 4.27

X < 1 - (1.255 - 0.2342x - 0.2342x 3 - 0.9367x4)

X < - 0.255 + 0.2342x1 + 0.23
42x3 + 0.9367x 4

The formulation as a fuzzy linear integer programming problem is:

I ' I IIi, ._
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Maximize X

Subject to X < - 1.85 + 0.8982x1 + 1.497x 2 + 1.497x 3 + 0.299x4

A < - 0.255 + 0.2342x I + 0.2342x3 + 0.9367x4

2x 1 + x2 
+ 3x3 + x4  < 6

x1 + 2x2 + 4x3 +2x 4  5

3xI + 2x2 + x3 + x4 < 4

X j = (0,1)

Solution: X - 0.21

x = 1.0 x3 = 1.0

x = 0.0 x4 = 0.0

The solution is in the form (0,1) ; however, Phase III will be

utilized to illustrate the exchange heuristic.

5.4.3 Phase III: Exchange Heuristic solution. The first step

in this Exchange Heuristic approach is to set up the problem in the

standard form as described previously (Section 5.2). In the example

under consideration, this formulation is as follows:

Maximize A

Subject to 2x + x2 + 3x3 + x 4 6

x + 4x3 + 4x3 + 2x 4  5

3x. + 2x + x + x < 4
1 2 3 4 -

X - 0.8982x1 - 1.497x 2 - 1.497x 3 - 0.299x4 < -1.85

X - 0.2342x1 - 0.2342x3 - 0.9367x 4 < - 0.255

x j (0,1)
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The second step is to determine an initial solution. The

variables comprising the initial solution are determined by ranking

each variable based on the ratio T /R T is defined as the

sumation of the coefficients of each variable in the fuzzy objective

functions. In the example, there are two fuzzy objectives. Thus, in

the example, the calculation of the T values is as follows:

Table V.3. Calculation of T. Values
3

Fuzzy Fuzzy
Variable Objective 1 Objective 2 T - a

x -0.8982 -0.2342 -1.1324

x2  -1.497 0.0 -1.497

x -1.497 -0.2342 -1.7312

# 4  -0.2990 -0.9367 -1.2357

The R values are calculated by evaluating the ratio of the

coefficients of both the fuzzy objective functions and the rigid

constraint functions to the appropriate bi values. In the example

problem, the calculation of the R values is as follows:

Pa

.4;
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Table V.4. Calculation of R Values

Variable R J R Values

Xl -0.8982 + -0.2342 1 + 2 2.69-1.85 -0.255 5 4 6

-1.497 2 2 1 1.8762  -1.85 5 4 6

-1.497 -0.2342 + 1 3
x3  -1.85 + -0.255 5 4 6 3.27

-0.2990 + -0.9367+ .1 +1 4.65-1.85 -0.255 5 4 6

The ratio T /R is calculated from the results obtained in

Table V.3 and Table V.4. In the example problem, the Tj/R values

are:

Table V.5. Calculation of T /R1  Values

Variable T R T/R

x -1.1324 2.69 -0.420

x2  -1.497 1.876 -0.798

x -1.7339 3.27 -0.530

x 4  -1.2357 4.65 -0.266

The initial solution may be calculated by ranking the n

variables according to their respective T /R values. Variables with

the highest values of the T /Rj ratio are placed at the top of the

ranking list. Variables are rejected from the bottom of the list until

th k-l
the rejection of the K variable causes satisfaction of I cij b i

LJu' - " [ III I I I I I I I I I III IIIIj ,, c i • b' | , r
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for all rigid constraints. The initial solution is comprised of

those variables ranked 1 through K-1 . The initial ranking of the

variables is as follows:

Table V.6. Initial Ranking of Variables

Variable Initial Ranking

x 2

x2  4

! x3  3

x1

The initial solution may be determined as follows:

Table V.7. Determination of the Initial Solution

Objective Functional Evaluation

Function {4,1,3,21 {4,1,3} {4,1}

1 7* 6 3 Initial Solution {4,1}

2 9* 7* 3 Set of Selected
Variables: {4,1}

3 7* 5* 4 Set of Nonselected
Variables: {2,3}

4 -4.19 -0.269 -1.19 Value of Membership

Function: 0.0
5 -1.41 -1.40 -1.17

Indicates constraint functions that are not satisfied.
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The third step in the exchange heuristic is to determine a

fitback solution. The fitback solution selects from the set of

initially nonselected variables one or more than can be included with

the selected variables without violating any constraint. Table V.8

displays the calculation of the fitback solution.

Table V.8. Determination of Fitback Solution

Objective Functional Evaluation
Function {4,1,3} (4,1,21

1 6 4 Since at least one constraint is
violated in each possible fitback

2 7* 5 solution, therefore, the fitback
solution is the same as the initial

3 5* 6* solution, {4,1}.

4 -2.69 -2.69

5 -1.40 -1.40

Indicates constraint functions that are not satisfied.

The fourth step consists of utilizing exchange operations

progressively to improve the solution. After each exchange, the

feasibility of the exchange is examined. If the exchange is feasible,

the possible improvement in the membership function is examined. If an

improvement is not noted, then proceed to the next exchange possibility.

Table V.9. displays the search procedure examining the possible

exchanges.

hi
ii
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Table V.9. First Search Exchange Procedure

First Search

List of List of
Selected Variables: (4,11 Nonselected Variables: {2.31

Attempted Selected
Exchange _ X max Variables

(2/1) 0.0 (4,11

(2,3) for 4 Infeasible 0.0 {4,1}
Exchange

(2,3) for 1 Infeasible 0.0 (4,1}
Exchange

(1/1)

(2) for 4 Infeasible 0.0 {4,11
Exchange

(2) for 1 Infeasible 0.0 {4,11
Exchange

(3) for 4 Advantageous/ 0.21 0.21 (3,11
Feasible

Repeat First Search

List of Selected Variables: {3,1}

List of Nonselected Variables: {2,4}

0
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The algorithm utilizes a second pass through the list of non-

selected variables once a favorable exchange has been noted. In the

example problem, the second search produced no exchange advantageous

to the membership function. Therefore, the final solution to the

example is:

Set of Selected Variables: {3,1}

Value of Membership Function: X = 0.21

5.5 Example Number 2, Project Selection Example

In order to illustrate a capital budgeting problem in which the

decision situation is program or project selection, the following

example is presented. In this example, the decision maker has specified

firm values for the aspiration levels and acceptable ranges of admiss-

ibility for each fuzzy function (6].

A systems engineer has to design an integrated system composed

of three subsystems, designated A, B, and C. Three systems have been

proposed for Subsystem A, four for Subsystem B, and three for Subsystem

C. Four attributes were established by management to guide in the

selection of the subsystems. These are weight, development costs,

estimated reliability, and power requirements. Table V.10 summarizes

. the attribute characteristics for each proposed candidate.

Design incompatibilities exist between Candidates A-2 and C-9.

Also, due to design features, if Candidate B-7 is selected, then

Candidate C-10 must be selected.

Management has established firm values for the aspiration levels*1 and allowable ranges of admissibility. Table V.11 summarizes this

information for each attribute.
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Table V.11. Management Specified Attribute Data

Aspiration Lowest Highest
Attribute Level Admissible Value Admissible Value

Weight (lb.) 150 120 165
.44

Cost ($10 )195 260--

Power (watts) 100 70 110

Mathematically, this problem may be formulated as a system of

linear equations. The reliability constraint may be transformed to a

linear equation via the transformation Z - (Y) x=ZtnY

z 32x 1 +57x 2 + 19 3 +95x 4+ 107x 5+ 61x 6 + 48x 7
+ 23x8 + lOX9 + 15xl

z 120x, + 95x2 + 160x3 + 64x4 + 67x, + 96x6 + 119x7

+ 42x 8 + 36x19 + 70x 10

z= 21x 1 + 35x 2 +lox 3 + 60x 4 + 83x 5 + 27x 6 + 50x17

+ 12x 8+ 7x 9+1x1

Subject to
xl 12 II 5

(0.97) 1(0.94) 2(0.99)x 3(0.89)x 4(0.90)x (0.94)x

(0.96) x7(0.98) x8(0.97)x (0.99)x1 > 0.85

x 8+ X 9+1 x 1o

8 2 + 11 x 1

1 7 1 10 -0

-J (0, 1)
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Transforming the problem into its fuzzy equivalent, the problem

formulation is as follows:

Maximize X

Subject to

X + 1.84x1 + 1.46x2 + 2.46x 3 + 0.
98x4 + 1.03x5 + 1.47x6

1.83x7 + 0.64x8 + 0.55x9 + 1.08x10 < 4.0

S- 1.067x1 - 1.9x2 - 0.64x3 - 3.17x4 - 3.56x5 - 2.03x 6

- 1.6x7 - 0.76x8 - 0.33x9 - 0.5x 1 < -4.0

X + 2.13x1 + 3.8x2 + 1.26x3 + 6.34x 4 + 7.13x5 + 
4 .06x6

+ 3.2x7 + 1.53x8 + 0.67x9 + 1.0x10 < 11.0

- 0.70x1 - 1.16x 2 - 0.34x3 - 2.0x4 - 2.77x5 - 0.9x6

- 1.66x7 - 0.4x8 - 0.23x9 - 0.53x10 < -2.33

X+ 2.1x 1 + 3.5x2 + l.0x 3 + 6.0x4 + 8.3x 5 + 2.7x6 + 5.0x 7

+ 1.2x 8 + 0.7x9 + 1.6x10 < 11.0

-&.032x1 - 0.062x2 - O.Olx3 - 0.117x4 - 0.105x5 - 0.062x6

- 0.041x7 - 0.020x8 - 0.030x9 - O.OlXlo > -0.1625

1.0x2 + 1.0x5 = 1.0

1.0x1 + 1.0x 2 + 1.0x3 - 1.0

1.0x4 + 1.0x5 + 1.0x6 + 1.0x7 " 1.0

1.0x8 + l.Ox9 + l.OXlo - 1.0

L.OX7 - l.Oxlo 0

xi - (0,1)
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The solution to the fuzzy linear programming problem is:

A - 0.1344

x - 0.0 x6 - 1.0

x2 - 1.0 x7 - 0.0
-0.0 x8  1.0

x4  = 0.0 x9  = 0.0

x 5 = 0.0 X10 - 0.0

The solution is in the required 0-1 form, the exchange

heuristic or Phase III is not necessary. Therefore the decision is

summarized as follows:

A -0.1334

List of Selected Projects: f2,6,8}

List of Nonselected Projects: f1,3,4,5,7,9,101

The rigid constraints were all satisfied. The fuzzy objectives

were calculated as follows:

Table V.12. Example 2, Attribute Satisfaction

Attribute Calculated Va'ue

Weight (lb.) 141

Cost ($104) $233

Power (watts) 74

1)
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5.6 Analysis and Discussion of Results

The decision problem presented in Section 5.5 was originally

solved via a "multirisk" programming model [6]. This analysis concept

is based on the determination of the alternative decision solutions

which minimize the probabilities that the decision maker's objectives

and constraints will not be satisfied. The "best" subset of m

decision alternatives from a possible set of n candidates is selected

such that the problem's objectives and constraints are satisfied with

minimum risk.

The multirisk programming model is designed to solve multiple

criteria decision problems, assuming that decision makers strive to

achieve or satisfy goals rather than attempting to optimize them. The

decision maker may incorporate the concept of "fuzziness" [66] into the

analysis by specifying a range of deviation allowable for the goals and

constraints of the problem.

The multirisk programming model is a stochastic analysis tech-

nique for solving multiple criteria decision problems. Problem

formulation may include both rigid and stochastic goals and constraints.

The rigid goals and constraints have deterministic coefficients, while

the stochastic goals and constraints have stochastic coefficients. The

model assumes that the range of deviation is a random variable, while

the stochastic parameters of the objectives and constraints are normally

distributed independent random variables. The "best" solution to the

multirisk programming model is the program which minimizes the risk of

not achieving the goals and constraints of the problem, or maximizes

the probability that the goals and constraints are achieved.

& _ __ _ _.:. . .
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In the multirisk programming analysis of the project selection

example (Section 5.5), uncertainties were incorporated for each

coefficient. The attribute data for the proposed candidates is

shown in Table V.13.

The multirisk programming model employs an enumerative search

to identify the "best" solution. Table V.14 displays the results of

the multirisk programming model and the fuzzy linear integer pro-

gramming/exchange heuristic model. Both fuzzy linear integer

programming/exchange heuristic model and the multirisk programming

model of multiple criteria decision making provide effective mathemat-

ical modeling techniques for the analysis of management decisions

which are fuzzy in nature.

The problem formulation of the fuzzy linear programming/exchange

heuristic model was presented in Section 5.2. This multiple objective

analysis provides the decision maker "leeway" in modeling phenomena

of a vague or ill-defined nature. This "leeway" in the model is a

result of utilizing fuzzy sets to describe those objective functions

and constraints that are imprecisely defined. Through the use of a

fuzzy set operator, the "min" operator, an optimal decision in the

fuzzy environment is obtained. This optimal decision is defined as the

point which maximizes the membership function of the fuzzy set formed

through the intersection of those fuzzy sets representing the various

objective functions and constraints. The exchange heuristic in the

model seeks to obtain the best attainable integer solution given that

the optimal point defined above is not integer valued.
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One practical advantage of modeling with either of these

techniques is that the decision situation does not have to be defined

in a precise manner. In the fuzzy programming approach, the decision

maker specifies ranges of acceptability for those objective functions

and constraints represented by fuzzy sets. In the multirisk program-

ming model, the decision maker specifies ranges of deviation. In both

models, the decision maker is given greater flexibility than would be

available in a classical mathematics approach.

A major advantage of fuzzy linear programming is the ease with

which it can be formulated and solved on numerous mathematical program-

ming systems. The exchange heuristic and the multirisk programming

techniques both require utilizing a specific computer program which

may not be readily available.

The major advantage of the multirisk programming model is its

ability to analyze multiple criteria decision problems which are

characterized by nondeterministic coefficients for the various objective

functions. This model provides the decision maker leeway in defining

his aspiration levels, as well as in stating precisely the terms of the

objective functions.

The enumerative search technique employed in the multirisk

programing model is impractical for large scale problems both in

computer storage requirements and necessary CPU time [6]. The fuzzy

linear programming model utilizes whatever mathematical prograning

system that is available to the user to solve mixed integer linear

programming problems. The computer storage requirement is, therefore,

programming package dependent, as is the CPU time necessitated.

* I
I . , . .. " -p, ,, ;
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5.7 Computer Program

A computer program implementing the fuzzy linear integer

programming and the exchange heuristic phases of the algorithm was

developed in FORTRAN IV for the IBM 370/3033 computer system. Standard

FORTRAN language was employed to permit relative ease of adaptation of

the computer model for use on other computer systems. The amount of

internal storage necessitated on the IBM 370/3033 was 280,000 bytes.

The amount of storage necessary is due to the requirements of the MPSX

system. The computer program is currently dimensioned for the compar-

ison of twenty-five alternatives. This program size could be enlarged

by redimensioning the program not to exceed the MPSX variable limit.

The exchange heuristic program is capable of solving problems of size

one hundred and fifty constraints with one hundred and fifty decision

variables with 280,000 bytes of storage. The CPU time to execute

Example 1 was 2 seconds, while 3 seconds of CPU time was required for

Example 2.

5.8 Computer Code Description

The fuzzy linear integer programming computer code and the

exchange heuristic computer code are listed in Appendix B along with

the definition of all input data. The computer codes will be described

in three sections:

i. Fuzzy Linear Programming Transformation program.

ii. IBM MPSX/Mixed Integer Programming Control program.

iii. Exchange Heuristic program.

The fuzzy linear integer programming transformation program is

composed of a single main program. This program reads the input data

vi
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and transforms the objective functions into their fuzzy transformation

as appropriate. Temporary data sets are created to be used as data

input for the MPSX/Mixed Integer Programming Optimization Technique or

the exchange heuristic program as appropriate.

The MPSX/Mixed Integer Programming Control program is an

advanced usage example [63] of the IBM MPSX/MIP technique. This

control program optimizes the continuous problem, then solves the

mixed integer problem. A more in-depth discussion of the MPSX

mathematical programming system is presented in Appendix A.

The exchange heuristic code consists of a main program and

seven subroutines. The code is a modified version of Petersen's [42]

heuristic algorithm, with subsequent modifications by Bouillot and

Smith [64, 65]. The description of this code is as follows:

Main Program. The main program reads the input data from

the temporary data set created in the fuzzy linear program-

ming transformation program. This program calculates the

R values and the ratio T /R for each variable. It

maintains the list of selected and nonselected variables

and determines those exchanges to be executed. It calls

the various subroutines in the proper sequence required

to conduct the exchange operations. It formats and writes

all output data as required.

Subroutine Rank. This subroutine initially ranks the variables

in both the sets of selected and nonselected variables.

Subroutine Impvmt. This subroutine maintains the best

solution achieved that is both advantageous and feasible.
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Subroutine Feasbl. This subroutine examines the

feasibility of the exchange under consideration.

Subroutine Exchge. This subroutine executes the

exchange operations.

Subroutine Achvmt. This subroutine calculates the gain

in the membership function as a result of an exchange.

Subroutine OBJ. This subroutine evaluates the various

fuzzy objective functions to determine the lambda value.

Subroutine FTOBJ. This subroutine calculates the fitback

solution.

0

ii-- .



CHAPTER 6

SUMMARY, CONCLUSIONS, AND SUGGESTIONS FOR FURTHER RESEARCH

In this chapter, the work presented in this thesis is summarized,

and a few conclusions are drawn about the fuzzy capital budgeting model

and the general applicability of fuzzy programming.

6.1 Summary and Conclusions

The model of the capital budgeting problem explored in this work

is a combined application of the models developed by Zimmermann [111

and Petersen [421. The fuzzy linear integer programing approach to

management decisions is designed to study decision problems involving

multiple goals and constraints, some of which are of a vague or ill-

defined nature. The method is founded on the theory of fuzzy sets.

Fuzzy sets are utilized to model phenomena of an ill-defined nature

which cannot be described adequately in classical mathematical terms.

The analysis seeks to permit the human mind to utilize its capabilities

to the fullest extent, while utilizing the computational efficiency of

the computer to perform those operations which the human mind cannot

adequately accomplish. This anal,'is allows the individual decision

maker to make small judgmental decisions (what the human mind does best),

while allowing the computer to solve large linear programming problems

incorporating these judgmental decisions. Since the solution to the

fuzzy linear integer programming problem may not be in the form (0,1),

a modified form of Petersen's exchange heuristic for the capital
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budgeting problem was employed. This exchange heuristic seeks the

"best" attainable solution, given that no integer solution exists.

The model is designed to solve the general problem in which the

"best" subset of m alternatives is selected from a candidate set of

n possible decision alternatives, such that the membership function

of the fuzzy set of the decision is maximized. The model provides a

great deal of flexibility to the user in formulating problems for

analysis. The availability of solution algorithms and computer solution

systems which are readily compatible with the fuzzy linear integer

programming problem formulation allows the user to realize a computa-

tional solution with ease.

This analysis has applicability for a broad range of decision

problems involving the selection of entities from among numerous

alternative possibilities, such as equipment purchases, route selection,

or investment selection. The example presented in Chapter 5 success-

fully analyzed the selection of alternative subsystems in achieving

system design requirements, while satisfying stated cost restrictions.

6.2 Suggestions for Further Research

The work described in this thesis can be extended in several

different directions. The integer solution technique utilized in this

work was the MPSX/Mixed Integer Programing System. Although this

mathematical programming system readily yields a solution to the

problem, the availability of MPSX is not universal. The development

and use of an integer programming computer code in standard FORTRANI would greatly enhance the ease with which the model could be adapted to

other computers.

I______________________
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The popularity of multiple objective analysis via goal

programming could be the catalyst of another extension. The formu-

lation of the fuzzy objectives and constraints into a goal programming

analysis would be an extremely interesting development. Goal

programming is an extremely robust optimization technique, which is

viewed as a practical and natural representation of a wide variety of

real-world problems. In combining the fuzzy programming approach of

optimizing humanistic systems which are by nature vague and ill-defined,

with the practicality of goal programming, an optimization methodology

may result which presents a realistic perspective of management decision

making.

• Field experimentation with fuzzy programming models of management

decision making would be desirable. Zimmermann [58] has conducted

numerous experiments to analyze the viability of modeling decision

makers via the concepts inherent in fuzzy programming. Applications of

fuzzy programming include personnel management and determination of

credit worthiness in the banking industry [58], media selection [11],

and the sizing of a truck fleet [9].

The fuzzy set operator used in the fuzzy linear integer pro-

gramming model is the "min" operator. Zimmermann and Hamacher [58]

have experimented on the applicability of other operators in the

optimization of management decisions. These operators include the

-product operator, the algebraic sum operator, the max operator, both

the arithmetic and geometric mean operators, and the gamma operator.

Certainly, many other areas for further research exist. However,

these few are listed to provide the reader some idea as to where

additional research might begin.
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As in most integer programming techniques, long computational time is

necessary to determine the optimal integer solution.

The IBM program descriptions [63] provide an in-depth discussion

of the MPSX system. In addition, numerous sample problems are presented.

The examples are detailed from data input through sample outputs. The

Mixed Integer Programming program description is especially instructive.

It provides sample MPSX control programs and presents an excellent

discussion of the mixed integer programming procedure.
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In this appendix, the IBM Mathematical Programming System

Extended (MPSX), linear programming and mixed integer programming

capabilities are summarized.

A.1 MPSX System

Mathematical Programming System Extended (MPSX) is composed of

a set of procedures all operating under the direction of a user

specified MPSX control program. Through the MPSX control program,

the user specifies the sequence of steps to be executed in solving a

mathermatical programming problem.

The user is able to augment MPSX with procedures written in the

FORTRAN language through the use of the Read Communications Format

(READCOMM) feature of MPSX. Through the use of FORTRAN CALL statements,

the READCOMM subroutine is accessed. This subroutine acts as an

interface between the MPSX control program and the FORTRAN procedures.

The user is capable of executing all of the MPSX capabilities

through the use of the MPSX control programs and the READCOMM procedures.

A.2 Linear Programing Procedure

The MPSX strategy for solving a linear programming problem is

the ordered execution of a series of the MPSX procedures. The user

specifies the solution strategy to MPSX, via the MPSX control language.

The linear programing procedures of MPSX use the bounded

variable/product form of the inverse/revised simplex. The simplex

method is based upon the fact that if there are m constraints which

are linearly independent, then there is a set of m columns (variables)4which are also linearly independent. The right-hand side values can be

expressed in terms of the m columns called a basis. The simplex

IA
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method employs these basic solutions by exchanging one column from the

basis with one column not in the basis on each iteration, until a

solution is realized that satisfies the feasibility criteria. This

solution is termed a basic feasible solution.

The simplex method proceeds by examining the basic feasible

solutions, to find one that satisfies the requirement that the objective

function value be maximized or minimized.

A.3 Mixed Integer Programming Procedure

The Mixed Integer Programming capability of MPSX is an extension

of the linear programming procedure of MPSX. It provides the user the

capability to solve linear programming problems composed of both integer

and continuous variables. This analysis is appropriate for the fuzzy

linear programming approach to the capital budgeting problem. Since

the solution must be of the form (0,1), the variables representing the

investment possibilities must be integer values, while the value of the

membership function is a continuous variable.

The MPSX mixed integer linear programming problem is performed

in two stages. First, the problem is solved considering all integer

variables as being continuous. The problem is solved by the linear

programming capability of MPSX. The solution to this problem is termed

the optimal continuous solution.

The second stage is to solve the problem for the optimal integer

solution. The search for an integer solution starts from the optimal

continuous solution and proceeds using the branch and bound technique.

The search continues until the optimal integer solution is determined.

-I
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