AD=-A083 780  SCRIPPS INSTITUTION OF OCEANOSRAPHY LA JOLLA CA F/6 8/3
MODELS OF THE EQUATORIAL OCEAN CIRCULATION.(U)
1980 M J MCPHADEN NO0O14=78=C=0152
UNCLASSIFIED NL




10 & b
= 2 22
. L "=

" o 2o

25 s s

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1963 A 1

7 o _____a_-—'i






TP LA . TR

N

] . ~ L
ot
—unclassified :
SECURITY CLASSIFICATION OF TRIS PAGE (When Date Entered)
REPORT DOCUMENTATION PAGE BEF O IO

GOVY ACCESSION NOJ 3. RECIPIENT'S CATALOG NUMBER

AAaszQ

S. TYPE OF REPORT & PERIOD COVERED

T. REPORT NUMBER

4. TITLE (end Subtitle)

P__,_,—-———-—"’—"_'__’_" bl -
DELS OF THE EQUATORIAL QCEAN ;
fx’ i &

RCULATION'

6. PERFORMING ORG. REPORT NUMBER

I7- AuTHOR(®) —

@ Fﬁ;{ James )McPhaden é

9. PERFORMING QRGANIZATION NAME AND ADDRESS

Scripps Institution of Oceanography ./
La Jolla, CA 92093

| ,o/ﬁus-c-;/ls

.::oguu ELEMEN v PROJECT, TASK

1. CONTROLLING OFFICE NAME AND ADORESS

Office of Naval Research
Arlington, VA 22217

(T

121

18. SECURITY CL ASS. (of thie report)

| RN MONITORING AGENCY NAME l ADDRESS(H dllloum ho- Controlling Otfice)
unclassified

q DODTONO\)' \ft\!‘&sl.f_).,
,n:fffﬁ:EE;Eﬁzﬁfﬁﬁﬁawaﬁﬁﬁﬁﬁmﬁ‘—

6. DISTRIBUTION STATEMENT (ol this Report)

Approved for public release. Distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abetract entered In Block 20, i different from Report)

18. SUPPLEMENTARY NOTES

Doctoral Dissertation

ily by block number)

" [19.7KEY WORDS (Continue on reveras side i y and ld

| 20. ABSTRACT (Continue on reveres side If neceasary and identily by block number)

\ In this dissertation I investigate equatorial ocean dynamics
using analytical and simple numerical models. The steady circu-
lation is first examined using a linear equatorial beta-plane
formulation in which continuous density stratification is a key
element. The basin is horizontally unbounded and forced by
either winds or a surface temperature boundary condition. Two
vertically diffusive models are proposed to examine the effects..|

EDITION OF 1 NOV 6818 OBSOLETE

1JAN 73 l '] 3

S mam e —— e

Y i
117100 4
SECURITY CLASSIFICATION OF THiS PAGR e Bntoved)




giedanipaee ke e

- R DL AR W RIS T

UNIVERSITY OF CALIFORNIA

San Diego

Models of the Equatorial Ocean Circulation

A dissertation submitted in partial satisfaction of the

requirement for the degree Doctor of Philosophy

in Oceanography

by

Michael James McPhaden .

Committee in charge:
Professor Myrl C. Hendershott, Co-Chairman
Doctor Robert A. Knox, Lecturer, Co-Chairman
Professor Richard L. Salmon '
Professor Robert L. Parker
Professor Sinai Rand

1980 ‘




The dissertation of Michael James McPhaden is
approved, and it is acceptable in quality and

form for publication on microfilm:

&[]

Lokl £ Aol

Co-Chairman

_MZ_C_M
'L

-Chairman

University of California, San Diego

1980

14

_Accession For
NTIS QRA&I
DDC TAB
Unannousiced
Justification

By

_Qgs‘tribution/

—Availability Codes

Avalland/op
Dist spec?al

ERTTRNEO. ¥ LN —Rmae. . v: /WA SSJ




ey

To Christine

for her encouragement and understanding

and

To my parents, William and Irene

for a lifetime of patience

i1




Il

TABLE OF CONTENTS

Page

List of Symbols . « & & & v v v ¢ v i e e e e e e e e e vi
List of Figures and Tables . . . . . « « « ¢ v v ¢« o « o viii
Acknowledgments . . . « . . ¢ ¢ ¢t vt e h e e e e e e xi
Vita, Publications and Fields of Study . . . . . . . . .. xii
Abstract. . . . . . . e e b e e e e e e e e e e e xiv
Introduction. . . . . . . . . . . i i e e e e e . 1
Steady State Models . . . . . . . . .. . ... .. ..., 5
A. Observational Background . . . . . . . ... ..... 5
B. Previous Theories . . . ... ............ 8
1. Constant Density Models . . . . . . ... ..... 9

2. Stratified Models . . . . . . . . . .. ... ... 12

C. Newtonian Cooling Model. . . . . . . . . . . . . . .. 16
1. Formilation . . . . . .. ... ... ..., 16

2. Zonal Winds . . . . . . ¢ v v v i e e e e e e e .. 27

3. Variation of Parameters . . . . . . . ... .. .. 47

4. Meridional Winds. . . . . . . . v v ¢ v o v e e .. 60

5. Discussion. . . . ¢ ¢ ¢ vt i i e e e e e e e e e 64

D. Biharmonic Friction Model. . . . . . . « . . « . . . . n
1. Formulation . . . ¢ ¢ v ¢ v v v v v v e e e e e n

2. Zonmal Winds . . . . . . . . s e e e e e e e e e e 74

3. Thermal Forcing . . . . « v ¢ ¢« ¢ v ¢ v v v v o oW 79

4, Discussion. . & & ¢t vttt e e e e e e s e e 83

iv




e D

Page

III  Equatorial Kelvin and Inertio-gravity Waves in
Zonal Shear Flow . . . . . . . C v v e e e e e e e e 85

References . . . . « ¢ v ¢« ¢« o« « & .

£
3t
%
A
£y
>
-7
22

Py
i
b4
s,:
¥
¥

~VERE

3 PR DT AT~ YN Y S A G B

or- oot
e ot




LIST OF COMMONLY USED SYMBOLS

X,Y,2 Longitude, latitude, depth

u,v Zonal, meridional velocity perturba-
tion

w Vertical velocity perturbation

p Pressure perturbation

e,é,Bz Temperature perturbation, background
temperature, background vertical tem-
perature gradient

u,v,P Vertically integrated velocities and
pressure

q,Q Generalized dependent variable and its
depth integral

r,t(x).r(Y) Wind stress and its zonal, meridional
components

0 Average density of seawater (1 g cm=3)

g Gravitational acceleration
(9.8x10% cm sec=?)

a Coefficient of thermal expansion
(2.5x10-* °C-?)

f Coriolis parameter

8 Meridional gradient of planetar
vorticity (2.3x10-!* cm™! sec~!

AK Eddy momentum and heat diffusivities

H Depth of the ocean

D Depth scale

L Length scale

u,w Horizontal, vertical velocity scales H

vi

—— - e am e e ———— et ———— S £ Tl RSN e e £ s
. . ~ ) ] - ] o o B TREE v 5




—

Pressure scale

Temperature scale

Wind stress scale

Meridional decay scale of surface forcing
Zonal wavenumber

(-1)%

Hermite index, polynonial, function
Turning latitude

Depth dependence

Dispersion index

Complex vertical wavenumber
(One element of) amplitude vector of y

(One element of) vector projection of
surface forcing onto wn

Coefficient matrix for boundary con-
ditions

Upper limit of n
Prandtl number

Slope of constant phase lines on
x-2 plane

Ekman pumping velocity
Ekman depth
Depth scale of geostrophic flow

Depth scale of the background tempera-
ture field

Measure of relative importance of strati-
fication ve, rotation

vii




bR i

Fa I TR

W e

LIST OF FIGURES AND TABLES

Page
Figure 1. (a) Meridional section of zonal velocity at 170°E.
(b) Corresponding meridional section of temperature.
(after Hisard, et al., 1970). ..iciveenreernncecncencccnnns 6
Figure 2. Profiles of zonal velocity at the equator computed
from the constant density models of (a) Stommel (1960)
and (b) Charney (1960). ....ccevivueirerennnncncecncncancnnns 1N

Figure 3. A plot of Im(mz) vs. % from the dispersion relation

(12).  eiiiiiiiiiinneerenss Ceeeiiecesseieensanesessasenans 26
Figure 4. (a) Meridional and (b) longitudinal variations of

Zonal wind., ....iiiiiiiiiiiiitiitiietittttentietatstenanans 29
Figure 5. Depth profiles of perturbation variables on the

BQUALOT.  tiiieereenerntatcisreisatsasesottstnecncstsesonnns 31
Figure 6. Depth profiles of perturbation variables outside the

equatorial boundary layer. ....cccieciierirercntonnnnnocnn 33
Figure 7a. Meridional section of zonal velocity. .............. 34

Figure 7b. Meridional circulation corresponding to the zonal

velocity section shown in Figure 7a. ....civvieiinnencncnnes 35
Figure 8. Zonal velocity on the equatorial plane. ............ 36
Figure 9. Meridional section of deep zonal velocity. ......... 38

Figure 10. Meridional sections of (a) zonal and (b) meridional

Ekman veloCTtY. .iceveverecrncncnceesnctncanconasnsasssnsnne 4
Figure 11. Balance of forces at the sea surface computed from

Just the Ekman modes in the (a) zonal and (b) meridional

direction. ...ccvececccscanscrrssecoscnnnes Cesesecesacsanee

viii




Page
_E ; Figure 12. Balance of forces at the sea surface computed

; from all modes excluding the Ekman modes in the (a)

meridional and (b) zonal direction. ....coevvrvvvrnnnncnens 45

Figure 13. Depth profiles of perturbation variables on the

equator computed from just the Kelvin mode. ............... 46
Figure 14. Percentage of zonal wind stress that projects onto

the Ekman, Kelvin and geostrophic modes as a function of

nondimensional Tatitude. ......ceiiiiieieivnnnrnnnnesnanans 48
Figure 15. Effects of varying zonal wavenumber (zo) on (a)

zonal velocity at the equator and (b) width of the equato-

rial current SyStem. ....ciiiieiiiiirincttecrannatenenneras 51
Table 1. Power law dependence of various scales on

diffusivity (A,K) and stratification (8,). ................ 52
Figure 16. Effects of varying diffusivity (A,K) on (a) zonal

velocity at the equator and (b) width of the equatorial

current SYStem. ....icivcicrtritcticncrtrenacorosecassasannn 54
Figure 17. Effects of varying stratification (52) or Prandtl

number (Pr) on (a) zonal velocity at the equator and (b)

width of the equatorial ;urrent SYStem. ..i.iiiiiiincnncans 55

Figure 18. Approximate solution computed from just the Kelvin

mode on the eqUAtOr. ....iciveieeticcitornrcesesarencsvanans 59
Figure 19. Depth profiles of perturbation variables in the

equatorial boundary layer for southward winds. ............ 61
Figure 20. Meridional circulation in the equatorial boundary

layer for southward winds. ......iciiinncenrnnanivensonnnss 63

ix

ERUS e VRN




Figure 21. Nonlinear tendencies as a function of nondimen-

sional latitude at the depth of the EUC core. ............

Figure 22. Meridional section of total temperature. ..........

Figure 23. Depth profiles of perturbation variables

on the equator for the biharmonic friction model. ........

Figure 24. Meridional section of zonal velocity for

the biharmonic friction model. ......cciiivririiiiennnnnnn

Figure 25. Meridional section of total temperature for the

biharmonic friction model. ....... Ceeeeeesectecsatensonnns

Figure 26. Depth profiles of perturbation variables on the

equator for surface temperature forcing. ..........cocv...

Figure 27. Balance of forces at the sea surface for surface

temperature forcing computed from just the Ekman modes

in the (a) zonal and (b) meridional direction. ...........

68
69




PR

RIS\ i £ 5 A p e s e

ACKNOWL EDGMENTS

The text of this dissertation in part is a reprint of
material as it appears in the Journal of Physical Oceanography. The

coauthor listed in that publication, Dr. Robert A. Knox, directed and

supervised the research which forms the basis for this dissertation.
His academic and scientific guidance over the past 5 years have been
much appreciated.
I would 1ike to thank all the members of my doctoral committee
for their encouragement and advice in the deveiopment of this work. I ]
am especially indebted to Dr. Julian P. McCreary of Nova University for

his many hours of enthusiastic and stimulating discussion.

Jane Malloy, Ruth, Jeannie and Renate all deserve mention for
their help in preparing the manuscript. Annette Pickens typed the
original draft to Chapter III and brewed the coffee every morning. Moral
support was provided by the La Jolla Hash House Harriers and the Scripps
Ghetto.

I am likewise grateful for financial support provided by the

Office of Naval Research under Contract N0O0014-75-C-0152.

x1




1973-

1973-1974

1974-1980

1980~

VITA

October 22, 1950 - Born - Buffalo, New York
B.S., Physics, State University of New York
at Buffalo

Science Instructor, Saint John the Baptist School,
Kenmore, New York

Research Assistant
Scripps Institution of Oceanography
University of California, San Diego

Doctor of Philosophy

PUBLICATIONS

"Equatorial Kelvin and Inertio-gravity Waves in Zonal Shear Flow"
(with R. A. Knox), J. Phys. Oceanogr., 9, pp. 263-277, 1979.

Major Field:

FIELDS OF STUDY

Physical Oceanography

Studies in Physical Oceanography
Professors R.S. Arthur, C.S. Cox, R.E. Davis,
M.C.Hendershott, W.H. Munk and J.L. Reid

Studies in Fluid Mechanics
Professor R.E. Davis

Studies in Geophysical Measurements
Professor R.A. Haubrich

Studies in Applied Mathematics
Professors S. Rand and F.A. Williams

Studies in Marine Geology
Professors W.H. Berger, J.R. Curray and H.W. Menard

x4




L SR .

Lo

Studies in Marine Chemistry
Professor J.M.T.M. Gieskes

Studies in Marine Biology

Professors R.R. Hessler, J.A.McGowan, M.M.Mullin,

W.A. Newman and R.H. Rosenblatt

xiii

- oo




ABSTRACT OF THE DISSERTATION
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In this dissertation I investigate Equatoria] ocean d&namics

using'analytical and simple numerical models. The steady circulation
is first examined using a linear equatorial beta-plane formulation in
which continuous density stratification is a key element. The basin is
horizontally unbounded and forced by either winds or a surface tempera-
ture boundary condition. Two vertically diffusive models are proposed
to examine the effects of different turbulence parameterizations. One
is characterized by temperature dissipation proportional to temperature

itself, the other has biharmonic friction proportional to a fourth
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B derivative of velocity. Both lead to equations for the steady state
that are in many ways analogous to the well-known equations governing
equatorial wave motion. The analogies are exploited both in obtaining
analytical solutions and in describing the flow dynamics. .. _

Steady zonal winds drive geostrophic flows such as the

Equatorial Undercurrent and South Equatorial Current as well as equa-
torial upwelling and a weakening of the equatorial thermocline. Exami-
nation of the dynamics reveals that in a stratified ocean equatorial
Ekman layers are well behaved due to the presence of meridional baro-
clinic pressure gradients. These pressure gradients are not geostrophic-
ally balanced and therefore imply an error of 0(10%) or greater in the
geostrophic calculation of near surface zonal currents from the density
field. Furthermore, the geostrophic balance is modified near the equator
to allow for direct wind forcing and vertical diffusion of zonal momentum.
Nonlocal wind effects are important in the model results suggesting a
possible dynamical connection between maximum westward winds in the
central equatorial Pacific and maximum undercurrent speeds in the eastern
Pacific. Nonlinearity is important in the zonal momentum balance, but
its effects on the undercurrent can be qualitatively predicted by quad-
ratic corrections to the 1inear model. The above results apply to either
turbulence parameterization scheme; only the magnitude of various flow
quantities changes.

Large scale meridional winds or zonal winds with meridional

shear excite a frictional response that is too shallow to displace deeper
geostrophic zonal flows off the equator. Thus either time dependence
or strong nonlinearity must be invoked to account for observations of an

undercurrent structure asymmetric about the equator. Surface zonal tem-
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perature gradients drive a current system similar to that driven by zonal
winds suggesting that the equatorial mixed layer will have a significant
impact on the deeper circulation.

The interaction of prescribed geostrophic zonal mean currents
in an equatorial ocean with free, neutrally stable Kelvin and inertio-
gravity waves is investigated next. The equations are formulated for a
two layer ocean, then solved either analytically or by simple numerical
methods. It is found that the zonal velocity of inertio-gravity waves is
strongly affected in regions where mean currents have a large meridional
shear. This coupling can be interpreted as mean current meanders simi-
lar to those observed during GATE. Conversely, sea level fluctuations
proportional to wave pressure are not as greatly influenced by mean
currents. These results may be of importance when attempting to fit
equatorial wave theories to sea level observations on one hand and
current measurements on the other.

Solutions in the Kelvin wave range indicate that at low frequen-
cies, the presence of mean currents leads to a small meridional wave
velocity and a Doppler shift in frequency. This latter effect may in-
fluence the speed at which the equatorial ocean adjusts to transient
forcing. At higher frequencies, the Kelvin wave becomes more gravity-
1ike and may appear in current records as varicose meanders of the mean

flow.
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CHAPTER I

INTRODUCTION

The equatorial ocean has been a continuing source of interest to
oceanographers since the first modern observations of the Pacific

Equatorial Undercurrent in 1952 (Montgomery and Stroup, 1962). This

strong eastward current flows below a generally westward wind drift and
extends no further than 2° latitude from the equator. Similar under-
currents were discovered shortly thereafter in both the Indian Ocean dur-
ing the Northeast Monsoon (Taft and Knauss, 1967) and the Atlantic (Neu-
mann, 1960). Even more subsurface structure emerges from recent analyses.
Taft et al. (1973) summarize evidence for a persistent westward flow be-
low the permanent undercurrents; Tsuchiya (1975) and Cochrane et al.
(1979) describe eastward subsurface countercurrents flanking this west-
ward flow. Luyten and Swallow (1976) and Luyten and Eriksen (1980) have
observed zonal jets trapped near the equator down to 4000 m. In addition
to this rich spatial structure, there is a full spectrum of geophysically
interesting temporal fluctuations. For example, evidence of a sea level
signal at periods of 4-5 days exists in the equatorial Pacific (Wunsch
and Gi1l, 1975). Undercurrents have meandered about the equator at

periods of 0(10 days) in both the Atlantic (Diiing et dz.,1975) and




Pacific (Titov, 1977). At longer time scales, the equatorial Indfan and
Pacific Oceans respond to seasonal monsoon forcing. Interannually, large
scale coupled ocean-atmosphere disturbances known as E1 Nifio occur.
Daunted by the variety and complexity of oceanic phenomena,
Melville wrote in 1851, “...the secrets of the currents in the seas have
never yet been divulged, even to the most erudite research...". But
through technological advances, systematic observations and the study of
dynamical models, we have in the last 30 years gained a wealth of insight
into the peculiar physics of the equatorial ocean. For instance, it has
been possible to identify some of the important mechanisms that generate
and maintain the undercurrent system. Likewise, 1inear equatorial wave
theory (Moore and Philander, 1977) is a unified, elegant paradigm for
describing a wide range of time dependent phenomena. From this body of
research, two fundamental concepts emerge. First, the equatorial ocean
~ is unique dynamically because horizontal Coriolis forces, of primary im-
portance in mid-latitude flows, vanish at the equator. Second, vertical
structure near the equator depends intimately on density stratification.
From a broader perspective, progress in equatorial oceanography
moves us closer to understanding the ocean-atmosphere-biosphere compliex
and its impact on human affairs. For example, in sgme years a sudden
warming of waters off the Peruvian coast devastates the anchovy fishery
and produces torrential rains in a normally arid region. These events
known as E1 Nifio appear to be related to large scale wind fluctuations
thousands of kilometers to the west in the Central Pacific (McCreary,
1977). A better understanding of such events could alleviate many of
their adverse social, political and economic effects. Also primary l

productivity, the base of the food chain, is strongly l1inked to




upwelling which brings nutrient rich water to the surface. Nowhere out-
side of coastal regions are there as intense large scale vertical veloci-
ties as at the equator. Knowledge of the factors that control the spatial
and temporal aspects of equatorial upwelling (and other vertical trans-
port processes e.g., mixing) is thus of paramount importance in under-
standing the productivity of this region. Finally in the tropics, inci-
dent solar energy exceeds outgoing radiative flux. The excess is trans-
ported poleward by atmospheric and oceanic processes that create weather
and climatic variability. Recent studies (e.g. Shukla, 1975; Reiter,
1978) suggest that equatorial current and temperature structures are key
elements in the generation of this variability not only in the tropics but
also at temperate latitudes.

In this dissertation 1 examine the physics of steady state and
time variable flows in linearized, stratified, equatorial beta-plane
models. Chapter Il begins with a discussion of observations pertinent to
the steady models and a brief review of previous theories. I then develop
two models for steady flow in a continuously stratified ocean to illustrate
the boundary layer nature of the equatorial regime and the transition
from equatorial to mid-latitude dynamics. The basic conclusions are that
(a) stratification removes singularities in the equatorial extension of
Ekman layers, (b) mid-latitude geostrophy is modified near the equator to
include vertical diffusion of zonal momentum and (c) zonal winds near the
equator enter the ocean not through the Ekman layer but through direct
projection onto geostrophic currents. It is also shown that (d) stratifi-
cation is crucial in setting the scales of various flow parameters and that
(e) baroclinic zonal pressure gradients are essential for the maintenance

of vertical structure. Moreover these results apply fdr different




turbulence parameterizations. Chapter III is a study of the inter-
action of free waves and prescribed zonal shear flows like the under-
current and westward South Equatorial Current. Stratification in this
model is approximated by a single jump in density near the surface. The
important results of this section are (a) internal equatorial waves can
cause mean current meanders like those observed in the Pacific and
Atlantic and (b) mean flow, depending on its direction, can either en-
hance or retard the oceanic response time to transient wind forcing near

the equator.




CHAPTER 11

STEADY STATE MODELS

A. Observational Background

Figure 1 presents the structure of zonal flow and temperature on
a meridional plane in the western Pacific from Hisard et al. (1970). The
basic pattern is representative of steady conditions at other longitudes
in the Pacific and Atlantic Oceans. It consists of (a) an eastward
Equatorial Undercurrent (EUC) in the upper thermocline at speeds of
0(100 cm sec~!), (b) a westward surface flow, the South Equatorial
Current (SEC) at speeds typically of 0(50 cm sec-!), (c) a weaker west-
ward Equatorial Intermediate Current (EIC) below the EUC and (d) subsur-
face countercurrents (SSCC) flanking the EIC and at this longitude con-
tiguous to the shallower EUC. The North Equatorial Countercurrent (NECC)
is visible at the northern extreme of the section. Al1l these zonal cur-
rents are in geostrophic balance with the density field which, to zeroth
order, is determined by the temperature field of Figure 1b. In particu-
lar, the EUC is associated with a weakening of the thermocline near the
equator and the SSCC's are in balance with the plunging 10° isotherm
located symmetrically at 3°N and 3°S. A secondary eastward flow which
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Figure 1. (a) Meridional section of zonal velocity at 170°E. Labelled
currents are South Equatorial Current (SEC), Equatorial Undercurrent
(EUC), Equatorial Intermediate Current (EIC), North Equatorial Counter-
current (NECC) and subsurface countercurrents (SSCC). The current
labelled AG is an ageostrophic flow. Regions of westward flow are
stippled. (b) Corresponding meridional section of temperature. (after

Hisard, et al., 1970).
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1ies between the SEC and EUC is peculiar to those regions which have a
deep mixed layer. It is neither permanent nor in geostrophic balance
(Hisard et al., 1970).

The source of momentum for the EUC is an eastward pressure
gradient force set up by the Trade Winds. With only weak deflecting
forces near the equator, water simply flows eastward down this pressure
gradient below the action of the wind stress. Using hydrographic data,
Knauss (1966) in the Pacific and Katz et al. (1977) in the Atlantic have
measured this force to be about 5 x 10-5 dyne cm-3 at the surface falling
to half that value at the depth of the EUC core. The signal is eventu-
ally swamped by noise at greater depths.

Cromwell (1953) and later Fofonoff and Montgomery (1955) suggest-
ed a meridional circulation associated with flow patterns 1ike those of
Figure 1. Upwelling, as inferred from doming isotherms and nutrient
concentrations near the 2quator, feeds a surface meridional Ekman diver-
gence. This upwelling and a downwelling inferred from downward trending
isotherms below the core of the EUC requires meridional convergence of
mass in the thermocline. The convergence is geostrophically balanced
by the same pressure gradient that drives the EUC. Knauss (1966) has
measured meridional velocities at 150°W of 0(1-10 cm sec-!) and by
scaling arguments deduces vertical velocities of 0(1-5 x 10-% cm sec-!).

The Indian Ocean is dominated by seasonal monsoons and mean zonal
westerly winds rather than steady easterlies. Consequently only during

the Northeast Monsoon will the circulation resemble the persistent

A




Pacific and Atlantic patterns. More comprehensive surveys of these
flow features in all equatorial oceans can be found in Knauss (1963);
Philander (1973b); Leetmaa, McCreary and Moore (1980); Tsuchiya (1975);
Cochrane et al. (1979) and Taft et al. (1974).

The recent observations of Luyten and Swallow (1976) in the
Indian Ocean and Luyten and Eriksen (1980) in the western Pacific add a
new dimension to investigations of the equatorial circulation. They
measured several zonal currents trapped to the equator down to 4000
meters. The data fail to resolve the time scales of these stacked jets,
but they must be at least several months. Furthermore it is not clear
how or if they are related to the winds or shallower currents. It is
evident though that the short vertical wavelengths of 0(100's of meters)

imply a much higher degree of baroclinicity than at mid-latitudes.

B. Previous Theories

In this section I will discuss the development of key dynamical
concepts deduced from previous theories. I will not attempt a comprehen-
sive review since there are several published surveys of equatorial
models, notably Philander (1973b), Gi1l (1975), Moore and Philander (1977)
and Leetmaa, McCreary and Moore (1980). I will furthermore restrict dis-
cussion to those models in the oceanic parameter range rather than those
more appropriate to laboratory studies, though the latter can contribute
to our understanding of oceanic processes.

The primary intent of nearly all steady state equatorial models
has been to provide a dynamical description of the EUC since this was the
first subsurface flow discovered and since it is typically the strongest

of all equatorial currents. One feature common to all these models is




that they are formulated on the equatorial beta-plane i.e. the Coriolis
parameter is everywhere equal to a coristant times latitude. This implies
that the equatorial zone is a singular region of the global circulation
because rotational forces cannot dominate the flow there. Robinson

(1960) points out that close to the equator, a number of processes can
compensate for the diminished Coriolis forces. A model that includes at
least some of these may give a reasonably good approximation of the flow
patterns and scales. Accordingly a great many models which cover a wide
range of parameter space have been proposed. It is instructive to dis-
tinguish between those that assume constant density and those that include

continuous vertical density stratification.

1. Constant Density Models

Because the EUC is a near surface feature, the depth of the
ocean in constant density models is taken to be the depth of a deep mixed
layer 1ike that in the western Pacific. The assumption is that a sharp
thermocline at the base of the mixed layer completely inhibits communica-
tion with the deeper ocean. This is not entirely justifiable (e.g. Knox,
1976) but it typically leads to a set of mathematically tractable equations.
The models of Stommel (1960) and Charney (1960) exemplify and illustrate
the limitations of this type of formulation. In these, the depth inte-
grated pressure gradient is in balance with an eéster]y wind stress. Via
the hydrostatic relation this approximates the observed rise in sea level
to the west in both the Atlantic and Pacific Oceans. Other zonal varia-
tions are assumed small compared to meridional variations so that flow
can be examined solely on the meridional plane.

In Stommel's linear calculation the pressure gradient is able to




drive an eastward flow below a westward wind drift near the equator
(Figure 2a). However the scales are critically dependent on the magni-
tude of a vertical eddy viscosity. In fact it is not possible to adjust
this parameter to give realistic width and velocity scales simultaneously.
Furthermore, Stommel chose a no stress rather than no slip condition at
the bottom of his model ocean. Charney used the latter condition in a
linear calculation and found no eastward flow near the equator in the
presence of easterly winds.

The EUC in Charney's model depends on nonlinearity (Fioure 2b).
Westward momentum fed in through the surface by the winds is carried
poleward resulting in a net gain of eastward momentum near the equator.
Such a tendency is predicted by the calculation of quadratic corrections
to the linear model (Robinson, 1966). This gain of eastward momentum is
also consistent with the tendency to conserve absolute vorticity near
the equator in the presence of an eastward pressure force (Fofonoff and
Montgomery, 1955; Cane, 1979). A particle as it approaches the equator
loses planetary vorticity which must be compensated for by a gain of
relative vorticity. The sign of this gain is such that the current
accelerates eastward. However if the friction coefficient is too small
in Charney's mode} (<14 cm? sec~!), solutions become unstable.

The meridional circulation in these models is similar to that
deduced from observations. In particular, for westward winds there is
upwelling near the equator and surface divergence while at depth there
is a convergence of mass. The distribution of temperature is not pre-
dicted since the entire layer is of a single density.

While these models shed 1ight onto the dynamics of an equatorial

fluid, they have some serious drawbacks. Already mentioned are their
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Figure 2. Profiles of zonal velocity at the equator computed
from the constant density models of (a) Stommel (1960) and
(b) Charney (1960). Decreasing values of c in the Charney
calculation imply stronger nonlinearity. Negative veloci-

ties are to the west.




sensitivity to the size of eddy coefficients and type of bottom boundary
conditions as well as an inability to predict the temperature field. The
lack of longitudinal variation is not reasonable. For example, zonal
variability is present in the winds (Wyrtki and Meyers, 1975; Hellerman,
1967), surface temperature (Colin et al., 1971), current speeds, transports
and depth of the EUC (Knauss, 1960). Knauss (1966) computes significant
downstream advection of zonal momentum in the EUC. Moreover these models
tell us nothing of the deeper EIC and SSCC. Their crucial limitation
though is that they place the EUC in the mixed layer, not in the thermo-
cline where it is observed. Shear profiles in a constant density ocean
cannot be in geostrophic balance whereas measurements show that all the
permanent zonal equatorial flows are. As such these models are at best
applicable to ageostrophic flow like that observed at the base of the
deep mixed layer in the western Pacific (Figure 1). To understand flow
in the thermocline, clearly we require a theory that includes continuous

stratification.

2. Stratified Models

Even before the discovery of the EUC, Sverdrup (1947) proposed a
theory of the steady circulation in a stratified equatorial ocean. He
derived relationships between various depth-integrated flow quant1t1e§
and surface wind stress. While such a theory can provide no details of
baroclinic structure, Arthur (1960) showed that Sverdrup's calculations
were consistent with ihe notion of an eastward subsurface flow imbedded
in a westward surface wind drift. Yoshida (1959) was the first to ex-
plicitly model the EUC in the thermocline. Working with a linearized

system of equations, he deduced a geostrophic balance for the zonal flows
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as well as the dependence of certain scales, e.g. width and velocity, on
stratification. However his results require a large number of a prior:i
assumptions for computational expedience. For instance, he neglects the
vertical diffusion of meridional momentum thus filtering out Ekman layers.
Veronis (1960) attempted a nonlinear calculation on a zonal plane along
the equator by using perturbation expansions in latitude. Though in

some respects temperature and 2onal velocity resembled observed fields,
the system of equations could not be closed. The perturbation expansions
generated more unknowns than physical constraints.

Pedlosky (1969) discussed axisymmetric flow of a linear strati-
fied fluid between two concentric spheres in a parameter range appropri-
ate to the ocean. For an imposed surface heat flux and velocity, geo-
strophic flow penetrated all the way to the bottom of the equatorial
ocean whereas Ekman currents disappeared. Because the model did not in-
clude zonal dependence and specifically zonal pressure gradients, no

EUC-1ike features developed. On the other hand he derived an expression

gaezD2
szz

S =

(M

which measures the relative importance of stratification versus rotation.
For flow with a given length scale L and depth scale D in a thermally
stratified ocean of Vdisdld frequency (gaéz)&, rotation (f) will dominate
when the S is small. Clearly in the equatorial boundary layer where
f+0, stratification takes on a greater significance than elsewhere. The
equatorial Rossby radius i.e. the width of the equatorial boundary layer

can be defined as that point in latitude y=L where S is 1.
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Philander (1973a,b) solved a fully nonlinear set of momentum
and heat equations for the equatorial ocean. Though there were no
eastern or western boundaries, a zonal pressure gradient was generated
by imposing an eastward sea surface temperature gradient 1ike that ob-
served in Pacific (Colin et al., 1971), He removed the zonal dependence
by a similarity transform, then solved for the resulting two dimensional
flow by numerical integration. Results showed spreading isotherms in the
vicinity of a subsurface geostrophic EUC that flowed below a westward sur-
face wind drift and above a westward EIC. Inertial terms were important
at nearly all depths on the equator and the primary dissipative mechanism
was horizontal friction. McCreary's (1980) analysis showed a similar
vertical current structure. In addition, flanking the deep westward
flow and contiguous to the EUC were weak tongues of eastward momentum
reminiscent of the SSCC. Unlike Philander's model, these calculations
were performed on a strictly linear set of equations that included
vertically diffusive terms as the only sinks.

Stratified models can produce geostrophic zonal currents with
realistic shear as well as appropriate width, depth and velocity scales
in the equatorial boundary layer. A comparison of the Pedlosky,
Philander and McCreary models indicates that a baroclinic eastward
pressure force is necessary to drive the EUC. By allowing zonal varia-
tions, this pressure force can be established even in an unbounded ocean:
McCreary generates it with a zonally confined wind stress, Philander by
imposing a longitudinal surface temperature. McCreary's mode) would
further suggest that nonlinear forces can be neglected as a first approx-

imation.
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Through these efforts we have discovered some important physics

of the equatorial flow regime, but many questions remain. We need to
know more about turbulent processes and how to parameterize them in large

scale circulation models. To dramatize this point, Philander's (1973a,b)

similarity solutions predicted an eastward decrease in width, depth and
velocity of the EUC. This may be a consequence of his choice of vertical
eddy coefficients that decrease eastward since his scaling arguments in-
dicate that width, depth and velocity decrease with decreasing vertical
eddy viscosity. Because Wyrtki and Bennett (1963) argue that turbulent
dissipation increases west to east in the Pacific, it is not clear how
robust the predicted downstream variations would be given a more realis-
tic parameterization of diffusive processes. Likewise, to obtain easily
solved equations, McCreary must assume an eddy viscosity that is inversely ]
proportional to the Viisdld frequency. There is some physical basis for
this parameterization (Turner, 1973, p. 143), but other forms must be
tested to gain confidence in the persistence of key flow properties.

The transition from mid-latitude to equatorial dynamics has pre-
viously been studied using matched asymptotic expansions (Philander,
1971; Pedlosky, 1969; Philander, 1973a,b). This is a relatively compli-
cated technique that can sometimes obscure the continuity of certain flow
features from one region to the next. In contrast, Schneider and Lindzen

(1976) examine thermally driven axisymmetric atmospheric circulation over

a sphere using a method that is uniformally valid at all latitudes. Their
approach revealed the importance of baroclinic pressure gradients in
maintaining well behaved Ekman layers within the atmospheric equatorial

boundary layer. A uniformly valid representation for non-axisymmetic
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wind-driven flow typical of the ocean would certainly be valuable.

In the following sections I develop two analytically tractable
models of the steady ocean circulation on a stratified equatorial beta-
plane. Both are linear and vertically diffusive 1ike McCreary's model,

but one dissipates heat by a Newtonian cooling approximation and the other

has biharmonic friction. This work can also be viewed as a generalization
of the Stommel and Veronis (1957) mid-latitude theory to include the
equatorial ocean. In that study, Ekman and geostrophic motions were
clearly separated into distinct vertical boundary layers. The specific
questions I will address are 1) how are Ekman and geostrophic dynamics
transformed as the equator is approached and 2) which features of the
linearized model persist for different turbulence parameterizations. In
answering these questions I will give special attention to the role of

stratification and baroclinic pressure gradients.

C. Newtonian Cooling Model

Section C is devoted to the study of a steady state model in
which wind forced temperature fluctuations dissipate via Newtonian cool-
ing. The model equations are developed in Section C1 (Formulation) and
solved for a test case in Section C2 (Zonal Winds). Section C3 (Variation
of Parameters) explores the manner in which results depend on eddy
viscosity, stratification, etc. I then examine results for meridional
wind forcing (Section C4) and conclude with a brief summary and discussion

(Section C5).

1. Formulation

Consider a reference atmospheric state of steady, horizontally
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uniform downward heat flux at the ocean surface. In an ocean with
horizontally uniform thermal conductivity, this flux will generate a
background vertical temperature gradient 62 that is a function of depth
only. It is hypothesized that deviations from this atmospheric state
excite perturbations (u,v,w,p,0) around the background temperature field

according to the linearized set of equations

-gyv + % Py = (Au)), (2a)
Byu + % Py = (Av,), (2b)
P, = Pogad (2¢)

u, + vy +w, =0 (2d)
wéz = (Ke,), (2e)

The coordinate system is right-handed and subscripts (x,y,z) denote
differentiation with respect to (latitude, longitude, depth). I have
made the standard equatorial B-plane approximation, viz. f=Ry. The ocean
is hydrostatic (2c) and density has been derived from an equation of
state linearized about temperature. Eddy viscosity and heat diffusivity
are A and K respectively, and will be assumed constant unless otherwise
stated. Other notation in (2) is defined in the 1ist of symbols (p. vi).
Terms involving u,v,w, do not appear in (2). If the background

flow 1s assumed geostrophic and negligible at some great depth, then
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(u,v)~0. Moreover, from the resulting vertical advective-diffusive
temperature balance, w ~ O(E?) where Dy is the depth scale of the back-
ground thermal field. Terms containing w are thus small compared to those
in (2e) provided that Dy is large and/or K is small. For the special

case of Dy = » (i.e. §,, = 0), w is identically zero. Thus the oceanic
background state couples to the perturbation field only through the term

wez.

Stommel and Veronis (1957) examined (2) on the mid-latitude f
and B-planes. The extension of their work to the equatorial B-plane is
not straightforward because for realistic boundary conditions, the equa-
tions will not separate in y-z (Schneider and Lindzen, 1976). I thus
change the form of (2e) by making a Newtonian cooling assumption in this

section
wh, = - T 8 (2e')
where diffusion of temperature anomalies is replaced by a relaxation to
the equilibrium value of 8. The quantity D is a depth scale.
1 consider only the case of a zonally unbounded ocean in which the
perturbation fields are subject to the conditions
oohuy = tX), pav, = W), we0ez=0 (3a)

u=vs=w=(0 @z=-H (3b)

U,V,W,p,0 =0 as |y| + = (3c)
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The depth of the ocean H is taken to be 4000m. Note that there are now
no temperature boundary conditions because temperature follows vertical
velocity (2e').

To produce a set of scaled equations in which all terms are 0(1),

define the nondimensional (primed) variables

(u,v,w) = u(u‘,v'.g-w'). us= SQK T, (4)

The quantity L is a baroclinic Rossby radius based on the depth scale
D= (-’é‘l_-)l/2 which is the Ekman layer depth at y=L. It can be derived
from (1) by setting that ratio to unity and A=K, f=gL. Substituting (4)
into (2) and dropping primes

PRSPPI PP

YV +p, = u,, (5a)

yutpy =V, - (5b)
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u, + vy tw,=0 (5¢)
p, = ® (5d)
w=-96 (5e)

u, = r(x). v, = r(y). w=0 0z=0 (6a)
u=v=w=0 @z=-H (6b)
U,V,WaPs0 + 0  as |y| » (6¢c)

where H is now nondimensional ocean depth.

From (5), a single expression for v is available which is sixth

order in the vertical derivative
- - y2 =
Vez) * Vx " Vaxzz = vyy " ¥V1;, = 0 4 (7)

and which has separable solutions of the form

o0
T Gn(z,y.z)eizxdz
n=o0

v(x,y,z) = J

(8)

R 6 LY (2)z
i E 2y, (ble I ()
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The zonal dependence is e”’x because the ocean is longitudinally un-
bounded. Imposition of boundary conditions in the zonal direction leads
to a nonseparable partial differential equation in x-z.

The Hermite functions Y, are a complete orthonormal set in lati-

tude governed by

(Wp)yy = Y20, = - (2r41)y, (9a)

-y?

4, = (@m0 (e 2
(9b)

2 4N I
Hoy) = ()" @ S Y
dy

They are symmetric (antisymmetric) about y=0 for even (odd) n and decay
(oscillate) poleward (equatorward) of a turning latitude defined from

(9a) as
y =y =t (201)" (10)

These are the same functions that describe the meridional dependence of
equatorial g-plane waves (Moore and Philander, 1977). The depth depen-

dence ¢=emz obeys
¢(Gz) + (2“‘”"‘12) ¢ZZ + 12@ =0 (11)

provided that




mé+ (2n+1+g2)m2 + ig = 0 (12)

is satisfied for all n » 0. The subscripts j in (8) refers to one of the

six roots of (12). This relation (12) is similar to the dispersion of

equatorial waves and will therefore be referred to as a dispersion rela-
tion. Further discussion of the wave analogy follows (21).
From (5), (8) and the recursion formulae
+ 3 ]
Gy = = (D50 + @)%y (13a) L
L .
wo, = (N v Gy, (13b)
vy 0 (13c)
one finds
u, -1
W m. .
n 6 n’J -1 n+] ;5
~ | = L a, . (m2 . -d2)" ()%
b, s M n,J 27 ¥nn
8 - i
Sn mn,J
~ ) L J
{ h! - h
-1
-m
n,J . m. sz
2 -1 /Ny n,J
sl T @R e
! J B




For n 2 0 all the fields (8) and (14) decay exponentially at high lati-
tudes except for two growing components of GO that are specified by m?=-i%.
For these two roots m, a, j = 0 necessarily and the dispersion reduces

]
to

m*- igm2 + 1 =0 (15)

There is a solution to (5) not contained in (7), viz. for v=0

Py = Uy, (16a)
yu + Py = 0 (16b)
u +w, =0 (16c)

p, = 8 (16d)
v b | (16e)

v, 1

- : L) (17)
o = LA v,y

P.1 =1 1,J 1 0

9_1 m'l !j

\ J \ J




with dispersion

m? = ig - (18)

This is the gravest mode in u and is designated n=-1 since for that value
(12) reduces to (18). It is interesting to note that (18) is the dis-
persion for a non-rotating ocean (i.e. for f = g8 = 0).

In the special case 2=0, parts of (8), (14) and (17) that corres-
pond to m=0 must be replaced by

vnEO
4 ~ 4 Y
un an,lz + an’z
" o "1
n = T ('9)
pn n=9 cn’lz + Cn’z
en cn,1
. J \ )

where a, and ¢, can be related through the meridional geostrophic balance
(5b).

The total solution to (5) is now

® L L] iLx
q -I [, + I gq]le de (20)
~o 1 e M

whers q is any one of u,v, etc and where 3_15 0. Provided that %0,
depth integrated quantities




zl
Q= J q dz (21)

follow readily from (20) by substituting a5 an,j/mn,j and subtracting
the series evaluated at z, from that at z,. Depth-integrated quantities
will be discussed in Section C2c.

There is a useful analogy between the present steady state
frictional model and time dependent inviscid wave theory. If w and o
are eliminated from (5) and the time derivative ff-replaces -Q?;)z, the
resulting equations are formally identical to those that govern baroclinic
equatorial waves (e.g. Moore and Philander, 1977). This identity is also
evident in Figure 3 which is a dispersion plot of Im (m?) vs. 2 from (12).
In wave theory the ordinate is frequency rather than vertical wavenumber
squared. Though steady and viscous, the two families of curves (n=1,2,
3...) designated Ekman and geostrophic are analogous to inertio-gravity
and quasi-geostrophic'Rossby waves whereas the n=0 is a hybrid equivalent
of the mixed Rossby-gravity wave. The Ekman roots at large vertical
wavenumber will be strongly surface trapped relative to the low vertical
wavenumber geostrophic modes. There is also a viscous Kelvin mode (n=-1)
corresponding to the Kelvin wave.

In addition to the wave analogy, the connection with mid-latitude

steady state theories can be seen by taking the limit 2+0 in (12):
m* = - (2n+1) (22a)

m® = - ig/(2n+1) (22b)

25
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Substituting the expression for turning latitude (10) into these results

in

mt = -y, (23a)

m = - 12./

¥y (23b)
which is the dispersion for Ekman (23a) and geostrophic (23b) dynamics

on a mid-latitude B-plane centered at y = Ye (see Section C2c). An in-
teresting feature of the equatorial vis a vis mid-latitude g-plane Ekman
roots is that the Ekman depth De = Re m~' calculated from the former is
not singular at the equator. The Kelvin mode is unique in that it has no
mid-latitude counterpart, though it may be considered an extension of the

geostrophic roots to n = - 1 in the limit 2+0.

2. Zonal Winds
a. Method of Solution

We obtain solutions by determining the unknown amplitudes a, j in

%
(8), (14) and (17). Series expansions for the boundary conditions are

truncated at some n=N <« and values of Uys Voo W at z=0 and u,v,w at
the ocean bottom are projected onto them. For zonal winds characterized

by a single Fourier component
t=e %X 2(y) (24)
we obtain a matrix equation of the form

s |
CAe-3 (25)




-+ - -
whera A is the vector {an j}’ B= {bn} is the vector projection of t(y)

onto wn(y) defined by

= b : b = d 26
W)= T bn) 5y = [ Hy, Wy (26)

and g is a banded matrix of coefficients. Provided the dimension of g
is 0(100) or less, (25) can be solved efficiently using standard matrix
inversion techniques.

We will examine solutions to (5) for the depth invariant quanti-
ties A=K=1 cm?® sec-! and 52 = 10-* °C cm~! such that scales in (4) become
D=10m, L=46km, U=97cm sec~!, W=0.2lcm sec!, P=4.7x10% dyne cm-2,
T=2.0°C.  Zonal wavelengths and vertical trapping scales (Re m=!) then
have the dimensional values shown in Figure 3. Winds will be of the form

iz x -yy?
vee®) () =qe O e (27)

- where Y = 2x10”% corresponds to an e-folding distance of 10° latitude and
T, = 0.1 dyne cm 2. The value 2, = 1.4 x10-2 corresponds to a 20000km
zonal wavelength which approximates some of the largest Trade Wind scales.
A plot of r(x) is shown in Figure 4. Because this wind is symmetric in

. latitutde, u,w,p,® will also be even and v will be odd. The vector E

readily evaluated from (26) is

i |k
bO = T'Y_"'—ET (28&) 1
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bn = [}i%%}[ﬂﬁlig b,.2» N even (28b)

b, = 0, n odd (28c)

A small wind stress curl (y¥0) speeds up convergence of the sequence
therefore minimizing the dimension of %.

A trial calculation indicates that bottom trapped modes (Re m < 0)
are uniformly three orders of magnitude weaker than surface trapped modes
for the winds (27) and they are hereafter ignored. Series expansions for
the dependent variables converge fastest near the equator and slowest for
the vertical velocity. The truncation index is N=77 and allows determi-
nation of all fields to within 0(1%). Unless otherwise specified, flow
variables have been calculated at the longitude of maximum westward winds

(x=7 in Figure 4).

| b. Flow Description

Figure 5 shows depth profiles of various fields on the equator.
Salient features include an eastward EUC (umax ~ 120 cm sec™!) centered
near 220m below a surface westward wind drift, a baroclinic zonal pressure
force which is eastward at the EUC velocity core and upwelling (downwelling)
above (below and in) this core correlated with anomalously cold (warm)
water. A westward EIC below the EUC appears weak (~5 cm sec~!) when plotted
on the scale of the surface current. The latter is too strong because
exact solution does not permit a depth variable mixing coefficient which
can increase near the surface in agreement with the observations of Jones
(1973) and Crawford (1976). (See however Section C3c). The pressure

gradient reversal near 350m has never been observed but Arthur (1960)
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deduced it by showing that the EUC velocity could not vanish at depth
otherwise.

These profiles should be compared to the flow at y=3.5, poleward
of the equatorial boundary layer. In Figure 6 one sees a shallow surface
Ekman spiral and a net meridional transport in the upper 40m. Surface
velocity is ~55° rather than 45° to the right of the wind because of the
importance of a geostrophic component of zonal velocity. The deep
baroclinic geostrophic flow is less strongly surface trapped than at the
equator and overall velocities are weaker.

Figure 7a is a meridional section of zonal velocity down

- to 500m. Only flow from 0 <y < 4 is shown since the field is symmetric

about the equator. The meridional extent of the equatorial boundary

layer is 0(1 Rossby radius) or about 75km which is narrower than the ob-
served half width of the EUC by a factor of 2. Figure 7b shows the
meridional circulation on the same plane. Upwelled water above the Under-
current is carried poleward in a surface Ekman layer. Water downwelled
from the Ekman layer drifts slowly equatorward at depth in geostrophic
response to the eastward pressure force. This mass convergence near the
equator contributes to both upwelling and downwelling in the vicinity

of the EUC. Such a flow pattern is similar to that discussed by

Cromwell (1953) and Fofonoff and Montgomery (1955), but because meridional
velocities are significantly weaker than zonal velocities (especially be-
low the Ekman layer) we might expect zonal variations to play an important
role in the mass and momentum balances. Figure 8, which is a zonal section
down to 500m of zonal velocity over one wavelength of the wind, supports

this view. At the surface, u # 0 when T(x) = 0 implying that nonlocal
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Figure 7a. Meridional section of zonal velocity. Contour inter-

val is 40 cm sec™!; regions of westward flow are stippled.
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wind effects are important. Below, the axis of maximum velocity (dashed

1ine) first tilts eastward with depth down to 220m such that maximum of
the eastward EUC lies .27 radians or 2000km to the east of the overlying
westward wind maximum. McCreary (1980) finds a similar displacement in
his results. Phase lines then reverse slope and shift westward with
depth. I will elaborate on the significance of these results in the
following section.

Figure 9 is a meridional section of zonal velocity over an ex-
panded depth range of 200-1500m. The EIC appears as a narrow band of
westward flow below the swifter EUC. Also evident is a deep poleward
slanting geostrophic extension of the EUC suggestive of the SSCC in
Figure 1. Such a feature appears in both McCreary's (1980) analytical

and Philander and Pacanowski's (1980) numerical calculations.

¢. Dynamics
Calculations of depth integrated quantities Q in (21) for z,=0
and z,=-» indicate that the model ocean is everywhere in Sverdrup (1947)

balance. In particular

V=curl 1 (29a)
L osg =1

U= i " (curl r)y . (29b)

|:\x = -r(x) + y(curl 1) (29c)
= ¥ _ 4 -2

Py = T ig,”" yleurl 1) (29d)

This overall balance masks essential differences between the equatorial

and extra-equatorial flow field though. For example, at mid-latitudes

-
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one can decompose the Sverdrup balance into coupled Ekman and geostrophic
components (Stommel, 1956). But as the equator is approached, these com-
ponents develop singularities implying that the internal dynamics must
be radically transformed. This transformation is the subject of the
next three subsections.
i) Ekman theory

Retaining the equatorial g-plane formulation but requiring that
f=Ry be locally constant, one can rederive Ekman's (1905) theory for
ocean currents at mid-latitudes in the absence of horizontal pressure

gradients. In nondimensional notation

-yu = uZZ (303)

yu = v,, (30b)

This balance yields surface currents 45° to the right (left) of the wind

in the northern (southern) hemisphere

() (%) ~ ) (x)
us= '—'—;5— s v = —T (31)
(2y) (2y)
and transports 90° to the winds
(x) ()
= - I—- = T—-
v+ U y (32)
Looking for solutions to (30) of the form e"Z, one obtains
m* = - y? (33)

which is the mid-latitude equivalent of (23a). The Ekman depth, or the

depth at which hortzontal velocities are down to e-! of the surface




value, is defined from (34) as

D, = Re m~! = (%)” (34)

Finally, Ekman pumping, i.e. the vertical velocity at the base of the
Ekman layer found by integrating the continuity equation is

we = Uy +V, = curl (5) (35a)

where U, V are given by (32). For the winds (27) this reduces to

£{x)

W * ;7—— + ZYT(X) (35b)

It is evident that the mid-latitude theory (30) is valid only
for |y| >> 0 otherwise singularities develop in (31) - (35). This is in
contrast to the Ekman part of the equatorial B-plane theory plotted as
u,v contours on a meridional plane in Figure 10. Poleward of y=2, solu-
tions agree with those predicted by (30): surface velocity is 45° to
the right of the zonal wind, transport is all meridional (since r(y) = 0)
and the Ekman depth decreases with increasing latftude. However, as
y+0, velocities decrease and become more meridional, transport decreases
and the Ekman layer thickness does not diverge.

To understand how the equatorial Ekman layer can be well behaved,
I have plotted the balance of forces at the surface in Figure 11 for
just the Ekman part of the total solution. In the zonal direction, rota-
tion balances diffusion at all latitudes since zonal pressure gradients
associated with Ekman roots are uniformly small. On the other hand, as

y+0, the meridiona) balance (30b) shifts to *

P, =V ‘ (36)
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Figure 11.. Balance of forces at the sea surface computed
from just the Ekman modes in the (a) zonal and (b) meridional

direction. Forces are in nondimensional units.
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In a constant density ocean, the balance (36) is not possible and singu-
larities develop. In the present model however, stratification removes
these by allowing for baroclinic pressure gradients as in the atmospheric
model of Schneider and Lindzen (1976). This result establishes more
precisely the importance of stratification in the equatorial boundary
layer as predicted by (1).
i1) Geostrophy

Again assuming that f = By is locally constant, one can calculate

the geostrophic flow below the mid-latitude Ekman layer from the non-

dimensional set of equations

-yu +p, = 0 (37a)
yu + Py = 0 (37b)
uy + vy +tw, = 0 (37¢)
pz = § (37d)
]
w=-9 (37e)

This flow is not driven directly by the winds but indirectly via
Ekman pumping (35). Dispersion for e"’Oxemz dependence is given by

m = - Tho/y2 (38)

which is the mid-latitude equivalent of (22b).
As with mid-1atitude Ekman theory, the balance (37) in the deep

ocean breaks down as y+0. For example, any pressure gradient will gen- ‘
erate infinite velocities. Also the depth scale ’




- (YY)
oy = (/) | (39)

vanishes at y=0. Such singularities do not appear in the deep flow cal-
culated from the equatorial B-plane model as shown in.Figure 9. There is
a tendency for velocities to increase and depth scales to decrease from
y=4 to y=2 in accordance with (37) and (39), but the equatorial flow is
well behaved.

Figure 12 shows the balance of horizonal forces for the total
solution minus the Ekman part. For y > 2, mid-latitude geostrophy (37)
holds. As y+0, geostrophy still holds in the meridional direction
(Figure 12b) but the zonal momentum balance (Figure 12a) shifts to

Py = Uz (40)

This is essentially a Kelvin balance (16). While the sum of the geo-
strophic modes in (20) takes on Kelvin-like characteristics near the
equator e.g. v~0 and u,w,p,e~wo, by far the single most important mode
in the transition to (40) is the Kelvin mode itself.
iii) The Kelvin mode

Figure 13 is a plot of profiles at the equator constructed from
Just the Kelvin mode. Comparison with Figure 5 indicates that this mode
predicts both the magnitude and vertical structure of w (aWay;from the

/2 accounts

surface), u and Py Its Gaussfan meridional structure y,-e
for the equatorial boundary layer width of 0 (1 Rossby radius). In
addition the near surface eastward displacement of velocity extrema rela-
tive to the winds in Figure 8 is due to the Kelvin phase relationship

i T T
Com e - tn (29) = - (D) (an)
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Figure 12. Balance of forces at the sea surface computed from
all modes excluding the Ekman modes in the (a) merid.ional and

(b) zonal direction. Forces are in nondimensional units.
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which is found by setting Im{(mz + fzox) = constant and using (18). (The
westward tilt below 250m is due to geostrophic components that according
to (22b) extend deeper and have sz>0). In contrast to constant density
models which ab initio set u =0, (41) reflects the fact that u, is im-

portant and that v, = 0 in the Kelvin continuity balance (16c). The

physical implicatizn of such zonal variability is that flow at a particu-
lar depth depends not only on local surface conditions but also conditions
at upstream and downstream positions.

At mid-latitudes, winds project entirely onto the surface Ekman
layer which in turn drives the deep ocean via Ekman pumping as described
above. In contrast, zonal wind stress forces the deep equatorial ocean
directly through projection onto Kelvin and geostrophic modes (Figure 14).
The equatorial Ekman layer is thus of secondary importance in transferring
zonal momentum from the wind field to the ocean which accounts for the
weak horizontal currents near the equator in Figure 10. Its primary role
is to balance a vertical velocity at the surface associated with the
Kelvin (Figure 13) and weaker geostrophic modes.

The Kelvin balance (16) is not possible in a constant density
ocean. Key features of the equatorial circulation related to this mode
e.g. geostrophic balance of vertically sheared zonal currents, width of
the boundary layer, etc. depend on stratification. These results confirm
the expectation from (1) that scratification should be important not
only in the equatorial Ekman layer but also in the deeper equatorial

ocean as well.

3. Variation of Parameters

So far we have considered solutions only for a single zonal
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wavenumber 2, corresponding to a wavelength of 2x10* km in the winds.
Since observed winds consist of a spectrum of wavenumbers, it is of
interest to know how sensitive the results are to %, and what contribu-
tion other wind scales will make. Furthermore, separation of variables

in the model equations requires that mean stratification and diffusivities

be uniform with depth. In the ocean however, these quantities can vary
over several orders of magnitude. A typical temperature profile would
show a surface mixed layer (5z~0) tens of meters thick above a sharp
thermocline (§z~10"°c em-1); deeper water is less stratified

(62~10'” -10-% °C em=!). Gregg (1976) using a Cox number model, calcu-
lated eddy heat diffusivities between 0.15-5.0 cm?® sec-! at 155°W on the
equator. Likewise Robinson (1966), Jones (1969) and Crawford (1976)
using empirical formulae, found A to range between -1-100 cm? sec-!. In
addition, these studies indicate that the turbulent Prandtl number Pr=K/A
is less than unity consistent with the notion that stratification inhibits
the transfer of heat more effectively than momentum (Turner, 1973).

In this section I investigate how depth, width, velocity and 1
other properties of the equatorial circulation vary with these parameters.
The control case is that of zonal wind forcing discussed in Section 2;
the procedure will be to change only one of A,Pr.éz or &, holding all
the rest fixed. The section concludes with a boundary layer calculation i
in which diffusivity and stratification vary continuously with depth on
the equatorial plane.

a. Zonal Wavenumber (%)

Because near the equator zonal winds project directly onto the

Kelvin mode, one might expect from the dispersion relation (18) that

increasing the zonal wavelength increases the penetration of surface




effects. One can see these developments in Figure 15 in which is a plot

of zonal velocity vs. depth at the equator for various zo. Solid curves
were calculated by the method outlined in Section C2a; the dashed curve,
u= %fx (z + H), is a direct calculation of the zonal momentum (Auzz=0)
for the special case £, = 0. Numbers in parentheses are wavelength in
thousands of kilometers.

Over two orders of magnitude, %, ~ 21r/ZXIO’km —-2“/2x105km, the
depth of maximum eastward current increases as 20'% in accordance with
(18). This trend continues until currents feel the bottom. Then further
decrease to 20 = 0 leads to a linear shear profile over the full depth
range of the ocean. Note however that the approach to this limit is
slow: currents driven by winds with a zonal wavelength of 2x10°km pene-
trate to only about -2km. Figure 15a also indicates that for currents
that do not extend the bottom, the velocity decreases as 20'%. The
width of the equatorial boundary layer does not change with zo however
(Figure 15b) nor does the geostrophic balance of zonal currents below the
shallow equatorial Ekman layer.

In the present model in which there are no meridional boundaries,
zonal pressure gradients along the equator are generated by zonal wind
convergences. Thus changing L in the wind field changes Py = izop in
the ocean. One can then infer from Figure 15 that baroclinic zonal
pressure gradients are important a) in maintaining subsurface structure
1ike the EUC, EIC, SSCC, etc. and b) in 1imiting the strength of zonal
flow. McCreary (1980) arrived at similar conclusions.

b. Eddy Diffusivities (A,K) and Stratification (8,)

Table 1 summarizes the dependence of various scales on eddy

diffusivities and stratification. One point to emerge is that increasing
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Figure 15. Effects of varying zonal wavenumber (20) on (a) zonal

velocity at the equator and (b) width of the equatorial current

system plotted as ¢_.. Numbers in parentheses are zonal wavelength
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(=2nzo‘2) in thousands of kilometers. The three curves in (b)
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D L u W P T
A s | 30 | 2/5(1) [-7210(-1) | -4/5(-2) | 1/10(3) |-1/5
K* s w | 1110 |-1/58 1710 2/5 -3/10 -2/5
8% 5w [-110 | s -1/10 -2/5 3/10 2/5

Table 1. Power law dependence of various scales on diffusivity (A,K)

and stratification (éz). Dependence on A when éz = 0 is

shown in parenthesis.
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stratification is indistinguishable from decreasing heat diffusivity and
vice versa Since 52 and K always appear in the scales (4) as a ratio
(K/éz)“. A second point is that in the limit of constant density 52 + 0,
several scales become singular. However when the stratification is so

weak i.e.
ez < W (42)

such that the depth scale D>H, the heat balance is inconsequential. The
ocean is at this stage essentially constant density and the appropriate

scales become

- - A
D=H, L=z
(43)
H

= BH* - _A
U-KKTO' w=—ATro, P'EFITTO

The dependence of these scales on A is shown parenthetically in Table 1.
Clearly the stratified model is less sensitive to this parameter.

Figure 16 is analogous to Figure 15 except that here we have
varied A, keeping 20, 52 and Pr fixed. Numbers in parentheses are
eddy momentum (and heat) diffusivities in cm? sec=!. The velocities
attenuate and extend to greater depths as turbulent diffusion increases
and the current system likewise expands latitudinally. As expected from
Table 1 though, the solutions vary much more slowly than A. In particu-
lar the width of the equatorial flow field increases by a factor of only
2.5 when A is changed by two orders of magnitude.

Figure 17 shows the effect of varying stratification for fixed

A, Pr and 20. Numbers in parentheses are vertical temperature gradients
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Figure 16. Effects of varying diffusivity (A,K) on (a) zonal
velocity at the equator and (b) width of the equatorial current
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Figure 17. Effects of varying stratification (éz) or Prandtl number
(Pr) on (a) zonal velocity at the equator and (b) width of the
equatorial current system plotted as wo. Numbers in parentheses

are either vertical temperature gradient in °C per 100m or Pr-!,




in °C per 100 m. The dashed line, u = %é;;ﬁ (z + H)2, has been calculated
directly from the zonal momentum equation for the limiting case ez =0
on the assumption that r(x)(-H) << r(x)(O). One can see that increasing
stratification limits both the depth and strength of the zonal flow, but
the variation with 52 is weak as in the case of eddy momentum diffusivity.
In fact to approach the limit case, the basic stratification must satisfy
52 < 10-% °C cm=! for A=K=1cm? sec~! and H=4000m. As seen in Figure 15b
stronger stratification also leads to an increase in the width of the
flow, but again the dependence is very weak. The width corresponing to
52 = 0 is not plotted, according to (43) it is only 2bout 25 cm! Further-
more, in this 1imit zonal currents at the equator are not geostrophic
as discussed in the previous section.

As mentioned earlier, the effects of changing stratification are
indistinguishable from changing the heat diffusivity. Thus one can
alternately interpret Figure 17 in terms of varying the Prandtl number

for fixed A, 52 and zo. The numbers of parentheses are then simply

Pr-t,

It is interesting to note that while D, L and U all vary with A,
K and 52, the scale for mass transport UDL (=r°/pos) is independent of
these parameters.

c. An Approximate Analysis

I now develop a simple model that allows both stratification
and eddy diffusivities to vary continuously with depth. In this way one
can introduce a surface mixed layer into the problem. The analysis is
based on the dominance of the Kelvin mode near the equator and is valid

only on the equatorial plane (i.e. y=0).
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Assuming v = 0,

P, = (A'u,), (44a)
yu + ﬁy =0 (44b)
u, +w, = 0 (44c)

p, =8 (44d)

W= - —gi'e (44e)

where A', K', 5; are nondimensional, depth variable quantities scaled by

their depth averaged dimensional values A, K, 5 :

rd
Rgim = A A (45a)
Kgip = K K' (45b)
(6,)gqm = (8,)8; (45¢)

If the vertical velocity boundary conditions are relaxed, (44) can be
solved at the equator where winds project entirely onto Kelvin-like flow

(Figure 14) subject to
Ay = (X @z=0 (46a)
u=0 @z=-H (46b)

Combining (44c-e) leads to

u, = (§r ), (47) {
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which by comparison with (44a) yields a well posed problem if

=

U“P;A"gr (48)
2
For the winds in Figure 4, (44a), (47) and (48) lead to
Ay %
Uy, +gT U, =i us= 0 (49)

This equation is trivially solved by standard Runge-Kutta techniques for
arbitrary A'(z).

I analyze two cases characterized by depth averaged parameter
values of A=K=lcm? sec-! and 52 = 10-% °C cm~! such that the same scales
(4) apply to both. First, assume that A', K', 5; are depth independent
which is simply the problem considered more exactly in Section C2. The
solution to (49) is plotted as a 1ight solid line in Figure 18. One can
see by comparison with Figure 5 that this curve approximates both the
amplitude (to within 15%) and vertical structure of zonal velocity. Now

compare this control case to one in which

A' = max (0.51 , 100e $2) - (50a)
K' =1 (50b)
2 -82

8, = min (1.96 , 0.01e™%%) (50c)

where min (max) implies the minimum (maximum) value in parentheses is
taken and § = 0.5. In dimensional terms, this recipe (50) calls for
strong mixing near the surface (Ad1m ~ 100 cm? sec~!) in a shallow mixed
layer (~10"¢ °C cm=1) below which viscosity and stratification are con-

stant at 0.51 cm? sec-! and 1.96x10=* °C cm~!. Plots of Adim and adim

B
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Figure 18. Approximate solution computed from just the
Kelvin mode on the equator. The zonal velocity U, has
been calculated for depth invariant A, K and 5; u has

been calculated for A and 5 as shown.
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appear in Figure 18.

The heavy line in Figure 18 is the solution to (49) for (50).
Compared to the control case, surface velocities are much reduced and
more slab-like. McCreary (1980) finds similar behavior in the mixed

layer of his model. Conversely at the level of the EUC where parameter

values are comparable, flow is much less modified. Slower decay of
current speed below the EUC in the first case can be ascribed to the
slightly higher diffusivity there (1cm? sec-! vs. 0.51 cm?® sec-!). In
both cases there is a nonzero vertical velocity at the surface (not

shown) that would be nullified if a shallow Ekman layer were included.

4. Meridional Winds
In this section I examine the solution to (5) for meridional

winds of the form

r(y)(x,y) =T, e iLx e'Y~yz (51)
which is identical to (27) except for the direction. Other physical
parameters are the same as in the zonal wind case. The method of solu-
tion is that discussed in Section C2a but now v, (z=0) is projected onto
even wn. Thus v has even symmetry in latitude and u,w,p,8 have odd
symmetry.

a. Flow Description
Because only v is nonzero at the equator, Figure 19 displays
profiles of dynamical variables in the equatorial boundary layer at
y=0.5. Winds from the north drive a surface flow 25° to the right of
the forcing (or by symmetry to the left in the southern hemisphere) and

simultaneously upwelling (downwelling in the south). Below the south-
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ward surface drift is a northward return flow. Zonal pressure gradients
are not important and there is no significant structure below 40m. For
nondimensional latitudes y 2 1, flow is similarly confined to the upper
40m 1in a classical Ekman layer. Figure 20 shows the circulation on a
meridional plane at the longitude of maximum southward winds. North
(south) of the equator, upwelling (downwelling) is forced by meridional
divergence (convergence) whereas at the equator there is no vertical
motion. Cromwell (1953) argued for a similar circulation pattern under
the influence of meridional winds based on various tracer distributions
in the equatorial Pacific.

Aside from obvious symmetry characteristics, two features dis-
tinguish the response of an equatorial ocean to meridional vs. zonal
winds. First, for the same magnitude wind stress Tys zonal forcing
generates currents an order of magnitude stronger than meridional as
seen from the relative scales in Figure 5 and Figure 19. Second, zonal
wind effects penetrate deeper. One can clarify these differences by
comparing the dynamics of each case.

b. Dynamics

As in the case of zonal winds, depth integrated quantities for
T(y) forcing obey the Sverdrup relations (29). Moreover, the Ekman com-
ponent of flow undergoes a similar transformation as y+0 viz. -yu = u,,
everywhere but (yu = sz) -> (py = sz) in the equatorial boundary layer.
However the winds (51) do not excite a significant geostrophic component.

At mid-latitudes this is due to weak Ekman pumping

(¥)

y (52)

Wo = Ux = 120

which compared to w, for zonal winds (35b) is 0(y2°)<<1. Near the
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equator zonal winds project directly onto Kelvin-1ike flow which is in
cross-stream geostrophic balance and which extends to several hundred
meters depth. Conversely, meridional winds project almost entirely onto
the gravest mode in v, i.e. n=0 in Figure 3. As £°+0, the dispersion (15)
for this mode does not yield a geostrophic root so that the dynamics are
predominantly frictional and strongly surface trapped. The frictional
nature of the response also accounts for its weakness: even modest de-
formations of the thermal field near the equator if geostrophically
balanced would lead to much larger velocities.

A more subtle distinction between zonal and meridional wind forc-
ing is that in the latter case, flow at any given longitude is influenced
by local winds only and not by winds at neighboring longitudes. Plots of
variables on the x-z plane exhibit no change of phase with depth i.e.
sz = 0 (cf. Figure 8). This is due to the fact that for the Ekman roots,
not only is Py negligible in (5a) but also Uy is negligible in the con-

tinuity equation (5d).

5. Discussion

The essential ingredients of the present steady state theory are
variable rotation and continuous density stratification. The linearized
mathematical formulation precludes meridional boundaries and allows only
for highly idealized types of winds. In spite of its simplicity though,
results show much in common with oceanic observations. For a range of
parameters, realistic width, depth and velocity scales are predicted
that do not depend too strongly on the eddy coefficients. Geostrophic
zonal flows reminiscent of the SEC, EUC, EIC and SSCC can be generated

along with convincing meridional circulation patterns. Baroclinic
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zonal pressure gradients provide the source of momentum for deep zonal
3 flows near the equator.

‘ In Section C2c it was shown that meridional baroclinic pressure
gradients maintain a well behaved equatorial Ekman layer contrary to

the qualitative notion stemming from constant density models that

singularities should develop there. In the case of zonal winds, the
Ekman layer is characterized by weak horizontal currents because most

or all of the wind stress at a particular latitude projects directly onto
Kelvin and Kelvin-like geostrophic flow. This geostrophic flow diffuses
vertically (unlike at mid-latitudes) and is associated with a surface
vertical velocity which the Ekman layer nullifies. The response to

large scale meridional winds on the other hand is entirely confined to

a shallow surface frictional layer.

Baroclinic meridional pressure gradients that develop in the
equatorial Ekman layer imply a temperature distribution that is not in
geostrophic balance. Thus, shallow temperature anomalies due to
frictional effects represent a source of error in the geostrophic calcu-
lation of near surface -juatorial flows. This error can be severe in
the presence of winds with a strong southerly or northerly component
since frictionally induced meridional temperature gradients are nonzero
even at the equator in this case. For strictly zonal winds, the rela-
tive size of Ekman and geostrophic pressure gradients (py) shown in
Figures 11 and 12 indicates an error of ~10% at y=1.

The model suggests deep baroclinicity 1ike that observed by
Luyten and Swallow (1976) and Luyten and Eriksen (1980). From (22b) and

(38), the vertical wavenumber at high latitudes is very small implying

s strongly barotropic interior flow. As the equator is approached, the
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wavenumber progressively increases and asymptotes to the Kelvin wavenumber
given by (18) for which the vertical wavelength is only a few hundred
meters. The model differs from the observations though in that (18)
predicts a much more rapid decay from the surface.

Meridional winds or zonal winds with a meridional shear produce
zonal currents antisymmetric around the equator. In a constant density
ocean, either of these in combination with easterlies leads to an EUC
structure centered off the equator. In a stratified ocean, the response
to antisymmetric zonal winds (which has been calculated but not presented)
and meridional winds (Section C4) is confined to a shallow surface Ekman
layer. Conversely, geostrophic fiow driven by zonal wind stress extends
much deeper (Section C2). Thus in the present model, meridional or anti-
symmetric zonal winds do not result in an asymmetric EUC structure. Such
structure in a linear calculation is then only possible if time dependence
is introduced (q.v. Chapter III). On the other hand,Philander (1973b)
suggested that in a stratified ocean nonlinear effects may produce a
steady displacement of the EUC off the equator in response to meridional
winds.

Observations suggest that the maximum speed of the EUC lies to
the east of the maximum westward wind stress as predicted by the model
(Figure 8). Current measurements between 140°W and 90°W (Knauss, 1960)
indicate a broad EUC velocity maximum centered near 115°W. Long term
averages of the Pacific Trade Wind field along the equator (Knauss, 1963;
Meyers, 1979) show maximum easterlies located near 140°W. This agreement

with the model may be fortuitous however since the current measurements

were made only in Spring, 1958. If wave processes have contaminated the
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record, the pattern of zonal velocity so described may not be representa-
tive of the long term average. No suitable combination of velocity and

wind data are available in the Atlantic to compare with the theory.

Even though observations indicate that nonlinearity is important
in the EUC, this and McCreary's (1980) strictly linear calculation pro-
duce remarkably realistic flow patterns. Hence as with constant density
models, inertial terms derived from a linear theory may predict the effects
of nonlinearity. For the case of zonal winds (27), 1 computed uu_, vu,,

X Yy
wu, (zonal momentum), UVys VY, WY, (meridional momentum) and us,, v@

,
wez (heat balance) as a funcézon of latitude and depth at the longituZe
of maximum easterlies. Results show that quadratic terms in the heat
and meridional momentum balances are small relative to the linear terms.
In the zonal direction, plots of nonlinear terms relative to the dominant
linear term (uzz near the surface, Py below) reveal that nonlinearity is
important in the equatorial boundary layer but not at mid-latitudes.

For example Figure 21 shows that at the core of the EUC below the west-
ward wind maximum there is both equatorward advection of eastward momen-
tum (vuy>o) which tends to narrow the flow and downstream advection

(uux>o) which tends to reduce its strength. Above and below the core,

there is a gain in eastward momentum (wuz< o) which tends to increase

the vertical extent of the EUC. A comparison of linear and non-
linear numerical calculations in Philander and Pacanowski (1980,
Figure 12) reveals similar tendencies, |

The model shows spreading isotherms near the equator, but it
also develops temperature inversions (Figure 22). The near surface
ones are due to the restriction that e = w=0 at z = 0. Down-

welling immediately below the surface can then carry warmer water to
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Figure 21. Nonlinear tendencies as a function of non-

dimensional latitude at the depth of the EUC core.
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depth raising ambient temperature above the surface value which cannot
change. Above the EUC the inversions are due to stronger vertical
advection of the background temperature field near the surface than
below. Colder water is thus carried from greater depth to rest over

warmer vater. McCreary's (1980) linearized heat balance leads to sim-

ilar inversions. These static instabilities imply strong mixing
through a convective adjustment process and suggest that the parameter-
ization of turbulent conduction in this study is inadequate. The next

section explores an alternate parameterization scheme.




D. Biharmonic Friction Model

Under this heading I develop a model which incorporates the con-
ventional Laplacian turbulent heat diffusion (proportional to a second
derivative) as well as a less common biharmonic vertical friction (pro-
portional to a fourth derivative). Though solutions will be compared
with the Newtonian cooling case, the purpose is not to demonstrate the
superiority of one type of parameterization over another. It is rather
to show that important dynamical balances are insensitive to details of
these schemes. The particular formulation discussed in Section D1 leads
to separable solutions on the y-z plane as in the Newtonian cooling case.
Section D2 is an examination of the response to zonal winds like those
of (27) and Section D3 discusses thermally forced solutions. Section D4

is a brief recapitulation and commentary.

1. Formulation

Using the same notation as in Section 6, governing equations are

1

-gyv + 3; Py = - (ADzuzzz)z (53a)
: . |
gyu + E;-py = . (AD’vzzz)z (53b)
P, = p,9a8 (53c)
u, + vy tw, =0 (53d)
we, = (Kez)z (53e)
subject to
. . (X)) « -¥) .
PoMUzgy = T77 5 =AYy = T 6, =0
0. z=0 (54a)
u.,=v._=ws=0

g




usveEw=0,*u,*v,, =0 @ z=-H (54b)

U,V,W,p,0 = 0 as |y| + (54¢)

Biharmonic friction distinguishes this model from nearly all other ocean
general circulation models which typically use Laplacian vertical momentum
diffusion. The biharmonic formulation is less unusual in parameterizing
horizontal turbulence in numerical eddy resolving models (e.g. Holland,
1978) where it strongly damps grid scale fluctuations but not mesoscale
eddies. The logic for its introduction into (53) is that the equations
now separate in all three directions.

The form of the stress boundary conditions in (54a) guarantees
that the ocean will be in Sverdrup balance. However, the additional
derivatives in (53a,b) require another boundary condition on u and v at
the top and bottom. I have assumed the null hypothesis for velocity
curvature,i.e. Uy, = V,, = 0. Temporarily the perturbation heat flux
(proportional to ez) is set to zero at both upper and lower boundaries,
though the upper condition can be relaxed or replaced by a surface tem-
perature condition (Section D3). Hereafter A and K will be assumed
constant.

From (53) and (54) one can produce a set of equations in which
all terms are 0(1) by invoking the scaling arguments (4). A single

12th order equation in v follows

Y(122) ~ Vx “Vax(az) © [y - Y*Vl(az) = O (55)

which has separable solutions of the form
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v(x,y,2) = I n§; V, (2.y,2)e! ™% ap
(56)
~ m, :(2)z
Vi =;§l a,,jltle " Yo (y)

The Hermite functionswn are again governed by (9) but the vertical de-

pendence p=eM? obeys

¢(lZz) + (2n+142%) ¢(4z) - i =0 (57)

provided that
m!2 + (2n+1+2%)m* - iL = 0 (58)

holds for n > 0. The quantities u,w,p,0 follow from (56) and the non-
dimensional version of (53).

As with the Newtonian cooling model (Section C), there are roots
of (58) for n = 0,i.e. m* = {2 that results in i11 behaved Go at high
latitude. Eliminating these leads to an analogue of (15)

mt+im* +1=0 (59)
In addition there is an n=-1 Kelvin mode with v = 0 and
m* = - §2 (60)

We could have obtained (55) and (57)-(60) from their equivalents
in Section C1 by the transformation g%-» 1(5%)2, m + im2. Thus the
analogy with equatorial waves as well as with mid-latitude Ekman and

geostrophic theory is preserved. Specifically as ¢ + 0, (58) reduces to

e B ¢ < % e
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m® = - (2n+1) = - yt’ (61a)
m = Y (anen) = Yy (61b)

The roots (6la) imply a different vertical structure than traditional

Ekman theory (23a) but they are still surface trapped, steady state,

frictiona) analogues of inertia-gravity waves. Likewise (61b) corresponds

to the steady state Rossby wave analogues (22a) and (22b).

2. Zonal Winds
a. Method of Solution
Equations (53) and (54) are solved according to the method out-
lined in Section C2a for winds of the form (27) shown in Figure 4 and for
parameter values A=K=40cm® sec-!, 5z=10-“ °C ecm~!. The values of A,K
were chosen such that the core of EUC-1ike flow appeared at the same
level (~220m) as in the Newtonian cooling case. (Values of A=K=1cm?

sec-! resulted in high wavenumber vertical structure near the surface

that bore no rusemblance to observed flow features). Appropriate scales
are D=43m, L=97km, U=1lcm sec-!, W=4.7 x 10-3cm sec-!, P=2.3 x 10? dyne
cm-2 and 7=0.22 °C; nondimensional zonal wavenumber (zo) and meridional
decay scale (y) are 3.0 x 10-2 and 9.3 x 10~? respectively. |

For the above winds and parameter values, bottom trapped solutions
are much less important than surface trapped and are therefore neglected.

In addition, =9_=0 at z=0 can be satisfied by setting ‘n.j'an,j+3’

Y22"Y22"%;
->
j=1,2,3. Thus with B given by (28), A is trivially solved for the re-

e (%) ]
222 ¢ vzzz-w-o at z=0. The series

expansions for q were truncated at n=N =57,

duced set of boundary conditions -u




b. Flow Description

Figure 23 shows depth profiles on the equator at the maximum in
westward winds. As in the Newtonian cooling case, one finds an SEC, EUC
and an EIC which is stronger relative to the shallow currents. Above
the EUC core and at the surface, upwelled water is cooler while down-
welling in and below the core is associated with warmer water. An east-
ward baroclinic zonal pressure force drives the EUC and reverses at depth
to drive the EIC. Even though the diffusivities are stronger in this
model, the vertical wavelengths in Figure 23 are decidedly smaller than
in Figure 5. This is consistent with the generally smaller depth scales
predicted by (60) and (61b) relative to their counterparts (18) and (22b).
On the other hand, stronger diffusivity leads to weaker velocity and
temperature scales.

Figure 24 is a meridional section of zonal velocity on the northern
half plane (0<y<4) down to 1500m. The width of the current system is
twice that shown in Figure 8 being closer now to the observed width of
150km. A tongue of geostrophic eastward momentum sloping downward toward
the poles emanates from the EUC much like the SSCC in Figure 1. A simi-
lar tongue of westward momentum emanates from the EIC.

Meridional circulation in the upper 500m resembles that shown in
Figure 7b though somewhat reduced in amplitude. A meridional section of
temperature on the same plane (Figure 25) shows cooler water at the sur-
face in the equatorial boundary layer and doming (troughing) above (below)
the EUC core. These effects are in qualitative agreement with the obser-
vations though of weaker intensity. Moreover, the temperature field is

statically stable everywhere in contrast to that in Figure 22.
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Figure 24. Meridional section of zonal velocity for the bi-
harmonic friction model. Contour interval is 10 cm sec™!;
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c. Oynamics

As stated earlier, the choice of boundary conditions (54) guaran-
tees that the model ocean is in Sverdrup balance at all latitudes. The
flow can then be examined in terms of a shallow Ekman component and a.
deep geostrophic component. The balance of forces in the Ekman layer is
identical to that shown in Figure 11 except the diffusive terms are now
biharmonic. Similarly, the balance for deeper motion is given by Figure
12 indicating that the Kelvin mode is of central importance in the
equatorial boundary layer. As in Figure 14, winds project onto the
Ekman layer at mid-latitudes and directly onto geostrophic zonal flow at
low Tatitudes. The essential purpose of the equatorial Ekman layer is
again to eliminate surface vertical velocities associated with the deeper
flow.

The similarity between the dynamics of this and the Newtonian
cooling model is not surprising since I have simply invoked a different
parameterization for turbulent dissipation. This has not altered the
substance of the force balance, but merely changed certain details of
the flow patterns. For example in the northern hemisphere, surface
velocity is 68° to the right of the wind in the mid-latitude Ekman layer
as opposed to 45°. The Ekman layer is also deeper: De~0(%)k as opposed
to De~o(§)*. On the other hand, Ekman transports are still 90° to the
right of the wind since they are not sensitive to the form of the

diffusfon operators.

3. Thermal Forcing
The present model allows for either perturbation heat flux forc-

ing or specification of surface temperature. I will briefly discuss so-




lutions for the latter in the absence of wind stress. The scales D and

L in (4) are unchanged but

2
u-ﬂ‘E-BET. w-BD T
(62)

p= gapoDT

where T is the temperature scale. The form of the temperature boundary
condition is identical to stress condition (27) and parameter values
are A=K=40cm? sec-!, 6z=10'“ °C em~!. Thus for T=1.0 °C, U=49cm sec™’,
W=2.2x10"2 cm sec™! and P=4.3x10° dyne cm~2. Series expansions for q
were truncated at n=N=17 and solved by the method described in Section
C2a.

Figure 26 shows profiles at the equator and at the longitude of
maximum zonal surface temperature gradient (x=3"/4). Colder water lies
to the west, warmer to the east. This temperature gradient sets up
baroclinic pressure forces that drive zonal currents much like those in
the wind driven cases. Furthermore temperature and vertical velocity
bear the same relationship to these currents e.g. upwelling (downwelling)
above (below) the eastward velocity maximum correlated colder (warmer)
water. The width of the current system is again O(L).

The ocean is in Sverdrup balance, though all depth integrated
quantities in (29) are zero because t = 0. The Kelvin mode dominates
the equatorial ocean as in the case of zonal winds. Ekman layers
(Figure 27) are needed because the deep flow cannot satisfy all the
surface boundary conditions alone. In the absence of winds, the

strength of Ekman layer is proportional to the strength of the deep
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flow. This leads to stronger equatorial rather than mid-la@itude
Ekman layers in contrast to the wind driven cases (cf. Figure 11).

These results together with Philander's (1973a) more complicated
equatorial thermocline calculations indicate that zonal surface tempera-

ture gradients can have a significant effect on subsurface flow structure.

Models that attempt to accurately describe the equatorial current system
must therefore account for observed surface temperature variations. This
will require a better understanding of equatorial mixed layer dynamics

and thermodynamics than we have at present.

4, Discussion
I have examined the physics of a linearized, stratified equatorial
ocean in both Newtonian cooling and biharmonic friction models. In

either case, easterly winds excite flows that resemble the SEC, EUC,

EIC and SSCC. The models also predict equatorial upwelling and thermo-
cline weakening in qualitative agreement with observations. The bihar-
monic friction model gives more realistic length, depth and velocity
scales for a range of parameters; it also provides a better representa-
tion of the temperature field and allows surface thermal forcing. The
dynamics of both models are identical. In particular, well behaved
Ekman layers are present at all latitudes and the equatorial boundary

layer is characterized by a vertically diffusive, geostrophic Kelvin

balance.

These models are distinguished from McCreary's (1980) linearized,
stratified, vertically diffusive model by their ability to separate and
follow the development of Ekman and geostrophic layers as they approach

the equator. McCreary employs diffusion operators which, unlike the

it " N i . L L PN et xD.




Newtonian cooling and biharmonic friction formulations, lead to a
Sturm-Liouville eiéenvalue problem for the vertical dependence. The
eigenmodes either individually or in groups cannot be identified with
Ekman or geostrophic dynamics as was done with the exponential modes ¢
in Section C1. Moreover, the biharmonic friction model allows surface
thermal forcing which was not allowed in McCreary's model. However
these differences, resulting from different turbulence parameteriza-
tions do not obscure basic similarities between the two models which
have been commented on throughout the text. Thus, this and McCreary's
(1980) work should be viewed as complementary approaches to under-
standing steady equatorial dynamics.

To stimulate discussion, extensive comparison has been made
between model results and observations. However the purpose of this
study has not been to simulate ocean flows. Rather it {is hoped that
the results of this work will clarify important processes in more com-
plicated numerical models and also motivate further modeling of the

equatorial ocean.




CHAPTER III

EQUATORIAL KELVIN AND INERTIO-GRAVITY WAVES
IN ZONAL SHEAR FLOW

Theories of the equatorial ocean circulation have evolved along
two separate and distinct lines. In Chapter II I discussed the older
of these, viz. frictional models of the mean flow which date from the
mid 1950's. While they contribute to our understanding of steady
equatorial dynamics, an obvious limitation of such models is their in-
ability to account for the wide variety of temporal fluctuations found
in modern oceanic measurements. To overcome this limitation, linear,
time dependent, inviscid equatorial wave theory was.deve1oped in the
early 1960's. Wave theory has since provided satisfying descriptions
of heretofore puzzling oceanic phenomena such as the initiation of an
E1 Nino (McCreary, 1977), Somali Current dynamics (Lighthill, 1969;
Anderson and Rowlands, 1976) and sea level variability (Wunsch and Gill,
1976). However the basic theory is formulated for small amplitude
perturbations in an ocean with no mean currents. Considering the ob-
served strength (~100 cm sec-!) of the EUC and SEC, it is likely that
waves and steady currents interact in manner that neither wave nor current

theory alone can predict. This chapter is one of the first attempts to
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include in an equatorial wave model mean flows 1ike those observed in

the tropical ocean.
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Equatorial Kelvin and Inertio-Gravity Waves in Zonal Shear Flow

M. J. McPHADEN AND R. A. KNoX
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ABSTRACT

The interaction of geostrophic zonal mean currents in an equatorial ocesn with free. neutrally stable,
internal Kelvin and lnm:o-gramy waves is investigated using a two- lnyer reducedomvuy model. Solu-
tions in the inertio-gravity range are obtained by a simple h that atlows
several different background flows to be tested. 1t 1s found that, due to the interaction. the amplitudes
and latitudinal distributions of wave zonal velocity are substantially altered from those which would
occur in the abuncc of mean flow. Meanders of currents similar to lhose observed during GATE may
be interpreted as ions of mean by wave idi . On the other hand. wave
pressure (sea level) uld mendsonal velocities are not greatly affected by me mean flow. These results
may be of imp pling to fit ~ave theories (0 observations of zomal current,
on the one hand, and of sea fevel Suctuations on the other.

Kelvin waves are d using a p based on the small rativ of mean current
speed to wave phase speed. The shear flow ahters low-fmquency Ketvin waves only slightly, iatro-
d\lcmg a small meridional velocity and a Doppler shit which could atfect the speed of baroclinic ad-
justments in the tropics. Al higher frequencncs the Kelvin wave becomes more like an inertio-gravity
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wave and ay appear in y av

ders of the background current.

1. Introduction

The theory of time-dependent motion in the
tropics is distinguished from midlatitude theories by
the fact that the Coriolis parameter changes sign at
the equator, creating a waveguide in which there
can be no net meridional propagation of energy.
Within the waveguide, two types of motion unique
1o the tropics are found (Fig. 1). First. internal east-
ward-traveling Kelvin waves can exist in the ab-
seace of physical boundaries. Because their group
velocity is the fastest of any open ocean internal
wave, they afford a most efficient mechanism for
the zonal transfer of energy and momentum, sub-

" stantially reducing baroclinic adjustment times at

low fatitudes. For example. both McCreary (1976)
and Hurlburt ¢r al. (1976) found in simulations of
El Nifo that when the easterlies relax in the tropics,
intermal Kelvin waves excited at the western bound-
ary can ¢ross a basin several thousand kilometers
wide in 1-2 months. Various authors have shown
that wind-generated Kelvin waves in the westem
Atlantic are capable of producing the seasonal up-
welling signals observed along the coast of Guinea,
at the opposite side of the ocean (Moore er ul. . 1978:
Adamec and O'Brien, 1978). Thesc and other studics
suggest that Kelvin waves should be a prominent
feature of the equatorial circulation. although none
have been detected in the ocean (Wunsch, 1977a).

The second class of motions shown in Fig. 1 con-

* 0022-367079/0202¢.1. 19507.7$

© 1979 American Meteorological Society

sists of long inertio-gravity waves which for low-
order vertical modes typically have periods between
~2 days and ~2 weeks and wavelengths >2500 km.
This group of intermediate frequency disturbances
is of geophysical interest because it includes waves
which by virtue of their small zonal group velocity
are preferentially excited by random local forcing.
It also includes the mixed Rossby-gravity or Yanai
wave. Matsuno (1966) argued that because of the ex-
istence of such free modes. one should in principle
expect more energy at periods between a few days
and a few weeks in the open equatorial ocean than
at midlatitudes. Many investigators have found this

encrgy (Wunsch, 1977a), but to identify it with par- -

ticular waves is difficult because most studies have
lacked the necessary spatial and/or temporal resolu-
tion. One notable exception is the Wunsch and Gill
(1976) study of Pacific sea level variability. Using
a data base consisting of long sea level and weather
records from widely scattered island stations, they
concluded that first baroclinic mode equatorial in-
ertio-gravity waves excited by local winds were re-
sponsible for the significant energy found in the &
day and S-day bands. Their calculations necessarily
emphasized spectral resolution. leaving consider-
able amplitude uncertainty in their results.

Aside from the luck of data, a fundamental prob-
fem in interpreting oceanic phenomena in terms of
equatorial waves lies in the limitations of the linear
theory itself. Specifically, little is known about how

Aahaaie o T
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these waves interact with highly sheared mean cur-
rents such as those encountered in the tropical
oceans since most of the basic theory of time-de-
pendent equatorial motion (e.g.. Blandford, 1966;
Matsuno, 1966; Moore, 1968: Moore and Philander,
1977) considers perturbations linearized about a
state of rest. Existing theories of wave-mean shear
interaction in the atmosphere (Boyd, 1978) cannot
be applied directly to the ocean since they depend
on perturbation analyses in which the small param-
eter is the ratio of vertical or meridional wave scales
to corresponding mean shear scales; in the ocean,
this ratio is O(1) or larger.

The purpose of this paper is 1o investigate the
Kelvin wave and the long. intermediate-frequency
inertio-gravity waves in the presence of strong. merid-
ionally sheared geostrophic jets appropriate to the
equatorial ocean. We treat these disturbances in a
two-layer modc! in which zonal background flows
are confined to the upper layer in which the wave
scales are comparable to those of the first baroclinic
mode in a realistically stratified ocean. The analysis
for this system is especially simple because the
phase speeds are much greater than typical mean
current speeds so that there are no critica! layers
and no growing instabilities. Slower waves, i.e.,
those associated with higher vertical modes. could
be unstable, but we do not consider these. Further-
more, because we are not attempting to simulate a
particular set of observations but rather to isolate
the structural and dispersion modifications due to
mean currents in a few of the gravest horizontal
modes, no forcing is imposed on the system.

In related work Philander (1976; 1978a) adapted
the discrete layer model to a discussion of critical
layers in highly sheared zonal flows along the
equator. He found that baroclinic instabilities are
suppressed in the tropics and that westward flows
are more barotropically unstable than eastward. For
typical values of ocecanic parameters, the fastest
growing disturbances propagated westward with
periods in excess of three weeks and wavelengths
shorter than 2000 km. He also found solutions cor-
responding to longer, neutrally stable waves, but
these were not discussed in detail.

Hallock (1977) used a similar three-layer numeri-
cal model with O(40 cm s-') mean currents in the
upper two layers to simulate meanders of the under-
current and South Equatorial Current observed dur-
ing Phase 11 of the GARP Atlantic Tiopical Experi-
ment (GATE) (Diing ef al., 1975). He impulsively
stressed the surface of the ocean at a fiaed (2400
km) wavelength with a northeriy wind stress
anomaly, thereby exciting a neutrally stable. Yanai-
like disturbance that advected the mean currents
back and forth across the equator with the observed
16-day period and zonal phase propagation. Higher
frequency gravity waves appeared as noise at the

same wavelength: Kelvin waves were not excited
due to the symmetry of the forcing.

Most recently. Philander (1979) has considered
neutrally stable Kelvin and inertio-gravity waves in
a two-layer numerical model with eastward shear
flow in the upper layer. For typical values of oceanic
parameters. he finds that Kelvin waves are Doppler-
shifted to higher frequency and have meridional ve-
locities which increase with increasing frequency.
This meridional velocity does not affect the geo-
strophic balance of the zonal currents except at pe-
riods <8 days, beyond which the waves become
more like inertio-gravity oscillations. He also found
that the dispersion of inertio-gravity waves is little
changed by the presence of eastward currents. but
details of the wave structures were not discussed.

There is overlap between the Philander (1979)
study and the one presented here. Both consider
inertio-gravity waves using numerical techniques.
but Philander's analysis covers a wider range of
wavenumbers. On the other hand. by restricting vur
attention to a limited region near zero wavenumber.
we have simplified the numerical integration and
are able to treat in more detail the behavior of these
waves in several different fow regimes. Regarding
the Kelvin wave, we exploit the fact that typical
mean flow speeds are much less than the phase
speeds of low-order vertical modes in realistically
stratified oceans. Using the small ratio of these
speeds in a perturbation expansion. we obtain re-
sults similar to Philander’s (1979) numerical resuits
but in which both eastward and westward mean
flows are considered. Philander in the same puper
also considered the low-frequency Rossby waves in
eastward flow, a subject not treated here.

In Section 2. we develop the model equations for
a two-layer ocean with geostrophic mean currents
in the upper layer. Section 3 describes the numen-
cal solution of these for intermediate frequency in-
ertio-gravity waves at and near zero wavenumber.
The most striking result of this section is the en-
hanced variability of zonal velocity fAluctuations in
mean shear zones. In Section 4, we describe the
perturbation expansion for the Keivin wave which
yields Doppler-shifted frequencies and nonzero
meridional velocities proportional to a variety of
flow parameters. Section 5 presents a discussion of
the resuits of Sections 3 and 4.

2. Model ocean

We consider a two-layer, inviscid, Boussinesq
ocean on an equatorial S-plane with no lateral
boundaries. We use u caret (omitted) to denote the
dimensional (nondimensional) form of a variable.
In the upper layer of constant density flows a steady
zonal current U varying in latitude only and geo-
strophically balanced by D, the thickness of the
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layer. The lower layer of density p, > py is infinitely
deep and therefore motionless. Using nondimen-
sionalizations explained in (3)-(4) and linearizing
about this background flow, the vertically integrated

equations governing perturbations of the form
,m-cnm

—iou + R(ikUu + vU,) -~ yv + ikp = 0, (la)
~iov + kRUv + yu + p, = 0, (1b)

t
;—D RU - ic)p + ikDu + (Dr), = 0, (1)

where x is positive eastward. v positive northward
and the rcduced gravity g’ = ¢g = g(! - pJ/py).
The set («,r.p) gives the meridional dependence
of zonal velocity, meridional velocity and pressure
fluctuation, respectively. The background current
U and iayer thickness D are given by

D = DD(y) = DID, + RD\(¥)], Dy(-=)=0, (2a)
(2 Vo D 2b
(g'_D)y (v) = =Dy\y), )

where D is the scale of upper layer thickness and
D, is an O(!) constant and accounts tor small
differences in average laver thickness between the
several background flows to be studied. The non-
dimensionalizations and parameter definitions used
to obtain (1)-(2) are

(£.9) = Lix,y), k=kiL, L =B
i=tT, 6 =0T, T=(g\)"?
C=0U U=mx|U|

(@,0,(peA)"1p) = Uu,v.p)

.

The parameter A appears in (1)-(3) as an artifact
of the nondimensionalization. ensuring an inverse
relation between length and time scales. In fact.
it is the parameter which would have arisen as the
separation constant or eigenvalue of the vertical
problem had we not proceeded ab initio to the two-
layer limit but retained a continuous system in the ver-
tical. It becomes important to recognize the eigenvalue
nature of A in Section 4. There we treat the Kelvin
wave by perturbation expansions. and as is usual
in such problems it will be found necessary to allow
perturbations to A in order to avoid spurious reso-
nances at first order driven by zeroth-order solu-
tions. In this section and Section 3, where direct
numerical calculations are used. we simply set A?
= g'D throughout.

The parameter ¥ is a scule for the perturbations
and is essentially arbitrary, provided ¥ < U. so that
the basic linearization is valid. The remaining pa-
rameter in (1)-(3) is the Rossby number

e A

AND R. A. KNOX
v o0__U_
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which measures the ratio of background flow speed
to the phase speed of internal gravity waves.

By setting R = 0, D, = 1 and A* = g'D, we ob-
tain the well-known equations for perturbations
about a state of rest:

Uy + (02 =k = klo = y*)v = 0, (5a)
u = i(o® - k) Yayv — kv,), (5b)
p =i(0® - k) 'kyv - av,). (5¢)
Solutions to (5), decaying as |y| — =, exist for
o -k -kig = 2n + |, a=12,..., (6a)
with

R= . “@

v = Y (y) = (#5200 H (v)e ™™, (T)

where H,(v) are Hermite polynomials. The high-
frequency limit of (6a) yields inertio-gravity waves.
whereas the low-frequencv limit vields Rossby
waves. Turming latitudes, where the <olutions
change from oscillatory to exponentiul behavior, are

located at v = =(2n + 1}'3,
For n = 0 the only root of (6a) which gives a
solution with bounded # and p ficlds aty = == is
k=0~ z . (6b)

o

This is the mixed Rossby-gravity or Yanai wave of

Fig. 1 which for o » | is gravity-like and o < 1 _

is Rossby-like.

One more solution to (1) when R = 0 which is
not contained in (5) is the Kelvin wave (designated
n = —1 in Fig. 1), given by

vm0, (8a)
u=p=y, (8b)
o=k (8¢)

The remainder of this paper deals with solutions
to (1) when R = 0. We fix the parameters ¢ = 4
x 1072 and D = 200 m so that the Rossby radius
(L = 360km). time scale (T = 1.46 days) and eigen-
value (A = 280 cm s™!) correspond ciosely to those
of the first baroclinic mode in a realisticaily strati-
fied ocean (Mcore and Philander. 1977). We note
that the choice of D is a compronuse. A 200 m upper
layer coincides approximately with the depth raunge
of the strongest mean currents. It also correspends
to the layer of greatest horizontal velocity ampli-
tudes in the first baroclinic mode computed for a
realisticaily stratified resting ocean (Wunsch. 197S;
Philander. 1978b). However, the node of the first
baroclinic mode thus computed lies at about 1200 m
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FiG. 1. Nondimensionalized dispersion diagram for equatorial 8-plane waves.

Stippled

not 200 m and to this extent the two-layer model
differs from the true vertical structure.

For the inertio-gravity waves treated numerically
in the following section, the above choice of param-
eters requires that each of the different background
states examined satisfies

Pe
D = (1125,) J Ods = 200 m, )

with D, in (2) determined from the integration con-
stant. The range (-~ #,,¥,) is the range of significant
wave amplitude, taken as =13° of latitude. Since
the Kelvin wave discussed in Section 4 is solved
using perturbation expansions, we can standardize
thuse results to the specified (¢,D) by defining a
convenient zeroth-order mean mixed layer depth.
3. Inertio-gravity waves

a. Method of solution

We set A* = g'D and combine (1) to get expres-
sions for v, u, p:

Duyy - 2yRUy, - (kD - 6* + y* + RU
+ kD&~ '(1 = RU, )b + 6-'(kD - 33!
x (26kRU, - KyRUNkDW(y - RU,)
- &(Dv, - yrRU)] = 0,
u = (kD - &*)"'[k(Dv, - yoRU)
- auy - RU,)),
P = i(k*D - &*)~'(6{Dv, -~ yvRU)
= kDuy = RU,)I,
o wm o - kRU(y).

(108)

(10v)

(10¢c)

region is Jiscussed in text. (After Wunsch and Gill, 1976.)

We restrict our attention to solutions of (10a) for
the stippled region in Fig. | bounded by [k} < 1.0
and 0.7 < ¢ < 3.0 (which dimensionally corresponds
to wavelengths >2500 km and periods between 3
and 13 days) in order 10 avoid singularities (i.e.,
critical layers) at ¢ — ARU = 0 and apparent singu-
larities at Dk2 — (o - ARU)? = 0. This not only re-
duces the amount of computation needed to obta:n
v but guarantces all the wave solutions will oe neu-
trally stable.

Eq. (10a) was integrated using a simple fourth-
order Runge-Kutta routine by shooting for the eigen-
value o given a choice of k. We used boundary
conditions on v similar to those used by Philander
(1976, 1978a, 1978b) and Hallock (1977, viz.,v = 0
at y = »c., p, v, continugus at y = 0. For sym-
metric U.D there is the added condition at ¥ = 0
that v or v, be zero depending on the mode under
consideration. Integration proceeded from the poie-
ward boundary to eliminate solutions to (10a) that
grow as |y| — . To test the accuracy of this pro-
cedure, numerical solutions to (10) for R = 0 and
step size A = 0.02 were compared to the known
analytic solutions of (5) given by (7). Table 1 shows
that except near the boundaries v = +6, one can
expect four decimal place accuracy in both eigen-
values and cigenfunctions. This accuracy is assumed
when (10) is integrated for R » 0.

b. Results

Eq. (1) was integrated for four geostrophic back-
ground states, three of which are given by

RU = 0.5¢-%,

D = 0.99 + 0.083¢->*, R = 0.5, (11a)
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TanLE L. A Y I sol bscript 4) pared to analytic solutions for k = 0, step size & = 0.02.
y [ ® LN “ Pa P
0. -0.872%9 ~0.87258 0. 0. 0.93298 x 10—* 0.
1.0 0.52922 0.52928 0.23668 0.23667 -0.70993 -0.71006
20 0.82665 0.82664 0.73940 0.73938 0.31675 0.31687
3.0 0.16479 0.16479 0.22110 0.22108 0.16909 0.16906
40 0.90750 x 10~ 0.90743 x 10~  0.16234 x 10~  0.16232 x 101 0.14147 x 10™ 0.14138 x 10~
5.0 0.15934 x 10~ 0.15933 x 10-*  0.3%631 x 10  0.35627 x 10-? 0.3276$ x 10~ 0.32720 x 107
$9 0.96765 x 10~ 0.16533 x 10°*  0.25532 x 10-*  0.43624 x 10~ 0.57629 x 10~ 0.41081 x 10~
0.t = 4.9997 o = $.0000
RU = -0.5¢™, tion 3b2. The dispersion of inertio-gravity waves
D = 1.01 - 0.083¢e~%, R = 0.5, (ipy i all four mean fields is analyzed in Section 3b3.
RU = ~ye-", 1) MERIDIONAL STRUCTURE: k = 0
v When k = 0, Eq. (10, om:
D = 0.56 -O.S[ye"’ -[ e"'dt] , nk = 0. Eq. (10) becomes
- Dv,, = 2yRUy, + (0 = y* = RUWw =0, (12a)
R =043, (1lc) u =ie(y - RU, . 12b)
The flows of (11a) and (11b) are symmetric eastward p = —iog~'(Dv),. (12¢)

and westward jets, respectively, with maximum
speeds of 140 cm s~ or the equator and half-width
of approximately 1.5°. The fow in (11c) is an anti-
symmeiric jet with maximum speed of 120 cm s~!
at =2.3° In each case the mixed-layer depth is speci-
fied by (2) and (9) with y, = 4 (dimensional latitude
= 13°). These three background states are illustrated
in Fig. 2. Note in puntizular the very deep mixed
layer to the north associated with the antisymmetric
jet (tle).

Also, we integrated (10) for a fourth, less-idealized
background state, derived from a temperature sec-
tion typical of average conditions in the upper layers
of the central Pacific {Fig. 3 (after Wyrtki er al.,
t977)]. We chose the interface between the constant
density layers of the model to be the 20°C isotherm
which is centrally located in the equatorial pycno-
cline; a constant of 40 m was added to the mean
depth as determined by the isotherm so as to satisfy
D = 200 m. Assuming that geostrophy holds to
within =0.5° of the equator, we calculated a current
system in balance with this interface by cubic spline
interpolation of (- D,/y). The latitudinal distribu-
tion (Fig. 3, dashed line) and mass ransport of the
interpolated zonal currents are in agreement with
observations. For example. the model undercurrent
transport of ~30 x 10® m® s~! compares favorably
with Knauss'® (1966) values. The Rossby number for
this case is ~0.25. Choosing other isotherms in the
thermocline to define the model interface does not
significantly change this Pacific profile.

In Section 3bl we consider solutions to (10) when
k = 0 for the background states (11) and for the
Pacific profile of Fig. 3. Next we discuss solutions
to (10) for smail but nonzero wavenumbers in Sec-

Figs. 4-6 show solutions to (12) in sclected back-
ground flows superimposed on solutions corre-
sponding to R = 0 (dashed lines): the background
currents themselves are plotted for reference (Jdotted
lines). All solutions have been arbitrarily scaled so
that the maximum meridional velocity is |.

Fig. 4 is a plot of solutions to ¢(12) tor the east-
ward jet (11a). The effects of this mean current on
v and p are minimal because terms involving R are
relatively small in (12a) and (12¢). On the other hand.
the 2onal perturbatior velocity exhibits large anoma-
lies in the region of strong mean shear. which from
(12b) is clearly due to meridional advection of the
mean current. The net result is a sinuous (v even)
or varicose ( v odd) meander of the background flow.
Similar meanders associated with the mixed Rossby-

y
029 2 o2 0 2 o202
Drob——— op——— |o-\_
L o L
20- 20} 20
{a) (b) tc)
oobr-
+05p - -
RU = o o)
of L H t
-osl -08

Fia. 2. Profiles of upper layer thickness and associated zonal
current for three of the background flow regimes studied: (a)
is the symmetric custward jet, (b) the symmetric westward jet
and (<) the antisymmetric jet.
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Fic. 3. Temperature section from the Central Pacific. The 20° isotherm (heavy solid line) defines the
interface topography and current structure (dashed line) of the Pacific profile discussed n text.

gravity wave were the dominant motions in Hal- teger constants (2n + 1) predicted by (6). bui are
fock's (1977) wind-driven model, but at slightlty fractionally larger (Table 2). Nonetheless. solutions
bigher wavenumber and lover frequency. Note that  to (10) and (12) will still be designated by . = 0. 1. 2.
the eigenvalues o2 of (12a) are no longer simple in- Not shown are solutions to (i2) for the westward

RU= .5 exp(-3y?)
v.RU v.RU v.RU

-

I ned nsl
os IO o 78
. kaQ W Q

Fi0. 4. Comparisons of wave flelds with and without buchground flow (in this instance
the sastward jet), for k = 0. Mendional modes, 0, 1. 2 are illustrated. Dashed (solid) line
shows the wave amplitude without (with) buckground flow. The background current itself

. is indicated by the additional dotted curve.
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Tastk 2. The effects of mean zonal flow oa fi y o zero umber. The p of change in frequency
is defined as 100{(c/on.e) - 1).
Percent
Mode Eigeavalue Frequency Period change in
Mean flow . o o (days) frequency
’ No current [ 1.00 1.00 9.17 -
] 3.00 “ L7 5.30 -
2 5.00 2.3 4.1 -
Eastward jet ° L2 1.10 .M 10
1 3.16 L7 5.5 3
2 $.10 2.26 4.06 !
Westwand jet 0 0.7 0.88 10.2 ~12
1 2.8 1.68 $.46 -3
2 458 2.21 4.15 -1
Antisymmetric ) 1.00 1.00 .17 [}
jot 1 3.2 1.74 .7 ]
2 49 .22 4.13 [}
Pacific profile 0 114 (K 8.57 7
1 N 1.78 s.18 3
2 529 .50 3.9 3

jet (11d) since changing the sign of RU essentially matic alteration of the eigensolutions to (12), as
changes the sign of the structural and frequency showa in Fig. 5. With increasing . perturbation
anomalies observed in Fig. 4. velocities weaken in the hemisphere of deepest

The antisymmetric jet (11¢) produces more dra- mixed laver, especially near the turning latitude

RUs -y exp (-y?) ,
v.RU v.RU " v.RU ‘

—»l— -'4'-:0— -

d

o
o
N\
N

FAN

N N
n:Q LER]
o: .00 o: )74

. k:Q WV x:Q
. P10. 3. As in Fig. 4 except with antisymmetric jet as background flow.
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(equal to the inertial latitude when k = 0) located
aty = (2» + 1)'* Meridional advection of the mean
flow distorts the zonal perturbation velocities even
more, particularly that of the mixed Rossby-gravity
wave which at the equator shows a near maximum
instead of a node. Boyd (1978) reports a similar fea-
ture associated with long, atmospheric mixed mode
waves in weakly sheared mean winds having an
antisymmetric component. Pressure fluctuations are
weaker relative to their strength when no mean cur-
rents are present, but their meridional structures
are otherwise little changed.

Results for the Pacific profile are shown in Fig. 6.
As in the case of the antisymmetric jet, strong mean
shear right on the equator results in large zonal ve-
locity fuctuations in the n = 0 mode. However,
since the backyround flow between the turning lati-
tudes is largely symmetric, there is little trend
toward consistently higher velocities in one hemi-
sphere relative to the other; it is expected that such
trends would appear in higher meridional modes
whose turning latitudes are farther from the cquator.
Other effects due to the presence of mean fow in-
clude the small-scale variability introduced into the
latitudinal structure of u, which corresponds to sim-
ilar small-scale variability in the mean shear pro-

Pacific profile
v.RU

.

o |07
k:Q

Voryme 9

file. Pressures are again relatively insensitive to the
background state.

Since there are no critical layers in the flow fields
described above, perturbation energy density aver-
aged over one wave period must be independent
of time, i.e.,

E = E(y) = K(y) + V(y), (13a)

K(y) = BD(® + ), (13b)
V(y) = Wapt, (13%)

where E is the total energy density, K the kinetic
energy density and V the potential energy density.
The overbar denotes time average. Furthermore,
when the background state is a symmetric function
of latitude, so must E, K and V be symmetric. This
does not hold in the case of the antisymmetric jet
(11c) or the Pacific profile. For example, plots of
K and V versus latitude for the modes n = 0, 1.2
when the mean state is defined by (11c) show. as
expected, that kinetic energy density is amplified
in the hemisphere of shallow mixed layer (Fig. 7.
The most significant asymmetry appears near the
turning latitudes except in the n = 0 mode which
is complicated by large zonal perturbation velocities
near the equator. The dashed curves in Fig. 7 that

|

-

P

LEN
c: |78
ks Q

0. 6. As in Fig. 4 except with Pacific profile as background flow.

ne 2
0:2.30
k:Q
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‘F'o. 7. Kinetic (K) and potential (V) energy densities as functions of latitude. both with (solid
line) and without (dashed line) background flow, for the same modes as Fig. 5. The background

flow is the antisymmetric jet.

correspond to K for a mean state of rest display
none of these features. Conversely, potential energy
density is similar to that in the absence of mean
curreats. (The large discrepancy in total energy
levels which appears in Fig. 7c is not significant
because we have arbitrarily scaled the ampiitude
of the solutions according t0 ve.. = 1 for each in-
dividual wave.)

2) MERIDIONAL STRUCTURE: |k| < 1

Solutions to (10) at small but non-zero wavenum-
bers show the same basic wave-mean flow interac-
tions discussed above. Specifically, in regions where
mean shear is large, zonal perturbation velocities
are stronger; where the background fields are not
symmetric between turning latitudes, kinetic energy
density favors the hemisphere of shallow mixed
layer; perturbation pressures and meridional veloci-
ties are typically less affected except for an ampli-
tude factor. Because of the similarity of these re-
sults with zero wavenumber solutions, we do not
present them graphically.

3) Disrersion

Fig. 8 compares the dispersion curves for selected
modes with and without background flow. In Fig. 8a
there is an increase in eastward and decrease in
westward group velocity cdue to the eastward jet
(11a); the opposite is true for the westward jet (11b)
as shown in Fig. 8b. These Doppler shifts are sim-
ilar to those calculated for meridionally uniform
flows of the same intensity (dashed curves) but are
much less nced because of the rarrowness
of (11a) and (11b). In addition to these Doppler shifts
there is also a small frequency offset which is toward
higher values in the eastward and lower values in
the westward flows (Table 2). Frequency shifts

caused by the antisymmetric jet (11¢) are not evi-
dent (Fig. 8c) because the net transport across any
meridian is identically zero.

In the Pacific protile which has both symmetric
(Equatorial Undercurren?) and antisymmetric (South
Equatorial Curreat-North Equatorial Countercur-
rent) components of the mean flow, Doppler shifts
are virtually absent. This is because the symmetric
component is weaker than the eastward jet of (11a)
by a factor of 2 and because the antisymmetric com-
ponent is inefficient at producing net advection of
the wave fields as was seen for the jet (11¢c). There
is however a small frequency offset in Fig. &d sim-
ilar to that observed for the eastward jet. Note that
the point of zero group velocity for n = 1 and 2
modes in the Pacific flow field, as well as in the
more idealized fields of Fig. 2, is always near zero
wavenumber.

4. The Kelvin wave

a. Method of solution

A perturbation scheme is developed that exploits
the smaliness of R and the simple expressions for
the Kelvin wave in an ocean at rest given in (8).
We first expand

=g+ Ruy+ Ry +..., (14a)
vep, + Ry, + Rigy + ..., (14b)
P=pe+Rp +R%y ¢+ ..., (14¢)
cagy+Ro,+Rlgy +.... (14d)

In addition we expand A® for reasons noted in
Section 2,

Mt +RAS RS0 AS=g'DD,. (1de)

When substituted into (1), one finds to zeroth order
in the Rossby number the Kelvin wave of (8),
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28 [/ R 25 The right side of (15) can be written in terms of
’ . Hermite functions by projecting Uu, = Upy = Ut
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.,’/ 20 // \\\‘ 20 ) Dy = D, Z dutn.
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Fic. 8. Dispersion curves for the modes n = 0, [, 2, at small
wavenumber and in the presence of the eastward jet (a) the west-
ward jet (b) the antisymmetric jet tc) and the Pacific profile (d).
Solid lines give dispersion curves for no background flow, plotted
symbols define curves with background ow. In (a) and 1b) addi-
lnmlduhed curves show dnspemon relntum which would result
from f fly uniform background flow with velocity equal
o jet maximum velosity.

Viz., g = Py = Yy, 0y = k. Since vy = 0 the first-
order equations are

—iow; = 30, + ikp, = =ikUus + igyue, (159)
—ige, + YUy + pyy = 0, (15b)
—igepy + ikuy + vy,

l(o. + ;—g—b— - kb’)p lk( )u.. (15¢)

Since each ¥, on the right side of (15) will excite a
different response, it is convenient to further de-
compose the O(R) problem into the series

= ";0 + i Uyny (17a)
e

Uy = 0y + il Vias (17b)

Pr=pun + élpu- %)

The first term in these expressions deserves special
attention because W, forcing will drive a resonant
first-order Kelvin wave with vy = 0,100 = pyo = .
In order to remove this spurious resonance. one
must insist that no 4, terms appear in the forcing.
This is accomplished by imposing the constraints
o, = fok, (i8a)
Af =dag'D. (18b)

The first of these results is a Doppler shift
proportional to the wavenumber k. the Rossby
number R, and the width and direction of the back-
ground flow through f,. The second adjusts A, the
eigenvalue of the vertical problem urderlying our
two-layer limiting case. The part of the first-order
solution proportional to W, (zeroth order Kelvin
wave) is now of arbitrary amplitude which can
be set to zero without loss of generaluy For other
n # |, the equations

—iggt\y = Y05 + tkpya = ~ikfbs,  (190)
—iGeliy + Vilyy + Pray = 0, (19b)
' "iVQPn + ik"lu +* Cinp = -‘.k(f- + J.N.- (19¢)

can be solved by eliminating «,, and p,, in favor
of v, to get

Oiam + (@1 = k? = kigy = ¥")v1a
= ~2ikifs + léd.)(*-. +yb,). 200
Making use of the identities oy = & and
., =0, ’ 2la)

4 ]\ "
"z ) o...+(%) ¥atn (21B)

o=~
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n+]

| )mt... + ("7)'"0.-.. @10

it is readily determined that, forn > !,
O = ikcl*!-l' Cu ™ (21")"’(.[- + Vid,). (a)

The usual method of obtaining expressions for u
and p from v by combining continuity with the
Zonal momentum equation fails here because o,
= k. But from (19b) and (19¢) one finds

Uin = Qu¥nes + Py + Saln-ss Q2b)
Pin ™ QaWnss + (ry + Yod Wy = S, (220)
where
n+ 1\ "
[ wn(n " 2) ’ (23a)
re=(+ Ml)(f';l—'——zc—..) ~ Yd,, (23b)
2n
- n
sam =W+ %d.)(" ') . @3c)

Thus 10 O(R?) we have

u = (e + R S [gaes + 70+ Snssla), (240
[ 1]}

o= iRkekks-on § o g (24b)
Ae)

p= elll:-on{% + R
X .2' (Ga-2 + 70 + Yody = Speslin}, (24¢c)

o= g{l + Rfy), (24d)
At = "D(D. + Rd.)v (2‘9)

with ¢_, = ¢g¢ = 0. In order to standardize results
for various cases we will fix A? for a given ¢ as
discussed in Section 2. This requires simply that the
zeroth-order mixed-layer depth be defined by

D. =] - Rd.
which is a function of U through d,.

b. Results

Solutions to (24) were computed in the presence
of mean jets of the form

RU = 2Re ™', a>0, (252)

for which the coefficients (f,.d,) readily can be cal-
culated as shown in the Appendix. The upper laycr
thickness associated with this flow is

D = | £ (Ri2a)e~". (25b)
Solutions to (24) for one sign of (25) determine soiu-
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Fi6. 9. Dispersion curves for the Kelvin wave in the presence
of various mean flows specified by 1R.a). Solid line (R = 0) cor-
responds t0 the Kelvin wave in the abseace of mean currents.

tions for the opposite sign since reversing the direc-
tion of the mean flow simply changes the sign of
all the first-order fields. Thus. only one set of cul-
culations needs to be done for eastward and west-
ward flows of the same width and in:ensity.

1) DisPeRsioN
From (16b), (24b) and (25a). the frequency shift is
Ro, = Rfok = = Rk(a + D12, (26)

The magnitude of this Doppler shift is greatest in
broad (small a) mean fiows and as expected, higher
(lower) frequencies result from eastward (westward)
flows. In the inertio-gravity range (Fig. 8) similar
tendencies exist but are more subdued because the
phase speeds of those waves are much larger rela-
tive to the mean currents.

The limit a = 0 (uniform flow) is instructive, if
we relax the geostrophic constraint (2b) and simply
set Dy = |, In this case we obtain

o= :k'

30 that the total solution is just the zeroth-order
Kelvin wave (8) with frequency a4(1 = R). Aliterms
with summations over 1 is (24a)-(24c) vanish in this
(somewhat artificial) limit, as can be seen from defi-
nitions (16a) and (16b).

The dispersion of free Kelvin waves in a variety
of mean flows is shown in Fig. 9. To the approxi-
mation (24) all the waves remain nondispersive with
frequency depending on the width and intensity of
the mean flow as well as the Xelvin wavenumber.
Moreover. as is clear from (26), to each of these
curves there corresponds a family of overlapping
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curves, .., the curve (« = 3, R = 0.2) corresponds
to curves for (a = 8, R = 0.3), (a = 0, R = 0.1),
etc. It is noteworthy that the_ dispersion plot for
any antisymmetric jet coincides with the line R = 0
since f, = 0 by (16b): as in the case of inertio-gravity
waves discussed above, antisymmetric flows do not
Doppler shift the wave fields. Observe also that this
figure for RU > 0 is similar to Fig. 1 of Philander
(1979) which shows the aumerically determined dis-
persion of Kelvin waves in similar castward flows.

2) MERIDIONAL STRUCTURES

We truncated the summations (24) at n = 40 (20
nonvanishing terms, due to symmetry); this is a very
accurate representation except for exceedingly nar-
row (ax » 5) jets. Figs. 10-12 show the resultant
modifications to Kelvin waves of various frequen-
cies in eastward and westward jets of various widths.
In Fig. 10, a long wave interacts with a narrow jet.
The first-order fields «,, v,, and p, take the form
of low-frequcncy Rossby waves, i.e., 4, and p, are
nearly in geostrophic balance. The total ficlds in
Figs. 10b and 10c are nearly the same as theirR = 0
counterparts except for the zonal velocity compo-
nent near the equator. The frequency is 10% higher
(lower) than 7, = & in the eastward (westward) jet.

Broader mcan flow will have even less effect on

KELVIN ; #2025;0:30,Rs02

the meridional structures of the Kelvin wave in this
region of dispersion space. As shown in Fig. 11 for
jets nine times wider than those of Fig. 10, the first-
order fields are much weaker and the total fields
are virtually indistinguishable from the zeroth-order
curves. On the other hand. the frequencies are
shifted more for this mean flow in accordance with
(24d).

For frequencies that fall within the inertio-gravity
range o > |, the first-order corrections change char-
acter dramatically. First, from (22a) the meridional
velocity is a linear function of wavenumber and
hence frequency so that this component is much
larger than at lower frequency. Second. the correc-
tions forced by the zeroth-order solutions are dis-
tinctly gravity-like because of the nearness of those
waves to the Kelvin dispersion curve at higher fre-
quency (Fig. 1). Both these effects are seen in Fig.
12: v, is about 10 times larger than that in Fig. 10
for a low-frequency wave and the components of
the first-order field look very much like those asso-
ciated with an n = | gravity mode. When combined
with the zeroth-order solution, these forced correc-
tions produce a much different picture of the Kelvin
wave in both eastward and westward shear flow.
We note that Philander's (1979, Fig. 1) numerical
resuit for an 800 km, 3.3-day wave in narrow east-
ward shear flow (R ~ 0.28) is very similar to that

v, Sv,RU Sv,RU
3
0
U, '] v
oS
xv—‘— =
b
-Q5
R
o [* P P
v-—.-. T —
!('o (?) 27 (E)O.ZZ
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Pea. 10. Meridional structure of a low-frequency. long wavelength Kelvin wave in narrow,
shesr flow [dotted curves in (B and ic)). First-order comections are shows in (a). Solid
curves in (D) and (c) are the total fiek!s in the presence of the indicated mean flow: deshed
curves are the Kelvin wave in the absence of .

mesn flow
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- observed in Fig. 12b which is for a 900 km, 3.3-

day wave.

$. Discussion

The foregoing analysis has shown that meridional
velocity fluctuations associated with neutrally stable
inertio-gravity waves advect the mean currents so
as to produce intermediate-frequency meanders.
The strongest of these. associated with the mixed
Rossby-gravity wave. are similar to those observed
during Phase Il of GATE. Likewise, Titov (1977)
reports on meanders of the Cromwell Current be-
tween 2.5°N and 2.5°S along 166.5°E in the Pacific.
Over a two-week period in March 1972, the maxi-
mum speed of the mean current migrated about the
equator with a period of O( 10 days). lagging (leading)
the meridional velocity by about a quarter cycle
north (south) of the equator. These phase relation-
ships and symmetry characteristics suggest a mixed
Rossby-gravity wave interpretation like that used
to describe the GATE meanders. It is noteworthy
that these two sets of current measurements (the
most comprehensive to date at low latitudes) dis-
play the same type uf meandering behavipr., for it
suggests that such meanders are commonplace.
However, :he coincidence may be fortuitous. In-
deed, the mixed Rossby-gravity wave is the gravest
antisymmetric equatorial mede and should be
strongly excited by !atge-scale meridional or anti-
symmetric zonai winds. Unlike the higher order in-
ertio-gravity waves, though, there is no prefarred
response to wide band forcing at intermediate fre-
quencies, implying that winds with highly structured
spectra must have generated the observed mean-
ders. Since such spectra ate atypical, one might al-
ternately conclude that these data were coliected
during periods of anomalous wind forcing.

Peaks in velocity spectra associated with incrtio-
gravity waves other than the mixed Rossby-gravity
wave will be sharper in the hemisphere of the shal-
lowest mixed layer when the depth increases sig-
nificantly between the turning latitudes. Conversely.
irrespective of the pycnocline topography, sea level
spectra will be little different from those predicted
by theories without background flow. This may have
facilitated the work of Wunsch and Gill (1976) in
modeling 4-day and 3-day sea level veriability as the
surface manifestation of baroclinic inertio-gravity
waves; their theory inciuded no mean currents, vet
the fit of observed to predicted sea fevel amplitude
distributions was good.

Because the time scale T of (3) is proportional
to the fourth root of the stratification parameters
(e,D), 3 moderately accurate determination of the
mean density field fixes T and hence the frequency
rather precisely for vertically standing modes at a

given zonal wavenumbér. It should then be possible
to ascribe significance to relatively small departures
of observed frequencies from R = 0 values and to
interpret such shifts in terms of mean currents. For
example, Wunsch and Gill (1976) found in their Pa-
cific sea level study that inertio-gravity wave fre-
quencies predicted using an equatonial g-plane
model without background flow led to frequencies
that were uniformly too low by about 107 compared
to the observations. Although there is a large un-
certainty in their calculations (time scales were com-
puted using a single density profile). the observed
discrepancy is consistent with the 3-7% higher fre-
quencies expected for inertio-gravity waves in the
Pacific profile (Fig. 8d).

The low-frequency Kelvin wave solutions of Sec-
tion 4 are very similar structurally to Kelvin waves
in an ocean at rest except for their higher or lower
phase/group velocities. This change in propagation
speed can be large in strong unidirectional currents
and thus may affect significantly the baroclinic ad-
justment times in the tropics. With increasing (re-
quency, the meridional velocity of the Kelvin waves
increases in the presence of mean fdow and they
become more gravity-likc. If not directly wind
forced. these waves could be excited by gravity
modes in western boundary regions and propagate
into the open ocecan as varicose meanders of the
mean currents. Their encrgy contribution o sea
level and velocity fluctuaiions may be comparatie
to that of gravity waves in th¢ same frequency band.
but separating these two types of motion requires
wavenumber spectra as well as frequency spectra;
at present such data are lacking.

The basic simplification of the foregoing analvsis
is the two-layer mode! with its single baroclinic
mode. Unfortunately, there are large regions of Cis-
persion space where a single vertical mode poorly
describes the field of motion (Philander. 1978b). For
realistic stratification. this occurs when the forcing
is confined to a thin surface layer and when its fre-
quency and wavenumber are such that a large num-
ber of vertical modes are excited nonresonantly.
Under these conditions. the ocean’s response is bet-
ter described us a sum of vertically propagating hori-
Zontal modes as demonstrated in Wunsch (1977b)
for periodic monsoon forcing. It is important to
know how these vertically propagating modes inter-
act with mean currents near the surface, a problem
that is the natural complement to the one considered
in this paper. :
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APPENDIX
Calculation of the Coefficients (f,.d,)
We wish to evaluate the expression

fom I i Ubgbody, U = e, (A1)
Now since
L4 n!2yy-¥
HO) = X (=) ————,
=2 Y e
N= n/2, neven
n - Y2, nodd, (A2)
the integral (A1) becomes
fa = (an20y13 § (<1
=3
bl n'(Qvy-¥
et o0 3
* I..' [(.. = 21)!1!]"y “d

The jth term in (A3) can be expressed as
-y e r).n—ueﬂoom\’dy

n - 2!
ni2n-% 1[‘[(,, -2+ 1)y
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