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ABSTRACT /3)1 4J IC
C A random vibration-predictive model for cable strumming response to

ocean currents is presented. The model is Justified on the basis of an
extensive examination of four different field experiments, conducted for
the purpose of studying vortex induced cable vibration. The examination
of these data reveals that real world cable strumming is predominantly
a random process that cannot be predicted on the basis of extending lab-
oratory observations of essentially deterministic phenomena such as
lockin. Representative data are presented to support these conclusions.

The proposed predictive model is demonstrated by two examples: the
response of a uniform cable in a non-uniform flow and the response of a
cable non-uniform in diameter to a uniform flow. The results of the
second example are favorably compared to measurements made in a simple
field test.-./

N ~JIINTRODUCTION

The prediction of cable vibration response to incident currents,
cable strumming, is an as yet unresolved problem in cable systems
design.

Observations of real world cable systems reveal the phenomena to be
both complex and quitte different from published laboratory results. The
reasons for this are/that field conditions rarely possess the temporal
and spatial uniformities of the currents used in laboratory tests, that
long field cables have much higher modal densities at the frequencies of
interest, and that field cables are rarely uniform in properties over
their length, as contrasted to the short uniform sections, commonly
chosen for laboratory work.

In particular, the exhaustively studied phenomenon known as reson-
ant lockin, or synchronization of the wake with a natural frequency, is
a relatively uncommon aspect of the response of field deployed cables.
Instead of the deterministic, periodic response, characteristic of
lockin, the motion time history of a typical offshore cable system is
usually best described as a random process. The periodic response of a
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single mode is quite rare; more often the response Is a superposition of
from a few to hundreds of modes responding simultaneously.

The purpose of this paper is to propose a simple stochastic model
for the prediction of the non-lockin cable vibration response so fre-
quently observed in the field. The model was formulated after an in
depth examination of the data collected on four separate and quite dif-
ferent field experiments. The individual experiments and principal con-
clusions are reviewed to establish a physical basis for the model. The
model is presented and its principal features are demonstrated in two
example calculations. In the first example the response of a uniform
cable to a spatially non-uniform flow is predicted. The second example
is the response prediction for a cable non-uniform in diameter over its
length exposed to a uniform flow.

A field experiment is described in which the measured response of a
cable non-uniform in diameter is compared to the response predicted in
the example.

EXPERIMENTAL EVIDENCE

Laboratory Tests

The literature concerned with fixed and moving cylinders is exten-
sive. The principal results are presented in a recent review paper by
King [31. Laboratory tests of cables are not so numerous and have been
generally restricted to investigation of cross flow lockin phenomena on
relatively short lengths of cable (0.5 to 5 meters). The flows have
been typically low in turbulence and spatially uniform. Only the first
few natural response modes have been studied and then only one at a time.
Some valuable conclusions are that at lockin the response is self limit-
ing with the antinode responses approaching one diameter single ampli-
tude. Shedding at the antinodes is similar to locked-in moving cylin-
ders and shedding at the nodes is like that of non-moving cylinders [8].
References (1] and [61 are additional sources of experimental cable
strusmming results.

The laboratory experiments have made valuable contributions to our
understanding of the local interaction between the motion of the cylin-
der and the wake,, but cannot simulate the high modal densities and
spatial and temporal variations in the flow. The response of actual
field deployed cables must be examined to reveal these effects.

Field Tests

Four field experiments are reviewed below. The raw data from three
of them were reduced and analyzed by the authors in the past 18 months.
The previously reduced data from the fourth experiment known as "fish-
bite" were also evaluated and reported here.

Bermuda Testspan: From December 1973 to February of 1974 the
United States Navy conducted a cable strumming experiment on Plantagent
Bank off Argus Island, Bermuda. A 256 meter long, .016 m diameter
electromechanical cable was stretched horizontally at a depth of 27.5
meters. The cable without strumming suppression devices was mechan-
ically very complex. Numerous instrument pods, lead weights, and floats
were distributed over its length. Two Savonious rotor current meters
suspended near mid-span revealed extreme variation in both current speed
and direction. Flow reversals occurred with an average period of eight
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FIGURE 1. BERMUDA TEST: LINEAR
ACCELERATION SPECTRUM

seconds, suggesting that long wavelength surface vaves were influencing
the flow. The flow speed was generally less than 0.5 h/s. Instrumen-
tation failures, signal to noise problems, and inadequate accelerometer
calibration data made the analysis of the five year old tapes quite
difficult. Nonetheless, the following conclusions were reached.
The cable strumming response was typical of a broad band random process.
Mode participation varied with flow speed from the 10th to the 150th
mode. Figure 1 shows a typical acceleration response spectrum at a
point on the cable. This spectrum represents the sum of the two spec-

tral components from a biaxial accelerometer. Due to cable rotation it
was not feasible to separate cross flow from in line cable response.

This particular spectrum was averaged from 15, 80-second records. It
reveals significant (within lOdB of the peak) response over the range of

2 to 4 Hz. More than 10 modes are simultaneously contributing to the
response. The conclusions drawn from examination of many hours of data

were that a) lockin was rare, b) the response was generally broadband

random, and c) over many hours the root mean square (rim) response was
self-limiting and constant (to within 2 dB). Though suspect because of
poor calibration data, the rms response estimate was less than a cable

diameter.
It is the authors' conclusion that the combination of rapid varia-

tions in flow velocity, non-uniform cable properties (especially dia-
meter) and high modal density are responsible for the broadband, multi-
moded response observed in this test. Additional description of this

experiment may be found in reference [21.
Seacon II: The experiment was conducted by the Naval Civil Engin-

eering Laboratory in 1975 [4,91. It consisted of a horizontal delta

array buoyed and anchored at three corners, 152 meters below the surface

in 880 meters of water in the Santa Monica Basin. One of the horizontal

arms of the delta was instrumented with accelerometers to measure the
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cable strumming response. The unfaired cable, sensors, and electronics
were essentially the same as that used in the Bermuda experiment. No
lead weights or buoyancy bags were used.

In this experiment the current speeds were on the order of 0.1 m/s,
were tidally generated, and were slowly varying. The current meters
were more than 200 meters from the test cable and the current and res-
ponse data were not well synchronized. Data reduction and analysis
difficulties encountered in evaluating the four year old raw data tapes
were similar to those encountered with the Bermuda data. Due to the
lower current speeds the participating natural modes ranged from the
2nd to the 15th with from two to six modes responding simultaneously.
The vector averaged (cross plus in line) rms response was self limiting,
lockin was rare, and multi-moded random vibration behavior predominated.
Even though the current was relatively uniform the response typically
spanned a considerable range in frequency. It was concluded that this
was a consequence of a large range of cable and instrument housing diameters
(from .016 to 0.15 m). For additional information consult reference [2].

Fishbite: Fishbite is the name given to a long cable experiment
conducted in 1976 by Softley, Dilley and Rogers [101.

N

E'

FIGURE 2. FISHBITE: RMS DISPLACEMENT
SPECTRUM

A .012 m diameter wire rope 500 meters long was hung over the side
of a ship anchored in 1960 meters of water at The Tongue of the Ocean,
770 52'Wr and 25* l0'U. The tidal flow was neither spatially nor tem-
porally uniform, varying from 0.1 to 0.4 meters per second. The cable
was of uniform diameter with a current meter attached at the halfway
point. No other lumped masses were attached to the cable. The response
was measured at the top end only. The modal spacing was .025 Hz.

The repsonse typically included more than a hundred modes between
8 and 12 Hz, centered on 10 Hz. A root mean square displacement spec-
trum (from Softley et al., Figure 28) is shown in Figure 2. The rms
response at the upper end was limited to less than a diameter. The band
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width of the response can only be attributed to the spatial and temporal
variation of the current. The pertinent conclusions are that the re-
sponse was rums liUited and broadband random. Lockin was not observed.

Castine. Maine: Field tests were conducted near Castine, Maine,
during the strmiers of 1975 and 1976 by Vandiver and Mazel [5, 7, 111.
Figure 3 is a schematic illustration of the test site, which was located
on a sandbar that was flooded at high tide and exposed at low tide.
Tests were conducted on the rising tide. The flow was normal to the
23.3 m long cable and varied from a maximum of 0.7 mis, shortly after
submergence, to 0 m/s at high tide over a period of approximately 2-1/2
hours. The flow was spatially uniform to within 5% over the length of
the cable. The mean flow speed variations could be considered as quasi-
static when viewed on a time scale of many periods of cable vibration.
The data were taken in calm weather and surface waves were not a problem.

High Tide Level (3m deep)

Cable
Tensiometer Accelerometer \ Winch

Fish T Current
i .5m Metery

Sandbar '/ 1 /

Piles / ,

6- 233m 

FIGURE a CASTINE EXPERIMENT SET-UP

The instrumentation consisted of a tensiometer, an electro-magnetic
current meter, very small moveable accelerometers, and a direct dis-
placement measuring device, called the "fish". The fish and accelero-
meters could measure cross flow vibration without loading the cable.
Many different types of cables with and without strumming suppression
devices were tested during two months of on-site testing. The cables
tested were of various diameters from .006 to .016 m.

The cable strumming was all in the subcritical Reynolds number
range, and the vibration response typically included one or more of the
first fifteen natural modes. Vibration in line with the flow was negli-
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gible when compared to the cross flow vibration.
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spin fsee for all cables tested. Responding modes varied fromteird to sy hh as the 15th, depending on the particular cable
properties, tension, and flow velocity. The Reynolds number range for
observed cross flow vibration was from 300 to 8000. Antinode response
was limited to approximately one diameter for all cables tested. In
general lockin behavior was exhibited over a smaller range of reduced
velocity (U - U/f D) than observed in the laboratory with vibrating
rigid esbU a is the flow velocity, f is the frequency of the
largest peak in the response spectrum, and D ohis the cable diameter.
The extremes of the lockin range are evidently reduced by real world
spatial and temporal variations in the flow, not revealed by a single
point measurement of mean flow speed. As the mean flow speed was ob-
served to slowly move away from a value that insured lockin, the response
became progressively more random. This suggests that the portion of the
cable near the antsodes experiencing lockin was decreasing.

Even at flow speeds which completely prevented wake synchronization
with a natural frequency of the cable, the observed response was quite
substantial. The observed response at Castine under such conditions
was best described as a narrow band random process. The term "non-
lockin" was coined to describe this and all other random vibration cable
response. Non-lockin response occurred about half of the time at Cas-
tine, and as mentioned before dominated the responses observed in the
Bermuda, Seacon 11 and fishbite experiments.

As a general classification non-lockin occurs when variations in
the current or non-uniformities in the cable prevent widespread wake
synchronization with a single natural frequency of the cable.

It is conjectured that under such conditions the correlation length
of shed vortices is on the order of only a few diameters and that the
motion of the cable at any point is poorly correlated to the wake
behind it. Under such conditions the lift force spectrum at a point on
the cable can be characterized as a band limited random process whose
center frequency is adequately characterized by an empirically deter-
mined constant such as a reduced velocity or a Strouhal number. In many
respects this proposed model of a lift force spectrum is similar to that
measured on stationary cylinders.

Spectra of non-lockin displacement data from Castine typically
revealed one to four closely grouped natural frequencies of the cable,
and occasionally the shedding frequency which would be expected for a
stationary cylinder in that flow. The narrow banded nature of the non-
lockin response observed at Castine is consistent with the test condi-
tions: uniform diameter cables in a quite uniform flow. The non-lockin
rms cross flow response was approximately one quarter of a diameter for
all cables tested and was not measurably Reynolds number dependent.
This response level is considerably less than lockin response amplitudes.
However, because the displacements are a random process, individual
peaks often exceeded two diameters. The displacements could be ade-
quately described by a Gaussian random process. When measured in terms
of diameters, the rms response was relatively insensitive to cable
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material, tension, flow velocity, and the number of participating modes.

Furthermore, the reduced velocity remained nearly constant for each type
of cable tested for all flow conditions. The observed mean values for
reduced velocities varied among the cables from 4.5 to 6.7. Additional
data from Castine will be presented later in this paper.

At the and of this extensive review of field data it was concluded
that a predictive model for non-lockin cable vibration response was
possible and necessary. Such a model would be useful for engineering
design purposes if it could provide an estimate of the response spectrum
of a deployed cable. From the available experimental data it was felt
that such a predictive model could be based upon the concept of a self-
limiting response and a band limited local lift force spectrum centered
at a frequency established by the local flow velocity and cable diameter.

A STOCHASTIC MODEL

The review of field data briefly described in the previous section
indicates that deterministic lockin models are rarely appropriate in the
prediction of real world cable struuming response. Non-lockin random
vibration generally dominates. In this section a simple stochastic
model is proposed for the prediction of random vibration cable response
to current flows.

In this analysis the linearizing assumption is made that the cross
and in line cable excitations and responses can be decoupled. Since the
cross flow response is typically an order of magnitude greater than the
in line response it is the only response considered here.

The quantities of interest in a stochastic framework are mean
squared responses and power flows. In cable strumming the spatially
distributed lift forces arising from the local vortex shedding along the
cable, constitute the power input into the cable system. Qualitatively
and quantitatively very little is known about the mechanism that governs
the input power. It appears to be a non-linear feedback based on mean
square amplitude. For the purpose of this model it is assumed that the
feedback mechanism is adequately modelled by a uniform spatially distri-
buted feedback level based on the cable's spatially averaged mean square
displacement response. The cable length is finite and the
principal power outputs are due to internal cable friction and fluid
damping. As the system is spatially distributed, power is shared
throughout the cable and power output at any point is drawn from the
entire cable system.

With these simplifications a form of the spatially distributed
excitation may be proposed. f(xt) is the force per unit length at a
location x on the cable at time t and is given by

f(x,t) - .5pwD(x)U 2(x)cL(xt) (1)

pw: water density

D(x): cable diameter at x
U(x): normal component of the freestream velocity at x

CL(x.t): local momentary lift coefficient

The local lift coefficient CL (x,t) is a random variable which is



assumed to be zero mean Gaussian, time stationary-ergodic, and locally
independent of cable response. The first two assumptions are straight-
forward and reasonable. The third arises from the previous statement
that a uniform feedback level is obtained from a spatially averaged mean
square response. As will be demonstrated this assumption is acceptable
for cables of uniform diameter in non-uniform flows, but presents obsta-
cles for cables with non-uniform diameters.

Given the above assumptions we can completely characterize CL(Xt)
by either its correlation function or Its power spectrum.

CORRELATION: Rc (x,y,T) - E[CL(xt) C(y,t+ )j (2)

m ,T) e 2w fT

SPECTRUM: Sc (X,yf) - mdT Rc(x,yT)e (3)

From experimental results we know that the spatial correlation
length for non-lockin is on the order of a few cable diameters. If the
assumption is made that the shortest excited spatial wavelength is much
larger than this correlation length, then the lift coefficient reduces
to:

S c(xy,f) - L6(x - y)S c(x,f) (4)

L: cable length
8(x-y): impulse function at x - y

Because the units of 6(x-y) are length- 1 , L, the length of the cable,
is introduced in the above equation to maintain consistent units. A
visual image of this spatially incoherent process is that of "rain on
the roof".

A box car model for the spectrum of the lift coefficient is pro-
posed and illustrated in Figure 4.

Sc(xf)

r
H W W-H

FIGURE 4. BOXCAR LIFT COEFFICIENT SPECTRUM
where:

f (x) U(x) local center frequency of (5)
s D(x) vortex shedding

W(x) a 2Ptfs(x) , bandwidth of shedding (6)
frequencies
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C J 2B = Sc(Xf)df , the spatially uniform (7)
mean square lift coefficient

This model for the lift coefficient spe;trum is dependent upon
three dimensionless parameters:

1) St: the cable's non-lockin Strouhal number. It determines
the center of the spectrum and is inferred from ex-
perimental observation of the reduced velocity.

2) Pt: the excitation bandwidth, as a percentage of the
St dependent shedding frequency.

3) C: mean square lift coefficient appropriate to the
cable, flow conditions, and feedback level.

C is spatially distributed and uniform, and incorporates all cable-
fluid feedback mechanisms. Its value will be set such that the spatially
averaged mean square response is at its appropriate value. A more exact
form for Sc (x,f) would include tails at higher and lower frequencies.

The boxcar model is felt to be appropriate for the simple response pre-
diction model developed here. Refinements may be warranted in the
future.

This simple model for the mean square lift coefficient may be used
with equation (1) to derive an expression for the distributed lift force
spectrum.

SF(X,y,f) dTE[f(x,y)f(x,tTr)]ei12 fT (8)

(.5 ) 2 (D(x)U(x))3 CL6(x-y)B(f,x)

4P tS4t~t

B(f,x) = 1 (l-Pt)S U(x) 4 jfj < (l+P )S U(x) (10)tD(x) t tD(x)

= 0 elsewhere

The cable model must be obtained next. The key assumption is that
it is modelled as a linear time invariant system. A modal decomposition
approach is used here. This requires knowledge of the individual natu-
ral frequencies fj, mode shapes fj(x), and modal damping ratios CJ.

The modal transfer functions H (f) for a cable with fixed ends, and

virtual mass per unit length m(x) are completely specified by:

M - dx m(x) (11)
0

L
Hajk - dx *,(x) k(x) m(x) (12)

0
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H (x) -. irf )2'1 (13)

f2 + 21&j f

The modal force spectrum is obtained from the mode shapes and dis-
tributed force spectrum as shown in the next equation.

Sk(f) dx f dy (*x) k(y) SF(x,y,f) (14)
Fjk 0 0

In this analysis the contributions to the response resulting from the
modal overlap cross terms (J # k) are assumed small compared to the
terms for which j - k. Damping generated modal coupling is also neglec-
ted. With these assumptions the response spectrum may be obtained as
follows:

SD(x,y.f) U ij (x) J(Y)IR (f)12 SF (f) (15)

where S (f) is reduced from equation (14), and takes the form:
j Ld L

S (f) - f dy *j(x) j(Y)SF(x'Y'f) (16)
0 0

- (.5p) 2  CL fdx *#2 (x)( )Ux)B(f~x) (17)

4P tS4t~t

The total displacement response spectrum is therefore the sum of the
individual modal response spectra, summed over all modes included in
the excitation bandwidth defined by the function B(f,x) from equation
(10).

It remains to establish values for the three parameters C, St and

Pt" .C results from an empirically imposed limit on the spatially aver-

aged mean square response A 2, expressed in diameters squared, where

A2 fLdx . df SD(xxf) (18)
0 4

In other words, C is adjusted so that the empirically observed limits on
A, the rms response, are satisfied. Given experimentally determined
values for A, Pt and St, the response is now completely characterized.

Modal Parameter Values

The data from six cables tested at Castine were used to develop a
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preliminary data base for A, Ptand S t The non-lockin cross flow dis-

placement time histories were divided into five second records from
which individual raw spectra were computed. The root mean square dis-
placement obtained from each spectrum when divided by the appropriate
cable diameter, provided an estimate of A. S twas estimated as the reci-
procal of the observed reduced velocityt

1 f fD
S t U p (19)

R U

where f p frequency of the highest spectral peak. P twas estimated by

dividing the 5 dB down bandwidth of the response spectrum by twice the
center frequency of the band.

= A 5dB (20)

Five dB down was an arbitrary definition of significant response level.
For some cases the response spectrum contained only one sharp modal re-
sponse peak. In such cases only an upper bound estimate on P t could be
estimated by dividing the computed modal separation frequency by twice
the frequency of the observed peak. Table I briefly describes the six
cables. Material, diameter, virtual mass per unit length and the ten-
sion range are given. The flow speed varied with the tidal cycle. The
virtual mass per unit length a, was estimated by adding the displaced
mass per unit length of water (the added mass) to the wet (saturated)
mass per unit length of the cable. Table II presents the results of the
parameter estimation for A, S and P t. The number of records used and
the standard deviation for eath value are given. Upper bound estimates
are denoted by the note U.B. In the standard deviation column.

EX AMP LE RESPONSE PREDICTIONS

A Uniform Cable in a Non-Uniform Flow

A long cable of length L and diameter D with fixed ends and con-
stant tension is exposed to a normal flow field, which is constant but
different for the two portions of the cable.

UWx - U 0< x <L (21)

- U 2  L 1 < x <L (22)

The natural frequencies and mode shapes are specified by:

f -JC p/2L (23)

W - 2 in rx (24)
L

where C : phase velocity of transverse waves.
p

By assuming that the cable is long compared to the longest excited
spatial wavelength, a piecewise approximation to the integral contained
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Table I. CASTINE TEST CABLES

Description Diameter Virtual Mass Range of
(m) per unit length Tension

(kg/m) (nt)

Sampson, "Blue Streak", 12 strand .010 .177 310-1025
single braid, polyester and poly-
propylene

Philadelphia Resins "Philly- .0123 .233 490-2000
stran", 7 strand Kevlar core
rope with a polyurethane jacket

Wire rope, 3 x 9 torque balanced .0071 .148 270-2600
galvanized plow steel with a
polyethylene jacket

Wall Rope Works "Uniline" .0131 .290 1150-1500
polyester cable, woven jacket

Philadelphia Resins, PS 29 EM 1 .0071 .110 850-1110
Four conductors inside single
braided Kevlar, protected by a
woven Dacron jacket

Cortland Line Co., parallel .0061 .081 1700-2200
fiber Kevlar with a braided jacket

** *** ***** *********** *** *

Table Il. PARAMETER ESTIMATES (MEAN
AND STANDARD DEVIATION)

Cable Number of A A S S P a

Sa"lsA t S t PSamples

Blue Streak 140 .26 .04 .15 .020 .08 .03

Phillystran 43 .20 .04 .22 .015 .10 .03

Wire Rope 6 .28 .07 current meter failed

Uniline 12 .20 .02 .19 .004 .10 U.B.*

PS 29 40 .28 .05 .16 .007 .12 U.B.*

Cortland 43 .29 .04 .17 .010 .13 U.B.*

*Denotes upper bound.

12
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in equation (17) may be obtained.

jLdx *(x)(D(x)U(x) 3B(fx) D3[UI3LIBI(f) + U2
3 L2B2(f)] (25)

0 U U I
where Bl(f) - 1 (1-P )St  ' fi < (l+Pt)S "w

= 0 elsewhere (26)
U2  U2

B (f) - 1 (1-P )S -. IfI < (l+Pt )S -
2 t t D t t D

M 0 elsewhere (27)

This leads directly to an expression for the modal exciting force S (f)
and hence to the response spectrum.

SD(x~yIf) PwCLD3 (x)(Y)H(f)12 [U3 LIBI(f)+U3 L2B2(f)] (28)Dx ) 16 Ptt j 1J2)2(Y(f)f

The relative impact of the flows U1 and U on the response may now be
evaluated. Let P (x) and P2 (x) be the lo al mean square responses at
a point x due to ihe two flow fields. P (x) and P2 (x) may be obtained
by requiring that x - y and integrating Ihe expression for SD(x,xf)
over the frequency bands defined by B1(f) and B2 (f) respectively. The
result for P1(x) is shown in equation (29). The result for PW(x) may be
obtained by replacing the subscript 1 by a 2 in equation (29).

P2 LD3 2 12 3

P(df P-L - * (x)iH4 (fi U1 3L1BI(f) (29)

P1(x) and P2(x) depend on the mode shapes * (x). To eliminate this x
dependence, spatially averaged values may b computed, denoting the
result as P1 and P2" For example, P1 is given by

1- idx P W)
1fL f 10

fdf CLD3 IHj(f)t2 U1
3L1B(f) (30)

d 16 PtSt

The relative spatially averaged mean square response is given by
P _= UJ V3 LI . df IH (f)1 2B(f)

P1  0 U1  1 -M J l1 (31)

U2 L2 .df IHj(f)IB 2(f)

The integration over frequency can be simplified by the following
approximation:

1) The modal damping ratios were assumed small (less than 15%). A

13



mode whose natural frequency was inside the B (f) or B (f) bands
was assumed to have its modal bandwidth complitely inside B1(f) or
B2(f).

2) The spatially averaged mean square response of any mode inside
B1 (f) or B2 (f) was assumed equal to any other mode inside B1 (f) or
B 2 (f) respectively.

Approximation 1 allows a simple expression for the response of a

single mode j to a white noise forec spectrum of unit amplitude.

"0 (f)2df 1 1 (32)

-00 1 2& (2irf3

Approximation 2 allows the response of each mode included in the
band to be represented by the response of an equivalent mode which has
a natural frequency equal to the center frequency of the band and a
damping ratio typical of all modes in the band. Therefore, within each
band the following relations apply.

U1

B(f ): & W& - constant, f f S- f- (33)

B2 (f): & & - constant, f fJ2  1t-  (34)

The number of modes in a band is the product of the bandwidth and the
modal density. For a uniform taut string the modal density is simply
the reciprocal of the fiindamental natural frequency f and has units of
modes per Hz. Therefore the number of modes inside B1(f) and B2(f) are
given by

N 2--2L 2PtS U1 (35)

p D

The total response of all modes in the band is given by the product of
the number of equally responding modes and the response of the typical
mode.

For example, for the band B ()

f'J dfIH (f)12B1 (f) = ± 2PS 1

00 1 C p t t D 2C Nl 2(2wf )3

A similar result is obtained for the band B (f) by replacing the sub-
scripts 1 with a 2. These results may now ie substituted in equation
(31) to obtain P1 /P 2 . The result depends on the choice of damping
model assumed.

Two plausible models are:

14



Constant damping ratio

l- &2(38)

Frequency dependent damping ratio

Ii i E J~2f J2  (39)

A frequency dependent damping ratio is equivalent to specifying a con-
stant damping coefficient per unit length of cable. These two models
lead to the following predictions for P 1 /P The relations given in
equations (33) and (34)' were used to eiminate frequency from this
expression.

Constant damping coefficient Constant damping ratio

jil ii Ci2 fJ2  &jl & J

P 1  L 1 112 __ 1 L1

P 2 L 2 u2  (4)P 2 L2

These results suggest that in general 2h 2eson2 (41)ru o

field cables exposed to shear flows will be biased toward those modes
excited by regions of higher flow velocity. To be more conclusive
would require a field experiment with a known spatially varying flow.
Furthermore, our present knowledge of cable damping mechanisms prevents
more definitive conclusions.

A Non-Uniform Cable in a Uniform Flow

Consider a two segment cable with lengths, diameters, and virtual
masses per unit length LfL, Dt, m, and L., Ds, m. where the subscripts

t and s refer to segments with the larger and smaller diameters, respec-
tively. A uniform mean square lift coefficient, C, is assumed to be
set to an appropriate value, and P t and S t are assumed to be the same

for both segments. The quantity to be predicted is P I P a the relative

spatially averaged mean square displacement response, where P I is the
spatially averaged mean square displacement response of the modes ex-
cited by flow incident on Dt and P, is the response to flow incident on
D . If the longest excited spatial wavelength is assumed to be much
snforter then both Lt and L a, then by piecewise integration techniques
similar to that in the previous example the relative mean square re-
sponse weighting P 1/P 2 may be obtained, as shown in equations (42) and
(43).

Regardless of the chosen form of damping the response is strongly
weighted in favor of the large diameter segment. The major and unjus-
tified assumption in the above example is that there is a uniform mean
square lift coefficient, C, that is the same over both cable segments.
At the present time we do not have a sufficient understanding of the



fluid cable Interaction to assign appropriate values for C on each seg-
ment of a cable with varying diameter. Nonetheless, the result of the
above analysip suggests that the cable response will be highly dominated
by the modes excited by the shedding from the larger diameter segments
of a cable. This is an Important qualitative result In understanding
and predicting cable strumming.

Constant damping coefficient Constant damping ratio
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To test this qualitative prediction a simple experiment vas con-
ducted by slowly towing a nearly vertical, heavily weighted, composite
cable over the stern of a ship. Due to length constraints on this paper
only a brief account will be presented here. A more complete descrip-
tion may be found in reference [2).

COMPOSITE CABLE EXPERIMENT

A two diameter composite cable was fabricated from a single 39
meter length of the .0071 m diameter wire rope tested at Castine. The
rope had three lays with an exterior sheath of polypropylene. The
sheath and two of the lays were removed from half of the cable length.
This resulted in a diameter ratio D I D - 3.0, where the subscripts I
and s denoted Large and small. A large weight was attached to the end
with the larger diameter D . The cable was then lowered to its full
length over the stern. As the vessel moved slowly forward at speeds
less than 0.5 m/s, the cross flow and in line acceleration response at
several points near the upper end was recorded. After recording suffi-
cient data the cable was reeled in 3.05 m, resulting in an increase in
the ratio of immersed lengths, Lz/L afrom 1.16 to 1.49. Again the re-
sponse of the small diameter section was recorded, followed by pulling
in another 3.05 m section. This process was repeated until only the
large diameter cable remained in the water and L,/La ca*. At this
point the cable was reversed and the experiment was repeated. This
time the response on the larger cable was measured for discrete values
of Lx/L from .86 to 0.0. After computing corrections for mode shape
and mass loading of the accelerometers the average mean square displace-
mint response ratios PZ/Ps8 were computed and compared to predicted val-
ues. The measured values of Pand P reflect the sum of both in line
and cross flow spectral components. lowever, the cross flow response
was by far the dominant component. The response typically included
approximately ten modes. Table III presents predicted and measured
values for the experiment with the large cable on top. The reverse
experiment with the small cable at the top confirmed these results.

Regardless of the damping model chosen the results are remarkably
close. Even for the composite cable that had the larger diameter cable
spanning only 12% of its total submerged length, over 90% of the mean
square displacement response was generated by flow over the larger dia-
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meter cable segment. The predictions for this example come from a
model which was claimed to be at best a qualitative indicator of expec-
ted response. The authors still hold this to be true. The predictions
would likely diverge substantially from measured values at very low
values of L X/(L I + L ).

The response of a composite cable when dominated by modes excited
in the larger diameter segment has several important but not necessar-
ily obvious features. First, each excited mode has a mode shape which
spans the entire cable length. Hiowever, because of the change in the
mass per unit length, the wave length and mode shape amplitude are lar-
ger in the smaller diameter segment. In the experiment Just described
whenever the larger diameter cable spanned more than a third of the
total length, the modes excited by flow over the larger diameter con-
tributed greater than 99% of the mean square response, independent of
whether the response was measured on the large or small cable. When
measured on the large diameter cable the response was limited to approx-
imately 1/3 of its own diameter, rms. When measured on the small cable
the response typically exceeded 2 diameters (of the small cable) rms.
This was a necessary consequence of the relative amplitudes of the mode
shapes in the two segments. From laboratory experiments with driven
cylinders the lift coefficient has been observed to decrease dramatic-
ally when the amplitude approaches one diameter. This suggests that
under such circumstances the mean square lift coefficient on the smaller
segment drops to near zero, which would explain the greater than pre-
dicted dominance of the excitation on the larger diameter segment.
This also suggests that the small diameter segment acts as a damper or
a sink of vibrational energy, thus increasing the modal damping of the
excited modes.

TABLE III. Prediction vs measured response for a composite cable.

Predicted for Heasured

L +LP+ P + P P + Pt 5 t+Ps9. 59.I

.12 .71 .88 .92

.24 .84 .94 .98

.33 .89 .96 .99

.40 .92 .97 .999

CONCLUSIONS

Cable struaming response for real world cable systems In the oceans
is not adequately described by resonant lockin models. The phenomenon
is extremely complex and yet well described using a stochastic frame-
work. The key response characteristics are:
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1) The mean square displacement response (normalized by cable
diameter) is limited. This limit is relatively independent
of cable length, virtual mass, damping, number of excited
modes, and flow speed for subcritical Reynolds numbers.

2) The excitation, arising from vortex shedding, is a narrow
band random process centered about a local "Strouhal" shed-
ding frequency.

A simple model incorporating the above characteristics explains
much of what is experimentally observed in large ocean cable systems.
The effect of a spatially non-uniform current was predicted and remains
to be verified by experiment. The effect of a non-uniform cable dia-
meter was examined and qualLaLively borne out by experiment.

In summary this initial attempt at a stochastic model has provided
considerable insight to vortex excited cable vibration. The model may
be improved. Additional work on the mean square lift coefficient model
is warranted as well as further research on modal damping and its role
in vortex excited vibration response.
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NOMENCLATURE

A2: mean square amplitude limit in cable diameters

SB(fx): local excitation bandwidth function

Bl(f): excitation bandwidth function for cable segment 1

B2 (f): excitation bandwidth function for cable segment 2

C: spatially uniform mean square lift coefficient

CL(xt): local instantaneous mean square lift coefficient

C : speed of wave propagation in a cableP
D(x): local cable diameter

D: diameter of large diameter cable segment,

D : diameter of small diameter cable segments

f(x,t): local instantaneous force per unit length

f j: natural frequency of mode j

f : frequency of highest spectral peak

fs x)W: local shedding frequency
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H(x) : local height of spectral box

Hji (f): transfer function for mode j

L: cable length

L : length of cable segment 1

L2 : length of cable segment 2

L : length of large diameter cable segment

Ls: length of small diameter cable segment

H: virtual mass of cable; also modal mass

mz : virtual mass per unit length of large diameter cable

m : virtual mass per unit length of small diameter cable

P : spatial average mean square displacement response in
bandwidth 1

P2: spatial average mean square displacement response in
bandwidth 2

Pt: average mean square displacement response due to large
diameter cable excitation

Ps: average mean square displacement response due to small
diameter cable excitation.

Pt : excitation bandwidth fraction

Rc(x,y,T): space-time correlation function for the lift coefficient

Sc(X,yf): space-time spectrum for the lift coefficient

Sc(Xf): space-time spectrum approximation for the lift coefficient

SD(xy,f): space-time spectrum for cable displacement response

Sf(x,y,f): space-time spectrum for excitation force per unit length

SF k(f): modal force cross-spectrum (J,k)

SF (f): modal force auto-spectrum approximation

St: "Strouhal" number for a "non-lockin" cable

U(x): local normally incident flow velocity

U1 : normally incident flow velocity in region 1

U2 : normally incident flow velocity in region 2

UR: reduced velocity

W(x) : local width of spectral box

Af5dB: bandwidth of 5d0 spectral band

6 (x-y): derac delta or impulse function

8 jk: Kronecher delta

modal damping ratio for mode j
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density of the fluid

J(x): eigenfunction for mode j

REFERENCES

1. Griffin, O.M., "Vortex-Excited Strumming Vibration of Marine
Cables", ASCE Preprint 3095, 1977 ASCE Fall Convention, San Francisco,
CA, October 1977.

2. Kennedy, M.B., "A Linear Random Vibrations Model For Cable Strum-
ming", Massachusetts Institute of Technology, Ph.D. Thesis, Department
of Ocean Engineering, May 1979.

3. King, R., "A Review of Vortex Shedding Research and Its Appli-
cation", Ocean Engineering, Vol. 4, pp. 141-147, Pergamon Press, Great
Britain, 1977.

4. Kretschmer, T.R., Edgerton, G.A., Black, S.A., Albertsen, N.D.,
"Seafloor Construction Experiment, SEACON II: An Instrumented Tri-Moor
for Evaluating Undersea Cable Structure Technology", Technical Report
R-848, Civil Engineering Laboratory, Naval Construction Battalion Centet,
Port Hueneme, CA, December 1976.

5. Mazel, C.H., "Vortex-Excited Vibrations of Marine Cables", Mass-
achusetts Institute of Technology, Master of Science Thesis, Department
of Ocean Engineering, May 1976.

6. Pattison, J.H., "Measurement Technique to Obtain Strumuing Char-
acteristics of Model Mooring Cables in Uniform Currents", Report SPD-
766-01, David W. Taylor Naval Ship Research and Development Center,
April 1977.

7. Pham, T.Q., "Evaluation of the Performance of Various Strumming
Suppression Devices on Marine Cables", Massachusetts Institute of Tech-
nology, Master of Science Thesis, Department of Ocean Engineering,
February 1977.

8. Ramberg, S.E., Griffin, O.M., "The Effects of Vortex Coherence,
Spacing, and Circulation on the Flow-Induced Forces on Vibrating Cables
and Bluff Structures", NRL Report 7945, Naval Research Laboratory,
January 1976.

9. Skop, R.A., Griffin, O.M., Ramberg, S.E,., "SEACON I Struming
Predictions", NRL Memorandum Report 3383, Naval Research Laboratory,
Washington, D.C., October 1976.

10. Softley, E.J., Dilley, J.F., Rogers, D.A., "An Experiment to
Correlate Strumming and Fishbite Events on Deep Ocean Moorings", GE
Document No. 77SDR2181, General Electric: Re-Entry and Environmental
Systems Division, 1977.

11. Vandiver, J.K., azel, C.H., "A Field Study of Vortex-Excited
Vibrations of Marine Cables", Proceedings: 1976 Offshore-Technology
Conference, Paper Number OTC 2491, Houston, MAy 1976.

20


