





# **DISCLAIMER NOTICE**

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.



#### PREFACE

This report is prepared under guidance contained in the <u>Recommended</u> <u>Guidelines for Safety Inspection of Dams</u>, for Phase I Investigations. Copies of these guidelines may be obtained from the Department of the Army, Office of Chief of Engineers, Washington, D.C. 20314.

The purpose of a Phase I investigation is to identify expeditiously those dams which may pose hazards to human life or property. The assessment of the general condition of the dam is based upon visual observations and review of available data. Detailed investigations and analyses involving topographic mapping, subsurface investigations, material testing, and detailed computational evaluations are beyond the scope of a Phase I investigation; however, the inspection is intended to identify any need for such studies which should be performed by the owner.

In reviewing this report, it should be realized that the reported condition of the dam is based on observations of field conditions at the time of inspection along with data available to the inspection team. In cases where the reservoir was lowered or drained prior to inspection, such action, while improving the stability of the dam, removes the normal load on the structure and may obscure certain conditions which might otherwise be detectable if inspected under the normal operating environment of the structure.

It is important to note that the condition of the dam depends on numerous and constantly changing internal and external factors which are evolutionary in nature. It would be incorrect to assume that the present condition of the dam will continue to represent the condition of the dam at some point in the future. Only through frequent inspections can unsafe conditions be detected and only through continued care and maintenance can these conditions be prevented or corrected.

Phase I inspections are not intended to provide detailed hydrologic and hydraulic analyses. In accordance with the established Guidelines, the spillway design flood is based on the estimated "Probable Maximum Flood" for the region (greatest reasonably possible storm runoff), or fractions thereof. The spillway design flood provides a measure of relative spillway capacity and serves as an aid in determining the need for more detailed hydrologic and hydraulic studies, considering the size of the dam, its general condition and the downstream damage potential.

The assessment of the conditions and recommendations was made by the consulting engineer in accordance with generally and currently accepted engineering principles and practices.

i

PACW31-80-C-0022

Ë,

This document has been approved for public release and sale; its distribution is unlimited.

......

National Dan Inspection Program. Bear Rock Number : David (NDJ I.D. Number PA-0443, DER I.D. Number 11-3) Onio River Essen, Bear Pork Run, Cambris County Former/Vania. Phise I Insportion Reportal PHASE I REPORT NATIONAL DAM INSPECTION PROGRAM Lawrence D. Andersen

NAME OF DAM: Bear Rock No. 2 Dam STATE LOCATED: Pennsylvania COUNTY LOCATED: Cambria STREAM: Bear Rock Run SIZE CLASSIFICATION: Intermediate HAZARD CLASSIFICATION: High OWNER: Highland Sewer and Water Authority DATE OF INSPECTION: November 13 and December 28, 1979

ASSESSMENT: Based on the evaluation of the existing conditions, the condition of Bear Rock No. 2 Dam is considered to be unsafe/nonemergency.due to the seriously inadequate spillway capacity.

The structural condition of the embankment is considered to be good.

The crest and downstream face of the dam were found to be covered with brush and trees which require clearing. No signs of structural distress were observed.

The operational condition of the blow-off valve was not observed. It is therefore recommended that the operational condition of the blow-off valve should be immediately assessed and necessary maintenance performed if required. The flow through the outlet pipes is controlled by valves located downstream of the dam which cause the pipes to be under pressure through the embankment. In view of this condition, concern exists as to the effect of a rupture of these pipes on the embankment stability. Therefore, means for providing upstream control should be developed.

The spillway capacity was evaluated according to the recommended procedure and was found to pass 30 percent of the probable maximum flood (PMF) without overtopping the embankment. This capacity is less than the recommended spillway capacity of full PMF according to the size and hazard classification of the dam. Furthermore, because the spillway capacity is less than 50 percent of the PMF and it was found that failure of the dam due to overtopping would cause failure of Bear Rock No. 1 Dam downstream and the combined discharge would significantly increase the downstream hazard of loss of life compared to that which would exist just before failure, the spillway is considered to be seriously inadequate.

The following recommendations should be implemented immediately or on a continuing basis:

11/12 1

- 1. The owner should immediately retain a professional engineer to conduct additional studies to more accurately ascertain the spillway capacity and the nature and extent of improvements required to provide adequate spillway capacity.
- The operational condition of the blow-off valve should be evaluated and necessary maintenance performed. A means for providing upstream control to the outlet pipes should be developed.
- 3. Brush and trees on the crest and downstream slope of the dam should be cleared.
- 4. Around-the-clock surveillance should be provided during unusually heavy runoff and a formal warning system developed to alert the downstream residents in the event of emergencies. It is also recommended that the owner take necessary measures to improve the accessibility of the site during high flows.
- 5. The dam and appurtenant structures should be inspected regularly and necessary maintenance should be performed.

AREGISTER 3 PROFESSIONAL Lawrence D. Andersen ENGINEER No. 17458-E NNSY HILLING THE Accessist of tor NTIL U . 1 D1.0 T13 Unit in a stad Jug By Dist 1 Avoi .71 Dist 31:0 11

Lawrence D. Andersen, P.E. Vice President

<u>March 5, 1980</u> Date

Approved by:

JAMES W. PECK Colonel, Corps of Engineers District Engineer

1980

iii

BEAR ROCK NO. 2 DAM NDI T.D. PA-541 NOVEMBER 13, 1979



Upstream Face



Downstream Face

# TABLE OF CONTENTS

|                                                     | PAGE |
|-----------------------------------------------------|------|
| SECTION 1 - PROJECT INFORMATION                     | 1    |
| 1.1 General                                         | 1    |
| 1.2 Description of Project                          | 1    |
| 1.3 Pertinent Data                                  | 2    |
| SECTION 2 - DESIGN DATA                             | 4    |
| 2.1 Design                                          | 4    |
| 2.2 Construction                                    | 5    |
| 2.3 Operation                                       | 5    |
| 2.4 Other Investigations<br>2.5 Evaluation          | 5    |
|                                                     | ,    |
| SECTION 3 - VISUAL INSPECTION                       | 7    |
| 3.1 Findings                                        | 7    |
| 3.2 Evaluation                                      | 8    |
| SECTION 4 - OPERATIONAL FEATURES                    | 9    |
| 4.1 Procedure                                       | 9    |
| 4.2 Maintenance of the Dam                          | 9    |
| 4.3 Maintenance of Operating Facilities             | 9    |
| 4.4 Warning System                                  | 9    |
| 4.5 Evaluation                                      | 9    |
| SECTION 5 - HYDRAULICS AND HYDROLOGY                | 10   |
| 5.1 Evaluation of Features                          | 10   |
| SECTION 6 - STRUCTURAL STABILITY                    | 12   |
| 6.1 Evaluation of Structural Stability              | 12   |
| SECTION 7 - ASSESSMENT AND RECOMMENDATIONS/PROPOSED |      |
| REMEDIAL MEASURES                                   | 14   |
| 7.1 Dam Assessment                                  | 14   |
| 7.2 Recommendations/Remedial Measures               | 14   |

•

影会

1914 A.

ار خود الم

~ ~

. 500

d

# TABLE OF CONTENTS (Continued)

5

APPENDIX A - CHECKLIST, VISUAL INSPECTION, PHASE I APPENDIX B - CHECKLIST, ENGINEERING DATA, DESIGN, CONSTRUCTION, OPERATION, AND HYDROLOGIC AND HYDRAULIC, PHASE I APPENDIX C - PHOTOGRAPHS APPENDIX D - HYDROLOGY AND HYDRAULICS ANALYSES APPENDIX E - PLATES APPENDIX F - REGIONAL GEOLOGY

WAR 28. 42 10

A CONTRACT DIA

PHASE I REPORT NATIONAL DAM INSPECTION PROGRAM BEAR ROCK NO. 2 DAM NDI I.D. PA-441 DER I.D. 11-3

> SECTION 1 PROJECT INFORMATION

1.1 General

a. <u>Authority</u>. The inspection was performed pursuant to the authority granted by The National Dam Inspection Act, Public Law 92-367, to the Secretary of the Army, through the Corps of Engineers, to conduct inspections of dams throughout the United States.

b. <u>Purpose</u>. The purpose of this inspection is to determine if the dam constitutes a hazard to human life or property.

#### 1.2 Description of Project

a. Dam and Appurtenances. Bear Rock No. 2 Dam consists of an earth embankment approximately 760 feet long with a maximum height of about 42 feet from the downstream toe and a crest width of about 6 feet. The crest and upstream and downstream faces of the dam are covered with riprap. The flood discharge facilities of the dam consist of a rectangular stone masonry overflow spillway located on the left abutment (looking downstream). The spillway is 33 feet wide and about 4 feet deep at the control section and uniformly coverges into the spillway discharge channel. The spillway discharge channel is a stone masonry chute, which terminates at a plunge pool. A dike along the right side of the spillway discharge channel is provided to prevent flow towards the toe of the dam. The outlet facilities consist of a 16-inch cast-iron blow-off pipe and a 12-inch cast-iron supply pipe. Flows through these pipes are controlled by values located in the downstream value chamber. The 16-inch blow-off pipe constitutes the emergency drawdown facility for the reservoir.

b. Location. The dam is located on Bear Rock Run, a tributary of Little Conemaugh River, immediately upstream of Bear Rock No. 1 Dam, about two miles east of Lilly in Washington Township, Cambria County, Pennsylvania. Plate 1 illustrates the location of the dam.

c. <u>Size Classification</u>. Intermediate (based on 42-foot height and 130 acre-feet maximum storage capacity). d. <u>Hazard Classification</u>. The dam is classified to be in the high hazard category. Bear Rock Run flows through the town of Lilly approximately 2-1/2 miles downstream from the dam. It is estimated that failure of the dam would result in the failure of the downstream dam and combined discharge would cause large loss of life and property damage in the town of Lilly.

e. <u>Ownership</u>. Highland Sewer and Water Authority (address: Mr. Charles MacDonald, Manager, 400 Luray Avenue, Johnstown, Pennsylvania 15904).

f. Purpose of Dam. Water supply.

g. Design and Construction History. The dam was designed and constructed by Pennsylvania Railroad Company in 1904.

h. Normal Operating Procedure. The reservoir is normally maintained at Elevation 2400, the level of the uncontrolled spillway. When the lake is at or above the spillway level, inflow is discharged through the uncontrolled spillway.

1.3 Pertinent Data

| 8. | Dra | inage | Area |
|----|-----|-------|------|
|    |     |       |      |

1.4 square miles

2404.4 (measured

2404.5 (as designed)

low spot)

2404.4

2400

2370+

2350+

2362+

Unknown

b. Discharge at Dam Site (cfs)

Maximum known flood at dam siteUnknownOutlet conduit at maximum pool20Gated spillway capacity at maximum poolNot applicableUngated spillway capacity at maximum pool858Total spillway capacity at maximum pool858

c. Elevation (USGS Datum) (feet)

Top of dam

Maximum pool Normal pool Upstream invert outlet works Downstream invert outlet works Maximum tailwater Toe of dam

d. Reservoir Length (feet)

Normal pool level900Maximum pool level950 (estimated)

| e. | Storage (acre-feet)       |                   |
|----|---------------------------|-------------------|
|    | Normal pool level         | 92                |
|    | Mercinum pool lovel       | 130               |
|    | Maximum poor rever        | 130               |
| f. | Reservoir Surface (acres) |                   |
|    | Normal pool level         | 7.4               |
|    | Maximum pool level        | 9.7 <u>+</u>      |
| g. | Dam                       |                   |
|    | Туре                      | Earth             |
|    | Length                    | 760 feet          |
|    | Height                    | 42 feet           |
|    | Top width                 | 6 feet            |
|    | Side slopes               | Downstream:       |
|    |                           | 2H:1V; Upstream:  |
|    |                           | 2H: 1V            |
|    | Zoning                    | No                |
|    | Impervious core           | Yes               |
|    | Cutoff                    | Yes               |
|    | Grout curtain             | No                |
| h. | Regulating Outlet         |                   |
|    | Туре                      | 16-inch cast-     |
|    |                           | iron pipe         |
|    | Length                    | 250+ feet         |
|    | Closure                   | Gate valves       |
|    | Access                    | Downstream valve  |
|    |                           | chamber           |
|    | Regulating facilities     | Gate valve        |
| i. | Spillway                  |                   |
|    | Туре                      | Rectangular stone |
|    | · ·                       | masonry channel   |
|    | Length                    | 33 feet (perpen-  |
|    |                           | dicular to flow)  |
|    | Crest elevation           | 2400              |
|    | Upstream channel          | Lake              |
|    | Downstream channel        | Rectangular stone |
|    |                           | masonry channel   |

. . .

ŝ

1

ž

#### SECTION 2 DESIGN DATA

2.1 Design

a. <u>Data Available</u>. The available information was provided by the Commonwealth of Pennsylvania, Department of Environmental Resources (PennDER). The information includes correspondence, state inspection reports, and design drawings.

(1) <u>Hydrology and Hydraulics</u>. No design information is available. A state report entitled, <u>Report Upon the Application of</u> <u>the Summit Water Supply Company</u>, dated May 10, 1937, gives the design capacity of the spillway used for the 1937 enlargement of the spillway.

(2) <u>Embankment</u>. Available information consists of limited design drawings.

(3) <u>Appurtement Structures</u>. The available information consists of limited design drawings.

b. Design Features

(1) <u>Embankment</u>. Plate 2 shows the plan of the embankment and the reservoir. As shown in Plate 3, the embankment consists of compacted clay beneath the upstream and downstream slopes and a central puddle clay core wall. The dimensions of the puddle clay core wall are shown to be 12 feet at the crest level of the dam, increasing to a width of 16 feet at the original ground surface, and reducing to a 14-foot width at the bottom of the cutoff trench. As shown in the valley cross section in Plate 3, the puddle clay core wall was extended 20 to 30 feet below the original ground surface and into the abutments beyond the limits of the embankment and the spillway.

As designed, the embankment slopes were 2 horizontal to 1 vertical on both the upstream and downstream faces. The design provided an 18-inch-thick layer of riprap on both faces and the crest of the dam for erosion protection.

(2) <u>Appurtement Structures</u>. The appurtement structures of the dam consist of an uncontrolled overflow spillway located near the left abutment and outlet works at the center of the dam.

The plan and a typical cross section of the spillway are shown in Plates 2 and 4, respectively.

4

A LAND DO NO.

As shown in Plate 3, the outlet facilities consist of a 16-inch cast-iron blow-off pipe and a 12-inch supply line. The pipes are shown to enter the embankment, passing through a 3-foot-thick masonry wall. In the upstream portion of the dam, the pipes are located through the fill, but enter a cut trench at about the midpoint of the embankment, and then emerge from the toe of the dam at a level about 2 to 3 feet below the original ground surface. Design drawings indicate that the design provided no provisions to prevent leakage along the pipes, such as cutoff collars, other than the masonry wall located on the upstream end of the pipe.

c. Design Data

(1) <u>Hydrology and Hydraulics</u>. The 1937 state report indicates that the spillway improvements undertaken at that time were based on a spillway design capacity of 1100 cfs.

(2) <u>Embankment</u>. Other than limited design drawings, no engineering data are available on the design of the embankment.

(3) <u>Appurtenant Structures</u>. No design calculations are available for the appurtenant structures.

2.2 <u>Construction</u>. Very limited information is available on the construction of the dam. A 1914 state report indicates that the embankment material was placed in thin layers, wetted, and rolled with a horse roller.

Other than the placement of one foot of additional fill on the dam creat for the purpose of increasing the spillway capacity in 1937, no other post-construction changes are reported.

2.3 Operation. No operating records have been kept for the dam.

2.4 Other Investigations. None reported.

2.5 Evaluation

a. <u>Availability</u>. The available information was provided by the Commonwealth of Pennsylvania, Department of Environmental Resources.

b. Adequacy

(1) <u>Hydrology and Hydraulics</u>. The available information consists of the design discharge capacity of the spillway. This information is not considered to be sufficient to assess the adequacy of the spillway.

(2) Embankment. The dam was apparently constructed according to the design drawings. In view of the age of the dam, completed in 1904, the design approach and construction techniques are not likely to be in conformance with currently accepted engineering practices. The design lacks such considerations as embankment slope stability, seepage analyses, and other quantitative data to aid in the assessment of the adequacy of the design. However, the design includes such components as a core wall and a cutoff wall extending to impervious foundation material and slope protection.

(3) <u>Appurtenant Structures</u>. Review of the spillway design drawings indicates that no significant design deficiencies exist that would affect the overall performance of these structures. As for the outlet works, the available information indicates that the design incorporated no special provisions, such as cutoff collars, to control seepage along these pipes, which raises some concern relative to the adequacy of the design to prevent seepage along these pipes. However, no seepage has been reported along these pipes in the past and none was observed at this time, indicating that backfilling around the pipes was adequate to prevent seepage along these pipes.

#### SECTION 3 VISUAL INSPECTION

#### 3.1 Findings

a. <u>General</u>. The on-site inspection of Bear Rock No. 2 Dam consisted of:

- 1. Visual inspection of the embankment, abutments, and embankment toe.
- 2. Visual examination of the spillway structures.
- 3. Evaluation of downstream area hazard potential.

The specific observations are illustrated in Plate 5.

b. <u>Embankment</u>. The general inspection of the embankment consisted of searching for indications of structural distress, such as cracks, subsidence, bulging, wet areas, seeps and boils, and observing general maintenance conditions, vegetative cover, erosion, and other surficial features.

The embankment was found to be in good condition. Bulges observed in the downstream slope riprap appear to be due to surficial effects, and therefore are not considered to be significant. A wet area observed along the toe of the dam near the right abutment is also considered to be insignificant relative to the overall performance of the embankment. The crest and downstream faces of the dam were covered with trees and brush up to 10 feet high which require clearing.

The top of the dam was surveyed relative to the spillway crest level and was found to be at or slightly above the design crest elevation, assuming the design crest level to be 4.5 feet above the spillway crest elevation. The crest of the dam is illustrated in Plate 6. Several measurements taken along the downstream slope indicated the slope is reasonably within the design slope of 2 horizontal to 1 vertical.

c. Appurtenant Structures. The spillway structures were examined for deterioration or other signs of distress and obstructions that would limit flow. The spillway structures were found to be in good condition. For the outlet structures, the only visible portion was the downstream end of the blow-off pipe. The operational condition of the blow-off valve was not observed.

d. <u>Reservoir Area</u>. A map review indicates that the watershed is predominantly covered by woodlands. A review of the regional geology (Appendix F) indicates that the shorelines of the reservoir are not likely to be susceptible to massive landslides, which would affect the storage volume of the reservoir.

e. <u>Downstream Channel</u>. Discharge from the dam flows into the reservoir of Bear Rock No. 1 Dam, which in turn discharges into Bear Rock Run. Bear Rock Run flows through an uninhabited valley for about two miles where it enters residential areas of the town of Lilly. It is estimated that in excess of 20 houses are located within the potential flood plain of Bear Rock Run in the event of a dam failure. Further description of the downstream conditions is included in Section 1.2d.

3.2 <u>Evaluation</u>. The condition of the embankment and spillway structures is considered to be good. The condition of the outlet facilities could not be assessed.

### SECTION 4 OPERATIONAL FEATURES

4.1 <u>Procedure</u>. There are no formal operating procedures for the dam. The reservoir is normally maintained at the uncontrolled spillway crest level with excess inflow discharging over the spillway.

4.2 <u>Maintenance of the Dam</u>. The maintenance of the embankment is considered to be poor. The crest and downstream face of the dam are covered with trees and brush up to 10 feet high.

4.3 <u>Maintenance of Operating Facilities</u>. The only visible portions of the outlet facilities were the downstream end of the 16-inch cast-iron blow-off pipe. The operational condition of the blow-off valve was not observed.

4.4 <u>Warning System</u>. No formal warning system exists for the dam. The dam is accessible via a two-mile jeep trail which is in poor condition. Bear Rock Run crosses the jeep trail at two locations. It is estimated that during severe weather conditions, the trail will not be passable. Telephone communication facilities are available via residences located about one mile downstream from the dam.

4.5 <u>Evaluation</u>. The maintenance of the dam is considered to be poor. It is recommended that the brush and trees on the downstream face of the dam be cleared and that the operational condition of the blow-off valve should be evaluated. It is also recommended that the owner take necessary measures to improve the accessibility of the dam site.

#### SECTION 5 HYDRAULICS AND HYDROLOGY

#### 5.1 Evaluation of Features

a. <u>Design Data</u>. Bear Rock No. 2 Dam has a watershed area of 1.4 square miles and impounds a reservoir with a surface area of 7.4 acres at normal pool level. The flood discharge facilities for the dam consist of a 33-foot-wide rectangular channel located on the left abutment. The capacity of the spillway was determined to be 858 cfs.

b. <u>Experience Data</u>. As previously stated, Bear Rock No. 2 Dam is classified to be an intermediate dam in the high hazard category. Under the recommended criteria for evaluating spillway discharge capacity, such impoundments are required to pass full PMF.

The PMF inflow hydrograph for the reservoir was determined utilizing the Dam Safety Version of the HEC-1 computer program developed by the Hydrologic Engineering Center of the U.S. Army, Corps of Engineers. Data used for the computer analysis are presented in Appendix D. The inflow hydrographs were found to have peak flows of 2822 cfs and 1411 cfs for full and 50 percent of the PMF, respectively. Computer input and a summary of computer output are also included in Appendix D.

c. <u>Visual Observations</u>. On the date of inspection, no conditions were observed that would indicate that the capacity of the spillway would be significantly reduced in the event of a flood.

d. <u>Overtopping Potential</u>. Various percentages of the PMF inflow hydrograph were routed through the reservoir and it was found that the spillway can pass 30 percent of the PMF without overtopping the low spot on the embankment. For 50 percent PMF, a low spot on the crest would be overtopped for a duration of 4.3 hours with a maximum depth of 0.55 foot. For full PMF, the overtopping duration would be 8.7 hours with a maximum depth of overtopping of 1.1 feet.

e. <u>Spillway Adequacy</u>. Since the spillway cannot pass the recommended spillway design flood of full PMF without overtopping the embankment, the spillway is classified to be inadequate according to the recommended criteria. A breach analysis was conducted to determine if the spillway is seriously inadequate; that is, if dam failure resulting from overtopping would significantly increase loss of life and property damage from that which would exist just before

overtopping failure. The results of the dam break analysis and the valley cross sections used for flood routing are included in Appendix D. It was found that failure of Bear Rock No. 2 Dam would in turn cause the failure of Bear Rock No. 1 Dam downstream. Therefore, for evaluating flood stages downstream of Bear Rock No. 1 Dam, breach discharges from both dams were considered.

Review of the flood stages in the potential damage area before and after failure indicates that flood stages would be raised by about 2 feet due to a dam failure, which is considered to be a significant increase in damage potential. Therefore, the spillway is classified to be seriously inadequate.

Construction of the second second

 $\bigcirc$ 

#### SECTION 6 STRUCTURAL STABILITY

#### 6.1 Evaluation of Structural Stability

#### a. Visual Observations

(1) <u>Embankment</u>. As discussed in Section 3, the field observations did not reveal any signs of distress that would significantly affect the performance of the embankment.

(2) <u>Appurtemant Structures</u>. The structural performance of the spillway structures is considered to be satisfactory. Because no portion of the outlet works except the downstream end of the blowoff pipe was visible, no conclusions were reached as to the structural adequacy of the outlet facilities. Flow through the outlet pipes is controlled by valves located on the downstream side; thus the pipes are always under pressure through the embankment. In view of this condition and since no design information is available to assess the structural adequacy of the outlet facilities, it is considered advisable that the structural adequacy of the outlet pipe be evaluated and a means for placing an upstream control on these pipes be developed.

#### b. Design and Construction Data

(1) Embankment. The dam was constructed in 1904 when limited understanding of geotechnical behavior of earth structures existed. Consequently, available design and construction information does not provide any quantitative data to aid in the assessment of stability. Since the embankment design lacks a positive internal drainage system, some concern exists as to the location of the phreatic surface through the embankment as it affects the stability of the embankment. However, at this time, no signs were observed that would indicate the phreatic surface is intersecting the downstream slope of the dam. As previously noted, the dam appears to have been constructed adequately and has performed satisfactorily since its construction. Therefore, based on visual observations, the static stability of the dam is considered to be adequate.

(2) <u>Appurtemant Structures</u>. Other than limited design drawings, no design and construction data are available for the appurtemant structures.

c. <u>Operating Records</u>. The structural stability of the dam is not considered to be affected by the operational features of the dam. d. <u>Post-Construction Changes</u>. In 1937, one foot of additional fill was placed on the dam crest to increase the spillway capacity.

e. <u>Seismic Stability</u>. The dam is located in Seismic Zone 1, and based on visual observations, the static stability of the dam appears to be adequate. Therefore, based on the recommended criteria for evaluation of seismic stability of dams, the structure is presumed to present no hazards from earthquakes.

13

والمراجعة والمحالية

#### SECTION 7 ASSESSMENT AND RECOMMENDATIONS/PROPOSED REMEDIAL MEASURES

7.1 Dam Assessment

a. <u>Assessment</u>. The visual observations indicate that the embankment of Bear Rock No. 2 Dam is in good condition. However, in view of the seriously inadequate spillway capacity, the condition of the dam is assessed to be unsafe/nonemergency.

The spillway capacity was evaluated according to the recommended criteria and was found to pass 30 percent of the PMF without overtopping the embankment. This capacity is less than the recommended spillway capacity of full PMF according to the size and hazard classification for the dam. Further, because the spillway capacity is less than 50 percent of the PMF and it was found that failure of the dam would significantly increase the downstream damage potential, the spillway is classified to be seriously inadequate.

b. <u>Adequacy of Information</u>. The available information, in conjunction with the visual observations, is considered to be sufficient to make the following recommendations.

c. <u>Urgency</u>. The following recommendations should be implemented immediately or on a continuing basis.

d. <u>Necessity for Additional Data</u>. In view of the seriously inadequate spillway capacity, the owner should immediately initiate additional studies to more accurately ascertain the spillway capacity and the extent of improvements required to provide adequate spillway capacity.

7.2 Recommendations/Remedial Measures. It is recommended that:

- 1. The owner should immediately retain a professional engineer to conduct additional studies to more accurately ascertain the spillway capacity and the nature and extent of improvements required to provide adequate spillway capacity.
- 2. The operational condition of the blow-off valve should be evaluated and necessary maintenance performed. A means for providing upstream control to the outlet pipes should be developed.

3. Brush and trees on the crest and downstream slope of the dam should be cleared.

、 */* 

- 4. Around-the-clock surveillance should be provided during unusually heavy runoff and a formal warning system developed to alert the downstream residents in the event of emergencies. It is also recommended that the owner take necessary measures to improve the accessibility of the site during high flows.
- 5. The dam and appurtenant structures should be inspected regularly and necessary maintenance should be performed.

APPENDIX A

1

CHECKLIST VISUAL INSPECTION PHASE I

-----

| APPEN<br>CHECK<br>VISUAL IN<br>FLASI<br>FE OF DAM Bear Rock No. 2 COUNTY Can<br>FF OF DAM Earth Contry Can<br>FF OF DAM Earth November 13, 1979 WEATHER C<br>TE(S) INSPECTION AT TIME OF INSPECTION 2400 M.S<br>DL ELEVATION AT TIME OF INSPECTION 2500 M.S<br>DL ELEVAT |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

Page Al of 9

With the states.

......

|             | -                          |                |                                                          |                                                              | · · · · · · · · · · · · · · · · · · ·                               |                 |
|-------------|----------------------------|----------------|----------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------|-----------------|
|             | REMARKS OR RECOMMENDATIONS |                |                                                          |                                                              |                                                                     |                 |
| EMBANICMENT | OBSERVATIONS               | None           | None                                                     | None                                                         | No perceivable misalignments. See Plate 6 for dam crest<br>profile. | None            |
|             | VISUAL EXAMINATION OF      | SURFACE CRACKS | UNUSUAL MOVEMENT OR<br>CRACKTING AT OR BEYOND<br>THE TOE | SLOUCHIMC OR EROSION OF<br>EMBANKMENT AND ABUTHENT<br>SLOPES | VERTICAL AND HORIZONTAL<br>ALIGNMENT OF THE CREST                   | RIPRAP FAILURES |

VISUAL INSPECTION PHASE I

ļ

ومنافع ومعادية والمتعالية والمتعالية

 Page A2 of 9

12

363

Ê

|            | REMARKS OR RECOMMENDATIONS |                                                              |                                                                                   |                         |        |  |
|------------|----------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------|--------|--|
| EMBANKMENT | OBSERVATIONS               | No signs of distress.                                        | A minor wet area along the toe near the right abutment.<br>No associated seepage. | None                    | None   |  |
|            | VISUAL EXAMINATION OF      | JUNCTION OF EMBANICHENT<br>AND ABUTHENT, SPILLWAY<br>AND DAM | ANY NOTICEABLE SEEPAGE                                                            | STAFF GAGE AND RECORDER | DRAINS |  |

VISUAL INSPECTION PHASE 1

ş

100

1.5 - Containe

Page A3 of 9

Charles and Barner St.

and the second

| ø  |
|----|
| jo |
| ş  |
| ę. |
| ă  |

| _                          |                                                                                              |                  |                  |                   |                                                                                                                  |
|----------------------------|----------------------------------------------------------------------------------------------|------------------|------------------|-------------------|------------------------------------------------------------------------------------------------------------------|
| REMARKS OR RECOMMENDATIONS |                                                                                              |                  |                  |                   | Operational condition of the<br>outlet pipe valve should be<br>evaluated and necessary<br>maintenance performed. |
| ORSERVATIONS               | The outlet pipe is a 16-inch cast-iron pipe. Only the downstream end of the pipe is visible. | Submerged        | None             | An earth channel. | Operation of the outlet pipe was not observed.                                                                   |
| VISUAL EXAMINATION OF      | CRACKING AND SPALLING<br>OF CONCRETE SURFACES IN<br>OUTLET CONDUIT                           | INTAKE STRUCTURE | OUTLET STRUCTURE | OUTLET CHANNEL.   | DAFRGENCY GATE                                                                                                   |

VISUAL INSPECTION PHASE I OUTLET WORKS

Sector Contraction

ţ

|                                                   | REMARKS OR RECOMMENDATIONS |                    |                                          |                                                   |                  |  |
|---------------------------------------------------|----------------------------|--------------------|------------------------------------------|---------------------------------------------------|------------------|--|
| VISUAL INSPECTION<br>PHASE I<br>UNGATED SPIILLMAY | OBSERVATIONS               | In good condition. | Submerged. Appears to be free of debris. | A rectangular masonry channel. In good condition. | None             |  |
|                                                   | VISUAL EXAMINATION OF      | CONCRETE WEIR      | APPROACH CHANNEL                         | DISCHARGE CHANNEL                                 | BRIDGE AND PIERS |  |

1

Same and a strength

And the second sec

į

,

Page A5 of 9

----

| REMARKS OF RECOMMENDATIONS |                |                  |                   |                |                                  |
|----------------------------|----------------|------------------|-------------------|----------------|----------------------------------|
| OBSERVATIONS               | Not applicable | Not applicable   | Not applicable    | Not applicable | Not applicable                   |
| VISUAL EXAMINATION OF      | CONCRETE SILL  | APPROACH CHANNEL | DISCHARGE CHANNEL | BRIDGE PIERS   | GATES AND OFERATION<br>EQUIPHENT |

VISUAL INSPECTION PHASE I GATED SPILLWAY

Strong .

Same Stelling

and the second second

4

1

.

Page A6 of 9

1.2

5. 18 A. 18

.....

ł

| VISUAL EXAMINATION OF  | OBSERVATIONS | REMARKS OR RECOMMENDATIONS |
|------------------------|--------------|----------------------------|
| MONUMENTAT ION/SURVEYS | No Je        | -                          |
| OBSERVATION WELLS      | None         |                            |
| WEIRS                  | None         |                            |
| P1 EZOMET ERS          | None         |                            |
| OTHER                  | None         |                            |

Page A7 of 9

. When the states

-

5

VISUAL INSPECTION PHASE I INSTRUMENTATION

1

A second s

ş

|           |                            |                                                                            |                |                     | <br>a de la companya de l |
|-----------|----------------------------|----------------------------------------------------------------------------|----------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           | REMARKS OR RECOMMENDATIONS |                                                                            |                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| RESERVOIR | OBSERVATIONS               | Gentle to moderately steep. No significant shoreline<br>erosion was noted. | Unknom         | None                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|           | VISUAL EXAMINATION OF      | Sadols                                                                     | SED INENTATION | UPSTREAM RESERVOIRS |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

VISUAL INSPECTION PHASE I

Page A8 of 9

# VISUAL INSPECTION PHASE I DOMNSTREAM CHANNEL

10.02

1.10

Same Sugar

and the second . 、 *.* 

| VISUAL EXAMINATION OF                            | OBSERVATIONS                                                                                                                                                                         | REMARKS OR RECONDIENDATIONS |
|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| CONDITION<br>(OBSTRUCTIONS,<br>DEBRIS, ETC.)     | No apparent obstructions immediately downstream from the dam that would affect the discharge capacity of the spillway.                                                               |                             |
| S34075                                           | No features pertinent to the safety of the dam.                                                                                                                                      |                             |
| APPROXIMATE NUMBER<br>OF HOMES AND<br>POPULATION | The town of Lilly is located approximately 2-1/2 miles<br>downstream from the dam. More than 20 homes are located<br>in the potential flood plain.<br>Population: approximately 200. |                             |
|                                                  |                                                                                                                                                                                      |                             |
|                                                  |                                                                                                                                                                                      |                             |

Page A9 of 9

12

.....

N 191.00

ĥ

## APPENDIX B

1

-

and a she she was been been a

CHECKLIST ENGINEERING DATA DESIGN, CONSTRUCTION, OPERATION AND HYDROLOGIC AND HYDRAULIC PHASE I

> 4-40.00 1.44 15 2004
The dam was designed and constructed by Pennsylvania Railroad Company in 1904. Limited design drawings are available in the state files. REMARKS See Plate 1. See Plate 3. See Plate 3. OUTLETS - PLAN - DETAILS - CONSTRAINTS - DISCHARGE RATINGS TYPICAL SECTIONS OF DAM RECIONAL VICINITY MAP CONSTRUCTION HISTORY AS-BUILT DRAWINGS Hali

APPENDIX B

CHECKLIST ENGINEERING DATA DESIGN, CONSTRUCTION, OPERATION PHASE I

NAME OF DAM BEAT ROCK No. 2

1

-

ID/ NDI I.D. PA-441 DER I.D. 11-3

Page B1 of 5

CHECKLIST ENCINFERING DATA DESIGN, CONSTRUCTION, OPERATION PHASE I

-----

The State of the Art

| ITEN                                                                              | REMARKS       |
|-----------------------------------------------------------------------------------|---------------|
| RAINFALL/RESERVOIR RECORDS                                                        | Not available |
| DESIGN REPORTS                                                                    | Not available |
| CEOLOCY REPORTS                                                                   | Not available |
| DESIGN COMPUTATIONS<br>HYDROLOCY & HYDRAULICS<br>Dam Stability<br>SEEPACE STUDIES | Not available |
| MATERIALS INVESTICATIONS<br>Boring Records<br>Laboratory<br>Field                 | Not available |

Page B2 of 5

32

ł

CHECKLIST FNCINFFRING DATA DESIGN, CONSTRUCTION, OPENATION PHASE I

1

| 17.04                            | REVARKS                                                   |
|----------------------------------|-----------------------------------------------------------|
| POST CONSTRUCTION SURVEYS OF DAM | None reported                                             |
| BORROW SOURCES                   | Unknown                                                   |
| MONITORING SYSTEMS               | None                                                      |
| MODIFICATIONS                    | In 1937, the crest of the dam was reshaped (see Flate 4). |
| HICH POOL RECORDS                | Nrt recorded                                              |

Page B3 of 5

CHECKLIST ENCINEERING DATA DESIGN, CONSTRUCTION, OPERATION PHASE I

| ItBK                                                        | RPAARS         |
|-------------------------------------------------------------|----------------|
| POST CONSTRUCTION ENCINEERING<br>STUDLES AND REPORTS        | None reported  |
| PRIOR ACCIDENTS OR FAILURE OF DAN<br>Description<br>Reports | None reported  |
| MAINTENANCE<br>OPERATION RECORDS                            | Not maintained |
| SPILLMAY PLAN<br>Sections<br>Details                        | See Plate 3.   |
| OPERATING EQUIPHENT<br>PLANS AND DETAILS                    | Not available  |

Page B4 of 5

1 de

- 34

### CHECKLIST ENGINEERING DATA HYDROLOGIC AND HYDRAULIC

DRAINAGE AREA CHARACTERISTICS: 1.4 square miles ELEVATION, TOP OF NORMAL POOL AND STORAGE CAPACITY: 2400 (92 acre-feet) ELEVATION, TOP OF FLOOD CONTROL POOL AND STORAGE CAPACITY: 2404.4 (130 acre-feet) ELEVATION, MAXIMUM DESIGN POOL: 2404.5 (design dam crest level) ELEVATION, TOP OF DAM: 2404.4 (measured low spot) SPILLWAY: a. Elevation 2400 b. Type Concrete overflow c. Width 33 feet d. Length Not applicable e. Location Spillover Adjacent to spillway f. Number and Type of Gates None OUTLET WORKS: a. Type 16-inch cast-iron pipe b. Location Center of embankment c. Entrance Inverts 2370+ d. Exit Inverts 2350± e. Emergency Drawdown Facilities 16-inch pipe HYDROMETEOROLOGICAL GAGES: a. Type None b. Location None c. Records None MAXIMUM NONDAMAGING DISCHARGE: 850± cfs (spillway capacity)

Page B5 of 5

APPENDIX C PHOTOGRAPHS

.....

10000

Chairman and

5

.....

49 Y. M

LIST OF PHOTOGRAPHS BEAR ROCK NO. 2 DAM NDI I.D. PA-441 NOVEMBER 13, 1979

### PHOTOGRAPH NO.

200

للمستغنسة باللال

تبرك فكفيط معرانية ومنبار كرمهم كالأركين

and the second secon

-----

and a second second

### DESCRIPTION

- Ula Maria

ANTER LANCE

| 1 | Crest (looking west).                               |
|---|-----------------------------------------------------|
| 2 | Spillway crest and approach channel.                |
| 3 | Spillway crest and discharge channel.               |
| 4 | Spillway plunge pool.                               |
| 5 | Blow-off pipe (16-inch diameter) and valve chamber. |
| 6 | Bear Rock No. 1 Dam (0.1 mile<br>downstream).       |



Photograph No. 1 Crest (looking west).



Photograph No. 2 Spillway crest and approach channel.



Photograph No. 3 Spillway crest and discharge channel.



Photograph No. 4 Spiilway plunge pool.



Photograph No. 5 Blow-off pipe (16-inch diameter) and valve chamber.



Photograph No. 6 Bear Rock No. 1 Dam (0.1 mile downstream).

The second s

### APPENDIX D Hydrology and hydraulics analyses

يرغ الأحريب

A CONTRACTOR OF A CONTRACT OF A CONTRACT

A Review

والمتعادية والمتحد والمتحدة والمتحاط والمتحافظ والمتحافظ والمعادية والمستحد والمستحد والمعادية

### HYDROLOGY AND HYDRAULIC ANALYSIS DATA BASE

NAME OF DAM: Bear Rock No. 2 Dam (NDI I.D. PA-441)

| CTATION                                    |           | 2                                     |                              | 4                      |                          |
|--------------------------------------------|-----------|---------------------------------------|------------------------------|------------------------|--------------------------|
| 51411UN                                    |           | · · · · · · · · · · · · · · · · · · · |                              |                        | ·                        |
| Station Description                        | Reservoir | Dam                                   | Bear Rock No. 1<br>Reservoir | Bear Rock No. 1<br>Dam | Downstream<br>Routing(6) |
| Drainage Area (aquare miles)               | 1.42      | -                                     | 0.55                         | -                      | •                        |
| Cumulative Drainage Area<br>(square miles) | 1.42      | 1.42                                  | 1.97                         | 1.97                   | -                        |
| Adjustment of PHF for<br>Drainage Area (%) | Zone 7    |                                       | Zone 7                       |                        |                          |
| 6 Hours                                    | 102       | -                                     | 102                          | -                      | -                        |
| 12 Hours                                   | 120       | -                                     | 120                          | -                      | -                        |
| 24 Hours                                   | 130       | -                                     | 130                          | -                      | -                        |
| 48 Hours                                   | 140       | -                                     | 140                          | -                      | -                        |
| 72 Hours                                   | -         | -                                     | -                            | -                      | -                        |
| Snyder Hydrograph<br>Parameters            |           |                                       |                              |                        |                          |
| Zone <sup>(3)</sup>                        | 24        | -                                     | 24                           | -                      | -                        |
| $c_{p}/c_{t}^{(4)}$                        | 0.45/1.60 | -                                     | 0.45/1.60                    | -                      | -                        |
| L (miles) <sup>(5)</sup>                   | 2.3       | -                                     | 1.4                          | -                      | -                        |
| L <sub>ca</sub> (miles) <sup>(5)</sup>     | 0.9       | -                                     | 0.8                          | -                      | -                        |
| $t_p = C_t (L \cdot L_{ca})^{0.3}$ (hours) | 2.0       | -                                     | 1.66                         | -                      | -                        |
| Spillway Data                              |           |                                       |                              |                        |                          |
| Crest Length (ft)                          | -         | 33.2                                  | -                            | 53.0                   | -                        |
| Freeboard (ft)                             | -         | 4.0                                   | -                            | 4.0                    | -                        |
| Discharge Coefficient                      | -         | 2.8                                   | -                            | 3.1                    | -                        |
| Exponent                                   | -         | 1.5                                   | -                            | 1.5                    | -                        |

### PROBABLE MAXIMUM PRECIPITATION (PMP) = \_\_\_\_\_\_ INCHES/24 HOURS<sup>(1)</sup>

(1) Hydrometeorological Report 33 (Figure 1), U.S. Army, Corps of Engineers, 1956.

(2) Hydrometeorological Report 33 (Figure 2), U.S. Army, Corps of Engineers, 1956.

(3) Hydrological zone defined by Corps of ingineers, Baltimore District, for determining Snyder's Coefficients (C<sub>p</sub> and C<sub>t</sub>).
 (4) Snyder's Coefficients.

(5) L = Length of longest water course from outlet to basin divide.
 L \_ Length of water course from outlet to point opposite the centroid of drainage area.
 (6) See Pages D8 through D18.

|                  |          | STORAGE VS. ELEVAIL            |                            |                        |
|------------------|----------|--------------------------------|----------------------------|------------------------|
| ELEVATION        | AH, FEET | AREA<br>(ACRES) <sup>(1)</sup> | AVOLUME<br>(ACRE-FEET) (2) | STORAGE<br>(ACRE-FEET) |
| 2420.0           | 15.5     | 17.5                           | 207.8                      | 333.8                  |
| 2404.5           |          | 9.7 <sup>(4)</sup>             |                            | 130.5                  |
| 2400.0           | 4.3      | 7.4                            | 38,4                       | 92.1                   |
| Reservoir Bottom | 37.5     | -                              | 92,1 <sup>(3)</sup>        | 0                      |

STORAGE VS. ELEVATION

(1) Planimetered from USGS maps.

(2)  $\Delta \text{Volume} = \Delta H/3 (A_1 + A_2 + \sqrt{A_1 A_2}).$ (3) From PennDER files.

(4) Linearly interpolated.

PAGE D1 of 13

### PAGE D2 of 13

## PLAN 2 - OVERTOPPING ANALYSIS AND DOWNSTREAM ROUTING

# COMPUTER INPUT: PLAN 1 - DAM BREAK ANALYSIS AND DOWNSTREAM ROUTING

13

2120.0 2220.0 υ OF SWYDER INFLOW HYDRUGRAPH IO BEAR PGCK '2 RESERVOIR(UPPER) 1.42 1.42 r.co81 PROJECT NO. 79-543-07 SYVDER !!!!!! НҮРВ GRAPH\_FLOOD ROUTING AND DAM OVERTOPPING ANALYSES Hear Rock No.4 Dam/cambria county.ndi-1.D.Pa.439 Project No.79-for 2.15,4.15,5.5,5.75,817,917,915,8ND 1(UX PMF 1 0 0 0 CMANNEL ROUTING USING MODIFIED PLUS: REACH 1-2(MILE 0.04 TO 0.28) CHANNEL ROUTING USING MODIFIED PLUS: REACM 2-3(MILE 0.28 TO 0.70) 1 1 143.0 143.0 ROUTING FLOW INROUGH BEAR ROCK NO.1 DAP (LOWER)(NDI-1.D.PA.439) ROUTING FLOW THROUGH BEAR ROCK NO.2 DAP (NDI-I.D.PA.441)(UPPER) 0.045 2120.0 2139.0 2218.00.045094 63.0 2130.0 125.0 2121.0 127.0 2120.C 2220.C .03 2220.0 2239.0 1267.00.078914 2230.0 125.0 2221.0 127.0 2230.0 295.9 2239.0 760.0 2405.0 • • -2344.0 -2400.0 566.0 2348.4 2344.0 2348.1 680.0 2404.9 2404.5 140 1.00 2410.0 550.0 2404.8 2400.0 (. . . ) 13.0 2400.0 1.5 560.0 460.0 2348.3 338.3 2420.0 1.5 760.0 457.0 2404.7 120 0.S <u>د.</u> 0.73 0.5 146.5 2360.0 0.045 63.0 220.0 3.1 1.5 410.0 2348.2 2320.0 7**.**50 130.5 2404.5 2.80 1.50 2.80 2.80 2404.6 2352.5 2362.5 50.9 102 2.0 2348.0 CALCULATION ۲ ۲ ۲ 0.F28 2239.C 2221.0 P.C2A 2139.0 2344.0 2344.0 58.0 58.0 3.07 2.10.0 2.348.1 2348.1 92.1 2400.0 53.2 3.08 3.08 3.08 3.08 3.08 20 3.33 23.7 AN SAFETY VENSION JULY 1975 LAST MOLIFICATION 17 JAN " \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* 0.045 145.0 \$\$2323.0 \$\$2344.0 \$02348.0 0.0 0.045 58 100.0 <u>ع</u>ر ا [];- · · 2.C. 0.0 0.0 SV2349.0 \$B 140.0 30.0 \$62362.5 9.694521 \$02404.4 JU 50.0 s 4. 404 ZA 4 0 4 7 77 9 h ī × 2 ł ŝ 2 5 DAY SAFFEY VERSICN 32 3 \$ 533 19 \$0 35 36 37 5 3 \$ 2 5 22 7 : 2 \* 3

COMPUTER INPUT: CONTINUED PAGE D3 of 13

U. 245 1940.6 1954.0 2547.CU.U36652 104.U 1952.0 157.0 1952.0 300.0 1941.0 302.0 1940.0 323.0 1941.0 420.U 1959.0 125.0 1861.0 443.0 2023.0 CHAMMEL ROUTING USING MODIFIED PLUS: REACH 3-4(MILE U.7C TO 1.24) CHANNEL ROUTING USING MODIFIED PLUS: REACH 5-6(MILE 1.73 TO 2.80) 1 1 \$6\$5.40.014160 1845.0 125.0 1860.0 1879.0 27159.3 2851.00.020584 425.6 2621.6 427.9 2020.1 545.6 2039.6 -1879.0 102.0 625.0 2.045 2020.0 2 21.05 2030.0 495.0 2030.0 1865.0 1861.0 1872.0 n. (26 100.0 475.0 0.523 1870.7 1872.0 0.(29 1959 1947.0 76 1.135 C.129 77 0.1 2039.0 77 445.0 2029.0 X. Υ1 1 Υ5 υ.C26 Υ7 Γ.U Υ7 518.0 Y6 0.126 Y7 425.J K 99 -5 ž ٢ ÷ 1 ¥

2121. 227.0 2130.9 245.0 2139.0

77 145.

FEAK FLIW AND SICRARE (EVD OF PERIOD) SUMMARY FOR MULTIPLE PLAN-GATIO ECONOMIC COMPUTAT. Flows IV CHILE FEE SECOND (CUMIC METERS PER SECOND) Area in Square Miles (Square Kilometers)

'n

1

4 ł

| MO]]] 83340 | 5747104 | <b>4</b><br>11<br><b>4</b> | PLAN             | 111 L                                 | 2 ' 11AA<br>'12'                        | RATIUS AFP<br>Rati - 3<br>              | LIED TO FI<br>Ratic 4                  | .045<br>Patic 5                        | RATIC 6<br>1.00                          |
|-------------|---------|----------------------------|------------------|---------------------------------------|-----------------------------------------|-----------------------------------------|----------------------------------------|----------------------------------------|------------------------------------------|
| MYDRUGRAPH  |         | 1.42                       | ٽ ج <b>ٿ</b>     | 847.<br>23.97)(<br>247.<br>23.97)(    | 1129.<br>31.96) (<br>1129.<br>31.96) (  | 1411.<br>39.96)(<br>1411.<br>30.96)(    | 1975.<br>55.94)(<br>1975.<br>55.44)(   | 2540.<br>71.92)(<br>2540.<br>71.92)(   | 2822.<br>79.91)(<br>2822.<br>79.91)(     |
| R0016.0-7.) | ~       | 1 . 42<br>3 . 6 t )        | , ۲ <b>۲</b>     | °27.<br>23.42)(<br>827.<br>23.42)(    | 5606.<br>158.75) (<br>1124.<br>31.81) ( | 5662.<br>160.33)(<br>14(7.<br>39.85)(   | 5692.<br>161.18)(<br>1974.<br>55.89)(  | 5576.<br>157.91)(<br>2539.<br>71.89)(  | 5670.<br>16C.55)(<br>2821.<br>79.88)(    |
| ROUTED TO   | ۳<br>۲  | 1.42<br>3.68)              | ٽ <sub>۲</sub> ۲ | 825.<br>23.37)(<br>825.<br>23.37)(    | 6605.<br>187.04)(<br>112L.<br>31.71)(   | 6668.<br>188.82)(<br>1405.<br>39.78)(   | 6692.<br>189.50)(<br>3968.<br>112.36)( | 6408.<br>187.11)(<br>4061.<br>114.99)( | 6651.<br>188.33)(<br>4111.<br>116.42)(   |
| ROUTED TJ   | ~       | 1.42<br>3.69)              | <b>۲</b> ۳ ۳     | R26.<br>23.38)(<br>23.38)(<br>23.38)( | 6510.<br>194.35)(<br>1126.<br>31.71)(   | 6592.<br>186.67)(<br>14[4.<br>39.77)(   | 6624.<br>137.57)(<br>3666.<br>1[3.81)( | 6521.<br>184.66)(<br>3755.<br>1C6.32)( | 6583.<br>186.42)(<br>38C8.<br>107.84)(   |
| ROUTED TO   | ۍ<br>۲  | 1.42<br>3.68)              | - ~ ~ Č          | ₽26.<br>23.38)(<br>826.<br>23.39)(    | 6054.<br>171.42)(<br>1126.<br>31.77)(   | 6156.<br>174.32)(<br>1464.<br>39.77)(   | 620C.<br>175.57)(<br>3563.<br>170.89)( | 6074.<br>171.98)(<br>3711.<br>105.09)( | 6163.<br>174.52)(<br>3767.<br>176.68)(   |
| ROUTED TO   | ې       | 1.42<br>3.68)              | ÷ ۲ ۰ ۲          | 825.<br>23.36)(<br>23.36)(<br>23.36)( | 612U.<br>173.31)(<br>1118.<br>31.67)(   | 6227.<br>176.33) (<br>1464.<br>39.77) ( | 6275.<br>177.68)(<br>3551.<br>110.56)( | 6146.<br>174.033(<br>3677.<br>104.113( | 6196.<br>175.44) (<br>3732.<br>165.69) ( |
| ROUTED TO   | ~~~     | 1.42<br>3.68)              | ÷ ۲۰۲            | d25.<br>23.36)(<br>23.36)(<br>23.36)( | 615C.<br>174.14)(<br>1119.<br>31.68)(   | 6264.<br>177.37)(<br>1464.<br>39.76)(   | 6315.<br>178.81)(<br>3369.<br>55.47)(  | 6176.<br>174.88)(<br>3473.<br>98.63)(  | 6244.<br>176.82)(<br>3541.<br>10.22)(    |
| ROUTED TO   | *       | 1.42<br>3.68)              | ÷~~              | R23.<br>23.29)(<br>723.<br>23.29)(    | 5069.<br>143.555)(<br>1114.<br>31.54)(  | 5186.<br>146.84) (<br>1460.<br>39.65) ( | 5246.<br>148.56)(<br>3173.<br>99.86)(  | \$105.<br>144.56)(<br>3312.<br>93.78)( | 5160.<br>146.12)(<br>3373.<br>95.50)(    |

PAGE D4 of 13

÷.

× 2- 4 - 20-

FLOOD ROUTING SUMMARY

SUMMARY OF DAM SAFETY AMALYSIS

ţ

A STATE OF A

-

| RATIU         MAXIMUM         MAXIMUM <thmaximum< th=""> <thmaximum< th=""> <thmax< th=""><th></th><th>ELEVATION<br/>Storage<br/>Outflow</th><th>1M1T1AL<br/>2400</th><th>V ALHE<br/>.00<br/>0.<br/>0.</th><th>SPILLWAY CRE9<br/>2400.00<br/>92.<br/>0.</th><th>51 TOP<br/>24</th><th>05 DAN<br/>04.40<br/>130.<br/>858.</th><th></th></thmax<></thmaximum<></thmaximum<> |                    | ELEVATION<br>Storage<br>Outflow    | 1M1T1AL<br>2400                | V ALHE<br>.00<br>0.<br>0.   | SPILLWAY CRE9<br>2400.00<br>92.<br>0. | 51 TOP<br>24                  | 05 DAN<br>04.40<br>130.<br>858.  |                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------------------------------------|--------------------------------|-----------------------------|---------------------------------------|-------------------------------|----------------------------------|-----------------------------|
| 31       2414.29       0.00       129.       527.       0.00       42.47         50       2414.55       15       151.       7424.       25       41.21         50       2414.55       15       151.       7490.       25       41.21         71       241.45       151.       7490.       25       41.21         71       241.452       131.       7402.       25       41.21         71       241.452       131.       7402.       25       41.21         71       241.452       131.       7402.       24.460       39.04         71       240.460       24.04.00       24.04.00       24.04.60       24.04.60         710       870.400       24.00.00       24.04.60       24.460       24.460         710       870.400       24.04.60       24.460       24.460       24.460         710       870.400       24.04.60       24.46.40       24.46.40       24.46.40         710       870.400       24.04.60       24.46.60       24.46.40       24.46.40         710       870.400       24.46.60       24.46.60       24.46.60       24.46.60       24.46.60         740.7 <td< th=""><th>ATIU<br/>Of<br/>Pmf</th><th>MAXIMUM<br/>RESERVOIR<br/>W.S.ELEV</th><th>MAX 1MUM<br/>DE PTH<br/>OVER DAM</th><th>MAXIMUM<br/>Sturage<br/>Ac-ft</th><th>MAX IM UM<br/>OUT FL ON<br/>C FS</th><th>DURATION<br/>Over top<br/>Hours</th><th>TIRE OF<br/>Max outflow<br/>Hours</th><th>TIME OF<br/>Fallure<br/>Mours</th></td<>                                                                                                                                                                                                                | ATIU<br>Of<br>Pmf  | MAXIMUM<br>RESERVOIR<br>W.S.ELEV   | MAX 1MUM<br>DE PTH<br>OVER DAM | MAXIMUM<br>Sturage<br>Ac-ft | MAX IM UM<br>OUT FL ON<br>C FS        | DURATION<br>Over top<br>Hours | TIRE OF<br>Max outflow<br>Hours  | TIME OF<br>Fallure<br>Mours |
| 70     2464.55     15     131     7424     25     41.21       70     2464.55     16     131     7490     25     41.21       71     2464.55     13     131     7402     25     41.21       71     2464.55     13     7402     25     41.21       71     2464.55     13     7405     24     39.04       71     7405     137     7405     24     39.04       71     7405     2404.60     2404.60     2404.40       700     5108AGE     92     92     5404.40       810     8110     2404.00     2404.40     7486.       910     92     0     0     2404.40       92     0     0     2404.60     2404.60       810     0     0     2404.60     2404.60       92     0     0     129     92       92     0     0     0     2404.60       92     0     0     0     1407       92     0     0     0     129       92     0     0     129     0       92     0     129     0     129       92     2404.29     0     0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                  | 941.4.24                           | 0,06                           | 129.                        | 627.                                  | 0.00                          | 42.17                            | 0.00                        |
| 70       24/4.56       16       131       7490       25       40.71         71       24/4.65       27       132       131       7400       25       40.71         71       24/4.65       27       132       132       7402       24       40.71         71       24/4.65       27       132       132       7402       24       59.21         71       24/4.65       27       132       7405       24       39.21         7405       24/0.00       24/0.00       24/0.00       24/0.00       24/0.00       24/0.00         810466       01160       24/0.00       24/0.00       24/0.00       24/0.00       24/0.00         810466       01160       24/0.00       22/0       92       1300       1300         01160       01160       02       92       92       1300       1300         01160       01160       01160       01160       01160       01160       1407         01160       01160       01160       01160       01160       01160       1407       42.17         016       RESERVOIR       0167       129       129       129       120       129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    | 2464.55                            |                                | 131.                        | 7424.                                 | . 25                          | 11.21                            | 41.00                       |
| 77     24,4.69     27     132     7517     41     46.04       91     24,4.69     27     131     7402     24     39.04       100     24,6.69     27     131     7402     24     39.04       1100     24,0.00     27     132     7486     41     39.04       1100     24,00.00     24,00.00     24,00.00     24,00.00     24,04.00       1100     1111     24,00.00     24,00.00     24,00.00     24,00.00       1100     1111     24,00.00     24,00.00     24,00.00     24,04.00       1100     1111     24,00.00     24,00.00     24,00.00     24,04.00       1100     1111     24,00.00     24,00.00     24,04.00     24,04.00       1100     1111     110     1111     110     1111       1100     1111     110     1111     110     1111       1100     1111     110     1111     110     1111       1100     1111     110     1111     110     1111       1100     129     129     129     120     120       1100     129     130     1407     413     41.67       1110     1407     1407 <t< td=""><td></td><td>2616.56</td><td>.16</td><td>131.</td><td>7490.</td><td>. 25</td><td>12.04</td><td>40.50</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    | 2616.56                            | .16                            | 131.                        | 7490.                                 | . 25                          | 12.04                            | 40.50                       |
| 91     2454.52     13     131     7402     24     39.21       1.00     2454.69     27     132     132     7406     24     39.04       1.01     2454.69     27     132     132     7466     24     39.04       1.01     2400.00     2400.00     2404.40     2404.40     39.04       1.01     1.01     2400.00     2404.40     2404.40       1.01     1.01     2400.00     2404.40     130       1.01     0.0110     2400.00     2404.40     130       1.01     0.0110     0.01     0.0     2404.40       1.01     0.0111.00     2400.00     2404.40     130       1.01     0.0111.00     0.0111.00     130     130       0.0111.00     0.0111.00     0.0111.00     0.0111.00       0.0111.00     0.0111.00     0.0111.00     0.0111.00       0.0111.00     0.0111.00     0.0111.00     0.0111.00       0.0111.00     0.0111.00     0.010     42.17       0.0111.00     0.010     124.17     0.010     42.17       0.0111.00     0.01     124.13     0.010     42.17       0.01     0.01     124.14     0.010     42.17       0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    | 24 4.61                            | .2.                            | 132.                        | 7517.                                 | . 41                          | 40-04                            | 39.83                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ŏ                  | 24.4.52                            | . 12                           | 131.                        | 7402.                                 | .24                           | 39.21                            | 39.00                       |
| INTTAL VALUE     SPILLWAY CREST     TOP OF DAM       ELFVATION     Z400.00     Z400.00     Z404.40       STORAGE     92.     7404.40       STORAGE     92.     730.       OF     RESERVOIR     0.0       OF     RESERVOIR     0.00       MAXIMUM     MAXIMUM     MAXIMUM       OF     RESERVOIR     0.00       OF     RESERVOIR     0.00       OF     RESERVOIR     0.00       A.S.ELEV     0.00     129.       A.S.ELEV     0.00     129.       A.S.ELEV     0.00     42.17       A.S.ELEV     0.00     42.18       A.S.ELEV <td>00</td> <td>2404.00</td> <td>42.</td> <td>132.</td> <td>7486.</td> <td>17.</td> <td>39.04</td> <td>38.63</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00                 | 2404.00                            | 42.                            | 132.                        | 7486.                                 | 17.                           | 39.04                            | 38.63                       |
| Ratio         Maximum         Maximum         Maximum         Maximum         Maximum         Maximum         Maximum         Maximum         Define         DF         DF <thdf< th="">         DF         DF         &lt;</thdf<>                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    | ELFVATION<br>Storage<br>Outflow    | 2400<br>2400                   | VALUE<br>.00<br>92.<br>0.   | SP1LLWAY CHE<br>24.00.00<br>92.<br>0. | 51 10P<br>2                   | 0f DAM<br>404.40<br>130.<br>658. |                             |
| .30     2404.29     9.00     129.     827.     0.00     42.17       .40     2404.77     .37     134.     1124.     3.00     41.83       .40     2404.77     .37     134.     1124.     3.00     41.83       .50     2404.77     .55     134.     1124.     3.00     41.83       .70     2405.18     .78     1402.     4.33     41.67       .70     2405.37     .07     142.     2539.     7.83       .70     2405.37     .07     142.     2539.     41.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RATIO<br>0f<br>Pmf | MAXIMUM<br>Reservoir<br>M. S. Elev | MAX IMUM<br>DEPTH<br>Over dam  | MAXIMUM<br>Storage<br>AC-FI | MAK IMUM<br>Outflow<br>CfS            | DURATION<br>Over top<br>Hours | TIME OF<br>MAX OUTFLOW<br>Hours  | TIME O<br>Failur<br>Hours   |
| 40     24.24.77     37     134     1124     3.00     41.83       50     24.54.95     .55     136     1407     4.33     41.67       70     24.51.8     .78     1401     1974     6.33     41.67       70     24.53.37     .97     142     2539     7.85     41.67       70     24.55.37     .97     142     2539     7.85     41.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    | 2464.29                            | 0.00                           | 129.                        | 827.                                  | 0.00                          | 42.17                            | 0.00                        |
| 50     2434.95     55     136.     1407.     4.33     41.67       70     2405.37     .78     140.     1974.     0.33     41.67       70     2405.37     .97     142.     2539.     7.83     41.67       70     2405.37     .97     142.     2539.     7.83     41.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 37                 | 24. 4. 42                          | .37                            | 134.                        | 1124.                                 | 3.00                          | 41.83                            | 0.00                        |
| 70         24.5,18         78         140.         1974.         6.33         41.67           VC         24.5,37         .97         142.         2539.         7.83         41.67           VC         24.5,57         .97         142.         2539.         7.83         41.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    | 26.26.95                           | .55                            | 136.                        | 1407.                                 | 4.33                          | 41.67                            | 00.0                        |
| y(         24:5.37         97         142.         2539.         7.83         41.67           y(         24:5.37         97         142.         2539.         7.83         41.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    | 24.75.18                           | . 78                           | 140.                        | 1974.                                 | 6.33                          | 41.67                            | 0.00                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    | 26.5.27                            | 20                             | 142.                        | 2539.                                 | 7.83                          | 41.67                            | 00.0                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.00               | 24.05.45                           | 1.05                           | 143.                        | 2821.                                 | 8.67                          | 41.67                            | 00-00                       |

PAGE D5 of 13

CONTRACTOR OF

. Line

PLAN 1 - DAM BREACH ANALYSIS SUMMARY (BEAR ROCK NO. 2 DAM BREACHED) PLAN 2 - OVERTOPPING ANALYSIS SUMMARY (BEAR ROCK NO. 1 DAM OVERTOPPED)

SUMMARY OF DAM SAFETY ANALYSIS

1

| F. A '3 |                                                                                 | FLEVATION<br>5134466<br>30176136                                          | 14171AL<br>7444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | • • • • • • • • • • • • • • • • • • •                                                                                | SPILLWAY CKE<br>2364.50<br>33.                                                                     | 51 10F                                                             | 06 DAM<br>348.00<br>51.<br>1438.                   |                                                                          |
|---------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------|
|         | 5.471.0<br>0.5<br>1.4                                                           | MAXIMUF<br>RESERVOIR<br>V.S.FLEV                                          | NAXIMUM<br>Depth<br>Uver dam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4AXIMU#<br>Sturage<br>AC-FI                                                                                          | PAX INUT<br>OUT FLOW<br>CFS                                                                        | DURATION<br>Over top<br>Hours                                      | TIME OF<br>Max Outflow<br>Hours                    | TIME O<br>Failur<br>Hours                                                |
|         |                                                                                 | 2346.75<br>2349.45<br>2349.45<br>2349.45<br>2349.63<br>2349.63<br>2349.63 | 0 F F F F<br>- 4 4 4 4 4<br>0 4 9 7 8 4 4<br>0 4 9 7 8 7 8<br>0 4 9 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 | 4 4 4 4 4 4 4<br>4 4 4 4 4 4 4 4<br>9 4 9 4 9                                                                        | 825.<br>7461.<br>7581.<br>7581.<br>7483.<br>7483.                                                  | 0.00<br>.33<br>.33<br>.33<br>.33<br>.33<br>.33                     | 42.53<br>44.14<br>40.91<br>42.25<br>19.61<br>19.25 | 0.00<br>4.17<br>67<br>67<br>67<br>67<br>67<br>68<br>60<br>68<br>60<br>68 |
| PL AN   | 2                                                                               | FLEVATION<br>Storage<br>Outflou                                           | 1N171AL<br>2344                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | VALUE<br>.00<br>30.                                                                                                  | SPILLWAY CRE<br>2344.00<br>30.                                                                     | 51 10P<br>2                                                        | 06 DAN<br>548.00<br>51.<br>1438.                   |                                                                          |
|         | 4 A T I O<br>0 F<br>P M F                                                       | MAX14UM<br>RESERVO1R<br>N.S.ELEV                                          | 4 4X 14U4<br>0 6 6 1 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4 A X 1 4 U 4<br>S 1 0 R 4 G E<br>A C - F 1                                                                          | RAX IRUM<br>OUT FLOW<br>CFS                                                                        | DURATION<br>Over top<br>Hours                                      | TIME OF<br>Max outflow<br>Hours                    | TIME O<br>Failur<br>Hours                                                |
|         | 19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>1 | 2446.76<br>2347.38<br>2347.94<br>2348.21<br>2348.21<br>2348.22            | 0.00<br>0.00<br>0.00<br>2.24<br>7.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 44<br>48<br>53<br>53<br>53<br>53<br>53<br>54<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55 | 825.<br>1120.<br>1405.<br>4787.<br>4787.<br>4787.                                                  | 00000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000      | 42.53<br>42.00<br>41.85<br>40.55<br>40.55          | 0.00<br>0.00<br>0.00<br>40.33                                            |
|         |                                                                                 |                                                                           | Ē                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | LAN 1<br>RAXINUN                                                                                                     | STATION<br>MAKINUM                                                                                 | 4<br>11AE                                                          |                                                    |                                                                          |
|         |                                                                                 |                                                                           | 84710<br>81<br>61<br>81<br>81<br>81<br>81<br>81<br>81<br>81<br>81<br>81<br>81<br>81<br>81<br>81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | fL04.CfS<br>826.<br>6510.<br>6592.<br>6624.<br>6583.                                                                 | STAGE / T<br>221-9<br>2225-2<br>2225-2<br>2225-2<br>2225-2<br>2225-2<br>2225-2<br>2225-2<br>2225-2 | 201<br>201<br>201<br>201<br>201<br>201<br>201<br>201<br>201<br>201 |                                                    |                                                                          |

PAGE D6 of 13

DAM BREACH ANALYSIS (BEAR ROCK NO. 1 DAM BREACHED) AND DOWNSTREAM CHANNEL ROUTING PLAN 1 - BEAR ROCK NO. 2 DAM BREACHED PLAN 2 - BEAR ROCK NO. 2 DAM OVERTOPPED

ş

| PLAN       | 2                   | STATION                     | 4             |
|------------|---------------------|-----------------------------|---------------|
|            | MAXIMUM             | MAXIMUM                     | TINE          |
| RATIO      | FLOW, CFS           | STAGE,FT                    | HOURS         |
| .30        | 826.                | 2221.9                      | 42.35         |
| .47        | 1120.               | 2272.5                      | 41.83         |
|            | 7444                | 2224 0                      | <b>41.</b> CO |
| .70        | 3755.               | 2224.0                      | 40.50         |
| 1.00       | 3868.               | 2224.1                      | 40.35         |
| ••         |                     | 5 7 A 7 10 N                | 5             |
| PLAN       | r r                 | 3141204                     | -             |
|            | MAXIMUM             | MAXIMUM<br>Stace.et         | TIME          |
| RATIO      | 1100,115            | 31446211                    |               |
| .30        | 826.                | 2122.2                      | 42.33         |
| .40        | 6054.               | 2123.7                      | 40.83         |
| -51        | 6200.               | 2125.8                      | 40.17         |
| .90        | 6374.               | 2125.7                      | 39.33         |
| 1.00       | 6163.               | 2125.7                      | 39.17         |
| Di A       | N 7                 | STATION                     | 5             |
|            |                     |                             | 1186          |
| PAT 10     | HAXIMUM<br>FLOW.CES | STAGE_FT                    | HOURS         |
|            |                     |                             | 43 83         |
| -30        | 876.                | 2122.5                      | 42.06         |
| _4U<br>_50 | 1404.               | 2122.9                      | 42.00         |
| .79        | 3563.               | 2124.5                      | 41.17         |
| .90        | 3711.               | 2124.5                      | 40.67         |
| 1.00       | 3767.               | 2124.0                      | 40.30         |
| PLA        | N 1                 | STATION                     | 6             |
|            |                     |                             | TINF          |
| RATIO      | FLOW, CF            | S STAGE,FT                  | HOURS         |
| .30        | 825                 | 2022.5                      | 42.33         |
| .40        | 6120                | . 2025.7                    | 41.50         |
| .50        | 6227                | 2025.8                      | 41.00         |
| .70        | 6273                | 2025.7                      | 39.50         |
| 1.00       | 6196                | 2025./                      | 39.33         |
| PL         | AN 2                | STAT ION                    | 6             |
|            |                     | an <u>phá ví 1</u> měl 1 Mě | TIME          |
| RATIO      | FLOW, CF            | S STAGE,FT                  | HOURS         |
| .30        | 825                 | . 2022.5                    | 42.33         |
| .40        | 1118                | . 2022.8                    | 42.01         |
| -5.7       | 7414                | - 2024-6                    | 41.17         |
| ,ru<br>,gn | 3677                | 2.24.7                      | 41.67         |
| 1.40       | 57 52               | . 2124.7                    | 40.50         |

DOWNSTREAM CHANNEL ROUTING PAGE D7 of 13

ins The

| PLAN         | 1 5       | TATION 4 |         |
|--------------|-----------|----------|---------|
|              | MAKEMUM   | NAXIMUM  | TERE    |
| RATIO        | FLOW, CFS | STAGE,ET | HOUKS   |
|              |           | 1462.3   | 42.56   |
| <b>.</b> 30  | 827.      | 1945.6   | 41.50   |
| .47          | 6150.     | 4072 8   | 41.04   |
| .50          | 6264 .    | 4045 6   | 40.33   |
| .7"          | 6515.     | 1941.0   | 39.56   |
| <b>,</b> 93  | 6176.     | 1941.1   | 39.33   |
| 1,00         | 4244.     | 1440.0   |         |
| PLA          | N 7 <     | TATION   | 7       |
|              |           |          | * 1 8 6 |
|              | MAXIMUM   | MAXIMUM  | 1171    |
| RATIO        | FLUW, CES | STAGE,FT | HOUKS   |
| 20           | 825.      | 1942.3   | 42.50   |
| .30          | 4149      | 1942.7   | 42.17   |
| 4's          | 4456      | 1943.0   | 42.00   |
| .50          | 1129.     | 1944.4   | 41.17   |
| .70          | 3107.     | 1944.4   | 40.67   |
| 96           | 25/1      | 1944.5   | 40.50   |
| 1.00         | 3741.     |          |         |
| PLI          | LN 1      | STATION  | 8       |
|              |           |          | TIME    |
|              | MAXIMUM   | TA CE TI | HOURS   |
| RATIO        | FLOW, CFS | 21406.11 |         |
|              | 823.      | 1862.5   | 42.67   |
| .30          | . 0402    | 1865.2   | 41.67   |
| .40          | 5184      | 1865.2   | 41,17   |
| - 5'3        | 5266.     | 1865.3   | 40.50   |
| .70          | 5105      | 1865.2   | 39.67   |
| 1.00         | 5140.     | 1 865.2  | 39.50   |
|              |           |          |         |
| PL           | AN 2      | STATION  | 8       |
|              | RAXIMUR   | MAXIMUM  | TIME    |
| 01110        | FLOW.CFS  | STAGE,FT | HOURS   |
| KAIIV        |           |          |         |
| 10           | 823.      | 1862-5   | 42.67   |
| . 50         | 1114      | 1862.9   | 42.33   |
| . 4 J<br>2 A | 1400      | 1863.2   | 42.17   |
| .70          | 3173      | 1864.3   | 41.33   |
|              | 3312      | 1864.4   | 40.83   |
|              | 1171      | 1864.4   | 40.67   |
| 00.1         |           | -        |         |

DOWNSTREAM CHANNEL ROUTING PAGE D8 of 13

. Whether participant

and the second second



What has been







D10 of 13

in the

وراج ورفاقه ومراري







-

\* ALL ELEVATIONS & DISTANCES ARE APPROXIMATE D 1/ of 13





SECTION AT STATION 7 (NO SCALE)

D12 of 13





P 13 OF 13

APPENDIX E Plates

And a second second second



A TENE









1

2012/01/02

ل رمینودی











and the second secon

APPENDIX F REGIONAL GEOLOGY

4

5

1

the substitute of a state.
#### APPENDIX F

### REGIONAL GEOLOGY

Bear Rock Nos. 1 and 2 dams are located in the eastern portion of Cambria County. The dams are located in the Allegheny Mountains section of the Appalachian Plateau Physiographic Province, an area characterized by parallel ridge and valley sequences controlled by the relatively gentle folding of the strata. The fold axis trends north-northeast and the strata dip in the area of the dams approximately 500 feet per mile to the northwest. Approximately one mile east of the reservoirs is the Allegheny Front, which separates the more gentle geologic folding to the west from the tight folding and faulting east of the front. In general, the discontinuities trend north-northeast and northwest.

The strata underlying the dams and reservoir consist of the Upper Pottsville Group and the Allegheny Group (Pennsylvanian Age). The Pottsville Group consists of two massive sandstone beds, shales, and one thin coal seam (the Mercer bed). The higher portion of the Pottsville Group consists of the Upper Conoquenessing Sandstone, a thick-bedded micaceous sandstone which is generally resistant to weathering. The thickness ranges from 15 to 25 feet. Below the sandstone is approximately 15 to 40 feet of thin-bedded shale with interbedded sandstone. These strata weather easily. Below the shale is the Lower Conoquenessing Sandstone, which is approximately 50 feet thick and is similar to the upper sandstone.

The strata overlying the Pottsville Group are the Allegheny Group, consisting of sandstone, shale, and at least seven coal seams. The group is approximately 250 feet thick. The strata from the base up consist of the Brookville coal seam, the Clarion Sandstone, the Clarion coal, and a thick sandstone below the Lower Kittanning coal bed, which is approximately 75 feet above the Brookville coal bed. The middle portion of the Allegheny Group consists of the Lower, Middle, and Upper Kittanning coal seams, and the Lower and Upper Worthington sandstones. One limestone bed is present below the Upper Kittanning coal seam. The upper portion of the group consists of the Lower and Upper Freeport coal seams and the Freeport and Rutlen sandstone beds. The overlying Conemaugh Group consist predominantly of shale and claystone with thin sandstone, limestone, and coal seams.

There is no minable coal beneath the dams and reservoirs. The strip mines on the slopes west and northeast of the reservoirs are probably the Lower Kittanning coal beds. The slopes above the reservoirs are relatively gentle, in general greater than 5 to 1, and probably consist predominantly of sandstone. Therefore, there should be no danger of large slides.





|  |  | 11 |
|--|--|----|
|  |  | 1  |
|  |  | L  |
|  |  | L  |
|  |  | 0  |
|  |  | 1  |
|  |  | 10 |
|  |  | L  |
|  |  | L  |
|  |  | Ľ  |
|  |  | 81 |
|  |  | 1  |
|  |  | ŧ  |
|  |  | Ł  |
|  |  | 11 |
|  |  | Ł  |
|  |  | ы  |
|  |  | L  |
|  |  |    |
|  |  | Ľ  |
|  |  | Ł  |
|  |  | Ľ  |
|  |  | L  |
|  |  | Ш  |
|  |  | 11 |
|  |  | Ш  |
|  |  | Į. |
|  |  | 1. |
|  |  | U  |
|  |  | 11 |
|  |  | 11 |
|  |  | 13 |
|  |  | Ш  |
|  |  | Ш  |
|  |  | Ш  |
|  |  | Ш  |
|  |  | н  |
|  |  | L  |
|  |  | L  |
|  |  | Ш  |
|  |  | U  |
|  |  | E  |
|  |  | Е  |
|  |  | £. |
|  |  | 1  |
|  |  | 1  |
|  |  | £. |
|  |  | 1  |
|  |  |    |
|  |  |    |

₫ -AL

Ń 4

ŝ

Ŕ

DRAWING NUMBER

0

6 70

APPROVED CHECKED

67 12-31 ü 4

DRAWN

# LEGEND

### **Conemaugh Formation**

Concernaugn & ormanican Cyclic scourses of red and gray shales and autotanes with thin timmelenes and costs; massive Mahaning Sanddanes com-monly present at base: A mes Limestone present in middle of sections; Brush Creek Limestone in lower part of section.

#### Pottsville Group

Light gray to white, coacse grained sand-stones and conglomerates with some sume able coult; includes Sharp Moustain, Schnylkill, and Tumbling Run Forme-

#### **Allegheny Group**

Cyclic expenses of anotations, shale, lime-atons and coal numerous commercial coals: limentones the tests we salward; Van-port Limentone in ower part of section, includes Freeport, Kitanning, and Therms Tomostons

## Clinton Group

Control Group Prediaminantly Rose Hill Formation-Reidian purple in greenish group, this to workium bediest, Jossifirenus schale with interlanguing "ir in squidelowen" and local group, constituences, dowe the Rose Hill is bound to white guartistic madatome (Recerco interbedded upward with durk grup shale (Rochester).

## Marine beds Drt-

5

Pc

Marine 1991 Gray to olive between shales, graywackes, and sandstones, custans, "Otemung" beds and "Potone bede unduding Burket, Brathes, Harret, and Tenmmers Kock; Tully Limestone at buse

Protonic Group, Protonic constitution, and massive cross-bedden components and sandstone with some share rectacts to the Appalichian Patent Burgoon, Scienango, Guistona, Cussevago, Corey, and Knapp Forma-tions, includes part of "Onengo" of M.L. Fuller in Polter and Tioga counties.



### **Oriskany Formation**

Pocono Group

Write to brain the to course grained, prefly calcurents, locally congloweratic, fossiliteness anothene (Kidgley) at the top; dark gray, chesty limestone with some subschedded shales and sandsiones below (Schereer)

# **Tuscarora** Formation White to aray, medium to thick bedded, fine prained, quartistic sondatone, con-glumeratic in part.

#### **Marcellus** Formation

Black, finale, carbonaceous shale with thick, brown sandstone (Turkey Ridge) in parts of central Prinsylvania.

#### **Onondaga** Formation

Ononazza r ormation Greenish biue, ikus bedded shule and dark biue to black, medium bedded timestine with shale produminant in must places; includes Schimzeruse Limestone and Need-more Shule in central Pennspleanin and Buttermik Fulla Limestone and Ecopus Shale in ensternmont Pennspleanin; in Lehigh Gup urea includes Polimerton Sandstone and Howmanstown Chert.

#### Wills Creek Formation

Greenish gray, this bedded, fissile shale with lucal limestone and sandstone zones, contains red shale and suitstone in the lower part.

#### Bloomsburg Formation

Red, this and thick bedded shale and silt-stone with local units of mondstone and this impure limestone, some green shale in places.



Dme

#### **McKenzie Formation**

previse round bedded shale inter-bedded with gray, thin bedded, fossiljer-ous limentone, shale predominant at the base; intraformational breeven in the lower part. Absent in Harrisburg quad-rangle ond by the east



#### **Keyser Formation**

Dark gray, highly fossiliferous, thick bed-ded, crystalline to nodular limestone, passes into Manlius, Rondout, and Decker Formations in the enst.



Dck

#### **Tonoloway Formation**

Gray, highly laminated, thin bedded, argillaceous limestone: passes into Homardville and Pozono Island beds in the cast

#### **Catskill Formation**

Ł

Chiefly red to brownink shales and sand-stones, includes gray and greenish sand-stone tongues named Elk Mountain, Honesdale, Shohola, and Delaware River in the cost.

the second states and

# GEOLOGY MAP LEGEND

# DAPPOLONIA

# REFERENCE: GEOLOGIC MAP OF PENNSYLVANIA PREPARED By commonwealth of Penna. Dept. of Internal Affairs, dated 1960, scale 14 4 Miles

Sile of AL ANT