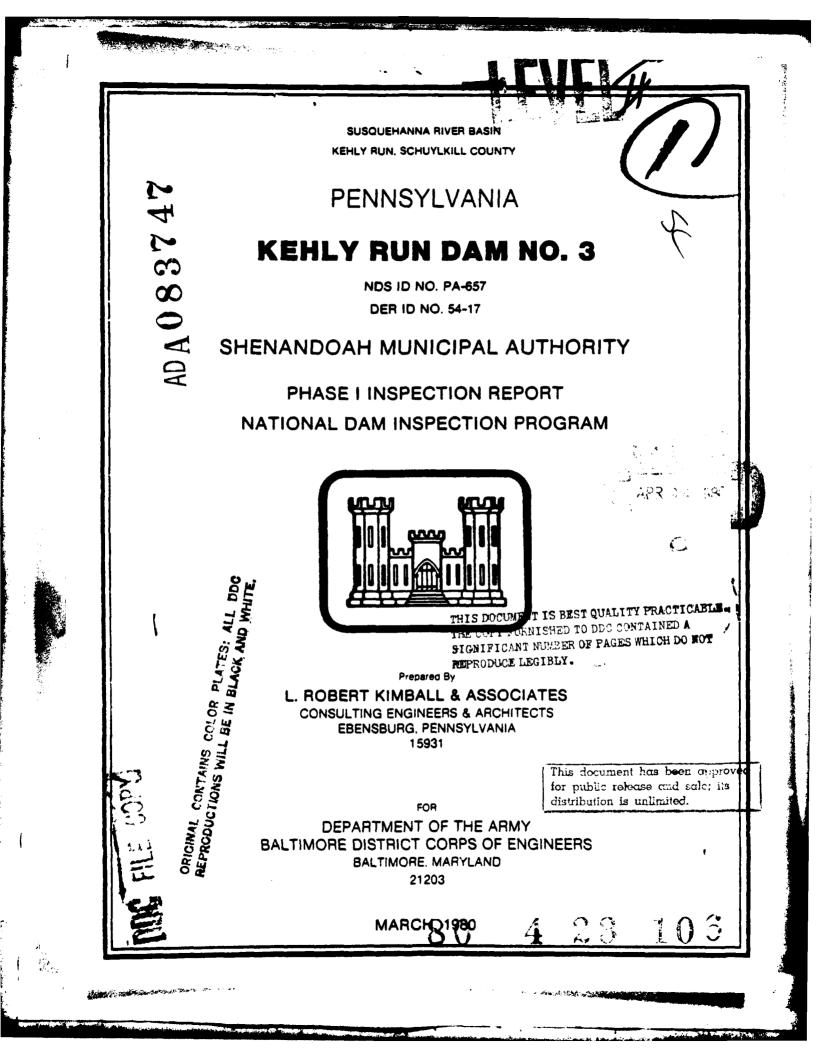
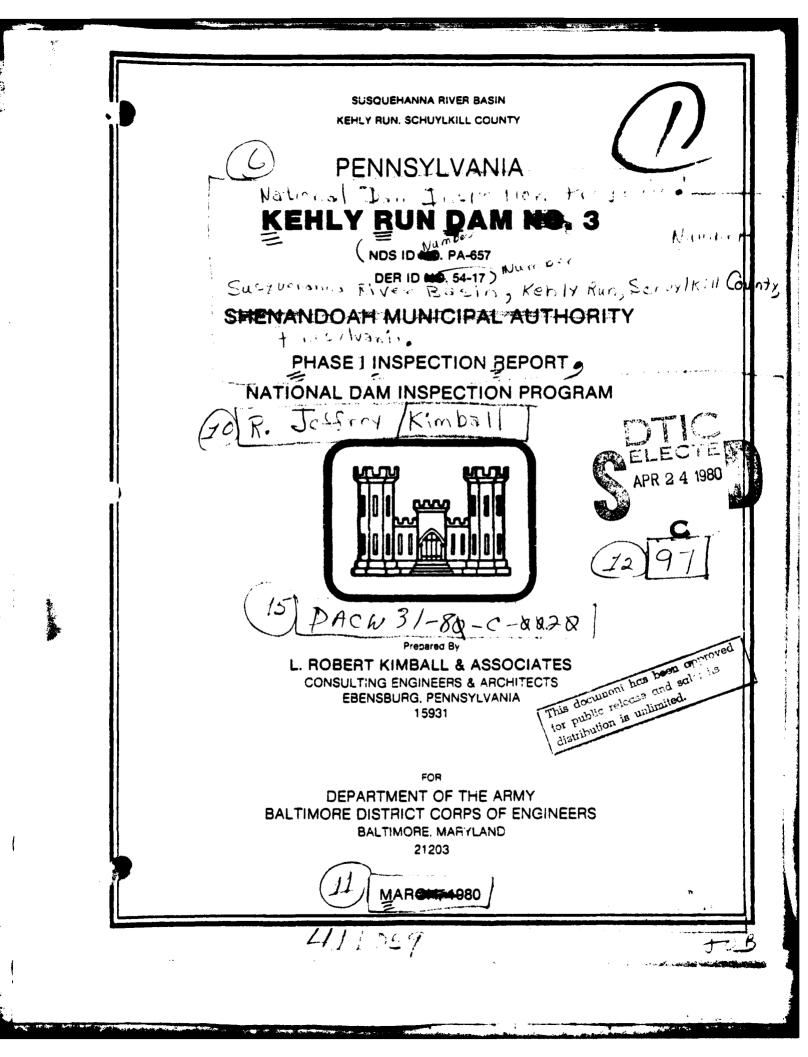

	83 747 SSIFIED	MATIC MAR 8	ALL (L I DNAL DAI 30 R J	INSPE	CTION P	SOCIATE Rogram,	S EBENS KEHLY	BURG PA		F/G 13 S IDE -0020 NL	/13 TC(U)	
	/ 0F 2 40 4089.747							ŀ				
												τ
				14 A.								
											;	


AD A083747

•

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS 1963.


1

DISCLAIMER NOTICE

F 3

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

This report is prepared under guidance contained in the Recommended Guidelines for Safety Inspection of Dams, for Phase I Investigations. Copies of these guidelines may be obtained from the Office of Chief of Engineers, Washington, D.C. 20314. The purpose of a Phase I investigation is to identify expeditiously those dams which may pose hazards to human life or property. The assessment of the general condition of the dam is based upon available data and visual inspections. Detailed investigation, and analyses involving topographic mapping, subsurface investigations, testing, and detailed computational evaluations are beyond the scope of a Phase I investigation; however, the investigation is intended to identify any need for such studies.

In reviewing this report, it should be realized that the reported condition of the dam is based on observations of field conditions at the time of inspection along with data available to the inspection team. In cases where the reservoir was lowered or drained prior to inspection, such action, while improving the stability and safety of the dam, removes the normal load on the structure and may obscure certain conditions which might otherwise be detectable if inspected under the normal operating environment of the structure.

It is important to note that the condition of a dam depends on numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam will continue to represent the condition of the dam at some point in the future. Only through frequent inspections can unsafe conditions be detected and only through continued care and maintenance can these conditions be prevented or corrected.

Phase I inspections are not intended to provide detailed hydrologic and hydraulic analyses. In accordance with the established Guidelines, the spillway design flood is based on the estimated "Probable Maximum Flood" for the region (greatest reasonably possible storm runoff), or fractions thereof. The spillway design flood provides a measure of relative spillway capacity and serves as an aid in detemining the need for more detailed hydrologic and hydraulic studies, considering the size of the dam, its general condition and the downstream damage potential.

i

han in the

1 2 1 1 N 1 1 1 1 1 1 1

PREFACE

PHASE I REPORT NATIONAL DAM INSPECTION REPORT

NAME OF DAM STATE LOCATED COUNTY LOCATED STREAM DATE OF INSPECTION

Kehly Run Dam No. 3 Pennsylvania Schuylkill Kehly Run November 7 and 16, 1979

ASSESSMENT

The assessment of Kehly Run Dam No. 3 is based upon visual observations made at the time of inspection, review of available records and data, hydraulic and hydrologic computations and past operational performance.

Kehly Run Dam No. 3 appears to be in fair condition. Several areas of "possible past instability" are apparent on the downstream slope. In addition, extensive seepage areas have been reported in the past but may be obscurred by the tailwater. Maintenance of the dam and operating facilities is considered poor.

Kehly Run Dam No. 3 is a high hazard-small size dam. The spillway design flood is the PMF (probable maximum flood). The spillway and reservoir are capable of controlling approximately 17% of the PMF without overtopping the embankment. Based on criteria established by the Corps of Engineers the spillway is termed inadequate, but not seriously inadequate.

The following recommendations and remedial measures should be instituted immediately.

1. A detailed hydrologic and hydraulic study should be conducted by a professional engineer knowledgeable in dam design to develop plans to increase spillway capacity. The exit channel and spillway wingwall should be evaluated to determine whether improvements are required. Many of the reservoirs in the Kehly Run system do not control the PMF, thus all spillways in the system should be studied and upgraded because of the severe consequence of failure of reservoirs in series and the location of the Borough of Shenandoah downstream.

2. The trees and large vegetation on embankment slopes and in the spillway should be cleared at the direction of a professional engineer knowledgeable in the design and construction of dams.

3. Some means of positive closure of the drainline should be developed in case of emergencies.

4. Exercise and lubricate all valves on a regular basis.

5. A detailed study should be conducted by a registered professional engineer knowledgeable in earth dams to evaluate the seepage, possible slope instability and source of discharge from the swimming pool on the stability of the structure.

6. A warning system should be developed to warn downstream residents of large spillway discharges or imminent failure of the dam.

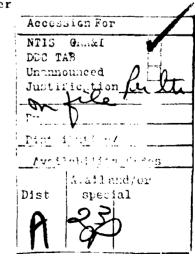
7. A safety inspection program should be implemented with inspections at regular intervals by qualified personnel.

8. A subsidence investigation should be conducted by the owner or his engineer to determine the effects of past and present mining beneath the reservoir.

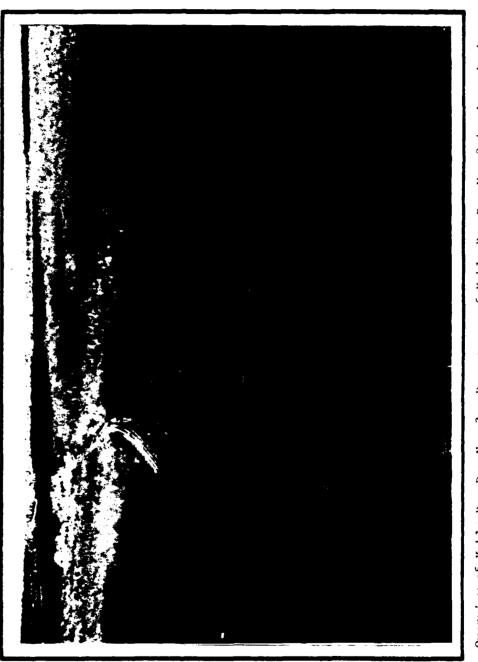
L. ROBERT KIMBALL & ASSOCIATES CONSULTING ENGINEERS AND ARCHITECTS

R Jettra Kebell

March 1980 Date


4 *

APPROVED BY:


25 Mar 1980 Date IAMES W. PECK

Colonel, Corps of Engineers District Engineer

R. Jeffrey Kimball, P.E.

· te

÷

Ŷ.

Overview of Kehly kun Dam No. 3. Downstream of Kehly kun Dam No. 3 is the swimming pool (formerly Kehly kun Dam No. 2). Note upstream dams (Kehly kun Dam No.'s 4, 5, and 6) in upper left corner.

iv

TABLE OF CONTENTS

12 S. 1

1

4.5. 4.

à.

SECTION 1 - PROJECT INFORMATION	1
<pre>1.1 General 1.2 Description of Project 1.3 Pertinent Data</pre>	1 1 2
SECTION 2 - ENGINEERING DATA	4
<pre>2.1 Design 2.2 Construction 2.3 Operation 2.4 Evaluation</pre>	4 4 4
SECTION 3 - VISUAL INSPECTION	5
3.1 Findings 3.2 Evaluation	5 6
SECTION 4 - OPERATIONAL PROCEDURES	7
 4.1 Procedures 4.2 Maintenance of Dam 4.3 Maintenance of Operating Facilities 4.4 Warning System in Effect 	7 7 7 7
SECTION 5 - HYDRAULICS AND HYDROLOGY	8
 5.1 Evaluation of Features 5.2 Evaluation Assumptions 5.3 Summary of Overtopping analysis 5.4 Summary of Dam Breach Analysis 	8 8 9 9
SECTION 6 - STRUCTURAL STABILITY	10
6.1 Evaluation of Structural Stability	10
SECTION 7 - ASSESSMENT AND RECOMMENDATIONS/REMEDIA MEASURES	L 11
7.1 Dam Assessment 7.2 Recommendations/Remedial Measures	11 11

PAGE

• . ' k.

1

v

APPENDICES

APPENDIX A - CHECKLIST, VISUAL INSPECTION, PHASE I APPENDIX B - CHECKLIST, ENGINEERING DATA, DESIGN, CONSTRUCTION, OPERATION, PHASE I APPENDIX C - PHOTOGRAPHS APPENDIX D - HYDROLOGY AND HYDRAULICS APPENDIX E - DRAWINGS

APPENDIX F - GEOLOGY

Ł.

10000

· k

PHASE I NATIONAL DAM INSPECTION PROGRAM KEHLY RUN DAM NO. 3 NDI. I.D. NO. PA 657 DER I.D. NO. 54-17

> SECTION 1 PROJECT INFORMATION

1.1 General.

a. <u>Authority</u>. The National Dam Inspection Act, Public Law 92-367, authorized the Secretary of the Army, through the Corps of Engineers, to initiate a program of inspection of dams throughout the United States.

b. <u>Purpose</u>. The purpose of the inspection is to determine if the dam constitutes a hazard to human life or property.

1.2 Description of Project.

a. Dam and Appurtenances. Kehly Run Dam No. 3 is an earth and rockfill dam 442 feet long and approximately 33 feet high. The upstream slope is 1H:1V and covered with hand placed riprap. The downstream slope is 1.5H:1V and covered with rock rubble. The reservoir drain consists of a 10" cast iron pipe under the embankment.

The spillway is an open cut channel located on the left abutment. A stone masonry wall forms the junction between the spillway and the embankment. The left abutment hillside forms the left portion of the spillway. The spillway crest has a total length of 35 feet and has an irregular bottom. The spillway discharge channel winds along the left abutment and is confined by a stone rubble dike.

Immediately downtream of Kehly Run Dam No. 3 is a swimming pool which forms tailwater on the dam. This swimming pool is formerly Kehly Run Dam No. 2. Upstream of Kehly Run Dam No. 3 are three reservoirs (Kehly Run Dams No. 4, 5, 6).

b. Location. The dam is located on Kehly Run, one-half mile north of Shenandoah, Schuylkill County, Pennsylvania. Kehly Run Dam No. 3 can be located on the Shenandoah, U.S.G.S. 7.5 minute quadrangle.

c. <u>Size Classification</u>. Kehly Run Dam No. 3 is a small size structure (33 feet high, 40 acre-feet).

d. <u>Hazard Classification</u>. Kehly Run Dam No. 3 is a high hazard dam. Downstream conditions indicate that loss of more than a few lives is probable should the structure fail (See Section 3.1e).

e. <u>Ownership</u>. Kehly Run Dam No. 3 is owned by The Shenandoah Municipal Authority. Correspondence should be addressed to:

Shenandoah Municipal Authority 26 West Lloyd Street Shenandoah, PA 17976 Attention: Charles Dallazia, Manager 717-462-1904

f. <u>Purpose of Dam</u>. Kehly Run Dam No. 3 is used for water supply.

g. Design and Construction History. The dam was built in approximately 1872. No information is available on the design or construction of the original dam. No drawings are available on the dam. The spillway was originally located in the center portion of the embankment but was moved to the left abutment prior to 1920.

h. <u>Normal Operating Procedure</u>. The reservoir is maintained at the spillway crest elevation 1495.0. Excess inflow is discharged over the spillway crest. Water is drawn off Kehly Run Dam No. 3 through the outlet works into the water system. It is believed that the outlet works pipe is used as the reservoir drain.

1.3 Pertinent Data.

a. Drainage Area. 1.01	square	miles
------------------------	--------	-------

b. Discharge at Dam Site (cfs).

Maximum known flood at dam site Spillway capacity at top of dam Reservoir drain

c. <u>Elevation (U.S.G.S. Datum) (feet)</u>. - Field survey based on pool elevation 1495 shown on USGS 7.5 minute quadrangle.

Top of dam - low point	1497.6
Top of dam - design height	Unknown
Maximum pool - PMF	1498.9
Full flood control pool	Not applicable
Normal pool	1495.0
Spillway crest	1495.0

Unknown 490

Unknown

	Streambed at centerline of dam Tailwater on day of inspection Toe of dam	1465.2 1464.1 1465.2
d.	Reservoir (feet).	
	Length of maximum pool (PMF) Length of normal pool	600 400
e.	Storage (acre-feet).	
	Normal pool Top of dam	33 40
f.	Reservoir Surface (acres).	
	Top of dam Normal pool Spillway crest	2.7 2.4 2.4
g٠	Dam.	
	Type Length Height Top width Side slopes - upstream - downstream Zoning Impervious core Cutoff	Earth and rockfill 442' 33' 16' 1H: 1V 1.5H: 1V Unknown Unknown Unknown
h.	Reservoir Drain. Type Length Closure Access Regulating facilities	10" CIP Approximately 110' Valve at toe None
i.		Valve at toe
	Spillway. Type Weir Length Crest elevation Upstream channel Downstream channel	Open cut channel 35' 1495' Unrestricted Narrow open channel

. .

SECTION 2 ENGINEERING DATA

2.1 <u>Design</u>. Review of information in the files of the Commonwealth of Pennsylvania, Department of Environmental Resources revealed that inspection reports, permits, photographs and correspondence were available for review. No design reports or original design drawings or construction data was available. The data that was available was reviewed for this study.

2.2 Construction. No data is available on construction of the dam.

2.3 Operation. No operating records are maintained.

2.4 Evaluation.

a. <u>Availability</u>. Engineering data were provided by PennDER, Bureau of Dams and Waterway Management and the owner. The manager of the Municipal Authority was interviewed to obtain data on operation and maintenance of the dam. The owner did not provide any information on past deep mining activities in the area of the dam and reservoir.

b. Adequacy. A detailed analysis cannot be made because of the lack of detailed design information or drawings. This Phase I Report is based upon available data, visual inspection, and a hydrologic and hydraulic analysis.

SECTION 3 VISUAL INSPECTION

3.1 Findings.

a. <u>General</u>. The onsite inspection of Kehly Run Dam No. 3 was conducted by personnel of L. Robert Kimball and Associates on November 7 and 16, 1979. The inspection consisted of:

- 1. Visual inspection of the retaining structure, abutments and toe.
- 2. Examination of the spillway facilities, exposed portion of any outlet works and other appurtenant works.
- 3. Observations affecting the runoff potential of the drainage basin.
- 4. Evaluation of the downstream area hazard potential.

The dam appears to be in fair condition. From a Ъ. Dam. brief survey conducted during the inspection, it was noted that a low spot was present adjacent to the spillway. The upstream slope was measured to be 1H:1V and covered with hand placed masonry. The downstream slope was measured to be 1.5H:1V and covered with stone rubble. The crest width is 16 feet. The upstream slope was covered with small trees and brush and the downstream slope was covered with larger trees and brush. The downstream slope showed two areas (one located near the center of the embankment, the other located near the left abutment) that have either had new material added or showed signs of possible slope movement. A small amount of seepage was present along the left abutment. This seepage was partially obscurred by the presence of large boulders dumped on this abutment. The swimming pool located at the toe of dam (formerly a dam named Kehly Run Dam No. 2) may have partially obscured this seepage and obscured viewing the toe of dam.

c. <u>Appurtenant Structures</u>. The open cut spillway is located on the left abutment. The junction of the spillway and the embankment is formed by a masonry wall. This masonry wall is in need of repair. The weir has an irregular crest caused by the severe deterioration of the concrete. The weir is 19 feet long at elevation 1495.0. The weir gains an additional 16 feet of width (total 35 feet) by gently sloping upward to meet the natural hillside. The spillway exit channel is narrow and very irregular. The channel follows the left abutment hillside and is formed by a stone rubble dike (See photographs, Appendix C).

The 10" cast iron pipe outlet works was not observed during the inspection. The value to control flow through the outlet works is below the toe of dam. No upstream shutoff is provided.

d. <u>Reservoir Area</u>. The watershed is covered mostly with woodland. The reservoir slopes are moderately steep but are not susceptible to landslides which would affect the storage volume of the reservoir or overtopping of the dam by displacing water.

and the starting of the second starting

والمنافعة والمستعادية

e. <u>Downstream Channel</u>. The channel downstream of Kehly Run Dam No. 3 is narrow for approximately 1800 feet until it fans out into the Borough of Shenandoah.

3.2 Evaluation. In general, the embankment and appurtenant structures appear to be in fair condition but poorly maintained.

6

SECTION 4 OPERATIONAL PROCEDURES

4.1 <u>Procedures</u>. The reservoir is maintained at the spillway crest elevation 1495.0. The valve in the outlet works remains open so that water enters the water system. The excess inflow discharges over the spillway crest. The valve is reportedly operated on a regular basis.

4.2 <u>Maintenance of the Dam</u>. No planned maintenance schedule exists. Maintenance of the dam is performed by the Municipal Authority staff. Maintenance of the dam is considered poor.

4.3 <u>Maintenance of Operating Facilities</u>. Maintenance of the spillway and outlet works is considered poor. The valve on the outlet works is reportedly operated regularly.

4.4 <u>Warning System in Effect</u>. There is no warning system in effect to warn downstream residents of large spillway discharges or imminent failure of the dam.

4.5 <u>Evaluation</u>. Maintenance of the dam and operating facilities is considered poor. There is no system in effect to warn downstream residents of large spillway discharges or failure of the dam.

SECTION 5 HYDRAULICS AND HYDROLOGY

5.1 Evaluation of Features.

a. <u>Design Data</u>. No calculations or design data pertaining to hydrology were available.

b. <u>Experience Data</u>. No rainfall, runoff or reservoir level data were available. The spillway has reportedly functioned adequately in the past.

c. <u>Visual Observations</u>. The spillway appeared to be in poor condition. The spillway crest is badly deteriorated, sedimentation and debris has destroyed the original overflow channel. The discharge channel is narrow and flow is partially restricted by occassional large boulders.

A low spot was noted on the dam embankment adjacent to the right spillway wingwall. This area could easily be filled to increase the top of dam elevation.

d. <u>Overtopping Potential</u>. Overtopping potential was investigated through the development of the probable maximum flood (PMF) for the watershed and the subsequent routing of the PMF and fractions of the PMF through the reservoir and spillway.

The Corps of Engineers, Baltimore District, has directed that the HEC-1 Dam Safety Version systemized computer program be utilized. The program was prepared by the Hydrologic Engineering Center (HEC), U.S. Army Corps of Engineers, Davis, California, July, 1978. The major methodologies or key input data for this program are discussed briefly in Appendix D.

5.2 <u>Evaluation Assumptions</u>. To enable us to complete the hydraulic and hydrologic analysis for this structure, it was necessary to make the following assumptions.

1. The pool elevation in the reservoir prior to the storm is 1495 feet.

2. For the overtoppping analysis a top of dam elevation of 1497.6 feet (low spot) was assumed for the entire length of the crest of 442 feet. Field survey measurements taken during the inspection indicate that the top of dam varies from 1497.6 feet to 1498.6 feet.

3. For the dam breach analysis it was assumed that dam failure would begin when the water level in the reservoir reached elevation 1497.9 or 0.30 feet over the top of the dam.

4. The flood was routed through all upstream reservoirs.

5.3 <u>Summary of Overtopping Analysis</u>. Complete summary sheets for the computer output are presented in Appendix D.

Peak inflow (PMF)	2764 cfs
Spillway capacity	446 cfs

a. <u>Spillway Adequacy Rating</u>. The Spillway Design Flood (SDF) for this dam is the PMF. The SDF is based on the hazard and size classification of the dam. Based on the following definition provided by the Corps of Engineers, the spillway is rated as inadequate as a result of our hydrologic analysis.

Inadequate - All high hazard dams which do not pass the SDF (PMF), but where failure due to overtopping does not significantly increase the hazard potential for loss of life downstream.

The spillway and reservoir are capable of controlling approximately 17% of the PMF without overtopping the dam (based on low spot).

5.4 <u>Summary of Dam Breach Analysis</u>. As the subject dam cannot satisfactorily pass 50% of the PMF (based on our analyses) it was necessary to perform a breach analysis and downstream routing of the flood wave. This analyses determines the degree of increased flooding due to dam failure.

The water level in the reservoir at the time of dam failure was assumed to be at 1497.9 feet (0.30 feet over the top of dam low spot) based on the evaluating engineers judgement. The 30% PMF was routed through the reservoir and downstream.

The flood wave was routed downstream with and without embankment failure conditions considered. The flood was not routed through the swimming pool because of its small size.

Results of the Dam Breach analysis indicate that downstream flooding is not significantly increased. Since flooding downstream is not significantly increased due to dam failure, the spillway is not considered seriously inadequate. Therefore, this spillway is rated as "inadequate".

Note: Future development within the watershed, at the dam, or downstream may change the characeristics and assumptions made for this study and different results are likely. Future development downstream may also greatly increase the potential for loss of life due to failure of the structure.

k

SECTION 6 STRUCTURAL STABILITY

6.1 Evaluation of Structural Stability.

a. <u>Visual Observations</u>. Two locations on the downstream embankment slope showed possible signs of instability. These two areas appear as if some of the rock rubble has recently moved downslope. These areas are not vegetated. These areas are located approximately 160 feet from the right abutment and adjacent to the spillway.

A very small amount of seepage was present approximately 150 feet to the right of the spillway at the toe of dam. It is reported in the correspondence that Kehly Run Dam No. 2 (swimming pool) was constructed to collect seepage. However, because of the swimming pool and the presence of large rock boulders on the left abutment this seepage is obscured. The swimming pool at the toe of dam may be obscuring the presence of a large quantity of seepage. The outflow from the swimming pool is several hundred gallons per minute. Past history indicates a large amount of seepage near the toe of dam.

b. <u>Design and Construction Data</u>. No stability analyses are on record for this dam. No data on the design or construction is available.

c. Operating Records. No operating records are maintained.

d. <u>Post Construction Changes</u>. No post construction changes are known other than reconstruction of the spillway on the left abutment and construction of Kehly Run Dam No. 2, downstream of Kehly Run Dam No. 3.

e. <u>Seismic Stability</u>. The dam is located in seismic zone 1. No seismic stability analyses has been performed. Normally, it can be considered that if a dam in this zone is stable under static loading conditions, it can be assumed safe for any expected loading.

SECTION 7 ASSESSMENT AND RECOMMENDATIONS/REMEDIAL MEASURES

7.1 Dam Assessment.

a. <u>Safety</u>. The dam appears to be in fair condition. There is evidence that slow movement is taking place or has recently taken place on portions of the downstream slope. A small amount of seepage was in evidence during the inspection. In addition, past inspections report a considerable amount of seepage at the toe of dam prior to construction of Kehly Run Dam No. 2. The tailwater may be obscuring a high seepage rate. The visual observations, review of available information, hydrologic and hydraulic calculations and past operations and performance indicate that Kehly Run Dam No. 3's spillway is inadequate but not seriously inadequate. The spillway is capable of controlling 17% of the PMF without overtopping the earth embankment. No adequate stability analysis has been performed for this structure. The long term affect of the seepage is unknown.

b. Adequacy of Information. Detailed analyses of the structure cannot be made because of the lack of any design or construction data. This Phase I Report is based upon visual observations, review of available data, hydrologic and hydraulic calculations and past operations and performance.

c. Urgency. The recommendations suggested below should be implemented immediately.

d. <u>Necessity for Further Investigation</u>. To complete some of the recommendations/remedial measures outlined below, additional investigations are required.

7.2 Recommendations/Remedial Measures.

1. A detailed hydrologic and hydraulic study should be conducted by a professional engineer knowledgeable in dam design to develop plans to increase spillway capacity. The exit channel and spillway wingwall should be evaluated to determine whether improvements are required. Many of the reservoirs in the Kehly Run system do not control the PMF, thus all spillways in the system should be studied and upgraded because of the severe consequence of failure of reservoirs in series and the location of the Borough of Shenandoah downstream.

2. The trees and large vegetation on embankment slopes and in the spillway should be cleared at the direction of a professional engineer knowledgeable in the design and construction of dams.

3. Some means of positive closure of the drainline should be developed in case of emergencies.

4. Exercise and lubricate all valves on a regular basis.

5. A detailed study should be conducted by a registered professional engineer knowledgeable in earth dams to evaluate the seepage, possible slope instability and source of discharge from the swimming pool on the stability of the structure.

6. A warning system should be developed to warn downstream residents of large spillway discharges or imminent failure of the dam.

7. A safety inspection program should be implemented with inspections at regular intervals by qualified personnel.

8. A subsidence investigation should be conducted by the owner or his engineer to determine the effects of past and present mining beneath the reservoir.

. .

APPENDIX A CHECKLIST, VISUAL INSPECTION, PHASE I

I

CHECK LIST VISUAL INSPECTION PHASE I

and the second second

ţ

ŀ

a 10# PA 657	High	500
STATE <u>Pennsylvania</u> ID# <u>PA 657</u>	HAZARD CATEGORY HISh	TEMPERATURE
COUNTY Schuylk111		Cloudy, warm
COUNTY		<u>16. 197</u> %EATHER
NAME OF DAM Kehly Run Dam No. 3	TYPE OF DAM Earth and rockfill	DATE(s) INSPECTIONNov. 7 and 16, 19
NAME 0	TYPE 0	DATE (8

TAILMATER AT TIME OF INSPECTION 1464.2 M.S.L.

M.S.L.

POOL ELEVATION AT TIME OF INSPECTION 1495.0

INSPECTION PERSONNEL:

R. Jeffrey Kimball, P.E. - L. Robert Kimball and Associates

James T. Hockensmith - L. Robert Kimball and Associates

0.T. McConnell - L. Robert Kimball and Associates

James T. Hockensmith

1

- RECORDER

EMBANKMENT

SURFACE CRACKS None noted in embankment. SURFACE CRACKS None noted in embankment. SURVAL HOVENERT OR UNUSUAL HOVENERT OR CRACKING AT OR BETOND THE TOE None noted. SURVENT NO THE TOE None noted. SURVENT AND OF EMANNEEDT AND DEFENSION ANTHENT SLOPES None noted. AUTHENT SLOPES adjacent to pillivay, appears to have had adjacent to pillivay, appears to be good. VERTICAL AND HORIZONTAL HORIZONTAL HORIZONTAL ALIGNMENT OF THE CREST VERTICAL AND HORIZONTAL HORIZONTAL HORIZONTAL VERTICAL AND HORIZONTAL HORIZONTAL VERTICAL AND HORIZONTAL VERTICAL AND HORIZONTAL MAINTENT SLOPES MAINTENT SLOPES	VISU	VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
None noted. None noted. Two areas, 150 feet from right abutment, adjacent to spillway, appear to have had recent slope movement and recently placed material added. AL Horizontal alignment appears to be good. Vertical, low spot on the spillway. None.	SURF	ACE CRACKS		
<pre>ION Two areas, 150 feet from right abutment, adjacent to spillway, appear to have had recent slope movement and recently placed material added. CNTAL Horizontal alignment appears to be good. CREST Vertical, low spot on the spillway. None.</pre>	UNUS CRAC THE	SUAL MOVEMENT OR XING AT OR BEYOND TOE	None noted.	
	SLOU ABUT	JCHING OR EROSION MBANKMENT AND MENT SLOPES	<pre>i, 150 feet from right abutment, to spillway, appear to have had tope movement and recently placed added.</pre>	
	VERT	FICAL AND HORIZONTAL		
	RIPR	LAP FAILURES	None.	

η.

EMBANKMENT

· · · · ·

t

* * .

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
VEGETATION	Small trees and brush on upstream slope. Trees and brush on downstream slope.	
JUNCTION OF EMBANKMENT AND ABUTMENT, SPILLMAY AND DAM	Appears to be good. Masonry wall at embankment -spillway contact in need of repair.	4
ANY NOFICEABLE SEEPAGE	Minor amount of seepage noted at junction of left abutment and toe of dam. However, considerable amount of seepage may be present beneath the tail- water.	erable ail-
STAFF GAUGE AND RECORDER	None.	
DRAINS	None.	

A-3

CONCRETE/MASONRY DAMS

VISUAL EXAMINATION OF	P OBSERVATIONS	REMARKS OR RECOMMENDATIONS
ANY NOTICEABLE SEEPAGE	Not applicable.	
STRUCTURE TO ABUTMENT/EMBANKMENT JUNCTIONS	Not applicable.	
DRAINS	Not applicable.	
WATER PASSAGES	Not applicable.	
FOUNDATION	Not applicable.	

· 14

بد الرجيد -

CONCRETE/MASONRY DAMS

	UTSITAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
	SURFACE CRACKS CONCRETE SURFACES	Not applicable.	
	STRUCTURAL CRACKING	Not applicable.	
A-5	VERTICAL AND HORIZONTAL ALIGNMENT	Not applicable.	
	SINIOF HITIONOW	Not applicable.	
	CONSTRUCTION JOINTS	Not applicable.	
	STAPP GAUGE OR RECORDER	Not applicable.	

OUTLET WORKS

فتشمه ممكنة ألمنا

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
CRACKING AND SPALLING OF CONCRETE SURFACES IN OUTLET CONDUIT	Outlet works unobserved during inspection.	
INTAKE STRUCTURE	Unobserved during inspection.	
OUTLET STRUCTURE	None.	
OUTLET CHANNEL	None.	
EMERGENCY GATE	Valve beyond toe of dam. Not operated during inspection.	

A-6

UNGATED SPILLWAY

	VISILAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
	CONCRETE WEIR	Very irregular weir surface. Right wall of spillway shows considerable deterioration.	
	APPROACH CHANNEL	Lake.	
A-7	DISCHARGE CHANNEL	Stone rubble dike forms the discharge channel.	
	BRIDGE AND PIERS	None.	

1.2%

. GATED SPILLWAY

and the second second

A LUUGH EADERLING TON UF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
CONCRETE SILL	Not applicable.	
APPROACH CHANNEL	Not applicable.	
DISCHARGE CHANNEL	Not applicable.	
BRIDGE AND PIERS	Not applicable.	
GATES AND OPERATION EQUIPMENT	Not applicable.	

1.

DOWNSTREAM CHANNEL

X

L	VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
1		Narrow confined channel.	
	CONDITION (OBSTRUCTIONS, DEBRIS, ETC.)		
		Appear to be stable.	
A-9	STOPES		
	APPROXIMATE NO.	Approximately 400 homes - 1600 people.	
	OF HOMES AND POPULATION		

A-9

 $\sim 2c$

RESERVOIR

1

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
SLOPES	Steep but appear to be stable.	
SEDIMENTATION	Does not appear to be excessive because of upstream reservoirs.	
A-		

the con

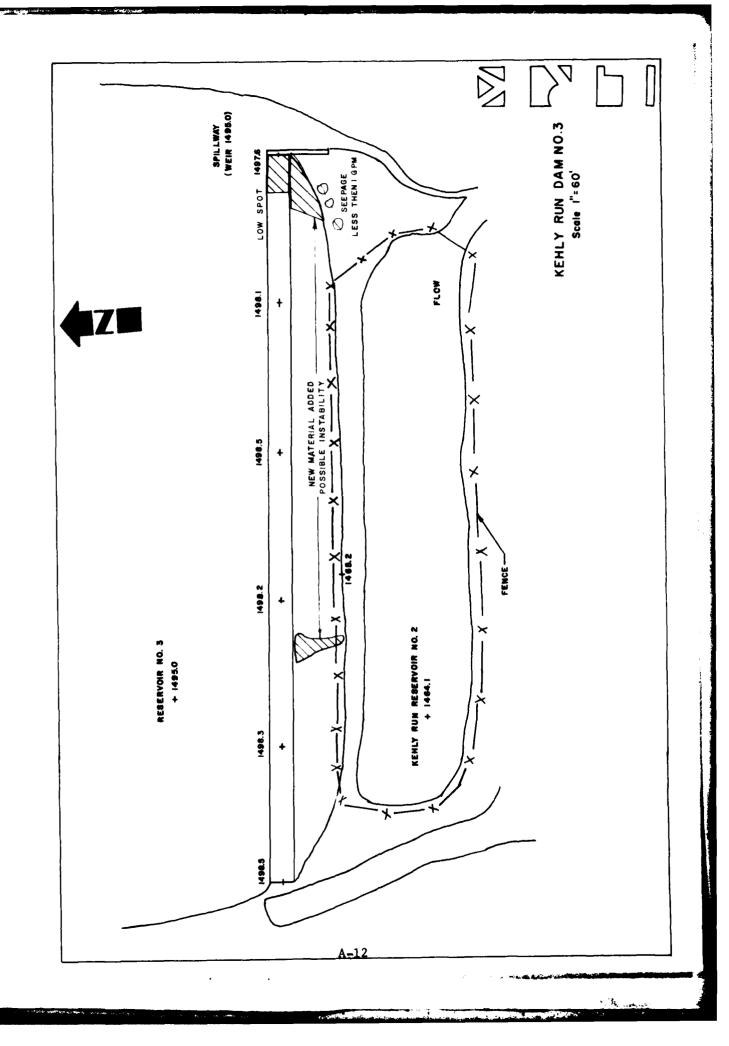
INSTRUMENTATION

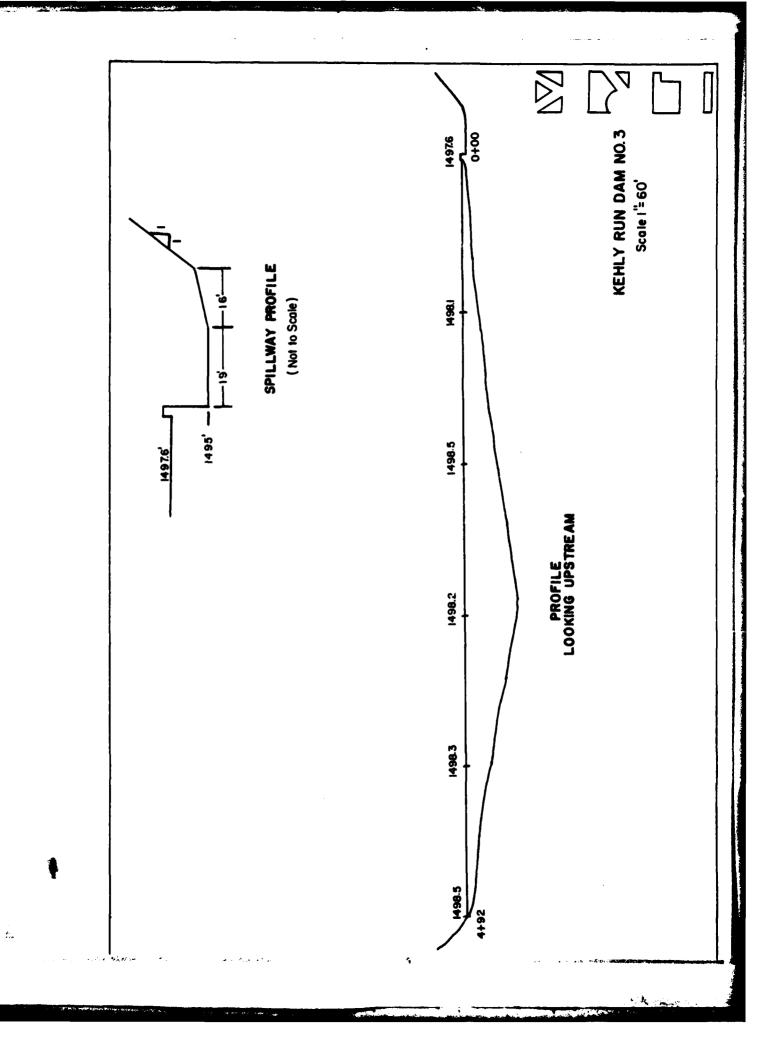
Soll Bar H. Walt

ţ

4.) (}

hip weath Means


الداريق فخطرا


. . .

. . .

Land	VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
	MONUMENTATION/SURVEYS	None.	
	OBSERVATION WELLS	None.	
A-11	WEIRS	None.	
	PIEZOMETERS	None.	
	OTHER	None.	

the uning

ţ

.

APPENDIX B CHECKLIST, ENGINEERING DATA, DESIGN, CONSTRUCTION, OPERATION, PHASE I

With straining in

ġ

CHECK LIST ENGINEERING DATA DESIGN, CONSTRUCTION, UPERATION PHASE I

and a second

NAME OF DAM Kehly Run Dam No. 3

ł

and the second second

1

ID# PA 657

Ľ	ITEM	REMARKS
¥.	AS-BUILT DRAWINGS	None.
8	REGIONAL VICINITY MAP	USGS quadrangle.
8-1	CONSTRUCTION HISTORY	None.
F	TYPICAL SECTIONS OF DAM	None .
5 2	OUTLETS - PLAN - DETAILS - CONSTRAINTS - DISCHARGE RATINGS RAINFALL/RESERVOIR RECORDS	None. None. None. None.

• • • • •

1. hourses

	ITBN	REMARKS
L	DESIGN REPORTS	None.
	GEOLOGY REPORTS	None.
B-2	DESIGN COMPUTATIONS HYDROLOGY & HYDRAULICS DAM STABILITY SEEPAGE STUDIES	None.
	MATERIALS INVESTIGATIONS BORING RECORDS LABORATORY FIELD	Unknown.
	POST-CONSTRUCTION SURVEYS OF DAM	Unknown.
	BORROW SOURCES	Unknown.

.

.

•

1.4

	ITEM	REMARKS
	MONITORING SYSTEMS	None.
	MODIFICATIONS	Unknown.
B-	HIGH POOL RECORDS	None.
3	POST CONSTRUCTION ENCINEERING STUDIES AND REPORTS	None.
	PRIOR ACCIDENTS OR PAILURE OF DAM DESCRIPTION REPORTS	Unknown.
	MAINTENANCE OPERATION RECORDS	None.

Section of the Sectio

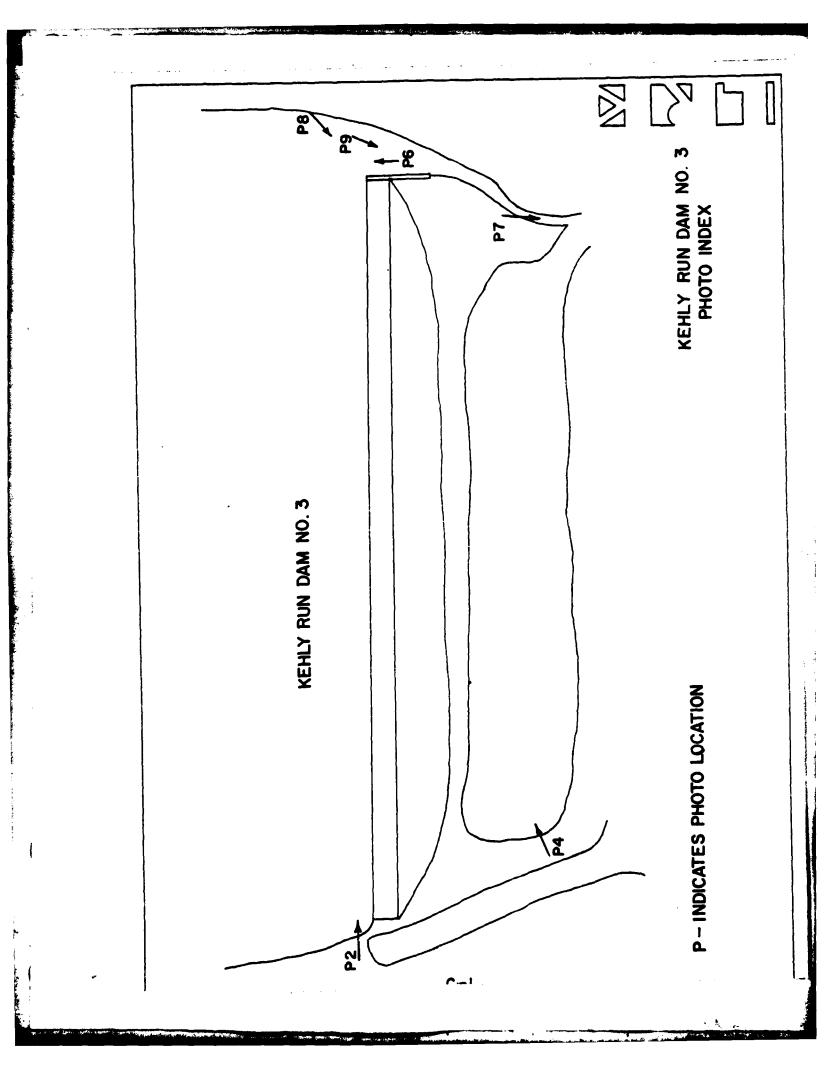
L	ITEM	REMARKS
I		None.
	SPILLMAY PLAN	
	SECTIONS	
	DETAILS	
L	OPERATING EQUIPMENT PLANS & DETAILS	None.
_		

hit sa wide the west

····

B-4

- 3c


Charles 1

APPENDIX C PHOTOGRAPHS

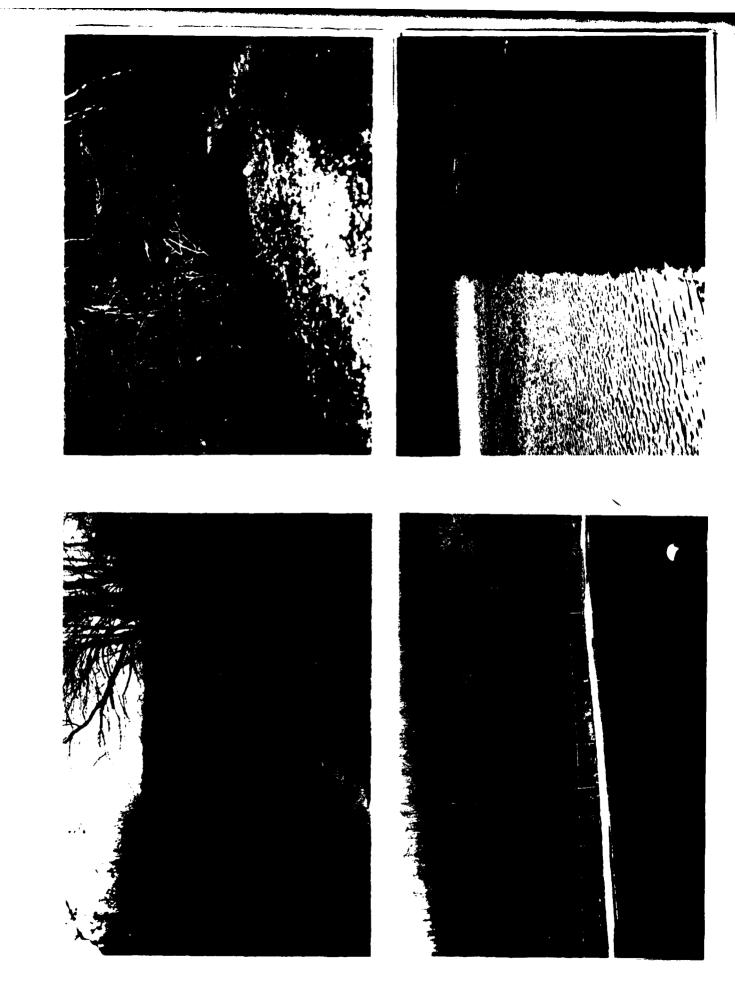
the second second

E

.

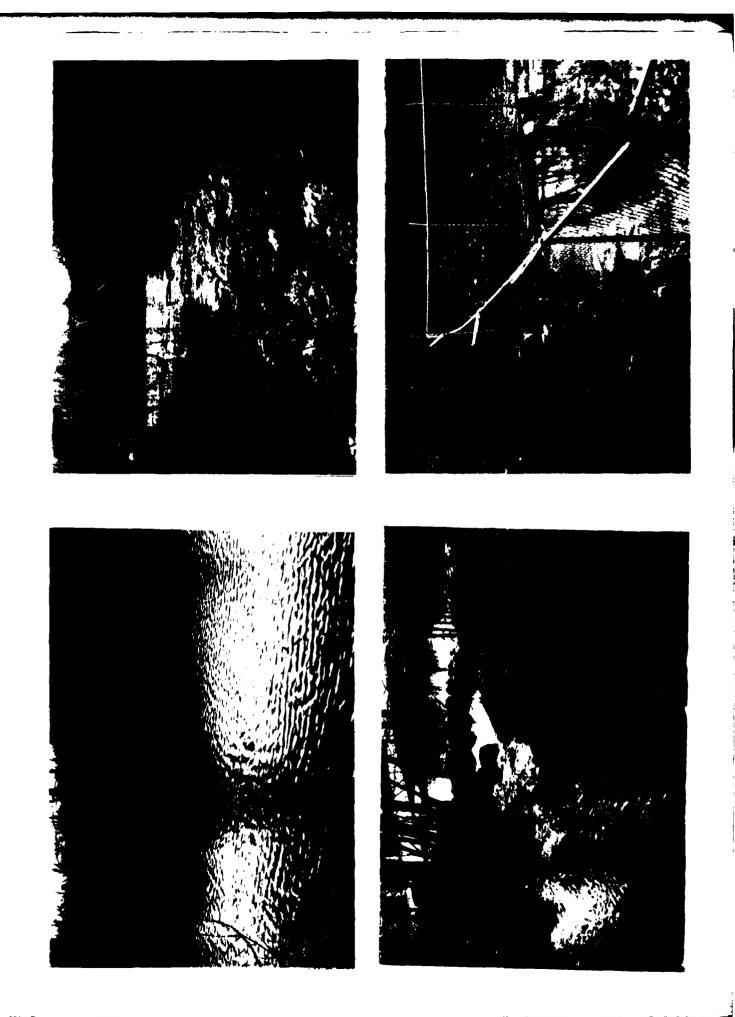
KEHLY RUN DAM NO. 3

```
Photograph Descriptions
```


Sheet 1. Front

(1) Upper left - Spillway on Kehly Run Dam No. 4.
(2) Upper right - Upstream slope of Kehly Run Dam No. 3.
(3) Lower left - View of crest of Kehly Run Dam No. 4 (upstream dam). In background is downstream slope of Kehly Run Dam No. 5.
(4) Lower right - Downstream slope of Kehly Run Dam No. 3.

(5) Upper right - Downstream exposure (Shenandoah Borough). Coal refuse embankment in foreground.


Sheet 2. Front

- (6) Upper left Spillway weir.
- (7) Upper right Spillway discharge channel along swimming pool.
- (8) Lower left Upstream slope and spillway entrance.
- (9) Lower right Spillway discharge channel.

____<u>...</u>

APPENDIX D HYDROLOGY AND HYDRAULICS

4

. K

.

.

t

APPENDIX D HYDROLOGY AND HYDRAULICS

<u>Methodology</u>. The dam overtopping and breach analyses were accomplished using the systemized computer program HEC-1 (Dam Safety Investigation), September, 1978, prepared by the Hydrologic Engineering Center, U.S. Army Corps of Engineers, Davis, California. A brief description of the methodology used in the analysis is presented below.

1. <u>Precipitation</u>. The Probable Maximum Precipitation (PMP) is derived and determined from regional charts prepared from past rainfall records including "Hydrometeorological Report No. 40" prepared by the U.S. Weather Bureau.

The index rainfall is reduced from 10% to 20% depending on watershed size by utilization of what is termed the HOP Brook adjustment factor. Distribution of the total rainfall is made by the computer program using distribution methods developed by the Corps.

2. Inflow Hydrograph. The hydrologic analysis used in development of the overtopping potential is based on applying a hypothetical storm to a unit hydrograph to obtain the inflow hydrograph for reservoir routing.

The unit hydrograph is developed using the Snyder method. This method requires calculation of several key parameters. The following list gives these parameters their definition and how they were obtained for these analysis.

Parameter	Definition	Where Obtained
Ct	Coefficient representing variations of watershed	From Corps of Engineers*
L	Length of main stream channel miles	From U.S.G.S. 7.5 minute topographic
Lca	Length on main stream to centroid of watershed	From U.S.G.S. 7.5 minute topographic
Cp	Peaking coefficient	From Corps of Engineers*
A	Watershed size	From U.S.G.S. 7.5 minute topographic

*Developed by the Corps of Engineers on a regional basis for Pennsylvania.

D-1

3. <u>Routing</u>. Reservoir routing is accomplished by using Modified Plus routing techniques where the flood hydrograph is routed through reservoir storage. Hydraulic capacities of the outlet works, spillways and the crest of the dam are used as outlet controls in the routing.

The hydraulic capacity of the outlet works can either be calculated and input or sufficient dimensions input and the program will calculate an elevation discharge relationship.

Storage in the pool area is defined by an area - elevation relationship from which the computer calculates storage. Surface areas are either planimetered from available mapping or U.S.G.S. 7.5 minute series topographic maps or taken from reasonably accurate design data.

4. <u>Dam Overtopping</u>. Using given percentages of the PMF the computer program will calculate the percentage of the PMF which can be controlled by the reservoir and spillway without the dam overtopping.

5. Dam Breach and Downstream Routing. The computer program is equipped to determine the increase in downstream flooding due to failure of the dam caused by overtopping. This is accomplished by routing both the pre-failure peak flow and the peak flow through the breach (calculated by the computer with given input assumptions) at a given point in time and determining the water depth in the downstream channel. Channel cross-sections taken from U.S.G.S. 7.5 minute topographic maps were used in the downstream flood wave routing. Pre and post failure water depths are calculated at locations where crosssections are input.

1. A.

ţ

HYDROLOGY AND HYDRAULICS ANALYSIS DATA BASE

NAME OF DAM: Kehly Run Dam No. 3 PROBABLE MAXIMUM PRECIPITATION (PMP) = 22.2 (1.005) = 22.3" 2 STATION 1 3 Station Description Kehly No. 6 Kehly No. 5 Kehly No. 4 Kehly No. 3 Drainage Area (square miles) 0.29 0.11 0.04 0.57 Cumulative Drainage Area 0.29 0.40 1.01 (square miles) 0.44 Adjustment of PMF for Drainage Area $(%)^{(1)}$ 6 hours 117 117 117 117 12 hours 127 127 127 127 24 hours 136 136 136 136 48 hours 143 143 143 143 72 hours 145 145 145 145 Snyder Hydrograph Parameters Zone (2) Cp (3) 13 13 13 13 0.50 0.50 0.50 0.50 Ct (3) 1.85 1.85 1.85 1.85 0.40 0.20 0.85 L (miles) (4) Lca (miles) (4) 0.40 **0.19** ŏ. 10 $tp = Ct(LxLca)^{0.3}$ hrs. 0.87 0.87 0.56 1.34 Spillway Data Lt. Rt. Crest Length (ft) 9 26 39 10 35 Freeboard (ft) 3.5 3.1 3.0 2.6 Discharge Coefficient 3.1 C'=0.95 C'=0.95 C'=0.95 C'=0.95 Exponent 1.5 N/A N/A N/A N/A (1)Hydrometeorological Report 40 (Figure 1), U.S. Army Corps of Engineers, 1965. (2)Hydrological zone defined by Corps of Engineers, Baltimore District, for determining Snyder's coefficients (Cp and Ct).

(3)Snyder's Coefficients.

(4)L=Length of longest water course from outlet to basin divide.

^Lca=Length of water course from outlet to point opposite the centroid of drainage area.

CHECK LIST HYDROLOGIC AND HYDRAULIC ENGINEERING DATA

DRAINAGE AREA CHARACTERISTICS: ______.D.A. =1.01 mi² Wooded Steep Slopes ELEVATION TOP NORMAL POOL (STORAGE CAPACITY): _____33 ac.ft. ELEVATION TOP FLOOD CONTROL POOL (STORAGE CAPACITY): _____40 ac.ft. ELEVATION MAXIMUM DESIGN POOL: _____ Unknown ELEVATION TOP DAM: ____1497.6 feet

SPILLWAY CREST:

and the state of the second

.

- 1495 feet a. Elevation
- b. Type _____ Trapezoidal 35 feet - bottom
- c. Width Channel approximately 200' d. Length ____
- e. Location Spillover Left abutment
- f. Number and Type of Gates None

OUTLET WORKS:

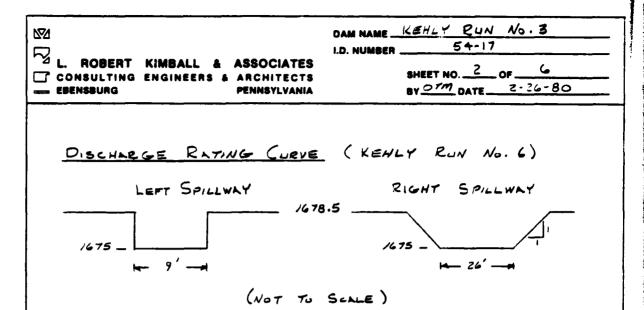
£ ,

a.	Туре	10" CIP
	Location	
c.	Entrance inverts	Unknown
	Exit inverts	Unknown

e. Emergency draindown facilities _____10" CIP___

HYDROMETEOROLOGICAL GAUGES:

- a. Type _ None
- b. Location _____ None c. Records _ None

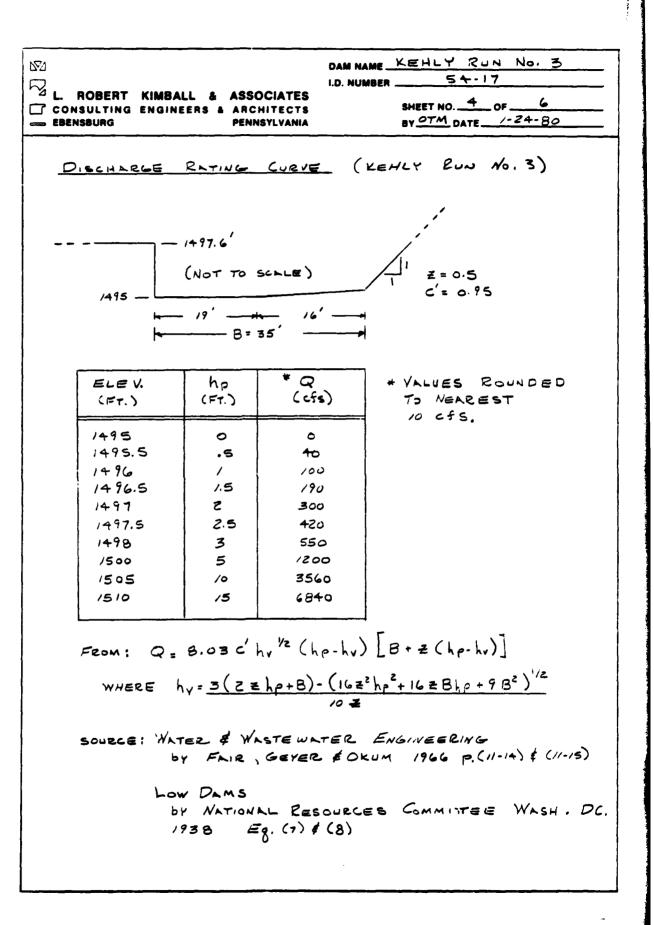

MAXIMUM NON-DAMAGING DISCHARGE : Unknown

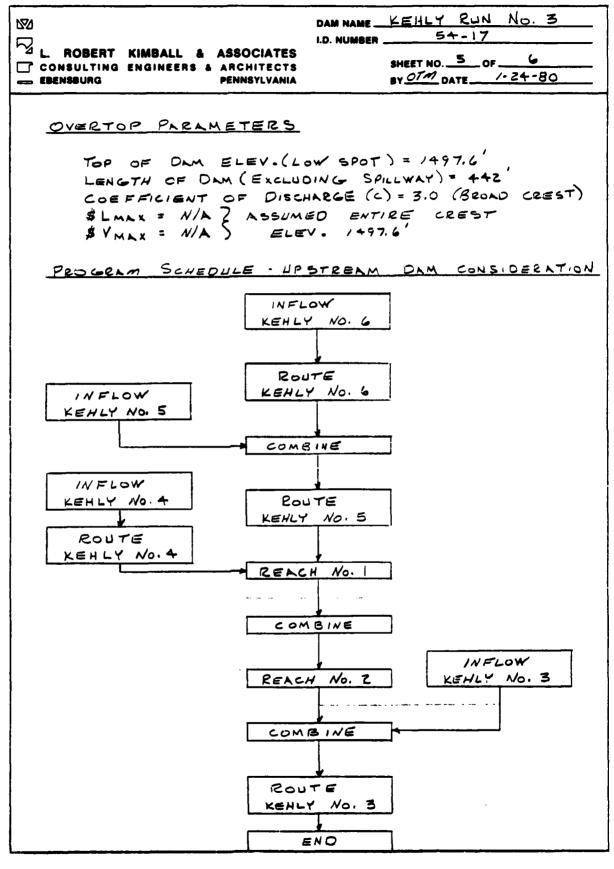
D-4

			E <u>KEHLY RUN</u> No. 3 ER 54-17
	KIMBALL & ASSOCIATI	ES	SHEET NO OF
ENSBURG	PENNSYLVAN		BY OTM DATE 1-23-80
As er	COMMENDED BY		OF ENGINEERS,
ح	TRTL = LINCH		
	NSTL : 0.05 /	1/40	
	TRTQ . 1.5 cfs		
	RCSN = 0.05 (PEAK FLOW)
•	TIOR : 2.0	,	
INITIN	LLWAY CEEST E L Storage = Surface Area	33.2 A	c.FT.
AT ELE	V. 1500', AREA V. 1520', AREA		
AT ELE At ELE From (EV. 1520', ARE	a = G.4 A For rese	ERVOIR VOLUME.
AT ELE At Ele From (Floco	EN. 1520', ARE CONIC METHOD , HYDROGRAPH	a = 6.4 A For rese Package	ERVOIR VOLUME . E (HEC-I)
AT ELE At Ele From (Floco	EV. 1520', ARE	a = 6.4 A For rese Package	ERVOIR VOLUME . E (HEC-I)
AT ELE NT ELE From (Flocod DNM S H =	EN. 1520', ARE CONIC METHOD , HYDROGRAPH	a = 6.4 A For rese Package	ERVOIR VOLUME . E (HEC-I)
AT ELE AT ELE From (Flocod Dam S H = =	V. 1520', ARE CONIC METHOD HYDROGRAPH SAFETY VERSI 3 Y /A 3 (33.2) / 2.4 99.6 / 2.4	A = G.4 A FOR RESE PACKAGE ON (USE	ERVOIR VOLUME. E (HEC-I), RS MANUAL).
AT ELE AT ELE From (Flocod Dam S H = = = ELEVAT	V. 1520', ARE CONIC METHOD HYDROGENPH SNFETY VERSIN 3 (33.2)/2.4 99.6/2.4 41.5'	A = G.4 A FOR RESE PACKAGE ON (USE	ERVOIR VOLUME. E (HEC-I), RS MANUAL).
AT ELE AT ELE From (Flocod Dam S H = = = ELEVAT	V. 1520', ARE CONIC METHOD HYDROGRAPH SAFETY VERSI 3 Y /A 3 (33.2) / 2.4 99.6 / 2.4 41.5' TON WHERE AR	A = G.4 A FOR RESE PACKAGE ON (USE	ERVOIR VOLUME. E (HEC-I), RS MANUAL).

t

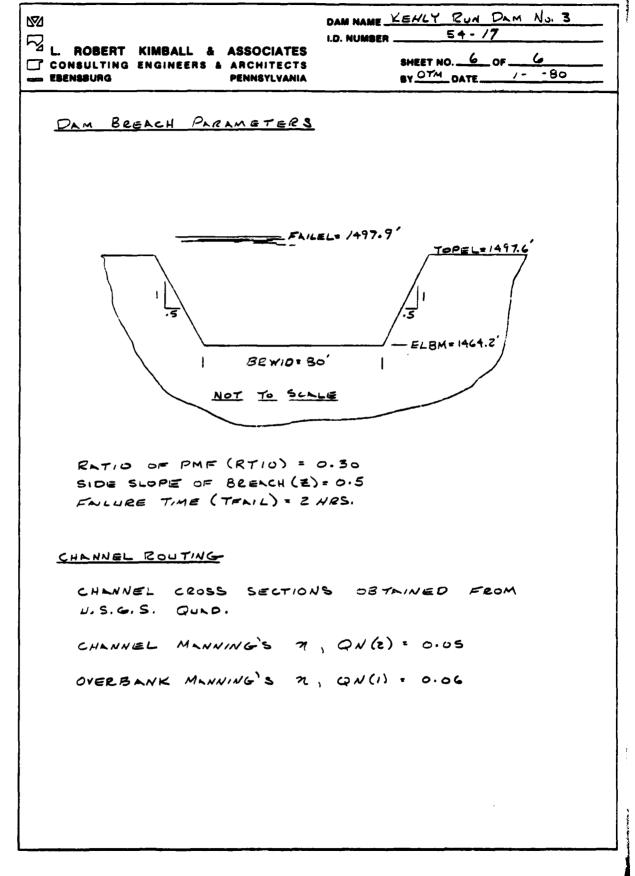
D-5


ELEV.	LEFT S	SPILLWAY	RIGH	T SPILLWAY	* Discharge
(FY.)	h. (=)	Qi (cts)	hp (Ft)	Qz (cfs)	Q (cfs)
1675	0	o	0	C	0
1676	/	<i>2</i> 8		78	110
1677	z	79	2	227	310
1678	3	/45	3	4 28	570
1678.5	3.5	183	3.5	545	730
1679	4	223	4	674	900
1680	5	3/2	5	965	0551
1685	10	88 Z	10	3053	3940
1690	15	1621	15	6213	7830
					1


* VALUES ROUNDED TO NEAREST 10 cfs.

	L. ROBERT Consulting Ebensburg	KIMBALL Engineers	& ASSOCIATES & ARCHITECTS PENNSYLVANIA	DAM NAME	KEHLY RUN No. 3 54-17 SHEET NO. <u>3</u> OF <u>6</u> BY <u>OTM</u> DATE <u>2-26-80</u>
	DISCHNEG	E RATIN	Currie	(KEHLY	RUN NO. 5)
	ELE V. (FT.)	hp (Ft)	*Q (cfs)	1663.1_	
	1660	0	0		(NOT TO SCALE)
	1660.5	.5	40	1660	+ + + + + + + + + + + + + + + + +
	1661	1 / 1	051		
	1661.5	1.5	230	* V.L.UI	ES ROUNDED TO
	166 Z	Z	370	NEN	REST 10 CSS.
Ì	1662.5	2.5	530		
	1663	3	720	B=	39'
	1664	4	1180	Z =	4
	1665	5	1740	: 'ک	0.95
	1670	10	6240		

DISCHARGE RATING CURVE (KEHLY RUN No. 4)


ELEV	hp	*Q	
(Ft)	(FT)	(cfs)	1646 _ (NOT TO SCALE)
······································			
1643	0	0	/643 -
1643.5	.5	/0	N- 10' -+
1644		30	
1644.5	1.5	60	* VALUES ROUNDED TO
1645	2	90	NEAREST 10 cfs.
1645.5	2.5	/+0	
1646	3	180	B = 10'
16 48	5	440	2=1
1650	7	810	6' = 0.95
1660	17	4563	1

- -

and the state of the second second

N 10 -

A

			-		-									
1000	FLOOD HVDROGRAPH PACKAGE (HEC-1)	ACKAGE 1	# ######											
LAST LAST	DAM SAFEIT VERSIUM JULT 1978 LAST MODIFICATION 26 FEB 79	4 JULY 1978 3N 26 FEB 79 1944888884448884	7 1978 1 79 18888											
		-22	NUT OS	ANALISIS OF DAN OVEN HYDROLOGIC-HYDRAULIC RATIOS OF PMF ROUTED	NERTOPPT	TUPPING USING ANALYSIS OF THROUGH THE	RESERVOI	UF PHF IF KEHLY RUN NO. K PA. 54-19	UN NO. 3					
				<u>-</u>		Ð	ο	1	Ð	Þ	e			
				1	-	N •								ŀ
* P =2			INFLOW 10	0 HESERVOIR 0.29 117	127 127	136	143	145	, or o			-	•	
F.5.9			P I	2•0		-								
F S S			ROUTE	THRU KEHLT RESI	RESERVOIR NO.	- 10 · 0								
182		6	110 0 110 0 21	1611	1678 570 92	1100	006 6491	1280	1046	7830	5			
282			16		1200								-	
222			INFLOW TO	O RESERVOIR 0.11	1 R NO. 5			-		-				
R % R		4 1 0.87			121	136	143	1+0	•05					
	-		2 A A COMBINE		•	۰.	·	-					-	
***		*2>	ROUTE THRU	RU RESERVOIN	OIM NC. 5	-				•				
288		1 991 44 7 1660 7 7	00000 0000 0000 0000 0000 0000 0000 0000		1661•5 230	1662 370	1662.5	-1660 1663 720	1180 1180	1665	1670 6240			
	0	561639.7 561639.7 55 1660	1 1660											.
53			9°6 1	1.5	1150			-						
519		K1 Y	CHANNEL	ROUT ING -	MUD PULS	REACH								
23		•	1 .05	90•	1618	1660	850	0+0+71						
	-	77			1640	600		601		702	1615			

فللم مشتقل المسلي

Ad a day in the

an die oorder van die oordere Natuur van die oordere van die o

11 123 117 123 117 123 111 123 113 123 111 123 113 123 113 123 113 123 113 123 113 123 113 123 123 113 124 124 <th126< th=""></th126<>													R
1 22:1 0.00 11 12:1 12:1 10 12:1 10 12 1 1 10 11 12:1 12:1 12:0 0.05 1 1 1000000000000000000000000000000000000	25	0	7 1 10 RESERVE	JIR NO. +	•	-	7						
x 1.33 -0.93 2.0 1 1 -1 1		-	111 6.1	ļ	136	143		0.05	 				
1 Total Test Total Test 1		0-56 -1-9 -1				{ × − ≤						-	
1 1 <td>1</td> <td></td> <td>THRU RESERV</td> <td>1</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	1		THRU RESERV	1	-								
10 100 100 100 100 10 100 10 10 10 10 11 1 1 1 1 1 11 1 1 1 10 100 100 11 1 1 1 10 100 100 100 11 1 1 10 100 100 100 100 11 10 100 100 100 100 100 100 11 10 100 100 100 100 100 100 11 127 136 133 140 204 140 11 127 136 133 140 204 140 11 127 136 130 140 204 140 11 127 136 133 143 204 140 11 127 136 130 143 140 140 12 0.57 121 127 136 143 140 13 14 0 0 120 143 143 14 12 12 137 143				40 91			1643						
KI COMMINE RUUTING - MUD PULS VEXCH Z K 1 A 10 CHANNEL RUUTING - MUD PULS VEXCH Z Y 2 CHANNEL RUUTING - MUD PULS VEXCH Z Y 20 1300 201 1320 200 1300 201 1498 204 1498 X 1 INPLON 10 RESERVUT No. 3 X 1 INPLON 10	69 95	1614.6 (164)				- -	.	-			-		
K1 CRANNEL RUUTING - MUD PULS REACH Z Y1 1 1 Y1 0 100 1200 200 1400 204 Y1 0 1000 1220 200 1600 201 1496 204 Y1 0 1000 1220 200 1600 201 1496 204 1496 Y1 0 100 1220 200 1400 201 1496 204 1496 Y1 1 1 127 136 1400 204 1496 204 1496 K1 1 1 127 136 149 127 146 204 1496 K1 1 127 136 1497 1491 149 1491 K1 1 1 1 1 1 1<0	332	COMBI				-			-				
Time Cold	22		.1		REACH 2 1								
71 K1 IMFLOM TO RESERVOIR NO. 3 1 1 0.57 13 1.45 0.05 79 1 1 0.57 117 127 136 1.45 0.05 81 1 1 0.57 117 127 136 1.45 0.05 81 1 1 0.51 127 136 1.45 0.05 82 1 1 127 136 1.45 0.05 84 1 1 1 1 1 87 1 1 1 1 1 81 1 1 1 1 1 81 1 1 1 1 1 81 1 1 1 1 1 91 1 1 1 1 1 91 1 1 1 1 1 91 1 1 1 1 1 91 1 1 1 1 1 91 1 1 1 1 1 91 1 1 1 1 1 91 1 1 1 1 <td></td> <td>90 007</td> <td></td> <td></td> <td>1940 200 3V0</td> <td></td> <td>102</td> <td></td> <td>204</td> <td>1498</td> <td></td> <td></td> <td></td>		90 007			1940 200 3V0		102		204	1498			
11 127 136 133 145 1.0 0.05 11 127 126 12 1.0 0.05 12 1 1 1 1 0.05 13 1 1 1 1 14 1 1 1 1 15 1.05 2.0 1.2 1 14 1 1 1 1 15 1.15 1.497 1.497.5 1.493 16 1 1 1 1 17 1 1 1 1 18 1 1 1 1 19 1 1 1 1 19 1 1 1 1 10 1.95 1.497 1.497.5 1.493 19 1 1 1 1 19 1 1 1 1 10 1.90 1.90 1.90 1.905 19 1 1 1 1 10 1.90 1.90 1.90 1.900 10 1.90 1.90 1.90 1.900 10 1.95 1.90	81 61	₽. <i>~</i>	11 1 10 RESERVE 1 0.57	JIR NO. 3		-			-				
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <t< td=""><td></td><td>1.18</td><td>· ·</td><td>121</td><td>136</td><td>143</td><td></td><td>0•09</td><td></td><td>-</td><td></td><td></td><td></td></t<>		1.18	· ·	121	136	143		0•09		-			
K 1 13 1 1 1 1 Y Y Y 1 1 1 1 1 Y Y 1 1 1 1 1 1 1 Y Y 1<	ł	-1.5 2 COME	0.0				-						
VI 1 -1 -1495 -1495 -1495 -1495 -1495 -1495 -1495 -1496 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 3560 360 360 360 360 360 360 360 360 360 3760 3560 3560 360 3760		1 ROUTE	N N N	NO.	-	•••	1						
sk 0 2.4 3.7 6.4 se1453.5 1495 1500 1520 ss 1495 3.0 1.5 442 k 99 3.0 1.5 442		1495 149		149	1]•	1			1510			
801497.6 3.0 1.5 K 99			·	6.4 1520	1								
	96			442									
						•							

FLOOD HYDRE (APH PACKAGE LIEC-1) DAM SAFETY VERSION JULY 1978 LAST MODIFICATION 26 FEB 79	
kun Dates 40/01/24. TINEs 05.35.34.	
ANALYSTS OF DAM OVERTOPPTAG USING RATTOS NF PHF Hydrologic-hydraulic Analysis of Safety of Kemly Run No. 3 Ratios of PhF Ruvied The Reservoir PA. 54-19	
NO NMIN JOB SPECIFICATION ZEB V ID ID ZBF V ID O ZBF V ID O JOPER NVI LROPI TRACE S O O O S O O O S O O O S O O O	
MULTI-PLAN AMALYSES TO RE PERFORMED NPLANS 1 ANTIGS 6 LATION 1 ATIGS -10 -30 -50 -10 100	
SUB-AREA RUNOFF COMPUTATION	5 .
INFLOW FOR RESERVOIR NO. 6 ISTAD ICUMP LECON ITAPE JPLI JPRI INAME ISTAGE IAUTO I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
SKAP 0.00	
SPFE PMS R5 PMS R5 PMCLT UNIN 0.00 22.3U 117.00 127.0U 136.40 143.0U 149.0U U.UU 183PC COMPUTED BY THE PROGRAM 15 - 6600	
TP= .87 CP= .50 NIA- 0	-
APPROXIMATE CLARK COEFFICIENTS FROM GIVEN SNYDER CP AND 7P ARE TC+ 3+67 AND R+ 4+76 INTERVALS	
UNIT HYDROGRAPH 28 END-OF-PERIOD URDIMATES: LAG= .87 MOUKS: CP= .50 VUL= 1.00 14. 52. 91. 105. 93. 75. 61. 49. 40. 3. 26. 21. 17. 14. 11. 9. 1. 6. 5. 4.	

ς.
SUB-AREA RUNOFF COMPULATION
INFLOW TO RESERVOUR NOS 5 Istao Icomp Iecon Itape JPLT JPRT INAME ISTAGE LAUTO 3 0 0 0 0 0 0 0
KARPH DATA DA TREPC RATIO ISNOW ISAME LOCAL 11 0.00 0.000 0 0 1 0
ХАРИТЕВ ВУ ТИЕ РИОБАЛИ, 15 - 100 227-00 127-00 136-00 149-00 0.00 22-30 117-00 127-00 149-00 149-00 0.00
КОРТ <u>57 КК И DLTKN KTTOL</u> E 0 0.000 0.000 1.00
IP= .87 CP= .50 NJA- 0
APPROXIMATE CLARK COEFFICIENTS FROM GIVEN SNYDER CP AND 1P AKE TC= 3.61 AND R= 4.76 INTERVALS
Umit includation is END-OF-PERIOD URDINAIFS, LAG. BT HOURS, CP. 50 VOL.= 1.00 5. 20. 34. 40. 35. 28. 23. 19. 12. 10. 6. 6. 5. 4. 3. 2. 2. 12. 10. 1. 1. 1. 1. 1. 0. 0. 0.
END-OF-PERTOD FLOW

					<i>f</i> u											
			-			14010			1654 -00 1665 -00	nnenell						
		-				JPRI INAME ISTAGE		15K 510KA 15PKAT U.000 -16601		230.00			CAREA EXPL		DAMMID 1150-	
			-		HYDROGRAPH ROU'EING	TIAPE JPLI	IRES ISAME TOPT	MISKK 0.0000	1662.00	00°01 \$			EXPW FLEVI. COOL		COOD EXPD 3.0 1.5	
				2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	RVOIR NO.	TSTAU TCONP TECON 5 1 0 8 0 0	CLUSS AVG TRES 0.000 0.00 1	NETPS NSTOL LAG	1661.00 1661.50	00*0670^*021	23.	351.	1680. SPWID COQN		10PEL 1663.1	
					ROUTE THRU	91	0°0 0°		1660.00 1660.50	00*0*	0. 8.		1640. 1660. CREL	0.0000		
·	, •				•				M1670.00	100 100 100 100 100 100 100 100 100 100		· CAPACITY.	ELEVAT 10H-		•	-

14. 14. 14 TV - 14

- 23

ie.

		-											r - 1-
					HYDROGRA	HYDROGRAPH ROUTING					>	7,1	÷
		CHANNEL	ROUTING	104 00W -	S REACH		1	1		!			·
			15140	I COMP	IECON 0 DAITT	- 1			INAME ISTAGE	6 IAUTO			Ī
	- - -	0.056 0.0	CL055 0.000	9V6 0.00	IRES 1	IRES ISAME I	1001	1 PMP	LSTR 0	z 0			
			NSTP5 1	NSTDL 0	9 0 T	AMSKK U.000 U.	0.000.0	15K ST	STURA ISPRAT U.	- 0			1
												•	· · · ·
										•			1
	DEPTH CHANNEL ROUTING	UT NG											
8.	QN(1) QN(2) 0600 0500	QN(3) 60600-1	ELNVT 1618-0	ELMAX 1660.0	RLNTH 8500	SEL 04710			- 				
					-	-			•				
	CROSS SECTION COORDINATES STAFELEV-STAFELEV-ETC 0.00 1660.00 330.00 1640.00 600.00 1620.00 605.00 1620.00 650.00 1640.00 1100.00 1660.00	COOKUTINATT 00 350.00 00 850.00	E3514. 0 1640.00	ELEV.STA 0 600.00 0 1100.00		+01-00 1418-00		604.0U 1618.00	18.00				
STORAGE	00•0	•19		1.61	5.79	12.13		20+83	31.89	45+31	61 • 09		
	61-66	122486		28-841	11.11	541602	ŀ .	244,00	***182	32124			1
NOTFLOW	0.00	61.19		1	1	66-966/			28470.22	45370.36	67471.72		
£15900°73	129388.25	168673.32		215815.92 2	56*266112	335972.05		410108.72	19.436464	589213.05	6922569		ſ
STAGE	1618.00	1620.21		1622.42	1624.63	1626-84		1629+05	1631.26	1633.47	1635.68	4	
21660.00	1640.11	1642•32		1644.53	1646.74	1646.95		1651.16	1653.37	1655•58	1657.79		
LLON	0000	61.19	-	694.61	3020+89	7939.34		16199-05	28470+22	45370+36	67477.72		
- BOAFECAR	129388.25	168673.32		215815.92 2	271372.95	335972.05	1	410108-72	494345.67	_50°E12695	695229.08		

		8/1	ME ISTAGE TAUTO 1 0 0 0 Isame Local 1 0	A96 0.00	ALSNX RTIMP 0.00 0.00	2.00 3.03 INTERVALS 5. CP= .50 VUL= 1.00 5. CP= .50 VUL= 1.00
		SUN-AREA RUMOFF COMPUTATION	ТЕСОН ТТАРЕ JPCT JPNT / ТИА 0 0 0 0 0 0 Нуркоскарн рата Ratio ISNOW 30 «04 0.00 0.000 0	PRECIP DATA R6 R12 R24 R48 R72 117-00 127-00 136-00 145-00	RTIOL ERAIN STHKS RTIOK STRTL CNSTL 1.00 0.00 1.00 1.00 1.00 0.05 1.00 0.00 1.00 1.00 1.00 0.05 1.00 0.00 1.00 1.00 1.00 0.05 175 0.56 0.50 NIA= 0	RECESSION DATA ORCSN05 RTIOR- AND TP ARE TC= 2-35 AND R= ORDINATES- LAG56 HOUR 12 56 HOUR
		SUC RESERVOIR NO.	13740 1 7 1 15740 1 7 1 1 2,04	SPFE PMS 0.00 22.30 COMPUTED BY THE PROGRAM IS .800	LROP1 STRKR DLTKR R 0 0.00 0.00	STRTG= -1,50 XIMAYE CLARK COEFFICIENTS FROM GIVEN SNYDER CF UNIT HYDROGRAPH 18 END-UF-PEHIUD 6. 1 18. 21. 17.

-4

	1650-00 810-00	1648.00	RA ISPRAT 31 1646.00 180.00 180.00 180.00	TSK STORA 0.000 -1643. 1645.50 16 140.00 1643. 140.00 16	00-000 90-00 90-00 1 DATA 1 DATA	9 9 × 0	0-0 0000 0000 0000	NSTPS NSTDL 1640.00 30.UU 30.UU 1660. 1	NS 1643.90 10.000 12. 1643. 1643. 1643. 1643.	1543.00 0.000 1615.	15- AREA= CTTY= T1ON=	STAGE STAGE SURFACE SURFACE CAPA ELEVA
			LSTR 0	dMd I	1001	ES ISAME	VG 1RES 000 1 1		0.055 CL			
							-	•				
	-				ř. –	NOUTING DATA!	[.					
•	-	IAUTO 0	ME ISTAGE 1 0	JPRT INAME 0 1	1961 0	ÓN ITAPE 0 0	IEC	ISTAD ICOMP	51			
11/					01146	HYDROGRAPH ROUT I NG		RESERVOIR	ROUTE THRU RESERVOIR NO.	č		
70									-			
	-	-		- -	-	•	-					
	-	•	-	-					- 	-		
					-			-				-
					•							
						•	•) 		1
						•					-	
							of Ang					

	·				HYDROGRO	HYDROGRAPH' ROUTING	ING						
		CHANNEL	ROUTING	- HOD	PULS REACH	1 2							
			15140		1ECUN 0	I TAPE U	0 1 Tdr	1 . 184L	I NAME I I	JSTAGE 0	IAUTO 0		- E
		0.055 0.055	CL055 U.U00	900 900	ROUTI IRES 1	ROUTING DATA LES ISAME 1 1 1	001 0	dwd I		LSTR , 0			
						•							
							•						4
			NSTP5	nstor O	CC LAG	AM5KK 0.000	×00.0	15K 0.000	STORA I	I SPRAT			
WHAL DEPT	YORMAL DEPTH CHANNEL ROUTING	911 L M							-				
80	QN(1) QN(2)	ON(3)	ELNVT 1498.0	ELMAX 1540.0	RLNTH 1600.	SEL •07500	•					-	
	1		1 .			-		-		-		•	
5	CKOSS SECTION COURUINKIES STATEEVISTATELEV-ETC 0.00 1540.00 90.00 1520.00 200.00 1500.00 205.00 1500.00 350.00 1520.00 390.00 1540.00	00 90*01	ES514: 0 1520.4	10 200.0	•ELEVET 0 1500.00	• •	00-8441 00-102		204+00 1448+00				
510kAGE •••••	00*0	40.		2.11	6=17		12.51	21.15	•	32.07	45.20	60.78	و و من من المان الم
86.966144	19.86	66.021	•	143,30	167.39		F05261	60.0417	* *	60.042		06+006	
0011C00	01-441-10	96598		603.70 149424-58	2273-33 187209-00	52		-11292424	326227.59	}	381360•18	441022.59	
5 05360.20												07 3131	
STAGE	1520.11	1500.21		1502.42 1524.53	1526.74		1526.84 1528.95	91.1661 .	161	76.6661	1535.56	61.1121	
M1540.00			!										
FLOW FLOW	0.00	84.39		6U3.70	2273-33		5663.02	11252•24	1961	10°11'461	30/1000	67.4660	

Sub-Mich Aunolify Composition INLIDE TO RESERVOIR MUST INTERCARATION TO						ч						
Intelligent SUB-AKEA RUNOFF COMPUTATION	•						1	1				
INTERPRETENTS FROM STATE FOR THE PARTY PROPERTY OF THE PROGRAMME STATE STATE TO STAT	•			-	ion		JPRT INAME 0 1	15NOV	R12 145-00	5187L CNSTL 1.000 .05	o	RTIOR= 2.00 9 AND R= 7.21 INTERV
SUB-A SUB-A INFLOM TO RESERVOIA NO. 3 SUB-A INFLOM TO RESERVOIA NO. 3 SUB-A INFLOM TO RESERVOIA NO. 3 INFLOM TO RESERVOIA NO. 3 INFLOR TO RESERVOIA					HEA RUNOFF COMPUTAT		17.4PE 0	HYDRUGHAPH DATA THSDA THSPC +57 0+00	PRECIP DATA R12 R24 127.00 136.00 14		NIT HYDROGRAFII DATA	RECESSION DATA ORCSN=05
INFLOW	1				V-9ns		C C	TAREA SNAP • 57 0.00	PMS PMS H46 22,030 117,000	-TKK RT TOL	•d1	STRT 0= -1.50 OM GIVEN ENYDER"CF
	•								SPFI	LROPT STKKR [U 0.00		LARK COLFFICIENTS FR

ROUTE THRU RESERVOIR NGs ROUTE THRU RESERVOIR NGs 13 10 13 11 13 10 13 10 100,000 100,000000000000000000000000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 2 4.5 4.6 2 4.0 0.00 1 0 0.0 1 0 0.0 2 4.6 0.0 2 4.6 0.0 2 4.6 0.0 2 4.6 0.0 2 4.0 0.0 2 4.0 0.0 2 4.0 0.0 2 4.0 0.0 2 4.0 0.0 2 4.0 0.0 2 4.0 0.0 3 1 0.0 <th>EXPW ELEVL COOL CAREA EXPL U.U 0.0 U.U U.U U.U DAM DATA COOD TYPE DAMALD</th> <th></th> <th></th> <th>00300*00420*00550*001200*003580*00</th> <th>50 1467.00 1467.50 1498.00 1500.00 1505.00</th> <th>AMSKK X TSK STORA ISPRAT U.000 0.000 0.000 -14951 1</th> <th>RES ISAME TOPT TPMP LSTR</th> <th>TIXPE JPLT JPRT INAME ISTAGE TAUTO</th> <th>HYDROGRAPH ROUTING</th> <th></th> <th></th> <th>· · · · · · · · · · · · · · · · · · ·</th> <th></th> <th></th>	EXPW ELEVL COOL CAREA EXPL U.U 0.0 U.U U.U U.U DAM DATA COOD TYPE DAMALD			00300*00420*00550*001200*003580*00	50 1467.00 1467.50 1498.00 1500.00 1505.00	AMSKK X TSK STORA ISPRAT U.000 0.000 0.000 -14951 1	RES ISAME TOPT TPMP LSTR	TIXPE JPLT JPRT INAME ISTAGE TAUTO	HYDROGRAPH ROUTING			· · · · · · · · · · · · · · · · · · ·		
1 4 U. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		10PEL	. 1520.	ł	-		NSTDL 0	1 00.00	1 1 COMP						

5				•					•	ry n
Ϋ́d	PEAK FLOW A	AND STORAGE (ENU FLOWS	/l	OF PLAIUD) SUMMAH In cubic feet per	SUMMARY FOR	UF PERIOU) SUMMARY FOR MULTIPLE PLAN-RAT N CUBIC FEET PER SECOND ICUBIC METERS PE	IT FOR MULTIPLE PLAN-RATID ECONOM Stond (Cubic Reters Per Second) of Tourters	PLAN-RATIO ECONOMIC LETERS PER SECONDI THETERST	COMPUTAT LONS	
		•	Ľ			-				
OPERATION S	STATION	AREA	PLAN	RATIO 1 .10	RAT I 0 2 .30	RATIO5 APP Ratio 3 •50	RATIOS APPLIED TO FLOWS Ratio 3 Ratio 4 Rati •50 •70	DWS RATIO 5 .90	RATIO 6 1.00	
HYDROGRAPH AT	-	•29	-	102.	306. 6 .6717	511.0 	715.	919. 26.0215	1021. 28-9211	
ROUTED TO	~	1674	-	+09 11111	- 14995 • 661	344.	+93.	641.	117. 20.2911	
HYDROGRAPH AT	m	11.	-	39.	116-	- 194.	271.	349. 9.877 [387.	-
2 COMBINED	•	.40 1.041	-	87.	282.	486.	-1997-	1119°62 • * 06	1012. 28.6471	
ROUTED TO	st	1.041	-	84.	276.	-874 1170-01	687.	906. - 29.861 f	1012. - 28.6771	
ROUTED TO	ا و	(*0*"	-+	84.	276.	478. 1305411	687. 19.4411	905. Z3.6211	1015. 28.7431	
HYDRUGRAPH AT	-	•101		18.	53.	. 88. 2.481	123.	154.	175.	
ROUTED TO	8	•04		14.	46.	78.	112.	145.	160. 4.531[
2 COMBINED	6	1.141	1	7163.5	305. 8.637[529.	752.	1020. 29.8775	1139. 32.251[
ROUTED TO	10	144 1.5141		2.6311	305• 8•631[528. 14.9511	161.	1017.	1149. 32.541[
HYDROGRAPH AT			1	161.	484.	807. 77.861T	1130-25	1453.	1615. 45.7217	
2 COMBINED	12	1.01	-	246.	76.9.	1314.	1866. 52.8471	2471.	2764• 78•2671	
RUUTED TO	13	1.01	-	245.	769.	1315.	1866.	2469.	2767.	

RATIO MAXIMUN	REST TOP OF UAM 1678.5u 143. 1100 143. 1100 143. 1100 144.5 1100 144.5 1100 144.5 1100 144.5 1100 144.5 1100 144.5 1100 144.5 1100 144.75 1100 42.25 1000 42.70 1100 41.75 1100 41.75 1100 41.75 1100 11.75	
STORACE 42. 42. 42. STORACE 42. 0.0 MAXIMUM MAXIMUM MAXIMUM MAXIMUM RESERVOIR WAXIMUM MAXIMUM MAXIMUM RESERVOIR WEPTH STORAGE 0.01 USSELEV OVEN 0.00 97. 344. 1677-13 0.00 115. 493. 1677-13 0.00 115. 493. 1677-13 0.00 133. 641. 1677-10 0.00 135. 493. 1677-13 0.00 135. 493. 1677-13 0.00 135. 493.	143. 143. DURATION TIME OF DURATION TIME OF OVER TOP MAX OUTFLOW HOURS 0.000 42.25 0.000 41.75 0.000 41.75 0.000 41.75	
D MAXIMUM LEGERVOIR WAXIMUM MAXIMUM LEGERVOIR WAXIMUM MAXIMUM LEGERVOIR WAXIMUM MAXIMUM LEGERVOIR WAXIMUM LEGERVOIR VAXIMUM LEGERVOIR	11ME OF MAX OUTFLOW HOURS 42.25 42.00 41.75 41.75 41.75 41.75 41.75	
H-S-ELEV OVER DAH AC-FT CTS 1679-55 0.00 54 60 1677-13 0.00 97 1677-13 0.00 115 493 1677-10 0.00 141. 717 1678-22 0.00 141. 717	HOURS 42.25 42.20 41.75 41.75 41.75 41.75	
1673-55 1676-45 1677-13 1677-70 1677-70 1677-70 1677-70 115- 1677-70 115- 1677-70 115- 141- 141- 141-	42.25 42.00 41.75 41.75 41.75 41.75	
1677-133 0.00 1677-73 0.00 1677-70 1677-70 1677-70 1678-46 141- 141- 141-	41.15 21.15 21.15 21.15 21.15	
115. 1677.70 0.00 1678.22 0.00 141. 1678.22 0.00 141.	+1.75 +1.75 +1.75 +1.75	
		•
-		
-		

		-						π)ς	
		- SUMA	MARY OF DA	SUMMARY OF DAM SAFETY ANALYSIS	YS15	•	•		
	ELEVATION STORAGE OUTFLOW	INITIAL VA	E CE	SPILLWAY CREST 1660.00 94.	401 101	UF LAM 63.10 82. 766.			
RATIO OF 010	2	5	MAXIMUM STURAGE AC=FT 60.		38	TIME OF MAX OUTFLOW 42.25	TIME OF FALLURE HOURS		
• • • • • • • • • • • • • • • • • • •	1661-00 1662-34 1662-91 1662-91 1663-24	0000 0000 0000		478- 478- 687- 905- 1012-	00-0 00-0 2-15	4175 4175 4129 4129			
		PLAN	AN 1	STATION	9				
		4.47 10 • 10 • 30	FLOW CF 8 84 276 478		HOURS 42.00 41.75				
		000 1.000	687 905 1015		41+20 41+25 41+20				
						2			
					-			-	
					•				-

		•				-			11	l
	•	SUMMARY	RY OF DAM	SAFETY ANALYSIS	LYSIS					•····
PLAN 2 00000000000000000000000000000000000		14171AL VA	, UE	SPILLWAY CREST 1643.00	01	P UF DAM 1646-00				••
840 001	STORAGE OUTFLON	12.		12.		17. 180.			1	
RATIO MAXIMUN OF RESERVOIR		MUN	MAX I MUM STORAGE	MAX1MUM OUTFLOW	DURATION OVER TOP	TIME OF MAX OUTFLOW	TIME OF FALLURE			
	AO .	DAM			HOURS	HOURS	HOURS			
0.5		0000		46.	00.0	09-00	00.0	•		1
			110	1120	0000	05-04				F
		PLAN	1	STATION	10					Ī
	•	RATIO	HAXINUM FLOWACPS	HAXTHOR \$1AGE .F1	HOURS					
		06.	305.	1.1021 1.1021	42.00 41.75 41.50					1
		• • • • • • • •	161.	1503.0						[-
							•			
					• •					[
	•				a .				-	•
										}]
										1
									ar a	[]
							•			1

-									•			ţ.					
1/2.1																	
					•							•					
				<u>بر س</u>						ļ				•	•		: : :
				TIME OF FAILURE	0 ° 0		0000										
			· -	CF FLOW		222	83				-						
		10P OF DAM 1497-60	446.	TIME OF MAX OUTFLOW	HUUKA 41.25	41.25	00*1*									-	
		10P C			• •	889	51										1
	MLY515	IEST	-	DURATION OVER TOP	0	00.0 0.00 0.00	61.9		• . •				-				
1	DAM SAFETY ANALYSIS	SPILLWAY CREST 1495+00	no n	MAX I MUM OUTFLOW	245.	769. 1315. 1866.	2767.										
, , , ,	DAM SA	SPIL	-		•.•												
	SUMMARY OF	ALUE Ö	•0	MAX 1 MUM STOHAGE	30.			·									
	SUMP	INITIAL VALUE 1495.00	•0 •			27 75 75	58										
							1.28	-									
		VATION	STORAGE OUTFLOW	MUM VOIR	eLev •75	24.											
		ELE	515 100	MAXIMUM RESERVOIR	1496.75	1498.51 1498.54	1498-11							:			
				RATIO OF	•10	B 05 05	1.00		-					-			
		•									· .						
		:-					• • • •										
	•	PLAN										. 					
120							n.	h7							an inte		

and the second second

ķ

94444444444444444444444444444444444444														
LASI MUD	VENSION	**************************************	C-11 1978											
	CAT 10N	26 FFU	3 79 • • • • • • • • • • • • • • • • • • •	PRF REALFED	ED THROKUS	THRUTURE - THE REPERDING							•	
5 Nu-on 1 Nu-on 1 Nu-on 1 Nu-on			FLAN 1 AS		ION DUE TU	U UVERTOP	VERTOP (KEHLY RUN N ASSUMES NO BREACH	RUN NU.	- - F	(61-				
* in a		20 A N 20 N		د ا ا	D	o	0	D	Þ	5	o			
1 06			INFLOW		IK NO. 6			-	-			•		
823		-	22.3	111	121	961	143	145	0.05					
5		8 × X 1 0 • 8	80°-1	2.0				-						[
21		-	ROUTE TARU REHLY		RESERVOIR ND.	ND. 6		-						
		0 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1676	ofe	1078 970	061	006 10.79	1960	1940	05.81				
22 53		55 1675 55 1675 501678-5	1.		1200			•						
585		2 4	INFLO	RES	(R. NU. S				•	-		-		
82 29					121	961	163	1•0	•05		-			
			COMBINE	200				-			•			
				NU RESERVOIK	DIK NO. 5	- 1		-		•			-	
37 38 39	1	190 51	1660.5 40	1661 120	1661.5	1662	1662.5	-1660 1663 720	-1 1664 1180	1665 1740	1670 6240	-		
04 14 77	۰.	5A 0 9L1639.7 1660	1660	23 1689.										
n 4 u 4 4 1		501653.1 K 1 K	3.1	1.5		1		-				-		
46		-								i i				
4 4 5 6 0		77 505	05 1660 1620	950 35 <u>0</u> 850	1640 1640 1040	1150 1150	1620 1620 1660	12 *0*0	8181	604	1618			

*£

N. N.																	
									. •		•						
				÷				-									
					1660° 4963				1490		-		-	1510 6840		-	
			•		1650				204				-	1505 - 3560			
		0°0	2	ī	944 94 94 94 94 94 94 94 94 94 94 94 94				1498		60°0		, ,	-1 1500 1200			
:	1	145 1•U	1	-1643	081				102		1+5	-	-	055 1441 - 1442			
		143			1645-5			~	1500		143			1497.5	-	4.7941 4.101	
		136		-	05 5491			- MOG PULS REACH	1540 200 390		136	1	. E	1497 300		1495	
·	1 k NO. 4			1 1	09	450		1 1	1498 1520 1520	1 NU. 3	121		014 NO.	1496.5	6.4 1520	274 	
) RESERVOIR	0.04	2.0	ROOTE THRU RESERVOIR		1660		SNLLOON	90 90 950	4	<i>L</i>II	2.1	U RESERVOIR	1446 100	-	1404.2	
، •	INFLOW TO	22.3	050 • •	ROOTE THE	10,10	Γ	Colle	CHAWN	1540	INFI	6•22	E OMO	ROUTE THRU	1	2.04	3.0	,
			95+1 1 2 2 4 5 4 1 2 4 5 4 1 2 4 5 4 7 1 2 4 5 4 7 1 2 4 5 4 7 1 2 4 5 4 7 1 2 7 7 7 7			\$51614.6 \$\$ 1643 \$0 1646						5.0 [-	–	1 1495 75 1495 75 0	54 1495 561453•5	50149765 58 58 80 58 80	
1 1 1										•					•		
•		5 5 5		59						71 18 79		89 84 85		68 90 16	92 93 94	36 96	
1 1 1	10			6.97	868		10 10 10									10.50	

該

ŗ	[]]]	!	1			 				1 51			'				1	
			1 1		-					{			'					
:		 	1		1								/					
	• 1	1				1						· .						-
	; 1					/				!					1			
		'	[.]							.			1		Ì			
9 1 1	1	÷ !	1			1 '						-	!	. 1	ĺ			
-	:	1 1	1			1					6/61	Ĺ		-	•			
,		'				1				'	5							
Ì						1 '	n n n n n N				58			-	ł			
	.	'				1					1379				 1			
ŧ	t : -	1		1		1	л.						1		 			
	1		-			1 /					u • 0%00		į I		į			
	i I	!	•			1 '		-				ч., ,			!			
	Ę.					1 1					1400				; ;			
f F	f	İ				1 1				1	120	•			1			
:	. 1	1				1 1						-		[•]	 			
•			1.1			1				-	06E1				1			
	;					1 1				i	•0•				!			
-	•					1		<u> </u>							Ì			
i I		1				1		. 1			11400				ļ			
•		1 1		·•		1		 				66			1	•		
•	;]	1				1												
ť	, 1	1 1				i I						¥				•		
• • •	; t					. I											'	ļ
Ĭ	i 1]		: 1		1 !						·	ļ			
ľ			1			i)	1				101	102			i			ļ
		i t		1	1	1 1	ľ i		1	1. 1					, 1	1. 1		

and the state of the

							IAUTO U		кттир 0.00	1.00
ł			MATAD UP PMP ROUTED THROUGH THE RESERVOIR AND DOWNSTREAM Downstream condition dug to overtop (Kemly Run No. 3 - 54-19) Plan 1 Asşumes Breach, Plan 2 Assumes Mu Breach	JOB SPECIFICATION Y IHR IMIN METRC IPLT IPRI NSTAN R NWT LRODT TRACE 0 0 0 0 0 0	-PLAN ANALYSES TO BE PENFORMED MPLAN - 7 747705 1, LNJ105 1	**************************************	IECON ITAPE JPLT JPRT INAME ISTAGE 0 1 0 0 0 0 0 0 HYDROGRAPH DATA TRSDA TRSPC RATTO ISNOW ISAME LOCA •29 0.00 0.000 0 1 1	PRECIP DATA	LOSS DATA ERAIN STRKS RITOK STRTL CNSTL ALSHX RT U-UU U-UU 1.0U 1.0U 0.05 U.00 0 UNIT HYDRUGRAPH DATA -87 CP= .50 NTA= 0	HECESSION DAYA ORCSN= -+05 RTIOR= 2+GO 2 AND TP ARE TC= 3+A7 AND R= 4+76 INTERVALS 3 (HUIMATI 5+ LAG= +H1 HOUR5+ CP= +50 VOL=
	FERENCE CONTRACTOR CON	RUN DATE+ 80/01/28. TIME+ 10-68-21.	RAIJU UP PMF RUUTED Downstream Condition Plan 1 Assumes breac	NO NHR NHIN IUAT	RTIOS= +30	**************************************	ISTAU ICOMP ISTAU ICOMP ICOMP ISTAU ICOMP ISTAU ICOMP ISTAU ICOMP ICOMP ISTAU ICOMP	SPFE RMS RMS RMS RMS RMS R6 0.00 22.30 117.00 TRSPC COMPUTED BY THE PROGRAM IS 800	LROPT STRKR DLTKR RYTOL 0 0.00 0.000 1.00 TP=	APPROXIMATE CLARK COEFFICIENTS FROM GIVEN SNYDER CP UNIT HYDROGRAPH 28 END-OF-PFIRIOD 14. 52. 91.

-

- and party and a second s

10 40

1.51. 1. 1. 20

.....

Contraction of the second second second second

n Bergeren an ander ander an an

,	F				1									İ							
								F													
:										•]										
			-							-				ł							
		-											8	8	•						1
				}		~							00.0631	7830+00		 					
							-									i 		•			
								-	20	•			1685.00	3940+00							
:						-			IAUTO 0	~		ŀ	168	3940							
									щo	• •	LSTR 0	17									
									ISTAGE 0		E S	ISPRAT -1-	1680-00	1280.00				U•U U•U			
	-					-			Í NAME 1	··. `	1		181	128				27			
									N. N.			STORA -1675.	0	。				CAREA			•
									1 Hdr		o ohdl	15K	1679.00	00+006				Š		1200.	
												1.	F					0.00L 0.0L		1	
:			2 - -					2	0 17dr	ų	1001	0000 ·	20	8					VIA (XPI)	5	
•								ATTO		E SAME		1	1678.50	130.00				CLEVL 0.0	à	ļ	•
							.*	рн Rt	1TAPE U	NAVA NG DI	INKST	AHSKK U+UOU	Γ						200 000	0•1	'
•	ł							HYDROGRAPH ROUTING	+	LL PLANS HAVE SA ROUTING DATA	s –	1	00.	570.00	•		•	EXPW U.U		~	
ł								HUDH (R NC	IECON U	ALLP		C LAG	1678-00	570	92.	1559.	1700.	30	3401	1678.5	
1	-							ROUTE THRU KEHLY RESERVOIS NO. 6	đ 1		AV6 0.00	3						C00W 0.0		Γ	
	-							RES	I COMP		4.0	NS LDL	1677.00	310.00	4 Ú •	205	1680.	01			:
	k							(EHL)	151A0 2		222	Sdu	191	5				5PW10 0.0			
						• 		- RU	ISI		CL055	NSTPS 1			21.	42.	1675.	8EL 5.0			!
									•		0.055 0.00		1676.00	110.00			16	- CREL 1675-0			- ;
	- F.							L CAU		•	6		91		•	•••					;
	ł	s ·]		80	3			1669.		I	-	
									· ·				1675.00	0.00	•						1
	ł					- 143							Γ		REA=		I ON-				
					1					•			STAGE	FLOW	ACE A	CAPACINY:	FLEVAT ION.		ŀ		
				-			l			•		ļ	ST	۳. ۱	SURFACE AREA=	Ĩ	E			• .	
					.) ·				-		1 1					ł		•		

والمستنظرة فالاستغادة

10 RESERVOIR 151AG 1C0 151AG 1C0 1 1 11 1 11 1 11 1 11 1 10 1 10			SUB-AKEA RUNOFF COMPUTATION	S 1 kcon 11ape JPL1 JPR1 INAME 1STAGE 1AUTO 0 0 0 0 0 0 0 0	HYDRUGKAPH DATA TKSUA TRSPC RATIO ISNOW ISAME LOCAL •11 6.00 U.000 0 1 0 PRECIP DATA R12 R24 R48 R12 R96 17100 12100 14200 0.000 0.000	LOSS DATA 5TRKS RTTOK 51 0.00 1.00 1 HYDROGRAPH DAYA	RECESSION DATA O RECESSION DATA QRCSN=U ⁵ RTION= 2.00 AND TP ARF TC= 3.67 AND N= 4.76 INTERVALS	ORD FINATES, LAG
	·		SUB-AK	n .	IUHG TAREA SNAP 1 •11 0.00 SPFE PMS R6 0.00 22.30 117.00	K113L 1	IP	UNIT HYDROGRAPH 28 END-OF-PERIOD 20. 34. 40. 6. 5. 5. 5. 1. 1. 1. 1.

STATE SET UND

1

والمتناكر كالمستحد المتعالية المسترية

					22		-			X		1		1 2 and 1				1
									1665.00	1740.00								•
					•	0			1664.00	1180.00								•0
1						HE 151A6E	LSTR	TARA21		120.00			HON J	0.0				•••
	-	-		- -		JPRT TNAHE	d M d I	U TSK STORA	91	530+00				0.0	0411	KATIO 1	URD I NA FES	•
				NU I I NG		0 0.	VE SAME DATA ME 10PT	1 XX XX	اف	370.00		•	1	0.0 0.0	04M DATA 7000 TXPU DAWATD 3.0 1.5 (1150-	5. PLAN'I, RATIO 1	ADHC	
				HYDROGRAPH ROULING	r	JECON TIAPE	ALL PLANS HAVE SAME ROUTING DATA IRES ISAME I	I I LAG AMSKK	0	230.00	-				1001	STATION	ND-OF-PERIOD H OUTELOW	•
				-			AVG		0	120.04	23.	351.	•	0°0				
				-	ROUTE THRU RESERVUIK NU.	5 121X13	oross cross		1660•50	40,00	8	54.		1660.0				
	-			-	RC		9		1660.00 1	0•00	•0		1640.					•
1						•			STAGE 10 1670-00	FLOW	SURFACE AREA=	CAPACITY-	ELEVATION=		•			
. (-	-			 	-34	Ē	34	15	•				2		

														-
	•	CHANNEL	RCUTING -	INA DOM -	HYDROGRAP	HYDROGRAPH ROUTING S REACH 1	ING							5
•			151AU 6	1 I CUMP	1ECON 0	LTAPE 0	JPL T 0	0 1 ארר	INAME	151A(st. 0	IAUTO 0		-	
	- -				ALL PLANS HAVE	HAVE SA	LME .							х.
		01.055	000°0 55012	AVG 0.00	THES	RES 15AME 10	n 1001	0 dMd1		LSTR 0				
			NSTPS	NSIDL	ראנ	AHSKK U.GGU	0.000	TSK U.U.U	STORA U.	ISPRAT 0			•	-
HOKMAL DEP		ROUTING	-											
						-	4	•						
•	0H(1) 0N(2)	0090	ELNVT F 1618.0 16	ELMAX 1660.0	RLNTH esuu	.04710						•		
D-														
	•													
	CROSS SECTION COORDINATESSTA.ELEV-STA.ELEVETC U-UU 1660.00 350.00 1550.00 1520.00 605.00 1620.00 850.00 1540.00 1600.00	COORD INATES •UU 350.00		EV-51A- 500-00	ELEVETC 1520.00	1 · · · · · · · · · · · · · · · · · · ·	601.00 IST8.00	1 1	00-3131 30-509					
STORAGE	0.00	A	-	1841	51.19			20-23	f -	68715	18-64	60.10		
19-013011	99.73	122.86	148	148.86	17.71	205	209.43	244.00	28	281.44	321.74	364.89		
OUTFLOW	0.00	61.19	694	694.61	9020.89	58.61	1939.34	16199-05	. 28470.22	0•22	45370•36	67477.72		
61-005218	124588•25	164673.32	215815.°°		211392.45	335972+05		410108-72	496345.67		\$89213.05	695229•08		•
514GE //1637.89	1618.00	1620-21	1622.42	• 4 2	1624•63	1626.44	5.84	1629.05	163	92•1691	1633.47	1635•68		
//1660.00	110001	1642.32	1544.53		1645.14	54.81.91	5425	91.1691	165	1655691	85.5691	1657.19	•	-
FL UN-	0000	61.19	594	594 61	3.320.89	5661	68.6661	16199-05	73-01-182		96.07564			
	129388.25	C C - C / 78 7 1												

Image: Sub-Area Number Computation Sub-Area Number Computation Sub-Area Number Computation Sub-Area Number Computation Sub-Area Number Computation Image: Sub-Area Number Computation	1 6				
INFLOR INFLOR SUB-AREA RUMOFF COMPUTATION INFLOR INFLOR SUB-AREA RUMOFF COMPUTATION INFLOR INFLOR SUB-AREA RUMOFF COMPUTATION INFLOR INFLOR SUB-AREA INMOFF INTO INFLOR INFLOR SUB-AREA INMOFF INTO INFLOR INFLOR SUB-AREA INMOFF INTO INFLOR INFLOR SUB-AREA INTO INTO INFLOR INFLOR INTO SUB-AREA INTO INFLOR INTO RECENTRE INTO INTO INTO INTO INTO INTO INTO INT INTO INTO INTO INTO INT INTO INTO INTO INTO INT INT INTO		INAME ISYAGE	R96 3.00 AL SMX 0.00		• • • • • • • • • • • • • • • • • • •
INFLOW TO RESERVOIR NO. 4 INFLOW TO RESERVOIR NO. 4 INFLOW TO RESERVOIR NO. 4 INFORT 10 10 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		COMPUTATION PE JPLT JPRT 0 0 0 0 DATA RALIO ISNOW	IP DATA R24, R48 R 136.00 143.00 145. 5 DATA IMK5 RTIUK STRTL 1.00 1.00	RUGRAPH DATA CP= .50 NTA= 0 .510N DATA .510N DATA .510N CTC= 2.35 ALD R= 3.0 .710 CTC= 2.35 ALD R= 3.0	LAG= -25 HOURS- 9- 0- 0-
INFLOW INFLOW INFLOW ILARK COLFFIC EWTS F UNIT HYDRUGRAM IS UNIT HYDRUGRAM IS UNIT HYDRUGRAM IS 2. 18		• • • • • • • • • • • • • • • • • • •	E PMS R6 0 22.30 II/.00 I .800 DLTKR RTIOL ERAL	UNIT HYU IP= •50 *50 RECES STRIG= -1,00 UNI ROM GIVEN SHYDER CF AND	
		INFLO	PUTED BY THE PRUCHAM IS LROPT STRKR	TE CLARK COLFFIC FENTS F	0 0

итик лик Замк Замк Замк Соот 1605 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	ВОИТЕ ТИКИ RESERVOIR NO. 4 ВОИТЕ ТИКИ RESERVOIR NO. 4 ВОИТЕ ТИКИ RESERVOIR NO. 4 В 1 100 0.00 15100 1100 1100 0.00 0.00 0.000 1100 0.00 1543-50 1544.00 1544.50 1545.00 1643-50 1544.00 1544.50 1544.50 1545.00 1643-50 1544.00 1544.50 1544.50 1545.00 1643-50 1544.00 1544.50 1544.50 1544.50 1545.00 1643-50 1544.00 1544.50 1544.50 1544.50 1545.00 1643-50 50.00 0.000 0.000 0.000 10 1643-50 1544.00 1544.50 1544.50 1545.00 1643-50 50.00 0.000 0.000 0.000 10 1643-50 1544.00 1544.50 1544.50 1545.00 1643-50 50.00 0.000 0.000 0.000 10 1643-50 1544.00 1544.50 1544.50 1545.00 1643-50 50.00 0.000 0.000 10 1643-50 1544.00 1544.50 1545.00 1643-50 50.00 0.000 0.000 0.000 10 1643-50 50.00 0.000 0.000 0.000 10 1643-50 50.00 0.000 0.000 0.000 10 1643-50 50.00 0.000 0.000 0.000 0.000 10 1643-50 50.00 0.0000 0.000 0.0000 0.000 0.000 0.000 0.0000 0.0000 0.000 0.0
---	---

				HYDRAGRAI	HYDRAGRAPH ROUTING				and the second	i i
		CHANNEL	KOUTING - MOD	D PULS REACH 2	5					
	-	•	151AU 100MP -10 1	IECON 0	ITAPE JPLT	184L 0	INAME, ISTAGE L 0	14 14U10 0 0		
		•		ALL PLANS	PLANS HAVE SAMF ROUTING DATA					
•		\$50.10		F	ISAME IOPT	divid I	LS1K	×		
				-	•					
	•			•			•	•		
		0.0	* 0•000 0•00	-	1	0-		0		
			NSTPS NSTDC 1 0	C C C	AMSKK X v•000 v•000	U.UUU	5 TORA TSPRAT			
NORMAL DEPT	DEPTH CHANNEL ROU	ROUTING								ŀ
	- - - - - - - - - - - - - - - - - - -	5						•	-	
5	121ND (11MD		WVT ELEAN	HEATA						
Ŭ,	055 SECTION COC 050 1540-00 0100 1540-00	CUORDINATESSTA+L 100 - 90400 1420,00 100 - 350,00 1520,00	CROSS SECTION COORDINATESSTA+LLEV-STA+LLEVEIC 0.00 1540.00 90.00 1424.00 204.00 1500.00 205.00 1500.00 350.00 1520.00 390.00 1540.00	A.ELEVEIC 500 1540.00	00*9 <u>4+1-00</u> *102.	00 <u>504 + 00</u> 14 4 4 00	00.9441			
STORAGE	00*0	- bCo	11.02	41.9	16.51	<u>61•1</u> 2	32+07	82=54	60+78	
96.00101//	98.64	120.39	143.30	167.39	192.64	219.05	246.63	275.38	305+30	
OUTFLOW	00•0	. 84+39	603-70	2273.33	5663.02	11252.24	19471.04	30716.07	45354.13	
505300.00	86364•10	115821.44	149424.58	187209•60	229227+01	215542•52	326227•59	381360.18	441022•59	
STAGE	1498.00	1500.21	1502.42	1504.63	1506.84	1509.05	92.1141	1513.47	49.5121	
//1540.00	1520.11	1522-32	1574,53	1526.7%		1571-16	15.6651	1535,58	61.1231	
FLOW	00-0	84.39	603° 70	66.6725	5663.02	11252.24	19477-04	10.31702	45359.13	
84.741600	86364.10	114071.44	1404 54 50	00.001541	10.155065) / C L 2 - L 1	04 (66.76 C			

	•	-												
	-					- - - - - - - - - - - -		1505+00	3560•00			-		
			• • • •	1AUT0				1500-00	1200.00			-	•	
			• • •	INAME ISTAGE 1 0	-		0	0 T	550+00			EXPL	0 • n	
			•	NI ING			0	. 0	420.00	•		UL CAREA		442.
		1001 LNG			E. SAME			•• 1.00	300.00			ELEYL COUL	D.O. U D.A.I.A E.XPD	3.0 1.5 DAM RREACH DATA
		HYDROGRAPH ROUTING		IECON ITAPE 0 0	ALL RANS HAVE SAME	ALL PARTY AND A		0	190+00	••	148.	- 444 - E 4PH -		1497.6 3.0
	-			I COMP		10 m	0.00	00.0	100,00		48.))))		14
			ROUTE THRU RESERVOIR N	EL .			0.00 U.0000	1+95-50	40.00	•	33	· .	1495.0	•
	•		ŊŎIJ					1495-00- 14	0.00	•	•	7 566 1		
				-						REA-	CAPACITY=			
						0-40		101510-00						

والمناقبة والمستحد والمستحد والمستحد

PEAK FLOW AND STORAGL (FLOW AND STORAGL (FLOW AND EVELIAL TO WARK TH SCHOOL CHILL FOR AND AND AND AND AND AND AND AND AND AND	
OPERATION STATION AREA PLAN RATIO TOTOS APPLIED TOTOS MYDROGRAPH AP -29 1 306	O ECONOMIC COMPUTATIONS SECONDI
HYDROGRAPH AF 1 -29 1 306 HYDROGRAPH AF -13 2 306 ROUFED -29 1 199 ANUMORANTAF -29 1 196 ANUMORANTAF -20 1 200 ANUMORANTAF -20 1 200 ANUMORANTAF -20 1 200 ANUMORANTAF -200 1 200 ANUMORANTAF -200 1 720 ROUFED TO -1000 1 720 HYDROGRAPH AT -00 1 720 HYDROGRAPH AT -00 1 720 ANUTED TO -100 1 720 ANUTED TO -100 1 720 ANUTED TO -100 1 <	
ROUTED TO 2 -29 1 199 RUTHWARTAN A 4 -29 1 291 Z COMPLIAD 4 -40 1 282 RUTED 4 -40 1 282 RUTED 5 -40 1 282 RUTED 6 1 762 1 1	
Rourtep to 2.00 1.00 2.00 1.00 <th1.00< th=""> 1.00</th1.00<>	
v/Dreconstruction 1 5.6611 2 2.0011 2.0011 2 2.0011 2.0001 2 2.0001 2.0001 2 2.0001 2.0001 2 2.0001 2.0001 2 2.0001 2.0001 2 2.0001 2.0001 2 2.0001 2.0001 2 2.0001 2.0001 2 2.0001 2.0001 2 2.0001 2.0001 2 2.0001 2.0001 2 2.0001 2.0001 2 2.0001 2.0001 2 2.0001 2.0001 2 2.0001 2.0001 2 2.0001 2.0001 2 2.0001 2.0001 2 2.0001 2.0001 2 2.0001 2.0001 3 2.0001 2.0001 3 2.0001 2.0001 3 2.0001 2.0001 3 2.0001 2.0001 3 2.0001 2.0001 3 2.0001 2.0001 3 2.0001 2.0001 3 2.0001 2.0001 <	
xybrokravni kr. 1 116 2 2.291 1.26 2 2.04R1NED 4 .40 1 2 2.04R1NED 4 .40 1 282 2 2.04R1NED 4 .40 1 282 2 2.04R1NED 1 2.921 2 2.04R1NED 1 2.921 ROUTED 5 .40 1 276 ROUTED 6 1 276 ROUTED 6 1 276 ROUTED 6 1 276 ROUTED 6 1 276 1 2 2 276 1 2 2 26 1 2 2 26 1 1 2 26 1 1 2 26 1 2 36 1 1 26 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <t< td=""><td></td></t<>	
Z COMPLINED 4 •40 1 282. Z 2 299.1 299.1 FOUTED 5 •40 1 276. FOUTED 5 •40 1 276. ROUTED 1 1.04.1 1 7.82.1 ROUTED 6 •40 1 276. ROUTED 6 1.04.1 1 276. ROUTED 6 1.04.1 1 276. ROUTED 6 10.04.1 2 276. 1 101 1 1.491. ROUTED 6 •04 1 40.1 1 101 1 1.321.1	
ROUTED 10 5 -40 1 276- 1.04) ROUTED 10 6 -40 1 276- 2.76- 1 ROUTED 10 6 -40 1 276- 2.76- 1 HYDROGRAPH AT 7 -04 1 276- 2.76- 1 HYDROGRAPH AT 7 -04 1 7.40 1 ROUTED 10 6 -40 1 276- 2.76- 1 ROUTED 10 6 -40 1 7.40 1 ROUTED 10 6 1 0.41 1 1 ROUTED 10 6 1 -041 1 1 ROUTED 10 8 -00+ 1 1 -401 1 ROUTED 10 8 -00+ 1 1 -401 1	
FOUTED TO 5 -40 1 276. ROUTED TO 6 1.041 7 7821 ROUTED TO 6 -40 1 7621 ROUTED TO 6 -40 1 276. ROUTED TO 6 1.041 1 7.821 ROUTED TO 6 1.01 1 1.491 ROUTED TO 8 -04 1 1.460 ROUTED TO 8 -04 1 1.460	
ROUTED TO 6 -440 1 7.6211 ROUTED TO 6 -440 1 7.6211 HYDROGRAPH AT 7 -044 1 7.6211 HYDROGRAPH AT 7 -044 1 7.6211 ROUTED TO 6 1.001 1 7.6311 ROUTED TO 8 -004 1 460 ROUTED TO 8 -004 1 460	
ROUTED TO 6 -40 1 276. 1 2.041 1 7.8211 2 2.76. 2.76. 1 2.04 1 53. 1 7 04 1 53. 1 7 04 1 53. 1 101 1 1.4911 1 101 2 53. 1 101 2 53. 1 40. 1 46. 1 101 1 1.3211 1 101 1 1.3211 1 101 1 1.3211	
HYDROGRAPH AT 7 004 1 53. HYDROGRAPH AT 7 004 1 53. 53. 53. 53. 53. 53. 53. 53. 53. 53.	
ROUTED TO 6 .04 1 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 1 2 1 1 1 1 1 1 2 1	
ROUTED TO 8 .04 1 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 1 2 1 1 1 2 1	
2 COMBINED 9 646 1 305. 1 1.141 1 8.6311 2 3.055	
ROUTED TO 10 .44 1 305.	

A Standard .

No Tak

I

and a state of the second second second second second second second second second second second second second s	5.00								- Angenting you:	6	ľ.	-				T		
	-1										ļ	ŀ.,				•		
											-							
						1 - 4 1				;								
							-		ł	•		-						
			•													•		
							-											
			•	•			· ·											
					.											-		
								-					· ·					
												8 . A						
					•									•				
													-					
1				·					• .	с.) • • •	-							
	-	305. 8.6311	484. 13.7211	484.	769. 21.7811 769.	1.192.	769. 1.7811	1235.	769. 1.7611	- -								
				-		Ē	1 33. 1 21.	12	1 21.		-							
			~	~	~~~													•
			57 8)		10	1.01	123			••	• •							
			•57 1•48)		1.01 2.62)		4	2.62)										
			1		~		╞	•								:		
		14.					·	Roufed To State			•.							
			IA HAV		INED	•		Ð										
			HYDROGRAPH AT		2 COMBINED	ITED -1		J'ED			Í				-			
	بر		ЛИН		2	NOUTED TO	, ·	S.			ļ							
			1	لنفشفنا	1,				-42	in the second	∦ . 	1. Storester	1	1	1	Augustin .	1	الدينكار سر

. 23

	•						
	U)	SUMMARY OF UA	UAM SAFETY ANALYSIS	LVSIS			•
PLAN 1	111	VALUE	SPILLWAY CREST 1675.00	10	P UF UAM . 1678.50		
STORAGE		•0	0		130.		
RATIO MAXIMUM UF RESERVOI		MAY IMUM STUHAGE	MAXIMUM OUTFLOW	UURATION UVEN TOP	TIME OF MAX OUTFLOW	TIME OF FALLURE	·
PHP 430.1649	EV UNER DAR	AC=F1 11.	199.	0.00	42.00	0.00	
	-	NITIA, VALUE	SPILLWAY CHEST	•	TOP OF DAM		-
PLAN 2		1619-00 42. 0.	16 (3 4 0 0 •		1614650 143. 730.		
MUNIXEN . VITEO	}	MUMIXAM	MUMIXW	DURAT ION	TIME OF	TIME OF	
PMF	EV OVER DAM		CES	HOURS	HOURS	S HOURS	
• 30 1676.45	10°0	• 1 1	•661	0.00	42.00	00.0	
					- 1		
		•	•	-			
-							`
						-	
	-						

¢.

¥

المرجع فالمشراف المحج الرجح بالرقع فمكفته ومعد

The same serve

			SUP	SUMMARY OF DAM	DAM SAFETY ANAL	ANALYS I S	•	-	e -
LAN 1		1	INITIAL VALUE		SPILLWAY CRES! 1660-00		10P 0F DAM 1663.10		
		ELEVATION STORAGE		24°	• • • • • • • • • • • • • • • • • • •		82. 766.		
	10	MAXIMUM	MUM	MAX I MUM 5 T CKAGF	MAXIMUM OUTFLUW	DURATION OVER TOP	TIME OF MAX OUTFLOW	TIME OF FALLURE	
	5	KE SERVOIN	OVER	.XC=F1 689	276.	HOURS 0.00	HOURS 41.75	100KS	
	4		INT TAL	VALUE	SPILLWAY CRE	-	OF DAM		
PLAN 2		STORAGE OUTFLOW	1660	0.00	1560-00 54.		7669•10 82 766•		
					90 14 1 14 140	NURATION	TIME OF	TIME OF	
	PMF	MAXIMUM RESERVOTR U.S.ELEV	DEPTH OVER DAM	STORAGE	CFS CFS	OVER TOP HOURS	MAX DUTFLOW	FATLURE	
	D: •		0.00	68•	276.	00•0	51-12	0.00	
ľ				L. NAJ4	NOLINIS	9			
			KATIO	HAY INUM	MAX1MUM STAGE oF 1	A IIME			
•	·	·. -	05.	276.	1620.9	9 42.00			
			-	PLAN 2	STATION		•		
4			• •	MAX IMUM FLUW+CFS	NAXIMUM	4 TIME			
			• 30	276.0	1620+9	9 42 • 00			-
					~			-	
		•						-	

Bight land shiftly the rate of the

......

WE SHE WITH

.

-

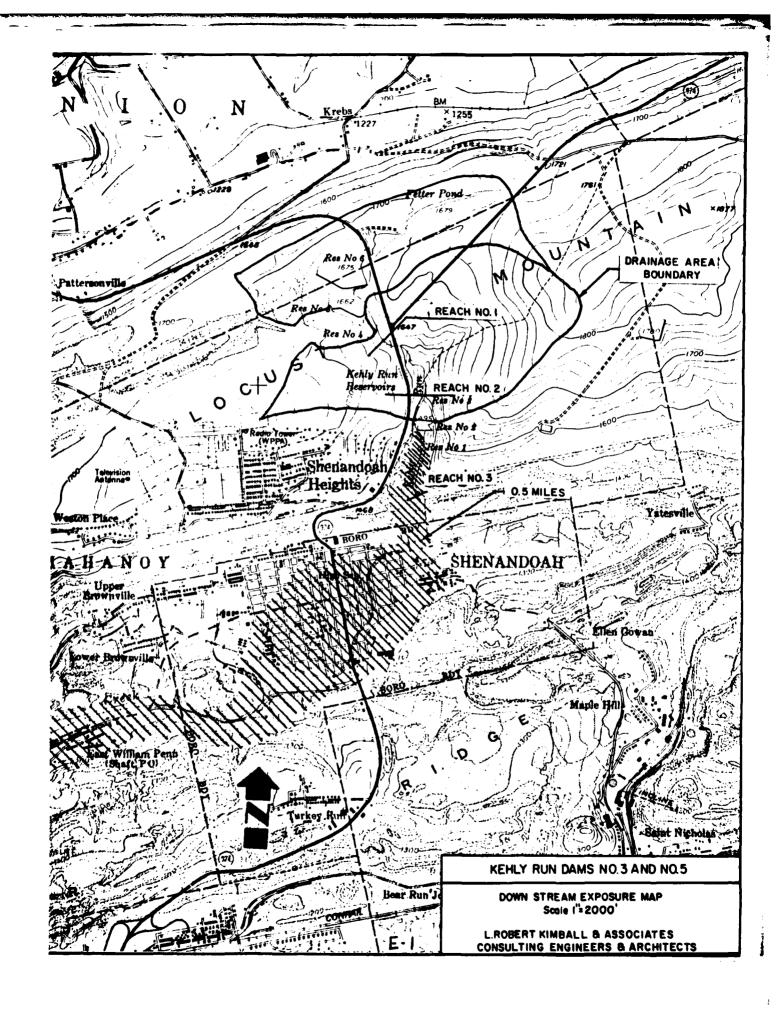
										, . , .						
												•				
			TIME OF FALLURE	, MOURS U_0U	į		TIME OF	HOURS	0.00					•		
 	P 0F DAM 1646.00	17. 180.	TIME OF MAX OUTFLOW	40.5U	NAM	6.00 17. 180.	TIME OF	HOURS	40+20			•				
ANALYSIS			zε	HOURS 0+00	Ĩ	17. 17. 180.		HOURS	0.•00	10	7 IME	41•14	10	T I ME HOURS	41.75	
DAM SAFETY ANAI	SPILLWAY CREST 1643.00	•0	MAX 14UM SUIFLOW	46.	SPILLWAY CREST	1645-00 12. 0.	MUM I X M	CFS	40.0	STATION .	MUMIXAM		STATION	MAXIMUM STAGE .FT	1-1051	•
SUMMARY OF DAN	VALUE 00	12. 0.	MAX1MUM STURAGE	AC = F = -		3.00 .12. 0.	MUMIXIM	ACHET		PLAN I	MAX I MUM	305.	PLAN 2	MAXINUM FLOM+CFS	305 •	-
-S	104 164		MAX1MUM DEPTH	00°0	INITIAL VALUL	1649.00	MUMIXAM	UVER DAM	00.0	A		.30	e.	, kafiu	06•	
•	ELEVATION	STORAGE	MAXIMUM RESERVUIR	1644.27	-	ELEVATION 510RAGE 001FLON	MUMIXAM	M.S.ELEV	1044.21							
•			0	105.			RATIO		• 30							
	PLAN I				2		 									
	ĥ				PLAN		D-4						•••		•	

mar Shares

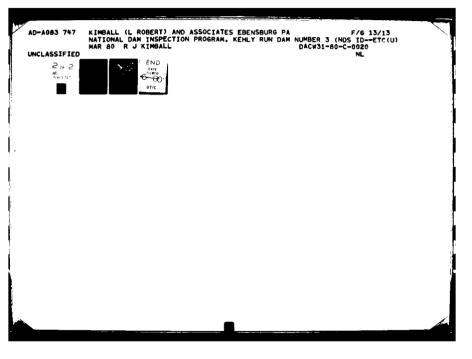
. .

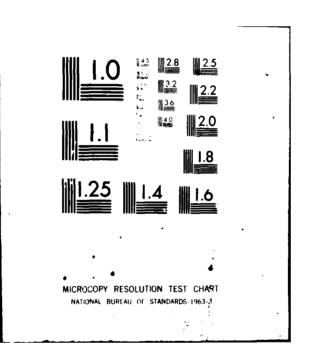
	-						25-
		SUMMAN UP UAM			•	•	
1		VALUE	SPILLWAY CREST	10 1	0F DAM		
ELEVATION STORAGE OUTFLOW	6641	33.	·.		• 0 • • 4 • •		
RATIO MAXIMUM OF RESERVUIR	MAXIMUM DEPTH	MAX I MUM STUKAGE	MAX I MUM OU IF LOW	DURATION OVER TOP	11ME OF MAX OUTFLOW	TIME OF FAILURE	
An 1607.01	OVER DAM	AC-F1 41.	CFS 1227.	HCURS 1.08	41.38	41.00	
	1417141	MITIAL VALUE	CD111WAY CREST	•	TOP OF DAM	-	-
PLAN C STORAGE STORAGE OUTFLOW		8400 93.	•0 •66 00•54•1	-			
RATIO MAXIMUM RATIO MAXIMUM PHF FF RESERVOIR	MAXIMUM DEPTH DVER DAM	MAXIMUM STORAGE AC-FT	MAX I MUM OUTFLOW CFS	DURATION OVER TOP HOURS	TIME OF MAX OUTFLOG HOURS	TIME OF FATLURE HOURS	
	• 32	•1 *	169.	3.50	62•14	0.00	
		PLAN I.	STATION] 6			
		MAX1MUM FLOUGEES	NAXIMUM	H TIME			-
	• 30	1238.	1394.46	6 41.50			
	-	PLAN 2	STATION	14			
	HAT10	HAXIMUN FLUW•CFS	N MAXIMUM	M 11ME T HOURS			
		159.	•, 13B3•6	6 41.25			
						-	
an an an an an ann an ann an ann an ann an a	ĩ						

k


ŝ.

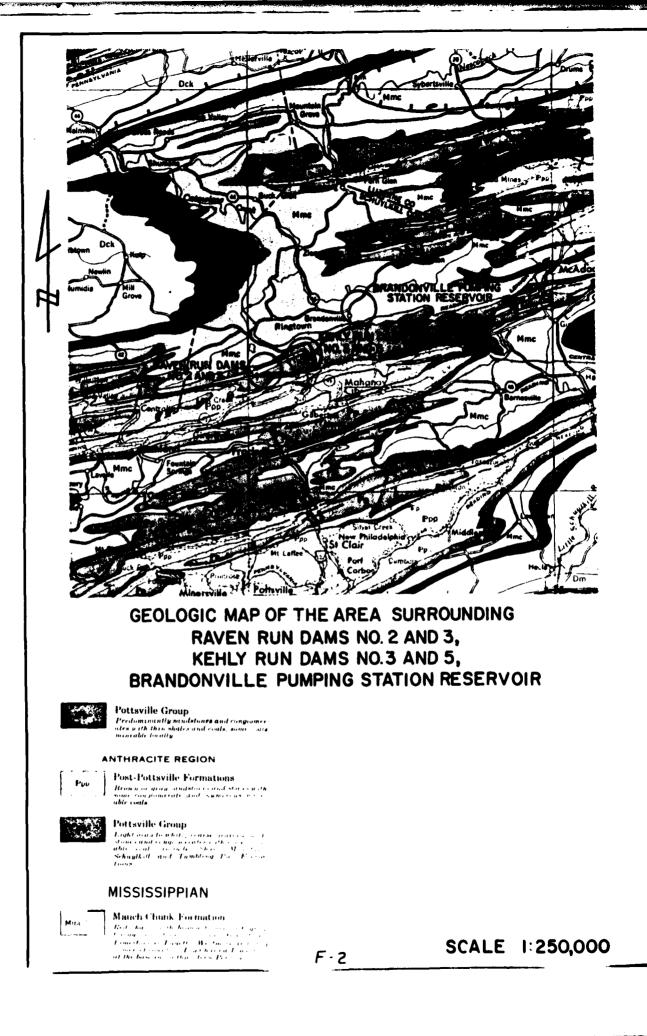
APPENDIX E DRAWINGS


WALLEN Star


the det

t

APPENDIX F GEOLOGY


Kehly Run Dam No. 3 - General Geology

Kehly Run Dam No. 3 is located in the Appalachian Mountain Section of the Valley and Ridge Physiographic Province. This province is typified by numerous synclinal and anticlinal features. Some minor faulting is indicated to the south of the reservoir. The bedrock underlying the dam consists of the Pennsylvanian aged Pottsville Group. This unit consists of light to dark gray, fine grained to conglomeratic sandstone, with lesser amounts of shale, siltstone, limestone, coal and underclay. The bedding is generally well developed with the sandstones and siltstones often cross-bedded. Joints are usually regular and moderately well formed.

Both deep mining and surface mining of anthracite coal have taken place in the vicinity of this dam. The extent of any deep mining is unknown without extensive research.

F-1

Ł

