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Chapter V

Unsteady Burning of a Linear Con~densate

1. The Problem

Chapter IV was concerned with the steady combustion of the gases

produced by vaporization of a linear condensate at its surface, whether

-through pyrolysis, sublimation or evaporation. The results were character-

ized by response curves of burning rate versus pressure (represented by

the DamkBhler number). If the applied pressure varies in time, then so

also must the burning rate; it is the nature of their dependence that is

examined in the present chapter.

The effect of variations in pressure onx solid pyrolysis has received

a considerable amount of attention because of its relevance to the stability

of solid-propellant rocket motors. The essential idea is that acoustic

waves bouncing around the combustion chamber will impinge on the propellant

surface and thereby generate fluctuations in the burning rate. These

fluctuations will affect the reflected wave which, it is argued, can have

I a larger amplitude than the incident wave. If so, the transfer of energy
(provided it is greater than losses through dissipation and other mechanisms)

implies instability.

The response of a burning condensate (solid or liquid) to an imping--

ing acoustic wave will be the focus of our discussion. Mathematically we

must deal with the disturbance of a steady field containing large gradients,

so that a frontal attack on the governing equations is not feasible. Six

$ ' regions can be distinguished: condensate,.preheat zone, flame, burnt gas,

entropy zone and far field; so that, without rational approximation, the

L discussion soon disappears into numerical and/or ad hoc analysis. There
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are three parameters other tha' e whose smallness can be exploited,

namely the Mach number, the ratio of characteristic time in the gas to that

in the condensate and the ratio of densities. Low Mach number enables

the combustion approximation (with its spatial constancy of pressure) to

be used in the combustion regions, namely preheat zone, flame and burnt

gas; small time ratio ensures the gas phase responds much more rapidly

than the condensate, so that tth~e three combustion-regions are quasi-steady

if the acoustic frequency is sufficiently small (a restriction of no practical

significance); and small density ratio implies that fluctuations in the

location of the surface of the condensate may be neglected. The activation-

energy asymptotics, needed for an analytical description of the combustion

regions, determine how small the acoustic frequency must be: the resulting

changes in flame temperature (due entirely to fluctuations in the con-

densate) must be 0(61)

Only adiabatic burning will be considered; no work on heat loss has so

far been reported. The first task is to determine the response of the burn-

ing rate to a general (small) change in pressure level of the combustion

regions, without regard to its cause. Sec. 2 determines the response for

solid pyrolysis and Sec. 3 that for liquid evaporation. The incident acoustic

wave excites such a response, and the response induces a reflected wave,

through the intermediary of an entropy zone which converts isentropic con-

-ditions in the far field into isothermal ones in the near field (Sec. 4).

Conditions for the reflected wave to be stronger than the incident wave are

developed in Sec. 5.

Our analysis also enables stability characteristics to be discussed,

at least on the time scale adopted, by holding the pressure level fixed
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(i.e. eliminating the incident acoustic wave). The stability analysis of

Ch. III is thereby extended to what may be called anchored flames. The

extension continues in Sec. 6 to a flameholder, where the combustion field

need no longer be taken quasi-steady but nevertheless still varies on a

long time scale. Only in this last section, where the combustion field

is truly unsteady, does the Lewis number play a role.

In view of the large number of small parameters we shall eschew writing

formal expansions. Instead the sympol << will be used to indicate that

only the leading term in the corresponding parameter is being considered.

2. Solid Pyrolysis

The unsteadiness will be treated as the perturbation of a steady

,state with Damkbhler number D 0. Then, as in Sec. 111.3, the burning rate

M 0  in the steady state will be taken as the mass flux on which units are

based; according to the result (111.16), we have

M 0  - /2 DO T exp(-e/2 T.)IO(1

since none of the products of the gaseous reaction is produced or absorbed

at the surface of the condensate (J. = 1). The flame temperature T., is

to be calculated from the formula (IM.).

The smallness of the Mach number ensures that the combustion approxima-

tion is valid. If, in addition, the fluctuations in the applied pressure

are not too rapid then the combustion is quasi-steady and the analysis of

Ch. II is applicable. More precisely, if w is a characteristic frequency

of the fluctuations (e.g. the frequency of an impinging acoustic wave) then

the time w1 should be long compared to the response time p cX/C M 2 of

the gas phase, determined by diffusion. In short, we require
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2 / (2)
p 0 C

a restriction of no practical consequence since the diffusion time is

always very small. The same formula (1), with MH0  and D 0  replaced by

M and D, therefore holds for the burning rate, where now both D and

% are functions of time, the former prescribed and the latter to be

determined from an analysis of heat transfer in the condensate and the

nature of the vaporization.

This conclusion, which is not restricted to solid pyrolysis, was

reached by Denison and Baum (1961) using ad hoc arguments which Williams

(1973) later replaced with rational asymptotic analysis. However, none

of these authors noted that (in general) a further restriction of W is

required if the Mach number is to remain sufficiently small for the

combustion approximation to apply. In our formulation the restriction

comes from allowing the flame temperature to be perturbed only by 0(8 )

mounts, so that the change in burning rate is 0(l). More precisely,

1/2 0.12
M MD e (3)

where TO /0 is the perturbation (T now being the unperturbed flame

temperature) and H, D are measured in units of MH0, D 0 .(The formula

follows from the result (111.16).]

Nov this perturbation is due to fluctuations of temperature in the

condensate, and it may be determined by calculating the total change in

enthalpy they produce- up to the surface. In general, slow variations on

the time scale c H /pX of the condensate are needed if the result is to

be 0(81 )I.e.
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W -C M 0i/Pe (4)

Note that, since the condensate is much denser and more conductive than

the gas, i.e.

p/pC << and X/ << , (5)

the change in enthalpy in the gas phase is negligible, i.e. in response

to changing conditions the gas (unlike the condensate) has no inertia.

Thus the restriction (4) implies

W<< CpMo/PcX , (6)

whereas rough equality would have to hold for there to be a perturbation.

[Note that the condition (2) is satisfied a fortiori.] In special circum-

stances there is an alternative to slow variation, to which we shall come

later.

To calculate the change in enthalpy we consider the dimensionless

temperature equation

3T/at+M BTax- 32T/3x 2 = 0 (7)

in the condensate. Here p 0 and /Cp H have been taken as units

of time and length, while T is still referred to Q/c p. Since temporal

variations occur on the long-time scale

T tie , (8)

the term aT/3t - -1 3T/aT, which represents local storage of enthalpy,
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is seen to be a perturbation. If it is neglected, the leading approxima-

tion

T T_ + (Ts-T_)e Mx  (9)TS

is obtained, where M varies with T. The analysis so far is valid

whatever kind of vaporization occurs at the surface of the condensate;

for solid pyrolysis, Ts  is connected to M by the law (IV.5), which

now reads

M - (kM o)T sexp(-6/T ) . (10)

From the leading approximation we can calculate the neglected perturbation

term, which represents a heat source/sink in equation (7), and hence the

perturbation in flame temperature. We find

M*. - -f 3 dx - -(p+q)M-2 dM/dr

where

p T/(6+T) > 0 and q - T s  , (12)

so that, from the result (3), the equation connecting the variations in

M and D is

(p+q)dM/dT M 3Xn(D/M2) . (13)

The steady state M - D - 1 clearly satisfies the last equation; and

we are mainly concerned with relating the small disturbances of M and D
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caused by an acoustic wave. However the equation may also be used to

investigate the inherent stability of the steady rate, i.e. the way M

changes when D is held fixed at 1. We see that when M is disturbed

from 1, either up or down, it is driven further away whenever

p+q < 0, i.e. T_, < T s/(i+T s ) . (14)

The condition is difficult to interpret because T5  itself depends on M;

but certainly there is linear instability if it is satisfied by the value

of T corresponding to M = 1 in the pyrolysis law (10). This instabilityS

was predicted by Denison and Baum but it has apparently never been observed.

Their condition, after extraneous terms are eliminated by letting

8 + m, is actually

< 6Ts/(6-Ts) (15)

because their pyrolysis law lacks the factor T . Figure 1 shows thes

stability boundaries for a factor T with a = 0, 1/2 and 1.s

For a general pyrolysis law M(T s) the right side of the inequality

becomes Ts - MdT s/dM, and it is conceivable that no propellant satisfies

such a condition. The procedure for checking a given T-. would be to

compute the burning rate (1) for the assumed D and then determine Ts

and dT sdM for M = 1 from the pyrolysis law.

For oscillations about the steady state forced by an acoustic wave,

we write

M - 1+me i T , D l+de M T with w Owa (16)

Nr
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and linearize. Then

cd with c - 2+i (p+q) (17)

where .T now has its value for M = 1. This relation determines the
8

reflected wave in the far field, as we shall see in Sec. 4. (The

.instability result above is obtained by requiring c to vanish.)

An alternative way for changes in flame temperature to be 0(0- ) is

for the temperature in the solid to fluctuate by that amount everywhere.

The fluctuations can then be on the scale of t, rather than T, so that

we are faced with solving the full heat equation (7) with M an arbitrary

function of t. A general analysis would therefore be quite complicated;

accordingly just the case of interest will be considered, namelysmall

departures from the steady state.

When

M l+me i t  and D l+de i t with m, d << 1 (18)

the temperature in the solid has a steady component, given by the distribu-

tion (9) with M = 1 and Ts  the corresponding surface temperature, and

a fluctuating component

m[(-iq/w)exp(x+iwt)+(p+iq/)exp(icx+iwt)] with c - (l+Vriw)/2.

(19)

The two contributions to this result are due to fluctuations in M within

the solid and at its surface respectively. We now find

-l. aT iWte - -t dx - (l-K)(p+q.z0me (20)
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in place of the result (11), so that

m cd with c-1 2-6(1-K)(p+q/K) , (21)

which reduces to the previous response (17) for w small but is quite

different otherwise, as we shall see in Sec. 4.

The inherent stability of the steady state is determined by setting
-1

c 1 0. Then

PK 2+(Q-P+2)K-Q = 0 with P = ep, Q = eq ; (22)

for instability the parameter values P, Q must make the real part of

iw K(1-I) positive for a K whose real part is positive. Fig. 2 shows

the region of instability in the P, Q-plane; its boundary asymptotes

P+ Q = -6, in accord with the previous result (14) for Y, Q large.

For consistency, we must have

p,q - 0(0- ) , (23)

which certainly requires both Ts and T_, to be of the same order.

Such small temperatures do not mean that the condensate is cold, but only

that the corresponding enthalpies are small compared to the heat of

combustion, which is used as unit. The requirement (IV.6) for the steady

state does however mean that T., as calculated from the formula (IV.3),

must be no greater than I (i.e. the pyrolysis must be endothermic).

3. Liquid Evaporation

Liquid propellants have also been used in rocket motors, though not

in the manner envisaged here. A better motivation, if one is needed, is
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a solid propellant which first liquefies at its surface and then vaporizes.

If attention is again focused on adiabatic combustion, the analysis follows

that in the last section until the pyrolysis law is reached, when the

Clausius-Clapeyron relation (IV.21) is used instead, i.e. we write

D - kT(T.-T)-lexp(-/T) . (24)

Here we have taken the Damkbhler number proportional to pc in accordance

with the formula (1.59) for a first-order reaction (otherwise a power of

D is required); and various parameters have been absorbed into k.

Since Ts  is now a function of D, the latter enters into the temper-

ature distribution (9) in the liquid, so that the formula (11) for the

change in flame temperature becomes

M . (qM-2dM/dT+ pM- 1 D-ldD/dT) (25)

where now

2 2p T (T-Ts)/[T2+(OT 8+)(T-TS)] > 0 (26)

The equation connecting the variations in M and D is therefore

qM-dM/dT +pD-IdD/dt - M2 n(D/M2 )

In particular, there is inherent instability (D 1) when q is negative,

i.e. for

T-0 < T .(27)



Note that this instability (which has not been reported before) is

independent of the precise form of the vaporization law at the surface:

it occurs whenever the surface temperature is determined by the surface

pressure.

For general small departures (18) from the steady state we find

m = cd with c = (l-iip)/(2+ijq) . (28)

This result will be needed when we come to acoustic response in Sec. 5.

When p and q are 0( - 1) higher frequencies w can be considered,

as for solid pyrolysis. The fluctuating component (19) in the condensate

now becomes

(-iqm/w)exp(x+iwt) + (pd+iqm/w)exp(ixfiwt)

where p has its new definition (26), so that

m cd with c = [l+(l-ic)p]/[2-8(-ic)q/ic] . (29)

When D is held fixed at 1, i.e. d - 0, the denominator of c must

vanish, so that K - Q/(2+Q). Instability requires K > 1, i.e.

Q < -2 with Q Oq, (30)

a condition in accord with the earlier result (27) for Q large.

4. Response to an Impinging Acoustic Wave

Analysis of the combustion zone provides, amongst other things, a

complete description of the state of the burnt gas behind the flame sheet

in terms of the time-dependent, but spatially uniform, pressure there.
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Conditions are essentially isothermal with the velocity v= determined

by the instantaneous value of M.

The varying pressure is generated by some source far from the flame;

we shall confine ourselves to acoustic waves travelling normal to the

surface of the condensate, which immediately raises a problem. The far

field is isentropic when the near field is isothermal, so that the two

cannot be matched. In other words, it is not simply a matter of evaluating

the pressure in the far field as the near field, represented by a single

point, is approached. An "entropy" layer is needed to transform con-

ditions from isentropic to isothermal in a distance small on the scale

of the far field but large on that of the near field.

In the chemistry-free region beyond the flame sheet, the equations

with which we have to deal are those of a compressible, heat-conducting,

viscous fluid, i.e. the dimensional form of equations (1.53, 55, 56) with

pressure and viscous terms restored in the energy balance, with n = 0

and with the perfect-gas law reinstated. Linearized about the steady

state P., vQ, P, T they read

3p/at+v0 *P/ax+P 0 av/ax 0 , (31)

pM(3v/3t+v v/ax) - -3p/ax+(4K/3)32 v/ax 2 , (32)

P OD cp(3T/t + vaT/2x) -XD/2 - ap/at+vap/ax . (33)

It is natural to take p, a. - 1yRT'm, PC P aau

of density, velocity, pressure and temperature in such a combustion-free

region. Length will be referred to a distance £ to be specified later
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and time to t/a. Then, for disturbances proportional to e iW  the dimension-

less equations are

i+ m C/Wax +av/ax= 0 , iwv+m Gv/x -y-3p/Dx+K 2 V/aX2 ,

(34)

iwT+m 3T/3x- a T/3x2  (y-1)(iwp+mQap/3x)/y , p - T + p

(35)

where

IL - 4/3p a L and t= N/cpp a, . (36)

Solution of these equations determines the dimensional density, velocity,

pressure and temperature as

iWt icst - iWt iWtp.,(l+Pe t ) , v +a ve , pc(lpe ) and T (l+Te ) (37)

respectively.

These equations, being linear with constant coefficients, can be

solved exactly and the solution used to trace the transition from isothermal

to isentropic conditions. However, to see how the burning-rate fluctuations

are caused by the incident acoustic wave and then how they determine the

reflected wave, across the entropy layer, it is easier to use expansions

appropriate to the various regions.

To describe the acoustic waves, we choose for Z the wavelength

a - a/w >> Zc lm >> L (38)

where Ir A/c pcV% is, to within a factor P /p., the unit of length

p-rn
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used in the combustion zone. We have used the restriction (2), which now

reads

w << v 1 , (39)

and the fact that the Mach number m., is small to obtain these extreme

inequalities. It follows that the dimensionless w is 1 but that I

and A are small so that

ix -ix
p - Ae a T = (y-l)p/ , (40)

ix -ix
P p /y , v = (-Ae a+Be a)/y (41)

where xa  is distance measured in units of I a Here A and B(m )

are the amplitudes of the pressure in the incident and reflected waves,

respectively, which would be dissipated over a distance

La = mI/A >> Xa/m >> (i at s A for I-a) . (42)

For the theory to be applicable L must be large compared to an overall

a

dimension but, since the latter is normally comparable to 9a' that

provides no restriction in practice. The goal is to determine B when

A is given, so as to calculate the reflection coefficient lB/Al.

On the acoustic scale the whole combustion field is represented by

a single point, which we may take to be xa - 0. The temperature disturbance

there is zero, which clearly contradicts the isentropic requirement (40b)

of the acoustic waves when there is a pressure disturbance. A layer is

vaeded to change the entropy from its constant value in the acoustic field

as xa O. Now, in the absence of dissipation, entropy is convected



- 15 -

with the fluid; to describe these waves, we choose for k the wavelength

Ie - v"/W - maa << a a (43)

The dimensionless frequency w equals m. and hence is small. We also

find that K and X are still small, their dissipative effect being

felt over a distance

L mt / e >> Ie (Ae  is X for I e) . (44)

If Le  is to be small compared to , we must have

W >> m vI c  , (45)

which now places a lower bound on the frequency for the theory to apply.

The restriction is of no consequence in practice but, if it is not

introduced, entropy effects extend into the far field and our simple

picture is destroyed. The results must then be obtained from the full

solution of equations (34,35).

We now come to the structure of the entropy layer, which the momentum

equation shows to be isobaric, as might have been expected. The complete

solution may therefore be written

T - (y-I)p[l-exp(-iXe-Xe)]/y p[l+(y-l)exp(-ixe-Xe)]/y

v =mm[-ipx e/y+(c-l)p] (46)

to leading order, where xe and Xe are distances measured in units of

Ie and Le , respectively. Here the constants of integration have been

determined so that

| I
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T - 0 and P + v/m cp (47)

at x - X = 0, as required by the analysis of the combustion regions: to6 e

0(1) accuracy in 8 the temperature is unaffected and m - cd (in the

notation of Secs. 2 and 3). Note that v 4 as x =, a fact that

makes a careful analysis of the entropy layer necessary, as we shall see

shortly.

As X e the solution (46) becomes isentropic, i.e. the relationse

(40b, 41a) are satisfied. A formal matching is obtained by taking m

as the vanishingly small parameter, which is suggested by the transforma-:

tion x a m x . When applied to v the matching shows that

B - A(l+mft) with a - 2y(c-1) (48)

correct to first order in m . The reflected wave is thereby determined

in terms of the incident wave. tUse of m. as small parameter makes

the inequalities (39) and (45) become 0(m3) << W << 0(2).]

Usually such reflection problems are discussed in terms of the

acoustic admittance. In the present context Williams (1973) equates the

value of v/p as xa -) 0 to its value in the combustion region, which

happens to give the correct result (48). It would be more logical to

equate it to the value at the edge of the entropy layer, but that is

impossible since v as xe ( =. (The difficulty is not a creature

of our analysis: the continuity equation (31) requires v to become

unbounded whenever p does not vanish at the edge of the layer.] Only

proper matching of the entropy layer resolves the delemna.

12L - o
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5. Amplification

Since A is the amplitude of the incident wave and B is that of

the reflected wave, there is amplification for small values of m if

and only if

Re(a) > 0 i.e. Re(c) > 1 . (49)

We shall now examine the two cases of solid pyrolysis in Sec. 2 and the

two cases of liquid evaporation in Sec. 3 for this instability.

The response (17) for solid pyrolysis shows what Re(c) is never

greater than 1/2, its value for w = 0, so that there is no instability.
n

The conclusion is changed by giving D a pressure dependence p with

n > 2 since then c is replaced by nc, whose maximum real part exceeds

1; but in practice n is never that large.

On the other hand the response (21) shows" that

2 2 4
Re(c) - 1/2+[2P+4- (Q+P+2) ]w /8+0 4(w) (50)

for small w, which increases initially with w for a band of values

around

Q - -(P+2) , (51)

suggesting that the inequality (49) may be satisfied for some W when

P and Q are chosen appropriately. This is confirmed by graphs of Re(c)

versus w for several values of P in Fig. 3, where the value (51) has

been taken for Q to ensure the fastest rate of initial increase.

Turning now to the evaporating liquid, we find that the response

(28) gives
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Re(c) -  22q ( p+ q )  (52)

For instability q must be negative but greater than -p; then all

frequencies

> /--2/q(p+q) (53)

are amplified. On the other hand, Re(c) for the response (29) behaves

like -PIw//2(2+Q) as wn -, so that 1 is certainly exceeded for Q < -2

whatever the value of P. Figure 4 shows graphs for P = 1 and various

values about Q = -2.

The absence of amplification at all frequencies I for a pair of

values p, q does not necessarily mean that stable burning will take

place. There may be inherent instability. For solid pyrolysis, para-

meter values for which p+q is negative are ruled out even though there

is no amplification of acoustic waves. For liquid evaporation there is

stable burning only when q is positive. Similar remarks apply to the

cases governed by P and Q.

6. Stability of Anchored Flames

The flames considered in this chapter are anchored to the condensate

in the sense that they are controlled by the manner in which the reactant

is liberated at the surface (which in turn is affected by heat from the

flame). The stability of certain anchored flames has therefore been

covered already. Here we shall consider a stronger control in which there

is no influence of the flame on the source, i.e. the reactant is supplied

at constant temperature T*, any heat conducted back from the flame being

instantly removed. The flamholder of Sec. 11.4 is an example, if there

I



- 19 -

is temperature control at the porous plug (by means of heating/cooling

coils) and the flow rate M is maintained constant. While stability is

the main interest, we shall also consider the effect of an impinging

acoustic wave, i.e. oscillations in D.
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