

SDMS Quarterly Technical Report !Page -1-
Introduction Section 1

1. Introduction

>This report describes the *gkt quarter- work on the

design and implementation of a prototype Spatial Data

Management System (SDMS).

Spatial Data Management is a technique -for storing and

retrieving information which employs pictorial

representations of data arranged on a collection of flat

surfaces which the user can view on a color, raster-scan

display. Tools are provided for interactively entering

graphical and symbolic data, including a mechanism for

* generating graphical representations of existing, shared

symbolic databases.

This quarter, Cseveral new features that increase the

utility of the system were implemented. These fEsuz-ege-

are:

L. a new statement in the modified query language of
the underlying DBMS,,

extensions to the graphical editor.

. extensions to the module which manages objects in
the Graphical Data Space (GDS)i ,.

. a terminal emulator to provide a text interface to
;SDMSI____

SDMS Quarterly Technical Report !Page -2-
Introduction :Section I

Chapter two discusses a new statement which has been added

to the SDMS database command language ,SQUEL (Spatial QUEry

iLanguage). This statement allows a u..er of ,SDMS to undo

the effects of a previous ASSOCIATE.

Chapter three discusses the interactive graphical editor

(PAINT) which has been extended to include two new groups

of ,features. These groups are: an administrative mode,

which allows the user to create and manipulate icons and

ports; and a template mode, which allows the user to group

related icons into virtual collections.

The Icon Manager is responsible ,for the spatial management

of objects which have been placed in the GDS by either

manual or automatic (icon creation) means. The Icon

Manager incorporates several new commands in support of

the template -feature in the graphical editor. In addition,

commands have been added in anticipation of extensions to

the administrative mode in the graphical editor. These

topics, as well as a description of the interface between

the Icon Manager and the other SDMS components, are the

substance of Chapter ,four.

A terminal emulator has been developed which uses the

,Lexidata display system. All of a user's terminal

interactions with SDMS now take place through this

emulator. Messages from SDMS and the user's echoed input

SDMS Quarterly Technical Report Page -3-
Introduction Section 1

are displayed on the menu monitor. The emulator is

described in Chapter five.

I.

SDMS Quarterly Technical Report !Page -4-
Enhancements to SQUEL Section 2

2. Enhancements to SQUEL

The SDMS database command language SQU&L (Spatial QUEry

jLanguage) now includes a statement that undoes the results

of previous ASSOCIATE statement. This is the DISASSOCIATE

statement. INGRES (HELD STONEBRAKER WONG] is the host

database management system. 4

The ASSOCIATE statement produces a graphical

representation, called an "icon", for each tuple in a

specified INGRES relation using a specified Icon Class

Description (ICD). The syntax and function of the

ASSOCIATE statement was described in a previous quarterly

technical report [HEROT et all.

Until the addition of the DISASSOCIATE statement, there

was no simple way to delete the products (icons) of an

ASSOCIATE. The syntax and function of this new statement

is described below.

The syntax of the DISASSOCIATE statement is:

DISASSOCIATE relation-name USING icdl-name

SDMS Quarterly Technical Report Page -5-
Enhancements to SQUEL Section 2

relation-name is the name of the relation ,for which the
original association was created. icdl-name is the name of

the icon class description which was used to produce the

original association.

All of the icons which were created by the original

association are deleted. Deleting an icon consists of the

following procedure:

1. The location of the icon is determined from the

Icon Manager.

2. The icon is erased on all iplanes using the

background color as stored by the Icon Manager.

3. The icon is deleted from the Icon Manager's

database.

4. The entry in the system-maintained list of

associated icons is deleted.

Note that it is not possible to delete only some of the

icons produced by an ASSOCIATE. All or none can be

deleted.

It is essential that the DISASSOCIATE statement be used to

remove the icons produced by an ASSOCIATE. It is possible

to delete the icons using the graphical editor (see

SDMS Quarterly Technical Report Page -6-
Enhancements to SQUEL Section 2

Section 3.1), or to delete the entire I-space. Either

method would have the same effect. However, doing so would

destroy the consistency between the system-maintained

relation of associated tuples and their icons and the Icon

Manager's list of icons. In this case, it is possible that

the icon-id of a manually-deleted icon will be re-assigned

to a new icon and a subsequent DISASSOCIATE would end up

erasing the wrong icon.

I

V i

SDMS Quarterly Technical Report :Page -7-
PAINT Extensions Section 3

3. PAINT Extensions

.PAINT has been extended and its capabilities greatly

enhanced since the last published description [HEROT et al

A].

The !PAINT system in SDMS has been expanded to support the

invocation of subprocesses. Subprocesses allow

functionally related commands to be grouped together in

one process. There are two reasons for the development of

subprocesses. One is the limited logical address space of

the PDP-11; PAINT simply grew too large to fit in one

process. The other reason is the reduced clutter on the

menu monitor that results from not having all commands

continuously displayed.

The basic operations available under the PAINT system

remain unchanged. The extended capabilities are handled by

the addition of two commands: ADMIN and TEMPLATE. Each of

these commands activates a separate subprocess.

:Each subprocess consists of a set of related interactive

commands. When a subprocess is activated, the additional

commands appear above the "permanent" commands on the menu

monitor (Figure 3.1).

SDMS Quarterly Technical Report Page -9-
PAINT Extensions Section 3

The user may invoke any of the standard PAINT commands or

switch from one subprocess to another by simply activating

the appropriate command. If the user switches to a

different subprocess, the previous commands will be

removed from the menu and the new ones will appear.

3.1 ADMIN Mode

The ADMIN subprocess includes a set of operations for

defining and deleting objects known to the Icon Manager.

These operations include: creating icons, ports, and

process ports; naming ports and icons; and deleting icons

and their names (Figure 3.2).

The ADMIN subprocess allows the user to create and delete

icons and ports at will. This capability is essential to

the flexibility of SDMS. Using the commands of the ADMIN

subprocess, the user can dynamically re-structure the

hierarchy of I-spaces in the GDS by creating ports. The

user may create icons to be used as templates (not to be

confused with the templates described in section 3.2) for

the automatic creation of icons from a symbolic database.

The user may create process ports into Unix processes to

peruse text documents, run animation programs, read mail,

etc.

1

SDMS Quarterly Technical Report Page -11-
PAINT Extensions Section 3

A summary of the functions provided by ADMIN follows:

- ICON - create an icon

The user defines a rectangular area in a similar
fashion to the ERASE and RECTANGLE functions. The
area defined thusly is made an icon and assigned an
icon-id.

- PORT - creates a port to a user-specified
destination in the GDS

Two independent operations are required. The first
is to define the port boundaries. The second is to
define the port destination. The port boundaries
are defined by entering a rectangular area, as
above. The port destination is then entered as
I-space, iplane, scale, and X,Y location.

- PROCESS - creates a port to a user-specified Unix
process

The user defines the port boundaries as above. To
associate the port with a process, the user types
the process pathname and any arguments at the
keyboard.

- NAME - defines a name by which the user may
reference an icon or port

The user points to the object to be named. If the
object is an icon or a port, the user types in the
name desired. The name is then associated with the
object in the Icon Manager's database.

- DELNAME - deletes the name used to reference an
icon or port

The user points to the object which is to have its
name deleted. If the object is an icon or a port,
its name (if there is one) is deleted.

- DELETE - deletes icons, ports, or process ports

SDMS Quarterly Technical Report Page -12-
PAINT Extensions Section 3

The user points to the object to be deleted. If the
object is an icon or a port, it is deleted from the
Icon Manager's database.

ICON? - allows a user to interrogate spatially for
icons and ports

The user points to a location. If that point is
contained in an icon or a port, the boundaries of
the icon/port are highlighted and its name and id
are displayed on the menu monitor.

BACKGROUND - defines the background color to be
assigned to a particular icon

The user places the cursor over the desired icon to
be assigned a background color and activates the
"doit" button. The current color designated in the
palette is assigned as the background color.

3.2 Template Mode

The TEMPLATE subprocess provides a set of operations for

creating, manipulating, and deleting templates.

Templates provide the user with sets of images which he

can manipulate from the menu monitor. The user can create

sets of these images, usually related in their appearance,

and display them on the menu monitor. There they can be

activated as though they were items in the PAINT menu.

Activating them has the effect of loading the image into

the PICK buffer of PAINT. The image can then be placed in

the GDS by activating the PUT function.

SDMS Quarterly Technical Report Page -13-
PAINT Extensions Section 3

An example of the use of templates might more clearly

convey their utility. Using one of the functions in the

TEMPLATE subprocess, the user creates a template space and

names it "REPORTS". The user then moves to a spot in the

GDS where he has drawn a set of icons which represent the

various types of reports which are produced. He adds each

of these icons to the template space just created using

another TEMPLATE function. As he adds each one, its image

appears on the menu monitor. The user then moves to a

different spot in the GDS. Activating PAINT causes the

menu display to be re-drawn. He can then select one of the

templates displayed and PUT it. The user may choose any of

the templates in the template space to PUT. This allows

the user to, in effect, "carry" a set of images around

with him as he traverses the GDS. This is very convenient

when he wishes to create several copies of different

images or build up an image froit related sub-images. In

this example, the user may wish to create several text

ports near each other. The icon for the port should br

representative of the type of report to be displayed.

The user may create many of these template spaces or

collections and name them. Using the DIRECTORY command in

TEMPLATE, the user may choose which collection of

templates he wishes to see. The user may, in addition move

the templates around within the display.

SDMS Quarterly Technical Report Page -14-
PAINT Extensions Section 3

The TEMPLATE subprocess provides the user with the

following capabilities: create and delete template

spaces; add and delete templates in a given template

space; move templates around in the template space; and

to display the contents of any template space (Figure

3.3) . A unique feature of the TEMPLATE subprocess is the

ability to PUT a template without writing its background

color into the GDS. This feature can be used to create

various "paintbrushes". If the user makes a template of an

icon which has its colors set, that template may be used

as a hpaintbrush". The.Icon Manager allows the user to set

a foreground and background color for an icon. The

foreground color is considered the dominant or pre-eminent

color in the icon. The background color is usually the

color which surrounds the principal portion of the icon.

This information is usually used in the automatic creation

and deletion of icons. Jn the TEMPLATE subprocess,

however, if the background color is set and a template is

PUT, only those pixels in the icon whose color is not the

background are copied into the GDS. This allows the user

to PUT the image several times in an overlapping manner

without the square border appearing as with a normal.PUT.

A summary of the functions provided by TEMPLATE follows:

SDMS Quarterly Technical Report Page -16-
PAINT Extensions Section 3

- MAKE DIRECTORY - creates a template space

The user types in the name to be assigned to the
new template space.

- DELIS - deletes an existing template space

A list of existing template space names is
displayed. The user places the cursor over the
desired template space to be deleted and activates
the "doit" button.

- ADD TEMPLATES - creates a new template

The user places the cursor over the desired icon to
be added and presses the "doit" button.

- DELMI - deletes a template

The user places the cursor over the desired
template to be deleted and presses the "doit"
button.

- MOVEMI - moves a template within its template space

The user places the cursor over the desired
template to be moved and activates the "doit"
button. A rectangular cursor is displayed
representing the template to be moved. When the
user has positioned it as desired, the "doit"
button is pressed and the template is re-displayed
at the new location.

- DIRECTORY - displays the list of template spaces

The list of template space names is displayed. When
the user places the cursor over the desired name
and presses the "doit" button, the designated
template space is displayed.

- SHOW TEMPLATES - redisplays the current template
space

SDMS Quarterly Technical Report Page -17-
PAINT Extensions Section 3

The current template space is redisplayed.

Also in TEMPLATE are the following previously documented

commands: ICON; DELETE; ICON?; and BACKGROUND. These

commands allow the user to manipulate real icons while in

the TEMPLATE subprocess.

I "

Ij --

SDMS Quarterly Technical Report Page -18-
Enhancements to the Icon Manager Section 4

4. Enhancements to the Icon Manager

Several new features have been added to the Icon Manager

in support of the new user modes in the graphical editor.

For the most part, these new features have been new

commands which return information to the calling process

rather than internal changes to the data structures

maintained by the Icon Manager.

The new commands which have been added can be loosely

categorized into two groups: those which support the

template feature in the graphical editor; and those which

support extensions to the administrative mode in the

graphical editor. These new features will be discussed in

the following two sections. In addition, a description of

the command interface between the Icon Manager and the

other SDMS components is included in the third section.

' Il
I'

SDMS Quarterly Technical Report Page -19-
Enhancements to the Icon Manager Section 4

4.1 New Features for Templates

The template feature in the graphical editor, discussed in

Chapter 3.2, necessitated the addition to the Icon Manager

of virtual I-spaces. A virtual I-space is logically the

same- as a real I-space. The only distinction maintained by

the Icon Manager is a flag in the I-space record (see

[HEROT et al A] for a description of the data structures

.used by the Icon Manager) which indicates whether the

I-space is real or virtual.

A new command has been added which creates a virtual

I-space. The user specifies, as for a real I-space, the

origin and size of the I-space in universal coordinates.

The Icon Manager creates the I-space, marks it virtual,

and returns an I-space id to the calling process.

Once a virtual I-space has been created, any of the

commands in the Icon Manager which pertain to .I-spaces may

be used on that I-space. One can add and delete icons in

the virtual I-space, move icons around, obtain a list of

icons in the virtual I-space, or delete the virtual

I-space.

ii.

SDMS Quarterly Technical Report Page -20-
Enhancements to the Icon Manager Section 4

The user may interrogate the Icon Manager for a list of

virtual I-spaces. The DIRECTORY command in the graphical

editor does this. It obtains a list of virtual I-space ids

and then interrogates the Icon Manager for their names.

To support the display of the templates in a particular

virtual I-space, a command was added which returns a list

of all icons which are in a specified I-space. Thus, to

display a virtual I-space, the graphical editor determines

the I-space id of the virtual I-space, asks the Icon

Manager for a list of icons in that I-space, and then

locates the real icon to which each template corresponds.

The integrity maintenance consistency checker (described

in the forthcoming SDMS User's Manual) makes use of this

command to check its list of icons against the Icon

Manager's list.

4.2 New Features for ADMIN Mode

Several new commands have been added which will support

extensions to the administrative mode in the graphical

editor. Most of these commands are information-reporting.

That is, they return information about a particular icon

or port. There is, however, a new command for creating

icons.

...-

SDMS Quarterly Technical Report Page -21-
Enhancements to the Icon Manager Section 4

When a user wishes to create an icon or a port at a

particular spot in the GDS, he does not want the new icon

to be moved if it overlaps an existing icon or port. When

an icon is created automatically (by icon creation),

colliding icons are moved by the system to a nearby

unoccupied area. However, when the user is manually

creating an icon or a port and it collides with an

existing icon or port, the operation should be aborted.

Therefore, a command has been added which, when creating a

new icon, fails if it detects an overlap rather than

moving the new icon. This command is used implicitly by

the administrative mode when executing the ICON, PORT, or

PROCESS commands.

A command has been added which returns information about a

port. Given the icon-id for the port, the Icon Manager

returns a code signifying the type of port it is. If it is

a process port, it returns the pathname of the process and

the argument strings, if any. If it is a conventional

port, the coordinates of the destination are returned.

SDMS Quarterly Technical Report Page -22-
Enhancements to the Icon manager Section 4

4.3 Interface

The Icon Manager exists as a separate process in SDMS.

Therefore, communication between it and the other

processes of SDMS must be either by means of a common

memory area or by means of Unix pipes. Since a relatively

low volume of information is exchanged in any interaction,

pipes were used as the medium for communication.

The Icon Manager has two pipes for communication and a

pipe for synchronization purposes (the use of pipes as

semaphores is described in the Detailed Design Document

for SDMS [HEROT at al B]) . When a process wishes to use

the Icon manager, it must first request and be granted the

resource. This is done by means of the synchronization

pipe.

Once a process has been allocated the Icon Manager, it

sends a one-byte command down the communication pipe to

the Icon Manager, telling it what to do. If any arguments

are required, they are sent down the pipe after the

command.

SDMS Quarterly Technical Report Page -23-

Enhancements to the Icon Manager Section 4

When the Icon Manager recognizes the command, it processes

the arguments. It then returns a two-byte status code via

one of the communication pipes which indicates whether it

was able to perform the request. If the status indicates

success, any information requested will be sent to the

calling process. If an error occurred during processing of

the request, the status will indicate failure.

4.3.1 Icon Manager Command Summary

A list of commands which the Icon Manager recognizes is

included below. A brief summary of the arguments expected

and values returned is included.

- NEWICON - creates a new (movable) icon

The user specifies the size of the icon and desired
location (including I-space) . The Icon Manager
returns the icon-id of the new icon and the X,Y
location of the upper left corner of the icon. The
new icon will be moved within the target I-space
until an unoccupied spot is found or until it is
determined that there is no room in the I-space.

ICONNUM - returns the icon-id of any icon which
contains a specified point in the GDS

The user specifies the universal coordinates of a
point in the GDS. The Icon Manager returns the
icon-id of the icon which contains that point.

- ICONAREA - returns the origin and size of an icon

given its icon-id

SDMS Quarterly Technical Report Page -24-
Enhancements to the Icon Manager Section 4

The user specifies the icon-id of the desired icon.
The Icon Manager returns the origin and size of the
icon in universal coordinates.

- ADDCOLOR - saves the foreground and background
colors for an icon

The user specifies the icon-id, foreground color,
and background color of an icon. The Icon Manager
saves the color values in the icon record.

- NEWSPACE - creates a new (real) I-space

The user specifies the origin and size of the new
I-space in universal coordinates. The Icon Manager
creates new entries in its data structures for the
I-space and returns the I-space id of the new
I-space.

- ICONCOLOR - returns the color values of the
specified icon

The user specifies an icon-id. The Icon Manager
returns the foreground and background colors stored
in its icon record.

- ADDNAME - gives an icon a name

The user specifies an icon-id and a name string.
The name becomes associated with the icon (if it is
not already named)

- ICONNAME - returns the icon-id associated with a
specified icon name

The user specifies the name string of an icon. The
Icon Manager returns the icon-id of the named icon.

- DELNAME - deletes a name

The user specifies the name string to be deleted.
The Icon Manager deletes the name from its list and

j the icon whose name it was becomes unnamed.

I

fj

SDMS Quarterly Technical Report Page -25-
Enhancements to the Icon Manager Section 4

- FINDPORT - determines whether the center of the
current screen is over a port

The Icon Manager determines whether the coordinates
of the center of the current screen (as stored in
COMMON) are over a port. If they are, the relevant
port information is loaded into a structure in
COMMON. Only the Stager uses this function.

- NEWPORT - changes the specified icon into a port

The user specifies the icon-id of the icon to be
converted and the port destination. The Icon
Manager changes the icon into a port.

- SPACENAME - returns the I-space id of the named
I-space

The user specifies the name string of the I-space.
The Icon Manager returns the I-space id of the
named I-space.

- UNIXPORT - changes the specified icon into a Unix
process port

The user specifies the icon-id of the icon to be
L .converted and the process pathname and arguments.

The Icon Manager changes the icon into a process
port.

- DELPORT - changes a port (of any kind) into an icon

The user specifies the icon-id of the port to be
deleted. The Icon Manager changes the port into a
simple icon.

- DELICON - deletes an icon

The user specifies the icon-id of the icon to be
deleted. The Icon Manager deletes the icon from its
records.

- FIXEDICON - creates a new (fixed) icon

I

SDMS Quarterly Technical Report Page -26-
Enhancements to the Icon Manager Section 4

The user specifies the size of the icon and desired
location (including I-space) . The Icon Manager
returns the icon-id of the new icon. If the icon
overlaps an existing icon or port, it is not
created.

- MOVEICON - moves an icon to a new location

The user specifies the icon-id of the icon to be
moved and the universal coordinates (including
I-space) of the destination. The Icon Manager moves
the icon to the new location if it does not overlap
an existing icon.

- RSRVICON - reserves an icon-id

The Icon Manager returns an icon-id, but does not
allocate any space for it. Used exclusively by the
icon-creation routines.

- ALLOCSPACE - allocates space for a reserved icon-id

The user specifies the icon-id of the reserved icon
and the location and size of the desired icon. The
Icon Manager then performs the equivalent of the
NEWICON function, returning the final location of
the icon. Used exclusively by the icon creation
routines.

- DELSPACE - deletes an I-space

The user specifies the I-space id of the I-space to
be deleted. The Icon Manager deletes the I-space
after first deleting any icons in the I-space.

- GETNAME - returns the name string given an icon-id

The user specifies the icon-id of the icon whose is
desired. The Icon Manager returns the name string
of the icon.

- ICONLIST - returns a list of icons in the specified
I-space

SDMS Quarterly Technical Report Page -27-
Enhancements to the Icon Manager Section 4

The user specifies the I-space id of the I-space
whose icons he wants listed. The Icon Manager
returns a list of the icon-ids of all of the icons
in that I-space.

- VSPACE - creates a new (virtual) I-space

The user specifies the origin and size of the new
I-space in universal coordinates. The Icon Manager
creates new entries in its data structures for the
I-space and returns the I-space id of the new
virtual I-space.

- RSLIST - returns a list of real I-spaces

The Icon Manager returns a list of the I-space ids
of all real I-spaces.

- VSLIST - returns a list of virtual I-spaces

The Icon Manager returns a list of the I-space ids
of all virtual I-spaces.

- NAMESPACE - returns the I-space name string given
an I-space id

The user specifies the I-space id of the I-space
whose name is desired. The Icon Manager returns
the I-space's name string.

- ADDSPCNAME - gives a name to the specified I-space

The user specifies the I-space id of the I-space to
be named and the name string to be given it. The
Icon Manager associates the name with the I-space.

- PORTINFO - returns information about the specified
port

The user specifies the icon-id of the port he wants
to know about. The Icon Manager returns the type of
port and the port information for that port.

II.

SDMS Quarterly Technical Report Page -28-
Terminal Emulator Section 5

5. Terminal Emulator

To provide a uniform and consistent text interface to

SDMS, a terminal emulator has been developed which uses

the Lexidata display system (Figure 5.1). The intent is to

provide SDMS with a complete user workstation which can be

easily used. A keyboard has been provided which allows the

user to interact with SDMS. A separate terminal is still

required to start SDMS. Once SDMS is running, however,

that terminal is used only for displaying diagnostic and

error messages.

An additional function of the terminal emulator is to

arbitrate the various processes in SDMS which use text

input. In the past it was possible to create a situation

in which several processes were competing for characters

typed at the keyboard. This required the user to be

especially careful not to have more than one such process

active at a time. Now the system routes keystrokes to a

previously defined set of priorities among the processes

which may be awaiting input at the same time.

-M

SDMS Quarterly Technical Report Page -30-
Terminal Emulator Section 5

The addition of the terminal emulator required that the

process structure of SDMS be modified. Two new processes

have been added, one of them the terminal emulator. The

other new process is the parent process of all of the

other processes which make up SDMS.

This chapter will describe the design and operation of the

terminal emulator as well as the changes to the

architecture of SDMS to incorporate it.

5.1 Design

The terminal emulator, called TTYIO, exists as a separate

process in SDMS. Its function is to monitor the keyboard,

passing incoming characters to the appropriate process. It

also monitors a pseudo-terminal [BBN] which is used by the

various processes to output characters.

Before the TTYIO process is EXECed, the top level process

in SDMS must create a pseudo-terminal. It is through this

pseudo-terminal that TTYIO and the various processes which

require terminal i/o communicate. The file descriptor for

the pseudo-terminal is then passed to those processes

which require it when they are EXECed.

4I7

SDMS Quarterly Technical Report Page -31-
Terminal Emulator Section 5

Each process which may need to do terminal i/o must

redirect its primary input and output devices to be the

pseudo-terminal. This may be done before the process is

EXECed (but after the FORK), or by the process itself once

it has been EXECed. Redirecting primary i/o consists of

the following: the file descriptors for the primary input

and output files are closed and the file descriptor for

the pseudo-terminal is DUPed twice. This has the effect of

assigning the file descriptors for the primary input and

output files to the pseudo-terminal. Thereafter, primary

input and output for that process will go through the

pseudo-terminal.

When TTYIO is first EXECed, it opens the keyboard at the

SDMS workstation for input. This device becomes the

primary input device for SDMS. Output and echoed input

characters are displayed on the menu monitor.

The function of TTYIO is quite straight-forward. A process

which wants to do terminal i/o asserts this by setting a

flag in COMMON which identifies that process. If no

process has requested the terminal, the SQUEL process

receives the characters as a default. A SQUEL terminal

interaction is always interruptable. The process structure

of SDMS is such that only one process can compete with

SQUEL at a time. This allows the simple request mechanism

'i

SDMS Quarterly Technical Report Page -32-
Terminal Emulator Section 5

in COMMON. TTYIO passes characters typed at the SDMS

keyboard to the pseudo-terminal. The requesting process

can read them from the pseudo-terminal. The requesting

process sends characters to be output to the

pseudo-terminal. TTYIO monitors the pseudo-terminal. When

there are characters waiting to be output, TTYIO reads

them and displays them on the menu monitor. When the

requesting process no longer requires the terminal, it

clears the flag in COMMON.

The SQUEL process is treated specially by TTYIO.

Characters to and from the SQUEL process are buffered in

the TTYIO process. The last screenful of text is

maintained by TTYIO. This allows the context of a SQUEL

session to be saved if it is interrupted by another

process requesting terminal i/o or use of the screen on

which the text is displayed. When SQUEL again acquires

r control of the terminal, TTYIO re-displays the last

screenful of text.

I

SDMS Quarterly Technical Report Page -33-
Terminal Emulator Section 5

5.2 SDMS Architecture

The addition of the text emulator necessitated the

addition of two processes to the collection of processes

that makes up SDMS. One of these is the TTYIO process

described in the previous section. The other is a

top-level process which EXECs all of the other SDMS

processes and monitors them. This process is the subject

of this section.

When SDMS is started, the top-level process creates the

pseudo-terminal as described above. At the same time it

creates the pipes necessary for the various SDMS processes

to communicate with each other. Finally, it EXECs the

various SDMS processes, passing them the pipe descriptors

they need. Once all of the processes have been EXECed, the

top-level process goes into a WAIT.

When one of the SDMS processes dies, the top-level process

detects this by breaking out of the WAIT. It compares the

process-id of the now defunct process against its list of

process-ids for the SDMS processes. If the dead process

was essential to the function of SDMS, the other processes

SDMS Quarterly Technical Report Page -34-
Terminal Emulator Section 5

are killed and SDMS terminated. If it was non-essential,

SDMS continues with only a warning to the user.

When the top-level process detects a quit command, it

kills the SDMS processes and terminates SDMS.

L

I

SDMS Quarterly Technical Report Page -35-
REFERENCES Section 6

6. REFERENCES

[BBN]
BBN extension of: Thompson, K. and Ritchie, D. M.,
"UNIX Programmer's Manual." Bolt, Beranek, and
Newman, Inc., 50 Moulton Street, Cambridge,
Massachusetts 02138.

[HELD STONEBRAKER WONG]
Held, G.D.; Stonebraker, M.R.; Wong, E. "INGRES - A
Relational Data Base System", AFIPS Proceedings,
Volume 44.

[HEROT et al]
Herot, C.F.; Kramlich, D.; Carling, R.T.; Friedell,
M.; and Farrell, J. Quarterly Research and
Develo~pment _Technical Report, Sata Data Management
System. Computer Corporation
Technology Square, Cambridge, Massachusetts, 02139.
(March 1979).

[HEROT et al A]
Herot, C.F.; Carling, R.T.; Friedell, M.; Kramlich,
D.; Thompson, J. Spatial Data Management System:
Semi-Annual Technical Report. Computer Corporation of
75- 3-, 575----Tc--ioTh5gy Square, Cambridge,
Massachusetts, 02139. 30 June 1979.

[HEROT et al B]
Herot, C.F.; Schmolze, J.; Carling, R.; Farrell, J.;
and Friedell, M. Detailed Design Document, Spatial
Data ManaementSys Compter C ation--o
Amer ica, 575 Technology Square, Cambridge,
Massachusetts, 02139. 6 October 1978.

.4 !

