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I. INTRODUCTION

In the last year the national program of particle beam drivers for
Inertial Confinement Fusion (ICF) has been shifted from Relativistic Electron
Beams (REB) to light ion beams. The major reasons for preferring fon
beams were the high efficiency of generating them using present pulsed power
generators coupled to ion diodes, focusing and transporting the beams, and
bunching them in plasma channels. Many of these results have been achieved
by the NRL program supported by JAYCOR. In particular, we have
proposed the possibility of increasing the power of the ion beam by reducing
the pulse length from the 100 ns to 20 or 10 ns needed for ICF targets.

In %he present report ﬂz-concentrateqpn the physics of propagating
intense ion befTs*j?JgJasma channels. In particular, we—ravestudteq the
theoretical a;;eéts,of the possible effects during ion beam transport on
the structure of electromagnetic fields in the plasma. The {fon orbits
were solved for different classes of plasma channels including bumpy ones
in order to evaluate the sensitivity of beam losses due to channels that
deviate from idealistic shapes. The consideration of different plasme
instabilities, the hydrodynamic motion of the plasma, propagation in fila-
mentary channels and beam energy losses put realistic limits on how much
fon current can be propagated using the simple steady plasma channel concept.
Axial bunching of the beam (via time dependent voltage ramping of the ion
diode) was analyzed and found to be a sound concept as long as no more than
an order of magnitude pulse compression is attempted. The radial compression
is viable on a small scale in tapered channels (giving a factor of 2 increase
in current density) and on a large scale if self magnetic fields fully pene-
trate the media (giving rise to an order of magnitude increase in fon beam

current density). Further theoretical investigation on the details of the = war?
Vo N
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bove mechanisms are presently in progress including new plasma channel

schemes that help to push upwards the 1imits on the ion currents.
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IT. SUMMARY OF WORK

The theoretical studies were performed along the same approach as

envisioned in the proposal with additions that further clarify each subject.

1. In the area of beam-plasma instability, the following results were
obtained:
a. The initial plasma current was found to be about 50 kA for
present jon beams.” The gas deuterium was shown to be preferential

to hydrogen with the needed density 1073 g/cm3,

b. The electromagnetic Weibel and Whistler modes were studied
and found to be unstable; however, they do not grow fast enough

to seriously affect beam transport.

c. In the transport channel, where electrostatic modes are
collisionally stabilized, these eiectromagnetic modes are the
most dangerous instabilities. But for lower plasma densities
and higher temperatures the electrostatic modes are the fastest

growing.

2. Ion Beam Bunching.
a. The ion beam energy fluctuations cause pulse broadening but

power multiplication by a factor of 5 is easily obtainable.

b. lIon orbits in filamented channels have been studied resulting in
1imits on the tolerable level of jitter in the ion beam current
density profile, If these limits are violated, beam transport

will be affected, particularly at the tail of the beam.

o
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c. Exploring the phase space picture of the fon orbits as defined
at the initial injection point leads to conditions for minimizing
the amount of beam rippling in the channel. Voltage ramping,

ion scattering during transport and non-ideal magnetic field pro-

files all decrease the usual ripple phase-mixing distance.

d. The optimum plasma and beam parameters for transport of a given
current density ion beam have been identified to have injection
angles a < 0.2 (values of o = 0.1 are preferable but difficult to
achieve) and ion currents of less than 1 MA in the 1 cm® channels
studied. The major limit on bunching is not a but voltage fluctua-

tions.

Radial Compression of Ion Beams.

a. Studying ion orbits in a tapered z-discharge plasma channel
has indicated that radial compression of the beam used in con-
Jjunction with bunching can enhance bunching power multiplication

by at most a factor of 1.3.

b. The fon orbits computed in the steep gradient magnetic fields
(generated by either imploding plasma channels or expanding ones)
are similar to those of constant current profiles in the plasma
but need somewhat larger current for confinement. The major
result is that one has to start with initial current above the
initial minimum current required for confinement, since plasma
expansion sweeps out the linear magnetic field with it generating

steep gradients.

c. The self fields and ion orbits were determined for the case

where current neutralization does not occur. Focusing at a
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distance shorter than a quarter of a betatron wave length was
found. The self focusing increased the current density by more

than a factor of ten.

d. The sheet ion beam converging in cylindrical geometry with a
center line of symmetry and a plane perpendicular to the line with
anti-symmetric magnetic fields was shown to follow a similar ion
orbit pattern to the tapered z-discharge (3a) but with an additional

1

current density increase of r~'. It may prove useful in final

focusing near the pellet.
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[II. THEORY OF ION BEAM BEHAVIOR IN PLASMA CHANNELS

We first discuss the beam-plasma instabilities in a given plasma
channel describing our basic considerations for choosing the specific set

of initial plasma parameters.

1. Beam-Plasma Instabilities.
The initial values of the MHD fields are dictated by the fact that

the ion beam was assumed to have about 1 cm? cross section that is a little ?

smaller than the confining low density plasma. The plasma was chosen to be

hydrogen (or deuterium that has twice the mass density for the same plasma
density number of electrons) and is fully ionized in the channel. The needed
plasma current is about 50 kA, enough to confine 5 MeV protons with spot

size /2 smaller than the plasma channel and injection angle of 0.15 radians.
Since the plasma stopping power is (when fully ionized) 10’/Vi MeV/g/cm?,
where vi-ion energy in MeV, and since propagation over distances of 5 meters
18 3

may be necessary hydrogen densities less than 4 x 10 should be used

for less than 10% energy loss. At the same time the hydrogen density cannot

be decreased by large numbers to say 10]7 cm'3 since the plasma expansion is

too rapid for ion beam current densities of Ji = 0.5 MA/cm®. The plasma

expansion is computed from J_ x B, the pressure induced by the return current

p

Jpz - Ji' This gives an equation for the radial velocity Vr,

dVr Jp x B J1 X B

PTE " "¢ "¢

where p is the plasma density (g/cm®). For a linear estimate

J; Bt
v E ] —
r Pc




which implies that a 10!’ em™3 hydrogen plasma reaches a velocity of 10°
em/s during t = 50 ns for 8 = 2 x 10* Gauss (I = 50 kA, r = 0.5 cm). This
expands the plasma radius beyond 2 c¢cm and thus ion beam current density
reduction by a factor 16 will occur. In addition, very large return current

electric fields due to plasma motion (if o + = the electric field is given

V. xB
by £ = - — > 10* V/cm) cause unacceptable energy losses (all 5 MeV are
lost in 5 meters of transport for the above example). Thus, hydrogen

density must exceed 1 x 10'® cm™3,

An initial plasma temperature of a few eV is obtained in equilibrium
for a 50 kA channel current. The heating of the channel electron to 50 eV
is due to the plasma stopping power (resistive heating is negligible). The
jon beams were thus studied in the above parameter regimes taking into
account the effect of different temperatures and different current profiles
as the plasma undergoes expansion. The plasma responds to the ion beam on

1 and on a short, velocity phase-space time

a long hydrodynamic time scale
scale that can excite fast field instabilities. We assume that the two time
scales are separated enough that we may treat them with a semi-static approach,
computing a Vliasov formalism during different hydrodynamic states. In

future work we may resolve the coupling between the two phenomena when no

large time separation exists.

Velocity space electromagnetic instabilities, which lead to azimuthal
and radial current bunching in the channel, have been studied. In particular,
growth rates for the Weibel (k:B = 0, L-_\_l_z=0) and Whistler (k x B =0,
5;!2 = () instabilities are derived in Appendix 1. Although electrostatic
instabilities typically have larger growth rates than electromagnetic

instabilities, here the Weibel and Whistler modes have the fastest growth
2

because of collisional damping of the electrostatic modes.




The plasma electron current is the main driver for the Weibel insta-
bility and the fon beam current is the main driver for the Whistler insta-
bility. Both instabilities have relatively slow growth rates so that, at
most, 1-2 e-folds occur during beam passage for typical systems. Nonlinear
saturation probably is not reached during the beam propagation time, however,
the late time level of current bunching can be estimated using the predicted
e-folding numbers and the initial perturbations in the system. Such pertur-
bations are most likely produced by jitter in the beam current density (see
Appendix 2). Since both instabilities are nonconvecting, beam ions

generated at the tail of the pulse are most affected by the current bunching.

2. lon Beam Bunching.

The effect of diode voltage fluctuations is to set up a variation

around the ideal voltage shape and since the jon velocity is Vi -V%,

one finds that

The spread in arrival times to the target is derived from L = vity where

6(vita) = 0. Thus

Here L is the target distance and ta is the arrival time on target. The
arrival time is related to the pulse time by a simple relation to the L

required for voltage ramping by the amount AV during the beam pulse time

Loulse’
= v_ v
dt tpu1se>

8
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Using now L = v; ta we find that

2V

ta ® &V Youlse

3 The result for the broadening of arrival times is that

=¥ &
St=& v tpuise
é ‘ Since one typically ramps the voltage by AV < 4V and since the power multi-

t
plication is given by M = _%%léé one finds that

'S
2M T 1.

The spread in arrival time due to betatron crbits is found by comparing
motion of ions on axis moving at full vV, = vy with ions with finite o

moving at v, = (v% - vi)k, where v, = via cos wgt. For small o

= - 2 2
v, vi(l 5 a® cos th) .

: 5 Averaging over one betatron orbit, < v, > = vi(l - % a2?). This gives a

‘ : i . = 2 2 . = .
: | change in arrival time of 6t =% a® t >a tpulse which for a = 0.1 is

f only 0.01 of the original pulse length adding 10% to a beam bunched by

M = 10. Even for a = 0.2 this adds only 40% pulse broadening (for M = 10).
We thus conclude that power multiplication by factors of 5 is an easy task

since only about 10% accuracy in voltage shaping is required and no signi-

ficant effect is expected from betatron orbit lengthening for a < 0.2.
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Ion beam propagation in a filamented channel is investigated in
Appendix 2. The filamentation is a result of either radial or azimuthal
current bunching produced respectively by either the Weibel or Whistler
instability. In both cases the results of analysis set limits on the
initial level of jitter in the beam current density. If the initial jitter
surpasses these limits, beam transport will be affected. When operating
aboye the radial current bunching limit, the beam will either be expelled
from the center of the channel or be pinched into the center of the channel
depending on the phase of the initial perturbation. When operating above
the azimuthal current bunching limit, the beam is depieted in time as
increasingly more ions are lost to the dense plasma surrounding the channel.
Typically, these current bunching 1imits are not expected to be reached so
that good transport is anticipated. If higher current levels than expected
are reached, only the tail of the beam will be affected since the modes

are nonconvecting.

Coherent rippling of the radial beam envelope is investigated in
Section III of Appendix 3. This phenomenon is easily understood by explor-
ing the phase space picture of the ion betatron orbits as defined by the
initial injection conditions. In the absence of other mechanisms, the
rippling eventually phase mixes out after many ripple wavelengths due to
the weak dependence of the betatron frequency on the small spread in ion
injection angles. Other mechanisms, such as voltage ramping, steep gradients
in the magnetic field profile (Be-~~rn for n > 1) and ion scattering during
trasnport can considerably reduce this phase mixing distance. In order to
minimize variations in the beam radius, rb(z). at the beginning of the trans-
port channel, the channel should be matched as well as possible to the

beam. This is accomplished by setting the betatron frequency equal to

10
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P,

vi“m/rs where vy is the beam velocity, L is the maximum injection angle,

and rs is the beam spot size.

At the end of the transport channel the phase mixed density profile for
the ideal (Be-r) magnetic field profile shows a strong peak on axis, varing
1ike r'1 as r - 0. The addition of beam angular momentum reduces the central
density, however the beam density profile will remain peaked on axis since

minimal azimuthal ion motion is observed in shadow-box experiments.

Given the information obtained from this work, one can arrive at a set
of optimized plasma and beam parameters for transport of a given current
density beam. Egs. (11) and (27) of Appendix 3 set upper and lower limits
on the required channel current. Eq. (11) states that the channel current
must be large enough to confine the Seam and Eq. (27) states that the channel
current cannot be so large as to produce a large degree of beam rippling.
The electromagnetic instability analysis sets limits on beam quality (Egs.
(13) and (26) of Appendix 2). The electrostatic instability analysis gives
a lower limit on the plasma density (Eqs. (11) and (31) of Ref. 2) where
the 1imit depends on beam parameters and the plasma electron temperature.
MHD code work provides Te(np) for a given beam. MHD considerations also
provide a lower 1imit on the plasma density from plasma expansion considera-

tion as discussed earlier in Sec. IIl-1.

The ideal térget irradiation time and the initial beam pulse duration
determine the required bunching factor which in turn specifies the channel
length for a given voltage ramp. The required bunching factor also sets an
upper 1imit on the spread in ion beam injection angles (Eq. (14) of
Appendix 3) and a 1imit on the variation of the actual voltage ramp from the

ideal ramp.3

n
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3. Radial Compression of Ion Beams.

The radial compression of ion beam current density was investigated
for the possibility of using either self magnetic fields or externally
applied ones. In general, the gain in current density is obtained at the
expense of turning a relatively cold beam into a hot one. In principle,
for any given beam there will exist a given structure that may bring about
the highest radial compression possible into a given focus. Since reality
sets limits on the possibility of constructing such fields we have considered
in the present studies rather simple geometries and divided them into two
classes: self fields and external fields. The case of steep radial (and/or
axial) gradients shows confinement and radial compression if currents beyond
those needed for uniform current distribution are driven in the plasma. The
basic orbits were studied in Appendices 2 and 3. Based on these results,
recent studies in that direction may provide easy experimental ways of
gaining factors of 4 radial area compression; these studies are presently

being pursued. We now turn to the weak gradient case.

In order to investigate the value of radial beam compression, ion orbits
in a tapered z-discharge channel were studied (Section IV, Appendix 3). A
multiple scales analysis was used in order to properly treat the slowly
decreasing channel radius. Although the amplitude of the ion betatron orbit
does decrease as the ion propagates down the tapered channel, the amplitude
decreases slower than the channel radius. Thus, the effectiveness of radial
compression is limited. When used in conjunction with axial bunching, radial

beam compression can enhance bunching power multiplication by a factor of 1.3.

The self magnetic field radial compression was also studied. In the
case of a fully non-current-neutralized ion beam the ion orbits were computed

in the self-consistent magnetic field assuming zero electric field. The

12
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ions are assumed to enter through an entrance foil with small transverse
kinetic energy. As these orbits converge, the magnetic field along particle

orbits increases as ol

as long as no particle orbit crossing occurs. This
is justified for the case of a uniform current distribution (see Appendix 4),
and total ion current much less than the Alfven current (I, = 3.1 x 107 B,
amperes) and radial compression ratios of 5 giving current density increases
of 25 before the cold flow breaks down. In future studies, attempts may be
made at a Viasov formalism that includes particle orbit crossing in order

to see how much compression may be obtained. In addition, realistic time
dependent effects, such as different current profiles, voltage variations,

inductive electric fields and finite rise time of magnetic fields should be

studied.

When a converging sheet ion beam was treated in a cylindrical geometry
using magnetic field structures that have azymuthal symmetry but are anti-
symmetric with respect to a plane perpendicular to the axis of symmetry, it
was found to be very similar to the tapered z-discharge. The reason for
that is the antisymmetric current flow which, after converging to the axis, is
divided into two halves, each going in opposite directions through the two

1

poles. The B field thus goes as r ' and drops linearly inside the plasma.

1

Ion orbits thus converge geometrically like r ' and in addition, are compressed

by the same effect as in the radially compressed beam in the tapered z-pinch.

Future theoretical work in this area of ion beam focussing, transport

“and bunching will expand on the work presented here. In particular, work is

in progress studying new plasma channel schemes that help to push upwards the

1imits on deliverable ion currents.

13
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APPENDIX 1.

Electromagnetic Instabilities in a
Focused Ion Beam Propagating Through
A Z-Discharge Plasma.
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ELECTROMAGNETIC INSTABILITIES IN A FOCUSED
ION BEAM PROPAGATING THROUGH A
Z-DISCHARGE PLASMA

b e

L I. INTRODUCTION

In an earlier paper,' it was shown that focused ion beams for use in a pellet fusion device

can propagate axially down a z-discharge plasma channel without generating disruptive micro-

turbulence due to electrostatic streaming instabilities. The azimuthal magnetic field in the z-

- ot . os

discharge channel confines the beam radially as it propagates. Here the analysis will be

<y 1 g A

extended to study electromagnetic velocity-space instabilities. In particular, the Weibel instabil-
ity (k-B=0, k-V, =x0) and the Whistler instability (k x B = 0, k - V, == 0) are investi-
gated, where k is the wavevector, B is the azimuthal magnetic field and V, = ¥, &, is the axial

streaming velocity of the beam.

' N
VR RRY S

s o A

‘ " The beam-plasma system consists of a focused ion beam (typically a § MeV proton beam
i3 !
4 ¥ of 50 ns duration, 0.5 cm radius, and a current of 5 x 10°4) propagating down the axis of a z-

discharge plasma channel.? The ion beam is focused at the entrance to the plasma channel (see

PUNSSINN~Y N

Figure 1) with velocity components transverse to z given by V,/V, == tan § << 1. A high
plasma density in the channel (n, = 10' cm™’) insures good beam charge neutralization.’
Good beam current neutralization in the interior of the beam also occurs, so that the total mag-
netic field is comparable to that associated with the preformed channel established before beam
injection. The beam current greatly éxceeds that establishing the channel so the electron drift

velocity is approximated by V, =n,V,/n,.

Msnuscript submitted August 6, 1979.
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OTTINGER, MOSHER, AND GOLDSTEIN

Hydrodynamic modeling of the background plasma* shows that a uniform channel net-
current model is appropriate for the early times associated with passage of the beam front. This
is because the low-temperature channel is established microseconds before beam injection so
that complete magnetic diffusion occurs. Later in the ion pulse, expansion of the beam-heated
high-temperature plasma (T = 25-50 eV) reduces the magnetic field strength in the interior of
the channel. The buiit-up fleld in the expanding cylindrical shock wave is also enhanced by
significant current non-neutralization in the cool plasma surrounding the beam-heated channel.
The maximum field strength just outside the ion-beam radius can exceed that established by the
initial z-discharge current by a large factor. Thus, at late times during beam passage, the mag-

netic field distribution is closely approximated by & surface-current model.

In Sec. 11, equilibrium models for such a beam plasma system will be described. In Secs.
HI and IV, the Wiebel and Whistler instabilities will be investigated. The conclusions which

can be drawn from this work are summarized in Sec. V.

I1. BEAM-PLASMA EQUILIBRIUM

For mathematical convenience, a slab model will be used for the beam-plasma system.
This is appropriate for the case at hand since ions are injected into the channel with small angu-
lar momentum so that the resulting orbital motion occurs in a plane. At early times in the
pulse, the net current (nearly equal to the channel current) is uniformly distributed across the
channei and flows in the z direction. Thus, B = B,2, where

Byx/a. |x) < a
y = {B,, x| > a m

Here, B, is the peak value of the field and "a" is the channel radius. If the beam distribution

function f, is written as

n 2V,P
SV ¥y v) = L 8(v) Bv+ vl —EL 4 K) @

2

f
_‘MJ
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where P, = myv, + ed,/c is the axial canonical momentum, 4, is the vector potential and n,,

¥V; and K are constaats, then

ny(x) = |°' x| > Q)

where 7, = Vyjw,, K = Vi V}, 0} = V& /aand &, = eB,/m,c. A smoothly falling density

n x| < r,]

profile may be obtained by replacing the second delta function in Eq (2) by a Maxwellian distri-
bution function. The distribution function in Eq. (2) also states that all beam ions cross the axis
at the same angle and traverse the entire beam radius during each betatron oscillation. A more
complicated distribution function could be used to model the small spread in angles at which
the ions cross the axis, however little additional information is obtained for the effort. For
mathematical convenience, the form of the distribution function given in Eq (2) will be used
here. It is easy to show that the fluid velocity is given by V = V,é, and that in order for the
beam to be confined within the plasma channel, one must have r, £ a. Furthermore, f, can

be written in the more convenient form

fo¥, Vg @) = —’} 8(v,) 8(vi - Vi + i), )
where v, = vgsing, v, = ¥, + vycosé and vi=v2+ (v, - V)2 Here, V, is associated
with the average streaming velocity of the beam ions and v, is associated with the oscillatory
betatron motion of the beam ions (vg € ¥y = w,r,). The beam-ion orbit equations for this

fleld geometry were solved in Ref. 1 and the results are summarized in Appendix A.

The distribution function given in Eqs. (2) or (4) provides an appropriate discription of
the ion beam at early times in the pulse. At late times B, = 0 inside the channel and the field

is built-up sharply at the radial edge of the beam. Thus at late times in the puise

%G(V,) 8(vi-vVhixl <,
fo(Vyr.Vp: ¢) = 0, x| > 7, + 8
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where B,(r, + 8) is sufficiently large to confine the beam and the sheath is restricted to a thin
layer such that 8 << r,. Beam ions move in straight line orbits inside the field-free channel.
Within the layer y, < |x| € y, + 8, the ions reflect off the magnetic wall, reverse their
transverse velocity and resume their straight line trajectories after reentering the channel. The
distribution function in Eq. (5) also results in the uniform density profile of Eq. (3) and in a

fluid velocity given by V = V,8, inside the channel.

The background plasma provides complete charge and nearly complete current neutraliza-
tion of the beam. In addition, the plasma also carries the z-discharge current. The high density
desired for good beam aeutralization provides for a high frequency of electron-plasma ion colli-
sions, »,, shown* to be larger than w,, inside the channel at all times during the puise. Thus, a
collisional fluid model is used for the background plasma with thg electrons drifting with velo-

city V, = (n,V,/n,) &,

III. THE WEIBEL INSTABILITY

Two Weibel instabilities will be investigated, the ion instability and the electron instabil-

ity, which are respectively driven by the streaming of the beam ions and the electron drift

motion. Lee and Lampe’ report for electron beams that the Weibel instability grows at a
greatly reduced rate when V)/V, > w,/w, Where w,, is the beam plasma frequency and w,, is
the electron plasma frequency. Molvig® has shown that is possible for electron-ion colisions to
restore rapid growth of the mode. Although the concern here is with ion beams driving the
instability, again both beam-thermal effects and collisional effects are important. lon betatron

motion will also be important in analyzing the ion instability.
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A. lon Instability

Consider first the situation late in the beam pulse, with f, given by Eq. (5). For assumed

large r,, the perturbed distribution function with E(x) = E exp(ikx),

fo1 = — I l x> B zf" exp i(kv, - w) 1, (6)
can be integrated over 7 to give
—ie/m, a/, kv, | 3/,
e R B - N

Here k = ké, and straight-line unperturbed orbits are used since B, = 0 for |x| < r,. The
assumption that n,/n, << 1 allows one to write the usual approximate dispersion equation,®
D, = 0, for the Weibel instability where |w| < v, and

D,=0=ch®+yl+wlylv,+ I,. (8)
Here w = iy for purely growing perturbations,® v, = mv./m, V, >> V, (electron drift motion

is ignored at present) and /,, is the beam contribution to D;

dv, ‘9

Integrating by parts and then using the calculus of residues to perform the remaining nontrivial

-41re2 f[l ]afp vy afold% ®
iy~ kv

integration results in

I - wpy |_k(Vg+2V) 2%V, ¥,
= kZVpI (1 + 72/,‘2;/32)”2 v
- KV Vs (10)
(1 + y¥k2v})¥?

which reduces to
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for ¥, > V,and the limits shown. Solving Eq. (8) for the growth rate, y, one obtains

() A TINY LU 0< k <k,
20}.”,‘ V' 2”; V,zv,
- 1+ . k, < k < k,t,
’ [ w3, oy | ° u»

20,cQQV,/VYV2 (k, — k), Kk =k,
where

k, = (kv VY2 %W2V3); k= (wp/c) VYV
The peak growth rate is given by

2 2 /S
R U»V,‘ ZV:
i - —— at k= k.. (13
/] 2 Vg r s )

For ny/n, ~ 1077 and V,/V, > 107!, y; ~ 10° sec™! at late times in the beam pulse (note that
v, is actually overestimated here since k,r, << 1). Thus, no significant growth can occur since

v,7s > 0.05; here 7, is the beam puise length.

At early times in the beam pulse, v, is larger due to low channel temperatures so that one
might expect the growth rate to be larger. It will be found, however, that by including the
betatron motion of beam ions in the analysis, the perturbation is stabilized. In this case, f, is

given by Eq. (4), the ion orbits are found in Appendix A, and f,, is given by

- 0
Soum %52' AtV B + v = V) B

iVyv, OE,

-— W] exp(iwT) (14)

It is now assumed that E,(x) = E, cos kx where k is restricted to a discrete set of values
by boundary conditions at r, with kr, > 1. This choice of E,(x) is reasonble since n, and »,

are both uniform and n, << n,. Thus, the mcde is expected to closely resembie the back-

ground plasma eigenmode which is sinusoidal. Here again, the background plasma is treated as

iy
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a collisional fluid since v, >w,. An approximate algebraic dispersion equation is obtained by

taking a weighted spatial average of D_E,(x) where D, is a differential operator in x defined by

i 2
. P - —p? 92 2, Yo _ ;
Dy = —c'l5 4yt + 2 — dmie J vofnawv

and f,, is given in Eq. (14) (E, = 0). The dispersion equation is then

1 ‘ ' 0=<D,= 1 f'° dx D, E,(x) cos kx (15)
3 : ’bEz G

Using the orbit equations for x' and v’ found in Appendix A and the Bessel function iden-

tities
exp(x iz sinf) = J,(z) +2 -212,(:) cos2(0
t=]
+2i 3 Jym(2)sin 21 +1)0, (16)
1=0 _
! and

| exp(iz cos 8) = J,(z) + 2 .2 i' J)(2) cos 16, an
. . i=t
! the r integration in Eq. (14) can be performed. Thus, Eq. (15) takes the form
-‘} : uz-'y -
> ! 3 0-c’k1+72+—:-+ln (18)
| 1 where in terms of a;(x, v,, v,) and ay(x, v,, v,)

e |k,
I,-—nbﬂ _”dxcoskxfd’vv,-%;; —y—za|+az. 19)

? The expressions for a; and a, are given in Appendix B. Terms involving resonances at higher
] ' z ) harmonics of w, [ i.e. (w — mw,)~! for m = 0] are not consicered. The term involving a; in
Eq. (19) is the source of instability. Here, however, because of the betatron motion, this term
vanishes and the mode is stable at early times in the puise (see Appendix B). This same resuit
is obtained for odd eigenfunctions, E,(x) = E, sin kx Mathematically the term vanishes

because the integrand involving a, is an odd function of x (see Appendix B). Physically no

— e ————— —— —— e - [ — -
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radial current bunching can occur since each ion travels radially back and forth across the beam
profile as it follows its betatron orbit. However, azimuthal current bunching m occur as will

be discussed in Sec. IV.

B. Electron Instability

The only other source of energy available to drive the Weibel instability at early times in
the pulse is the drifting electron background. The drift velocity, however, is actually subther-
mal since even before beam heating occurs V, = n,V,/n, < u, = (T/m,)"/%. Using a warm
collisional model (v, > ., at all times), the dispersion equation for the electron-Weibel insta-
bility is derived in Appendix C. Setting y = 0 in Eq. (C7), it is found that y > 0 for

0 < k < k, = wpV./vIu;c, where u; = (T/m)V2 Thus for k < k, and w} > y», Eq. (C8)

reduces to
2 22) 2y 4 yy + ki)
0= ci?4 2L - Lol inadi i R (20)
v, (y* + vy} + 3k%uy? + 2v kudy + 2k‘u)
where the ion beam contribution to Eq. (20) is ignorable.
At early times in the pulse, w u,/cv; < 1 and
(kVAh )8, 0< k <k,
y = o, Ve ky <k <k, Q1
\/fv,»cV

m,,ll,

where k; = (w,/c) (w,V,/cv )% Here T = 4 ¢V, n, =2 x 10" cm™? and n,/n, = $x10~4,

30 that the peak growth rate is on the order of y, = w,V,/c = 4.27;,

At later times in the puise, the beam has heated the plasma; then w u/c¥, > 1 and

(kv )\, 0< k <k,
y= |V /2u? ky < k < kg, (22)
kV,[.  2k%wp)?
- Lk, <k €k
2 [ .,’,V,’ k2 <k
]
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where ky = v, V3/up, ky=v,VJu? and V, <u. Now y}=w,V3/(2*3cu) = 1075 for

T=38eV, n,~1x10"cm™ and n,/n, ~ 1 x 107 Thus, y/r, decreases by a factor of

"four as the beam passes through and heats the plasma. In fact, w,u/cv, = 1 at 1 = 10.0 ns

into the pulse so that a total of about 1.6 e-folds occur during the transit of the beam.

Note that r, is the appropriate time scale for instability growth since V, = 0 except dur-
ing the passage of the beam. Furthermore, for small k, (i.e. k! < 2w}/3c?), it can be shown

from Eq. (C9) that

8w, 3k2V}

[ 4
v, ok, 27 <V, <<V, (23)
and '
K2V}
y 70 270 ’ . (24)

where y, = w,V,,.. Thus, the unstable mode convects axially, but with a group velocity, v,,
which is much slower than ¥, or V,. At any given point in the plasma the mode grows only for
a time of order r,. For .larger k, and fixed k, the mode transforms into the electrostatic

streaming instability which was found to be stable in Ref. 1.
C. Summary for the Weibel Instabilities

In summary, it is found that the betatron motion of the beam ions stabilizes the ion-
Weibel instability at the beam front while growth is too slow at the tail of the beam to allow for
even one e-fold (y)r, > 0.05). The electron-Weiber instability, on the otherhand, grows
fastest (y;r, = 4.2) at the front of the beam where the plasma is relatively coid. At the tail of
the beam ySr, == 1.0. Although the electron-Weibel instability grows faster than the ion-

Weibel instability, it also is not expected to grow to a level which could seriously affect beam

propagation.
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1IV. THE WHISTLER INSTABILITY

The Whistler mode (k x B =0, k - V, = 0) like the Weibel instability can be driven
unstable by particle streaming. However, the wavevector k = k,8, (i.e. &, in cylindrical
geometry) is perpendicular to the direction of the betatron motion of the beam ions. Hence,
unlike the Weibel instability, the Whistler instability cannot be stabilized by the beam ion beta-
tron motion. However, a small spread in v, (angular momemtum) can reduce the growth rate
significantly. The electron drift velocity is ignored when considering the ion-Whistler instability

since V; >> V,.

Consider first the situation late in the beam pulse with f, given by Eq. (5). If it is

assumed for the moment that s, is very large, then the perturbed distribution function is given

by
fu= [:”."5 E+ Lﬁcl] . %{9—]/(@ - kv,). (25)

Using this expression for f,,, the perturbed current is easily calculated and used to derive the

dispersion equation,

2 kAVE+ V32
D, = c¥kly + yi 4+ 07':7- + w}.[l - '—(—"—‘yz—L/—)] = 0. (26)
Again ny/n, << 1 was used in deriving Eq. (26) where @ = iy for purely growing perturba-

tions and V, << ¥, (electron drift motion is ignored at present).

Solving Eq. (26) yields

k, V. 0<k, <k,
y = {(kViwidp/aD ki < k, < kyf, 27
w”V‘/C, ky > kz

where

V> Vg ki = alvile,V, ky= (wulc) (,V,/v.c) V2

10
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The peak growth rate (for k, > k; = 25.0 cm™") is given by v, = w,, V,/c =2 x 10? ¢;, for

a beam with no spread in v,.

This result is only slightly modified when finite geometry effects and the betatron motion
of the beam ions and included. Proceeding as in Appendix B with k = k&, + k&, and /,

given in Eq. (4), one obtains

Dy = c¥k}+ kD) + y? +—’1+m,,,

I

where F(k,r,) is defined in Eq. (B6). The quantity G(k,r,) is defined by

2 y2 y2
Flkyry) — 5&(—%—& Gl (29

Glkyry = kzN % cos x[:,ur) JA2)

+2 3 10 2D , dX (29)

n=l ‘z-zu)
with X = kx, 2(X) = (k,7,/2) (1 = X/k2rDY? and N = r, + (sin 2k,r,)/2k,. Note that

G(k, =0) = 1. Fand G are only geometrical factors and do not modify the structure of the
dispersion  equation. For large &k, the peak growth rate now Dbecomes
v = (0, V/c) [G(k,ry))'2, which, aside from the geometrical correction, is identical to y,

found in Eq. (27).

If the beam has a small spread in v,, the beam can be modeled by the distribution func-

tion
fr= ,,,V 3(vi— V}) exp(-v} VD), (30)
where V, is the thermal velocity of the beam ions. Since the y motion is unaffected by B,, the
distribution in v, will be the same at all points inside the channel. For convenience finite
geometry effects and the effects of the betatron motion of the beam ions are ignored here since
they have little affect on the Whistler mode. Substituting the distribution function of Eq. (30)
into Eq. (25) yields an expression for the perturbed distribution function, f,,. The perturbed

current /,; can then be caiculated and the dispersion equation derived.

11
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Dy=ci+y +wlylv,+ 1,=0. @a31)
In Eq. 31), @ = iy and
2, (V2+ V3D

“2 bl
Iy= ‘7#- dv,|l +
2 Jnv, f - @Yy Viiy = kv,)

Here, the v, and ¢ integrations are trivial and have aiready been carried out. The quantity 1,

exp(—v}/ V). (32)

is easily written in terms of the usual plasma dispersion function, Z({)®. However, here { is

pure imaginary so that

I;=

ZVZ(

] - exP[k’V’]l-m{

where ¥, > Vg and erf(x) is the usual error function.® For y > k¥, Eq. (31) reduces to Eq.

(26), but for y < kV, the dispersion equation becomes

2 2
ety 2oy ol Vel wy | 297
0=ciki+y +—ﬁ-+w,..l y}l v, Pt (34)

From this it is found that the peak growth rate, y, = w,, V,/c, for the case with ¥V, = 0 is

reduced if V! > 2v,w ,,cV,/u s Since this is the case here

kV,, 0< k <k
y = |,V 0}/ eD'?, ky < k < kyf, (3$)
1, p2 222
2upv Vi | kY Cky <k €k
wlV} 2w} V;

where k) = wlv/wlV,, ky =k, Vi/V}and k, = VI wpV,/cV,.
The peak growth rate is now

v, = (wpuV/c) QvwucV/Vial) < waV.lc
where y, varies in time as T-¥2(:) through v,, The number of e-folds, 8 during the beam

transit at any point in the plasma is given by

= fo,’ y, (1) dt = y}(0) J; ! -(T;-_A!W 36

12
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where it is demonstrated later than no significant wave convection occurs. Here AT
= [T(ry)) — T(0))/T(0) for Tin eV and v,(0) is the peak growth rate at the front of the beam.
A linear rise in temperature, T(¢)/T(0) = 1 + ATt/r,, agrees well with results of previous

work.? Thus ;

AT Q+ane

For T(r,) 40 eV, TN0) = 4 eV, 7, = S0 ns, ¥V, /¥, > 0.08 and ny/n, = 1073, 8 < 1.0 e-folds.

3 G7)

o

A spread in V), then reduces the growth of the ion-Whistler instability to a tolerable level.

= R A i ANy 5 = Nt

h ed e

Finally it can also be shown that the ion-Whistler instability does not convect with the

beam when k, > 0. This needs to be verified in order to justify using r, as the appropriate

time scale. Taking Eq. (5) for /, and setting k = k,é, + k&, this dispersion equation becomes

2
| : 0= ¢k} = (@, + i+ =2 (@, + i7) + I, (38)

! where w = w, + /y and

' 2 in 24 kYy2 V.v y? 2
" R R e it (39)

(w = k,V, = k,Vycos¢)?
Here the spread in v, is neglected since it will have little effect on the axial group velocity of

B the perturbation. For mathematical convenience finite geometry effects and the betatron
motion of the beam ions are also ignored. The results of the present calculation is actuaily an

upper limit on the group velocity since the betatron motion of the beam ions will tend to wash

out any disturbance moving axially on the beam. For |w, = k,¥,| > &, V5 the denominator of

the integrand in Eq. (39) can be expanded and the integration is trivial. However, if

|w, = kq ¥l X k. V4 the integration is most easily done using the calculus of residues. For

small k,and Vy < V,, Iq, -k, V| >k, V4 is appropriate for the ion-Whistler instability. Then

~ integrating Eq. (39), Eq. (385 can be iolved for w, and y yieiding

14
. - .
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y= ﬂc&(V} + V3DV = k¥, (40)

w, - -;- k2V,clwp. 1)
Clearly, v, = 8w,/3k, < V, for k, < w,,/3c. Thus the ion-Whistler instability does convect in d
the axial direction for k, < w,/3c, but with a group velocity slower than the beam streaming
f velocity. For k, > w,/3c the calculus of residues can be used to evaluate Eq. (39), however,
. the mode is then basically an electrostatic two stream mode. This mode has already been

shown to be stable in Ref. 1.

In summary it is found that, as expected, the betatron motion of the beam ions does not
affect the ion-Whistler instability. The peak growth rate, however, can be reduced to a toler-
able level by the presence of a spread in v, (angular momentum in cylindrical geometry). The
spread in v, known to be present at injection in typical experiments? is sufficient to reduce the e

number of e-folds to tess than 1.0. Furthermore, the mode convects axially at a group velocity

]
less than V,. The electron-Whistler instability was not considered, since it will have properties 1

similar to the properties of the electron-Weibel instability (discussed in Section I1.B) for such a

» ) !‘1
Z % E highly collisional plasma (v, > w,). : ?

V. CONCLUSIONS

i _ o The purpose of this paper was to study electromagnetic velocity-space instabilities gen-

47“’-:-444 erated by a focused ion beam propagating through a z-discharge plasma. In particular, the

Weibel instability (k- B = 0, k - V, = 0) and the Whistler instability (k x B =0, k - V, =
0) were investigated. This work is an extension of the work in Ref. 1, where electrostatic insta- .

o bilities were investigated.

Lty S

Y
[SSTPR U <SS Y

The ion-Weibel instability (driven by the streaming energy of the beam ions) is found to

i— -

14
Y be stabilized by the betatron motion of the beam ions at the front of the beam. At the tail of '
¢
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the beam, where be.am ions follow straight line orbits, the growth of the ion-Weibel instability
is two slow to allow for even one e-fold (y?r, = 0.05) during the transit of the beam. The
slectron-Weibel instability (driven by the drifting plasma electrons), on the other hand, grows
fastest (y;r, = 4.2) at the front of the beam where the plasma is relatively cold (T == 4 eV).
At the tail of the beam, where 7 rises to about 25-50 eV, ¥5s7s-= 1.0. Although the electron-
Weibel instability grows faster than the ion-Weibel instability, it also is not expected to grow to
a level which could drastically affect beam propagation. Only 1.6 e-folds will occur during the
transit of the beam. It has also been shown for 0 < k! < 2w,%/3c?, where k = k&, + k,é,,
that the electron-Weibel instability does convect axially but at a group velocity much less than
the beam velocity (v, = 3k!c?V,/2w} < ¥, << V,). Thus the appropriate growth period for
calculating the number of e-folds is just the beam transit time, r,, and growfh occurs mostly at

the tail of the beam.

Because the plasma is highly collisional (v, > w,, at all times), the electron-Whistler ins-
tability will have properties similar to those of the electron-Weibel instability. Thus it is also

not expected to grow to a level which could drastically affect beam propagation.

The ion-Whistler instability, as expected, is not stabilized by tﬁe betatron motion of the
beam ions. The peak growth rate, however, can be reduced to a tolerable level by the presence
of a spread in v, (angular momentum in cylindrical geometry). Furthermore, for k, < w,/3¢
the mode also convects axially at a group velocity less than V,(v, = 3k,cV,/w,). Thus r, is
again the correct time scale and only 1.0 e-fold are expected to occur during the transit of the

beam in typical experiments.

From these resuits and from the resuits for electrostatic instabdilities in Ref. 1, it can be

concluded that it is possible to propagate a focused ion beam, appropriate for a pellet fusion

15
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i device, through a z-discharge plasma channel without generating significant growth of microin-
: stabilities.
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APPENDIX A

For the magnetic field configuration given in Eq. (1) for |x| < a the beam ion orbit equa-

tions were solved in paper I. The resuilting ion orbits are given below:

' vl’ :
X = x COS w,7 + — 8in w,?,

®,
y=y+vr
2 (2
, @o |V 2
rez+lv,+ === ~-x|~
a4 -
2
Dol 2 Vi _ X, -
_— SV,[x ! sin 2w,7 av, (cos 2w,r = 1),

Vy =V, C08w, T = X0, SiN w,T,

v, =v,
2 2
'y -0 V5 2 -
v, -V, v, lm‘3 xl(cos2w,-r 1
WXV

Ox X .
27, sin 2w,T,
where w, and ¥, are the same as defined in Section II.

+
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APPENDIX B

The expression for «; and a, found in Eq. (19) are

Ve

-xw,J (Y)[ J,(X) + Jz(X)"

J X0 7D +2 T (=D"15,0 J,.ml

7= —{(v
Vx

+ W = -x ] [J,(X) Jo(Y) = 27,(X) J(V)

+2J,(Y) J(X) + 4 }'_‘, -D" [J,,(X) et (1) + 2

21 7.0 -"2.+|(X)"

- ";‘:,"‘ [J X0 1+ T (=D [Jm.(x) Tyacr(1) + Jyui(X) J,".(r)]]]. (B

A=l
where X = kx, Y = kv /w,and N = r, + sin 2kr,/2k.

In order to show that

2wl kV,v, 8 .
-—t [ —_—t - _

I " f_'. dx cos Kk, f d’v[ oy aj =0, (B3)
first write v, = vysin ¢ and v, = V, + v4cos ¢ and then perform the v, and ¢ integration
yielding

-wlkV? e 98 (vi—~ Vi +alxd
@ » 8 g [
N _,.dxcoskxfdvjl i

x [V. J(X) [% J-|/1(Z) + J)/;(Z)I J;/;(Z)

-Xw J?/;(Z)[ =J2,(X) + J (X)l]] (B4)

18
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where Z = kvy/2w,. Integrating by parts in v, to remove the derivative of the delta function

and then performing the v, integration results in

wpkVl ok Jy(X)
Ih= 4yNw, f kr: X{“l—z—[ J_112(Z) + J;/z(Z)I J112(2)
cal L ll(X)[ In(2) 11n(2) + 5 Japl2) T'1a(2)

+ J';/;(Z) FJA2) + 13/2(2) J'l/z(Z)]

- _4;. 7' (2) J,,,(z)[ J,(X) + J,(X)“ : (BS)
2-2(x)

where Z(x) = (kr,/2) (1 — x¥/k*r})"/%, Since the integrand is an odd function of x, /, = 0.

- The integral

N ‘

vza?'gf—:] = w'zb F(&’b?'l: e (3,6)

20,

dv

is more complicated and the associated term in the dispersion relation does not contribute to

instability; hence it will suffice to write /, in terms of the function F(kr,) as defined in (B6).




APPENDIX C

For a warm collisional fluid, the continuity equation and momentum transport equations

(7, > T, and v, = m,»,/m;) are

-a"—'+V~(n.v.)-0.

)
.&+'.-v'.-i.—E+-'-.—x——n-l
9t m, ¢
T
- Vng = vo(vy = vp), (C2)
mqn,

for @ = ie. Linearizing Eqs. (C1) and (C2) for perturbations with exp i (kx — wt) dependence

and solving for the perturbed current results in

2
ol
jl +ll 4n l E;

Q
Iy = 1+""§-/03, (C4)
Q3
Iy = I, = —ikV,0,/v01, (C5)
L - _1_ - k2V‘203

o y'a}
where w=iy, 0,=y+KkWly, QF=yy, +k*u}+2vkully+ k‘ul/y?, and

, (C6)

Q; =1y +v, + k*u?/y. In deriving expressions (C4)-(C6) it was assumed that vy < v,.

Here the electron streaming is driving the instability and n, = n, (unlike n,/n, << 1),

thus the complete dispersion equation,

DoDy - DD, =0,
must be used. This results in the following dispersion equation
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Zm_'zi 1+ .n_f .’2+ c2k2+ 7“:’ - wﬂzkzyfsz

Q; 021 v, ‘Ynf

4y
+_L__¢n V,ﬂf. (C8)

a4

0w jy2+

In o.rder to study the axial convection of the electron Weibel instability, the dispersion

equation must be rederived with |k,| > 0. For mathematical convenience thermal effects are

ignored (T = 0 in Eq. (C2)). In this case, for large k,, the dispersion equation is

in}o' Al = ik 3V 20 Yw + iv)
; x we'v,

14
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g o iedkV Ciwlk Y, ik Vv,
-[k,k,c’+-3’-*-i-i [k,kxcz-i-m L
v, v, ww

where w' = w — k,V,and now w = w, + iy.
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APPENDIX 2. Ion Beam Propagation in a
Filamented Channel. i
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ION BEAM PROPAGATION IN A FILAMENTED CHANNEL
I. INTRODUCTION

The production of intense focused ion beamal

has led to the
consideration of using 2z-discharge plasma channels to transport them
several meters to inertial fusion targetsz. Analysis has showm that
although electrostatic beam-plasma streaming modes are stable3, electro-
magnetic microinstabilities will occur during tramsport in such
channels®., The fastest growing mode produces current bunching of the
electrons in the channel. In this report ion beam propagation in a
filamented channel is investigated in order to determine the effects on
radial beam containment in channelsand on the radial beam density
profile.

In Sec. 11, radial current bunching iﬂ the channel is considered
and in Sec. III, azimuthal current bunching is considered. Finally

the results of this work are summarized in Sec. IV.

1I. RADIAL CURRENT BUNCHING IN THE CHANNEL

Ifk=k &r’ then radial current bunching occurs in the channel

and the net current demsity can be modeled by

1-[T@ + 3 mery 300] e, &y
where
1, 0 < Ty
H(r—rb) = { } ,
o, T >

rb is the beam radius and Jo is the zero order Bessel function

which satisfies the wave equation in cylindrical coordinates. For
Note: Manuscript submitted January 2, 1980,
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a channel of radius rc

r r
I,=27 f‘: 3(r) rdr = 27 J'c J(r) rdr

o (o)
is the channel current which confines the ion beam. Here k = au/rb

th .

was used, vhere a5, is the £ zero of first order Bessel function

J The second term on the right hand side of Eq. (1) is then the

1
residual current density arising from the bunched electron current
superimposed on the unbunched ion beam current. Since j(r) is
established in an initially cold plasma and is driven by a capacitor
bank on a time scale much longer than the beam pulse duration,when

the beam is injected into the now highly conducting plasma the total
net current resists change. Thus, in the absence of bunching
1-le+ib.?(r) e, . where j << 3y

The magnetic field which determines the ion mﬁtion in a filamented

channel is then found from .

% 'g‘r (r Bg) = 2—n‘ [T(r) + 3 Jo(kr)] » TS T, ()
Assuming J(r) = J_ (r/r)°"! inside the channel (s = 1),

B, = “l T +mj13(kr) r<r, (3)

@ (stD) ¢ rZ'l ke 1 ’ b

where I, > 1. The parameter s is a magnetic field shaping factor which
is equal to one at the front of the beam and increases as one moves
toward the tail of the beam. The beam heated plasma in the channel at
the tail of the beam expands radially carrying the channel current with

it. This decreases the magnetic field (increases 8) near the center of

the beam and produces a sharply rising magnetic field at the edge of the
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The total energy H, the axial cononical momentum Pz, and the canon-~
ical angular momentum Pe are all constants of the motion for the iomns.

From Az = -I Bedr and Eq. (3), Pz is found to be

P 2w, r s+l 2w, (s+1)]
2 ap.Sbefrx - —<cb 1[1-J(kr) , (4)
m, (s+1) (rc ) kzrcjo o

vhere w , = 2Ter cjo,mi c2(3+1). When jl/jo > 0, it is clear that the
beam ifon orbits are radially confined since 1 -.:lo (kr) 2 0 and rsﬂ‘ is
monotonically increasing. When jlqu < 0, the ion orbits are also radi-
ally confined if l jlljo | is sufficiently small since [1 - Jo(kr)] <
[1 - Jo(au)] > 1.4 and rs+1 is a monotonically increasing fumction of
radius.

Now consider this result in more detail. Since 1-"e - 06, the minimum

axial canonical momentum is given by
s+l

2w, T r
°. - cb ¢ 8
l’z m, Vocosa.o G+ (——rc) s (5)
when jl = 0. Here a, is the maximum ion injection angle, Vo - (Zﬂlmi)k

and r, is the beam focal spot size at the point of injection into the

channel. The beam envelop radius is then

1
( ) P° s+l
r: " T Zylr (vo - ;!) (6)
] cb ¢ i

vhere r = r: when z = Vo for an ion injected with Pz - P:. When s = 1

the usual result is recovctcd6

v ?° \ |®
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2 When I % 0, the minimum axial canonical momentum is given by
2m . w_, (s+l)
plapo. Ll [I-J(kr)]. (8)
z z o8 -
jok r.

where this result only strictly applies for ' 31/30\ < kr_(r /r )%/ (s41).

In this case the beam envelope radius is found from

s+l 1l
2 T, 24, (s+1) v P
| (‘Fb‘) + —1—2-5- [1-J°(k:b)] -2 -—1.
E (stl) \¢c kT, 9 W LA
For |jl/j°| <<1 this reduces to ‘
. -1
. 3, (s¥1) g \° f
o~y [1- e —, —g) [2 - 3 (kzp) - Jo(krs)] , (10) !
I, (krp) o

so that for jl <0 Ehefﬁeam radius expands, whereas for jl > 0 the beam

radius decreases. For larger | jlljol Eq. (9) must be solved numerically. : )
When jl < 0, beam ions can be magnetically trapped and prevented

from reaching the axis if Ijlljo‘ is sufficiently large. Thus the density

.§: profile could be depressed on axis. For a given ion injected into the

channel at a radius r, and at an injection angle a. trapping occurs if

_f. AN ‘ 2r2

k e Vo(l-cos a) (rolrc)s+l

: 3
P |_A > + : : (11)
i | 1 [1-30(1“0) I 2ugr (st  (s41)

When s = 1 and @ << 1, this reduces to

: 22 2 2
- 3 K'r/e vV oa r
, |-—1- >t 2 + (—"-) 21, (12) ,,
'Ti | 3, [l-Jo(kro)] 2wt T, T

i so that trapping begins when the bunched current density exceeds the mag- .
i nitude of the channel current density which is required to confine the

- i beam. Furthermore, Eq. (9) shows that the equilibrium beam radius is

S
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1 ' also significantly modified if |j1/jo|> 1.

Thus when radial current bunching occurs in the channel, good beam

propagation is still expected unless ljl/jol exceeds wity. If ljlljo o

! . > 1, the beam will be expelled from the center of the channel when jl

< 0 or the beam will pinch when jl > 0. If Ty becomes larger than LR
the analysis breaks down and a more sophisticated analysis is required,
i! ; however, it has been established here that it is desirable to maintain
ljlljo' <1l. For §, =~ j exp G, good beam propagation requires

Iy <3, e (Y 1), Here y is the growth rate of the instability, Ty
is the beam pulse duration and jn is the initial level of noise in the
electron current. Since the predominant source of jn is the nonuniform—-

ities in the radial profile of the ion beam current demsity (remember

je - jb +'§ ), jitter in the ion beam current density must be kept below

.
i jbn jo
. : g‘ < -j: exp (- YT)- (13)

Typically y1£ ~ 1.0 - 2.0 and joljb ~ 0.1 for proposed fusion systems.4
Thus the jitter in the beam current density must be kept below 1 - 42.

Since the filamentation instability is nonconvectivea, these results only

apply at the tail of the beam. At the front of the beam the limit on

j‘m/jb stated in Eq. (13) is less severe and can be found by replacing
YT, by y1sx/xb where x is the distance from the front of the beam for a
beam of length X,

III. AZIMUTHAL Cunx;gt BUNCHING IN THE CHANNEL

A
If‘b - k'B then azimuthal current bunching occurs in the channel

and the net current density can be modeled by

- - A.—_
’ Ve
[ DO SN S R S SO

P
w

i J § 1




|

f
|

T Ve Up S SN

A= G(r) +jlﬂ(t-rb)sin mB)éz . (14)

where m = 3,4,5,.... will be considered. Special treatment is required
for m = 1,2 which is not considered here since m~ 3-7 in typical cases.l'

Again

I - /j(r,e) rdr = 2xf 3(¥)r dr

is the channel current which confines the ion beam and j 1 sin @8 is the
residual current demsity arising from the bunched electron current super-
imposed on the unbunched ion beam current. The magnetic field which

determines the ion motion in a filamented channel is then

la'rjors &yt
- —_— - sinmb, r<sr, (15)
Be (s+1)c1-cs 1 c(mz-l&) b
iyt
B = —5—— cos md , rsr (16)
c(m -4)

where again j(r) = jo(r/rc)s-l was assumed.
In this case H and Pz are constants of the motion but Pe is not.

From Eq. (15) Pz is found to be

s+l 2
Pz . chbrc r 2w bt jy sin mb
;— - 2 - ———2 r— + 2 ’ T s rbo (17)
i (s+1) c rc(m -4)3 o

Solving Eq. (17) for z shows that as long as

jl m244
‘_\ < : (18)
i (s+1)
where rc - rb, all ion orbits are confined within the channel. For

larger 'jll jol ions can escape from the channel and the beam density 1is
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gradually depleted.

Even for small Ijl/jol the beam density on axis decreases in time
since |Pe| increases in time for most ions. In fact Pe is constant only
for those few ions which are injected at 90 = afi/m (n = 1,2,3,...,2m).
For 'jlljol« 1

2mj 1608 mo

(®%0‘Y = - R(®'- RE‘D) , (19)

jo(mz-lo)
2 2
where R = Kr, 7 = Qt, K™ = LI cb/Pzrc , = Pzw cb/mirc and a prime
signifies differentiation with respect to T. Thus, to zero order in the
small parameter Ijllj Ol
®%8)_ = K,/ = const. (20)

1f Pe is initially zero and Ro ~ A cos (T+¢) (implying small injection

angles,6 1.e. & << 1) the time averaged lncrease in 'Pel can be expressed

-th, (21)

where r ovoa. ~ r(z=o)t(z=0) and

2 2 -1
‘- r a(m"-4) |j°/ji 2+ T Wy 22)
mV cos m8 Vr *
) (-] oe

Thus in a time 7, |Pe| increases from zero to rovoa. For the average ion

< |cos m6°|> = 2/m, r,® rb/2, o= a.°/2 and

2 2 -1
r nra (a-4)]3 / 51_.]_ 2+ ¥ b @3
21|:Vo o - vorc *




Typically rbﬁ'- 0.4 cm, 0.0% 0.2 rad, m= 5, Vo-"« 3.1 x 109 cm/sec and

w . ~ 4 x 10° sec”! so that
cb

T ~2.3% 10 |50131| sec. (24)

Thus the beam hollows out on a time scale of T even for small
Ijlljol , although the beam is still confined within the channel. 1In
order to prevent this hollowing out from occurring during beam propagation
one needs T _ < T or
2
nrg:o(m -A)jo

jn < 2mL r exp (-YTb) ’ (25)
o cC

vhere T, = L/V° is the beam transit time in a channel of length L and

b
again jn is the initial noise level in the electron current. Thus as

argued at the end of Sec. II this implies that the jitter in the ion beam

current density must be kept below
2 2 -1
3 Tr,a (m“=4) 4§ W
jb“ < bz;L j° a: +-%}f9 exp (-yT,) . (26)
b b oc

Typically this is found to be jbn/jb'~ l1-5x 10-4 for proposed fusion
systems. Since this low level of noise is probably not achievable, some
hollowing out of the beam is likely if current bunching occurs, however
the beam will still be confined in the channel for small ljlljol. This
effect will be most pronounced at the tail of the beam where largest
growth of the nonconvective filamentation instability occurs.4

For |j1/j°| 2 (mz-a)/(s-i-l)2 the beam density is gradually depleted
as increasingly more ions become unconfined. This depletion will occur
in addition to the hollowing out of the beam and also occurs predominately

at the tail of beam. In order to prevent this beam density depletion

ST RO R e S i
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one needs
2
jbn (lll "l‘) j
< — exp (-y1.) @n
Iy e+ b b

Form~ 5, 8 ~ 4, joljb~ 0.1 and YT, ~ 1 - 2 at the tail of the beam,
3y n/jb € 1 - 4% is required. At the front of the beam the condition is
much less severe with YTy replaced by Y'l'bx/xb where x is the distance
from the front of the beam for a beam of length x,. Eq. (26) can be
similarly modified for the front portion of the beam.
IV. CONCLUSIONS

From the analysis presented here it can be concluded that good beam
transport in a filamented z-discharge channel is possible as long as the
current bunching remains below certain levels. For radial current bunch-
ing it was found that |jllj°| should not exceed unity, which implies that
3, <3, e (). If |j1/jo‘ exceeds unity, the beam will be expelled
from the center of the channel when j 1 < 0 or the beam will pinch when
31 > 0.

For aximuthal current bunching the beam hollows out on a time scale
T defined in Eq. (23). This hollowing out occurs for all values of

ljl/jol but will not reach a significant level if T, < T (see Eq. (25).

2

For |3./3 |» 2 =% the beam density is also gradually depleted as in-
17 ( ”1)2

creasingly more ions become wumconfined.

These results se: limits on the level of jbn which can be tolerated

without seriously affecting beam transport due to current bunching effects.
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APPENDIX 3. Propagation of Intense Ion Beams in
Straight and Tapered Z-Discharge Plasma
Channels.
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- PROPAGATION OF INTENSE ION BEAMS IN
. © STRAIGHT AND TA?ZRED Z-DISCHARGE PLASMA CHANNELS

P. F. Ottinger, 2) D. Mosher, and Shyke A. Goldstein?)
Navai Research Laboratory,
Washington, D. C. 20375

ABSTRACT

B cinanizon

A preformed z-discharge plasma channel can be used to transport focused
ion beams appropriate for a pellet-fusion device. During transport, the
beam can ba compressed éxially by time-of-flight bunching when appropriate
ion .accelerating voltage waveforms are employed. Single-particle or?its in
~ such channels are expressible in terms df'ﬁimpls harmonic functions for small
ion injection angles; In this work, orbit anaTysi§ is used to investigate
how non-uniformities or tapering of the channel and electric fields present
jé%. ﬂ in the channel effect radial beam confinement and power multiplication by

bunching.

a) Present address: JAYCOR, Alexandria, Virginia 22304




I., INTRODUCTION

In order to utilize intense light ion beams (e.g., 2-10 MeV protons or
- deuterons) in a pellet fusion device, it is generally considered necessary l

to propagate the beam a distance'of 2-10 m from the acceleration région wnile 9

employing some focusing scheme to deliver the beam to the target. One con-
cept1 involves concentrating the beam by one order-of-magnitude in radius at

| . a point 20450 cm in front of a small-area ion diode by a cembination of

georetric and self-magnetic-field focusing tgchniques.2 At the focus, the
bexm enters a z-discharge plasma channel which guides it to the vicinity of
thia pellet. The beam is confined to the discharge channel during propagation
by the azimuthal magnetic field produced by the current driv{ng the discharge

and is delivered on target wit: no additional focusing. Figure 1 illustrates

trajectories of typical ions in such a system.

Since good propagation requires conditions in the channel to provide

4 nearly complete beam charge and current neutralization.3 the beam fons do
j not experience collective effects. Single particle orbits are determined
t

primarily from the equations of motion for a beam fon in the channel

= azimuthal magnetic field. When the ion injection angle.into the channel is -
small, these betatron orbits can be expressed in terms of simple harmonic

functfons as demonstrated in Sec. II.

- | Using the results of Sec. II, the z-dependence of the radfal beam
density profile is obtained in Sec. III by following the sing1e particle
orbits of an ensemb]e of beam ions injected into the channel Both

ana1yt1ca1 and numerica] results are presented for rippling of the beam

envelope.




ey

-The passibility of qsing axial bunching and radial compression of the
beam to achieve beam power multip'lication4 has Ied'to a study of ion orbits -
in a tapeted z-discharge channel. In Sec. IV, the method of multiple
scales5 is used to find the dgpendence of the beam envelope radius on the'
axial position in a tapered channel. The limits on power-density multi-
plication due to axial velocity dispersion in tapefed chénnels is also

determined.

Ve

The effects on the ion orbits of small axfal and radial electric
fields induced by beam passage through the channel are investigated in
Secs. V and VI respectively. These analyses determine the range of fieid
strengths which permit gbod beam propagation without significan; radial

expansion or slowing down of the beam.

If the plasma channel is subject to magnetohydrodynamical instabilities,
beam propagation may be affected. In Sec. VYII this probiem'is studied using
a code which solves the equations of motion for an ion injected into a
bumpy channel. -The amplitude of.the bump was randomly varied in order to
more closely simulate the nonlinear evolution of sausage instabilities.
Analytical results in the form of a Mathieu equation are presented which
determine the importance of particle resonan&es in_a constant-amplitude
bumpy chznnel. The‘focusing and stability properties of ion orbits in

these channels are also investigated.

Finally in Sec. VIII, the results of this work are summarized and some

concluding remarks are made.




The z-discharge plasnia channel providing radial confinement for the
focused ion beam may be formed microseconds before beam injection so that
cumplete magnetic diffusion occurs. The high plasma density of the channel

18

(n pﬁ 10 cm.s) insures good charge neutralization of the beam.3 Good

beam current neutralization in the interior of the beam also occurs
because of the rapid increase in the-conductiviiy due to beam heating.3'6
Thus, the total magnetic field is comparable to that associated with'the
performed channel established before injection. The net current, which is
approximately given by the channel current, is about an order of magunitude
less than th; bare beam current. .

Modeling the channel current by a uniform current profile, the azimuthal

magnetic field is given by

Bor/rc, r<rc_ »
B ={ | ; m
Botc/r » T>T, '
where To is the radius of the current chaimél. In acarefully-mounted experi-
ment, imperfect focusing is due primarily to ion-orbit deviations produced
by such time-varying, azimuthally Qyme:ric electromagnetic fields in the
diode. These fields displace the ions away from the geometric point focus.
At the best-focus location, ions produced on opposite sides of the diode
merge into the same spatial region creating a spread in anglés of {ons
entaring the transport region. These diode fields do not impart azimuthal
velocity to the ions so that ‘the angula; spread in injection velocities
lies primarily in the r-z plane rather than a cone. Since the experimental
techniquesz gsed to focus the beam are not expected to produce large.
azimuthal :asymetries. in t‘he diode fields, angular momentun effects can be
ignored in t:hg lbwes.t-order ion motion. Modifications of the results
presented hcxje due to azimuthal motion are pre.sently‘ under 1hveqtigation.
Some nmric.ll results are preseni:ed in Secs. III and VII. |

The equations of motion for an ion confined within such a chaonel

(i.e., r.<tc) arc j‘u'sg' _ : 4.-
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£ = 4ncbir/rc. . _ (2)

T e

2 = mcbir/rc ’ ' (3)

I’
where wcb = eBolmic. Although it has been shown that the general solutions
of these equations can be written in terms of elliptic fmctioné, simple

solutions corresponding to the /% << 1 case at hand are derived. These

analytic forms provide a basis for calculations to follow.

. Normalizing Eqs. (2) and (3)
%' R" = - Z2'R . : (4)
j Z" = R'R : (S)

2

. . 2 ' -t

vhere R = Kr, Z = Kz, T = Qit, K = wcb/rcvo gosao’ﬂ -f”cbvo cosx./rc, V, = const is
the spead of the ion, a,is the angle of injection into the channel and a primed
quantity signifies d/dr. Here K is the betatron wavenumber and f is the

betatroa frequency of the beam ion.

If the ion enters the channel at a small angle to the axis, then the
3 small magnetic field required to confine the fons results in ¢ = Krc<<1, and

a simple expansion techniq'ue can be used to solve Eqs. (4) and (5). Details:

% of this techanique can be found in Ref. 5; Writing
1@},7 . R=¢cR +e2R + ‘ )
| b 2 ¥ o : ]
| 2
? Ze2Z +ez, +eZ,+. .. , )
n=Q+en +etu, 4. .0, (8)
; | ; and collecting terms of like powers in €, leads to a set of equations which
can .o solved to any desired order in the small parameter €. In solving these
equatiini, care must be taken to remove secular terms. The solution of Eqs. (2)
= and (3) is chen
)|
]

T
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(9)
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r=r cos (wat + ¢) + 0(c?), | | | .('10)

where

N-'Sﬂ ] 'NCb;z +tan2%> ’ ’
B TBrc‘Io-cos% 4 :

A ) cose,
tan¢ ._(_E_O____
b Wep To

| ' r.V_sina
8 ;a(r3+.¢_°.__°)’5 .

)’5 tane, ,

Wy, COSa,

,;.'.' and r(0) = r,, z(0) = 0, #(0) = V, sina,and 2(0) = V, cosa, .
7 : |

X " The maximum angle of .injectfon, % in typical experiments and for

proposed fusfon systems‘is on the order of 0.1-0.2 radians. Since the ions

should be confined within the channel (rg re)s €q. (10) requires that

xo(A)_>_(1.s7 x 107 yag Vo/c) (1 -.r;/r;)“ , m)

, where I is thé channél current, u is the ratio of the beam ion mass to
the proton mass, and Ts is the beam spot size at injection into the channe'l

) This same resuit can be obtained directly from the conservation of axhl
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canonical momantﬁm whjch states that

2 =V cosa,+ (el /m;ric?) (r* - r3) . (12) §

Equation (11) is recovered when z = Vor @)= 4 T = e and r, = rsl(also
1 - cosq = a2/2). For a 5 MeV proton beam with ay = 0.2 radians, rg =

0.4 cm and r = 0.6 cm, Eq. (11) states that I > 113.0 KA.

Equation (9) shows that the z-motion has both a streaming component and an
oscillatory part and that an ion transit time in the channel can be expressed

as

T, it/vo + 0(e?) (13)

where z, 1s the channel length. The 0(e?) corrections to t, are important

when axial bunching is considered,4 since different fons injected into the

channel at the same time will arrive at the target at different times. The

spread in arrival times for a straight éhannel,
(at,)g = (zo/8 Vo) (o2 + wgy ralVore) + (4

can be obtained from time averaging Eq. (12) over the betatron oscillations,

and sets a fundamental 1imit on axial bunching. However, at the-point of injection
the beam pulse duration, T,, is still typically much longer than CAt‘), thus

allowing for considerable axial compression of the beam by ﬁroper shaping of the

accelerating voltage waveform.




I1I1. BEAM RIPPLING

If the radius of the beam envelope varics with position along the
axis of the beam, thg béam is said to ripple. In order to obtain good
radial confinement of the beam and prevent dramatic increases in beam density
at minima of the rippled beam radius, beam rippling shouid be kept to a
minimum. This phenoména arises from coherent oscillatory motion of beam
particles injected into a drift region permeated by a confining magnetic
* field. Although beam rippling occurs in many situations, the coherence
length, z,s can vary widely, making the observation of rippling impossible
in some instances (z“I < Ahwhere Aris the ripple wavelength). Coherence is
lost by phase mising, which for the situation considered is due to the
depandence of the betatron frequency on the injeciion angle of the individual
jons. JIons enter the chanrel at small angles which vary uniformly from L8
to -a, where a, is determined by the focusing technique. Since the beam is
focused at the entrance to the channel and the focal spot is defined as the
point where only random mqtions determine the beam radius, the distribution

of injection ahgles is independent of injection radius.

" Recall from Eq. (10) that the betatron frequency is given by

wg * (“cb Volrc)k a - Wepy rgllﬁrcvo - a2/16) , (15)

where the ;naiysis has been restricted to small injection angles (q;x'l).
For a collection of ions injected into the channel at z = 0, the betatron
frequency varies s]igﬁt1y accorﬁing to the square of the injection angle and
injection rad1us. The coherence length of the beam riﬁple can thén be

determined by foilowing the single particle orbits.of a collection'of'ions.

(7]
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First Eq. (10) is rewritten as

x(c) = r, cos wgt + (v ¢ o Iwa) sin wgt Qé)

gy

where r(t) is the radial position of a given ion at tine t and w v lr )”

wg = BV,
The radial velocity is j'ust

- et A

vr(t) = =T o;’B sin wat + Voa.o cos wBt . : | %))

Note that again the small injection angle limit is taken and that r(0) = r,
and vr(O) = V,sin e Voa.o (also v, (t) = v, e (t) ). Also ve(O) = %
A model for the experimental distribution function is given by

o o’ °

N6 (vg) 6 (V-Ty) |Blegta)-nl - ap ], |rjer, } 6

; .

at z=0 which neglects any small dispersion in Yo oand approximates the

f(r o*Vgo? a)s= {

distributicn in v . by a square distribution. Hcre H is the un:lt stap function

(x~x_) {O ? ’.:<xo}4 . ‘ .
H(xx)= ' ‘
° 1, x>x, . o - (19)

’

o is the maximum fnjection angle, LA i{s the beam spot size and m '\72/2 equals

the accelerating volcage. The beam density profile at 2=0 1s found by integrating

fb over velocity space yield:lng _ ’ '
> |* x, } | ‘ ”

’ ‘ roP Ts .

where ;b ] z:.nv °R is the beam density on axis and r, is the beam spot size

(20) -

or beam radius at z=0. With injection into the channel at z=0, the béam
can dbe prqpagatc.d forward by using expressions for T, and voo. o found from
Eqs. (16) and (17),

. - g Y ' ' . ' M i
T, = T cos wat - (vr/‘”ﬁ) sin wat , o (21) o
and

Va r sin .+ .
oo'wB wat. Ve coawat ;

Using Eq. (10) to r‘cla:‘e 2 with £,
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_cb sk () 4 <D '+3°‘2)z=kz , (23
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where again xr, and & have been written in terms of r and a. The distribution

function at a distance z downstream from the point of injection is then

W T v vr
— X
£, (r,2,v ,v,a)-ulu(—g- sinkz + -‘75- coskz + cnm)-n(-;,L sink zfv cosk z-am)l

- . (24)
G[Ir' ve/lr cos k z - (vr/cﬁa)sin k z|]‘6(v-v°),
for lr cos kz - (vrlwa) sin k z ‘S r,- Here VaV and ve‘r ‘- vgoiro‘are constants ;

of the motion.

Equation (23) shows that the dependence on 0. of the harmonic functions in
Eq. (24) is ignorable unless 3 k d.z z/16 » w/4, which detémines the phase
- Fs - !i
mixing distance, z . Here k = (wcblrcvo) .

Integrating Eq. (24) over velocity space in order to solve for the beam -

density profile at 2z yields nb(r z) for z<<z = 4u/3k 0.2, where n.b(r z) is
given in Eqs, (Al) - (A3) of the Appendix. '

s

For z2>>Z,, kz '[see Eq. (23)] varies significantly over the range of

integration for a in performing the velocity épéce’ integration of Eq; (24).

Thus, the coh.erenl: rippling 65 the beam is phase mixed out and the beam




density profile becomes independent of z with (r,z) now given by Eq. (A4)
™ .

of the Appendix. The beam envelope or the outermost radial edge of the
beam is given by

rb(z) - {_

r | cos(mz/A )| + (Voa.mlfﬁa) | sin (n'zlxr)l » <<z,
T, | » =>>z ) .

where the phase mixed beam envelope 1is ;b = (r: + V: a:ﬁi;)k.

From Eq. (25) one finds that the beam cdoes not neck down to a radius

smaller than rs if
,Vo amﬁnars 21
Eq. (26) can also be written as a lower limit om Io given by Io given by

I(A) S (1.57 x 107

ua? v 0y (21edy.
Since it is desirable to avoid such necking down to small radii, a good
quality beam will satisfy Eq. (27) as well as Eq. (11). Figure 2 illustrates
the rippling of a typiéal beam and Fig. 3 shows the dependence of the
coherence length on the maximum inje;tion angle. From Eq. (25) one also
finds that the ripple wavelength is given by lr = /k.

Although the distribution function (Eq.18) used in this analysis omly

approximates the actual experimental distribution, the ripple wavelength and

coherence length should not depend strongly on the detailed shape of the

pt e RPN URNEE TIPS ey WO O,
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distribution function: Provided phase mixing does not depend sengitively
on tha tail of the & distribution, it should still be possible to obtain a
reasonable estimate of the coherence length from Fig. 3 for most distribu-
tion.functions. Of course, this is only true in the atsence of any signifi-
cant scattering of the beam ions (e.g., due to coilisions or “"bumpiness” in
the channel) or any otﬁer mechanism which could significant]y enhance phase
mixing -in the beam (e.g., diode voltage ramping for bunching or nonuniform
E:‘ net current profiles). The ripple amp]itude'on the other hand, may depend

on the details of the distribution function.

In order to obtain numerical results an ensemble of one hundred particles
was injected into a channel at z = 0. Particles were injected from ten
different radii ranging from 0 to r

and from ten equally spaced injection
angles ranging from -a, to +a. Because of the cylindrical geometry propor-

tiohately more particles were injected at larger radii. The particles were

- ‘
j4 propagated forward in the r-z plane along their trajectories by integrating
’% the equations of'ﬁétion using a Runge-Kutta routine and eventually collected

in radial bins at the desired distance downstream.

F ~ The results of this simulation are shown in Figs.. 4 and 5, which
illustrate the rippling of a beam which is injected into a channel with a

distribution function at z = 0 given by Eq. (18). Figure 4 clearly

;| shows the beam rippling when




)

z<<z,. For comparison with analyticai results the beam é;nsity profile at
z=o0and z = lr/2 are shown in the upper right hand cornmer. The numerical
results at z = 44.5 cm and 51.5 cm should be compared with tﬁe analytic results %
at z = Xr/2 and the numerical results at z = 41.0 cm and 48.0 cm should be
compared with the analytic results at z = o, The complete analytic form of !
ny (r,2) for the injected distribution function given in Eq. (18) is rather
complicated and is presented in the Appendix.. The good agreement between {
numerical and analyticresult;indicate the proper functioning of the code.

When z > z the coherent rippling of the beam is almost completely lost as

illustrated in Fig. 5. Again for comparisoﬁ with analytic theory an approximate
phase mixed density prﬁfile is shown in the upper right hand corner of Fig. 5.

This profile is obtained_from the results presented in the Appendix. The distribution

function in Eq. (18) was chosen since it closely resembles the experimental situation.

. For the proposed parameters used in Figures 4 and 5, the ripple wavelength is

) Xr“’7.0 cm and the coherence length is z, = 411/3fui = 230 cm.

Thus far only motion in the r-z plane has been considered since it has .
been argued that most of the velocity transverse to the channel axis is in the
radial direction. In order to verify that azimuthal motion does not drastically

modify the results, the extreme case was also considered where ions are injected

into the channel with equivalent spreads in v, and Vg* Numerical simulations
show results that are similar to those presented in Figé. 4 and 5, however,
the addition of angular momentum somewhat reduces the density peak on axis.
Beam rippling still occurs for 2 <'zm and is phase mixed out when 2 >2 where

z s still given by 4m/3k a: . : !




If the net current profile is not uniform so that the azimuth;I .
magneéic field does not rise lineaucly with radius, then the phase mixing
distance can be considerably reduced. qu Be'v rz, numerical simulations show
that coherence is lost after only a few ripples or about 0.5 m for a typical

5 MeV proton beam with - 0.2 rad. This enhanced phase mixing is illustrated

in Fig. 6. Such a maénetic field profile could arise if beam injection

occurs before magnetic diffusion into the z-di#charge channel is completed.
Enhanced phase mixing might also océur at the tail of the beam as the now

highly conductin§ plasma (and frozen-in field lines) expands due to beam heating

of the channel.

The results of this analysis show that it is possible for ion beams to
exhibit coherent rippling ovef distances of a few meters before phase mixing
occurs provided the azimuthal magnetic field rises linearly with radius. Sincg
both the beam radius and density on axis vary with 2z, beam rippling should be
an important consideration when choosing such things as channel pérameters
(np>> As Te> rb?.etc.) an@ target position. The channel current,ilo, and

the channel radius, r., should be chosen large enough so that the outermost

c
edge of the rippled beam should remain in the channel in order to obtain good -
radial confinement of the beam. On the other hand, Io should not be so large
that the beam dénsity increases dramatically at minima of the rippled beam

' 8
radius. Such an occurrence could lead to local heating and microturbulence.

Thus, the beaﬁ should be matched with the channel (Eq. 27) as well as possible.
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IV. BEAM ION ORBITS IN A TAPERED CHANNEL

Although the average beam density on axis may increase by more than
a factor of two over the injected beam density on axis after the rippling
of the beam has phase mixed out (seé Fig-  §), other effects can cause
the beam to spread in radius and decrease the beam density on axis (e.g.,
see Sec. Vil). In this section ion orbits in a tapered channel will be
determined in order to ascertain the limits of using radial compression of

the beam to increase the power density delivered at the target. |

If the channel radius decreases linearly such that rc(z) = rc(]-z/L),

then

Zlor
By = : r<r, (1 - z/L),

-9
Cré (] - 2/‘-)2 ’

(28)

where L is the taper length, r_ is the channel radius at'z = 0 and Eq. (28)
only applies for (L-z)2>> r2. Here it is assumed that the beam does not
burn its own channel. The equations of motion for an fon confined within

this channel are then

ir
‘s “Yeb , : . (29)
rc(1'a z/L)?

ucbrr

re (1 - z2/L)?

Zs=

: (30)
E | :

Changing to normalized variables, Eqs. (29) and

2
where wep = 2 elolmic r..

c
(30) become

15




R =-2' R/(1 - Z/KL)? (31)
" =R' R/{1 - Z/KL)? , (32)

where the normalization is the same as in Eqs. (4) and (5). If

€ =Krg<<1, then R and Z can be expanded as in Eqs. (6) and (7).

Expanding Eqs. (31) and (32) and collecting terms of equal order in

e" yields to Jowest order

Zy =0 | | (33)
R = R/(1 - Z/K)? o (34)

‘where it is assumed that (1 - ZO/KL) "5,@_(1) (i.e., the ion is not too close

to the end of tﬁe channel at z = L). .

The: solution to Eqs. (33) and (34) in terms of the real variables is
2(t) =V t + 0(e?) , | | (35)
r(t) = ro(} - t/T)ls cos [-nun - t/T)] - (36)

+ (¥ sin o/a) (1 - /T3 stn [- aTen (1 - T4 o(e?)
where T = LV, @ = ugy Vo/re, 1(0) = rg, r(0) = Vg 0g,0) = Vy,

a°<<1 and (m’)" << 1. Using conservation of energy ’

Be (V2o Bty -2V ) 0, e

S

The 0(e?) correcﬁon to z(t) can be calculated. .

i
|
i
!
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1 Thus ion trajectories converge radially.but not as quickly as the tzpered

—:

channel since the perbendicular energy also increases in time at the expense
of the parallel energy. From Eqs. (36) and (37) one finds that the radial

envelope of the ion orbit decreases as

_ V ral
T(rgsa2) = (r2 + -%:—"— )E (1z/)% ' (‘ )
' c ‘ 38) ‘

and the angle with which the ion crosses the ‘axis increases as

2
dr o ez 4 0 %cb s -k
@ le(r)mo = (% ¥ Tyoam) - 20T (39)

s T AR 17 o T A T T e e

As the ion approaches z = L, the channel acts as a mirror and reflects the
ion back toward z = 0. The approximate position of the mirror can be found
by setting dr/dzlr(t)=°= 7/2 in Eq. (39). Because the analysis breaks

down in the mirror region, the orbit equations do not describe this bounce.

The analysis is not extended here to treat this region since,for reasons

which follow,a target would be placed in front of the mirror point.

Since the current density scales as

1; , J~[?-(z)].2 ~(1 - z/L)'] , - .
v | - (40) o
the current density can be considerably enhanced by radial compression o% the
beam. However, if radial compression is used in conjunction with axial
Sﬁnch{ng, then the spread in arrival times at the target location sets a
1imit on the power multiplication factor. Since radial compression produces
= a sprea& in 2, ogtimizing the power mu]tip]fcation will in tﬁrn limit the

) degree of radial compression which should be used.
]
‘- . - 17




Averaging Eq. (37) over the fast oscillations, shows that the average

axial velocity

<z2>=Y [1 - % (o} +0%r3/V2) (1 - z/L)"] , (41)

depends on the injection radius r, and injeétion angle o. The maximum
<% > occurs when a = r_ = 0 and the minimum <2> occurs vhen o = o and

ry ® Fg- The spread in <2z> 1is then just

§ <d> = (/8) (o + miri/vd) (1-2/) )

and the resultant spread in arrival times of simultaneously injected ions in

\ 2 2 . | L
. Ata = (L/4v°) (Gm + mcbrslvorc) an (FZ) ’ . (43)
vhere z, is the target position. If the channel were not tapered, Eq.
(43) would reduce to (Ata)s given in Eq. (14). Clearly, the tapered
channel can significantly increase Ata, which is an important consideration

when axial bunching is employed a‘long with radial compression.

Under ideal circumstances, the diode voltage can be programmed to
bunch the beam at the target, the tail of the beam catching up to the front

of the be&m at z=z,. The power multiplication factor is then expressed as

L [?(r,, g 0) ]= -
a LF(rg, % Z¢)d . | (44)

where T is the beam pulse length and r is defined in Eq. (38). .Here.
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tb/Ata measures the power multiplication due to axial bunching and the
expression in the square brackets measures the power multiplication due to

radial compression. Since this analysis only applies for F(rs. G 2) <

re (1-2/L) (i.e., all ions are confined within the channel), the most interest-

ing case occurs when F(rs. Gy zt) = rc(l-zt/L). In this case

yo ST Voletly,
(1-z,/L) 2 [(1-2,/0)-]] (45)

Maximizing M with respect to z, yields

: 8V 1, I*
; L,
zp =L [eexp ()] (47)
%
{ and
rt = rg exp (%) (1-13/1)7% 4 (48)

where Io must exceed I; and

- 7 2
I;(A) 2.6 x 10 uay Volc . (49)

Comparing this result with the power multiplication factor, Ms. obtained

by using only axial bunching in a straight channel, shows that .

‘; ' M* s 2.[exp(lg) - 1] M= 1.3 M5 (50)

Thus using radfal compressions in conjunction with axial bunching can enhance
the power multiplication factor by as much as 30%. Radial compression will be

somewhat less effective if angular motion is present in the beam.

19
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V. EFFECTS OF SMALL AXIAL ELECTRIC FIELDS

The axial electric field that establishes beam current neutralization
by driving'a return current of plasma electrons in the channel also slows

3 In order to estimate

down the fon beam and causes it to spread radially.
the extent of these effects, Eqs. (4) and (5) are solved with the addition

of a2 smali constant axial electric field E, in Eq. (5). In that case
" = R'R - e’sz . (51)

where 62 E (cz/"c"’cb Vo cos%)” (Ez/Bo)' Here a careful analysfs is required

since the ion kinetic energy now decreases in time.

‘WNriting £ = e2tr and n = (1 + wE + wze’ + .. .)t, the time derivatives

are replqced by

g? -gzg-é.+(]+u]€+u2€z)-a§;.'+.. )

dz iaz 1+2 +2 2 4 2e2)az +
gy tr2uEer2ee te ) g e

with R and Z depénding on Eoth £ and n. Expanding Eqs. (4) and (51) and
col]eéting terms in powers of ¢ again results in a set of equations which
can be solved to any desired order-in the small parameter . Here, however,
the axial streaming velocity, V, gradda]]y decreases and the radia) envelope
of the ion orbit, r, slowly expands on the £ time scale. The elimination of
secular téfms provides the set of equations which determine V(&) and r(£),
but the 0(e®) equation of Eq. (4) is needed for completeness. The resulting
spread in radiqs for a given ion becnmes |

r(z) = (r2 +r. ¥, “:/“cb)k (- 2/2r)-5 ’ - (52)

where the radial expansion distance is

20




2 2
Zmi Vo cos‘e,

z. = e
"% | (s3)

The slowing down of the streaming velocity results in a decreasing ion

kinetic energy which can be expressed as
VAHE) = VAH(0) (1 - z/2.)2 = V3(0) (1 - 2 2/2,), (54)

| where the last approximate equality applies only fo} z <<2z,.

1 The condition for the neglect of the effects of small axial electric

1 fields on the fon orbits is just zr/zt>> 1or

ek z./m, V2 << 1 (55)

for L <<1. Thus there is a lower limit set on the channel conductivity in i

order to prevent the axial electric field, Ez = Jb/c. required for current

neutralization, from violating the condition set in Eq. (55). Typfcally one

would like E, < 1.0 kV/cm for negligible beam energy loss.

In addition, it can be shown that when E, satisfies Eq. (55) the
spread in ion arrival times, (Ata)z' at the target position is not significantly

increased by the presence of Ez. In fact, in that case

(‘Ata)z/(Ata)s =1 +eE, zt/mivg

Thus, axial bunching is unaffected by the presence of an axial electric

field if Eq. (55) is satisfied.

ﬂ.(.,,__..---.-!...._f—ww, | N -
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VI. EFFECTS OF SMALL RADIAL ELECTRIC FIELDS

The effect of a small radial electric field on the ion beam orbits

can be understcod by including E. = Er r/re in Eq. (4). In that case

R" = (-2'+e5 )R, ' , (56)

vhere 6 = (c?/w b e Vo V. cosa) s (Er/B ). The basic effect is to weaken the

a2 RO, A

restoring force in the radial equation of motion, which results in a larger

radius beam. Performing the analysis of Eqs. (5) and (56) using the expan-

sions shown in Eqs. (6), (7), and (8), the ion orbits can again be solved to

any desired order in the small parameter €. From this analysis, the phase
mixed beam envelopz is found to be

2 -

- - (] b 'c tana. E )
r,_=sr +—————— ’ '
br b zmbrb Bo . .. (57)

where the phase mixéd beam envelope in the absence of Er is defined by

:Fb = [r; + (rV, sin? o /fuy cos qm)];’ . o (58)

This expression is obtained from r by setting Yo * T and ag= ap.

’ . The condition from Eq. .'(57) for neglect of radial electric field effects

“‘ on radial expansion is then

:’ - 2mrd w" r2 B2

, £, <« —1 2 5 .92 x 107 (-2—9-—-) Volts/cm (53)
é » . er. tan. % Fe tar? e .

where the last equality applies for proton beams with Fb (em), r. (cm) and

Bo (gauss) measured in Gaussian units. For a 5 MeV péoton beam with
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Er <<2 x 10® kV/cm.

ol 0.6 cm, ay * 0.2 radians and Bo = 40.0 kG, Eq. (59) becomes
.Typica11y, this condition is easily satisfied since

E. is determined only by magnetohydrodynamical effects and thermal effect.3

From this analysis, one can also show that axial bunching is unaffected

by the presence of small radial electric fields.

The beam ion orbits given in Eqs. (9) and (10) for a straight channel
or in Eqs. (35) and (36) for a tapered channel are then appropriate if the

conditionson I, E, and E. set forth, respectively, in Eqs. (11), (S5), and
(59) are satisfied. Under these conditions the beam propagates within the
channel with an envelope Fb given in Eq. (58) for a straight channel and

in Eq. (38) for a tapered channel and experiences negligible radial spreading

or slowing down while traveling a distance Zyy the length of the channel.
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VII. PROPAGATION IN A BUMPY CHANNEL

Since the z-discharge plasma channel is formed microseconds before beam
injection, the possible growth of sausage type instabilities can make the
channel appear bumpy when the beam is injected. It is of value to understand
how this bumpiness will affect beam propagation over diétances_of a few
meters. Consider the situation where the channel radius varies sinusodially

in z such that the magnetic field is given by

"B r
0 . A
’ r<rc(1-2-cosxz)

ro (1 - % cos xz)?

B.r *

g c . or> r. (1 - % cos xz) (60)

where B = ZIO/crc, Io is the channel current and 27/K is. the wavelength. of the

bumps. If A << 1, then the magnetic field insi’de the Achannel is approximately
By = (Bo r/rc) (1 + A cos x2) E (61)

and the radial equation of motion for a beam ion which is confined within

rer, (1 - A/2) becomes
r=- (“’cbi r/r.) (1 + 4 cos kz). ' (62)

Using Eq. (62) and the energy conservation equation, an: equaﬁon

for r(z) can be obtained,

. : r
.. | +<3—§’] Toicosa

ez = Te'o

2
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where mivg/z = const js equal to the accelerating voltagé. Writing Eq. (63).

in a more convenient form

a2 R _- 32 :
;.;'-[H(%%’.] R®B +ecos2s) |, (64)

+2

where R = kr/2, s = xz/2, 8 = 4k2 , € = B4, and K% = ugp/rV,. This-

equation closely resembles a Mathieu equationqand can be solved using the

5

method of multiple scales.” For Kr/2~ 0(e) and e<< 1

R = eRy (so,s],.. ) +e’R2 (sq» Sys -+ IR SV -

4 .3 .. 2 22
o aso‘i'e-gl“'e asz-l-... R

= 2
8 Bo+e81 +e.82+... .

vihere Sp * s, Expanding Eq. (64) and collecting terms of equal order in

e"", one obtains

sz O . . ~(65)

,. MR L, R, - ‘25 )
€% — 8 % - —— - + COs 2S .
: oRZ 38,38, | 1 %1 o (66)

and higher order equatfons. Note that the (dR/ds)? term in Eq. (64) first

appears in the 0(e?) equation. The solution of these equations are oscilla-
torys’q except near 8 = n? or :c-ZE/n where n is a positive integer.

-1
¢

*importaht case to consider. Solving Eq. (65) with Bo = ] ylelds

Since typically x ~ r for the sausage instability, n =1 is thg most

25
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R, = A(sl) exp (is ) + A (sl) exp (—150) 67)

where A is the complex conjugate of A. Substituting this expression for
R] into Eq. (66) and removing secular terms results in an equation for A(s]).

Solving this equation one finally obtains
r(z) = (% - B])ls fa; exp (z/2) _3 exp (- 2/7)] cos (kz)
- (3 + Bl)k [a; exp (2/Z) - a, exp (- 2/2)] sin (kz) ,  (68)

where |31| <%, z = (2/ka) (% - B%)'l5 ‘and 2, and a, are constants. For

'Bl' > % , the solutions are osci11atohy. If the initial conditions for a

-given ion are such that 2 # 0, the orbit of the fon will exponentially spread

in radius with an e-folding length of

r.vY

Z>2
- W' (69)

0
where io applies when B]~= 0. 1In order to confine such ions over a distance
z, requires z, >z, or
-rV
A<.‘23’—(_9._")’i .
t Y% - (70)

This requirement is very difficult to satisfy since the orbits exponentially
expand in radius. For typical parameters, such as those used previously

in Fig. 4, Eq. (70) requires that the channel radius not vary by more

than 0;45%! Fortunate]y,the resonant region is narrow and K-rEI in typical

10
systems 1{s well above the resonant region.

There are two possible solutions to this resdnance problem: (1) prepare

the channel such that x>> 2 k modes will be selectively excited if the channel

. 26 '- *




becomes unstable (i.e., x is off resonance as occurs naturally), or (2)
prepare the beam such.that the ions will be focused if unstable x = 2k modes

are excited in the channel (i.e., inject ions with a,>> 3y forB, = 1).

If the first method is used all the ions will have stable orbits and
will remain confined. As already mentioned, this method 6ccurs naturally
since z«'r;1 > ZE, however, the possibility of obtaining additiona! focusing -
using the second method warrants investigation. If the second method is

chosen an ion entering the channel at o must have an injection angle of

o’ (71)

in order to exélude unstable orbits. This condition is found by setting

3 = 0 in Eq. (68).s0 that

r(z) = a, exp (~2/2) cos (Ez + w/4). ) - (72)

- e

Here,the ions are actually strongly focused when zt/Z > 1, where z, is the

channel length.

In order to ensure that an ion remains at least on a stable trajectory
requires

!az/all 2 '/2- exp (Zt/i) s (73)

where focusing occurs whenever lazla]l exceeds the value of the right hand
side of Eq. (73). From this result one finds that3 must be known within an

accuracy given by

PO N Ao
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- < exp (-

Bo I - "3 p (- kL A/4) (74)
in order to choose the proper injection conditions for focusing Eq. (71).

With g = 4ucb/rcvoz’ and A<< 1 it is presently not possible experimentally
to obtain the shot to shol consistency necessary to satisfy Eq. (74).

Mthough the possibility of obtaining additional focusing is enticing,
the prospects of using a bumpy channel to achieve this goal are not very
good. Thys method (1), which avoids particle resonances by selecting

E'<n/2, appears to be the best approach to prevent beam expansion. Using

x-rc°1 and Eq. (1]) this condition on k reduces to the following condition
on %,
2 2 ;5
@, <0.5 (1 - r2/r2)* (75)

Thus, for a given channel radius and beam spot size smaller injection angles
are preferable in order to minimize this resonant effect. In the numerical
results which follow, the worst case is considered with a = 0.2 rad which is

at the upper end of the proposed operating range of 0.1 - 0.2 rad,

To this point, the analysis has only dealt with small variations in the
channel radius. When larger variations in the channel radius occur ,
analysis of Mathieu's equation shows that the unstable resonant region about
8 = n? broadens.? Since A<<1 no longer holds, the previous analysis of
Eq. (63) breaks down and a numerical analysis is required. The equations

of motion were solved for an ion injected into a bumpy channel where the.

larpe smplitude bumps were modeled by a square waveform which replaces Ehe

sinusoidal vaveform given in Eq. (60). Ions move in the magnetic field
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2 r/eri(z). . rer (2)

By = . (76)
Zlolcr » > rc(z) ’

where rc(z) is the local channel radius and I js the net current. The
amplitude of the bump was randomly varied in order to more closely simulate
the experimental situation where the "bumpiness" is not expected to be uni-
form. Ions were injected into the channel in the same manner as discussed

in Sec. III.

Some of the results of this work are shown in Figs, 7, 8, and 9.
Figure 7 shows the percentage of beam jons which are lost from the beam
channel (i.e., lr(zt)|> rc) as a function of target position for a beam
injected into a bumpy channel with a distribution function at z = 0 given
by Eq. (27). When 27/x = 3.77 cmand A =% , 53% of the beam is lost at .
6.0 m downstream while 9% of the beﬁm is lost at 6.0 m downstream for A = &.
Ions are only removed from the system if |r(z)|> 2r, at some point along the

trajectory of the ion.

Figure 8 clearly shows that there are fewer ions lost as the wavelength
of the bumps is decreased below about 4.0 cm. Here, 2n/x = 6.9 cm satisfies
the resonant condition (8 = 1) found earlier for a, = O.Z‘rad, and also
agrees well with the peak of the curve in Fig. 8. The peak of the oy ° 0.1
rad curve also agrees well with the predicted value of 2n/k = 13.8 cm. The
resonant wavelength (2n/x) regime is considerably broadened for A = Js compared
with the very narrow resonance predicted garh‘er for A<<1. The _réd;ial
beam density profile is plotted as a funﬁtion of axial position in Fig. 9
for a beam injected into a bumpy channel with 27/x = 3.77 cm and A = ki As

the beaﬁ propagates downstream coherence is ﬁuickly lost due to the bumpiness
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of the channei; hence,beam rippling is unimportant here. As the beam pro-
ceeds farther downstream, the beam gradually expands and the radial profile
develops a broad low density tail. At 6.0 m downstream 53% of the beam ions
are located at radii greafer than Tes while 20% of the ions are located at

radii less than r./ V10 .

Again in order to verify that azimuthal motion does. not drastically modify
the results, the extreme case vas considered where ions are injected into the
channel with equivalont spreads in v and vg. The numerical results are |
shown in Fig,' 10 and should be compared with the results presented in Fig..

9 where only motion in the r-z plane is considered. Since more particles are
injected at larger angles to the axis wﬁen azimutha] motion is included than
when only r-z motion is considered, ions are lost from the channel slightly
faster. Approximately 75% of the ions are lost from the channel 6 m downstream
when & = 0.2 rad and 2n/c = 3.77 cm. As with case.vhere only r-z motion

is considered, much fewer ions are lost if % is reduced to 0.1 radians for

2n/x = 3.77 am.

The loss rate is not significantly modified when nonuniform net current
profiles are considered. If By ~ r?, numerical simslations show that 60%
of the ions are lost from the channel after 6 m of propagation for the same
parameters as used previously in ng. 9, where Be ~ r and 53% of the ions

were lost.

From these results, it can be concluded that, if possible, modes with
k> 2k should be selectively excited if the channel is unstable to sausage
instability. For example, if:<> 8k ,» then less than 2.0% of the ions will

be scattered out of the beam 1n the first two meters of propagatwon even for

4 as large as 4. The most dangerous case which must be avoided arises when




s 5

x = 2k . It should be pointed out again that for a typical channe1, the most
-1 1
e
the extreme case of a 5 MeV proton beam with o = 0.2 rad (2k = 0.9 cm']).

unstable sausage mode has k-~ ~ 2.0 cm™' which is off resonance even for

For a 5 MeV proton beam with an ® 0.1 rad, x~ r;] is well off resonance

since in this case 2k~ 0.45 cm".
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VIII. CONCLUSIONS

The purpose of this work was to establish the groundwork for a basic
understanding of intense ion beam propagation in a z-discharge plasma
channel. It was implicitly assumed that the channel remains unaffected by

the passage of the beam. Although there is evidence3

that this may not be
a good assumption at the tail of the beam, the analysis présented here.does
correctly de5cribeAthe physics of the forward portion of the beam. An | b
investigation of the physical processes which will affect beam propagation
at the tail of the beam is the subject of on-going research. Effects on

beam propagation due to azimuthal beam ion motion are under further investigation.

The results presented here indicate that good radial confinement of the

beam during'propagation in a stra?ght channel requires that the radial and

% axial electric fields remain small. Equations (55) and (59) set uppér limits

- on the allowable field strengths on Ez and Er,respectively. If the condition
on E, in Eq. (55)_js not satisfied, significant radial expansion and slowing
1 down of the beam is expectéd as fhe beam propagates downstream. If Er does
iﬁ% not satisfy Eq. (59), the equilibrium beam radius is significantly increased )
! over the beam radius in the absence of E.. These restrictions on E, and Er
can be easily satisfied experﬁnentany. by proper chioice of channel parameters. ' S
If the conditions in Eqs. (55) and (59) are satisfied, it was also found
?3i 14 that ax1a1 bun¢h1ng {s unaffected by fhe presence of small radial or axial

electric fields.

Because of the small fon injection angles, coherent rippling of the

beam could continue for distances of several meters. In the absence of

other significant phase mixing mechanisms, the rippling 1is evtntuﬁilybphase

2 | I |
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; mixed out due to a dependence of the ion betatron wavelength on the jon 1 g
% injection angte. Anaiytic results show that the phase-mixing distance is

' given by z, = (4u/3 a;) (rhvo/”cb)g and numerical work confirms this result.

The numerical analysis also shows that the beam density on axis after phase

mixing can exceed the beam density on axis at injection by about a factor of

two. This corresponds to a beam radius at half maximum dgnsity after phase

mixing of about 1/vﬁ? times the original beam spot size at injection.

Numerical results show that azimuthal beam motion does not modify the beam ripple
wavelength or the phase-mixing distance but does somewhat reduce the final beam

density on axis.
Beam prupagation in a bumpy channel was also fnvestigated in order to

éssess the problems involved if the beam is injected into a channel which

was subject to growth of sausage type instabilities. The analysis suggests

that if the channel is unstable « Z.BE modes should ﬁevselectively excited -
in order to avoid particle resonances which could deplete the beam by {
radial expansion. For a typical channel, this is accomplished with little |
effort since the fastest growing sausage mode satisfies k > 2k, Using the

same resonant mechanism to he1b focus the beam does not seem practical since
unusually fine control of the beam and channel parameters is required. Numerical

work - shovs that azimuthal beam motion does not alter these results.

Radial compression of the beam can be achieved by inaecting the beam

into a tapered channel. In this case the radfus of the beam converges as
1 - z/L)!5 in a channel which has a linear taper, [i.e., rc(z) =r. (1-z/L)].
When used in conjunction with axial bunching, radial compression can enhance .

the power multiplication obtained from bunching alone by as much as 30%
provided the beam does not burn its own channel. Radial compression will be

somevhat less effective if angular motion is present in the beam.

&Li 3 Future work will involve using the basic understanding developed here
to build a more complete and detailed picture of beam propagation in 2-

dischirge plasma channels.
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An approx:l.nate analytic cxpression for n (x,z) can be obtained for |

the injected distribution function given in Eq. (18), if phase mixing ;
can be ignored. This is rcasonable as long as z<z - In this case the i

ions can be propagated forward in z by using Eqs. (16) and (17) with

wat = wz/A c Integrating the distribution function over velocity space i
yields
[ 2 -2
tf +x] (2)] /r o0<r<r, (2)
‘ n, (;,z) = N(z) . ZrI(z) rl(z)§r<r2(z) ,» (A1)

' : \[: + r, (2)] [r3 (z)-r] /2r r,(z)<r<ry (2)

for 0<z <z = (lr/n) 1"an'-1 (E;BrSIZVoam),

1

[2 + ri (2)] /r O<r<r,(z)

ny, (r,z) = N(2) ([t—r (2)]? + [r,(2) + rl(z)]z) J2r . ry(2)<Ter,(z) ) , (A2) 1
[+~ (z)] [ra(z)-rJIZr S ORI INOR B

for z Szs3z) = O- /™) Tan™ (wB /va ) , end

rl(z) + rz(z)]z[r | 0<r < rz(z)

By (£,2) = N(2) . '(_r - 5@ + [ry0 + 7, 001) 2)/zr r,(2) < T<r (2)), (A3)

i ] _
r+ 1, (z)] [r3(z) -r]/2r rl(z)<r<r3(z)

for 2,424\ /2. Here r (z) = &oam,ﬁB) sin (W2/A ), r, (2) = r, cos (nz/) )
-r,(z),r,(2)= 1, cos mz/A ) + 1, (2), end N (z) = 2 ;b ri/r1 (z) [r3(z) + tz(z)]z-.
‘ For A _/2525h_ , my .(r,z) =n (£, A -2).

An approximate expression for the_ phase mixed density profile (z >zn) is

§ simply obtained by averaging 0, (r,z) over the ripple length, so that

i - e riee g

k! A ' . . .
1 o= [T omy (r,2) dz - e
4 © : : . . .

- gy,

This result is plotted in the upper right hand corner of Fig. 5.
. " A
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FIGURE CAPTIONS

Trajectories of typical ions injected into a z-discharge plasma channel

from the focusing region to the left.

ITlustration of beam rippling with a coherence length of z.. Here the beam
envelope, tb(z), is plotted as a function of axial position for the distribution

functioa given in Eq. (18). For the proposed parameters, z. is typically a

few meters and Ty is about 0.5 cm.

Flot of coherence length for beam rlppl1ng as a function of maximum

~ injection angle.

6.

I1lustration of beam rippling at z2< z, for the distribution function
given in Eq. (34) with r, = 0.6 cm, u_y = 3.8 x 10° sec™', v = 3.1 x 10°

cm/sec, r

s = 0.4 cm, and an = 0.2 rad; ny is measured in arbitrary units.

I1lustration of nearly complete loss of coherent beam rippling at

z> 2z, = 230.6 cm for the same beam as shown in Fig, 4.

I1lustration of nearly complete loss of coherent beam rippling at
2 = 50 cm due to enhanced phase mixing causea by a nonuniform channel

current profile. Here Be - r’_and all beam parameters ere the same as -

in Fig, '/ 4.

Percentage of beam ions fost vs axial position for a beam injected into
. . .
a bumpy channel with re® 0.6 cm, rg ® 0.4 cm, V° 3.1 x10 cm/sec.

= = s o
% 0.2, and Io 1.2 x 10° A

Percentage of beam fons. lost vs wavelength (2w/c) of the bump for a

5 MeV proton peem fnjected into a bumpy channel. Here r_ = 0.6 cm '
and rg -'0.4 cm for both the o = 0.2 rad’(lo =2 1.2 x 10% A) and the

ay = 0.1 rad (Tg = 3.0 x 10* A) curves. The shaded region indicates the

38




i ~ proposed operating regime (r. <0.6 c) which could develop sausage type
3 ; c

instabilities.

9. Plot of the beamldensity profile at various axfal positions for a beam
injected into a bumpy channel. Here A = v r. = 3.77 cm, & =35, and
all other parameters are the same as in Fig. 6. n, is measured in

| arbitrary units.

E | . ‘ :

3 10. Plot of the beam density profile at various axial positions for a beam
injected into a bumpy channel. Here, the jons are injected into the

channel with a spread in v, equal to the spread in v and all other

parameters are the same as in Fig. 9.
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APPENDIX 4. Ion Orbits in a Non-Current
Neutralizing Environment.
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Assume an ion beam coming in paraxial under self Be(r,z).

Q'/\

Ry > v om e

~, ~
>

2

increases as the radius

Z*o .
We now follow ion orbits assuming that self By
We also

of a given ion decreases because the current envelope decreases.

assume E = 0.
Instead of writing down all equations of motion we use energy conserva-

o5 dori oA iR

tion and the equation for vr(t).

2
N eIy
dz eB,(r)
) d r
A it AR R O LR DL

IR) /2
and since v (z220)=v, B, = —%).%‘!292, = h.s-:_o'a.v;v

old

vzsv(1+E:7.§-f;° %dr)

10° .
=v (4 . 1;3* - bn (z/R ).
4.5°10725-934% . 355 * 1

v, mv (1 +% %:v, In (£/R)) = v(1 + F{r))




notice that F <0 since r < Rb'

We now use Eq. (2) in Eq. (1) for vr(r).

v e va-a+ran®df = -1 -or -k

vo= (v B -2t = ve e - I7E o - LELE

I(R )i

I(R) R

It is cobvious that we may integrate %f = V. and find r(t). It is, however,

of interest to find the orbits directly. We now use Eqs. (2) and (3)

21 % i
o v 1.6 2R A-3F08
az'=-!'=(°) —-—'T—-o—ﬂm R /x T &)
+4 Vz v{ ,O 1-3$%R/r a

While Eq. (4) may be integrated exactly (even if Rb/r becomes big enough so
‘that v, < 0 the solution gives a correct back curved) the only problem may ’ : 1
be particle orbit crossing and that may be cross checked after solving for ;

r(z,Rb) for different Rb and see if crossing occurs. If it does then at the

P

crossing the whole formalism fails since the magnetic field does not follow
IR)
50 °

In the following we restrict ourselves to . ;

h 1
BJM%R«I %)

which implies for V=1 MV I =0.1 MA that in Rolt ~ 1 to 2 is acceptable.

First wve use Eq. (5) in (4) and integrate the resultant equation
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I(R) -
%£=()16—-=—Fm%k/r (6) o

ve ° 4

change variable to y =R /r = r = R ey :

= dr= (-)R_ e dy
° (R ) L

f --;5-_-—' () 1.6 -——Ef- 4z

Ve

_In order to arrive to the same z(=L) independent of the Ro for a given

Y (say Y = 1 which gives a radius reduction by a factor e).

Y .-y 1.6 i’(k )
r & dy _
—Tx = —2— Z (Y) ("
° R.:,-‘J4
f%R )
we see that the solution to Eq. (7) is a focus for all Ro if R = const,

o
which is I = c:‘on:l{a2 achieved only for a uniform current distribution. The

distance to the focus is given by

i
® 4 -’
R v Y Y 4

zZ= 2 . ." €
1.6 x Ii(Rb) ¢ ;5

for Y > 1 the integral does not grow fast and we anyway are restricted up to

values of Y ~ 2. We now need a tabulation of the integral as a function of Y.

We use the value of Y = 1.5 (which gives a radius reduction by a factor of 4.5

and an area reduction of 2C). The focal distance is then

et W r s, e -




forVs0.SW I=0.053MA Ro = 1.25 em

Z = 6.06 ca.







