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I. INTRODUCTION

In the last year the national program of particle beam drivers for

Inertial Confinement Fusion (ICF) has been shifted from Relativistic Electron

Beams(REB) to light ion beams. The major reasons for preferring ion

beams were the high efficiency of generating them using present pulsed power

generators coupled to ion diodes, focusing and transporting the beams, and

bunching them in plasma channels. Many of these results have been achieved

by the NRL program supported by JAYCOR. In particular, we have

proposed the possibility of increasing the power of the ion beam by reducing

the pulse length from the 100 ns to 20 or 10 ns needed for ICF targets.

In the present report ._concentrate on the physics of propagating

intense ion beams in plasma channels. In particular, we -;,er tdto the

theoretical aspects.of the possible effects during ion beam transport on

the structure of electromagnetic fields in the plasma. The ion orbits

were solved for different classes of plasma channels including bumpy ones

in order to evaluate the sensitivity of beam losses due to channels that

deviate from idealistic shapes. The consideration of different plasme

instabilities, the hydrodynamic motion of the plasma, propagation in fila-

mentary channels and beam energy losses put realistic limits on how WA*

ion current can be propagated using the simple steady plasma channel concept.

Axial bunching of the beam (via time dependent voltage ramping of the ion

diode) was analyzed and found to be a sound concept as long as no more than.

an order of magnitude pulse compression is attempted. The radial compression

is viable on a small scale in tapered channels (giving a factor of 2 increase

in current density) and on a large scale if self magnetic fields fully pene-

trate the media (giving rise to an order of magnitude increase in ion beam

current density). Further theoretical investigation on the details of



\4bove mechanisms are presently in progress including new plasma channel

schemes that help to push upwards the limits on the ion currents.
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I. SUMMARY OF WORK

The theoretical studies were performed along the same approach as

envisioned in the proposal with additions that further clarify each subject.

1. In the area of beam-plasma instability, the following results were

obtained:

a. The initial plasma current was found to be about 50 kA for

present ion beams.* The gas deuterium was shown to be preferentialL3
to hydrogen with the needed density 10- g/cm.

b. The electromagnetic Weibel and Whistler modes were studied

and found to be unstable; however, they do not grow fast enough

to seriously affect beam transport.

c. In the transport channel, where electrostatic modes are

collisionally stabilized, these electromagnetic modes are the

most dangerous instabilities. But for lower plasma densities

and higher temperatures the electrostatic modes are the fastest

growing.

2. Ion Beam Bunching.

a. The ion beam energy fluctuations cause pulse broadening but

power multiplication by a factor of 5 is easily obtainable.

b. Ion orbits in filamented channels have been studied resulting in

limits on the tolerable level of Jitter in the ion beam current

density profile. If these limits are violated, beam transport

will be affected, particularly at the tail of the beam.

3



c. Exploring the phase space picture of the ion orbits as defined

at the initial injection point leads to conditions for minimizing

the amount of beam rippling in the channel. Voltage ramping,

4 ion scattering during transport and non-ideal magnetic field pro-

files all decrease the usual ripple phase-mixing distance.

d. The optimum plasma and beam parameters for transport of a given

current density ion beam have been identified to have injection

angles a < 0.2 (values of a - 0.1 are preferable but difficult to

achieve) and ion currents of less than 1 MA in the 1 cm2 channels

studied. The major limit on bunching is not a but voltage fluctua-

tions.

3. Radial Compression of Ion Beams.

a. Studying ion orbits in a tapered z-discharge plasma channel

has indicated that radial compression of the beam used in con-

junction with bunching can enhance bunching power multiplication

by at.most a factor of 1.3.

b. The ion orbits computed in the steep gradient magnetic fields

(generated by either imploding plasma channels or expanding ones)

are similar to those of constant current profiles in the plasma

but need somewhat larger current for confinement. The major

result is that one has to start with initial current above the

initial minimum current required for confinement, since plasma

expansion sweeps out the linear magnetic field with it generating

steep gradients.

c. The self fields and ion orbits were determined for the case

where current neutralization does not occur. Focusing at a

4



distance shorter than a quarter of a betatron wave length was

found. The self focusing increased the current density by more

than a factor of ten.

d. The sheet ion beam converging in cylindrical geometry with a

center line of symmetry and a plane perpendicular to the line with

anti-symmetric magnetic fields was shown to follow a similar ion

orbit pattern to the tapered z-discharge (3a) but with an additional

current density increase of r 1 . It any prove useful in final

focusing near the pellet.

!iI
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II. THEORY OF IOt BEAM BEHAVIOR IN PLASMA CHANNELS

We first discuss the beam-plasma instabilities in a given plasma

channel describing our basic considerations for choosing the specific set

of initial plasma parameters.

1. Beam-Plasma Instabilities.

The initial values of the MHD fields are dictated by the fact that

the ion beam was assumed to have about 1 cm2 cross section that is a little

smaller than the confining low density plasma. The plasma was chosen to be

hydrogen (or deuterium that has twice the mass density for the same plasma

density number of electrons) and is fully ionized in the channel. The needed

plasma current is about 50 kA, enough to confine 5 MeV protons with spot

size &'" smaller than the plasma channel and injection angle of 0.15 radians.

Since the plasma stopping power is (when fully ionized) 10/V i MeV/g/cm2,

where Vt-ion energy in 1eV, and since propagation over distances of 5 meters

may be necessary hydrogen densities less than 4 x 1018 cm-3 should be used

for less than 10% energy loss. At the same time the hydrogen density cannot

be decreased by large numbers to say 1017 an- 3 since the plasma expansion is

too rapid for ion beam current densities of Ji = 0.5 MA/cmz. The plasma

expansion is computed from Jp x B, the pressure induced by the return current

p=" J i. This gives an equation for the radial velocity Vr,

dVr J D J1 x B
P tUr- c "- - ,

where p is the plasma density (g/cm3). For a linear estimate

"J] Bt

r PC
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which lmlles that a 1017 cm 3 hydrogen plasma reaches a velocity of 108

cm/s during t a 50 ns for B - 2 x 104 Gauss (I = 50 kA, r = 0.5 cm). This

expands the plasma radius beyond 2 cm and thus ion beam current density

reduction by a factor 16 will occur. In addition, very large return current

electric fields due to plasma motion (if a + m the electric field is given

by E - r > 104 V/cm) cause unacceptable energy losses (all 5 4eV are

lost in 5 meters of transport for the above example). Thus, hydrogen

density must exceed 1 x 101" cm 3 .

An initial plasma temperature of a few eV is obtained in equilibrium

for a 50 kA channel current. The heating of the channel electron to 50 eV

is due to the plasma stopping power (resistive heating is negligible). The

ion beams were thus studied in the above parameter regimes taking into

account the effect of different temperatures and different current profiles

as the plasma undergoes expansion. The plasma responds to the ion beam on

a long hydrodynamic time scale1 and on a short, velocity phase-space time

scale that can excite fast field instabilities. We assume that the two time

scales are separated enough that we may treat them with a semi-static approach,

computing a Vlasov formalism during different hydrodynamic states. In

future work we may resolve the coupling between the two phenomena when no

large time separation exists.

Velocity space electromagnetic instabilities, which lead to azimuthal

I and radial current bunching in the channel, have been studied. In particular,

growth rates for the Weibel (.B = 0, k.Vz-O) and Whistler (k x B -- 0,

kV a 0) instabilities are derived In Appendix 1. Although electrostatic

instabilities typically have larger growth rates than electromagnetic

instabilities, here the Weibel and Whistler modes have the fastest growth

because of collisional damping of the electrostatic modes.2
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The plasma electron current is the main driver for the Weibel insta-

bility and the ion beam current is the main driver for the Whistler insta-

bility. Both instabilities have relatively slow growth rates so that, at

most, 1-2 e-folds occur during beam passage for typical systems. Nonlinear

saturation probably is not reached during the beam propagation time, however,

the late time level of current bunching can be estimated using the predicted

e-folding numbers and the initial perturbations in the system. Such pertur-

batlons are most likely produced by jitter in the beam current density (see

Appendix 2). Since both instabilities are nonconvecting, beam ions

generated at the tail of the pulse are most affected by the current bunching.

2. Ion Beam Bunching.

The effect of diode voltage fluctuations is to set up a variation

around the ideal voltage shape and since the ion velocity is vi  Vh,

one finds that

svi =v 6V
v vi  V

The spread in arrival times to the target is derived from L =vita where

6(vita) = 0. Thus

St. ' 66vV
ta v - -

Here L is the target distance and ta is the arrival time on target. The

arrival time is related to the pulse time by a simple relation to the L

required for voltage ramping by the amount AV during the beam pulse time

tpulse:

La 12 v V

i( tulse)*

____-~-..~8



Using now L v ita we find that
v a

ta TV tpul se"

The result for the broadening of arrival times is that

V 6Vat = v V tpulse

Since one typically ramps the voltage by AV < -V and since the power multi-

plication is given by M - t one finds that6t

2M -P 1

The spread in arrival time due to betatron orbits is found by comparing

motion of ions on axis moving at full vz = vi with ions with finite a
moving at v = (v2 - Vr) , where vr = cos WBt . For small a

vz = vi(l - a2 cos2 WBt)

Averaging over one betatron orbit, < vz > = V1(l - 4 a2). This gives a

change in arrival time of 6t = t > c 2 pulse which for a = 0.1 is

* only 0.01 of the original pulse length adding 10% to a beam bunched by

M = 10. Even for a = 0.2 this adds only 40% pulse broadening (for M = 10).

We thus conclude that power multiplication by factors of 5 is an easy task

since only about 10% accuracy in voltage shaping is required and no signi-

ficant effect is expected from betatron orbit lengthening for a < 0.2.

. . . , . . . -... . , . . .j , .i,,. , = k ,-., .- -.. - - ~ iI9
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Ion beam propagation in a filamented channel is investigated in

Appendix 2. The filamentation is a result of either radial or azimuthal

current bunching produced respectively by either the Weibel or Whistler

instability. In both cases the results of analysis set limits on the

initial level of jitter in the beam current density. If the initial jitter

surpasses these limits, beam transport will be affected. When operating

above the radial current bunching limit, the beam will either be expelled

from the center of the channel or be pinched into the center of the channel

depending on the phase of the initial perturbation. When operating above

the azimuthal current bunching limit, the beam is depleted in time as

increasingly more ions are lost to the dense plasma surrounding the channel.

Typically, these current bunching limits are not expected to be reached so

that good transport is anticipated. If higher current levels than expected

are reached, only the tail of the beam will be affected since the modes

are nonconvecti ng.

Coherent rippling of the radial beam envelope is investigated in

Section III of Appendix 3. This phenomenon is easily understood by explor-

ing the phase space picture of the ion betatron orbits as defined by the

initial injection conditions. In the absence of other mechanisms, the

rippling eventually phase mixes out after many ripple wavelengths due to

the weak dependence of the betatron frequency on the small spread in ion

injection angles. Other mechanisms, such as voltage ramping, steep gradients

in the magnetic field profile (Be--rn for n > 1) and ion scattering during

trasnport can considerably reduce this phase mixing distance. In order to

minimize variations in the beam radius, rb(z), at the beginning of the trans-

port channel, the channel should be matched as well as possible to the

beam. This is accomplished by setting the betatron frequency equal to

10



v!n/r s where vi is the beam velocity, am is the maximum injection angle,

and rs is the beam spot size.

At the end of the transport channel the phase mixed density profile for

the ideal (Be-r) magnetic field profile shows a strong peak on axis, varing

like r"1 as r - 0. The addition of beam angular momentum reduces the central

density, however the beam density profile will remain peaked on axis since

minimal azimuthal ion motion is observed in shadow-box experiments.

Given the information obtained from this work, one can arrive at a set

of optimized plasma and beam parameters for transport of a given current

density beam. Eqs. (11) and (27) of Appendix 3 set upper and lower limits

on the required channel current. Eq. (11) states that the channel current

must be large enough to confine the beam and Eq. (27) states that the channel

current cannot be so large as to produce a large degree of beam rippling.

The electromagnetic instability analysis sets limits on beam quality (Eqs.

(13) and (26) of Appendix 2). The electrostatic instability analysis gives

a lowar limit on the plasma density (Eqs. (11) and (31) of Ref. 2) where

the limit depends on beam parameters and the plasma electron temperature.

MHD code work provides T e(n ) for a given beam. MHD considerations also

provide a lower limit on the plasma density from plasma expansion considera-

tion as discussed earlier in Sec. III-1.

The ideal target irradiation time and the initial beam pulse duration

determine the required bunching factor which in turn specifies the channel

length for a given voltage ramp. The required bunching factor also sets an

upper limit on the spread in ion beam injection angles (Eq. (14) of

Appendix 3) and a limit on the variation of the actual voltage ramp from the

ideal ramp.3

11m



3. Radial Compression of Ion Beams.

The radial compression of ion beam current density was investigated

for the possibility of using either self magnetic fields or externally

applied ones. In general, the gain in current density is obtained at the

expense of turning a relatively cold beam into a hot one. In principle,

for any given beam there will exist a given structure that may bring about

the highest radial compression possible into a given focus. Since reality

sets limits on the possibility of constructing such fields we have considered

in the present studies rather simple geometries and divided them into two

classes: self fields and external fields. The case of steep radial (and/or

axial) gradients shows confinement and radial compression if currents beyond

those needed for uniform current distribution are driven in the plasma. The

basic orbits were studied in Appendices 2 and 3. Based on these results,

recent studies in that direction may provide easy experimental ways of

i tgaining factors of 4 radial area compression; these studies are presently

being pursued. We now turn to the weak gradient case.

In order to investigate the value of radial beam compression, ion orbits

in a tapered z-discharge channel were studied (Section IV, Appendix 3). A

multiple scales analysis was used in order to properly treat the slowly

decreasing channel radius. Although the amplitude of the ion betatron orbit

does decrease as the ion propagates down the tapered channel, the amplitude

decreases slower than the channel radius. Thus, the effectiveness of radial

compression is limited. When used in conjunction with axial bunching, radial

beam compression can enhance bunching power multiplication bya factor of 1.3.

The self magnetic field radial compression was also studied. In the

case of a fully non-current-neutralized ion beam the ion orbits were computed

in the self-consistent magnetic field assuming zero electric field. The

12



I
ions are assumed to enter through an entrance foil with small transverse

kinetic energy. As these orbits converge, the magnetic field along particle

orbits increases as r"1 as long as no particle orbit crossing occurs. This

is justified for the case of a uniform current distribution (see Appendix 4),

and total ion current much less than the Alfven current (IA = 3.1 x 10 1

amperes) and radial compression ratios of 5 giving current density increases

of 25 before the cold flow breaks down. In future studies, attempts may be

made at a Vlasov formalism that includes particle orbit crossing in order

to see how much compression may be obtained. In addition, realistic time

dependent effects, such as different current profiles, voltage variations,

inductive electric fields and finite rise time of magnetic fields should be

studied.

When a converging sheet ion beam was treated in a cylindrical geometry

using magnetic field structures that have azymuthal symmetry but are anti-

symmetric with respect to a plane perpendicular to the axis of symmetry, it

was found to be very similar to the tapered z-discharge. The reason for

that is the antisymmetric current flow which, after converging to the axis, is

divided into two halves, each going in opposite directions through the two

poles. The B field thus goes as r 1 and drops linearly inside the plasma.

Ion orbits thus converge geometrically like r 1 and in addition, are compressed

by the same effect as in the radially compressed beam in the tapered z-pinch.

Future theoretical work in this area of ion beam focussing, transport

and bunching will expand on the work presented here. In particular, work is

in progress studying new plasma channel schemes that help to push upwards the

limits on deliverable ion currents.

13
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APPENDIX 1. Electromagnetic Instabilities in a
Focused Ion Beam Propagating Through
A Z-Dlscharge Plasma.



ELECTROMAGNETIC INSTABILITIES IN A FOCUSED
ION BEAM PROPAGATING THROUGH A

Z -DISCHARGE PLASMA

1. INTRODUCTION

In an earlier paper, it was shown that focused ion beams for use in a pellet fusion device

can propagate axially down a z-discharge plasma channel without generating disruptive micro-*1 turbulence due to electrostatic streaming instabilities. The azimuthal magnetic field in the z-

discharge channel confines the beam radially as it propagates. Here the analysis will be

extended to study electromagnetic velocity-space instabilities. In particular, the Weibel instabil-

ity (k • B - 0, k • VZ m- 0) and the Whistler instability (k x B = 0. k • VZ = 0) are investi-

gated, where k is the wavevector, B is the azimuthal magnetic field and V, - i. is the axial

streaming velocity of the beam.

The beam-plasma system consists of a focused ion beam (typically a S MeV proton beam

of 50 ns duration, 0.5 cm radius, and a current of 5 x 10sA) propagating down the axis of a z-

discharge plasma channel. 2 The ion beam is focused at the entrance to the plasma channel (see

Figure 1) with velocity components transverse to z given by YJ V, = tan << 1. A high

plasma density in the channel (np - 10"8 cm- ) insures good beam charge neutralization. 3

• "Good beam current neutralization in the interior of the beam also occurs, so that the total mag-

- Inetic field is comparable to that associated with the preformed channel established before beam

j ginjection. The beam current greatly exceeds that establishing the channel so the electron drift

.j velocity is approximated by V, m - V/no.

Manuscript submitted August 6, 1979.
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OTTINOER. MOSHER. AND GOLDSTEIN

Hydrodynamic modeling of the background plasma 4 shows that a uniform channel not-

current model is appropriate for the early times associated with passage of the beam front. This

* is because the low-temperature channel is established microseconds before beam injection so

that complete magnetic diffusion occurs. Later in the ion pulse, expansion of the beam-heated

high-temperature plasma (T = 25-50 eV) reduces the magnetic field strength in the interior of

* the channel. The built-up field in the expanding cylindrical shock wave is also enhanced by

sianificant current non-neutralization in the cool plasma surrounding the beam-heated channel.

The maximum field strength just outside the ion-beam radius can exceed that established by the

initial z-discharge current by a large factor. Thus, at late times during beam passage, the mag-

netic field distribution is closely approximated by a surface-current model.

In Sec. II, equilibrium models for such a beam plasma system will be described. In Secs.

III and IV, the Wiebel and Whistler instabilities will be investigated. The conclusions which

* can be drawn from this work are summarized in Sec. V.

i. BEAM-PLASMA EQUILIBRIUM

For mathematical convenience, a slab model will be used for the beam-plasma system.

This is appropriate for the case at hand since ions are injected into the channel with small angu-

lar momentum so that the resulting orbital motion occurs in a plane. At early times in the

pulse, the net current (nearly equal to the channel current) is uniformly distributed across the

channel and flows in the z direction. Thus, 3 - By,, where

.B , IxI > a
Here, B. is the peak value of the field and "'a is the channel radius. If the beam distribution

A function fb is written as

fb(VX, VY0 Vd) 7b (vy) 8(v2 + v1 - 2 V'P' ) 2

2
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where P. - m,v. + eA+/c is the axial canonical momentum, A, is the vector potential and nb,

Y, and K are constants, then

RA"s lX < 151: n nb(xr)- , = x (3)
inO lxi > 'b

where rb - Y/e, K - Y,2 - Y), c. - YV2&a and ro, - eB,/mc. A smoothly falling density

profile may be obtained by replacing the second delta function in Eq (2) by a Maxwellian distri-

bution function. The distribution function in Eq. (2) also states that all beam ions cross the axis

4t the same angle and traverse the entire beam radius during each betatron oscillation. A more

*complicated distribution function could be used to model the small spread in angles at which

the ions cross the axis, however little additional information is obtained for the effort. For

mathematical convenience, the form of the distribution function given in Eq (2) will be used

here. It is easy to show that the fluid velocity is given by V - Vi, and that in order for the

beam to be confined within the plasma channel, one must have rb  a. Furthermore, fb can

be written in the more convenient form

fb(v, VD *) _L 8(v,) 8(v - V0 + . ). (4)

where v, U vgsin#, vi V,+vocos and v2-vl+ (v, - V,) 2. Here, V2 is associated

with the average streaming velocity of the beam ions and vo is associated with the oscillatory

betatron motion of the beam ions (vo YoV, - caorb). The beam-ion orbit equations for this

field geometry were solved in Ref. I and the results are summarized in Appendix A.

The distribution function given in Eqs. (2) or (4) provides an appropriate discription of

the ion beam at early times in the pulse. At late times B, - 0 inside the channel and the field

is built-up sharply at the radial edge of the beam. Thus at late times in the pulse

(v, vo, ) &W - V)lxI < ,.

i >+3
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where By(rb + 8) is sufficiently large to confine the beam and the sheath is restricted to a thin

layer such that 8 << rb. Beam ions move in straight line orbits inside the field-free channel.

Within the layer yb, < Ix I eyb + 8, the ions reflect off the magnetic wall, reverse their

transverse velocity and resume their straight line trajectories after reentering the channel. The

distribution function in Eq. (5) also results in the uniform density profile of Eq. (3) and in a

: fluid velocity given by V - Vi z inside the channel.

The background plasma provides complete charge and nearly complete current neutraliza-

tion of the beam. In addition, the plasma also carries the z-discharge current. The high density

desired for good beam neutralization provides for a high frequency of electron-plasma ion colli-

sions, P,, shown' to be larger than w, inside the channel at all times during the pulse. Thus, a

collisional fluid model is used for the background plasma with the electrons drifting with velo-

city Ve = (, V/n,) i..

!II. THE WEIBEL INSTABILITY

Two Weibel instabilities will be investigated, the ion instability and the electron instabil-
ity, which are respectively driven by the streaming of the beam ions and the electron drift

motion. Lee and Lampe s report for electron beams that the Weibel instability grows at a

greatly reduced rate when Vjl V > wj/w., where wo is the beam plasma frequency and a,, is

the electron plasma frequency. Molvig 6 has shown that is possible for electron-ion colisions to

restore rapid growth of the mode. Although the concern here is with ion beams driving the

instability, again both beam-thermal effects and collisional effects are important. Ion betatron

motion will also be important in analyzing the ion instability.

4
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A. Ion Instability

Consider first the situation late in the beam pulse, with fb given by Eq. (5). For assumed

large rb, the perturbed distribution function with E(x) - E expOk.),

Al =e . dr E + I exp i(kv. ,') 1, (6)

can be integrated over r to give i

E.i- I~ + ±v-' E-+ II La- E,-l. (7)A I kv:i 8v,oa, Qol iZ
Here k - ki, and straight-line unperturbed orbits are used since By - 0 for Ix < rb. The

assumption that n/n, << I allows one to write the usual approximate dispersion equation,'

D. -= 0, for the Weibel instability where IwI < v, and

D, = 0 - c2 k2 + -y2 + wy/y,+ . ()
Here w - ij for purely growing perturbations, 6 v, - m>,> ./m, Vz  V, (electron drift motion

is ignored at present) and i. is the beam contribution to D,,;

-4 r 2  k~ kvl 1 fb +V. Of' dkv. (9)
m, ~ 1ivkvJ 8v, + :vI

Integrating by parts and then using the calculus of residues to perform the remaining nontrivial

integration results in

(V' I k(V0+_2V) 2k 2 Vy

k2vA I (+ y 2 /k2 V2) 2  ,

1+W, lV ) (10)
QI + y2/k2VJ)3 /2 J

which reduces to

li 2 2V 1 , f11)

Ab -0 -j-,V V

k2VZ2 k
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for V, > Vp and the limits shown. Solving Eq. (8) for the growth rate, ', one obtains

W ,vS,*j4/ ". o13, 0 < k < k,

'y 2wiltv V, I 1+ 2w 4 *1 k, < k <k. (12)v im II
w2w,c(2V /Vd) 12 (k, - k). k -- k

A where

k- (W2,,V2/ 2'2 V1); k. - (uc) (2 V,/ V) 1/2.

The peak growth rate is given by

YP L_ -'! t k - k. (13)

For nb/np - 10- 3 and V#1/V Z 10- 1, -yp - 106 sec-1 at late times in the beam pulse (note that

Y/ is actually overestimated here since krb << 1). Thus, no significant growth can occur since

PY1 ib Z 0.05; here T is the beam pulse length.

At early times in the beam pulse, Pj is larger due to low channel temperatures so that oneImight expect the growth rate to be larger. It will be found, however, that by including the

betatron motion of beam ions in the analysis, the perturbation is stabilized. In this case, fb is

given by Eq. (4), the ion orbits are found in Appendix A, and fbi is given by

2e"-°m Ofba 0 [
ff dr v,'E1(x') + (v,' - V,) E,(x')

V.- v 1 x' E. I exp(iwar) (14)

It is now assumed that E,(x) E cos kx where k is restricted to a discrete set of values

by boundary conditions at rb with krb Z 1. This choice of EW(x) is reasonble since n, and nb

are both uniform and nb << n.. Thus, the mode is expected to closely resemble the back-

ground plasma eigenmode which is sinusoidal. Here again, the background plasma is treated as

6
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a collisional fluid since Y, >o,. An approximate algebraic dispersion equation is obtained by

taking a weighted spatial average of D=E,(x) where D, is a differential operator in x defined by

_ - + -/2  + - 4rie f vfbld3vX V,

and fbl is given in Eq. (14) (E, z 0). The dispersion equation is then

0 =Dzf dx b=E,(x) cos kx (15)
rb ,z -b

Using the orbit equations for x' and v' found in Appendix A and the Bessel function iden-

tities

exp(± iz sine) - J.(z) + 2 1J2 1 (z) cos 219
I-I

± 2i t J 211 (z) sin (21 + 1) 9, (16)
'-3

and

exp(,z cos 9) - J.(z) + 2 i' J(z) cos Is, (17)

the r integration in Eq. (14) can be performed. Thus, Eq. (15) takes the form

0 C2k2 +y+ COW+ (1)

where in terms of a,(x. vx, v,) and a 2(x, v . v2) vV,
7 -. It fcos ,k f vv I k-1 l + 2 (19)

bb I.~A
The expressions for a, and a2 are given in Appendix B. Terms involving resonances at higher

harmonics of w.[ i.e. (w - mo.) - I for m i 01 are not consikered. The term involving aI in

Eq. (19) is the source of instability. Here, however, because of the betatron motion, this term

vanishes and the mode is stable at early times in the pulse (see Appendix B). This same result

is obtained for odd eigenfunctions, E,(x)- E1 sin Am Mathematically the term vanishes

because the integrand involving a, is an odd function of x (see Appendix B). Physically no

7
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radial current bunching can occur since each ion travels radially back and forth across the beam

profile as it follows its betatron orbit. However, azimuthal current bunching can occur as will

be discussed in Sec. IV.

B. Electron Instability

The only other source of energy available to drive the Weibel instability at early times in

the pulse is the drifting electron background. The drift velocity, however, is actually subther-

ma! since even before beam heating occurs V, = nV ,/n, < u, - (Tm,) /2. Using a warm

collisional model (v, > w, at all times), the dispersion equation for the electron-Weibel insta-

bility is derived in Appendix C. Setting y - 0 in Eq. (C7). it is found that -y > 0 for

0 < k < k, - wcV,1j.uc, where u, - (T/m,) /2. Thus for k < k. and c4> 3p",, Eq. (C8)

reduces to

2.4k 2 V2(v 2 + vmf + ku,2 )0 - C~k 2 + 'iI4U4 (20)0 , (-t4 + vi3' + 3klu,2y2 + 2,ek 2ui2y + 2k'u,4) (

where the ion beam contribution to Eq. (20) is ignorable.

At early times in the pulse, oipujlc#, < I and

(k 2v,?o1/3, 0 < k < k,
-- - ,,v/c. < k < k. (21)

where & " (,1c) (wV,lcP,) 12 . Here T an 4 eV, n,, 2 x 10" cm =3 and nn, - 5xl0 4,

so that the peak growth rate is on the order of yp - wo,Vlc - 4.27;1.

,/ At later times in the pulse, the beam has heated the plasma; then oJdu,/c,, > I and

(k2 V,,)'.13, 0 < k < k,

V Y, Vj2u,2  k<k < k 2 , (22)

k V, 2k c U:'Il
21 **~2  , K ~ k,

.10
i

f Ii I ...., =--'" .. ,. .. '.-=:s I i l~
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whom k, -P , V1/u i3, k2 -j V./u 2 and V, ul. Now .- jV 2 /(2/2cu,) I ot;' for

T = 38 #V, n.=- I x 10 =cm3 and n0/n, - I x I0'. Thus, 4wacre em by a factor of

four as the beam passes through and heats the plasma. In fact, wu/c, - I at -- 10.0 ns

into the pulse so that a total of about 1.6 a-folds occur during the transit of the beam.

Note that t. is the appropriate time scale for instability growth since V, - 0 except dur-

ing the passage of the beam. Furthermore, for small k, (i.e. k,2 < 2w;13c 2), it can be shown

from Eq. (C9) that

23k2 V3
800 -kZ e v, << " (23)

and

7(24)

where o, - .,V,/. Thus, the unstable mode convects axially, but with a group velocity, v.,

which is much slower than V, or V,. At any given point in the plasma the mode grows only for

a time of order t4. For larger k, and fixed k, the mode transforms into the electrostatic

* streaming instability which was found to be stable in Ref. 1.

C. Summary for the Weibel Instabilities

In summary, it is found that the betatron motion of the beam ions stabilizes the ion-

Weibel instability at the beam front while growth is too slow at the tail of the beam to allow for

even one s-fold (yitb Z 0.05). The electron-Weiber instability, on the otherhand, grows

fastest (-t' hb " 4.2) at the front of the beam where the plasma is relatively cold. At the tail of

the beam ;rb = 1.0. Although the electron-Weibel instability grows faster than the ion-

Weibel instability, it also is not expected to grow to a level which could seriously affect beam

. -ipropagation.

9
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IV. THE WHISTLER INSTABILITY

The Whistler mode (k x B = 0. k • V, - 0) like the Weibel instability can be driven

unstable by particle streaming. However, the wavevector k - k,), (i.e. i. in cylindrical

geometry) is perpendicular to the direction of the betatron motion of the beam ions. Hence,

unlike the Weibel instability, the Whistler instability cannot be stabilized by the beam ion beta-

tron motion. However, a small spread in v. (angular momemtum) can reduce the growth rate

significantly. The electron drift velocity is ignored when considering the ion-Whistler instability

since V, V,.

Consider first the situation late in the beam pulse with fa given by Eq. (5). If it is

assumed for the moment that rb is very large, then the perturbed distribution function is given

by

A I I . i+ 'x"/((a - kyv,). (25)

Using this expression for fbi, the perturbed current is easily calculated and used to derive the

dispersion equation,

,(2 k2( V 2 + V2/2)
D.ic ku 2 =-. (26)

Again nan, << I was used in deriving Eq. (26) where t - i, for purely growing perturba.

tions and V, << V, (electron drift motion is ignored at present).

Solving Eq. (26) yields

(kyV.. 0 < k,<k,

(ky2 Y (k)v,,aP,/aw1 3 1, k, < k, < k2. (27)
.o ,V/c, k, > k2  -

: I where

wV, > vp k, - 4*,,2.,; k2 - (w,/c) (c,,v/,,,c)P .

10
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The peak growth rate (for k, > k2  25.0 cm - 1) is given by yi - oJ V:/c =g 2 x 102 r;i, for

Sa beam with no spread in vy.

This result is only slightly modified when finite geometry effects and the betatron motion

of the beam ions and included. Proceeding as in Appendix B with k - ki, + kiy6 and fb

given in Eq. (4), one obtains

2k ( V ,2 + V 02/ 2))
D- c2(kx + k,2),, -Y i+ ,6 F(krb) - 2 (krd (28)

where F(krd is defined in Eq. (B6). The quantity G (kxrd is defined by

G(kxrb) -- cos (Z)

+ 2 j ha (X) J.Z) .,X (29)
a-I J Z-2(x)

with X - kxx, 2(X) - (k1ri,2) ( - X2/k2rb)" / 2 and N - rb + (sin 2kxrb)/2kX. Note that

G (k, = 0) - 1. F and G are only geometrical factors and do not modify the structure of the

dispersion equation. For large k, the peak growth rate now becomes

"- ( Vs/c) [G(kXrb)] /2, which, aside from the geometrical correction, is identical to v',

found in Eq. (27).ii
4 iIf the beam has a small spread in vy, the beam can be modeled by the distribution func-

tion

lb - yF a(vi - Vj) exp(-v,/Vy 2 ), (30)

where Vy is the thermal velocity of the beam ions. Since the y motion is unaffected by B., the

distribution in v., will be the same at all points inside the channel. For convenience finite

geometry effects and the effects of the betatron motion of the beam ions are ignored here since

( Ithey have little affect on the Whistler mode. Substituting the distribution function of Eq. (30)

into Eq. (25) yields an expression for the perturbed distribution function, f'. The perturbed

current JhI can then be calculated and the dispersion equation derived.

J1
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D - c2k2 + ' + ,,ly/,, + I, 0C 0. (31)

In Eq. (31), w -i and

W 2 2 kyv,( V+ V02/2) 1/V1)
I. - J F. dv,,r + V112 - kv,) Jexp(-v /V 2 ). (32)

Here, the v9 and # integrations are trivial and have already been carried out. The quantity i,

is easily written in terms of the usual plasma dispersion function, Z (Q). However, here C is

pure imaginary so that

4exp - erl 7 J1}, (33)

where V, > Vo and erf(x) is the usual error function.9 For y > kVY, Eq. (31) reduces to Eq.

(26), but for y < k V, the dispersion equation becomes

=C2k + 2 + !-_ I + ...24. (34)
"u.C--+yiV+ k V, k Yv1.

From this it is found that the peak growth rate, yo - wai Vjc, for the case with V. - 0 is

reduced if Vy2 > 2o,wcV,/W, 2. Since this is the case here

k V, 0 <k < k ,

S(k2 .'.VW'/..V'", k, < k < k2, (35)

2u,2v1 V?2 I ck 2 V2' 1,

2V2 2 yV2Jk 2 <k etk,

where k, -oj,02V,, k2 - k, V2'/lV2 and k. - l wp YlcVy.

The peak growth rate is now

Yo' - (wo,, V2lc) (2a,w,.cV/V]..) < ,,.V,/c."

where -I' varies in time as T"32 () through v,. The number of e-folds, 6 during the beam

transit at any point in the plasma is given by

8- fo"y i(t) d, - '(0) fSo (1 + An/)S2(36)

12
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where it is demonstrated later than no significant wave convection occurs. Here AT

- {T(r6) - T(O)I/T(O) for Tin eVand yi(0) is the peak growth rate at the front of the beam.

A linear rise in temperature, TOIT(O) - I + ATt/,r, agrees well with results of previous

work. 3 Thus

8 21 10) T[1- 1 1T)I (37)

AT (I +ATP

For T(rb) 40 eV, 1nO) - 4 eV, rb - 0 ns, V/y V, > 0.08 and ndnp - 10-3, 8 < 1.0 e-folds.

A spread in V, then reduces the growth of the ion-Whistler instability to a tolerable level.

Finally it can also be shown that the ion-Whistler instability does not convect with the

beam when k, Z 0. This needs to be verified in order to justify using r b as the appropriate

time scale. Taking Eq. (5) for fb and setting k -ky, + k:iz this dispersion equation becomes

0 C2 k, - (w, + )2 +- (w, + by)+I, (38)

where up - w, + by and

w 2. -2, W2 + k2(V2 + 2VVpcos, + V0cos2.0,)

2w (w - k, V - kV#Cos#) 2 2

Here the spread in v, is neglected since it will have little effect on the axial group velocity of

the perturbation. For mathematical convenience finite geometry effects and the betatron

motion of the beam ions are also ignored. The results of the present calculation is actually an

upper limit on the group velocity since the betatron motion of the beam ions will tend to wash

out any disturbance moving axially on the beam. For k, - k I VJ > k, Vp the denominator of

the integrand in Eq. (39) can be expanded and the integration is trivial. However, if

kIV, - I J < k, Vp the integration is. most easily done using the calculus of residues. For

1small k, and Yo < V,, k. V, > k. Y is appropriate for the ion.Whistler instability. Then

integrating Eq. (39), Eq. (38) can be solved for a, and y yielding

13
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!!P6 Y(V2 + VY /2)1/2 - kV,, (40)
C
of kV/clo/ . (41)

Clearly, v, - Ow,/Ok, < V, for k, < w,6/3c. Thus the ion-Whistler instability does convect in

the axial direction for k, < wa./3c, but with a group velocity slower than the beam streaming

velocity. For k. > W,]/3c the calculus of residues can be used to evaluate Eq. (39), however,

the mode is then basically an electrostatic two stream mode. This mode has already been

shown to be stable in Ref. 1.

In summary it is found that, as expected, the betatron motion of the beam ions does not

affect the ion-Whistler instability. The peak growth rate, however, can be reduced to a toler-

able level by the presence of a spread in vy (angular momentum in cylindrical geometry). The

spread in v, known to be present at injection in typical experiments2 is sufficient to reduce the

number of e-folds to less than 1.0. Furthermore, the mode convects axially at a group velocity

less than V. The electron-Whistler instability was not considered, since it will have properties

similar to the properties of the electron-Weibel instability (discussed in Section II.B) for such a

highly collisional plasma (P, > w,).

V. CONCLUSIONS

The purpose of this paper was to study electromagnetic velocity-space instabilities gen-

erated by a focused ion beam propagating through a z-discharge plasma. In particular, the

Weibel instability (k • B - 0, k • VZ = 0) and the Whistler instability (k x B :- 0, k • V1

0) were investigated. This work is an extension of the work in Ref. 1, where electrostatic insta-
.1

* , bilities were investigated.

The ion-Weibel instability (driven by the streaming energy of the beam ions) is found to

be stabilized by the betatron motion of the beam ions at the front of the beam. At the tail of

14
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the beam, where beam ions follow straight line orbits, the growth of the ion-Weibel instability

is two slow to allow for even one e-fold (ybfb = 0.05) during the transit of the beam. The

electron-Weibel instability (driven by the drifting plasma electrons), on the other hand, grows

fastest ( ash 4.2) at the front of the beam where the plasma is relatively cold (T = 4 eV).

At the tail of the beam, where T rises to about 25-S0 eV, y,'v6 = 1.0. Although the electron-

Weibel instability grows faster than the ion-Weibel instability, it also is not expected to grow to

a level which could drastically affect beam propagation. Only 1.6 e-folds will occur during the

transit of the beam. It has also been shown for 0 < k,2 < 2w,, 2/3c2, where k - kx&, + k, j,

1 that the electron-Weibel instability does convect axially but at a group velocity much less than

the beam velocity (vs - 3k2c2 V,/2t2 < Y, << V,). Thus the appropriate growth period for

calculating the number of e-folds is just the beam transit time, r&, and growth occurs mostly at

the tail of the beam.

Because the plasma is highly collisional (Y, > w, at all times), the electron-Whistler ins-

tability will have properties similar to those of the electron-Weibel instability. Thus it is also

S .- not expected to grow to a level which could drastically affect beam propagation.

The ion-Whistler instability, as expected, is not stabilized by the betatron motion of the

beam ions. The peak growth rate, however, can be reduced to a tolerable level by the presence

of a spread in vy (angular momentum in cylindrical geometry). Furthermore, for k, < w,3c

the mode also convects axially at a group velocity less than V(v, - 3kzcV/w,*). Thus b is

again the correct time scale and only 1.0 e-fold are expected to occur during the transit of the

beam in typical experiments.

From these results and from the results for electrostatic instabilities in Ref. 1, it can be

* •concluded that it is possible to propagate a focused ion beam, appropriate for a pellet fusion

15
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- device, through a z-discharge plasma channel without generating significant growth of microin-

stabilties.
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APPENDIX A

For the magnetic field configuration given in Eq. (1) for lxi < a the beam ion orbit equa-

tions were solved in paper I. The resulting ion orbits are given below:

X' x Cos W.T + sin v, (Al)

y . + vyv (A2)
zI~ z [ v: + ZO .[ x iii

v- .!1

+ sin 2&.,-r -_(cos 2&.r -1). (

and

V- vx cos 00 r - xa), sin W.ar, (A4)
v- vy, (AS)

vi v :'- 2 v - . - x 2 (cos 2w.," - 1)

;, *Oxv
2V, sin 2a0 "r, (A6)

where . and V are the same as defined in Section II.

i,

/1



APPENDIX B

The expression for a and a 2 found in Eq. (19) are

a] - v '(X)Ii J(Y) + 12(Y) (Dl)

-xW~j(Y) J,(X) + J2(X)JJ

a2- 1{(v: - V)11 Jo(X) Jo(Y) + 2 (-V"JU( J2,(Y)

2 f~2

+ xL 2 *----) .(Y) - 2J(X) J,(Y)8 , .2 ,

+2J( Y) J2(X) +4 (-1) -J 2 "(X) J2,+, (Y) + 2n +1 I U J2.(X)
2 J1 (X) J,(Y) + r (-1)" J2 . n(X) I' 2.- (Y) + J,.-n(X) J2. l(Y) (B2)

where X - kx, Y - kvx/w, and N - rb + sin 2krd2k.

In order to show that

A f - cv k v, - 0, (B3)

Rb 7 I V *)
first write v,- vp sin 0 and v, - V, + v@ cos 0 and then perform the v, and 0 integration

yielding

I- .kV2 f r b y( l + .2XI)

*1 8V1

*1$i
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where Z - kv/2ce. Integrating by pans in vo to remove the derivative of the delta function

and then performing the vp integration results in

" 42kV12 k-, dX cos zI [J. 1 /2(Z) + J312(Z) J112(Z)

... .. J(X) J'- 1/2(Z) J1/2(Z) + -L J-1/2(Z) J'1/2(Z)

+ J'3/2(Z) -JP2 (Z) + J312(Z) J'1/2(Z)J

z r,,/2( Z) 12 (X) + J2(X)I.2() (B5)
where Z(x) - (krb/2) (1 - x2/klrd) 12. Since the integrand is an odd function of x, I1 - 0.

The integral

.2 itL , co fd (B6)rb 2s .....o"F"k""

is more complicated and the associated term in the dispersion relation does not contribute to

instability; hence it will suffice to write 12 in terms of the function F(krb) as defined in (B6).

4 ,

-I
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APPENDIX C

For a warm collisional fluid, the continuity equation and momentum transport equations

( T, z= r, and Y, - m,/m) are

. + V (n. v.)-O, (-l)
at

I +Tv 'Vv. - q.IE +

_T Vn. - v.(Y. - TO), (C2)
Mana

for a - ie. Linearizing Eqs. (CI) and (C2) for perturbations wiih exp i(kx - wt) dependence

and solving for the perturbed current results in

* w2

, J.+JL-.x I E, (C3)

where

1 +, n21 4+3 (C4)
2• , 0)

t. 4 - -ikv.n,/vC4, (CS)

- l _ k2 (rf23  (C6)

where a - iy, nl I v + k 2 u1
2/y, nj - 7v + k 2 ui, + 2&',klu1

2/y + k4u, 4/. 2 ,  and

C13 - y + ri + k2u1
2/y. In deriving expressions (C4)-(C6) it was assumed that y <a'.

Here the electron streaming is driving the instability and n, n ni (unlike nbn, << 1),

thus the complete dispersion equation,

• .ID. - D*D. -0, 1C7)

must be used. This results in the following dispersion equation

20
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o Jy +~ III + . I 2 + C2k2 + Wa'2 j,(3
+ 4~~l (CS)

In o rder to study the axial convection of the electron Weibel instability, the dispersion

equation must be rederived with 1k2j Z 0. For mathematical convenience thermal effects are

ignored (r 0 in Eq. (C)) In this case, for large k, the dispersion equation is

Oam c2k2 w2 - DftaI lI2kV.. - VX fo + j

4k~kXC2 + i~.V [ic~ixO + i'k. V, 11 ik 1 V jJ, (C9)

where w' to - k, , and now o, w, + ly.

* 21
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Figure I - Typical ion trajectory in the confining azimuthal magnetic field of thte z-discharge channel after entering the
- channel from the focussing region on the left. Here V0 is the speed of the beam ion, a in the injection angle, r. is the

spot size at injection and a is the channel radius.
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Filamented Channel.



ION BEAM PROPAGATION IN A FILAMENTED CHANNEL

I. INTRODUCTION

The production of intense focused ion beams1 has led to the

* consideration of using z-discharge plasma channels to transport them

several meters to inertial fusion targets 2 . Analysis has shown that

although electrostatic beam-plasma streaming modes are stable3 , electro-

magnetic microinstabilities will occur during transport in such

channels4 . The fastest growing mode produces current bunching of the

electrons in the channel. In this report ion beam propagation in a

filamented channel is investigated in order to determine the effects on

radial beam containment in channels and on the radial beam density

profile.

In Sec. II, radial current bunching in the channel is considered

and in Sec. III, azimuthal current bunching is considered. Finally

the results of this work are sumnarized in Sec. IV.

II. RADIAL CURRENT BUNCHING IN THE CHANNEL

If k - k r, then radial current bunching occurs in the channel

and the net current density can be modeled by

•[3~r + J, H(r-r) o(kr)] ,(

where

S(r- 0 r C rb
S0 r> rb

rb is the beam radius and J is the zero order Bessel function

which satisfies the wave equation in cylindrical coordinates. For
Note: Manuseupt submitted January 2, 1980.
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a channel of radius r

r r
1I M2 r c j(r) rdr = 2 n f (r) rdr

0 
0

is the channel current which confines the ion beam. Here k a a1i/rb

was used, where a is the Lth zero of first order Bessel function

Jl. The second term on the right hand side of Eq. (1) is then the

residual current density arising from the bunched electron current

superimposed on the unbunched ion beim current. Since j(r) is

established in an initially cold plasma and is driven by a capacitor

bank on a time scale much longer than the beam pulse duration,when

the beam is injected into the now highly conducting plasma the total

net current resists change. Thus, in the absence of bunching

Je + J - T(r) A ,where Jb"

The magnetic field which determines the ion motion in a filamented

channel is then found from

S(r Be) [ 3 1j(r) + j1 Jo(kr)j r 9rb. (2)' c r br

)-, _(r/rcS-i
Assuming J(r) = o inside the channel (s a 1),

0 s
OF jr or 41T j

• { B- r + - J (kr) r s rb. (3)
(s+l) c r 1  kc

*c

where rc > rb The parameter s is a magnetic field shaping factor which

is equal to one at the front of the beam and increases as one moves

- toward the tail of the beam. The beam heated plasma in the channel at

the tail of the beam expands radially carrying the channel current with

it. This decreases the magnetic field (increases s) near the center of

the beam and produces a sharply rising magnetic field at the edge of the

I.2



• 5
bean.

4 The total energy H, the axial cononical momentum P and the canon-

Ical angular momentum P are all constants of the motion for the ions.

From Az -f dr and Eq. (3), Pz is found to be

P brC 8+ 2Wc (8+l)i

where wcb =2er do/mi c2(s+l). When jl/Jo > 0, it is clear that the

beam ion orbits are radially confined since 1 -J 0(kr) ( 0 and rs + l is

monotonically increasing. When jl/J 0 O, the ion orbits are also radi-

ally confined if I il/jo 0 is sufficiently small since 1i - J 0 (kr)J :9

[1 - J 0(a )]b 1.4 and r +1is a monotonically increasing function of

radius.

Now consider this result in more detail. Since P8  0 0 6, the minimum

axial canonical momentum is given by

Oa m COC[V c s 0 0 cbrc ( -r (5)~z c (s+l) I 'I

I when Jl M 0. Here a is the maximum ion injection angle, V°  (2H/mi)

and ra is the beam focal spot size at the point of.injection into the

* I channel. The beau envelop radius is then

0 z
rb m e-V 2 (6)

where r - r when z V for an ion injected with Pz a 0  whe.n 1

the usual result is recovered
6

0 oc (l-
rb -r - r (7)
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When j 1  0, the minimum axial canonical momentum is given by

,1p0 -
2 ij? sl (8)

z z jk2r0 a

where this result only strictly applies for 1j/j 0 l < kr(raIrc)s/(u+l)*

In this case the beam envelope radius is found from

2 (r\ + 2j (9+l) rJk l V ( P1
- \ k2r2  1 o (r bJ 0 l z--- (9)

(s+l) Vio0 c w cb rc _mV)

For ji/~j <<l this reduces to

$" j 0 (k o 2  [2 J (kr0) - J~k ) ) (10)

so that for J, < 0 ihe; beam radius expands, whereas for J, > 0 the beam

radius decreases. For larger I il/jol Eq. (9) must-be solved numerically.

When J 1 < 0, beam ions can be magnetically trapped and prevented

from reaching the axis if I jl' 01 is sufficiently large. Thus the density

profile could be depressed on axis. For a given ion injected into the

channel at a ra'dius r0 and at an injection angle a trapping occurs if

> + (12)
1Qi> [o(kro) 2 wcbrcs+l ( s)] 2

so that trapping begins when the bunched current density exceeds the mag-

nitude of the channel current density which is required to confine the

beam. Furthermore, Eq. (9) shows that the equilibrium beam radius is

I 4



also significantly modified if

Thus when radial current bunching occurs in the channel, good beam

propagation is still expected unless il/Jo exceeds unity. If l l/Joj

> 1, the beam will be expelled from the center of the channel when J

< 0 or the beam will pinch when J > 0. If rb becomes larger than r.

the analysis breaks down and a more sophisticated analysis is required,

however, it has been established here that it is desirable to maintain* -4
* I Ii/Jol < 1. For jl jn exp (yb), good be= propagation. requtres

n < J exp (Y Tb). Here y is the growth rate of the instability, Tb

is the beam pulse duration and Jn is the initial level of noise in the

electron current. Since the predominant source of jn is the nonuniform-

ities in the radial profile of the ion beam current density (remember

Je a 1 b + j jitter in the ion beam current density must be kept below

? ' Jbn J
1 bn ~0(13)

Lo b exp (-1b)

Typically yT - 1.0 - 2.0 and J/b b. 0.1 for proposed fusion systems.

Thus the jitter in the beam current density must be kept below 1- 4%.

Since the filamentation instability is nonconvective 4 , these results only

apply at the tail of the beam. At the front of the beam the limit on

Jbn/Jb stated in Eq. (13) is less severe and can be found by replacing

STyb by yTbx/xb where x is the distance from the front of the bean for a

beam of length xb.

IIl. AZMUTHAL CURRENT BUNCHING IN THE CHANEL

If k - k% then azimuthal current bunching occurs in the channel

and the net current density can be modeled by

5



- (J(r) +JlP(r-rb)sin ma) z  (14)

where m - 3,4,5,.... will be considered. Special treatment is required
4

for a - 1,2 which is not considered here since mA 3-7 in typical cases.

* Again

( irOa rdr - 2 fWrr dr

is the channel current which confines the ion beam and J 1 sin z8 is the

residual current density arising from the bunched electron current super-

imposed on the unbunched ion beam current. The magnetic field which

determines the ion motion in a filamented channel is then
8

fij or 8J sr

-- sin m8 r S rb  (15)

(s+l)cr -1 c(m 2_4)

B r  2_ cos , r s rb  (16)B (M2_4) 
b

where again j(r) - jo(r/r ) -1 was assumed.

In this case H and P are constants of the motion but P is not.

From Eq. (15) P is found to be b
z

P 2%b r s 2w 2 jl inS
_ -br ) + b- -s-_ r ,r rb. (17)
, (s+l)2 rc (m24)j

Solving Eq. (17) for z shows that as long as

24

. 101 (8+1)2 (18)

where r b all ion orbits are confined within the channel. For
c rb

larger / ions can escape from the channel and the beam density is

6



Evnfr ml ii/Jol the beam density on axis decreases in time

since increases in time for most ions. In fact P8 is constant only

for those fey ions which are injected ate80 -niT/rn (n l,23,...2m).

For llj< 1

(R2 8') - R (le- R8# 2)2 (19)

2 2

w there R-Kr,T-0t, K i 10 b /P r , 2PW cb/i rc and a prime

* signifies differentiation with respect to T. Thus, to zero order in the

* ~small parameter 1 '

(R ' )o - K 2pe/a const. (20)

If P is initially zero and R m A cos (r+ 4) (implying small injection8 0
6

A angles, i.e. a << 1) the time averaged increase in I'Pe1 can be expressed
* as

r0Va. (21)

S where r V a r (z-o) (z-o) and
0 0 2

r a(m, -4)IJ /jiir2 -
T a -0 - -- (.02 +r w~b (22

0 (22)

1% Thsist1eT ~ increases from zero to r V CL. For the average ion

< <Ico's mO 0 1> -2/1r, r 0  rb/ 2 , a. m m/2 and

TTrb% (m 24) 1 1 2 12-r
0.A bLb) +(23)
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0.2 rad, m 5, V 3.1 x 9 cm sec andTypically r b  v 0.4 cm,x 0o or

8 -1wb- 4 x 10 sec so that
cb

I g 2.3 x 10 - 9 lio/ill sec. (24)

Thus the beam hollows out on a time scale of T even for small

Il/Jol , although the beam is still confined within 
the channel. In

order to prevent this hollowing out from occurring during beam propagation

one needs T < T or

2 / 2 \-
T,,b o(a -4)j °  (2 1-

-- o 0 2m + rb cb | e - T( 5
< Vorc /n)O ~ +sb exp (-yTb ) ,(25)

where Tb = L/V is the beam transit time in a channel of length L and

again jn is the initial noise level in the electron current. Thus as

argued at the end of Sec. II this implies that the jitter in the ion beam

current density must be kept below

2 / 2 1
bn Trbo (m -4) i0  .2 rbw 1b<_2mL J + V -r exp (-YT b ) (26)

Jb < LJb Vc

Typically this is found to be Jbn/Jb - 1 - 5 x 10 for proposed fusion

systems. Since this low level of noise is probably not achievable, some

hollowing out of the beam is likely if current bunching occurs, however

*the beam will still be confined in the channel for small This

effect will be most pronounced at the tail of the beam where largest
4

growth of the nonconvective filamentation instability occurs.

For Ij /j 1  (M-4)/(s+l) 2the beam density is gradually depleted( as increasingly more ions become unconfined. This depletion will occur

in addition to the hollowing out of the beam and also occurs predominately

at the tail of beam. In order to prevent this beam density depletion

8
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one needs

Jbn (m2_4) J 0

31<)2x (-y ") (27)(,-) 2  Jbb

For m,- 5, a 4, j /J 0.1 and YTb 1 - 2 at the tail of the beam,
0ob

Jbn/Jb 1 - 4Z is required. At the front of the beam the condition is

much less severe with Yrb replaced by YrbX/xb where x is the distance

from the front of the beam for a beam of length x.. Eq. (26) can be

similarly modified for the front portion of the beam.

IV. CONCWSIONS

From the analysis presented here it can be concluded that good beam

transport in a filamented z-discharge channel is possible as long as the

current bunching remains below certain levels. For radial current bunch-

ing it was found that ,jJl/jo should not exceed unity, which implies that

J < J exp (-Trb). If exceeds unity, the beam will be expelled

from the center of the channel when j < 0 or the beam will pinch when

> 0.

For aximutha, current bunching the beam hollows out on a time scale

T defined in Eq. (23). This hollowing out occurs for all values of

Jl/Jo but will not reach a significant level if t <f (see Eq. (25).

For Jljol( the beam density is also gradually depleted as in-
(312

creasingly more ions become unconfined.

These results se limits on the level of Jbn which can be tolerated

without seriously affecting beam transport due to current bunching effects.

*1
!9
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PROPAGATT:ON OF INTENSE ION BEAMS IN
STRA:GHT AND TAI RED Z-DISCHARGE PLASMA CHANNELS

P. F. Ottinger, a) D. Mosher, and Shyke A. Goldsteina).
Naval Research Laboratory,
Wahington, 0. C. 20375

ABSTRACT

A preformed z-discharge plasma channel can be used to transport focused

ion beams appropriate for a pellet-fusion device. During transport, the

beam can be compressed axially by time-of-flight bunching when appropriate

ion accelerating voltage waveforms are employed. Single-particle orbits in

such channels are expressible in terms of simple harmonic functions for small

ion injection angles. In this work, orbit analysis is used to investigate

how non-uniformities or tapering of the channel and electric fields present

:I .  in the channel effect radial beam confinement and power multiplication by
bunching.

a) Present. address: JAYCOR, Alexandria, Virguia 22304
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., INTRODUCTIOK

In order to utilize intense light ion beams (e.g., 2-10 MeV protons or

deuterons) in a pellet fusion device, it is generally considered necessary

to propagate the beam a distance of 2-10 m from the acceleration region while

employing some focusing scheme to deliver the beam to the target. One con-

cept involves concentrating the beam by one order-of-magnitude in radius at

a point 20-50 cm in front of a small-area ion diode by a combination of

geometric and self-magnetic-field focusing techniques.2 At the focus, the

be i.- enters a z-discharge plasma channel which guides it to the vicinity of

the pellet. The beam is confined to the discharge channel during propagation

by the azimuthal magnetic field produced by the current driving the discharge

and is delivered on target wit, no additional focusing. Figure 1 illustrates

trajectories of typical ions in such a system.

Since good propagation requires conditions in the channel to provide

nearly complete beam charge and current neutralization,3 the beam ions do

not experience collective effects. Single particle orbits are determined

primarily from the equations of motion for a beam ion in the channel

azimuthal magnetic field. When the ion injection angle into the channel is

small, these betatron orbits can be expressed in terms of simple harmonic

functions as demonstrated in Sec. II.

Using the results.of Sec. II, the z-dependence of the radial beam

density profile is obtained in Sec. III by following the single particle

orbits of an ensemble of beam ions injected into the channel. Both

analytical and numerical results are presented for rippling of the beam

envelope.

2.



The possibility of using axial bunching and radial compression of the

beam to achieve beam power multiplication4 has led to a study of ion orbits

in a tapeted z-discharge channel. In Sec. IV, the method of multiple

scales5 is used to find the dependence of the beam envelope radius on the

axial position in a tapered channel. The limits on power-density multi-

plication due to axial velocity dispersion in tapered channels is also

determined.

The effects on the ion orbits of small axial and radial electric

fields induced by beam passage through the channel are investigated in

Secs. V and VI respectively. These analyses determine the range of field

strengths which permit good beam propagation without significant radial

expansion or slowing down of the beam.

If the plasma channel is subject to magnetohydrodynamical instabilities,

beam propagation may be affected.. In Sec. VII this problem is studied using

a code which solves the equations of motion for an ion injected into a

bumpy channel .- -The amplitude of the bump was randomly varied in order to

more closely simulate the nonlinear evolution of sausage instabilltles.

Analytical results in the form of a Mathieu equation are presented which

determine the importance of particle resonances in a constant-amplitude

bumpy channel. The focusing and stability properties of ion orbits in

these channels are also investigated.

Finally in Sec. VIII, the results of this work are summarized and some

concluding remarks are made.
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The a-discharge plasma channel providing radial confinement for the

focused ion beam may be formed microseconds before beam injection so that

cumplete mrunetic diffusion occurs. The high plasma density of the channel

IS8-3 3
(n s 10 cm ) insures good charge neutralization of the beam. Good

P
beam current neutralization in the interior of the beam also occurs

because of the rapid increase in the conductivity due to beam heating.
3P6

Thus, the total magnetic field is comparable to that associated with the

performed channel established before injection. The net current, which is

approximately given by the channel current, is about an order of magnitude

less tbon the bare beam current.

Modeling the channel current by a uniform current profile, the azimuthal

magnetic field is given by

o C cB0 - . (1)

BorC/r, r>rc.

where r is the radius of the current channel. In a carefully-mounted experi-

ment, imperfect focusing is due primarily to ion-orbit deviations produced

by such time-varying, azimuthally symetric electromagnetic fields in the

diode. These fids displace the ions away from the geometric point focus.

jAt the best-focus location, ions produced on opposite sides of the diode

merge into the same spatial region creating a spread in angles of ions

entering the transport region. These diode fields do not impart azimuthal

velocity to the ions so that the angular spread in injection velocities

lies primarily in the r-z plane rather than a cone. Since the experimental

techniquesS used to focus the beam are not expected to produce .large

azimuthal asymetries in the diode fields, angular momentum effects can be

ignored in the lowest-order ion motion. Modifications of the results

presented here due to azimuthal motion are presently under investigation.

Some numerical results are presented in Secs. II and VII.

The equations of motion for an ion confined within such a channel

(i.e., r<r ) are just ' " ;."
C 4



" -wcbi/c. (2)

k" W cbrr/r , (3)

where wcb - eBo/mc. Although it has been shown that the general solutions

of these equations can be written in terms of elliptic functions, simple

solutions corresponding to the f/i << 1 case at hand are derived. These

analytic forms provide a basis for calculations to follow.

Normalizing Eqs. (2) and (3)

- Z'R , (4)

V R'R (5)
where R Kr, Z Kz, T =t, K2 . W c /r V  cos%,C 2  W V C oMMJr , V - const is

- cbco 0 ~ ebo 0 WC

the speed of the ion, cxis the angle of injection into the channel and a primed

quantity signifies d/dr. Here K is the betatron wavenumber and Q is the

betatron fcequency of the beam ion.

If the ion enters the channel at a small angle to the axis, then the

small magnetic field required to confine the ions results in e - Kr <<1, and

a sin ple expansion technique can be used to solve Eqs. (4) and (5). Derails

of this technique can be found in Ref. 5. Writing

2R.-CR% +C2R+.. , (6)

Z Z + z +c 2 z2  • I + , (7)

= (l + " I + "  2 (8)

and collecting terms of like powers in C, leads to a set of equations which

can :l: solved to any desired order in the small parameter C. In solving these

equat!:.a, care must be taken to rcvpve secular terms. The solution of Eqn. (2)

and (3) is then

i 5 ... ..



z - Vcosco- W.-; cos2 t (9)

(V0 rC b r(9)

+ F r coc b  s in 2 (wit + *)- sin 2¢]+ 0(c'),
+r v 0  a

r c F Cos (Wt + ) + 0(W), (10)

where

.= -16 rcVoCOS% +

o

r V cosa
tan# *c r2  ) tanct,

wcb 0S

(r2 rr sin ),i
0 web COScLO

and r(O) ro, z(0). 0, N~O) *V0 s Int, and j(O) = 0 cosao

The maximum angle of injection, %s, in typical experiments and for

proposed fusion systems4 is on the order of 0.1-0.2 radians. Since the ions

should be confined within the channel (r< r), Eq. (10) requires that

Io(A)?:(1.57 x 10' vca Vo/c) (1 -.r2/r2) "  , (11)

where 1 is the channel current, U is the ratio of the beam ion mass to

the proton mass, and r s is the beam spot size at injection into the channel.

This same result can be obtained directly from the conservation of axial

6"



canonical momentum which states that

i2

i~-V cosct.+ (eIo/mircc2 ) (r - r ) . (12)

Equation (11) is recovered when i = Vo  a m , r.- rc and ro  rs (also

1 - cosa= c2/2). For a 5 MeV proton beam with %m - 0.2 radians, rs

0.4 cm and rc - 0.6 cm, Eq. (11) states that 1. 113.0 kA

Equation (9) shows that the z-motion has both a streaming component and an

oscillatory part and that an ion transit time in the channel can be expressed

as

+t = zt/Vo + 0((2) (13)

where zt is the channel length. The 0(e2 ) corrections to Tt are important

when axial bunching is considered,4 since different ions injected into the

channel at the same time will arrive at the target at different times. The

spread in arrival times for. a straight channel,

(Ata)s (zt/ 4 V.) 1I + wcb r /Vorc) (14)

can be obtained from time averaging Eq. (12) over the betatron oscillations,

and sets a fundamental limit on axial bunching. However, at the-point of injection

the beam pulse duration, Tb , is still typically such longer than (Ata), thus

allong for considerable axial compression of the beam by proper shaping of the

accelerating voltage waveform.
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III. BEAM RIPPLING

If the radius of the beam envelope varie's with position along the

axis of the beam, the beam is said to ripple. In order to obtain good

radial confinement of the beam and prevent dramatic increases in beam density

at minima of the rippled beam radius, beam rippling should be kept to a

minimum. This phenomena arises from coherent oscillatory motion of beam

particles injected into a drift region permeated by a confining magnetic

field. Although beam rippling occurs in many situations, the coherence

length, z., can vary widely, making the observation of rippling impossible

in some instances (zm < :5 where Xis the ripple wavelength). Coherence is

lost by phase mising, which for the situation considered is due to the

dependence of the betatron frequency on the injection angle of the individual

ions. Ions enter the chanrel at small angles which vary uniformly from

to -a where am is determined by the focusing technique. Since the beam is

focused at-the entrance to the channel and the focal spot is defined as the

* point where only'random motions determine the beam radius, the distribution

of injection angles is independent of injection ridlus.

Recall from Eq. (10) that the betatron frequency is given by

w a (fcb Vo/rc) (1 -cb r2/16rcVo - a2/16), (15)

where the analysis has been restricted to small injection angles (%c< 1).

For a collection of ions Injected into the channel at z - 0, the betatron

frequency varies slightly according to the square of the Injection angle and

injection radius. The coherence length of the beam ripple can then be

A: determined by following the single particle orbits of a collection of ions.

8 .
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Fi st Eq. (10) is rewritten as

§h rt) -ro, Cx 0 t + Cvo/W 0 ) 4in W.t (16)

where r(t) is the radial position of a given ion at tine t and to V r)h/r

The radial velocity is just

,rW(t)- oi sin wt + V.% cos wot .(17)

Note that again the small injection angle limit is taken and that r(O) o

and v(0) - Voein C % o (also (t) S v 0 (t) Aso v 0 ( 0) go.

A model for the experimental distribution function is given by

fb(rOVOA O) I 6 ('eo) 6 (V"-Vo) IVo am)l I r4< r. (18)
0 

,ir4> r.

at z=O which neglects any small dispersion in veand approximates the

distributi on in vr by a square distribution. HEcre H is the unit step function

H (x-xo) - ( } (19)

0

a is the mAXImum injection angle, Ts is the bean spot size and m."0o/2 equals

the accelerating voltage. The beam density profile at zO Is found by Integrating

f over velocity space yielding
Cro,) I . rj< r, o

o(ro):1 (20)

where ;b m a . .;o" is the beam density on axis and r 8 is the beam spot size

or beam radius at z-O. With injection into the channel at z-0, the beam

I can be prQpagated forward by using expressions for ro and V.% found from

j Eqs. (16) and (17),'

-r coo W (t;) sin w t (21)

and

V a -0 r sin wt.+ v. cos wt " • (22)

Using Eq. (10) to relate z with t,



,1 6r + kz , (23)
' V r 16r

where again r. and Mo have been written in terms of r and a. The distribution

function at a distaace z do~wstream from the point of injection is then

w r v wm-Hv sr n z+ - -v o )
fb(r,z,veV,a)-NH( sinkz + - coskz +a )-H(L sinkz+- cos (24

(24)

6[Ij ye/Ir cos k z - (v/w )sin k z j6(V-V 0 ), -

for rco z-(vt sin k z!r 5. Here V=V and 91J veoroarcosnt

of the motion.

Equation (23) shows that the dependence on 0. of the harmonic functions in

Eq. (24) is ignorable unless 3 R CL2 z/16 b 1/4, which determines the phase

mixing distance, z1M. Here k L. (Wb/rVo)

Integrating Eq. (24) over velocity space in order to solve for the beam

density profile at z yields %(r~z) for z<<zm - 4n/3A CL2" where nb(r.z) is

given in Eqs, (Al) - (A3) of the Appendix.

For z>>Z kz [see Eq. (23)] varies significantly over the range of

inteSration for CL In performing the velocity space integration of Eq. (24).

Thus, the coherent rippling of the beam is phase mixed out and the beam

10
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density profile becomes independent of z with nb(rz) now given by Eq. (A4)

of the Appendix. The beam envelope or the outermost radial edge of the

beam is given by

r sICos (TTz/X )I + (V V~) sin (TTz,&, (5
rb(z), z(2.)

where the phase mixed beam envelope is ib - (r2 + -2 L2)

From Eq. (25) one finds that the beam does not neck down to a radius

smaller than r5 if

Vo a. / 1 (26)

Eq. (26) can also be written as a lower limit on I ° given by I ° given by2 0

I (A) 4 (1.57 x 107 pa2 Vo/C ) (r 2 /r). (27)

Since it is desirable to avoid such necking down to small radii, a good

quality beam will satisfy Eq. (27) as well as Eq. (11). Figure 2 illustrates

the rippling of a typical beam and Fig. 3 shows the dependence of the

coherence length on the maximum injection angle. From Eq. (25) one also

finds that the ripple wavelength is given by X a Tr/k.
r

Although the distribution function (Eq. 18) used in this analysis only

approximates the actual experimental distribution, the ripple wavelength and

coherence length should not depend strongly on the detailed shape of the

11



distribution function. Provided phase mixing does not depend sensitively

on the tail of the t distribution, it should still be possible to obtain a

reasonable estimate of the coherence length from Fig. 3 for most distribu-

tion functions. Of course, this is only true in the absence of any signifi-

cant scattering of the beam ions (e.g., due to collisions or "bumpiness" in

the channel) or any other mechanism which could significantly enhance phase

mixing in the beam (e.g., diode voltage ramping for bunching or nonuniform

net current profiles). The ripple amplitude on the other hand, may depend

on the details of the distribution function.

In order to obtain numerical results an ensemble of one hundred particles

was injected into a channel at.z = 0. Particles were injected from ten

different radii ranging from 0 to rs and from ten equally spaced injection

angles ranging from -m to + a.. Because of the cylindrical geometry propor-

tionately more particles were injected at larger radii. The particles were

propagated forward in the r-z plane along their trajectories by integrating

the equations of motion using a Runge-Kutta routine and eventually collected

in radial bins at the desired distance downstream.

The results of this simulation are shown in Figs.. 4 and 5, which

illustrate the rippling of a beam which is injected into a channel with a

distribution function at z - 0 given by Eq. (18). Figure 4 clearly

shows the beam rippling when

I1 12
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z <<z. For comparison with analytical results the beam density profile at

z - o and z = r /2 are shown in the upper right hand corner. The numerical

results at z - 44.5 cm and 51.5 cm should be compared with the analytic results

at z - X /2 and the numerical results at z - 41.0 cm and 48.0 cm should be
r

compared with the analytic results at z = o. The complete analytic form of

nb (rz) for the injected distribution function given in Eq. (18) is rather
b

complicated and is presented in the Appendix. The good agreement between

numerical and analytic results indicate the proper functioning of the code.

When z > z the coherent rippling of the beam is almost completely lost as
m

illustrated in Fig. 5. Again for comparison with analytic theory an approximate

phase mixed density profile is shown in the upper right hand corner of Fig. 5.

This profile is obtained from the results presented in the Appendix. The distribution

function in Eq. (18) was chosen since it closely resembles the experimenta. situation.

For the proposed parameters used in Figures 4 and 5, the ripple wavelength is

X 7.0 cm and the coherence length is Zm - 4r/3koL- 230 cm.

Thus far only motion in the r-z plane has been considered since it has

been argued that most of the velocity transverse to the channel axis is in the

radial direction. In order to verify that azimuthal motion does not drastically

modify the results, the eAtreme case was also considered where ions are injected

into the channel with equivalent spreads in vr and v.. Numerical simulations

show results that are similar to those presented in Figs. 4 and 5, however,

the addition of angular momentum somewhat reduces the density peak on axis.

Beam rippling still occurs for z<zm and is phase mixed out when z>z where

2zm is still given by 4IT/3k C•

13
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If the net current profile is not uniform so that the azimuthal

magnetic field does not rise line.cly with radius, then the phase mixing

distance can be considerably reduced. For Be r2 , numerical simulations show

that coherence is lost after only a few ripples or about 0.5 m for a typical

5 HeV proton beam with a. - 0.2 rad. This enhanced phase mixing is illustratedm

in Fig. *6. Such a magnetic field profile could arise if beam injection

occurs before magnetic diffusion into the z-discharge channel is completed.

Enhanced phase mixing might also occur at the tail of the beam as the now

highly conducting plasma (and frozen-in field lines) expands due to beam heating

of the channel.

The results of this analysis show that it is possible for ion beams to

exhibit coherent rippling over distances of a few meters before phase mixing

occurs provided the azimuthal magnetic field rises linearly with radius. Since

both the beam radius and density on axis vary with z, beam rippling should be

an important consideration when choosing such things as channel parameters

(np>> n b, rc> rb,.etc.) and target position. The channel current, 10, and

the channel radius, rc , should be chosen large enough so that the outermost

edge of the rippled beam should remain in the channel in order to obtain good

radial confinement of the beam. On the other hand, Io should not be so large

that the beam density increases dramatically at minima of the rippled beam

radius. Such an occurrence could lead to local heating and microturbulence.

Thus, the beam should be matched with the channel (Eq. 27) as well as possible.

.14
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IV. BEAM ION ORBITS IN A TAPERED CHANNEL

Although the average beam density on axis may increase by more than

a factor of two over the injected beam density on axis after the rippling

of the beam has phase mixed out (see Fig. 5), other effects can cause

the beam to spread in radius and decrease the beam density on axis (e.g.,

see Sec. VII). In this section ion orbits in a tapered channel will be

determined in order to ascertain the limits of using radial compression of

the beam to increase the power density delivered at the target.

If the channel radius decreases linearly such that r (Z) = rc(l-z/L),

then

e 210r r< rC (1 - z/L), (28)
cr (1 - z/L)2

where L is the taper length, rc is the channel radius atz = 0 and Eq. (28)

only applies for (L-z)> r2. Here it is assumed that the beam does not

"1 burn its own channel. The equations of motion for an ion confined within

this channel are then

F "cb Ir (29)

rc (1 z/L)2

Wcb r

rc (I- z/L)(
(30)

where wcb 2 elo/mic rc. Changing to normalized variables, Eqs. (29) and

(30) become
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R" *-Z' R/(1 - Z/KL)2  (31)

Z" R' R/(1 - Z/KL) 2  , (32)

where the normalization is the same as in Eqs. (4) and (5). If

e = Krs<< 1, then R and Z can be expanded as in Eqs. (6) and (7).

Expanding Eqs. (31) and (32) and collect.ing terms of equal order in

em yields to lowest order

Z9 = 0 , (33)
0

Ri' =-Z0% RI/(1 - Zo/KL)2 , (34)

where it is assumed that (1.- Zo/KL) -0'(1) (ite., the ion is not too close

to the end of the channel at z = ).

The solution to Eqs. (33) and (34) in terms of the real variables is

z(t) o + (0) (35)

r(t) ro(1 - t/T)4 cos L-nTin (1 - t/T)] (36)

+ (V0 sin s/0) (1 - t/T) sin [-TLn (1 - t/T)]+ 0(+W)

where T = L/V0 , cb V0/r., r(O) = rO , r(O) - Vo coz(O) Vo ,

Col" and (0T) "  < 1. Using conservation of energy.

i (V -2) V - /(2 V) + O() , (37)
0 .0 0

The 0(02 ) correction to z(t) can be calculated.
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Thus ion trajectories converge radially but not as quickly as the tapered

channel since the perpendicular energy also increases in time at the expense

of the parallel energy. From Eqs. (36) and (37) one finds that the radial

envelope of the ion orbit decreases as

Y r 23
) (r' + )31 (1.z/L)

0 cb (38.)

and the angle with which the ion crosses the axis increases as

2
dr = (0+ ocb
'z cr0t)= O rcVo 09)

As the ion approaches z = L, the channel acts as a mirror and reflects the

ion back toward z = 0. The approximate position of the mirror can be found

by setting dr/dzlr(t)=O= r/2 in Eq. (39). Because the analysis breaks

down in the mirror region, the orbit equations do not describe this bounce.

The analysis is not extended here to'treat this region since for reasons

which followa target would be placed in front of the mirror point.

Since the current density scales as

J,-Cr((z)] -'(l - z/L) "1 ' .. (40) "

the current density can be considerably enhanced by radial compression of the

beam. However, if radial compression is used in conjunction with axial

bunching, then the spread in arrival times at the target location sets a

limit on the power multiplication factor. Since radial compression produces

a spread in k, optimizing the power multiplication will in turn limit the

degree of radial compression which should be used.

17



Averaging Eq. (37) over the fast oscillations, shows that the average

axial velocity

< - vo [-i (el + n2 2 /v) (1 - zIL)" ,10 110 r;Z/L)(41)

depends on the injection radius ro and injection angle a. The maximum

>-i occurs when a = ro - 0 and the minimum <i > occurs when am cand

ro - rs. The spread in <i> is then just

8 Ci"> (Vo/4) (a2 +lrV) (l-z/L)"  (42)

and the resultant spread in arrival times of simultaneously injected ions in

At " (L/4V0) (NI + wcbrS/Vorc) £ni (5'-) (43)
t

where zi s the target position. If the channel were not tapered, Eq.

(43) would reduce to (ata)s given in Eq. (14). Clearly, the tapered

channel can significantly increase Ata, which is an important consideration

when axial bunching is employed along with radial compression.

Under ideal circumstances, the diode voltage can be programmed to

bunch the beam at the target, the tail of the beam catching up to the front

of the beam at z-zt. The power multiplication factor is then expressed as

H at L(ras,%, zt) (44)

where -b is the beam pulse length and F is defined in Eq. (38). Here,



Tb/Ata measures the power multiplication due to axial bunching and the

expression in the square brackets measures the power multiplication due to

radial compression. Since this analysis only applies for F(rs, am, z) <

rc (l-z/L) (i.e., all ions are confined within the channel), the most interest-

ing case occurs when F(rs, 
am, zt) = rc(l-zt/L). In this case

2m c Tb V'/eLI

0 0

(l-zt/L) in 1l-zt/L"3 (45)

Maximizing M with respect to zt yields

i 8Vo I*

M* - 0 (46)
': LI010

= L [l-exp (- ) (47)

and

r* rs exp (h) (lI-*Io) , (48)

where I0 must exceed I* and

I*(A) - 2.6 x 10' Vo/c (49)

0 mo

Comparing this result with the power multiplication factor, Ms, obtained

by using only axial bunching in a straight channel, shows that

H*- 2[exp(h) - 1] Ms  1.3 M . (50)

Thus using radial compressions in conjunction with axial bunching can enhance

the power multiplication factor by as much as 30%. Radial compression will be

somewhat less effective if angular motion is present in the beam.

19
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V. EFFECTS OF SMALL AXIAL ELECTRIC FIELDS

The axial electric field that establishes beam current neutralization

by driving a return current of plasma electrons in the channel also slows

down the ion beam and causes it to spread radially.3  In order to estimate

the extent of these effects, Eqs. (4) and (5) are solved with the addition

of a smali constant axial electric field Ez in Eq. (5). In that case

Z" -R'R- Z , (51)

where 8 S (c2/rcwcb V0 coso)'s (Ez/Bo). Here a careful analysis is required

since the ion kinetic energy now decreases in time.

Writing C c2T and n - (1 + + 2 2 + . . .)T, the time derivatives

are replaced by

d C + (0 +l + w2 ') n+ + •

d' + 0 +2w € +2 w2e + 2 £2) ._ +. . .

( with R and Z depending on both C and nt. Expanding Eqs. (4) and (51) and

collecting terms in powers of c again results in a set of equations which

can be solved to any desired order in the small parameter e. Here, however,

the axial streaming velocity, V, gradually decreases and the radial envelope

of the ion orbit, F, slowly expands on the g time scale. The elimination of

secular terms provides the set of equations which determine V(f) and F(C),

but the O(cl) equation of Eq. (4) is needed for completeness. The resulting

spread in radius for a given ion becomes

(z) ( +rcvo /cb (1 - Z/Zr)A , (52)

where the radial expansion distance is
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2111 V2 cos 2 a

r (53)

The slowing down of the streaming velocity results in a decreasing ion

kinetic energy which can be expressed as

v(9) a V2(o) ( - Z/zr)2 M V2(O) (1 - 2 Z/Zr), (54)

where the last approximate equality applies only for z <<z r.

Thi condition for the neglect of the effects of small axial electric

fields on the ion orbits is. just zrJzty> 1 or

eEZt/iV << 1(55)

for % << 1. Thus there is a lower limit set on the channel conductivity in

order to prevent the axial electric field, Ez = Jb/c, required for current

neutralization, from violating the condition set in Eq. (55). TYpfcaUy one

would like Ez < 1.0 kV/cm for negligible beam energy loss.

In addition, it can be shown that when Ez satisfies Eq. (55) the

spread in ion arrival times, (Ata)z , at the target position is not significantly

increased by the presence of Ez. In fact, in that case

(ata  a  1 + eE zt

S)z/( a)s z

( Thus, axial bunching is unaffected by the presence of an axial electric

field if Eq. (55) is satisfied.

2
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Wawa ........... ..
VI. EFFECTS OF SMALL RADIAL ELECTRIC FIELDS

The effect of a small radial electric field on the ion beam orbits

can be understood by including Er Er r/rc in Eq. (4). In that case

R -1 Z' + Or) R, (56)

where a (c 1/wc rc Vo cos) (EB 0). The basiceffect is to weaken the

restoring force in the radial equation of motion, which results in a larger

radius beam. Performing the analysis of Eqs. (5) and (56) using the expan-

sions shown in Eqs. (6), (7), and (8), the ion orbits can again be solved to

any desired order in the small parameter e. From this analysis, the phase

mixed beam envelope is found to be

rj c tan r
Fb r '+ %rbr F2 BO (57)... .

°cb b

where the phase mixed beam envelope in the absence of Er is defined by

rb= [r + (rVo S tn m/wcb Cos c)] . (58)

This expression is obtained from F by setting ro  rs and a.- am.

The condition from Eq. (57) for neglect of radial electric field effects

on radial expansion is then

I 2- -2 2 ;z 2
Um rb 2b (B to,

E << ... = 1.92 x 10 "4  )b Volts/cm• .r. tane2 rc tan1 %m (59)

where the la st equality applies for proton beams with Fb (cm), rc (cm) and

Bo (gauss) measured in Gaussian units. For a 5 MeV proton beam with
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rb rc 0.6 cm, am 0.2 radians and B. 40.0 kG, Eq. (59) becomes

E << 2 x lO kV/cm. Typically, this condition is easily satisfied since

Er is determined only by magnetohydrodynamical effects and thermal effect.3

From this analysis, one can also show that axial bunching is unaffected

by the presence of small radial electric fields.

The beam ion orbits given in Eqs. (9) and (10) for a straight channel

or in Eqs. (35) and (36) for a tapered channel are then appropriate if the

conditions on Io , Ez and Er set forthrespectively, in Eqs. (11), (55), and

(59) are satisfied. Under these conditions the beam propagates within the

channel with an envelope rb given in Eq. (58) for a straight channel and

in Eq. (38) for a tapered channel and experiences negligible radial spreading

or slowing down while traveling a distance zt, the length of the channel.
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VII. PROPAGATION IN A BUI'WY CHANNEL

Since the z-discharge plasma channel is formed microseconds before beam

injection, the possible growth of sausage type instabilities can make the

channel appear bumpy when the beam is injected. It is of value to understand

how this bumpiness will affect beam propagation over distances of a few

meters. Consider the situation where the channel radius varies sinusodially

in z such that the magnetic field is given by

rc(0 . o r < rc (1 A Cos Icz)

r >r COS- K oiZ) (60)

where B -21o/crc' I is the channel current and 2rr/KC is. the wavelength, of the0 0Q

bumps. If a <<1, then the magnetic field inside the channel is approximately

B~(8 r/r) (1 + aCos cz) (61)

and the radial equation of motion for a beam io'n which is confined within

r< r. (1I A/2) becomes

r u-(wcbZ rrc) (I + A cos cz). (62)

Using Eq. (62) and the energy conservation equation, an.- equation

for r(z) can be obtained,

d1r (r'b' [+ (dt2] (1+coi ) p(63)

dzCV0 1ACO 
Z
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where mtVo/2 - const is equal to the accelerating voltage. Writing Eq. (63),

in a more convenient form

ds, + Rd(l + c cos 2s) , (64)

where R - Kr/2, s - cz/2, B a 4k2 , C U •A~and 2 = wcb/rcVo" This

equation closely resembles a Mathieu equation dnd can be solved using the

method of multiple scales.5  For Krc/ 2 - 0(e) and z<< 1

R- 1 (so'ls " ") + 2Rz (s o ' s1' " " ") + " "."

ER (s + :,I +
d a+ a

- o + 1 S3S2 +

where sm - ems. Expanding Eq. (64) and collecting terms of equal order in!n
e, one obtains

c': -a-- R

Saso  (65)

2 aR,
2 n +S - 2 R,- (6 (0 + cos 2so. (66)

and higher order equations. Note that the (dR/ds)2 term in Eq. (64) first

appears in the 0(02 ) equation. The solution of these equations are oscilla-

tory5'4 except near B n2 or i i.2/n where n is a positive integer.

Since typically K - r for the sausage Instability, n - 1 is the most
C

important case to consider. Solving Eq. (65) with 00 1 yields
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R, (67)M1 A(s 1 ) exp (is o ) + X (si) exp (-Ls 0 )

where A is the complex conjugate of A. Substituting this expression for

R1 into Eq. (66) and removing secular terms results in an equation for A(s1 ).

Solving this equation one finally obtains

r(z) = ( - B1) [a1 exp (z/z) a 2 exp (- z/i)] cos (kz)

Vi +( 1) [a1 exp (z/i) - a2 exp C- z/i)] sin (kz) , (68)

where 1 , = (2/4) 1) and a1 and a2 are constants. For

I8ll ai , the solutions are oscillatory. If the initial conditions for a

given ion are such that a, 0, the orbit of the ion will exponentially spread

in radius with an e-folding length of

-= rVo

Z.-Z =~&Scb' ) (69)

j where Zo applies.when 0 = 0. In order to confine such ions over a distance

zt requires z0 > zt or

4 ,r CVo 0

t cb()

This requirement is very difficult to satisfy since the orbits exponentially

expand in radius. For typical parameters, such as those used previously

in Fig. 4, Eq. (70) requires that the channel radius not vary by more

than 0.45%! Fortunately the resonant region is narrow and K- rl in typical

systems is well above the resonant region.

There are two possible solutions to this resonance problem:. (1) prepare

the channel such that K>> 2 modes will be selectively excited if the channel
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becomes unstable (i.e., K is off resonance as occurs naturally), or (2)

prepare the beam such that the ions will be focused if unstable K = 2k modes

are excited in the channel (i.e., inject ions with a2>> a, for Bo = 1).

If the first method is used all the ions will have stable orbits and

will remain confined. As already mentioned, this method occurs naturally

since K-rc1 > 2k, however, the possibility of obtaining additional focusing

using the second method warrants investigation. If the second method is

chosen an ion entering the channel at r0 must have an injection angle of

dr, 1+13aLO= ( " S-) o (71)

in order to exclude unstable orbits. This condition is found by setting

a1  0 in Eq. (68).so that

r(z) = a2 exp (-z/i) cos (kz + n/4). (72)

Here the ions are actually strongly focused when zt/i > 1, where z is the

channel length.

In order to ensure that an ion remains at least on a stable trajectory

requires

1a2/a1 I v>4 exp (zt/i) (73)

where focusing occurs whenever Ja2/al1 exceeds the value of the right hand

side of Eq. (73). From this result one finds thatB must be known within an

accuracy given by
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r exp(-khLA/4) 3(4

in order to choose the proper injection conditions for focusing Eq. (71).

With 8 = 4wcb/rcVoc 2 and A<< 1 it is presently not possible experimentally

to obtain the shot to shot consistency necessary to satisfy Eq. (74).

Although the possibility of obtaining additional focusing is enticing,

the prospects of using a bumpy channel to achieve this goal are not very

good. Thus method (1),iwhlch avoids particle resonances by selecting

< ic/2, appears to be the best approach to prevent beam expansion. Using

-r C-l and Eq. (11) this condition on k reduces to the following condition

on a
2 2)

am <0.5 (1 - rs/rc) . (75)

Thus, for a given channel radius and beam spot size smaller injection angles

are preferable in order to minimize this resonant effect. In the numerical

results which follow, the worst case is considered with a = 0.2 rad which is

at the upper end of the proposed operating range of 0.1 - 0.2 rad,

To this point, the analysis has only dealt with small variations in the

channel radius. When larger variations in the channel radius occur

analysis of Mathieu's equation shows that the unstable resonant region about

B a n2 broadens.9 Since &<< 1 no longer holds, the previous analysis of

Eq. (63) breaks down and a numerical analysis is required. The equations

of moltion were solved for an ion injected into a bumpy channel where the.

largm almLtude bumps were modeled by a square waveform which replaces the

otnusetdal waveform given in Eq. (60). Ions move in the magnetic field
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21or/cr 2 (z). , r< rc(Z)

Be a (76)

w2Io/cr , r> rc(z)

where r (z) is the local channel radius and I0 is the net current. The

amplitude of the bump was randomly varied in order to more closely simulate

the experimental situation where the "bumpiness" is not expected to be uni-

form. Ions were injected into the channel in the same manner as discussed

in Sec. III.

Some of the results of this work are shown in Figs. 7, 8, and 9.

Figure 7 shows the percentage of beam ions which are lost from the beam

channel (i.e., lr(zt)l> rc) as a function of target position for a beam

injected into a bumpy channel with a distribution function at z = 0 given

by Eq. (27). When 2w/K = 3.77 cm and A =) , 53% of the beam is lost at

6.0 m downstream while 9% of the beam is lost at 6.0 m downstream for A = .

Ions are only removed from the system if jr(z)l> 2rc at some point along the

trajectory of the ion.

Figure 8 clearly shows that there are fewer ions lost as the wavelength

of the bumps is decreased below about 4.0 cm. Here,2w/K = 6.9 cm satisfies

the resonant condition (B = 1 ) found earlier for am a 0.2 rad, and also

agrees well with the peak of the curve in Fig. 8. The peak of the Lm - 0.1

rad curve also agrees well with the predicted value of 2w/ = 13.8 cm. The

resonant wavelength (2w/K) regime is considerably broadened for A h compared

with the very narrow resonance predicted earlier for &<< 1. The radial

beam density profile is plotted as a function of axial position in Fig. 9

for a beam injected into a bumpy channel with 2/ic u 3.77 cm and A * . As

the beam propagates downstream coherence is quickly lost due to the bumpiness
29
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of the channel; hencebeam rippling is unimportant here. As the beam pro-

ceeds farther downstream, the beam gradually expands and the radial profile

develops a broad low density tail. At 6.0 m downstream 53% of the beam ions

are located at radii greater than rc, while 20% of the ions are located at

radii less than rs/T

Again in order to verify that azimuthal motion does. not drastically modify

the results, the extreme case w-as considered where ions are injected into the

channel with equivalent spreads in vr and v . The numerical results are

shown in Fig. 10 and should be compared with the results presented in Fig..

9 where only motion in the r-z plane is considered. Since more particles are

injected at larger angles to the axis when azimuthal motion is included than

when only r-z motion is considered, ions are lost from the channel slightly

faster. Approximately 75% of the ions are lost from the channel 6 m downstream

when am = 0.2 rad and 2r/ic = 3.77 cm. As with case.where only r-z motion

is considered, much fewer ions are lost if am is reduced to 0.1 radians for

2/i * 3.77 cm.

The loss rate is not significantly modified when nonuniform net current

profiles are considered. If Be - r2, numerical simulations show that 60%

of the ions are lost from the channel after 6 m of propagation for the same

parameters as used previously in Fig. 9, where 8- r and 53% of the ions

were lost.

From these results, it can be concluded that, if possible, modes with

K> 2k should be selectively excited if the channel is unstable to sausage

instability. For example, if K > 8k , then less than 2.0% of the ions will

be scattered out of the beam in the first two meters of propagation even for

A as large as '. The most dangerous case which must be avoided arises when
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= 2k . It should be pointed out again that for a typical channel, the most

unstable sausage mode has K. rc - 2.0 cm1 which is off resonance even for

the extreme case of a 5 MeV proton beam with am - 0.2 rad (2k 0.9 cm'1).

For a 5 HeY proton beam with * 0.1 rad, K- r-1 is well off resonance

since in this case 2k- 0.45 cm l

31
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VIII. CONCLUSIONS

The purpose of this work was to establish the groundwork for a basic

understanding of intense ion beam propagation in a z-discharge plasma

channel. It was implicitly assumed that the channel remains unaffected by

the passage of the beam. Although there is evidence3 that this may not be

a good assumption at the tail of the beam, the analysis presented here does

correctly describe the physics of the forward portion of the beam. An

investig3tion of the physical processes which will affect beam propagation

at the tail of the beam Is the subject of on-going research. Effects on

beam propagation due to azimuthal beam ion motion are under further investigation.

The results presented here indicate that good radial confinement of the

beam during propagation in a straight channel requires that the radial and

axidl electric fields remain small. Equations (55) and (59) set upper limits

on the allowable field strengths on Ez and Errespectively. If the condition

on EZ in Eq. (55).is not satisfied,,significant radial expansion and slowing

down of the beam is expected as the beam propagates downstream. If Er does

not satisfy Eq. (59), the equilibrium beam radius is significantly increased

over the beam radius in the absence of Er. These restrictions on E. and Er

can be easily satisfied experimentally by proper choice of channel parameters.

If the conditions in Eqs. (55) and (59) are satisfied, it was also found

that axial bunching is unaffected by the presence of small radial or axial

electric fields.

Because of the small ion injection angles, coherent rippling of the

beam could continue for distances of several meters. In the absence of

other significant phase mixing mechanisms, the rippling is eventually phae
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mixed out due to a dependence of the ion betatron wavelength on the ion

injection angle. Analytic results show that the phase-mixing distance is

given by zm a (4/3 ) (rco/ cb)% and numerical work confirms this result.

The numerical analysis also shows that the beam density on axis after phase

mixing can exceed the beam density on axis at injection by about a factor of

two. This corresponds to a beam radius at half maximum density after phase

mixing of about I/"/T times the original beam spot size at injection.

Numerical results show that azimuthal beam motion does not modify the beam ripple

wavelength or the phase-mixing distance but does somewhat reduce the final beam

density on axis.

Beam propagation fn a bumpy channel was also investigated in order to

assess the problems involved if the beam is injected into a channel which J
was subject to growth of sausage type instabilities. The analysis suggests

that if the channel is unstable ic > 8k modes should be selectively excited

in order to avoid particle resonances which could deplete the beam by

radial expansion. For a typical channel, this is accomplished with little

effort since the fastest growing sausage mode satisfies K > 2k. Using the

same resonant mechanism to help focus the beam does not seem practical since
unusually fine control of the beam and channel parameters is required. Numerical

workshows that azimuthal beam motion does not alter these results.

-Radial compression of the beam can be achieved by injecting the beam

into a tapered channel. In this case the radius of the beam converges as

( l - )1 in a channel which has a linear taper, [i.e., rc(Z )  rc (-z/L)].

When used in conjunction with axial bunching, radial compression can enhance

the power multiplication obtained from bunching alone by as much as 301
provided the beam does not burn its own channel. Radial compression will be

somewhat less effective if angular motion is present in the beam.

Future work will involve using the basic understanding developed here

to build a more complete and detailed picture of beam propagation in z-

discharge plasma channels.
33



An approximate analytic expression for b (r,z) can be obtained for

the injected distribution function given in Eq. (18), if phase mixing

can be ignored. This is reasonable as long as z<<z. In this case the

iona can be propagated forwar4 in z by using Eqs. (16) and (17) with

* , wt TTz/X* Integrating the distribution function over velocity space

yields

~Er 2 + r 2 (z)] /r 0 <r < r (Z)

nb (r,z) - N(z) 2r (z) r (z)<r<r2 (z) , (Al)

SIr + r2 (z)J [r3 (z)-r] /2r r 2 (z)<r<r 3 (Z)

for Oz z r/) Tin 1 (wr /2Vo 0).

+1 [(r r ()] /r +/O<r<r (Z)

%b (r,z) - 1(z) r- fr W + rj~~]' /2r. r Wz< r<r (z) ,(A2)

Ir + r 2 (z)] r 3 (z)-r]/2r r 1 (z)<.r<r 3 (z)

for :9 z C zz 2  06r/I) Tan - (wr/Voa) , and
Z, 2 r 'S03M

jr [r(Z) + r 2(z)]
2 /r 0<r <r 2 (z)

C r) wN(Z). [ + + /2r r 2 (z) < r< r(z) (A3)

I~~ ~W [r+r () r 3 (z) -r] 2r r (z)<r<r(z

for z2 4z 4.,/2. Here rl(z) - (V ocL3.)P) sin (rz/kr), r2 (z) - re cos (rsZ/r)

2 /r, Wz r()+ 2 zJ.- (z),r'z()- r .cos (rz/) + r (), and N ) - 2 b 2 "

For X r/2: z 3r , b (r,z) nb (r, )r -z).

An approximate expression for the phase mixed density profile (z~: ) is
simply obtained by averaging % (r,z) over the ripple length, so that

f -,r mb (r, z) dz. (A )

r o

This result is plotted in the upper right hand corner of Fig. 5.
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FIGURE CAPTIONS

1. Trajectories of typical ions injected into a z-discharge plasma channel

from the focusing region to the left.

2. Illustration of beam rippling with a coherence length of zm . Here the beam

envelope, rb(z), is plotted as a function of axial position for the distribution

function given in Eq. (18). For the proposed parameters, zm is typically a

few meters and r is about 0.5 cm.
5

3. Plot of coherence length' for beam rippling as a function of maximum

injection angle.

4. Illustration of beam rippling at z< zm for the distribution function

given in Eq. (34) with r. 0.6 cm, 'cb ' 3.8 x 101 sec 1 I Vo = 3.1 x 109

cm/sec, rs = 0.4 cm, and am = 0.2 rad; nb is measured in arbitrary units.

S. Illustration of nearly complete loss of coherent beam rippling at

Z> z= 230.6 cm for the same beam as shown in Fig. 4.

6. Illustration of nearly complete loss of coherent beam rippling at

z = 50 cm due to enhanced phase mixing causea by a nonuniform channel

current profile. Here B r' and all beam parameters are the same as

in Fig, , 4.

7. Percentage of beam ions lost vs axial position for a beam injected into

a bumpy channel with rc - 0.6 cm, rs - 0.4 cm, Vo - 3.1 x 109 cm/sec,

am - 0.2, and Io - 1.2 x 105 A.

8. Percentage of beam ions lost vs wavelength (2w/K) of the bump for a

5 MeV proton beam injected Into a bumpy channel. Here rc - 0.6 cm

and r. - 0.4 cm for both the am - 0.2 rad (Io - 1.2 x 10s A) and the

a - 0.1 rad (Io. 3.0 x 10 4 A) curves. The shaded region indicates the
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proposed operating regime (r. <06 c )l which could develop sausage type

instabilities.

9. Plot of the beam density profile at various axial positions for a beam

injected into a bumpy channel. Here)A = 2v rc 
= 3.77 cm, a v I, and

all other parameters are the same as in Fig. 6. nb is measured in

arbitrary units.

10. Plot of the beam density profile at various axial positions for a beam

injected into a bumpy channel. Here the ions are injected into the

channel with a spread in ve equal to the spread in vr and all other

parameters are the same as in Fig. 9.
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APPENDIX 4. Ion Orbits in a Non-Current

Neutral i zing Environment.

(I



Assume an ion beam coming in paraxial under self Be(rz).

We now follow 4on orbits assuiing that self B increases as the radius

of a given ion decreases because the current envelope decreases. We also

assume E = 0.

Instead of writing down all equations of motion we use energy conserva-

tion and the equation for v (t).

r

r +vz=vr (-)vl -.2,)) (1)

r •e(r) dr e r
= B Vz r • C B (rz)dr +vz(z=

- (Ro)AMMre v 1-2

and since Vz-O)=v, Be = o'r , 4.5.510 .V1v

M v (l +4. (r/ R).

- .510 2 5.vM2  • 1-i!

• V (I + v i (r/R v (1 (2)
MY



notice that F <0 since r < R.0

We ao use Eq. (2) in Eq. (1) for vr(r).

v r  v (1- (1 ( r))2 1 1- 2F -F 2

v= (-v).(-F2 -2F) (-)v- v/2 • !P (1 - 111A

vr = (-)v-l.6 R/r (1o(1- -4 (3)
VT

! dr
It is obvious that we may integrate vr and find r(t). It is, however,

dt r

of interest to find the orbits directly. We now use Eqs. (2) and (3)

(1 -i-jO r)'

'dr v vr l.J(o 0 ' /
dz RVz Vt ln R- ~ R/r

!0

While Eq. (4i) may be integrated exactly (even if R /r becomes big enough so

Chat va < 0 the solution gives a correct back curved) the only problem may

be particle orbit crossing and that may be cross checked after solving for

r(z,Ro) for different R and see if crossing occurs. If it does then at the

crossing the whole formalism fails since the magnetic field does not follow'( o)

5r
In the following we restrict ourselves to

in R / << 1(5)

which implies for V a 1 WV 1 0. 1 Y that *1R /r - 1 to 2 in acceptable.

First we use Eq. (5) in (4) and integrate the resultant equation

.,whc i. liso ,,,V-;,; 1 I............14 that, / ,,. to 2 , is accepable



d r.= (-) 1.6 n- R/r (6)dz V4 0

change a o y On Ro/r r s ° e
y

*dr w (-)R0 e Y dy Y R • "y dy I* ( R
o )  Lo R f y 1.6 -d

0 yV

In order to arrive to the same z(--L) independent of the R for a given

Y (say Y I which gives a radius reduction by a factor e).

Y 1.6 I1(R)

0 y R 4 0
o

we see that the solution to Eq. (7) is a focus for all R if --- = const.
0

which is I - con:R 2 achieved only for a uniform current distribution. The

distance to the focus is given by

R V 4 Y

for Y > 1 the integral does not grow fast and we anyway are restricted up to

values of Y = 2. We now need a tabulation of the integral as a function of Y.

Y 1 1.5! 2 2.5

e dy/ 1.56 1.2 1.82 1.86

We use the value of Y - 1.5 (which gives a radius reduction by a factor of 4.5

and an area reduction of 20). The focal distance is then



for Vi0.5 W 1i0.03 MA R 1n.25 cm

z .6CM.




