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THE IPLICIT CCPLEMENTARMIT PFBLEM: PART 11

Jong-Shi Pang

ABSTRACT. In Part I of this study, we have defined the implicit complen-

tarity problem and investigated its existence and uniqueness of solution.

In the present paper, we establish a convergence theory fr a certain

iterative algorithm to solve the implicit complementarity problem. We also

demonstrate how the algorithm includes as special cases many existing

iterative methods for solving a linear complementarity problem.
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1. Introduction. Given an n by n matrix A, n-vector b and a mapping a from

Rn into itself, the implicit complementarity problem (1CP), denoted by the

triple (A.b,m) is to find a vector z in Rn satisfying

Ax + b Z O, > U(x) and (Ax + b) T(x - (x)) - o.

in a previous paper [111, we have shown how various complementarity problems

can be cast as an ICP and studied the existence and uniqueness of solution

to the ICP. The fundmental tool employed in our study is a certain

implicitly defined mapping F. With this mapping F, we generate a sequence

of vectors fuk, iteratively by

(1) +1 =F(uk) k > 0

0

where u is a given initial vector.

In this paper, we study the convergence of the iterative scheme (1)

to a solution of the IC?. Our purpose is twofold. First, we show that

many iterative methods for solving the linear complementarity problem can be

unified and extended under this general scheme (1). Second we establish

a theory for the convergence of the scheme.

Over the past several years, there has been an increasing mount of

studies on iterative methods for solving the linear complementarity problem.

Several recent references are [1, 2, 3, 4, 5, 71. In all except two [1, 21

of these previous works, the convergence proofs of the methods rely heavily

on the symmetry of matrix involved. Part of the contribution of the

present research is that we have provided a general framework for the study

of these iterative methods for the linear complementarity problem. Uore

importantly, our method of convergence proof is based on a theory of
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contraction mappings and does not rely on matrix ssmetry. (This saie

approach was used by Aganagic and Ahn in their studies.)

The rest of the paper is organized in two sections. In the next

section, after briefly reviewing some background materials (including the

definition of the mapping F), we show how various iterative methods for the

linear complementarity problem can be obtained as special cases of the general

scheme (1). In the last section, we develop a convergence theory for the

iterative scheme (1) and discuss some of its specializations.

2. Iterative Methods for the LCP. Given an n by n matrix A and n-vector

b, the linear complementarity problem (LCP), denoted by the pair (A,b) is

a special case of the ICP(A,b,m) where m is the zero mapping.

The mapping F used to define the iterative scheme (1) is constructed

inihe following way. See [111. Given a P-splitting (B, C) of the matrix

A, i.e. A - B - C where B is a P-matrix (i.e. has positive principal minors),

for each vector u C in, F(u) is the unique solution to the LCP

Bx + (b - Cu) > 0, x m(u), and (x+b - cu)T(Z-n(u)) 0.

(This latter problem is not an LP in the ordinary sense. However, by the

obvious translation of variables y - x - m(u), it becomes the LCP(B, b - Cu

+ B(u))). It is easy to see that a vector u* is a fixed point of F if and

only if it is a solution of the ICP(A,b,m). For more discussion on this

mapping 7 and its role In the study of the ICP, see (l1. (The P-splitting

used to define the mapping 7 should not be confused with the P-regular

splitting of a matrix used frequently in the numerical analysis literature

(see Ortega (81 e.g.). For more discussion on various matrix splittings

employed in the study of the IC?, see Ill).
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Many iterative methods for solving the LC are of the successive

overrelaxation (SOR) type. These methods are based on their counterparts

for solving systems of linear equations. The following algorithm, due to

Cryer (51 is the modified point SO method for solving the LCP (M, q)

where the matrix N is n by n.

Alxorithm 1,. (Cryer) Let z0 be an arbitrary nonnegative vector and i* a

scalar in the interval (0, 2). Generate the sequence rk, as follows.

For i - l,...,n, let

-k+l k+l k/i
zl " "(qi j i m+j E z miJz.)/mi j < i'i j > i mjJ

and

-i max[O, z + W*(ij'1 Z )

tn (41, Cottle, Golub and Sacher extended the above point method to a

block iterative scheme. More precisely, let the matrix M be partitioned

into submatrices Mij (ij - l,...,n) where 1iL is of order ni by hi. The

vectors z and q are partitoned accordingly. The algorithm below is the

modified block SOR method for solving the LCP (14, q). The point version of

the algorithm corresponds to the case where each block size ni is equal to

one.

0 0 0
Algorihm 11. (Cottle, Golub and Sacher) Let a - 1 ,...,z) be an

arbitrary nonnegative vector and w* a scalar in the interval (0, 2).

Generate the sequence [z k k as follows. For i -

let (, , solve the LCP(ois + o -1 ,.ndloti 1< i j>i i
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*k+l *k + k+l hk+l k
i i £i ('

Aaere

k ~l.lk k . zkl

,4-I .axtk w <a £z 3

hi-

It was pointed out in [4] that if w* E(O, 1], then ol .* for

4 each i and each k; on the other hand, if w* E(l, 2), then w1  1.

Moreover, if w* e(l, 2), then Algorithm I and the point version of

Algorithm II are equivalent in the sense that the same sequence of

iterates 1AkI is generated.

Motivated by several earlier works, including that of Cryer, Mangasarisn

[7] proposes the following fairly general iterative algorithm for solving

the LCP (M, q).

0Algorithm II. (Manguarin) Let z be an arbitrary nonnegative vector,

XE(0, 1) and w* > 0. Generate the sequence Czk] as follows. Let

z .l *max o, ,k _ w*E(q + Mzk+ K(z l..k )j + (I _ X)zk

where R is a positive definite diagonal matrix.

In its original forunlation, the matrices R and K are allowed to

vary from one iteration to the next. For our purpose here, they are

chosen to be fixed throughout the algorithm. in the reference,

Mangasarian commented that in order for the algorithm to be pratical,

the matrix K must be either strictly upper or lower triangular. As we

shall show later, this restriction on the choice of K can be relaxed

considerably.

*1



Recognizing that the LCP can be formulated as a certain fixed point

problem, Aganagic [1) proposed the following iterative algorithm for

solving the LCP (M, q). Although for the convergence of this algorithm,

the initial vector z0 need not be chosen nonnegative; in order to compare

with the above three algorithms, we restrict Agmnaic's algorithm to

start with a nonnegative vector.

Algorithm IV. (Aganagic) Let z be an arbitrary nonnegative vector,

XE[O, 11 and we> 0. Generate the sequence (z k 3 as follows. Let

mk+l .k _ ) ki.

It is easy to see that both Algorithms I and IV are special cases of

111. In fact, with X - 1, Z - D"- 1 and K - L where D sad L are respectively

the diagonal and strictly lover triangular parts of the matrix M,

Algorithm III reduces to 1; whereas with K - 0 and E - I, Algorithm III

becomes IV. (Rigorously speaking, the diagonal entries of the matrix M

need to be positive in order for Algorithm III to include I as a special

case. In Cryer's original paper (5], this requiremenc is always mat

because M is assumed to be symetric positive definite.) In order to see

how Algorithms I and III are related, we establish the next two prop-

ositons which describe an equivalent way for generating the sequence of

iterates.

PronositiLon 2.1. Suppose that each diagonal block N41 of the matrix M is

a P-matrix. Let D, L and U be respectively the block diagonal, the block

strictly lower sad strictly upper triangular parts of N respectively. Then

provided that either each ni is equal to 1, or the parameter a* is in
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(0, i], the sequence (xk) generated by Algorithm II can be obtained in the

following way. Given x nonnegative, let z be the unique solution to the

LP

k(2) u - W~q + [w*U - (I -*)DJz + (D +w*L)z > 0

vm- xma(O, I-a*) k +z > O, uTv-O.

Proof. We shall prove the theorem only for the case where each n is

equal to 1. The other case can be proved in a similar way. First of all,
observe that if each n is equal to 1, then for each L, z+ - max(O zk

+ W*(A - k Moreover,

k + k+l kzi +-* z ) -mm (a( - W*)zk,

>l i

(lu i u..w(q + E zc + E m Z'5I /M

It therefore follows that

Sk+1 . max max(O, (I - W)z )

( x k _)z - (q, + E ml z k+ E mz) /m

or equivalently,

u ~ +toE k k+1 + (0 a8 +u *i +  1> ."ljs " (I - '*)ziLij + (Ziz j < i L

v f.-,ax(o, (I - G,) ,kI + zk- >0 and u i o.

k k kSince z is nonnegative, max[O, (1 - W*)z = [max(O, 1 - w*)Iz . Hence the

vector z k+  is a solution to the LC(2). The reason that it is the unique

solution is because the matrix D + w*L is a P-matrix by the aAmptio on

D and L. qeD
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Proposition 2.2. The vector z -lgenerated by Algorithm III is a solution to

the LCP

(3) u - Xw*q + z* (M -K) D) z k+ (D + w*K)z >O

where D -E

Proof. By definition,

zk+l Mmxr - X)z k zI k )Lw*E (q + (M- K) z k+Kz L-l

Thus z C+l is a solution to the problem

u - U*Eq + (w*E (- K) - 1) zk + (I + w*EK)z >O

V -(1- ~zk +z>0 uT v.0

Since E is positive diagonal, this latter problem is obviously equivalent

to (3). Q.E.D.

It is important to point out that Proposition 2.2 holds regardless

of what the matrix K is. Consequently, a sufficient condition for the

sequence (2k to be well-defined in Algorithm III is that (D + Xw*K) is

a P-matrix. This condition is certainly satisfied if K is strictly

triangular and if D is a positive definite diagonal matrix..

From the two Propositions 2.1 and 2.2, it should be obvious that the

point version of Algorithm 11 is a special case of Algorithm III. In

fact, if the parameter w* (in Algorithm 11) is in (0, 11, then by setting

Jin Algorithm 111, X -wt (of 11),,w (of 111) - 1, and K -L, we obtain

Algorithm 11. On the other hand, if w* (of 11) exceeds one, then by

setting In Algorithm III, -1 and K - L, we obtain Algorithm 11 as well.



For given scalars k, and k2 with k1 > 0 and k2 < 1. the ITC (k1 M9 k2qg a)

where m(x) - k2x for all x, is obviously equivalent to the LCP (M, q).

Consider the splitting (B, C) of the matrix klH :

(4) B -D + kK and C -D + k[K - M)

where D and K are arbitrary matrices such that B is a P-matrix. It is easy

to see that by appropriately choosing the scalars ki and k2 and the matrices

D and K, the general iterative algorithm defined by (1) for the ICP reduces

to Mangasarisn's algorithm III (which includes Algorithms I and IV and the

point version of Algorithm 11) as well as to the general block version

(with parameter w* not exceeding one) of Algorithm II. It is not clear to

the author at this stage whether Algorithm II with u* larger than one can

also be obtained as a special case of the iterative scheme (1).

3. A Convergence Theory. Given an n by n real matrix B, we define its

comparison matrix i by

iii - Biil and iij - -Biji for i j

(see Varga [131). The matrix B is said to be an H-matrix if its comparison

matrix i is a P-matrix (see Ostrowski [91). We call the splitting (B, C)

of the matrix A an U-splitting if B is an H-matrix with positive diagonals.

Since any R-matrix with positive diagonal entries is a P-matrix (see Pang

[101), an H-splitting is necessarily a Posplitting. Conversely, a P-

splitting (B, C) where B is block triangular with each diagonal block

being an -matrix with positive diagonals, is an H-splitting. In

particular, the splitting (4) is an H-splitting if for instance, D is a

positive definite diagonal matrix and K is strictly triangular.

-, *-..
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In what follows, we fix an arbitrary H-splitting (B, C) of the matrix

A and study the iterative scheme defined by (1). For any two vectors u

and v, let e(u, v) and n(u, v) be the vectors whose components are the

differences JF(u) 1 - F(v)iI and Im(u)i - m(v)iI respectively. The result

below establishes a basic relationship between these latter two vectors.

It is an improvement as well as an extension of the one derived by .Ahn [21

for a certain special case.

Proposition 3.1. Let (B, C) be an H-splitting of the matrix A. Then

(5) e~, v) <--1 u-vl
(5) eu, v) B max(in(u, v) ,ICI ! -VI

where D is the diagonal matrix whose diagonal entries are those of B, IC!

and fu - vj are respectively, the matrix and vector whose coinponents are

the absolute values of those of C and u - v.

Proof. Consider an arbitrary index i and suppose that

IF(u)i - F(v)iI -F(u) i -F(v)i.

If F(u)i - m(u) , then

IF(u)i F(v),I .5 m(u)i -m(v), <Im(u)~ m(vij + E JB If IF(u)~ F(v) I/Bi
A j ~

on the other hand, if [BF(u) + (b - Cu)]i 0, then by letting C~ to denote

the i-th row of the matrix C, we have

IF~) i F~),j (-~b C) i+ B j (u) IJ [(b -Cv) + E B FV

-[C (u - V) - E B (F(u) -F(v)) IB i

11y~cu -v)j + r.IB~ijIF(u)j F(v)jI]/Bi.



-10-

Hence, it follows that in either case

IF(u)i - F(v)il < max{ I(u)i -M(V)l I ICi(u - v)I/B il

+ E IB ij IIF(u)j - F(v)jI/Bii

Consequently, we obtain

B e(u, v) .< .axtn(u, v) Ici ju- vI)

.-1

The desired inequality (5) now follows from the fact that B is nonnegative

(see Fiedler and Pt&k (61, e.g.).

With the proposition above, we state the following principal con-

vergence result for the iterative scheme (1) to solve the ICP (A,b,m).

Theorem 3.2. Let (B, C) be an H-splitting of the matrix A. Suppose that

there exists a matrix E such that

(6a) n(u, v) < Eju - vf for all u, v

.-1 l- )
(6b) p(G) < 1 where G - B max(iE , ICI)

0with p denoting the spectral radius. Then for any initial vector uO, the

sequence fuki generated by (1) converges to a solution of the ICP (A,bm).

Before proving the theorem, we point out several remarks. First,

the matrix E must necessarily be noenegative. Second, the initial vector
0
u is not required to be nonnegative. Third, the theorem may be considered

as giving a set of sufficient conditions for the existence of solution to

the CP.

Proof of Theorem 3.1. (Similar to An [21) First of all, observe that the

matrix G is nonnegative. Conditions (5) and (6a) imply that for k 1,
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luk 1  ukl Gluk. uk- I.

Since p(G) < 1, it follows that

(7) Lim 1uk+l uk 1 _ 0.
k-..

Next, by an inductive argument, we may deduce

Iu. 1 - ul < uilul - OI.;(I - G)'lu -u

i O

where the last inequality follows from the fact that the matrix G is non-

negative and P(G) < 1 (see Ortega [8, p. 261). Hence the sequence Cuk]

is bounded and thus has an accumulation point u*.

* Let tkui be a subsequence converging to u*. Then (7) implies that

fk } converges to u* as well. From condition (6a), it follows that the

ii, --apping a is continuous. Rance, by passing the limit ki -.min the

conditions

Bu i + l + (b - Cu i ) > 0 , u i + 1 > m(u , (ui + 1 -m(u k ))T(Buki+ l + b -Cu )i 0

Twe deduce that u* is a solution to the IC? (Ab,m). Thus u* is a fixed

point of the mapping F. By using Proposition 3.1 again, we obtain

u k+1 _ u*j r< Guk _ u*j < .... < Gklu 1 _ u*j.

As p(G) < 1, it follows that the entire sequence fuk] converges to u*.

This completes the proof of the theorem.

The argument used in the above proof is a contraction-type reasoning

to establish the convergence of sequences. Such argument is used frequently

in the study of iterative methods for systems of linear equations (see

Ortega [81 e.g.).
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Before discussing some special cases of Theorem 3.2, ye give necessary

and sufficient conditions for (6a) and (6b) to hold. The next result shows

that condition (6a) is equivalent to the fact that the mapping m is

Lipschitz continuous, i.e. there exists a scalar 0 such that

(8) Ffm(u) - m(v!j < W4u - vl for all u, v

where the double vertical lines denote a certain norm of Rn.

Proposition 3.3. Condition (6a) is satisfied for some matrix E if and only

if the mapping m is Lipschitz continuous.

Proof. Suppose that m is Lipschitz continuous. With no loss of generality,

we may assume that the norm in (8) is the m-norm .lxIl max lxii
i n

Then for any u and v, we have

max im(u)i " m(v)ii = Iui - vii

so that

j2(u) - m(v)j . ilu - vi

where E is the matrix of ones. Hence condition (6a) follows. Conversely,

if condition (6a) is satisfied for some matrix E, then

~ n
iim(u) . m(v)IJ < max ( - ilu-vii..

li n j lij iJU-V

Hence m is Lipschitz continuous. This prove* the proposition.

The next proposition gives a necessary and sufficient condition for

(6b) to hold. Recall that a Z-atrix is a square matrix with non-positive

off-diagonal entries and a tinkovski matrix is a Z-mtrix which is also
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a P-matrix. See Plemmons [12] for various characterizations of a Minkowski

matrix. (Minkowski matrices are also called M-matrices or K-matrices in

the literature.)

Proposition 3.4. Let B and E be respectively, a Minkowski matrix and a

nonnegative matrix. Then p(B i) < 1 if and only if the matrix Q = 5 - E

is a Minkowski matrix.

Proof. This result follows from a characterization of a Minkowski matrix.

See Plemmons [12] and Varga [14].

As a consequence of Proposition 3.4, the next result shows that a

necessary condition for (6b) to hold is that the matrix A itself is a -

matrix with positive diagonal entires.

Corollary 3.5. Suppose that condition (6b) holds. Then A is an H-matrix

with positive diagonals.

Proof. Let A be the comparison matrix of A. It is easy to deduce that

1> i - x(BE , ICl> )

Since A is a Z-matrix, the fact that Q is a Minkowski matrix implies that

A is an H-matrix (see Fiedler and Ptlk [61). Since Q is Minkovski, we have,

for each index i,

0 < q,, <. iljJi j % .< s -C, -A U

because B has positive diagonal entries. This completes the proof of the

Corollary.

In the rest of the paper, we derive several specializations of

Theorem 3.2. The next result is concerned with the nonlinear complmentarity

-. A
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problem (ILCW)

(9) y . o, s(y) o - yTS(y) 0.

Corollary 3.6. If by letting m(y) - y - S(y), there eziats a matrix E

With P(N) < 1 such that condition (6a) is satisfied, then for an arbitrary

initial vector u , the sequence uk1 defined by

(10) u~l emaxto, m(u) fOr k 0

converges to a solution of the NLCP(9).

Proof. This follows from Theorem 3.2 by noting that the iteration (10) is

a special case of (1) under the splitting (1, 0) of the identity matrix.

We mention in the last section that various iterative methods for the

LCP(M, q) can be obtained from the iterative scheme (1) specialized to

the ICP (k1M, klq, m) with m(x) - k2x under the splicting (B, C) of the

matrix k1 M given in (4). The next result is concerned with this

particular ZCP.

Corollary 3.7. Let kiand kc2 be scalars with It, > 0 and k2 < 1. Let D

md K be matrices such that the matrix B given in (4) is an -matrix with

positive diagonals. Suppose that

(11) P( -, lCI)) <1

Swere C is given in (4). Then for ay initial vector uO , the sequence Cuk]

defined by (1) specialUed to the TO (k"31, k2q, m) where m(z) - k2 x,

converges to a solution of the LP (M, q).

/go. This corollary is a direct specialization of Theorem 3.2.
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Corollary 3.6 extends a result of Abn (21 which deals mainly with

Mangaarian's Algorithm 11. Ahn proved the result for strictly tria alar

K, diagonal D and k - 0. The corollary also extends various results of

Aganagic []. In fact, Aganagic required a somewhat stronger assumptam

than the one (11) needed in the corollary.

Specializing Corollary 3.7 to the point version of Algorithm 11, we

. obtain the following convergence result for a point SO& method for solviag

Ca LCP.

C orollary 3.8. Let K be an -matrix with positive diagonal entries.

Then, provided that 0 < w* < 2/[1 + p(J 1 )] where J- a D'[ILI - lUlI andID, L and U are the diagonal, strictly lower and upper triangular parts of

X respectively, the sequence (zkI generated by the point version of

Algorithm 1I converges to a solution of the LCP (M, q). If M is sysmetric

as well, the same conclusion holds if 0 < w* < 2.

Proof. According to Proposition 2.1 and Corollary 3.7, it suffices to

verify that

(12) p((D - m*ILI)'I(*]Ul + 1I - w*ID) < 1.

Suppose that 0 < w* < 1. Then

(D -wuILI) - (O*jUj + 1l - w*ID) - w*(D - ILl - lul) - M

where f is the comparison matrix of M. Hence by assumption and

Proposition 3.4, (12) follows. On the other hand, if wt > 1, then the

left-hand torm in (12) is equal to

p[(0 - w*ILI) " ((1 - *) D - u*lUl)].
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By a chraOcterizsation of 3-matrices (see Varga (13]) the latter spectral

radi"s is strictly les then 1 if %* < 2/[1 + p(Jl)] where J 1 - [ILI -

The last canclusion of the corollary is obvious.

We conclude this paper by presenting a convergence result for a block

Causs-Sidel method for solving the LCI.

Corolary 3.19. Let N be an U-matrix with positive diagonal entries. Then

the sequence xk I generated by Algoritbm 11 with ws - I converges to a

solution of the LCD (M, q).

Proof. Let D, L and U be as specified in Proposition 2.1. By Proposition

2.1 end Corollary 3.7, it suffices to show that p((6 - ILI)''IrIUI < 1

where i is the comparison matrix of D. Since ILI Jj-jUj - ft wbere i

is the comparison matrix of 4, the desired conclusion now follows from

Proposition 3.4 and the asumption.

1t
r



REFERENCES

1. Aganagic, M., "Iterative methods for linear complementarity problems,"
Tech. Report S0L78-lO, Systems Optimization Laboratory, Dept. of
Operations Research, Stanford University (Sept. 1978).

* 2. Ahn, B.E., "Computation of asyimmetric linear complementarity problems
by iterative methods," manuscript of a paper (July 1979).

3. Cottle, R.W. and M. Goheen,_ "A special class of large quadratic
programs," in Nonlinear Programming 3, ed. O.L. Mangasarian, R.R. Meyer
and S.M. Robinson (Academic Press, Aug. 1978) 361-390.

4. Cottle, R.W., G. Golub and R.S. Sacher, "on the solution of large
structured linear complementarity problems," Applied Mathematics and
Optimization 4 (1978) 347-363.

5. Cryor, C.W., "The solution of quadratic programming problem using
systematic overrelaxation," SIAM Journal on Control 9 (1971) 385-392.

6. Fiedler, M. and J. Ptak, "On matrices with nonpositive off-diagonal
elements and positive principal minors," Czech Journal of Mathematics
12 (1962) 382-400.

7. Mangasarian, O.L., "Solution of symetric linear complementarity
problems by iterative methods," Journal of Optimization Theory and
Applications 22 (1977) 465-485.

8. Ortega, J.M., Numerical analysis, a second cause (Academic Press 1972).

9. Ostrowaki, A.M., "lUber die Determinanten =it TUberirgender Hauptdiagonale,"
Coment Moth, Hely. 10 (1937) 69-96.

10. Pang, J.S., "Ridden Z-matrices with positive principal minors," Linear
* Alitebra and its Apylications 22 (1978) 267-281.

11. Pang, J.S., "The implicit complementarity problem: Part 1,"1 NSRR #
G.S.Z.A., Carnegie-Mellon University (April 1980).

12. Plumons, R.J., "kM-matrix characterization 1: nonsingular M-matrices"1
Linear Algebra and its hAilications 18 (1977) 175-188.

13.* Varga, R.S., "On recurring theorems on diagonal dominance," Linear
Algebra and its Aplications 13 (1976) 1-9.

14. Varga, R.S., Matrix iterative analysis (Prentice-Hall 1962).



U € TWtsP ied , ..., a

RZAD ,INS T:. TIC& 14.!PoWr OCCUMIENTATION PAGE BFR OALTI FW
NPpoyr ,-OUMeUR -L GOVT ,C=SUIM ". agcapgcu t.oa '1u,,C
M.S.R.R. 459 .

4 . r L , (i a n -. b w.- , bo " L y,, g a i r m wo o & , p€ = ,o o € o ,, u x 6
_____________________________________ ~ Technical Report

THE IMPLICIT COHPLEMEWTARITY PROBLEM: 19807AR Ap.1 rl 1980
PART 11 . P enUroUUn. G one. a 0W OT uM0J

il. AUo?%W) 0. CONTNr OpUaniT 1m ulaeR.j

I onSN00014-75-C-0621|Jong-Shi Pang

J. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ '=AA 9SVAM oaa.azno gm MAONSS.*uoa LMT." ,qJCT. TAU(
a -

Graduate School of Industrial Administration AUA M0I UUT MIUNS j
I Carnegie-Mellon University NR047-048

Pittsburgh, Pennsylvania 15213

Personnel and Training Research Programs April 1980
. Office of Naval Research (Code 458) 13. NUM8sU Of PA392

A ,%j:Wi, '7217jI . MOA ITONg I[G'IauC A A@OOUU(I* dlUAFWu bm COmU'A/l 0140 IL SSCuRITY CLASS. (e *r'I S.

W,. OlvtBUU"n1ON S&TIMENT 701 ate Reole)

Approved for release; distribution unlimited.

- I. ObSTAISUfO eN SATEM"Wr (of 0. 4MMge iamin Me St. if E db 6

I1s. suvft..eNAAY 111TEts

Implicit complementarity Successive overrelaation
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