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THE IMPLICIT COMPLEMENTARITY PROBLEM: PART II

Jong~-Shi Pang

R

ABSTRACT. In Part I of this study, we have defined the implicit complemen-
tarity problem and investigated its existence and uniqueness of solutiom.
In the present paper, we establish a convergence theory for a certain

1 £ iterative algorithm to solve the implicit complementarity problem. We also
& ' demonstrate how the algorithm includes as special cases many existing

iterative methods for solving a linear complementarity problem,

Key Words. Implicit complementarity Successive overrelaxation

Iterative method Convergence theory




1. Introduction. Given an n by n matrix A, n-vector b and a mapping m from
R into itself, the implicit complementarity problem (ICP), denoted by the

triple (A,b,m) is to find a vector x in R® satisfying
Ax+b20, x>m(x) and (Ax +b)T(x = u(x)) = 0.

In a previous paper [11], we have shown how various complementarity problems
can be cast as an ICP and studied the existence and uniqueness of solution
to the ICP. The fundamental tool employed in our study is a certain
implicitly defined mapping F. With this mapping F, we generate a sequence

of vectors {uk} iteratively by

@ o arek k>0

where u® is a given initial vector.

In this paper, we study the convergence of the iterative scheme (1)
to a solution of the ICP. Our purpose is twofold. First, we show that
many iterative methods for solving the linear complementarity problem cam be
unified and extended under this general scheme (l). Second we establish
a theory for the convergence of the scheme.

Over the past several years, there has been an increasing amount of
studies on iterative methods for solving the linear complementarity problem,
Several recent references are [1, 2, 3, 4, 5, 7]. In all except two [1, 2]
of these previous works, the convergence proofs of the methods rely heavily
on the symmetry of matrix involved. Part of the contribution of the
present research is that we have provided & general framework for the study

of these iterative methods for the linear complementarity problem. More

importantly, our method of convergence proof is based on a theory of
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contraction mappings and does not rely on matrix symmetry. (This same
approach was used by Aganagic and Ahn in their studies.)

The rest of the paper is organized in two sections. In the next
section, after briefly reviewing some background materials (including the
definition of the mapping F), we show how various iterative methods for the
linear complementarity problem cam be obtained as special cases of the general
1 ' scheme (1). In the last section, we devalop a convergence theory for the

\ iterative scheme (1) and discuss some of its specializationms.

2, Iterative Methods for the LCP., Given an n by n matrix A and n-vector

b, the linear complementarity problem (LCP), denoted by the pair (A,b) is
a special case of the ICP(A,b,m) where m is the zero mapping,

The mapping F used to define the iterative scheme (1) is constructed

et e s S AT RO st o

in the following way. See [11]. Given a P-gplitting (B, C) of the matrix

A, i.e. A= B - C vhere B is a P-matrix (i.e. has positive principal minors),

for each vector u € n", F(u) is the unique solutiom to the LCP

Bx + (b -Cu) 30, x3>m(u), and (Bx +b - Cu)(x - m(u)) = 0.

(This latter problem is not an LCP in the ordinary sense. However, by the
obvious tramslation of variables y = x - m(u), it becomes the LCP(B, b - Cu
4+ Bm(u))). It is easy to see that a vector u* is a fixed point of F Lif and
only if it is a solution of the ICP(A,b,m). For more discussion on this
mapping ¥ and its role in the study of the ICP, see (lL1]. (The P-gplitting
| used to define the mapping F should mot be confused with the P-regular
splitting of a matrix used frequently in the mumerical analysis literature
(see Ortega (8] e.g.). PFor more discussion on various matrix splittings

employed in the study of the ICP, see [ll]).
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.mny iterative methods for solving the LCP are of the successive
overrelaxation (SOR) type. These methods are based on their counterparts
for solving systems of linear equations. The following algorithm, due to
Cryer [5] is the modified point SOR method for solving the LCP (M, q)

where the matrix M is n by n.

Algorithm I. (Cryer) Let zo be an arbitrary nonnegative vector and uw* a
scalar in the interval (0, 2). Generate the sequence {zk} as follows.

For i = 1,...,n, let

ak+l k+l
£ (q + ; E . mijzj + ; E . mijzl;)/mu

and

zrﬂ' = max {0, z: + m*(irn' - z:)}.

In (4], Cottle, Golub and Sacher extended the above point method to a
block iterative scheme, More precisely, let the matrix M be partitioned

into submatrices Mi.j (1,§=1,...,n) where M,, is of order n The

it i 1°
vectors z and q are partitoned accordingly. The algorithm below is the

by n

modified block SOR method for solving the LCP (M, q). The point version of

the algorithm corresponds to the case where each block size n, is equal to

i

one,

0

Algorithm II. (Cottle, Golub and Sacher) Let £ = (zg....,::) be an

arbitrary nonnegative vector and w* a scalar in the interval (0, 2).

Generate the sequence {:k - (z:,...,z:)] as follows., For { = 1,,..,n,

let i'f"l solve the LCP (M,,, 2, + T X LA I

zISmdlot
j<g 13 j>1 4

Hij




kH kL ol

5, g, + mi ('i z:)
where

mk+1-m{m tw<av, zk+w(ik+1 - zk) > 0}.

i - i i i’ =

k+l
It was pointed out in [4] that if w* €(0, 1], then w - w* for

each i and each k; on the other hand, if ke €(1, 2), then cn:ﬂ' 2L

Moreover, if wt €(1, 2), then Algorithm I and the point version of
Algorithm II are equivalent in the sense that the same sequence of
iterates {zk} is generated.

Motivated by several earlier works, including that of Cryer, Mangasarisn
[7] proposes the following fairly general iterative algorithm for solving
the LCP (M, q).

Algorithm III, (Mangasarian) Let zo be an arbitrary nonnegative vector,

A€(0, 1) and w* > 0. Generate the sequence {zk} as follows., Let

zkﬂ = m{o, zk - w*E(q + nzk + K(zkﬂ - z%)} + (1 - l)zk

where E is a positive definite diagonal matrix.
In its original formulation, the matrices E and K are allowed to
vary from one iteration to the next. For our purpose here, they are
chosen to be fixed throughout the algorithm. In the reference,
Mangasarian commented that in order for the algorithm to be pratical,
the matrix K must be either strictly upper or lower triangular. As we
shall show later, this restriction on the choice of K can be relaxed

considerably.

R TR e £ MY A A R R T T TS A T T
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Recognizing that the LCP can be formulated as a certsin fixed point

problem, Aganagic [1] proposed the following iterative algorithm for
solving the LCP (M, q). Although for the convergence of this algorithm,
the initial vector :o need not be chosen nonnegative; in order to compare
vith the above three algorithms, we restrict Aganagic's algorithm to

start with a nomnegative vector,

Algorithm IV. (Aganagic) Let :o be an arbitrary nonnegative vector,
A€[0, 1] and w* > 0. Generate the sequence {zk} as follows. Let

£ o 2% L A mtaferau® + q), 2.

It is easy to see that both Algorithms I and IV are special cases of

III. In fact, withA = 1, E = p~L

and K = [, vhere D snd L are respectively
the diagonal and strictly lower triangular parts of the matrix M,
Algorithm III reduces to I; whereas with K= 0 sud E = I, Algorithm III
becomes IV. (Rigorously speaking, the diagonal entries of the matrix M
need to be positive in order for Algorithm III to include I as a special
case, In Cryer's original paper (5], this requiremenc is always met
because M is assumed to be symmetric positive definite.) In order to see
how Algorithms II and III are relsted, we establish the next two prop-
ositions which describe an equivalent way for generating the sequence of

iterates.

Proposition 2.1. Suppose that each diagonal block llu of the matrix M is 5
a P-matrix. Let D, L and U be raspectively the block diagonal, the block

strictly lower and strictly upper triangular parts of M respectively. Then
provided that either each n, is equal to 1, or the parameter o* {s in
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(0, 1], the sequence {zk} generated by Algorithm IY can be obtained in the

k+l

following way. Given zk nonnegative, let z be the unique solution to the :

LCP 3

(2) u=uwhq+ [w4 - (1 - o)D)z + (D + ¥z 3 0

v--lux(o,l-«#)zkd-zgo, urv-o. )

Proof. We shall prove the theorem only for the case where each n

. is
equal to 1, The other case can be proved in a similar way. First of all,

observe that if each n, is equal to 1, then for each i, z:ﬂ = max{0, zl;
+ w*(ikﬂ - z:)}. Moreover,
k ak+l k
2g bok(z - z) =max {(1 - u,,,)z:’
k
‘(1 = at)z’ = ot £ LI
i (9 + 5<% j>1 11‘5/"‘11}
It therefore follows that
z:ﬂ = max {max(0, (1 - uﬁ‘)z‘: ),
k ktl
1= a#)z, = o + I +
( )1 CH j<1m1jj jz mi.jj)/m}
or equivalently,
u savq, +[o* T m zk-(l-m*)m S+ @t v T w2
i i > 1 113 i1 iii §j<1 1373 a
k ktl ) '3
vy == max[0, (1 - uﬁ)zi] + z, 20 and u cv, - 0.

Since z* 1s nomnegative, max[0, (1 ~ w*)z*] = (max(0, 1 - w*)]z*., Hence the
vector zkﬂ is a solution to the LCP(2). The reagson that it is the unique
solution is because the matrix D + «w*L is a P-matrix by the assumptions on
D and L,

Q.E.D.

P — "".‘-r .
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Proposition 2.2, The vector zkﬂ generated by Algorithm III is a solutiom to

the LCP

(3)  u = Awkq + (Mo*(M = K) - D)z* + (D + A*)z 2 0

v--(l-h)zk-!-zzo, urv-o,

where D = E-]'.

Proof. By definition,

k+1

z = max {(1 - l)zk, zk - Aw*E(q + (M - K)zk + szﬂ'

)1

Thus, zk+1 is a solution to the problem

u = MAEQ + (M*E(M = K) - I)z° + (I + M#EK)z 2 0
ve-@-0f+z230, ulv=o.

Since E is positive diagonal, this latter problem is obviously equivalent
to (3). ' Q.E.D.

It is important to point out that Proposition 2.2 holds regardless
of what the matrix K is. Consequently, a sufficient condition for the
sequence {:k} to be well-defined in Algorithm III is that (D + Aw*K) is
a P-matrix. This condition is certainly satisfied if K is strictly
triangular and if D is a positive definite diagonal matrix..

From the two Propositions 2.1 and 2.2, it should be obvious that the
point version of Algorithm II is a special case of Algorithm III. 1In
fact, if the parameter w* (in Algorithm II) is in (0, 1], then by setting
in Algorithm IIX, A = w* (of II), w* (of III) = 1, and K = L, we obtain
Algorithm II. On the other hand, if w* (of II) exceeds one, then by

lqtting in Algorithm III, A = 1 and K = L, we obtain Algorithm II as well.
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For given scalars kl and k2 with kl > 0 and kz <1, the ICP (klu, kzq, m)
vhere m(x) = kzx for all x, 1is obviously equivalent to the LCP (M, q).
Consider the splitting (B, C) of the matrix kM :

(4) B=D+kK and C=D+kI[K- M]

where D and K are arbitrary matrices such that B is a P-matrix. It is easy
to see that by appropriately choosing the scalars k1 and kz and the matrices
D and K, the general iterative algorithm defined by (1) for the ICP reduces
to Mangasarisn's algorithm III (which includes Algorithms I and IV and the
point version of Algorithm II) as well as to the general block version

(with parameter w* not exceeding one) of Algorithm II. It is not clear to
the author at this stage whether Algorithm II with w* larger than one can

also be obtained as a special case of the iterative scheme (1).

3. A Convergence Theory. Given an n by n real matrix B, we define its

comparison matrix B by

iuﬂlB and B for i 43,

n Thd ]

(see Varga [13]). The matrix B is said to be an H-matrix if its comparisomn
matrix B is a P-matrix (see Ostrowski [9]). We call the splitting (B, C)
of the matrix A an H-splitting if B is an H-matrix with positive diagonals.
Since any Hematrix with positive diagonal entries is a P-matrix (see Pang
[10]), an H-splitting is necessarily a P-splitting. Conversely, a P-
splitting (B, C) vhere B is block triangular with each diagonal block

being an H-matrix with positive diagonals, is an H-splitting. 1In
particular, the splitting (4) is an H-splitting if for instance, D is a

positive definite diagonal matrix and K is strictly triangular. |
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In what follows, we fix an arbifrary H-splitting (B, C) of the matrix
A and study the iterative scheme defined by (1). For any two vectors u
and v, let e(u, v) and n(u, v) be the vectors whose components are the
differences [F(u)i - F(v)il and Im(u)i - m(v)il respectively. The result
below establishes a basic relationship between these latter two vectors.

It is an improvement as well as an extension of the one derived by Ahn [2]

for a certain special case, . b

Proposition 3.1. Let (B, C) be an H-gplitting of the matrix A, Then i-

1

(5 e(u, v) < B max [Dn(u, v) , ]C[ lu - vl],

where D is the diagonal matrix whose diagonal entries are those of B, |C|
and [u - vl are respectively, the matrix and vector whose comjonents are

the absolute values of those of C and u - v.

Proof. Consider an arbitrary index i and suppose that

ST S

[Fw), - Fv), | = Pw), - F(v),.

If F(u)i = m(u)i, then

IF(u)i - F(v)il Sm(u), -~ m(v), | m(u), - m(v}il + ; i ilBij' |F(u)j - F(v)j]/nu

On the other hand, if [BF(u) + (b ~ Cu)]i = 0, then by letting Ci to denote

the i-th row of the matrix C, we have

[P, - P | s (-l - co), + T B

%1 157

|
_1] + [(d - Cv), + 351 1;“1?(v)j]}/13ii i

- [ci(u -v) - j§1 B“(l’(u) - F(v))j]hsu

sl -w]+ 331 1313”"(“)3 - F(v)jl}/Bn.




Hence, it follows that in either case
|Fw), - Fv),l g wax{|m(u), - @), |, |c;(u - vi/z,,}

+ E |8 .| |F(w), - R(W) |/B,, .
jh1 U 1 $17P14

Consequently, we obtain

B e(u, v) < max{bn(u, v) , |¢| Ju - v]} .

The desired inequality (5) now follows from the fact that B is nonnegative
" (see Fiedler and Ptdk [6], e.g.).

With the proposition above, we state the following principal con-

vergence result for the iterative scheme (1) to solve the ICP (A,b,m).

Theorem 3.2, Let (B, C) be an H-splitting of the matrix A. Suppose that 3

there exists a matrix E such that

(6a) n(u, v) < E]u - v] for all u, v

(6b) Pp(G) <1  where G = 1'3-1 max(DE , [c|) ,

Laore ot U

e

with p denoting the spectral radius. Then for any initial vector uo, the

b sequence {uk} generated by (1) converges to a solution of the ICP (A,b,m).
!

SRR

:f: Before proving the theorem, we point out several remarks. First, ]
the matrix E must necessarily be nomnegative. Second, the initial vector

uo is not required to be nomnegative. Third, the theorem may be considered

as giving a set of sufficient conditions for the existence of solution to ' 3

k| the ICP.

Proof of Theorem 3.2. (Similar to Ahn [2]) First of all, observe that the

ey

matrix-G is nonnegative, Jonditions (5) and (6a) imply that for k21,
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luk'l'l - ukl < Gluk - uk-ll. i

Since p(G) < 1, it follows that

M  um [T . ¥ =0,

k-

Next, by an inductive argument, we may deduce

u

. k+1
¥ 0 ¢ BE gl -
1 1=0

0 -1, 1 0
-Olga -0t |
vhere the last inequality follows from the fact that the matrix G is non-
negative and p(G) < 1 (see Ortega [8, p. 26]). Hence the sequence {uk}
is bounded and thus has an accumulation point u*,
Let {uk’-} be a subsequence converging to u*. Then (7) implies that

k41
ful

} converges to u* as well. From condition (6a), it follows that the
mapping m is continuous. Heace, by passing the limit ki. -~ o in the

¥

¢

&

¥

i

i conditions ,

, +1 +1 +1

' Buk" + (b - Cuki) 20, uki 2 m(uki) N (uki - m(uk:"))T(Bukf'-1 +b - Cuki) =0

we deduce that u* is a solution to the ICP (A,b,m), Thus u®* is a fixed
point of the mapping F. By using Proposition 3.1 again, we obtain

e+l

Iu - u*l 5c|u" - u*l S ¢eee € leul - u*[.

As p(G) < 1, it follows that the entire sequence {uk} converges to u%,

‘ This completes the proof of the theorem.

l The argument used in the above proof is a contraction-type reasoning
to establish the convergence of sequences. Such argument is used frequently

in the study of iterative methods for systems of linear equations (see

-

Ortega [8] e.g.).
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Before discussing some special cases of Theorem 3.2, we give necessary
and sufficient conditions for (6a) and (6b) to hold. The next result shows
that condition (6a) is equivalent to the fact that the mapping m is

Lipschitz continuous, i.e. there exists a scalar u such that

) lm) - nw))| g pllu -Vl forallu, v

where the double vertical lines denote a certain norm of Rn.

Proposition 3.3. Condition (6a) is satisfied for some matrix E if and omnly

if the mapping m is Lipschitz continuous,

Proof. Suppose that m is Lipschitz continuous. With no loss of generality,

we mgy assume that the norm in (8) is the =-norm : ”x”a - 1 sm:xs lxil .
n

Then for any u and v, we have

-V

N

n
max nlm(u)i - m(v)il <p I lui

1gig j=1

so that

Im(u) - m(v)| SH Elu - v[

vhere E is the matrix of ones., Hence conaition (6a) follows. Conversely,

if condition (6a) is satisfied for some matrix E, then

a i
lne - awlls < 1;?%n(15151m“'m" |

Hence m is Lipschitz continuous, This proves the proposition.

The next proposition gives a necessary and sufficient condition for
(6b) to hold. Recall that a Z-matrix is a square matrix with non-positive
off-diagonal entries snd &8 Minkowski matrix is a Z-matrix which is also
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a P-matrix. See Plemmons [12] for various characterizations of a Minkowski
matrix, (Minkowski matrices are also called M-matrices or K-matrices in

the literature.)

AT e e

Propogition 3.4. Let B and E be respectively, a Minkowski matrix and a

e e

T R

--1- - -
nonnegative matrix, Then p(B E) < 1 if and only if the matrix Q =8 - E

is a Minkowski matrix.

Proof. This result follows from a characterization of a Minkowski matrix.
See Plemmons [12] and Varga [14].

As a consequence of Proposition 3.4, the next result shows that a
necessary condition for (6b) to hold is that the matrix A itself is an H-

matrix with positive diagomal entires.

Corollary 3.5. Suppose that condition (6b) holds. Then A is an H-matrix

with positive diagonals.

Proof. Let A be the comparigson matrix of A, It is easy to deduce that
A>3 - max(®E , [C]) =q.

Since A is 8 Z-matrix, the fact that Q is a Minkowski matrix implies that
A i3 an H-matrix (see Fiedler and Ptdk [6]). Since Q is Minkowski, we have,

for each index i,

0<Q, B, ~lc,lgn, -c, =4,

becauge B has positive diagonal entries. This completes the proof of the I
Corollary,

In the rest of the paper, we derive several specializations of

Theorem 3.2. The next result is concerned with the nonlinear complementarity




problem (NLCP)

9 y320, g0 ad ygy =o0.

Corollary 3.6. If by letting m(y) = y - g(y), there exists a matrix E
with é(z) < 1 such that condition (6a) is satisfied, then for amn arbitrary
{nitial vector u’, the sequence [u*} defined by

(10) ot . max {0, q(u‘S} for k > 0

converges to a solution of the NLCP(9).

Proof. This follows from Theorem 3.2 by noting that the iteration (10) is

a special case of (1) under the splitting (X, 0) of the identity matrix.

GRS YT R T e T S

We mention in the last sectiom that various iterative methods for the
LCP(M, q) can be obtained from the iterative scheme (1) specialized to
the ICP (klu, qu, m) with m(x) = kzx under the splicting (B, C) of the
matrix klll given in (4). The next result is concerned with this

particular ICP.

Corollary 3.7. Let kl and kz be scalars with k1 >0 and kz <1l, LetD
and K be matrices such that the matrix B given in (4) is an H-matrix with

positive diagonals. Suppose that

an i sk lB , leh) <1

vhere C is given in (4). Then for any initial vector uo, the sequence {uk]
defined by (1) specialised to the ICP (kln, kzq, m) where m(x) = I:zx.

converges to & solution of the LCP (M, q).

Ixoof. This corollary is a direct specialisation of Theorem 3.2.
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Corollary 3.6 extends & result of Ahn (2] which deals mainly with

Mangasarian's Algorithm II. Ahn proved the result for strictly trisagulasr
K, diagonal D and "2 = 0, The corollary also extends vsrious results of
Aganagic [1]. In fact, Agamagic required a somewhat stronger assusption
than the one (11) needed in the corollary.

Specializing Corollary 3.7 to the point version of Algorithm II, we

obtsin the following convergence result for a point SOR method for solving
a LCP.

Corollary 3.8. Let M be an Hematrix with positive diagomal eatries.
Then, provided that 0 < w* < 2/[1 + p(J,)] where J, = o l(lL] - |u|] and
D, L and U are the disgonal, strictly lower and upper triangular parts of
M respectively, the sequence {zk} generated by the point version of

Algorithm II converges to a solution of the LCP (M, q). If M is symmetric

as wall, the same conclusion holds if 0 < a* < 2,

Proof. According to Propositiom 2.1 and Corollary 3.7, it suffices to
verify that

(12) pt® - oL Fwrlu] + |1 - w¥|D) < 1.
Suppose that 0.< w* < 1. Then

® ~o*|L]) - (@*[v] + [1 - w*[D) = e*@ - [L] - |U]) = ot
where ¥ is the comparison matrix of M. Hence by assumption and

Proposition 3.4, (12) follows. On the other hand, if u* > 1, then the
left-hand term in (12) is equal to

pI® - L] (1 = o%) D - a*|UD)].
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By & characterization of H-matrices (see Vargas [13]) the latter spectral
Tedius is strictly less tham 1 1f ov < 2/[1 + p(3,)] vhere 3, = D"L[[1] - [u]].
The last conclusion of the corollary is obvious.

We conclude this paper by presenting a convergence result for a block )
Gauss~-Sidel method for solving the LCP. .

"' Corollary 3,9, Let M be an H-matrix with positive disgonal entries. Then
the sequence fzk} generated by Algorithm II with w* = 1 converges to a
solution of the LCcP (u. q)o

Proof. Let D, L and U be as specified in Proposition 2.1. By Proposition
2.1 and Corollary 3.7, it suffices to show that p[(D - ILI)'IIUII <1
vhere D is the comparison matrix of D. Since D - [L| - |U| = ¥ where &

is the comparison matrix of M, the desired coanclusion now follows from

Proposition 3.4 and the assumption,
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