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THE GEORGE WASHINGTON UNIVERSITY
School of Engineering and Applied Science
Institute for Management Science and Engineering

Program in Logistics

SENSITIVITY ANALYSIS OF A NONLINEAR
STRUCTURAL DESIGN PROBLEM

by

Anthony V. Fiacco
Abolfazl Ghaemi

1. INTRODUCTION

The purpose of the current paper is to conduct a first order
sensitivity analysis of a nonlinear structural design prouiem discussed

in Chapter 6 of the book by Bracken and McCormick [8].

By sensitivity analysis is meant an analysis of the effect on the
optimal objective fﬁnction value and on an optimal solution point of small
perturbations in the qnode{\yarameters. The‘gmpdrfance of such an analysis
in real world optimization p;sflems cannot be overstated. It provides the
model maker and user with invaluable information regarding the functional
relationship between a solution and the design parameters. This has many
potential applications. For example, identification of those parameters
having the most significant impact on the optimal solution can provide a
basis for developing educated guidelines for taking appropriate and efficient
action toward effecting parameter changes that will give an optimal marginal

improvement of system design or performance.

A theoretical basis for sensitivity analysis for nonlinear programming
was given by Fiacco and McCormick [13] and generalized and extended by
Fiacco [10). Based on the approach given in [10], an algorithmic procedure
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was proposed by Fiacco and implemented by Causey [9]. Later on it was
refined and recoded by Mylander [14}, using the several subroutines of the
SUMT-version 4 computer code by Mylander, Holmes, and McCormick [15],

which implements the Sequential Unconstrained Minimization Technique for
nonlinear programming using the logarithmic-quadratic-loss penalty function.
This will be described in Section 2., Mylander's sensitivity subroutines
were integrated with the SUMT-version 4 computer program by Armacost and

Mylander [7]. This routine was further revised and expanded by Armacost [1].

The latter version of the routine, now called "SENSUMT," is compiled
in The George Washington University Computer Center and constitutes the main
clement on which the present sensitivity analysis is based. The study is
conducted in three phases: Phase 1 deals with the solution of the problem.
Phase 2 deals with the solution and sensitivity analysis study of the problem
when each of the right hand sides of the constraints is perturbed. Several
problems are analyzed, each associated with a significantly different right
hand side initial value. Phase 3 deals with a sensitivity analysis study
with respect to each problem design parameter, again for several problems,
each associated with a significantly different set 6f problem design parameter

initial values.

Estimates are given of the optimal solution of this family of problems,
using the optimal solution and first order sensitivity information of the
unperturbed problem. Furthermore, several stability and convergence character-
istics of the solution points and their partial derivatives with respect to the

problem parameters are computationally verified.

As an example of the numerous inferences that can be made, the analysis
reveals that the weight of the optimally designed structure is most sensitive
to the minimum allowable structural thickness and, next, to a corrosion

allowance, two of the many design parameters of the problem.

Similar studies have been conducted by Armacost and Fiacco on a variety
of problems, including a cattle feed problem [2] and a multi-item inventory

problem [5]; and by the authors on stream-water pollution-abatement model

involving numerous parameters [11], [12].

-




T-413

2. BASIC SENSITIVITY RESULTS

A comprehensive review of the sensitivity results obtained for nonlinear
programming problems is outside the scope of the present paper. 1In the follow-
ing we review only the theory supporting the validity of ihe computational
results obtained. The basic result was given in Fiacco and McCormick [13,

Theorem 6] for a particular class of perturbations. Fiacco generalized the

theory and also established a theoretical basis for utilizing a penalty func-

o 42

tion method to estimate sensitivity information associated with a local solu-
tion and its associated optimal Lagrange multipliers, for a large class of
nonlinear programming problems, with respect to a general parametric variation

in the problem functions [10].

Armacost and Fiacco subsequently computationally implemented this
approach to demonstrate practical applicability [2] and applied this theory
to obtain the first and second order sensitivity results for the optimal value
function, deriving formulas for the efficient calculation of the sensitivities
of this function, as well as the sensitivities of the local solution point and

its associated optimal Lagrange multipliers [3], [4].

The parametric mathematical programming problem considered by Fiacco

is of the following general form:

minimize f(x%,€)

n
X €EE

subject to gi(x,e) >0, i=1,...,m, P(c)

hj(xye) =0, j=1,...,p

where x 1is the usual vector of variables and €& is a k-component vector of
numbers called "parameters." It is desired to analyze the behavior of a solu-
tion vector x(€) and the optimal solution value f*(c) = f[x(e),e] near
i some given value of € . Without loss of generality, assumé that the parameter
vector of interestis € = 0 .

The Lagrangian for Problem P(c) is defined as

m P
L(x,u,w,€) = £(x%,e) ~ L uigi(x,e) + I wjhj(x,e) .

1=] j=1
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The sensitivity results are based on the following four assumptions:
Al - The functions defining Problem P(¢) are twice
b - continuously differentiable in (x,e£) in a neigh-
borhood of (x%,0).
A2 - The second order sufficient conditions for a local
minimum of Problem P(0) hold at x* with associated
Lagrange multipliers u* and w* .
A3 - The gradients ngi(x*,O) , for all i such that
gi(x*,O) =0, and Vxhj(x*,O), ji=1,...,p are
linearly independent.
A4 - Strict complementary slackness holds at x* when
€ =0 (i.e., ui >0 for all i such that gi(x*,O) =0)
b
Under the above assumptions, Fiacco [10] established the following generalization
of Theorem 6 in [13].

Lemma 2.1 (Local characterization of a Kuhn-Tucker triple.) If

assumption Al, A2, A3 and A4 hold for Problem P(c) at (x*,0), then

(a) x* 1is a local isolated minimizing point of Problem P(0)
and the associated Lagrange multipliers u* and w* are

unique;

(b) for ¢ in a neighborhood of 0 , there exists a unique

once continuously differentiable vector function

y(g) = (x(a),u(e),w(e))T satisfying the second order

sufficient conditions for a local minimum of Problem P(:.)

such that y(0) = (x*,u*,w*)T = y* and hence, x{€) is
a locally unique, local minimum of Problem P(g) with asso-

ciated unique Lagrange multiplers u(e) and w(e) ; and

(c) for ¢ near 0O , the set of binding inequalities is
unchanged, strict complementary slackness continues to ‘

hold, and the binding constraint gradients are linearly

independent at x(€) .
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(d) (Fiacco and Armacost {3]), for € near 0 , the gradient

of the optimal value function is

V E*(e) = VL(u,e) at y =y(e) ,

(e) which also means that, for € near 0 , the Hessian of

the optimal value function is

sz*(s) - VzL(y(e),e)

The above results provide a characterization of a local solution of
Problem P(€) and its associated optimal Lagrange multipliers near ¢ = 0 .
They show that the Kuhn-Tucker triple y(eg) is unique and well behaved,
under the given conditions. Since y(e€) is once differentiable, the par-
tial derivatives of the components of y(tc) are well defined. This fact
and Assumption Al also mean that the functions defining Problem P(c) are
once continuously differentiable functions of € along the '"solution tra-
jectory" x(€) near € = 0 , and the Lagrangian is a once continuously
differentiable function of € along the "Kuhn-Tucker point trajectory."
The above results constitute the structure for numerous developments and
extensions, many of which have been established by Fiacco [10] and Armacost
and Fiacco [2-6]. ‘

The realization of this theorem for the parametric right hand side
problem of special interest in the present study is treated in detail by
Armacost and Fiacco {/]. The parametric right hand side problem is the
following important realization of P(g):

minimize f(x)
subject to gi(x)_z € i=1l,...,m R(g)

hj(x) = Ej+m J=1,.0.sp &

The Lagrangian for R(e) is

m P
L(x,u,w) = £(x) - I u,(g,(x)-€,) + I w,(h,( Y-g,. ) .
(o 184 SO R AR

As evident from the Lagrangian, the results (d) and (e) of Lemma 2.1 for
problem R(c) simplify respectively to
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T
u(e)
(d ‘) V[ fx(e) = [—W(t,)] , and
[\7(; u(e)
-Vr w(e)

Fiacco [10] has shown that the class of algorithms based on twice

(e V2 £r(e)

continuously diffvrentiable penalty functions {(specifically, using the
logarithmic~quadratic loss penalty function) can be used to estimate y(:)
and its derivatives in a neighborhood of ¢ = 0 , for the general problem
P(+) . Minimization of the penalty function with penalty parameter r
yields a solution of a perturbation of the Kuhn-Tucker system in a neighbor-
hood of (e,r) = (0,0) . Armacost and Fiacco [3] define an optimal value
penalty function and obtain first- and second-order sensitivity estimates

which converge to the corresponding sensitivities for the optimal value

function for Problem P(c).

The logarithmic-quadratic penalty function is

m

p .
WOGe,T) - £GGE) = £ D fn g (k,6) + (1/2) T hi(x,c)
i=1 j=1 J
Lemma 2.2 (Fiacco [10, Theorem 3.1)). 1If the assumptions A, ~ A

L 4

nold, tien in a neighborhood of (g,r) = (0,0) there exists a unique once

continuously differentiable vector function y(¢,r) = [x(e,r),u(s‘.,r),w(f,r)]T
satisfying
VxL(x,u,w,E) =0 .
uigi(x,e) =r , i=1,...,m , (2.1)

hj(x,E) = er s J=l,eeeyp

with y(0,0) = (x*,u*,w*) , and such that for any (g,r) near (0,0)

and r >0, x(t,r) 1is a locally unique unconstrained local minimizing point
of W(x,t,r) , with g [x(e,r),€] > 0, i=1,...,m ,and VAWix(e,r),c,r]
positive definite.

The relevance of equations (2.1) is the fact that, under the given

conditions, vhen r = 0 , they are necessary conditions that must hold at a

-6 -
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local solution of P(0) and, with r > 0 , they are necessary conditions
for an unconstrained minimum of W(x,£,r) . The latter fact can be made
obvious by solving for u, and w5 in (2.1) and obtaining

V h
X

VxL(x,u,w,E) = fo - L uingi + I wj 3

fo -r Z(l/gi) ngi + (1/x) T thxh

3

VxW(x,e,r) .
Thus, if y(e,r) is a solution of (2.1), then
VXW[X(C,r),C,r] = VXL[X(C,I’),U(E,I‘),w(E,!‘),E] =0. (2.2)

This explicit connection between the optimality conditions of local
solutions of P(e) and unconstrained minima of W(x,€,r) makes it possible
to approximate information characterizing a local solution of P(c) by
algorithmic calculations associated with utilizing W(x,e,r) to solve P(g) .

In particular, differentiating (2.2) with respect to € yields
VWY x + 92 W=0
X € €X

and using the fact that viw is positive definite (a conclusion of Lemma 2.2)

yields
2

8-2-1
Vex wa vexw

(2.3)
evaluated of course at x(eg,r) . Given Vex(e,r) , the derivatives of the
multipliers, Vtui(e,r) and Vcwj(e,r) » can then be calculated by differentiating

the last two systems of equations of (2.1) at x(c,r) with respect to € .

Lemma 2.3 (Fiacco [10]). For ¢ in a neighborhood of ¢ = 0 ,
it follows that: : i

[P

(a) 11m+ y(e,r) = y(€,0) = y(e) , the Kuhn-Tucker triple
r->0

‘ ’
characterized in conclusion (b) of Lemma 2.1, and :
1
() 1lim, YV y(e,r) = Y y(e,0) = Vey(e) .
r>0 -
o
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Under the conditions of Lemma 2.1, x(¢,r) 1is a locally unique minimizing

point of W(x,:t,r) . Define the "optimal value penalty function" as

Wx(+,r) W(x(n,r),?,r)

Armacost and Fiacco [2, Theorem 4 and Corollary 4.1] have obtained the further
results useful for estimating the first- and second-order sensitivity of the

optimal value fuuction f*(e) of Problem P(c).

Lemma 2.4 (Armacost and Fiacco [3]) If the assumptions Al - /\4

hold for Problen P(:), then in a neighborhood of + =0 ,

(a) Lim+ Wex(e,r) = £%(.) ,
r>0

(b) V Wi(i,r) =V L(y,n) at y=y(r),

(c) lim+ V’W*(c,r) =V f*(+) ,
r*0 t

(d) Viw*(ﬁ,r) = V?L(y(f,r),{)
and 2 2 .

(e) lim, V'Wx(c,r) = V f%(s) ,

+ ¢ [
r+0

where convergence is component by component in all cases.

Lemmas 2.1 - 2.4 enable us to calculate an estimate of y(¢), V{y(f) R
Vyf*(u) , and fo*(u) when € idis near 0 and r is near 0, once y(:,r)

is available.

In the next section we briefly present the algorithmic implementation

of some of the above results.

3. '[HE ALGORITHM

The penalty function algorithm SUMT estimates the solution of the general
mathematical problem P(c) by estimating the unconstrained minima of the penalty
function W(x,e,r) at successively decreasing values of the penalty function U
parameter r > 0 . Under conditions weaker than those assumed here, Fiacco

and McCormick [13] have shown that as r approaches zero, the sequence of the

unconstrained minima of W(x,e,r) will approach a solution of P(r) . Each
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unconstrained penalty function minimization is thus a "subproblem'" associated

with a particular value of the penalty function parameter r .

The successive steps of the algorithm for seasitivity analysis that are
presented in reference [l1] are listed below. The notation X or §(E) denotes
the estimate of a solution point of P(g) calculated by SUMT for a given value
of the penalty function parameter r , where € denotes the value of the problem

parameter for which this sensitivity is estimated.

Step 1: Compute a representation of viw'l = ViW(E,E,r)-l by
L-U decomposition using the SUMT subroutines. If viw is not

positive definite, terminate the sensitivity analysis.

Step 2: Estimate B(VXWT)/Bej using the central differencing

formula

a(vwa)/aej : (1/2A)(VXW(§,E+Aej,r)T - VWX, E-Ve b .

3

(Alternately, the matrix of partial derivatives could be determined
analytically from W(x,e,r) .)

Step 3: Calculate
- = 2 -1 T
ax(e)/aej = -wa 8(wa )/3(»:j .

Step 4: Estimate Vegi(;’g) and Vehi(;,E) using

agio’t,é)/asj <1/2A)(gi<§.E+Aej) - gi(i.E-Aej)) , and

3 j) - hi(x,e—Aej)) .

Step 5: Estimate the components of Veu(E) for i=1,...,m

ahi(i,E)/ae (1/2A)(hi(§,E+Ae

using

du (€ /3c, = —(x/g, (x,D*) (7,8, R, D)(E) /2¢

3 3

+ agi(i,E)/aej) .

Step 6: Estimate the components of VEW(E) for 1= 1,...,p
using

3w1(E)laeJ - (llr)(Vxhi(i,E)a§(E)/aej

+ 8h1(§,E)/aej) .
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There are two methods for estimating V&f*(;) s the first using

ch* = va fo + V'f , With er obtained from Step 3, and the second

method using the gradient of the penalty function W , or equivalently,
the Lagrangian taken with respect to the parameters (Lemma 2.1, conclusion
(d), Lemma 2.4, conclusion (b)). Both are incorporated in the computer pro-
gram but used for different purposes. The former method gives the most

accurate estimate of V{f*(;) and is summarized in Steps 7 and 8.

Step 7: Estimate the components of VLf(Q,:) using the

central differencing formula

of(;,E)/aej = (1/2A)(f(i,€+Aej) - f(E,E-Atj)

Step 8: Calculate an estimate of the components of th*(c)

using the results of Steps 3 and 7 as
af*(E)/aej = vxf(§,E)a§(E)/aaj + 3f(;,:)/abj

The second method, using the gradient of the Lagrangian to estimate
Vrf*(;)’ is computationally less expensive and is used to obtain rough estimates
that single out the more crucial parameters for further analysis. This approxi-

mation is calculated as follows.

Step 9. Estimate the components of Vrf*(Z) using the results of
Steps 4 and 7 as

af*(€) 9 af(E,E)/aej

i

m

- 151 ui(ﬁ,r)agi(x,s)/aﬂj

-+

P - -
121 wi(c,r)ahi(x,e)lacj .

4. PROBLEM DESCRIPTION

The nonlinear programming model for the optimization of the design of
a vertically corrugated transverse bulkhead of an oil tanker, discussed in
Chapter 6 of [8)], was selected for the sensitivity analysis. The material in

this section follows the presentation in [8] rather closely.

- 10 -
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Vertical transverse bulkheads form the lateral walls of the internal
compartments of the tankers that hold liquid cargo. Figure 1 shows three
different views of a corrugated bulkhead, consisting of a bottom, middle,
and top panel, fastened together along the stringers EF and CD. It is assumed
that the shape of the corrugations are identical in all panels but their thick-
nesses are allowed to vary from panel to panel. The lengths of the top, middle,

and bottom panels denoted by Rt R 1m , and Zb , respectively, are fixed, as
is the common width B of the panels.

The problem design variables are indicated in Figure 2 and defined as

follows:

o
]

width of the flange

o
]

length of the web

d = depth of corrugation
t, = thickness of top panel

(a4
[}

thickness of middle panel

[ad
[}

thickness of bottom panel.

The width of a corrugation s 1is depicted and used in the model for
convenience. It is not a design variable, being determined once the indicated
variables are specified. In fact, it 1s easy to see that s = b1 + (bi-dz)ll2 .

The design parameters involved in the formulation of the model and their
specified values are listed in Table 1. Those characterizing the shape of the
bulkhead are depicted in Figures 1 and 3. Figure 3 also indicates the load
configuration which will enter into the constraints of the model to be developed

subsequently.

0bject1§e Function

It 18 desired to determine values for these design variables that
minimize the weight of the corrugated bulkhead subject to satisfying a number
of constraints to be considered subsequently. The total weight w of the

panels is easily calculated to be
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Table 1 h
PROBLEM DES1GN PARAMETERS
(MODEL INPUT DATA)
P
No. | Parameter Meaning Value
1 r Weight per unit volume of the material 7.85t°n/cm3
2 B Width of the panel 476 cm
3 lt Length of the top panel 495 cm
4 Zm Length of the middle panel 385 cm
5 Rb Length of the bottom panel 315 cm
6 ha Distance between free liquid level and 250 cm
top of the structure
7 ht Distance between free liquid level and 498 cm
middle of the top panel
8 h Distance between free liquid level and 938 cm
m middle of the middle panel
9 hb Distance between free liquid level and middle 1288 cm
of the bottom panel
" 10 hlt Distance between free liquid level and base 745 cm
of the top panel
11 hl Distance between free liquid level and base 1130 cm
" of the middle panel _
12 h Distance between free liquid level and base 1445 cm
1b
of the bottom panel ;
13 ttln Minimum allowable thickness of the top panel 1.05 cm
14 tzin Minimum allowable thickness of the middle panel | 1.05 cn
15 t:xn Minimum allowable thickness of the bottom panel| 1.05 cm
16 e Effectiveness of the flange (dimensionless) 0.8
17 k, | Coefficient (function of maximum allowable 6.94 x 10 %cm ! |
| bending stress) 4
18 k2 Corrosion coefficient 0.15 cm
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Specification of some of the design parameters
and indication of load levels, side view.
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t 2+t R+t %
b
tt mm b (1)

w = FB(b1+b2) 2

where T 1is the weight per unit volume of the material.
1t is assumed that the design variables are to be given in centimeters.

I' will be given in tons per cubic centimeter.

¢ Geometrical Constraint

As indicated in Figure 2, geometrical limitations suggest that the length
of the web should at least be equal to the depth of the corrugation. Therefore,
it is required that

b, = d >0 (2)

Bending Stress Constraint

Consider any panel of the type described and denote by h , the vertical

distance from load level zero to the middle of the given panel. The bending

stress at the supports of any such panel of thickness t and length £ is
given by
1hs22
o= —~———b-}-2———~ (kg/cmz)
td | 2
2 13 + ble)

where e (the effectiveness of the flange) is a dimensionless constant and

Yy = .001 kg/cm3 is the specific gravity of fresh water. (The numerator in the
expression for ¢ is the bending moment at the supports in kg em , and the

denominator is the section modulus in cm3 <)

The maximum permitted bending stress is given to be 1200 kg/cm2 .

thus requiring that

o <1200 (kg/cmz) .

Therefore, the prior expression for ¢ and the above inequality result in

the constraint

- 16 -
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b
td |2 2 1
- (7; + ble)‘z klhsl R (3)

- (L __1_1 - -7 -1
where k; (12)(1200 694 x 107 (e )

Moment of Inertia Constraint

An additional constraint on the given panel is imposed as follows:

(%) (tTd) (332’ + ble) 2 2.2 (klhs£2)4/3 (4) <

where the expression on the left is the moment of inertia of the panel.

Thickness Requirement Consiraint
For a given panel it is required that
& mi
: S
o t > {(.39)(1.05 b)) /.01 h, + k, (5)
L
%‘ (.39)(1.05 bz) v.01 h1 + k2
f where
: t = plate thickness (centimeters)
tmin = minimum allowable plate thickness (centimeters),
a function of ship length
h1 = height to load level zero from the bottom of the
panel centimeters, and
’ : kz = corrogsion allowance (centimeters).

Natural Constraints

N Since the design variables bl, bz, d, t_, tm and tb are measures of

t
length (dimensions of the corrugated bulkhead), they are constraired to be
nonnegative.
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Design parameters h, &, i and h1 in constraints (3), (4), and
(5) are subscripted by t, m and b to define the relative constraints for

the top, middle, and bottom panels, respectively.

The Design Problem

Introducing variables X1 through Xe for the design variables

b b d, t

1» Pys ¢ tm, tb’ respectively, and denoting the objective function w

by f , yields the foilowing nonlinear programming problem.

1

. 2 2.2.-1
minimize f 1B(x]+x2)(ltx4+9,mx5+£bx6)[xl + (xz—x3)2]
Constraint
subject to : Number
) 8, xz—x3>0. 1)
2 2 21
8) XpX3X, + 3e X XX, = 6klht2t[xl + (x2-x3)2] >0 . (2)
2 2 21 3)
o - + - -
8y - X X X, 3e X XX 6k1hm£m[x1 + (x2 x3)2] >0 .
. 2 2 23
8, XXX 3e X XaXo = 6klhb2b[xl + (xz-x3)L] >0 . (4)
Cxoxix, + 3e x.x2x, - 26.4(k.h A9 3 k. + (x2- 2)%]“’3>o
Bg - XpX3X, 1%3%4 R L B R 0. (3
© X xixe + e x x2xg - 26.4(k.h 23 k. + (x2 2)%"/3>
B ~ X9X3%s 1%3%5 Slghpty) IRy (xpmx)21 77 > 0 (6)
1
. 2 2. 2.4/3 2_2.5.4/3>0. &))
B, - XyXaXo + 3e X X3Xe 26.4(kllb2b) [x1 + (x2—x3)2] =
- p 3 min
88‘ [‘—tt _Zo (8)

- 18 -
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1
&g B X, - {.39 - 1.05(.Olhlt)2(.01x1) + kzl >0 . (9)
1
810 X, - [.39 - 1.05(.01h1t)2(.01x2) + k2] >0. (10)
gy xg -t >0 L )
i
81 Xg = {.39 - l.OS(.Olhlm)Z(.lel) + k2] > 0. (12)
1
813 Xg - (.39 - 1.05(.01h1m)2(.01x2) + k2] > 0. (13)
- min
By ° Xe = tb >0. (14)
1
85 x, - [.39 - 1.05(.01h1b)2(.01xl) + k2] >20. (15)
1
- _ . 2
16 Xe [.39 l.OS(.Olhlb) (.01x2) + k2] >0. (16)
g17 = g18 ) xi 2 0 M i=1 and 3 . (17" 18)

5. COMPUTATIONAL RESULTS

Phase 1: Solution of the Problem P(c)

This phase involves the solution of the problem without parameter
perturbation. Denote by € the vector of desigu parameters listed in
Table 1, i.e., the ith component of € designating the ith parameter in
Table 1. With this notation, let € represent the vector whose components
are the respective data given in Table 1. Therefore, the design problem
given in the previous section, with the problem design parameters equal
to the values given in Table 1, is denoted P(e), in conformance with the

notation of Section 2,

Table 2 gives the calculated solution x(€) (to two significant
figures) of P(E) , along with the solution presented in [8]. Our optimal

-19 -




_— ..
b T-413
TABLE 2
OPTIMAL SOLUTIONS FOR
PROBLEM P(x)
. Starting Our 1
Point Solution in [7] Solution
(cm) (cm) x(e) (cm)
x) = bl = 45.80 57.80 57.82
x, = h2 = 43.20 57.80 57.82
Xy = d = 30.50 37.80 35.69
x, =t = 1.20 1.05 1.05
4 t
x. =t = 1.20 1.05 1.05
5 m
xg = rb = 1.30 | 1.05 1.05
f =w=6.40 tons 5.34 tons 5.25 tons

- 20 - N
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solution matches that of reference [8] except for x (the corrugation depth).

3

This slight difference in the value of X3 s and consequently in the value of

objective function W is believed to be due solely to the difference in
manipulation of the input data to the model. 1In the current study the design
parameter values were manipulated separately in the model, as encountered in
a given calculation. The results given in {8] probably involved the calcula-
tion of coefficients (which are themselves functions of design parameters)

"externally,'" using the aggregate results as input data to the model. The

rounding of coefficients so calculated could readily explain the resulting

minor discrepancy.

Phase 2: Sensitivity Analysis of Problem P(E) for
Right Hand Side Comstraint Perturbations

4 The problem P(E) with right hand side perturbation a of the constraints
will be called Problem R(a). Obviously, R(0) = P(E), so the optimal solution
x(E) of P(E) given in Table 2 is also x(0) , the optimal solution of R(0) .

Y -

; Denote by o = c¢ the vector a , all of whose components are equal
) to the number ¢ . It was desired to analyze the solution of R(a) for

Y o=+ .25 and o=+ .50 .

E The optimal solutions x(a) and the first order sensitivities

Vuf*(a) . Vux(a) and Vuu(a) were obtained for the given values of a .

d The following results were also obtained.

(1) The assumptions of Lemma 2.1 were shown to hold at x(0)
and the results of the Lemma were computationally corroborated,
for o = i..ig and a = .50 .

5 .

(2) Using the solution and first order sensitivity information
associated with Problem R(0), the optimal solution for the
perturbed prbblems R(t.ig) and th;Eﬁ) were estimated
and compared to those obtained by direct solution.

The following elaborates on the above results (1) and (2). Table 3
depicts the Lagrange multipliers, constraint values and sensitivity informa- i

tion associated with the optimal value function. It is clear from this table ;

that x(0) 1is feasible, the multipliers are nonnegative and complimentary
slackness is satisfied (to two significant places). r“ﬁ"

‘ -2 - ‘
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TABLE 3
LAGRANGE MULTIPLIERS AND CONSTRAINT
VALUES FOR PROBLEM R(0) AT x(0)
(Excluding non-negativity constraints)
(i) Value of N
Constraint Value of Lagrange of (0)
No. Constraint 8; Multiplier u, Bdi
1 22.13 4518784 x 1072 | .4518777 x 1072
2 2117.22 4723679 x 1074 | 4723564 x 107°
3 1385.41 .7218857 x 10°% | .7218987 x 107
4 1868.92 .5351946 x 10°* | .535204 x 107
5 41993.15 .2381633 x 10" | .2381608 x 107>
x 6 .043 .2300013 x 10" | .2300013 x 10!
7 27945.57 .3580375 x 10> | .3580337 x 107>
x 8 48 x 107 | .2078305 x 10’ | .2078305 x 10
9 .25 .3940568 .3940568
10 .25 .3940570 .3940570
% 11 .96 x 107> | .1040634 x 10’ | .1040634 x 10’
12 .10 .9604345 .9604345
13 .10 .9604360 .9604360
% 14 49 x 107 | .2029215 x 10° | .2029215 x 10°
* 15 31 x 1072 | .3221582 x 10% | .3221582 x 10°
* 16 .13 x 1074 .7974950 x 10° .7974950 x 10°

Constraints marked

by asterisk (*) are binding.
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Based on Table 3 it was concluded that the constraints

g6! ga’ gll,
glA’ gl5 and 316 were binding. Rather large value of the constraint g6

compared to the values of the remaining binding constraints may encourage the
skeptical reader to disagree with the fact that this constraint is binding.

However, one should notice that the coefficients involved in constraint 8,

are very large compared to the coefficients of the remaining binding con-

straints (this is also reflected in the values of the components of Vg6

listed in Table 4). By proper scaling of this constraint one may reduce its
value to the order of the values of the remaining binding constraints. A
sufficient reason that constraint g may be concluded to be binding is that

the optimal value function is sensitive to parameter k (to be shown in

1

Phase 3) while k, appears neither in the objective function nor in any of

1
the binding constraints but constraint 8¢ - Incidentally, this gives an

interesting example of the sort of insight that is provided by a thorough

& sensitivity analysis.

Table 4 depicts the gradients of these binding constraints and their
N corresponding optimal Lagrange multipliers at the solution point for Problem
R(0). It is clear that the binding constraint gradients are linearly inde-
pendent (A3) and the associated Lagrange multipliers are positive. Therefore
strict complimentarity slackness (A4) holds at x(0) . Since x(0) was
calculated to be a stationary point of the Lagrangian function, it follows
from these facts that (A2) is satisfied. This also means that x(0) is

indeed an isolated local solution. Finally the problem functions are all

P VY

twice differentiable (Al). Therefore, relative to two significant figures
of accuracy, the four assumptions of the Lemma 2.1 have been verified for
Problem R(0). So the results of that lemma hold for Problem R(a), with a

4 near zero.

The last column in Table 3 depicts the sensitivity of the optimal ‘ '
value function for Problem R(0). As it is seen the entries in this column
closely correspond to the respective Lagrange multipliers, listed in column 3 !
of Table 3, as expected from result (d) of Lemma 2.1.

- 23 -




TABLE 4

GRADIENTS OF THE BINDING CONSTRAINTS
AND CORRESPONDING LAGRANGE MULTTPLILRS

T-413

FOR PROBLEM R(a) AT x(a)
- Veq Veg ey V814 V8,5 16
288 ) 0 0 =01557 0
-3352 0 0 0 0 _.01557
R(-.25)] 15752 0 0 0 0 0
0 1 0 0 0 0
313158 0 1 0 0 0
0 0 0 1 1 1
u(-.25)| 2.53 |2.16 x 10% |8.84 x 10° |1.98 x 10° |3.23 x 10°| 8.51 x 10°
-183 0 0 0 -.01557 0
-2975 0 0 0 0 -.01557
R(0) | 17393 0 0 0 0 0
0 1 0 0 0 0
250354 0 1 3 0 0
0 0 0 1 1 1
u(0) | 2.30 [2.07 x 10° |1.04 x 10% |2.03 x 10° [3.22 x 10°| 7.97 x 10°
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TABLE 4 (Cont'd)
GRADIENTS OF THE BINDING CONSTRAINTS
AND CORRESPONDING LAGRANGE MULTIPLIERS
FOR PROBLEM R(a) AT x(a)
Veg Veg V81, VB4 Vess V816
-108 0 0 0 -.01557 0
-2752 0 0 0 0 -.01557
R(.25)| 18962 0 0 0 0 0
0 1 0 0 0 0
208223 0 1 0 0 0
0 0 0 1 1 1
0. 2.17 [2.03 x 10° {1.13 x 10®] 2.06 x 10°| 3.21 x 10°| 7.67 x 10°
-58 0 0 0 ~.01557 0
-2839 0 0 0 0 -.01557
R(.50) | 20438 0 0 0 0 0
0 1 0 0 0 0
178125 0 1 0 0 0
0 0 0 1 1 1
u(.50)] 2.08 [2.003 x 10%1.19 x 10%| 2.08 x 10°] 3.2 x 10° | 7.47 x 10°
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Table 5 depicts the optimal solutions, optimal values, and a typical

Lagrange multiplier us(u) for problems R(a) , where a = i.ig, 1.56 .

obtained by direct calculation. Figures 4, 5 and 6 suggest that x(a) ,

f*(a) and us(a) are continuous and smooth functions of ¢ for the entire

range of parameters considered (a result known to hold for o near 0 , by

conclusion (b) of Lemma 2.1), where o = ¢ = c(l,l,...,l.)T .

Table 6 indicates the binding constraints (using two significant
figures) for Problem R(a) at x(a) . As may be seen, the binding constraints
for all perturbed problems, except R(-.50) , remain the same. Moreover,
Table 4 shows that the gradients of these binding constraints are linearly
independent and we determined that strict complimentarity slackness holds true.
So, the results of Lemma 2.1 must also hold for the problems R(tfig) and
R(+.§5) . The change in the binding constraint index set for problem R(-.Eﬁ)
means that the perturbation a« = -.50 is not small enough to retain the general

solution structure of the problem.

In order to estimate the optimal solution of Problem R(a) based on
information from Problem R(0) the following first order (Taylor's Series)

extrapolation formula was used,
,T
y(@) = y(0) +V y(0) * o

where y(0) and Vay(O) are the estimates of a Kuhn-Tucker triple and its
derivatives with respect to o for problem R(0). Although the magnitude of
the perturbations were quite significant, the extrapolated values are in close
agreement with those of direct calculation. Extrapolation was also done for
Problem R(-;§6) to study the discrepancy between extrapolated and calculated
results. Table 7 shows these results and Figure 7 depicts some of these,

namely x3(a) and xs(a) , graphically.

In order to computationally check the stability of the algorithm's
estimates of solution and sensitivity information of Problem R(a), f(*), x(°)
u(*) and their partial derivatives with respect to o were recorded along
the algorithm solution trajectory. Values along the trajectory path are plotted
in Figure 8 for a sample of typical values, for the Problem R(.50). As it is
seen, the solution estimates are virtually constant from the third subproblem

onwards.

- 26 -
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TABLE 5

OPTIMAL SOLUTIONS FOR

PROBLEM R(o)

T-413

R(-.50) | R(~.25) R(0) R(.25) | R(.50)

x, | 58.45 57.82 57.82 57.82 57.82
X, 58.45 57.82 57.82 57.82 57.82
xy | 45.50 39.91 | 135.69 32.54 30.10
X, .55 .8 1.05 1.30 1.55
x5 .61 .8 1.05 1.30 1.55
Xe .56 .8 1.05 1.30 1.55
ug | 2282964 | 2156015 | 2067079 (2033079 | 2003181
£% (o) 3.14 4.15 5.25 6.36 7.47

- 27 -
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TABLE 6

BINDING CONSTRAINTS FOR PROBLEM
R(@) AT x{a)

o -.50 |-.25 0 +.25 !+.§
Constraint™Sy

where
B stands for binding constraints

~ stands for nonbinding constraints

|
|
)
| 1
!
4
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TABLE 7
EXTRAPOLATED SOLUTIONS VERSUS CALCULATED SOLUTIONS
FOR PROBLEM R(®)
: R(-.50) | R(-.25) R(0) R(.25) R(.50)
o 57.82 57.82 - 57.82 57.82
X p--~--=-- it bty ettt {-------
1 1 2 ["s8.45 | 57.82 | 57.82 | 57.82 | 57.82
e 57.82 57.82 - 57.82 57.82
X P e=-- ity Il il gl Bl il 1= ===
z . 58.45 57.82 57.82 57.82 57.82
e 42.88 39.28 - 32.09 28.49
X3 f==--=-=--- F o= 177275 12177
c 45.50 39.91 35.69 32.54 30.10
e .55 .80 - 1.30 1.55
X, N Lo L -
1 c .55 - .80 1.05 1.30 1.55
e 55 .80 - 1.30 1.55
X e L e {=--------  EEREEET T, EE R
c .61 .80 1.05 1.30 1.55
e .55 .80 - 1.30 1.55
Xe [~ TTooT[TTTToT 1" ""--7:-- 1-"7-7--- 177" ]
c .56 .80 1.05 1.30 1.55
o © 3.027 4.137 - 6.358 7.469
¢ 3.136 4.145 5.248 6.356 7.467

le, extrapolated

2c, calculated
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(Extrapolated compared to calculated).
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derivatives along the trajectory for Problem R(.50).

Figure 8.




Numerous inferences can be drawn from such information. For example,

note that the constraints g8, gll and 814 which correspond to the minimum

plate thickness requircment for top, middle, and bottom panels remain binding
for the perturbed problems over the range of perturbations considered (i.e.,
-.25 to +.36). On the other hand, because the weight of the bulkhead is
linearly proportional to the plate thickness, any relaxation on minimum thick-
ness requirement would decrease the bulkhead weight (objective function) by a
considerable amount. Based on the results given in Table 3, the saving on

bulkhead material weight will be about
.207 + .104 + .020 = .331 tons

per one millimeter relaxation of the required plate thickness. Figure 5, which

shows the optimal function values versus perturbations, confirms this observation.

Phase 3: BSensitivity Analysis with Respect to
Design Parameter Perturbations

This study phase seeks to obtain sensitivity information when the design
parameters are perturbed. As noted, Table 1 lists all the design parameters
and their initial values.

The parameters | (density of steel), e (dimensionless constant in
section modulus formula), B (the width of the panel) and ha (the distance
from top of the bulkhead to free liquid level) are assumed to be subject to
negligible variation and so their perturbations are excluded from the

sensitivity analysis.

It is important to note that the design parameters Qt, L, Qh’ ht’ h ,
m m
b are not independent. For example, as can easily be

s h and hl

hb, hlt 1m

verified from Figure 3, these parameters may be expressed in terms of

3 Em and h as follows:

t’ 1b

o

hlb - (250 + lt + Qm)

L

= £
hlt 250 + 3

im
250+9,t+—§—

L, 4% +h
125 + &0 ‘;___1*’

=
[]

=
[}
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h 250 + Lt

1t

hlm

250 + &+ &
t m

ln this analysis of the problem, we explicitly impose these equations

and express all the design parameters as functions of Rt, lm and h p * 38

1
indicated. This eliminates unnecessary sensitivity calculations and strictly

accommodates the dependencies.

The "independent parameters' on which the sensitivity is analyzed are

shown in Table 8. For convenience, we relabel the jth parameter £1
As previously noted, the corresponding numerical values of Ej are given in

Table 1. These values are taken as the initial value of the problem parameters

and are again designated by ¢ .

Aside from an analysis of the Problem P(E), the problem was also analyzed
under six different perturbations. Namely, all of the independent design
parameters were perturbed simultaneously by the same fraction of their original
values. The perturbations were +1, +2 and +5 percent of the original problem
parameter vector € . The corresponding problems are hence designated by
P(1.0l€), P(,99¢), P(1.102€), P(.98e), P(1.05¢) and P(.95¢), respectively,

following our usual notation.

After calculating the optimal solutions and corresponding first order
sensitivity information for the perturbed problems, the following analysis
was completed:

(1) For small perturbations the results of Lemma 2.1

for Problem P(c) were verified,

(2) Using the solution and the first order semnsitivity
information of the Problem P(E), optimal solutions
for the Problem P(c) were estimated and compared

with those obtained by direct solution.

Tables 8, 9, and 10 show the sensitivities of the optimal value function,

solution point and Lagrange multipliers with respect to the independent design
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TABLE 8

SENSITIVITY OF f£*(€) WITH RESPECT TO THE INDEPENDENT
DESIGN PARAMETERS Cj FOR PROBLEM P(c)

Parameter Parameter _ |
Index a ?e e 3f*(c)
. . . BE
3 i €5
i L 4393
t
2 I} 8582
m
3 b, 349
i} 4 tfln 2078305
5 t:i“ 1040634
6 Rin 202921
b
7 k, 1119656
8 K 11161 x 1010
- 36 -
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TABLE 9
SOLUTION POINT SENSITIVITY ix, /e,
FUR PROBLEM P (¢)
1=1 2 3 4 5 6
j=1 | .2 x 1073 .2 x 10-5 - % - - -
2 |-.015842 -.013829 .10226 - - -.208 x 1073
3 |-.020053 ~.020053 ~.3625 x 1072 - - -
4 | 776 x 1073 | 726 x 1073 .119 x 1073 1. - 1 x 107%
5 1-.1297 x 1072 | -.123 x 1072 | ~14.39778 - .999999 | -.18 x 10”7
6 | 64.2357 64.23601 11.61322 - - .999925
: 7 -64.23520 -64.23554 -11.61314 - - .82 x 107
. 8 |-.4453 x 1018 -.3887 x 10™®| .2874 x 1077 | -1.14863 | -1831.179 | -.5848 x 10*°

*Sensitivities with less than 10--6

(=) in the above table

in absolute value are indicated by
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parametera of Problem PG) L As o shown dn Table 8 the optimal vadue funet ton

o ST
e

is extremely sensitive to minimum allowable panel thicknesses tan, tmln, ttln 1
m

g‘ and corrosion allowance k2 and apparently sensitive to the allowable bending
? stress factor kl . It is only partially sensitive to panel lengths Rt and
%; and lm » and practically insensitive to the total depth of panel hlb .
g It is well-known that in order to obtain a meaningful interpretation
é‘ of the implications of a sensitivity analysis, the information must be care-
% fully analyzed in the perspective of the application. For example, the
f% parameter derivatives of the objective function £*(0) are the instantaneous
- ¥ rates of change. A rate of change can itself change significantly away from
the base point, thus rendering extrapolations invalid for finite parameter
i' changes. Thus, further analyses such as those reported here are essential.
Another caution must be directed to equating the rate of change with a change
"due to a one unit change" in the given parameter value. It is a change per
N S unit change, but only at a given parameter value.
| A unit change in a parameter value may not be feasible or meaningful.
% ' For example, the initial value of the parameter kl 18 .694 x 1077 cm™l . A
i one unit decrease is not possible. A "reasonable" change for this parameter
; might be expected to be on the order of 110-9. Given this scaling, it follows
A that the objective function is only relatively mildly sensitive to the changes
in this parameter. Similarly ,the sensitivity of th:- parameters k, and

2
the minimum allowable panel thicknesses should all probably be scaled

by a factor of 10—l . Appropriate scaling of parameter changes depcnds on
the context of the application, parameter interactions that may not even be
explicitly represeanted in the model and other considerations. This is
ultimately a_"management"_deciéion and is beyond the scope of this paper.

2 We shall assume that specified feasible changes are stipulated and concen-
‘ trate on measuring their effects.

Table 1I and Figure 9 show the calculated optimal solutions for Problem

P(c), when it is stipulated that the given parameter values be altered by the
= indicated fractions of their original values. -
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TABLE 11
OPTIMAL SOLUTIONS FOR
PROBLEM P (&)
P(0.95¢) | P(0.98¢) P(0.99e)] P(e) |[P(1.0l€) | P(1.02¢€)| P(1.05¢)
x, (cm) 63.02 | 61.53 | 57.25 | 57.82 | 58.42 | 59.01 | 6l.64
x, (cm) 63.04 | 61.53 | 57.26 | 57.82 | 58.43 | 59.02 | 61.65
, x4 (cm) 38.93 | 35.90 | 35.19 | 35.69 | 36.2 36.71 | 38.41
x, (cm) 1.0 1.03 1.04 1.05 1.06 1.07 1.10
o xg (cm) 1.0 1.03 1.04 1.05 1.06 1.07 1.10
x, (cm) 1.13 1.10 1.04 1.05 1.06 1.07 1.12
ug(e) 1964924 | 2009085 | 2055230 2078305 | 2101457 | 2125542 | 2189718
f*(@) (Tons) | 5.176 | 5.175 | 5.190 | 5.248 | 5.306 | 5.365 | 5.541
P
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It is obvious that the assumptions of the main sensitivity theorem
holds true for P(E) (because P(:) is identical to R(0) and we have
already verified the validity of these assumptions for R(0) in the previous
part). So the results of this theorem should also hold true for Problem P(v)

provided that the introduced perturbations are not too large.

The result a of Lemma 2.1 is immediate. Figures 9 and 10 are included

to illustrate the result b of this Jemma. As depicted, x(::) and us(z)

(a sample of optimal Lagrange multiplier) appear to he smooth functions of
8, for B between 0.99 and 1.05 , where ¢ = Be . However there is a

definite sharp change (or discontinuity) for ug(c) as well as xl(x), xz(e)
and X6(L) for some value of ¢ between 0.99¢ and 0.98 . This may

bc due to the fact that perturbations more than -0.0lt¢ (in magnitude) are

not sufficiently small to keep the structure of the perturbed probiem es-
sentially unchanged. Examining the binding constraints for the perturbed prob-
lems confirms this. Table 12 shows the binding constraints of Problem P(¢)

at different perturbations.

As shown for perturbations below -0.01¢ . The binding constraints 8

and 8y, are well satisfied and constraints 87> 819 and 813 become binding.

Moreover constraint is no longer binding for perturbations of 0.05¢ .

14
Furthermore, as depicted in Table 13, the gradients of binding constraints of
Problem P(¢) are linearly independent and strict complimentarity slackness

holds true for ¢ between 0.99¢ and 1.02¢ . (Result ¢ of Lemma 2.1). So
all the results of Lemma 2.1 for above range of perturbation (i.e., 0.99¢ to

1.02¢) are computationally verified.

As before estimates were made for the optimal solution of the perturbed
Problem P(c), based on the solution and sensitivity information of the unper-
turbed Problem P(£), by first order extrapolation. Table 14 and Figure 11 show

the results of this extrapolation and compare them with the results of direct

calculation. It is obvious that one should not attempt to extrapolate from the
golution of P(E) to solutions of P( 0.98c) , P(0.95¢) and P(1.05¢) . We

have deliberately calculated this extrapolation to show the consequences.




» Where ¢ = Be .

o v e

T-413

Lk

us(e) versus f for Problem P(c)
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TABLE 12 !
* BINDING CONSTRAINTS FOR PROBI.EM
P(e) AT =x(+)
H |
£ - = - = - - =i
0.95:1 0.98¢f .99 £ 1.01¢{ !.02+11.05¢
Constraint

g, - - - - - - -

gz = - - - - - -

83 - - - - - - -

o - - - - - - -

S4
. &5 - - - - - - -

8¢ - - B B B B B
1 84 B 3 - - - - -

8g B B B B B B 3
i

39 - - = - - - -

810 - - - - - - B
‘ 81 B B B B 3 B B
4

12 B - - - B - h

813 B - - - - - -

- - B B

814 B B B

Bis B B B B B B B

816 B B B B B B B

, [}
i
where
B stands for binding constraints i
- stands for unbinding constraints.
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TABLE 13
GRADIENTS OF THE BINDING CONSTRAINTS
AND CORRESPONDING LAGRANGE MULTIPLIERS
FOR PROBLEM P(e) AT x(g)
v
8¢ Veg Veyy Ve, V815 ey
; -173 0 0 0 -.01557 0
IS -2848 0 0 0 0 -.01557
i_ _| 16777 0 0 0 0 0
P(0.9%e) 1 0 0 0 0 |
240914 0 1 0 0 0 ‘
e 0 0 0 1 1
: - 4 6 5 5 5
‘ 1(0.998) 2.36 | 2.05 x 10] 1.03 x 10° | 2.51 x 107 | 3.19 x 10” [ 7.88 x 10
%. -183 0 0 0 -.01557 0
-2975 0 0 0 0 -.01557
P(t) 17393 0 0 0 0 0
0 1 0 0 0 0
‘ 250354 0 1 0 0 0
3 0 0 0 1 1 1
w(®) 2.3 | 2.8 x 10°] 1.04 x 108 2.03 x 10° | 3.22 x 10° | 7.97 x 10°

.
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TABLE 13 (Cont'd)
GRADIENTS OF THE BINDING CONSTRAINTS
AND CORRESPONDING LAGRANGE MULTIPLIERS
FOR PROBLEM P(t£) AT x(£)
Ve Veg Vel VB4 Ve, s V816
_194 0 0 0 ~61557 0
31070 0 0 0 0 -.01557
P(1.01e)| 18028 0 0 0 0 0
0 1 0 0 0 0
260078 0 1 0 0 0
0 0 0 1 ] |
wr.o1D)] 2.24 | 2.1x 10%] 1.05 x 1084 1.55 x 10° 3.25 x 10%| 8.07 x 10°
206 0 0 0 = 01557 0
-3244 0 0 0 0 -.01557
P(1.02¢)| 18679 0 0 0 0 0
0 1 0 0 0 0
270062 0 1 0 0 0
0 0 0 1 1 1
l u(1.027) 2.18 | 2.12 x 10% | 1.06 x 10% [ 1.06 x 10° | 3.29 x 10° |8.17 x 10°

- 46 -
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TABLE 14
EXTRAPOLATED SOLUTIONS VERSUS CALCULATED
SOLUTIONS1 FOR PROBLEM P(c)
P(0.95¢)| P(0.98c) | P(0.99¢) P(e) |P(1.01€) |P(1.02€)| P(L.05¢)
o2
ﬁ_3_%ét_;ﬁét__ﬂét -} 58.30_ | 58.79 | 60.25
63.29 61.54 57.24 57.82 58.39 58.97 61.52
ﬁs__ﬁétﬁ 56.82 ) 57.32 | - _ ] 58.31 | 58.8L | 60.30 _
c 63.29 61.54 57.24 57.82 58.39 58.97 61.52
%2_ 32.95 ;%EL_QE&Lq_;z_¢§E§_+2%@__§UQ_
c 38.92 35.90 35.18 35.69 36.19 36.70 38.39
X, e | 1.0 | 1.03 | 1.04 A - _ L _1.06 { 1.07 | 1.10 _
c 1.0 1.03 1.04 1.05 1.06 1.07 1.10
%s__iQ_L_L@__ 1.04 | - _ [ _1.06 | 1.07 | _1.10 _
c 1.0 1.03 1.04 1.05 1.06 1.07 1.10
%sﬂ_l&_< 1.03_ ) _1.04 | - _ ] _1.06 _} 1.07 j _1.10 _
c 1.13 1.12 1.04 1.05 1.06 1.07 1.11

lEntries have been rounded to the nearest two decimal points.

2e, extrapolated

3c » calculated
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As suggested by Figure L1, the extrapolated results for Problems
P(0.997) and P(1.02¢) arc virtually the samec as thosc obtained by direct
calculation, while the results for Problems P(0.95¢) , P(0.987) and
(1.05:) are quite different. For example, linear extrapolation from P(:)

Lo P(0.95;) underest imates variable Xy by about 6 cm , equivalent to about
i5.3 percent of its correct value. (See Table 14).

It was also attempted to estimate the penalty function solution
"trajectory" x(:,r) for the perturbed Problem P(e), using the solution point
and corresponding sensitivity information along the solution trajectory of
Problem P(f). As shown in Table 15 for subproblem 2, with penalty function

parameter r=100 , the results of this extrapolation for e between .99+

and  1.02e  are quite satisfactory.
Figure 12 indicates the stability of f*(:), X](t), ul(a) and their

partial derivatives with respect to the parameter f1 along the solution

trajectory of Problem P(l.OSE). As seen, the values for these quantities are

- . again fairly stabilized from the third subproblem onwards.

:
i
! ,
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EXTRAPOLATED SOLUTIONS x(t,r
SOLUTIONSL FOR SUBPROBLEM 2

TABLE 15
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VERSUS CALCULATED
OF PROBLEM P(t)

P(0.95€) | P(0.98) | P(0.99%) P(€) P(1.01l€)| P(1.02¢) {P(1.05%)
33_gghd_ggtq_ﬂgL__;;___ggg__ggqﬁ_@gta
6302 61.53 57.25 57.82 58.42 59.01 61.64
e | 55.33 | 56.83 | 57.34_ | - _ | 58.34_ | _58.85 | 60.36__
c 63.04 61.53 57.26 57.82 58.43 59.02 61.65
e | 32,95 | 34.60 | 35.14 | - | 36.24_ L 36.79 _ 38.43 |
c 38.93 35.90 35.19 35.69 36.20 36.71 38.41
e |_1.0_ .02} _1.03 | - _{ _1.06 | _1.08 } 1.12 |
c 1.0 1.03 1.04 1.05 1.06 1.07 1.10
e { .99 [_102 | 104 | - | 106 | _1.07 | 1.11__|
c 1.0 1.03 1.04 1.05 1.06 1.07 1.10
e | 1.0 | 1.03 | 1.04 | - 1.06_| 1.07 | 1.10
c | 1.13 1.10 1.04 1.05 1.06 1.07 1.12

. ;

2The penalty function parameter

3e, extrapolated

4c, calculated

All entries are rounded to the nearest two decimal points.

r = 100 in subproblem 2.
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Sample of subproblem solution point and

derivatives along the
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partial

trajectory for Problem P(1
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6. FURTHER OBSERVATIONS AND CONCLUSIONS

As was noted, one of the principal uses of sensitivity analysis is
the estimation of a solution of a perturbed problem, based on a solution and

sensitivity information of the unperturbed problem. Obviously the "validity"

- of the extrapolated results depends on the magnitude of the perturbations

introduced and, as true even in linear programming, extrapolations are gen-
erally valid only for a "limited" range of perturbations. A crucial differ-
ence is the fact that sharp bounds on this range can usually be determined in
linear programming, while this is not usually true in nonlinear programming.
In fact the state of the art is such that we are still developing techniques
for calculating sharp error bounds for a specified measure of stability, an
objective being to calculate such bounds in a computationally efficient
manner. It is not satisfactory to require as much effort to calculate a sensi-
tivity measure as it takes to solve the given problem from scratch. This is
often not feasible in practice, nor does it appear to be generally essential
in theory. A whole body of methodology has yet to be developed before useful
stability calculations "in the large" are rigorously validated and efficiently

implemented for general parametric nonlinear programming perturbation analysis.

Based on the results of the present analysis, the following conclusions

are also offered, subject to the scenario described herein:

1. The weight of the corrugated bulkhead is extremely sensitive
to changes in the minimum allowable panel thickness, which is
in turn a function of the ship length. (This latter relation-
ship is not present in the given model or pursued in this paper.)
One millimeter relaxation of this parameter will save about 0.331
tons of steel per bulkhead (equivalent to 6.3 percent of optimal
bulkhead weight).

A similar result holds for the corrosion allowance parameter kz .
One millimeter relaxation of this parameter would save about

0.11 tons of steel per bulkhead (equivalent to about 2.1 percent
of the optimal bulkhead weight).

- 52 -
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Weight of the corrugated bulkhead is only partially sensitive
to changes in the top and middle panel lengths and total panel
depth. These sensitivities are completely overshadowed by

those for minimum allowable thickness of the panels.

Surprisingly, the weight of the bulkhead is rather insensitive
to changes in the parameter k1 (a function of the allowable

bending stress). A 50 kg/cm2 relaxation on maximum allowable
bending stress, which is a rather significant relaxation as far
as design considerations are concerned, would save only about
0.0162 tons of steel per bulkhead (about 0.3 percent of optimal
bulkhead weight).

Assuming the validity of the model, these results suggest that
the most economical marginal reductions in bulkhead weight will
be realized by first decreasing the minimum plate thickness require-

ment (tmin) and next by relaxing the corrosion allowance (kz) .

For rather significant perturbations, the extrapolated solution
of the perturbed problem, based on the solution and sensitivity
information of the unperturbed problem is very accurate for the

subject problem.

a concluding remark, it is universally acknowledged that a sensitivity

is an indispensable part of a "solution," certainly in any practical

Aside from providing invaluable insight into problem and model

structure and estimates of the effects of changes in design or data parameters,

a thorough analysis can provide warnings of instabilities, indications of

improper problem or model formulations, and detailed guidelines for making

cost-effective changes in the parameters.

The computer program SENSUMT is available to the general public on

request to the authors.
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