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I. INTRODUCTION

The purpose of the current paper is to conduct a first order

sensitivity analysis of a nonlinear structural design proulem discussed

in Chapter 6 of the book by Bracken and McCormick [8].

By sensitivity analysis is meant an analysis of the effect on the

optimal objective function value and on an optimal solution point of small

perturbations in the -model parameters. The importance of such an analysis

in real world optimization problems cannot be overstated. It provides the

model maker and user with invaluable information regarding the functional

relationship between a solution and the design parameters. This has many

potential applications. For example, identification of those parameters

having the most significant impact on the optimal solution can provide a

basis for developing educated guidelines for taking appropriate and efficient

action toward effecting parameter changes that will give an optimal marginal

improvement of system design or performance.

A theoretical basis for sensitivity analysis for nonlinear programming

was given by Fiacco and McCormick [13] and generalized and extended by

Fiacco [10]. Based on the approach given in [10], an algorithmic procedure
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was proposed by Fiacco and implemented by Causey 191. Later on it was

refined and recoded by Mylander [141, using the several subroutines of the

SUDI-version 4 computer code by Mylander, Holmes, and McCormick 1151,

which implements the Sequential Unconstrained Minimization Technique for

nonlinear programming using the logarithmic-quadratic-loss penalty function.

This will be described in Section 2. Mylander's sensitivity subroutines

were integrated with the SUMT-version 4 computer program by Armacost and

Mylander [7]. This routine was further revised and expanded by Armacost [1].

The latter version of the routine, now called "SENSUMT," is compiled

in The George Washington University Computer Center and constitutes the main

element on which the present sensitivity analysis is based. The study is

conducted in three phases: Phase 1 deals with the solution of the problem.

Phase 2 deals with the solution and sensitivity analysis study of the problem

when each of the right hand sides of the constraints is perturbed. Several

problems are analyzed, each associated with a significantly different right

hand side initial value. Phase 3 deals with a sensitivity analysis study

with respect to each problem design parameter, again for several problems,

each associated with a significantly different set of problem design parameter

initial values.

Estimates are given of the optimal solution of this family of problems,

usLng the optimal solution and first order sensitivity information of the

unperturbed problem. Furthermore, several stability and convergence character-

Lstics of the solution points and their partial derivatives with respect to the

problem parameters are computationally verified.

As an example of the numerous inferences that can be made, the analysis

reveals that the weight of the optimally designed structure is most sensitive

to the minimum allowable structural thickness and, next, to a corrosion

allowance, two of the many design parameters of the problem.

Similar studies have been conducted by Armacost and Fiacco on a variety

of problems, including a cattle feed problem [2] and a multi-item inventory

problem [5]; and by the authors on stream-water pollution-abatement model

involving numerous parameters [11], [12].

-2-
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2. BASIC SENSITIVITY RESULTS

A comprehensive review of the sensitivity results obtained for nonlinear

programming problems is outside the scope of the present paper. In the follow-

ing we review only the theory supporting the validity of Lhe computational

results obtained. The basic result was given in Fiacco and McCormick [13,

Theorem 6] for a particular class of perturbations. Fiacco generalized the

theory and also established a theoretical basis for utilizing a penalty func-

tion method to estimate sensitivity information associated with a local solu-

tion and its associated optimal Lagrange multipliers, for a large class of

nonlinear programming problems, with respect to a general parametric variation

in the problem functions [10].

Armacost and Fiacco subsequently computationally implemented this

approach to demonstrate practical applicability [21 and applied this theory

to obtain the first and second order sensitivity results for the optimal value

function, deriving formulas for the efficient calculation of the sensitivities

of this function, as well as the sensitivities of the local solution point and

its associated optimal Lagrange multipliers [3], [41.

The parametric mathematical programming problem considered by Fiacco

is of the following general form:

minimize f(x,C)

x E En

subject to g 0 , i = l,...,m , P(E)

h j(x,E) = 0,j = l..p,

where x is the usual vector of variables and 6 is a k-component vector of

numbers called "parameters." It is desired to analyze the behavior of a solu-

tion vector x(e) and the optimal solution value f*(c) - f[x(e),c] near

some given value of c . Without loss of generality, a.sb that the parameter

vector of interest is C = 0

The Lagrangian for Problem P(c) is defined as

m p
L(x,u,W,C) 2 f(x,C) - Z u g(x,e) + E wjhJ(xc)

i-i j-1

-3-



T-413

The sensitivity results are based on the following four assumptions:

Al. - The functions defining Problem P(E) are twice

continuously differentiable in (x,c) in a neigh-

borhood of (x*,0).

A2 - The second order sufficient conditions for a local

minimum of Problem P(O) hold at x* with associated

Lagrange multipliers u* and w* .

A3 - The gradients Vxg1 (x*,O) , for all i such that

gi(x*,0) = 0 , and Vxhj(x*,O), j = 1,...,p are

linearly independent.

A4 - Strict complementary slackness holds at x* when

c = 0 (i.e., u > 0 for all i such that gi(x*,O) = 0)
1

Under the above assumptions, Fiacco [10] established the following generalization

of Theorem 6 in [13].

Lemma 2.1 (Local characterization of a Kuhn-Tucker triple.) If

assumption Al, A2, A3 and A4 hold for Problem P(c) at (x*,0), then

(a) x* is a local isolated minimizing point of Problem P(O)

and the associated Lagrange multipliers u* and w* are

unique;

(b) for r in a neighborhood of 0 , there exists a unique

once continuously differentiable vector function

y() = (x(c),u(T),w(s)) satisfying the second order

sufficient conditions for a local minimum of Problem P(.)

such that y(O) = (x*,u*,w*)T = y* and hence, x(c) is

a locally unique, local minimum of Problem P(e) with asso-

ciated unique Lagrange multiplers u(E) and w(c) ; and

(c) for c near 0 , the set of binding inequalities is

unchanged, strict complementary slackness continues to

hold, and the binding constraint gradients are linearly

independent at x(c)

4



T-413

(d) (Fiacco and Armacost (3]), for e near 0 , the gradient

of the optimal value function is

V f*(C) = V L(u,E) at y = y(C)

(e) which also means that, for C near 0 , the Hessian of

the optimal value function is

V f*(E) = V2L(y(c),C)

The above results provide a characterization of a local solution of

Problem P(c) and its associated optimal Lagrange multipliers near c = 0

They ahow that the Kuhn-Tucker triple y(c) is unique and well behaved,

under the given conditions. Since y(E) is once differentiable, the par-

tial derivatives of the components of y(E) are well defined. This fact

and Assumption Al also mean that the functions defining Problem P(c) are

once continuously differentiable functions of c along the "solution tra-

jectory" x(c) near C = 0 , and the Lagrangian is a once continuously

differentiable function of C along the "Kuhn-Tucker point trajectory."

The above results constitute the structure for numerous developments and

extensions, many of which have been established by Fiacco [10] and Armacost

and Fiacco [2-6].

The realization of this theorem for the parametric right hand side

problem of special interest in the present study is treated in detail by

Armacost and Fiacco [']. The parametric right hand side problem is the

following important realization of P(C):

minimize f(x)

subject to gi(x) > i i=l,...,m R(C)

h(x) = j=l,...,p

The Lagrangian for R(e) is

m p
L(x,u,w) 2 f(x)- ui(gi(x)- i) + Z w (h (x)-e ).

i-I. j I -

As evident from the Lagrangian, the results (d) and (e) of Lemma 2.1 for

problem R(C) simplify respectively to

- 5-
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ru(L)1 T
(d ) V L-w(o , and

2 V u(Cc(e*) V2 f*(Q) = I ~g
F- IVw(L)I

Fiacco t101 has shown that the class of algorithms based on twice

continuously differentiab]e penalty functions (specifically, using the

logarithmic-quadratic loss penalty function) can be used to estimate y(,)

and its derivatives in a neighborhood of t: = 0 , for the general problem

P(t) . Minimization of the penalty function with penalty parameter r

yields a solution of a perturbation of the Kuhn-Tucker system in a neighbor-

hood of (E,r) = (0,0) . Armacost and Fiacco [3] define an optimal value

penalty function and obtain first- and second-order sensitivity estimates

which converge to the corresponding sensitivities for the optimal value

function for Problem P(i).

The logarithmic-quadratic penalty function is

m p
W(x,fr) f(x,)-- r E Zn gi(x,E) + (1/2r) h.(x,)i=l j=1 3

Lonma 2.2 (Fiacco [10, Theorem 3.1!). If the assumptions A1 - A4

hold, tien in a neighborhood of (c,r) = (0,0) there exists a unique once

continuously differentiable vector function y(c,r) =x(c,r)u(f:,r),w(f,r)]
T

satisfying

V L(x,u,w,c) = 0 ,
x

u gi(x,E) = r , =1, ...m , (2.1)

h (xE) = wjr , J,...,p ,

with y(O,0) = (x*,u*,w*) , and such that for any (E,r) near (0,0)

and r > 0 , x(L,r) is a locally unique unconstrained local minimizing point

of W(x,L,r) , with gi[x(e,r),c] > 0 , i=l,...,m ,and V2Wjx(E,r),c,r]

positive definite.

The raleance of equations (2.1) is the fact that, under the given

conditions, vhen r - 0 , they are necessary conditions that must hold at a

-6-
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local solution of P(O) and, with r > 0 , they are necessary conditions

for an unconstrained minimum of W(x,E,r) . The latter fact can be made

obvious by solving for u. and w. in (2.1) and obtaining
3- J

V xL(x,u,w,) Vx f - E uiVxgi + E wV xhj

= V f - r Z(l/g.) V g + (l/r) E h.V h
x 1 x i x j

= V W(x,esr)

Thus, if y(cr) is a solution of (2.1), then

V xW[x(er),c,r] = V xL[x(e,r),u(E,r),w(c,r),L] - 0 • (2.2)

This explicit connection between the optimality conditions of local

solutions of P() and unconstrained minima of W(xc,r) makes it possible

to approximate information characterizing a local solution of P(c) by

algorithmic calculations associated with utilizing W(x,E,r) to solve P(E)

-k In particular, differentiating (2.2) with respect to e yields
V2

2V x +V W= 0

A and using the fact that V2W is positive definite (a conclusion of Lemma 2.2)
x

yields

V x - -V2W- V2 W (2.3)

evaluated of course at x(c,r) . Given V x(,r) , the derivatives of the

multipliers, V u i(e,r) and V w j(c,r) , can then be calculated by differentiating

the last two systems of equations of (2.1) at x(cr) with respect to C

Lemma 2.3 (Fiacco [10]). For c in a neighborhood of c = 0

it follows that:

(a) lim+ y(c,r) - y(e,O) - y(c) , the Kuhn-Tucker triple

characterized in conclusion (b) of Lema 2.1, and

(b) lim+ V Cy(e,r) - V y(cO) - V Cy(E)
r-110 C

r-7-
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Under the conditions of Lemma 2.1, x(L,r) is a locally unique minimizing

point of W(x,r) . Define the "optimal value penalty function" as

Armacost and Fiacco [2, Theorem 4 and Corollary 4.1] have obtained the further

results useful for estimating the first- and second-order sensitivity of the

optimal value function f*(F-) of Problem P(r).

Lemma 2.4 (Armacost and Fiacco 131) If the assumptions A - A4

hold for Problem P(,), then in a neighborhood of = 0

(a) Ii+ W*(tr) f*( )

(b) V W*(i ,r) = V L(y,,.) at y = y(t,r)

(c) lim V W*(t,r) = V f*()

(d) V 2W*(c,r) = V2 L(y(F ,r),k-)

and 2 2
( Ce) lim+ V W*(-,r) = V f*(f:)

r+O+

whiere convergence is component by component in all cases.

Lemmas 2.1- 2.4 enable us to calculate an estimate of y(c), V y(,)

V f*(t) , and V2 f(t) when c is near 0 and r is near 0 , once y(,:,r)

is available.

In the next section we briefly present the algorithmic implementation

of some of the above results.

3. TIE ALGORITHM

The penalty function algorithm SUMT estimates the solution of the general

mathematical problem P(c) by estimating the unconstrained minima of the penalty

function W(x,E,r) at successively decreasing values of the penalty function

parameter r > 0 . Under conditions weaker than those assumed here, Fiacco

and McCormick [13] have shown that as r approaches zero, the sequence of the

unconstrained minima of W(x,c,r) will approach a solution of P(r) . Each

-8-
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unconstrained penalty function minimization is thus a "subproblem" associated

with a particular value of the penalty function parameter r

The successive steps of the algorithm for sensitivity analysis that are

presented in reference 1I] are listed below. The notation x or x(E-) denotes

the estimate of a solution point of P(c) calculated by SUMT for a given value

of the penalty function parameter r , where c denotes the value of the problem

parameter for which this sensitivity is estimated.
Step 1: Compute a representation of V 2W- = V2W(x,E,r) by

X X

L-U decomposition using the SUMT subroutines. If V 2W is notx
positive definite, terminate the sensitivity analysis.

Step 2: Estimate 3(VxWT)/Dc using the central differencing

formula

a(V xwT) l ", (l1/2A)(V xW(XE+Ae j , r)T - VxW(x,c-Ve ,r) T )

(Alternately, the matrix of partial derivatives could be determined

analytically from W(x,E,r) .)

Step 3: Calculate

ax(cE) I -V. x - W-l a( v xW ) V ac.

Step 4: Estimate Vgi (x,e) and V h (x,c) using

agi(xZ)/aci" (l/2A)(gi(x,+Aej) - gi(x,-Aej)) and

3h h(x'E:)/a " (I/2A)(hi(x'E+AeJ) - hi(x'[-AeJ))

Step 5: Estimate the components of V Eu(e) for i - 1,...,mj
using

aui(C) / aLj - (x. 2 i x C x)/ae

+

Step 6: Estimate the components of V ew(e) for i - 1,..

using
awil(E)ac j M (llr) (V xh i (6 , Z) ax)a.j

+ vh(i,)a •

A dwhi +
W1
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There are two methods for estimating V f*() ; the first using

V f* = V f V x + V f , with V x obtained from Step 3, and the second

method using the gradient of the penalty function W , or equivalently,

the Lagrangian taken with respect to the parameters (Lemma 2.1, conclusion

(d), Lemma 2.4, conclusion (b)). Both are incorporated in the computer pro-

gram but used for different purposes. The former method gives the most

accurate estimate of V f*(() and is summarized in Steps 7 and 8.

Step 7: Estimate the components of V f(x,t) using the

central differencing formula

)Jf(x,c)/ac (/2A)(f(x,F+Ae) - f(x,E:-At j)

Step 8: Calculate an estimate of the components of V f*(L)

using the results of Steps 3 and 7 as

f*(L)lD . =V f(x,E)ax(K)/aF. + ;f(X,L)/6L.J x 1 3

The second method, using the gradient of the Lagrangian to estimate

V f*(i), is computationally less expensive and is used to obtain rough estimates

that single out the more crucial parameters for further analysis. This approxi-

mation is calculated as follows.

Step 9. Estimate the components of V f*(c) using the results of

Steps 4 and 7 as

f*() cj= H(xk)/D.

m

u W(F.,r)3hl(X,E)/DFj

+ E v(c,r)Dh (x,')/MC
1=1

4. PROBLEM DESCRIPTION A

The nonlinear programming model for the optimization of the design of

a vertically corrugated transverse bulkhead of an oil tanker, discussed in

Chapter 6 of [8], was selected for the sensitivity analysis. The material in

this section follows the presentation in [8] rather closely.

-10-
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Vertical transverse bulkheads form the lateral walls of the internal

compartments of the tankers that hold liquid cargo. Figure 1 shows three

different views of a corrugated bulkhead, consisting of a bottom, middle,

and top panel, fastened together along the stringers EF and CD. It is assumed

that the shape of the corrugations are identical in all panels but their thick-

nesses are allowed to vary from panel to panel. The lengths of the top, middle,

and bottom panels denoted by it 9 ,m , and b respectively, are fixed, as

is the common width B of the panels.

The problem design variables are indicated in Figure 2 and defined as

follows:
bI = width of the flange

b2 = length of the web

d - depth of corrugation

tt = thickness of top panel

t = thickness of middle panelm

tb = thickness of bottom panel.

The width of a corrugation s is depicted and used in the model for

convenience. It is not a design variable, being determined once the indicated

variables are specified. In fact, it is easy to see that s = b1 + (b -d2)

The design parameters involved in the formulation of the model and their

specified values are listed in Table I. Those characterizing the shape of the

bulkhead are depicted in Figures 1 and 3. Figure 3 also indicates the load

configuration which will enter into the constraints of the model to be developed

subsequently.

Objective Function

It is desired to determine values for these design variables that

minimize the weight of the corrugated bulkhead subject to satisfying a number

of constraints to be considered subsequently. The total weight w of the

panels is easily calculated to be

i- ....
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Figure 1. Vertical corrugated transverse bulkhead..I
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Figure 2. Specification of design variables, top view.
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Table 1

PROBLEM DES1(;N PARAMETERS
(MODEL INPUT DATA)

No. Parameter Meaning Value

1 r Weight per unit volume of the material 7.85ton/cm3

2 B Width of the panel 476 cm

3 t Length of the top panel 495 cmt

4 2. Length of the middle panel 385 cmm

5 2b Length of the bottom panel 315 cm

6 h Distance between free liquid level and 250 cm
top of the structure

7 ht  Distance between free liquid level and 498 cm
middle of the top panel

8 h Distance between free liquid level and 938 cm
m middle of the middle panel

9 hb Distance between free liquid level and middle 1288 cm
of the bottom panel

10 hit Distance between free liquid level and base 745 cm
of the top panel

11 hlm Distance between free liquid level and base 1130 cm
of the middle panel

12 hlb Distance between free liquid level and base 1445 cm
of the bottom panel

13 t m Minimum allowable thickness of the top panel 1.05 cm

14 tmin  Minimum allowable thickness of the middle panel 1.05 cm
m

.15in Minimum allowable thickness of the bottom panel 1.05 cm] 5 t b

16 e Effectiveness of the flange (dimensionless) 0.8

17 k Coefficient (function of maximum allowable 6.94 x 10- cm- 1
bending stress)

18 k2  Corrosion coefficient 0.15 cm

141
- 14 -
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t t Zt+t m km+tb 9b
w = PB(bI+b 2) s (I)

s

where r is the weight per unit volume of the material.

It is assumed that the design variables are to be given in centimeters.

I' will be given in tons per cubic centimeter.

Geometrical Constraint

As indicated in Figure 2, geometrical limitations suggest that the length

of the web should at least be equal to the depth of the corrugation. Therefore,

it is required that

b2 - d > 0 (2)

Bending Stress Constraint

Consider any panel of the type described and denote by h , the vertical

distance from load level zero to the middle of the given panel. The bending

stress at the supports of any such panel of thickness t and length £ is

given by

yhst
2

12 
(kg/cm)

where e (the effectiveness of the flange) is a dimensionless constant and

y = .001 kg/cm 3  is the specific gravity of fresh water. (The numerator in the

expression for o is the bending moment at the supports in kg cm , and the

denominator is the section modulus in cm3 .)

The maximum permitted bending stress is given to be 1200 kg/cm2

thus requiring that

0 < 1200 (kg/cm 
2

Therefore, the prior expression for a and the above inequality result in

the constraint

16
- 16 -
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td2 + b e) > k 1hs2 , (3)

where k = (-10 = 694 x 10- 7 (cm- )

Moment of Inertia Constraint

An additional constraint on the given panel is imposed as follows:

d) (tdi) (b, + bie) > 2.2 (klh sk2)41 3  (4)

where the expression on the left is the moment of inertia of the panel.

Thickness Requirement Constraint

For a given panel it is required that

tm
in

t > (.39)(1.05 b) V.01 h + k (5)

1(.39)(1.05 b2) .01 1 + k2

where

t = plate thickness (centimeters)

tmin = minimum allowable plate thickness (centimeters),

a function of ship length

h1 M height to load level zero from the bottom of the
panel centimeters, and

k 2  = corrosion allowance (centimeters).

Natural Constraints

Since the design variables b1 , b2, d, tt , t and tb  are measures of

length (dimensions of the corrugated bulkhead), they are constraived to be

nonnegative.

-17-
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Design parameters h, k, tmin and hI  in constraints (3), (4), and

(5) are subscripted by t, m and b to define the relative constraints for

the top, middle, and bottom panels, respectively.

The Design Problem

Introducing variables xI  through x6  for the design variables

big b2, d, tt, t, t 1, respectively, and denoting the objective function w

by f , yields the following nonlinear programming problem.

2_ 2 1

minimize f l'B(xl+X2 ) (tx 4+ZmXS+bX 6 )[xl + (x2 -x3)2]
1

Constraint
subject to Number

91 glx2 - x3 > 0 (1)

2 2 2-1
92 2 x2x3 x4 + 3e xlx3x 4 - 6k 1ht Z[xI + (x2 -x 3)2] > 0 . (2)

2 22 (3
x2 x3 x5 + 3e xxX 5 - 6k hm Z[xI + (x2x > 0 .

2 2_- 2.-94 2 x2 x3x 6 + 3e xlx3x 6 - 6klnbb[X I + (x2-x3P21 > 0. (4)

2 2 )4/3[ 2 2 21 4/3

95 - x2x3 x4 + 3e xx3x4 - 26.4(k 1h t k)
4 1  + (x2-x3)2] > 0 (5)

g6- ~ ~5 + 3e -lXX 26.4(kih12) 4 /3[ + 2 2,1 4 / 3 > . (6
-23  [x. +(x2-x 3)21 >0. 6

2 2 2.4/3 2 2 -1 4/3>0 (7)

g 7  x 2x 3 x6 + 3e xlx3 X6 - 26.4(kl bxb [x + (x 2 -x 3 )2] 4 - "

8 x sin >m 0 (8)

-18-
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1
9 x 4 - [.39 - 1.05(.Olhlt)2(.Olxl) + k21 > 0 (9)

g x - [.39 • 1.05(.Olhlt)2(.01x2 ) + k9] > 0 (10)

llx 5 -t
m i  >0. (1I)

12 5 1m 1

x- [.39 - 1.05(.Olhim)2(.OlXl) + k] 0 (12)

mi

g13 :x 5 -[.39 • 1.05(.01hlm)2(.O1x2) + k2j > 0 . (13)

94x > 0 (14)g14 6 - b  =

1
g1 5  x 6 - [.39 -l.05(.Olhlb) 2 (.Olxl) + k2 ] > 0 (15)

1
x- [.39 - 1.05(.Olhb) 2(.Olx2 ) + k2j > 0 . (16)

917 -91 x i > 0 ; I = 1 and 3 . (17-18)

5. COMPUTATIONAL RESULTS

Phase 1: Solution of the Problem P(Z)

This phase involves the solution of the problem without parameter

perturbation. Denote by C the vector of desip! parameters listed in

Table 1, i.e., the ith component of c designating the ith parameter in

Table 1. With this notation, let Z represent the vector whose components

are the respective data given in Table 1. Therefore, the design problem

given in the previous section, with the problem design parameters equal

to the values given in Table 1, is denoted P(F), in conformance with the

notation of Section 2.

Table 2 gives the calculated solution x(F) (to two significant

figures) of P(E) , along with the solution presented in [8]. Our optimal

-19-



T-413

TABLE 2

OPTIMAL SOLUTIONS FOR
PROBLEM P(c)

Starting Our
Point Solution in [71 Solution
(cm) (cm) x(-) (cm)

= b I = 45.80 57.80 57.82

= b2 = 43.20 57.80 57.8222

x3 = d = 30.50 37.80 35.69

x = t = 1.20 1.05 1.05
4 t

x = t = 1.20 1.05 1.05
5 m

x 6 = rb = 1.30 1.05 1.05

f = w = 6.40 tons 5.34 tons 5.25 tons

-

-20-
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solution matches that of reference [81 except for x3  (the corrugation depth).

This slight difference in the value of x3 , and consequently in the value of

objective function W is believed to be due solely to the difference in

manipulation of the input data to the model. In the current study the design

parameter values were manipulated separately in the model, as encountered in

a given calculation. The results given in [8] probably involved the calcula-

tion of coefficients (which are themselves functions of design parameters)

"externally," using the aggregate results as input data to the model. The

rounding of coefficients so calculated could readily explain the resulting

minor discrepancy.

Phase 2: Sensitivity Analysis of Problem P(E) for
Right Hand Side Constraint Perturbations

The problem P(E) with right hand side perturbation a of the constraints

will be called Problem R(a). Obviously, R(O) = P(s), so the optimal solution

x(c) of P(c) given in Table 2 is also x(O) , the optimal solution of R(O)

Denote by c = the vector a , all of whose components are equal

to the number c . It was desired to analyze the solution of R(a) for

a = + .25 and a + .50

The optimal solutions x() and the first order sensitivities

V (f*(a) , V(x(a) and V u(a) were obtained for the given values of a

The following results were also obtained.

(1) The assumptions of Lemma 2.1 were shown to hold at x(0)

and the results of the Lemma were computationally corroborated,

for a- = + .25 and a .50.

(2) Using the solution and first order sensitivity information

associated with Problem R(O), the optimal solution for the

perturbed problems R(+.25) and R(j.50) were estimated

and compared to those obtained by direct solution.

The following elaborates on the above results (1) and (2). Table 3

depicts the Lagrange multipliers, constraint values and sensitivity informa-

tion associated with the optimal value function. It is clear from this table

that x(O) is feasible, the multipliers are nonnegative and complimentary

slackness is satisfied (to two significant places).

-21- [
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TABLE 3

LAGRANGE MULTIPLIERS AND CONSTRAINT
VALUES FOR PROBLEM R(O) AT x(O)

(Excluding non-negativity constraints)

(i) Value of ,
Constraint Value of Lagrange 3f (0)

No. Constraint gi Multiplier u.
ai

1 22.13 .4518784 x 10
- 2  .4518777 x I02

2 2117.22 .4723479 x 10 .4723564 x 10

1385.41 .7218857 x 10 .7218987 x 10

4 1868.92 .5351946 x 10 .535204 x 10

5 41993.15 .2381633 x 10
-  .2381608 x 10

* 6 .043 .2300013 x 101 .2300013 x 101

7 27945.57 .3580375 x 10
-5  .3580337 x 105

* 8 .48 x 10- 5  .2078305 x 107 .2078305 x 10

9 .25 .3940568 .3940568

10 .25 .3940570 .3940570

*11 .96 x 10
- 5  .1040634 x 107 .1040634 x 107

12 .10 .9604345 .9604345

13 .10 .9604360 .9604360

*14 .49 x 10-4  .2029215 x 106 .2029215 x 106

* 15 .31 x 10- 4  .3221582 x 106 .3221582 x 106

* 16 .13 x 10- 4  .7974950 x 106 .7974950 x i06

Constraints marked by asterisk (*) are binding.

- 22 -
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Based on Table 3 it was concluded that the constraints g6, gs' gll'

g14' g15 and g16 were binding. Rather large value of the constraint g6

compared to the values of the remaining binding constraints may encourage the

skeptical reader to disagree with the fact that this constraint is binding.

However, one should notice that the coefficients involved in constraint g6

are very large compared to the coefficients of the remaining binding con-

straints (this is also reflected in the values of the components of Vg6

listed in Table 4). By proper scaling of this constraint one may reduce its

value to the order of the values of the remaining binding constraints. A

sufficient reason that constraint g6 may be concluded to be binding is that

the optimal value function is sensitive to parameter k1  (to be shown in

Phase 3) while k1  appears neither in the objective function nor in any of

the binding constraints but constraint g6 " Incidentally, this gives an

interesting example of the sort of insight that is provided by a thorough

-a sensitivity analysis.

Table 4 depicts the gradients of these binding constraints and their

kcorresponding optimal Lagrange multipliers at the solution point for Problem

R(O). It is clear that the binding constraint gradients are linearly inde-

pendent (A3) and the associated Lagrange multipliers are positive. Therefore

strict complimentarity slackness (A4 ) holds at x(O) . Since x(O) was

calculated to be a stationary point of the Lagrangian function, it follows

from these facts that (A2) is satisfied. This also means that x(O) is

indeed an isolated local solution. Finally the problem functions are all
twice differentiable (A 1). Therefore, relative to two significant figures

of accuracy, the four assumptions of the Lemma 2.1 have been verified for

Problem R(O). So the results of that lemma hold for Problem R(a), with a

near zero.

The last column in Table 3 depicts the sensitivity of the optimal

value function for Problem R(0). As it is seen the entries in this column

closely correspond to the respective Lagrange multipliers, listed in column 3

of Table 3, as expected from result (d) of Lemma 2.1.

- 23 -
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TABLE 4

GRADIENTS OF THE BINDING CONSTRAINTS
AND CORRESPONDING LAGRANGE MULTIPLIERS

FOR PROBLEM R(O) AT x(cz)

Vg6  Vg8  Vg 11 Vg14  Vg1 5  16

-288 0 0 0 -.01557 0

-3352 0 0 0 0 -.01557

R(-.23) 15752 0 0 0 0 0

0 1 0 0 0 0

313158 0 1 0 0 0

0 0 0 1 1 1

u(-.2-) 2.53 2.16 x 106 8.84 x 105 1.98 x 105 3.23 x 105 8.51 x 105

-183 0 0 0 -.01557 0

-2975 0 0 0 0 -.01557

R(O) 17393 0 0 0 0 0

0 1 0 0 0 0

250354 0 1 3 0 0

0 0 0 1 1 1

u(O) 2.30 2.07 x 106 1.04 x 106 2.03 x 105 3.22 x 105 7.97 x 105

- 24 -



T-413

4

TABLE 4 (Cont'd)

GRADIENTS OF THE BINDING CONSTRAINTSIAND CORRESPONDING LAGRANGE MULTIPLIERS
FOR PROBLEM R(a) AT x(c)

Vg6  Vg8  Vg11  Vg1 4  Vg15  Vg1 6

-108 0 0 0 -.01557 0

-2752 0 0 0 0 -.01557

R(.25) 18962 0 0 0 0 0

0 1 0 0 0 0

208223 0 1 0 0 0

0 0 0 1 1 1
IL u(.25) 2.17 2.03 x 10 1.13 x 10 2.06 x 10 3.21 x 10 7.67 x 105

-58 0 0 0 -.01557 0

-2839 0 0 0 0 -.01557

R(.50) 20438 0 0 0 0 0

0 1 0 0 0 0

178125 0 1 0 0 0

0 0 0 1 1 1

u(.5O) 2.08 2.003 x 106 1.19 x 106 2.08 x 105 3.2 x 105 7.47 x 105

2 25 -
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Table 5 depicts the optimal solutions, optimal values, and a typical

Lagrange multipller u8 (a) for problems R(a) , where a = +.25, +.50 ,

obtained by direct calculation. Figures 4, 5 and 6 suggest that x(a) ,

f*(a) and u8 (a) are continuous and smooth functions of c for the entire

range of parameters considered (a result known to hold for a near 0 , by
T

conclusion (b) of Lemma 2.1), where a = c = c(iI. .)

Table 6 indicates the binding constraints (using two significant

figures) for Problem R(a) at x(a) . As may be seen, the binding constraints

for all perturbed problems, except R(-.50) , remain the same. Moreover,

Table 4 shows that the gradients of these binding constraints are linearly

independent and we determined that strict complimentarity slackness holds true.

So, the results of Lemma 2.1 must also hold for the problems R(+.25) and

R(+.50) . The change in the binding constraint index set for problem R(-.50)

means that the perturbation a = -.50 is not small enough to retain the general

solution structure of the problem.

In order to estimate the optimal solution of Problem R(a) based on

information from Problem R(0) the following first order (Taylor's Series)

extrapolation formula was used,

y(a) = y(O) + V y(0) a

where y(O) and V ay(0) are the estimates of a Kuhn-Tucker Lriple and its

derivatives with respect to a for problem R(O). Although the magnitude of

the perturbations were quite significant, the extrapolated values are in close

agreement with those of direct calculation. Extrapolation was also done for

Problem R(-.50) to study the discrepancy between extrapolated and calculated

results. Table 7 shows these results and Figure 7 depicts some of these,

namely x3 (a) and x5 (a) , graphically.

In order to computationally check the stability of the algorithm's

estimates of solution and sensitivity information of Problem R(a), f(-), x(-)

u(-) and their partial derivatives with respect to a were recorded along

the algorithm solution trajectory. Values along the trajectory path are plotted

in Figure 8 for a sample of typical values, for the Problem R(.50). As it is

seen, the solution estimates are virtually constant from the third subproblem 1
onwards.

-26-
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TABLE 5

OPTIMAL SOLUTIONS FOR
PROBLEM R(a)

R(-.5O) R(-.25) R(O) R(.25) R(.5-O)

58.45 57.82 57.82 57.82 57.82

x2  58.45 57.82 57.82 57.82 57.82

x3  45.50 39.91 35.69 32.54 30.10

x4  .55 .8 1.05 1.30 1.55

x5  .61 .8 1.05 1.30 1.55

x6  .56 .8 1.05 1.30 1.55

u8  2282964 2156015 2067079 2033079 2003181

f*(a) 3.14 4.15 5.25 6.36 7.47

-27-
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Figure 4. x(a) versus c for Problem R(a), where a =cj
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7.

5

415 25 .. 5 0

Figure 5. f*(ct) versus c for Problem R(a), where a c

2.3

2.1~. A

Figure 6. u (a) versus a for Problem R(a), where at - c.
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TABLE 6

BINDING CONSTRAINTS FOR PROBLEM

R(a) AT x (a)

-.50 -.25 0 +.25 +.50

C o n s t r a in t -  . .. . ..

1 - - - - -

g2  .....-

93B ....

94B ....

5 .B. B

6 B B B B

g97 ....

98 B B B B B

B11 B B B B

12...

913...

914 - B B B B

915 B B B B B

916 B B B B B

where

B stands for binding constraints

- stands for nonbinding constraints

I
-30-j,
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TABLE 7

EXTRAPOLATED SOLUTIONS VERSUS CALCULATED SOLUTIONS
FOR PROBLEM R (C)

.R(-.30) R(-.25) R(O) R(.25) R(.5-0)

57.82 57.82 57.82 57.82
X 1 2 - 58.45 57.82 57.82 57.82 57.82

e 57.82 57.82 57.82 57.82
e 57. . .. ... 5 . .. .. .. ........ . 82.. .

c 58.45 57.82 57.82 57.82 57.82

e 42.88 39.28 - 32.09 28.49

c 45.50 39.91 35.69 32.54 30.10

e .55 .S0 - 1.30 1.55
c .55 .80 1.05 1. 30 1.55

e .55 .80 - 1.30 1.55

c .61 .80 1.05 1.30 i.55

e .55 .80 - 1.30 1.55
X 6 -- -- - -- - -. - - -. --- - - -- - -- -- - -- -- - -- - -- - -- -

c .56 .80 1.05 1.30 1.55

e 3.027 4.137 - 6.358 7.469f * ---------- -. . .. .. . "

c 3.136 4.145 5.248 6.356 7.467

1
e, extrapolated

2c, calculated

-31-
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Cm I 0' Calculated .- -

. I + iLxtr4'polat~d .

5

1i.60 . .

1.20. j~,

1- j 1

1- .

Figure 7. x 3 (a) and x 5(a) versus c frProblem R~a), where aCL

(Extrapolated compared to calculated).
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Numerous inferences can be drawn from such information. For example,

note that the constraints g8' g11 and g14 which correspond to the minimum

plate thickness requirement for top, middle, and bottom panels remain binding

for the perturbed problems over the range of perturbations considered (i.e.,

-.25 to +.50). On the other hand, because the weight of the bulkhead is

linearly proportional to the plate thickness, any relaxation on minimum thick-

ness requirement would decrease the bulkhead weight (objective function) by a

considerable amount. Based on the results given in Table 3, the saving on

bulkhead material weight will be about

.207 + .104 + .020 = .331 tons

per one millimeter relaxation of the required plate thickness. Figure 5, which

shows the optimal function values versus perturbations, confirms this observation.

Phase 3: Sensitivity Analysis with Respect to
Design Parameter Perturbations

This study phase seeks to obtain sensitivity information when the design

parameters are perturbed. As noted, Table I lists all the design parameters

and their initial values.

The parameters V (density of steel), e (dimensionless constant in

section modulus formula), B (the width of the panel) and h (the distance
a

from top of the bulkhead to free liquid level) are assumed to be subject to

negligible variation and so their perturbations are excluded from the

sensitivity analysis.

It is important to note that the design parameters Zt m£ ' 1 hL9 ,

hb9 11it hIm and hlb are not independent. For example, as can easily be

verified from Figure 3, these parameters may be expressed in terms of

tt khi and hlb as follows:

Pb = hlb - (250 + kt + m) 

h M 250 + t
2

h - 250 + + X

t +k +hlb

hb = 125 + lb2
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hit = 250 + kt

him 250 + Zt km

In this analysis of the problem, we explicitly impose these equations

and express all the design parameters as functions of k tt m and h , as

indicated. This eliminates unnecessary sensitivity calculations and strictly

accommodates the dependencies.

The "independent parameters" on which the sensitivity is analyzed are

shown in Table 8. For convenience, we relabel the jth parameter c.

As previously noted, the corresponding numerical values of c. are given in

Table i. These values are taken as the initial value of the problem parameters

and are again designated by c

Aside from an analysis of the Problem P(c), the problem was also analyzed

under six different perturbations. Namely, all of the independent design

parameters were perturbed simultaneously by the same fraction of their original

values. The perturbations were +1, +2 and +5 percent of the original problem

parameter vector c . The corresponding problems are hence designated by

P(l.Olc), P(,99c), P(l.102E), P(.98), P(l.05C) and P(.95E), respectively,

following our usual notation.

After calculating the optimal solutions and corresponding first order
4sensitivity information for the perturbed problems, the following analysis

was completed:

(1) For small perturbations the results of Lemma 2.1

for Problem P(c) were verified,

(2) Using the solution and the first order sensitivity

information of the Problem P(j), optimal solutions

for the Problem P(c) were estimated and compared
with those obtained by direct solution.

Tables 8, 9, and 10 show the sensitivities of the optimal value function,

solution point and Lagrange multipliers with respect to the independent design

- 35-
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TABLE 8

SENSITIVITY OF [*(E) WITH RESPECT TO THE INDEPENDENT
DESIGN PARAMIETERS C. FOR PROBLEM P(c)

3

Parameter Parameter

Index Prmtf _

~4393
t

2 8582
m

3ht 349

4 tmin 2078305
t

5 t min 1040634
m

6 tmin 20292L
b

7 k2  1119656

8 k 1 1161 x 1010
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TABLE 9

SOLUTION POINT SENSITIVITY ox 0C.
FuK PROBLEM P(F)

i=1 2 3 4 5 6

b j=1 .2 x 10 - 5  .2 x 10 - 5  - * - -

2 -.015842 -.013829 .10226 - - -.208 x 10
- 3

3 -.020053 -.020053 -.3625 x 10- 2 - -

4 .774 x 10- 3  72 6 x 10-3  .119 x 10 - 3  1. - .11 x 10 - 4

5 -.1297 x 10- 2 -.123 x 10-
2  14.39778 - .999999 -.18 x 10-4

6 64.2357 64.23601 11.61322 - - .999925

7 -64.23520 -64.23554 -11.61314 - - .82 x 10-
4

+8 +8 +9
8 -.4453 x 10 -.3887 x 10 .2874 x 10 -1.14863 -1831.179 -.5848 x 10 6

* *Sensitivities with less than 106 in absolute value are indicated by

(-) in the above tabl.

37
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is extremely sensitive to minimum allowable panel thicknesses tmint , t m tb

and corrosion allowance k2 and apparently sensitive to the allowable bending

stress factor k It is only partially sensitive to panel lengths Qt and
1 t

and k , and practically insensitive to the total depth of panel 1 lbm

It is well-known that in order to obtain a meaningful interpretation

of the implications of a sensitivity analysis, the information must be care-

fully analyzed in the perspective of the application. For example, the

parameter derivatives of the objective function f*(0) are the instantaneous

rates of change. A rate of change can itself change significantly away from

the base point, thus rendering extrapolations invalid for finite parameter

changes. Thus, further analyses such as those reported here are essential.

Another caution must be directed to equating the rate of change with a change

"due to a one unit change" in the given parameter value. It is a change per

unit change, but only at a given parameter value.

jA unit change in a parameter value may not be feasible or meaningful.

For example, the initial value of the parameter k1 is .694 x 10- 7 cm-1 . A

one unit decrease is not possible. A "reasonable" change for this parameter

might be expected to be on the order of +10 Given this scaling, it follows

that the objective function is only relatively mildly sensitive to the changes

in this parameter. Similarly , the sensitivity of th, parameters k2 and

the minimum allowable panel thicknesses should all. probably be scaled

by a factor of 10- 1  . Appropriate scaling of parameter changes depends on

the context of the application, parameter interactions that may not even be

explicitly represented in the model and other considerations. This is

ultimately a."management",decision and is beyond the scope of this paper.

We shall assume that specified feasible changes are stipulated and concen-

trate on measuring their effects.

Table 1I and Figure 9 show the calculated optimal solutions for Problem

P(r), when it is stipulated that the given parameter values be altered by the

indicated fractions of their original values.
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TABLE 11

OPTIMAL SOLUTIOYS FOR
PROBLEM P (E)

P(0.95z) P(0.98s) P(O.99 E P(E) P(1.01) P(1.02c) P(1.05c)

x (cm) 63.02 61.53 57.25 57.82 58.42 59.01 61.64

x.2 (cm) 63.04 61.53 57.26 57.82 58.43 59.02 61.65

×3 (cm) 38.93 35.90 35.19 35.69 36.2 36.71 38.41

x 4 (cm) 1.0 1.03 1.04 1.05 1.06 1.07 1.10

x5 (cm) 1.0 1.03 1.04 1.05 1.06 1.07 1.10

x6 (cm) 1.13 1.10 1.04 1.05 1.06 1.07 1.12

u8 (L) 1964924 2009085 2055230 2078305 2101457 2125542 2189718

f*((-) (Tons) 5.176 5.175 5.190 5.248 5.306 5.365 5.541

i'
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It is obvious that the assumptions of the main sensitivity theorem

holds true for P(E) (because P(L) is identical to R(O) and we have

already verified the validity of these assumptions for R(0) in the previous

part). So the results of this theorem should also hold true for Problem l1(c)

provided that the introduced perturbations are not too large.

The result a of Lemma 2.1 is immediate. Figures 9 and 10 are included

to illustrate the result b of this lemma. As depicted, x(i:) and u8(W

(a sample of optimal Lagrange multiplier) appear to he smooth functions of

, for between 0.99 and 1.0 , where L = I 7 . However there is a

definite sharp change (or discontinuity) for u8 (e) as well as x(t), x2( )

A and x6 (L) for some value of E between 0.99C and 0.98L This may

be due to the fact that perturbations more than -0.01T (in magnitude) are

nut sufficiently small to keep the structure of the perturbed problem es-

sentially unchanged. Examining the binding constraints for the perturbed prob-

lems confirms this. Table 12 shows the binding constraints of Problem P(i)

at different perturbations.

As shown for perturbations below -0.01 . The binding constraints g

aad g14  are well satisfied and constraints g7, g1 2 and g13  become binding.

Moreover constraint g14  is no longer binding for perturbations of 0.051

Furthermore, as depicted in Table 13, the gradients of binding constraints of

Problem P(e) are linearly independent and strict complimentarity slackness

holds true for c between 0.99C and 1.026 . (Result c of Lemma 2.1). So

all the results of Lemma 2.1 for above range of perturbation (i.e., 0.997 to

1.02F) are computationally verified.

As before estimates were made for the optimal solution of the perturbed

Problem P(c), based on the solution and sensitivity information of the unper-

turbed Problem P(F;), by first order extrapolation. Table 14 and Figure 11 show

the results of this extrapolation and compare them with the results of direct

calculation. It is obvious that one should not attempt to extrapolate from the

solution of P(Z) to solutions of P( 0.98-) , P(O.95i) and P(1.05e) . We

have deliberately calculated this extrapolation to show the consequences.

~1
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TABLE 12FOPRBF

BINDING CONSTRAINTSFOPRBE

P(0 AT x6t

0.957 .98E: 99 1. 1 .021 1.05<-

g6  - - B B B B B

97 B - - -

98B B B B B B 3

99 --- -

91B B B B B B B

g14 B B B B B

915  B B B B B B B

96B B B B B B B

whereJ

B stands for binding constraints

- tands for unbinding constraints.
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TABLE 13

GRADIENTS OF THE BINDING CONSTRAINTS

AND CORRESPONDING LAGRANGE MULTIPLIERS
FOR PROBLEM P(s) AT x(C)

Vg6  Vg8  Vg1 1  Vg14  Vg1 5  Vg1 6

-173 0 0 0 -.01557 0

-2848 0 0 0 0 -. 01557

16777 0 0 0 0 0

(0.99E) 0 1 0 0 0 0

240914 0 1 0 0 0

A 0 0 0 1 1 1

U(0.99E) 2.36 2.05 x 10 1.03 x 106 2.51 x 10 3.19 x 105 7.88 x 10

-183 0 0 0 -.01557 0

-2975 0 0 0 0 -.01557

P(c) 17393 0 0 0 0 0

0 1 0 0 0 0

250354 0 1 0 0 0

0 0 0 1 1 1

66 5 5 5
u(c) 2.3 2.8 x 106 1.04 x 10 2.03 x 10 3.22 x 10 7.97 x 10
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TABLE 13 (Cont'd)

GRADIENTS OF THE BINDING CONSTRAINTS
AND CORRESPONDING LAGRANGE MULTIPLIERS

FOR PROBLEM P(c) AT x(e)

Vg6  Vg8  Vg1 1  Vg14  Vg5 Vg1 6

-194 0 0 0 -.01557 0

-31070 0 0 0 0 -.01557

P(1.01c) 18028 0 0 0 0 0

0 1 0 0 0 (

260078 0 1 0 0 0

0 0 0 1 1 1

u(l.Ol) 2.24 2.1 x 106 1.05 x 10 1.55 x 105 3.25 x 105 8.07 x 105

-206 0 0 0 -.01557 0

-3244 0 0 0 0 -.01557

P(I.O2c) 18679 0 0 0 0 0

0 1 0 0 0 0

270062 0 1 0 0 0

0 0 0 1 1 1

6655 5
u(1.02 ) 2.18 2.12 x 10 1.06 x 106 1.06 x 10 3.29 x 10 8.17 x 10
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TABLE 14

EXTRAPOLATED SOLUTIONS VERSUS CALCULATED
SOLUTIONS 1 FOR PROBLEM P (E)

P(O.95e) P(0.98-) P(0.99) P(E) P(1.01E) P(1.02E) P(1.05E)

2
e 55.39 56.84 57.33 - 58.30 58.79 60.25

1 -3--- ------- - - - - ------ - -c 63.29 61.54 57.24 57.82 58.39 58.97 61.52

e _ 55.33 56.82 57.32 - 58.31 58.81 60.30

c 63.29 61.54 57.24 57.82 58.39 58.97 61.52

e -32.95 34.59 35.14 - 36.23 36.78 38.42"3 -- -- _ _ - - - - - -

c 38.92 35.90 35.18 35.69 36.19 36.70 38.39

e d 1.0 - 1.03 - 1.04 .-. 06 1.07 - 1.10

c 1.0 1.03 1.04 1.05 1.06 1.07 1.10

e 1.0 _ 1.03 _ 1.04 .-. 06 1.07 1.10
5

c 1.0 1.03 1.04 1.05 1.06 1.07 1.10

6 e -1.0 1.03 - 1.04 - 1.06 1. 07 1. 10
c 1.13 1.12 1.04 1.05 1.06 1.07 1 1.11

1Entries have been rounded to the nearest two decimal points.

2e, extrapolated

3c, calculated
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As suggested by Figure I1, the extrapolated restilts for Problems

11(0.991) and P( I.02t) are virtually the same as those obtained by direct

calculation, while the results for Problems 1(0.95) , 1'(0.987) and

11(t.051) are quite different. For example, linear extrapolation from P(')

to P(0.95i) underestimates variable x3 by about 6 cm , equivalent to about

15.3 percent of its correct value. (See Table 14).

It was also attempted to estimate the penalty function solution

"trajectory" x( ,r) for the perturbed Problem P(F.), using the solution point

and corresponding sensitivity information along the solution trajectory of

Problem P((-). As shown in Table 15 for subproblem 2, with penalty function

parameter r=lO0 , the results of this extrapolation for c between .99-

;nd 1.02tk are quite satisfactory.

Figure 12 indicates the stability of f*(i), x I(k), ul(.) and their

partial derivatives with respect to the parameter fI along the solution

trajectory of Problem P(l.05r). As seen, the values for these quantities are

again fairly stabilized from the third subproblem onwards.

I
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TABLE 15

EXTRAPOLATED SOLUTIONS x(E-,r VERSUS CALCULATED
SOLUTIONS1 FOR SUBPROBLEM 2L OF PROBLEM P(EI)

P(0.95z) P(0.987-) P(0.9977) P(T) P(1.O1E) P(1.0270 P(1.057)

e 3 _ 55.37_ 56.84 -57.34 - - 58.32 -58.81 60.29
Ic4 63.02 61.53 57.25 57.82 58.42 59.01 61.64

e 55.33 56.83 57.34 -58.34 58.85 60.36
X 2  - - -------- - - - - - - -- -- -- - - - - - - - - _ - -

c 63.04 61.53 57.26 57.82 58.43 59.02 61.63

e 32.95 34.60 -35.14 - 36.24-. 36.79 38.43

c 38.93 35.90 35.19 35.69 36.20 36.71 38.41

e 1.0 1.02 - 1.03 - 1.06 1.08 _1.12

c 1.0 1.03 1.04 1.05 1.06 1.07 1.10

e ! _ - .99- 1.02 _ 1.04 - - 1.06 1.07 1.11

c 1.0 1.03 11.04 1.05 1.06 1.07 1.10

e _ 1.0 1.03 _1.04- - 1.06_ 1.07 _1.10

6c. 1.13 1.10 1.04 11. 05 1.06 1.07 1.12

IAll entries are rounded to the nearest two decimal points.

2 The penalty function parameter r =100 in subproblem 2.

3
e, extrapolated

4
c, calculated
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6. FURTHER OBSERVATIONS AND CONCLUSIONS

As was noted, one of the principal uses of sensitivity analysis is

the estimation of a solution of a perturbed problem, based on a solution and

sensitivity information of the unperturbed problem. Obviously the "validity"

of the extrapolated results depends on the magnitude of the perturbations

introduced and, as true even in linear programming, extrapolations are gen-

erally valid only for a "limited" range of perturbations. A crucial differ-

ence is the fact that sharp bounds on this range can usually be determined in

linear programming, while this is not usually true in nonlinear programming.

In fact the state of the art is such that we are still developing techniques

for calculating sharp error bounds for a specified measure of stability, an

objective being to calculate such bounds in a computationally efficient

manner. It is not satisfactory to require as much effort to calculate a sensi-

tivity measure as it takes to solve the given problem from scratch. This is

often not feasible in practice, nor does it appear to be generally essential

in theory. A whole body of methodology has yet to be developed before useful

stability calculations "in the large" are rigorously validated and efficiently

implemented for general parametric nonlinear programming perturbation analysis.

Based on the results of the present analysis, the following conclusions

are also offered, subject to the scenario described herein:

1. The weight of the corrugated bulkhead is extremely sensitive

to changes in the minimum allowable panel thickness, which is

in turn a function of the ship length. (This latter relation-

ship is not present in the given model or pursued in this paper.)

One millimeter relaxation of this parameter will save about 0.331

tons of steel per bulkhead (equivalent to 6.3 percent of optimal

bulkhead weight).

A similar result holds for the corrosion allowance parameter k

One millimeter relaxation of this parameter would save about

0.11 tons of steel per bulkhead (equivalent to about 2.1 percent

of the optimal bulkhead weight).
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2. Weight of the corrugated bulkhead is only partially sensitive

to changes in the top and middle panel lengths and total panel

depth. These sensitivities are completely overshadowed by

those for minimum allowable thickness of the panels.

3. Surprisingly, the weight of the bulkhead is rather insensitive

to changes in the parameter k, (a function of the allowable

bending stress). A 50 kg/cm2 relaxation on maximum allowable

bending stress, which is a rather significant relaxation as far

as design considerations are concerned, would save only about

0.0162 tons of steel per bulkhead (about 0.3 percent of optimal

bulkhead weight).

4. Assuming the validity of the model, these results suggest that

the most economical marginal reductions in bulkhead weight will

be realized by first decreasing the minimum plate thickness require-

ment (t m n) and next by relaxing the corrosion allowance (k2)

5. For rather significant perturbations, the extrapolated solution

of the perturbed problem, based on the solution and sensitivity

information of the unperturbed problem is very accurate for the

subject problem.

As a concluding remark, it is universally acknowledged that a sensitivity

analysis is an indispensable part of a "solution," certainly in any practical

context. Aside from providing invaluable insight into problem and model

structure and estimates of the effects of changes in design or data parameters,

a thorough analysis can providewarningsof instabilities, indications of

improper problem or model formulations, and detailed guidelines for making

cost-effective changes in the parameters.
£

The computer program SENSUNT is available to the general public on

request to the authors.
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