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II. INRUTO!

It is well known that an array with elements more than a half

wavelength apart is subject to grating lobe effects. In the context

of adaptive arrays, grating lobe effects manifest themselves in the

form of spurious nulls. That is, interference nulled by the array

at one angle may cause additional nulls ("grating nulls") at other

I angles. If the desired signal is near a grating null, the output

signal-to-noise ratio from the array will be poor.K The purpose of this report is to examine the effects of eletrnet

patterns on grating nulls in an adaptive array. We will use a simpl

model, an array with dipole element patterns, to show several things.

I First, we will find, as onc would expect, that unequal element pat-

terns in the array tend to reduce the effects of grating nulls. Sec-

ond, however, we will also find that unequal element patterns can

-' create other spurious nulls, in addition to conventional grating nulls.

We will refer to these additional nulls as sign reversal grating nulls.

Third, we will find that for a two-element array with dipole element

patterns, it is impossible to avoid grating nulls for spacings greater

I than a half wavelength. But finally, we will show that grating nulls

can be avoided by using more than two elements, if the element pat-

terns are chosen properly.

1We note that the case of unequal element patterns in an adaptive

array is a case of great practical interest. An attractive feature

I of adaptive arrays is that a designer may locate elements somewhat

arbitrarily on a structure. For example, antennas for aircraft com-

munication may be placed at convenient locations on the aircraft.

IHowever, when this is done, the element patterns will usually be dif-
ferent. Moreover, one will often want to space the elements more

, I than a half wavelength azart.
1
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In Section II of the report, we formulate the problem of an N-

element linear array with arbitrary element patterns. We assume de-

sired signal, interference and thermal noise signals present in the

array, and determine the output signal-to-interference-plus-noise

ratio (SINR) from the array. In Section III we consider a specific

array, a two-element array with dipole element patterns. We deter-

mine the conditions under which grating nulls occur and show that

such an array always suffers from grating nulls if the spacing ex-

ceeds one-half wavelength. In Section IV, we use a three-element

array with dipole element patterns and one wavelength element spicing

to illustrate that grating nulls can be avoided with more than two

elements. Finally, Section V contains our conclusions.

11. FORMULATION OF THE PROBLEM

Consider an N-element adaptive array, as shown in Figure 1. The

elements are assumed to lie along a straight line with spacing d.

between element J and element 1. The complex signal xj(t) from the

Ath element is multiplied by a complex weight wj and summed to produce

the array output si(t). In an LMS array [1,2], the steady-state weight

vector w = (w1 w2 ... wN)
T is given by

w =0'1 S, (1)

where 4 is the covariance matrix

E{X*XT), (2)

and S is the reference correlation vector,

S - EIX*R(t)l. (3)

In these equations, X is the signal vector,
i X - I(t) '2(t) .. N(t))T  (4) -

2
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A(t) is the (complex) reference signal* in the adaptive array[3-6],

T denotes transpose, "*" complex conjugate and E(-) expectation.

Assume two CW signals are incident on the array, one desired

and the other interference. Let these signals arrive from angles

ed and ei, respectively, with respect to broadside. Also, assume

the Jth array element has voltage response fj(e) to a unit amplitude

signal arriving from angle 0. Finally, assume thermal noise is present

on each element signal. Then we have

i(W + d-dj)J(wot+ i- ij)+B

(t) = fj(Od)Ade( d d +f (Oi)Aee  (t),

(5)

where Ad and Ai are the amplitude of the desired and interference

signals, w 0 is the signal frequency, *d and *i are the carrier phases,

and nJ (t) is the thermal noise. dS is the desired signal interelement

phase shift between element j and element 1,

2id

dj =f sin 8d, (6)

and ij is the interelement phase shift for the interference,

sin (7)

with A the wavelength. We assume the noise signals 7ij(t) are zero

mean, uncorrelated with each other, and have power a2:

E fi(t)Rj(t)}- 26j, (8)

*The reference signal is called the "desired response" in Widrow,

et al. 11].
4
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I where 6kj is the Kronecker delta. Also, we suppose the phase angles

*dand *iare uniformly distributed on (0,21t) and statistically in-

dependent of each other and the thermal noise.

Under these assumptions, the covariance matrix becomes

where

Od E(d AdU*IJ (9b)

= j A(~~ A2 *UiT (9c)

and

Here Xd is the desired signal vector, (d

L~ (fl t"ed) d
Ud A1 fde , (10a)

d V d ~ d

Xis the interference signal vector,

X i i e (W 0t+ , U'(11a)

5



with

Yfl(i )

U. f )eJ i2

UI = 2(61

fN(Ode j IN

and I is the identity matrix.

To make the array track the desired signal, the reference signal

must be a signal correlated with the desired signal and uncorrelated

with the interference [5,6]. We assume

Ji(wot+d )

R(t) = Are (12)

Equation (3) then yields

S = A A U* (13)

The steady-state weight vector w can now be found by substituting

Equation (9) and (13) into Equation (1).

The signal-to-interference-plus-noise ratio (SINR) at the array

output is then given by

Pd

SINR = -i+P , (14)
i +n

where Pd is the output desired signal power,

1= w 12 iu~wi2, (15)

Pi is the output Interference power,

p- I=2 wI .2  (16)
61 4
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and Pn is the output thermal noise power,

2
=p - 2 (17)

nP I.

It is shown in the Appendix that, by making use of a ndtrix inversion

lemma, the SINR in Equation (14) can be expressed in the simple form-:

T u T 2J

SINR = d Ud d UIu (18)

I where we have defined

A2

td = desired signal-to-noise ratio (SNR) on each element

[o (19a)

i =- = interference-to-noise ratio (INR) on each element.

(19b)L

j Ill. A TWO-ELEMENT ARRAY

We are interested in the SINR performance of an array with cle-

Il ments spaced wider than apart, and in how the element patterns af-

fect this performance. To gain an understanding of this problem,

we will first consider a two-element array. Before including the

element patterns, however, it is helpful to start witn the case where

the element patterns are isotropic: f1(8) f2(6) = 1.

7
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With isotropic elements, it is easily shown that if the desired

signal arrives from angle ed, an interference signal at an angle

ei = sin- [TF-+ sined], n = ±1, ±2, .• (20)*

will not only cause a null at Oil but will also cause a grating null

at 0d* Hence the desired signal will fall in this null and we may

expect the output SINR to be poor.

Figure 2 shows an example of this behavior. The figure shows

the output SINR from the array as a function of el, for d=X. The

desired signal is at 0d=20 ° , and SNR=O dB. Two curves of output SINR

versus Bi are shown, for INR=O dB and LNR=20 dB. It may be seen that

the SINR drops not only when ei is near 200, because the desired sig-

nal falls in the interference null, but also for 0i near -41.10, when

the desired signal falls in the grating null. The SINR drops to the

same value for either 0=200 or 0i=-41.1 0, because for isotropic ele-

ments the interference null and the grating null have the same depth.

Now let us add the element patterns to the problem. In this

paper, we will assume each element has a dipole pattern,** with the

twu pattern maxima pointing in different directions. Specifically,

we assume

fl(e) = cos(B-00 - ) , (21a)

and f2(0) - cos(e-e o + ). (21b)

*With only 2 elements, we will drop the subscript in d2 - the distance

between elements is simply d.

**By a "dipole pattern," we mean the pattern of a short dipole. .lso,

we ignore the effects of mutual impedances here.
8
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The beam maximum for element 1 is at e=e0+ 7 and that for element

2 is at 0=00- . This situation is depicted in Figure 3.

Suppose first that both element patterns peak at broadside, i.e.,

t=eo=O in Equation (21). Figure 4 shows the output SINR for SNR=O

dB, ed=20°, INR=20 dB and d=X. The performance is similar to that

for isotropic elements, except that the output SINR does not drop
as far when i=-41.1. The reason is that with dipole patterns, the

power of an interference signal at -41.10 is reduced by the elerent

response. With less interference power coming into the array, the

null produced at -41.10 is not as deep,* and hence the grating null

at 200 is also not as deep.

Next consider the case where aO, but eozO, so the beam maxima

are displaced symmetrically from broadside. Figures 5a-e show the
output SINR for c=300, 600, 900, 3200 and 1500 (and for SNR=O dB,

ed=20° and INR=20 dB). By comparing these figures with Figure 4,

it is seen that grating null effects are not as severe when afO. The

reason is that when the element patterns are not identical, a weight

vector that produces a null at -41.10 does not produce as deep a null

at 200. (A signal at -41.10 has the same interelement phase shift

as one at 200, but the amplitude ratios of the element signals are

not the same at the two angles.) We see in Figures 5a-e that the

grating null effect for ei=-41.10 becomes progressively less important

as a increases, i.e., as the patterns become less similar.

*In the LMS array, null depths vary with interference power [4].
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However, Figures 5a-e also show another effect. As c increases,

although the performance near ei =-41.10 improves, a second region

appears where the performance is poor. For example, when a=900 , Fig-

ure 5c shows that the output SINR will be low if 0i is near 630. For

a=1200 (Figure 5d), the performance is bad near0i=50°. Fora=150

(Figure 5e), the region of poor performance appears to have merged

with the one for Oi=Od, causing the width of this region to increase.

A calculation of the angles in these cases shows that this effect

is not due to a grating null as defined in Equation (20).

This extra "bad" angle occurs because, at this value of 0i, one

of the element patterns has changed sign but the other has not. As

a result, a different interelement phase shift is now required to

create a spurious null at 0d'

Let us determine the conditions under which these crating pulls

will occur. To do this, we note that a grating null will occur when-

ever the desired signal vector Ud is parallel to the interference

vector Ui, i.e., whenever

Ud = KUi, (22)

where K is a constant. This statement is easily verified by noting

that if Equation (22) holds, a weight vector chosen to null the inter-

ference,

TJ(Wot+4,i)

wTXi = A e (wTu i) = 0, (23a)

will also null the desired signal,
T ~ J(wot+ d)T

wTXd "Ade (wTUd) = 0. (23b)

14 1



Of course, Equation (22) is automatically satisfied when the inter-

ference arrives from the same angle as the desired signal. However,

it may also be satisfied in other situations, with 8 dti, in which

case the array will have grating null problems.

Consider the different ways Equation (22) may be satisfied. For

the 2-element array, Equation (22) is equivalent to

fl (ed) _ = fl(ei) (24)

f 2(d)e f 2 (i)e i2

L (For isotropic elements, with fi(e) = f2(e) = 1, this relationship

will be satisfied if

L._ 412 - fd2 + 2nr, n=O,1,±2, ... , (25)

which is equivalent to
2md sini = sin + 2n, (26)

2nd

i.e., the conventional grating null condition in Equation (20). An

example of the array behavior in this case was shown in Figure 2.

For nonisotropic but identical element patterns, we have, for

all e,

fl(e) = f2(e), (27)

so Equation (24) again yields the same grating null condition given

in Equation (20). An example of this case was given in Figure 4.

For the more interesting case of nonisotropic and nonidenticalIi
element patterns, there are two ways to satisfy Equation (24). First,

we may have

i !,!l l m ipilmm.__. ...



fl (d) f 1(  (28)+3 ~ 67°F2 (28a)
and

eJ d = . (28b)

Equation (28b) is again the conventional grating null condition in

Equation (20). To get the same null depth at ed as at ei, however,

we must also satisfy Equation (28a). Typically, with unequal element

patterns, when Oi is at a grating null angle, Equation (28a) is not

satisfied. If it is approximately satisfied, there will be a null

near 'd, but this null is not as deep as when Equation (28a) holds

exactly. In this case the drop in output SINR for ei near the critical

angle is not as great. Figure 5a is an example of this situation.

The second way to satisfy Equation (24) is with the pair of con-

ditions,

f 1( )d)  f ( ni )

and

Jd2 2 IIe =-e . (29b)

Equation (29) requires

Xs On8e 1d sined + (2n+1)w, n=O,±1,±2,..., (30)

which yields a new set of critical angles for Oi, different than those

16 Ii



I0
in Equation (20). The drop in SINR that occurs when Oi-63° in Figure

5c is due to a situation of this type. Again, how far the SINR drops

when 0 satisfies Equation (29b) depends on how closely Equation (29a)

is satisfied at that angle. To obtain a solution to Equation (29a)

requires that one element pattern have the same sign at 0d and 6i

and the other have opposite signs at ed and ei. Because one element

pattern must change sign between ed and Ol, we will refer to grating

nulls associated with this condition as "sign reversal" grating nulls.

Grating nulls that occur when Equation (28) is satisfied will be re-

ferred to as conventional grating nulls.

?L Now let us consider in more detail the conditions under which

conventional and sign reversal grating nulls will occur for the specific

I. element patterns defined in Equations (21). We will start with the

assumption that d=X. (Also, we assume the signals may arrive from

any angle within (-j, 7).

Consider first conventional grating nulls as defined in Equation

(28). Figure 6 shows the value of ei satisfying Equation (28b) for

any given value of ed. If =O, then f1(e)=f2(O), so Equation (28a) is

satisfied for all ed, ei. If a#O, Equation (28a) is satisfied only

for

i d01 ed~n , n=0,±1,±2, ... , (31)

which, for any given edC (- ., ) and n0, lies outside the range

(- , ). Thus, with m=0, any (ed,el) on the curves in Figure 6 will

yield a grating null condition, But with uL0, there are no sets

of angles (ed,ei) in the range (- ', ') that satisfy both Equations

II (28a) and (28b). Strictly speaking, with a#O, there are no grating 1

17"
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null solutions. Of course, in reality, if a is small, Equations (28)

may be approximately satisfied at certain angles, so some grating

null effects still occur. (Figure 5a illustrates this situation.)

Now consider the solutions to Equations (29). Figure 7 shows

two sets of curves. The dashed curves show the values of O.i satisfying

Equation (29b) for any given 0 d and n. The solid curves are the solu-

tion to Equation (29a) for the case 60=0. Several curves are shown

for different values of a. Any point (ed,Oi) at which a solid curve

L and a dashed curve intersect defines a pair of angles at which the

array will experience grating null problems.

L The curves in Figure 7 are for 00=00. (The beam maxima of the

[ two element patterns are displaced symmetrically from broadside.) The

effect of changing 00 is to shift the solid curves in Figure 7 parallel

to a 450 line (a e i =0 d line) in the figure. For example, Figure 8

shows a set of curves for 00=300. Note that in this case the curves

Isatisfying Equation (29a) also intersect with curves satisfying Eq-

uation (29b) for n=1 and n=-2, so that a number of additional grating

null angles now occur that were not present with 00=00.

Finally, we note that changing the element spacing d changes

the separation between the dashed curves in these figures. For example,

1: Figure 9 shows the family of curves that result when d=2X. Obviously,

as d is increased, there will be more and more sets of critical angles.

It is clear from these curves that a two-element array with

dipole element patterns will always experience grating nulls for any

values of a and e0 , as long as d > X/2. The only way to avoid these

nulls is to have d < A/2 and e0=O. Note also that for a#O, if 0o 0.

1 19
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sign reversal grating nulls occur even if d < X/2! (For d X X/2,

for example, solving Equation (30) for 0i vs. Od yields the same curve

as shown in Figure 6. This curve will intersect some of the solid

curves in Figure 8.)

We conclude from all of this that it is impossible to avoid grating

null problems with two elements having dipole patterns if d > X/2.

If crO and 0=O, grating null effects such as shown in Figure 4 occur,

and if 0, sign reversal grating nulls always occur.

Fortunately, grating null problems appear to be less severe if

more than two elements are used. In the next section, we discuss

the reason that additional elements are helpful and illustrate what

can be done with a three-element array.

IV. A THREE-ELEMENT ARRAY

With more than two elements, it is possible to find combinations

of element patterns for wide spacing that eliminate grating null prob-

lems. We first make some general remarks about the reasons for the

difference and then show an example.

Assume we have a three-element array with one-wavelength spacing

(d2 u,d 3-2X). Let the Jth element have the pattern

file) • cos(8..a). (32)

Suppose we wish to choose the 01 so grating null effects are minimized.

To prevent grating nulls, we must assure that the vectors Ud

and U1 do not become parallel for any combination of d and i (except

[e 0d1 over the sector of interest. One way to do this is to choose

the aj so the quantity

F(O0d, ,) - IUd-KUiI 2  (33)

23 '
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is nonzero for all (0d'ei), and for all values of the constant K.

For any given ed and ei, the value of K that minimizes F(Od,eiK)

is

u1 ulK= t1U (34)

(set 3F/8K =0). The value of F for this K, which we call I(ed,e1)

is

l(ed,el) = min F(d,eiK) = UTU* d- I iUd)(35)ds K edlui d(d A

We may view I(ed,el) as a performance index that, to prevent grating

nulls, should be nonzero for all 0d, i .,

For a three element array, we substitute

(e
Ud = f(d) (36a)

f3 (ed)e

= 2(e1)e, J (36b)

*Note that I(OdO) has the same dependence onlOd and 0, as the SJWR

in Equation (18), as long as C-1<<u U1. i.e., as long as the inter-

ference-to-noise ratio is high. 24
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into Equation (35). The resulting expression may be manipulated

T into the form:

i(OdOi) ID12 1+ ID13 2 + ID23 Ia
Iee)- 3 (37a)

k k= ifk( ei)

where D is the determinant*

f n( %)eJ  n  fn(ei)e j rIn

Dryn (37b)
= fm(ede fm(Oi)e(

L Since the numerator of I(ed,0 t) contains the sum of the magnitude-

squared value of three determinants Dnm , the only way for I(ed,ei)

[ to be zero is for all three D to be zero at the same (0d,8 i). But

for a given Dnm to be zero requires the two vectors

(ed Jfnf 1)e- Jin
m yf:i : I::~Yn) and m:::t ii I
! f.(ed)e / fm(et)e

to be linearly dependent. However, this is just the condition for

the two-element array consisting of the nth and mth elements to have

a grating null problem at the given (Od, 01), as discussed in Section

[ Il1. To have I(Od,Oi)=O with the three-element array then requires

that D12, D13 and 023 all be zero at the same set of angle (ed,ei).

Ii __

S* and 411 are used in Equation (37b) for notational convenience,

but are zero by definition.

I25



I.e., all two-element pairs taken from the three-element array must

have the same grating null angles. This observation makes it clear

why one can avoid grating nulls with three elements, because it is

easy to arrange a three-element array so the critical angles for the

three element pairs are not the same. Then when one D term in Eq-

uation (37a) is zero, the other two are not, and I(Od,ei) is ncver

zero.

Figures 10a-g illustrate the type of performance that can be

obtained with a three-element array having one wavelength element

spacing and element patterns as given in Equation (32). These cal-

culations are for d2=', d3=2, 2=0 c3=60, SNR=O d9 and

aINR=40 dB. The figures show the SINR as a function of ei for several

values of ed. It is seen that grating nulls have been avoided with

this choice of parameters.

The oti's used in Figure 10 were obtained by trial-and-error,

and were selected to give good overall performance without grating

nulls. However, it is not known whether this choice is optimum in

some sense or not. In fact, choosing the i (and possibly d I to

optimize an array design appears to be a difficult task. In this

report, we do not discuss the optimization problem.

26
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V. CONCLUSIONS

We have shown that element patterns in an adaptive array have a

large effect on the grating null performance of the array. We have

found that the element patterns can cause extra grating nulls ("sign

reversal grating nulls"), in addition to conventional grating nulls.

For a two-element array with dipole element patterns, it was shown that

grating nulls cannot be avoided with element spacing larger than a

half wavelength. Moreover, sign reversal grating nulls occur

even with spacings less than a half wavelength if the element patterns

are not properly chosen.

With more than two elements in the array, however, it is possible

to overcome grating nulls by choosing the element patterns appropriately.

An example was given with three dipole elements one wavelength apart

in which no grating nulls occur.

*l 2
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VI. APPENDIX

LThe purpose of this appendix is to derive Equation (18) from

Equation (14). The first step in this derivation is to determine

*the weight vector in Equation (1), where 0 is given by (see Equation

(9)):
d d2i d U*U + A?,,*U . (A-i)

To find 0-, we make use of the following matrix inversion le,-ia,

i " (BOZ*ZT) - B" -TB Z*Z TB-  (A-2'

iL where B is a nonsingular NxN matrix, Z is an NxI column vector, and

1 and T are scalars related by

11- 1 + 0" 1 = zTB-1Z * • (A-3)

We start by using this lemma on the matrixo 2 I+A 2Utu T.  We find

(c, i = - ----.U--- . (A-4)
TU

(ii is defined in Equation (1gb).) Then by letting B=c 2I+A2UU1T

2Z=Ud and 0=-Ad, we use the lemma again to find
U

d IT * T 1 [1 + T (U IJ 1 1
J0 c' U*U +u!U* 2 j -. I 7 ]i

T (uTul) T u,

+l qu 4~ . 1TT =IC?' (A-5)

l ."
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where

(U T.M T,*

- 1 TU*d I i d (A-6)
i+UiUi

Ad 0

It is helpful to define the quantity

y=A-UIU -1 "T d I (A-7)

and then Equation (A-6) may be written

-- A (1 + y)-1 . (A-S)
d

Now multiplying 0'1 in Equation (A-5) onto S in Equation (13), we

have

w = 0-1 ArAdU* '  (A-9)

which simplifies to Tu.

W(= U* -d ( d U . (A-10)
-d -1. T,.A d ti ui i

Next we find

ST ArAT Add A(d)U W ---r I -- (A-11)
od

or, after substituting Equation (A-8) for T,

Uw - r (A-12)
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Therefore, from Equation (15), the output desired signal power is

Ad 2 T 2  A2 2

L ~d T r '~w A-13)

Similarly, we find

aA A

so, from Equation (16)

A2

= rdi( 1~ ~i (LJTU)(UT Uf). (A-315)

Finally, from Equation (A-1 ), we have

22~ 2 -

1 2  2 1~ [L (UU)( * -1.A-6ArAd (T[ ;) A2d dd (A- 6i

iI
so from Equation (17),

I n A2A ( 2I 1 -2

Combining Equations (A-15) and (A-17) gives

P P (1)2 y 1 (A-18) '
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Then using Equation (A-13) for Pd' we find that the SINR reduces to

the remarkably simple form

Pd

SINR = -+- (A-19)
I n a

From the definition of y in Equation (A-7), we see that this result

is the same as Equation (18).

I
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