" AD-A083 687 OMIO snu UNIV  COLUWBUS ELECTROSCIENCE
ON ORATING MULLS IN ADAPTIVE ARRAYS. (V)
WAR 80 A ISHIOCs R T
UNCLASSIFIED ESL-TH1007o0

CONPTON [

r/e w8

19=-T9=C=0201
"




I:-: m 25

o £
—— I: m —
L =S
= |IE
li2s i pis
== = ==

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

&










SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE BEF oD R O ORM
T REPORT NUMBER 7. GOVY ACCESSION uo.r. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitie) ¢ PERIOD COVERED

g Technica'l)l/epﬂ' y

C é | ON GRATING NULLS IN ADAPTIVE ARRAYS /
. F % R x = o

/

g3 087
/

L P - - i LY ESt=7i18a7- e
- _;’4{‘7:1{1’:000!(-) . . 8. CONTR/A/ GRANT NUMBER(e)
( /O }/ A fishide i R. T/ Compton, Jr Cont® Moﬁﬁﬁ”-c-ozm’

,
9. .
The ORTo. Srate: Dnfversity Electroscience/ AR RS AT e T

Laboratory, Department of Electrical Engineering
Columbus, Ohio 43212

1. CONTROLLING OFFICE NAME AND ADDRESS . .
) Y ieren ¥60)

Naval Air Systems Command 3. NUMBER GF PAGES
Washington, D.C. 20361

T&. MONITORING AGENCY NAME & ADDRESS(/( different irom Controlling Office) 18. SECURITY CLASS. (of thie report)

@:é_g_/ Unclassified
1Sa. DECLASSIFICATION DOWNGRADING
e SCHEDULE

et e ettt
16. DISTRIBUTION STATEMENT (of this Repor?)

g

m.‘ﬁw“‘ﬂa}x&m*@:rwﬂ%“mwuqmymw ;\:A‘;,l:-“_v SR 4“ O W i

APPROVED FOR PUBLIC RELEASE:

DISTRIBUTION UNLIMITED Accession For
NTIS GRA&I

_ DISTRIBUTION STATEMENT (of the sbatract entered in Block 20, if difterent from Report) DOC TAB

Unannounced

Justification

e

18. SUPPLEMENTARY NOTES ,

-
~

. KEY WORDS (Continue on reverse side if necessary and identily by block number)
Adaptive Arrays
Antennas
Interference Rejection
Grating Nulls
Element Patterns

BSTRACT (Continue on reverss alde If necessary and identify by block number) S

~ 20, A

TP This report considers the effect of element patterns on grating nulls in
adaptive arrays. Two simple array models, a two-element and a three-element
array with dipole element patterns, are used to study this question. The
element patterns are assumed unequal ({.e., the beam maxima point in
different directions).

It 1s shown that element patterns greatly affect the occurrence of grating
nulls in the array. Unequal element patterns cause extra grating nulls _ :«P

—_—— ]
———
b

~

FORM
DD , 28", 1473  cormion oF 1 wov ¢s 15 oesoLETE .

Y B 2SL

SECURITY CLASSIFICATION OF THIS PAGE (When Data él"")




20. Abstract (continued).

(*sign reversal grating nulls®) to occur, in addition to conventional
grating nulls. These sign reversal grating nulls can occur even with
element spacing less than a half-wavelength. For a two-element array
with dipole element patterns, it turns out that grating nulls cannot
be avoided if the spacing is greater than a half wavelength. However,
with more than two elements, the situation is not so bleak. An example
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I.  INTRODUCTIG!!

It is well krnown that an array with elements more than a half

wavelength apart is subject to grating lobe effects. In the context
of adaptive arrays, grating lobe effects manifest themselves in the

form of spurious nulls. That is, interference nulled by the array

at one angle may cause additional nulls ("grating nulls") at other
angles. If the desired signal is near a grating null, the output
signal-to-noise ratio from the array will be poor.

The purpose of this report is to examine the effects of rlement
patterns on grating rulls in an adaptive array. We will use a simple

model, an array with dipole element patterns, to show several things.

First, we will find, as onc would expect, that unequal element pat-

terns in the array tend to reduce the effects of grating rulls., Sec-

I GRSt "v«f e m"»%.xf.'?é‘.
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ond, however, we will also find that unequal element patterns can

create other spurious nulls, in addition to conventional grating nulls.

)
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We will refer to these additional nulls as sign reversal grating nulls,

Third, we will find that for a two-element array with dipole element -

L

patterns, it is impossible to avoid grating nulls for spacings greater

than a half wavelerigth. But finally, we will show that grating nulls

Aot
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can be avoided by using more than two elements, if the element pat-
terns are chosen properly.

We note that the case of unequal element patterns in an adaptive
array is a case of great practical interest. An attractive feature
of adaptive arrays is that a designer may locate elements somewhat
arbitrarily on a structure. For example, antennas for aircraft com-
munication may be placed at convenient locations on the aircraft.
However, when this is done, the element patterns will usually ke dif-

ferent. Moreover, one will often want to space the elements more

than a half wavelength asart.




In Section Il of the report, we formulate the problem of an N-
element linear array with arbitrary element patterns. We assume de-
sired signal, interference and thermal noise signals present in the
array, and determine the output signal-to-interference-plus-noise
ratio (SINR) from the array. In Section III we consider a specific
array, a two-element array wiih dipole element patterns. We deter-
mine the conditions under which grating nulls occur and show that
such an array always suffers from grating nulls if the spacing ex-
ceeds one-half wavelength. In Section 1V, we use a three-element
array with dipole element patterns and one wavelength element spacing
to illustrate that grating nulls can be avoided with more than two
elements. Finally, Section V contains our conclusicns.

II. FORMULATION OF THE PROBLEM

Consider an N-element adaptive array, as shown in Figure 1. The
elements are assumed to lie along a straight line with spacing dj
between element j and element 1, The complex signal ij(t) from the
jth element is multiplied by a complex weight W5 and summed to produce
the array output S(t). In an LMS array [1,2], the steady-state weight

vector w = (w1 Wy ... wN)T is given by
w=ols, (1)
where ¢ is the covariance matrix

= E{xXT}, (2)

and S is the reference correlation vector,
S = E{x*R(t)}. (3)
In these equations, X is the signal vector,

X = (K (t) Ky(t) ... Kt (a)
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Figure 1. An N-element adaptive array.
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R(t) is the (complex) reference signal* in the adaptive array[3-6], ‘

T denotes transpose, "*" complex conjugate and E(+) expectation.

Assume two CW signals are incident on the array, one desired
and the other interference. Let these signals arrive from angles
ed and ei’ respectively, with respect to broadside. Also, assume
the jth array element has voltage response fj(e) to a unit amplitude
signal arriving from angle 6. Finaily, assume thermal noise is present
on each element signal. Then we have :
fj(ei)A,eJ(w0t+¢"-¢"j)+ﬁj(t),

(5)

where Ad and Ai are the amplitude of the desired and interference

- Il t+d ~¢ ;)
xj(t) = fj(ed)Ade 0" "d "dj

signals, w, is the signal frequency, Vg and ¥; are the carrier phases,

and ﬁj(t) is the thermal noise. ¢dj is the desired signal interelement

phase shift between element j and element 1, ;
ma; i
¢g; = 5 Sin 8y (6) ‘

and ¢.. is the interelement phase shift for the interference,
ij !

2nd {
¢ij " -i_i sin 9, (7) :
with A the wavelength. We assume the noise signals ﬁj(t) are zero l

mean, uncorrelated with each other, and have power 02:

EFR(A;(6)) = ooy (8)

*The reference signal is called the "desired response" in Widrow,

et al. [1].
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where ckj is the Kronecker delta. Also, we suppose the phase angles ”
Vg and Y. are uniformly distributed on (0,2n) and statistically in-
. dependent of each other and the thermal noise.
Under these assumptions, the covariance matrix becomes
0 =0 to, +o, (9a)
where
_ Ty o aliand
i _ ) PPV §
L o5 = E[X4K} = Afugul, (5c)
. : and
i o, =all . (9d)
é [; Here Xd is the desired signal vector,
. A
-y with
Dol flley
% d 29 g€ . (100)
t :
i
il .
=Jogn
oo fN(ed)e
S X; is the interference signal vector,
} ]
Xi = Aie Uss (11a)




with

fl(ei) -j¢,
u; = fz(ei)e 12 s (110)

fN(ei)e'J¢iN
and I is the identity matrix.
To make the arréy track the desired signal, the reference signal
must be a signal correlated with the desired signal and uncorrelated
with the interference [5,6]. We assume

t
R(t) = A ej(w° ) ) (12)

r
Equation (3) then yields

S = ArAduﬁ’ (13)
The steady-state weight vector w can now be found by substituting
Equation (9) and (13) into Equation (1).

The signal-to-interference-plus-noise ratio (SINR) at the array

output is then given by

Py
SINR = F;Iﬁ: . (14)
where Pd is the output desired signal power,
1 2, R
T T.12 .
Py = 7 ELIXgwI®} = 7= Jugwl®, (15)

P1 is the output interference power,

2
A
Py = 5 (X} = 5t ulwl?, 6 (16)




and Pn is the output thermal noise power,

02 2
P =?— lWI . (17)
It is shown in the Appendix that, by making use of a matrix inversion

lemma, the SINR in Equation (14) can be expressed in the simple form:

[ Tusj2 | -
SINR = £, |UTuy - 193] 18
Eq b E?I:afa- , (18)
1

where we have defined

2
A
Eq =‘;g = desired signal-to-noise ratio (SNR) on each element

(19a)

2
AS

£ = —% interference-to-noise ratio (INR) on each element,
o

(19b}

IIT. A TWO-ELEMENT ARRAY

We are interested in the SINR performance of an array with ela-

ments spaced wider than % apart, and in how the element patterns af-
}~ fect this perforimance. To gain an understanding of this problem,

we will first consider a two-element array. Before including the
element patterns, however, it is helpful to start witn the case whereo

the element patterns are isotropic: fl(e) = f2(6) =1,




With isotropic elements, it is easily shown that if the desired

signal arrives from angle 640 aN interference signal at an angle

8; = sin'1 [%A+ sined], n=$1, £2, ... {20)*
will not only cause a null at 6;, but will also cause a grating null
at ed. Hence the desired signal will fall in this null and we may
expect the output SINR to be poor.

Figure 2 shows an example of this behavior. The figure shows
the qutput SINR from the array as a function of 8i» for d=A. The
desired signal is at e&=20°, and SNR=0 dB. Two curves of output SINR
versus 6, are shown, for INR=0 dB and INR=20 dB. It may be seen that
the SINR drops not only when ei is near 20°, because the desired sigy-
nal falls in the interference null, but also for ei near —41.10, when
the desired signal falls in the grating null. The SINR drops to the
same value for either ei=20° or ei=-41.1°, because for isotropic ele-
ments the interference null and the grating null have the same depth.

Now let us add the element patterns to the problem. In this
paper, we will assume each element has a dipole pattern,** with the

two pattern maxima pointing in different directions. Specifically,

we assume

f,(6) = cos(6-0, - % ) (21a)
and

f,(8) = cos(e-0, + 3 ) . (21b)

*With only 2 elements, we will drop the subscript in d, - the distance
between elements is simply d.

**By a "dipole pattern,” we mean the pattern of a short dipole., Alco,

we ignore the effects of mutual impedances here.
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Figure 2. Output SINR vs Gi for isotropic elements.
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The beam maximum for element 1 is at 6=9°+ % and that for element
2 is at 6=6 - 3 . This situation is depicted in Figure 3.

Suppose first that both element patterns peak at broadside, i.e.,
a=6,=0 in Equation (21). Figure 4 shows the output SINR for SNR=0
ds, 9d=20°, INR=20 dB and d=A. The performance is similar to that
for isotropic elements, except that the output SINR does not drop
as far when ei=-41.1°. The reason is that with dipole patterns, the
power of an interference signal at -41.1° is reduced by the elenient
response. With less interference power coming into the array, the
null produced at -41.1° is not as deep,* and hence the grating null
at 20° is also not as deep.

Next consider the case where af0, but 6 =0, so the beah max ima
are displaced symmetrically from broadside. Figures 5a-e show the
output SINR for a=30°, 60°, 90°, 120° and 150° (and for SNR=0 dB,
9d=20° and INR=20 dB). By comparing these figures with Figure 4,
it is seen that grating null effects are not as severe when af0. The !
reason is that when the element patterns are not identical, a weight
vector that produces a null at -41.1° does not produce as deep a null
at 20°%. (A signal at -41.1° has the same interelement phase shift
as one at 20°, but the amplitude ratios of the element signals are
not the same at the two angles.) We see in Figures Sa-e that the
grating null effect for ei=-41.1° becomes progressively less important

as a increases, i.e., as the patterns become less similar. ‘

*In the LMS array, null depths vary with interference power [4].
10
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Dipole element patterns.
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However, Figures 5a-e also show another effect. As a increases, d

although the performance near ei='41'1° improves, a second region
appears where the performance is poor. For example, when a=900, Fig-
ure 5¢c shows that the output SINR will be low if ei is near 63°. For

a=120° (Figure 5d), the performance is bad near 0i=500' For a=150°

(Figure 5e), the region of poor performance appears to have merged i
with the one for 6 ;=645 causing the width of this region to increase.
A calculation of the angles in these cases shows that this effect
is not duc to a grating null as defined in Equation (20).
This extra "bad" angle occurs because, at this value of ei’ one
of the element patterns has changed sign but the other has not. As
a result, a different interelement phase shift is now required to
create & spurious null at ed.
Let us determine the conditions under which these grating rulis

will occur. To do this, we note that a grating null will occur when-

: ever the desired signal vector Ud is parallel to the interference ?
vector Ui’ i.e., whenever
; Uy = KU, (22) “
where K is a constant. This statement is easily verified by noting i
% ' that if Equation (22) holds, a weight vector chosen to null the inter- |
T | ference, {
: WX, = Aiej(w"tw")(wTu].) = 0, (23a) )
, ? will also null the desired signal, fiiy
wad = Adej(wotwd)(wT

u,) =0. 23b -
¢ (23b) 8 !
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Of course, Equation (22) is automatically satisfied when the inter-
ference arrives from the same angle as the desired signal. However,
it may also be satisfied in other situations, with edfei, in which
case the array will have grating null problems.

Consider the different ways Equation (22) may be satisfied. For
the 2-element array, Equation (22) is equivalent to

fl(ed) ) f1064)
Jog

T . 24
- ‘J¢12 : (24)

fz(ed)e fz(ei)e

For isotropic elements, with fl(e) = f2(6) = 1, this relationship

will be satisfied if

612 = Odz + Zn"’ ngo’ﬂ,ﬂ’ LI (25)
which is equivalent to

21 Sino, = 219 sing, + 20, (26)

i.e., the conventional grating null condition in Equation (20). An
example of the array behavior in this case was shown in Figure 2.
For nonisotropic but identical element patterns, we have, for

all o,
£,00) = £,(0), (27)

so Equation (24) again yields the same grating null condition given
in Equation (20). An example of this case was given in Figure 4.
For the more interesting case of nonisotropic and nunidentical

element patterns, there are two ways to satisfy Equation (24). First,

we may have




AR el

4 and

eJ¢d2 = eJ¢i2. (28b)
Equation (28b) is again the conventional grating null conditicn in
‘Equation (20). To get the same null depth at 64 as at 65, however,

we must also satisfy Equation (28a). Typically, with unequal element
patterns, when @, is at a grating null angle, Equation (28a) is not
satisfied. If it is approximately satisfied, there will be a null

near Od, but this null is not as deep as when Equation (28a) holds
exactly. In this case the drop in output SINR for b; near the critical

angle is not as great. Figure 5a is an example of this situation.

[SOT—

The second way to satisfy Equation (24) is with the pair of ccn-

R——

ditions,

f.(e,) fo(n.)
1'*d 1V
= - v, (29
fz(ed) fz( O.i)- a)

and

Jé hE
R A T

(29b)
Equatfon (29b) requires
2nd
£ sino, = L9 sing, + (2n¢1)n, n=0,21,%2, ..., (30)

i which yields a new set of critical angles for A4, different than those
1




?; in Equation (20). The drop in SINR that occurs when ei'63° in Figure h

5¢c is due to a situation of this type. Again, how far the SINR drops
when 8; satisfies Equation (29b) depends on how closely Equation (29a)
is satisfiéd at that angle. To obtain a solution to Equation (29a)
h requires that one element pattern have the same sign at 84 and 6, F
N and the other have opposite signs at ed and 0;- Because one element
pattern must change sign between ed and 91, we will refer to grating
nulls associated with this condition as "sign reversal" grating nulls,
i Grating nulls that occur when Equation (28) is satisfied will be re-
ferred to as conventional grating nulls.
i‘ Now let us consider in more detail the conditions under which
conventional and sign reversal grating nulls will occur for the specific
[- element patterns defined in Equations (21). We will start with the
{ assumption that d=A. (Also, we assume the signals may arrive from
any angle within (-5--§)-
't; Consider first conventional grating nulls as defined in Equation )
(28). Figure 6 shows the value of 6, satisfying Equation (28b) for
f [f any given value of ed. If a=0, then fl(e)=f2(0), so Equation (28a) is
“ satisfied for all 8,, 8.. If af0, Equation (28a) is satisfied only

for

ei = 9d+nn, n=0,1,+2, ..., (31)

i~

which, for any given 6 (- %, %) and n#0, lies outside the range

| [‘ (-%, %). Thus, with a=0, any (ed’ei) on the curves in Figure 6 will

yield a grating null condition, But with a#0, there are no sets

of angles (6,,6,) in the range (- %, %) that satisfy both Equations

w (28a) and (28b). Strictly speaking, with a#0, there are no grating b

J 17
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null solutions. Of course, in reality, if a is small, Equations (28)
may be approximately satisfied at certain angles, so some grating
null effects still occur. (Figure 5a illustrates this situation.)

Now consider the solutions to Equations (29). Figure 7 shows
two sets of curves. The dashed curves show the values of 8; satisfying
Equation (29b) for any given 84 and n. The solid curves are the solu-
tion to Equation (29a) for the case eo=0. Several curves are shown
for different values of a. Any point (ed,ei) at which a solid curve
and a dashed curve intersect defines a pair of angles at which the
array will experience grating null problems.

The curves in Figure 7 are for 00=0°. (The beam maxima of the
two element patterns are displaced symmetrically from broadside.) The
effect of changing eo is to shift the solid curves in Figure 7 parallel
to a 45% line (a ei=ed line) in the figure. For example, Figure 8
shows a set of curves for 90=30°. Note that in this case the curves
satisfying Equation (29a) also intersect with curves satisfying Eq-
uation (29b) for n=1 and n=-2, so that a number of additional grating
null angles now occur that were not present with 90=0°.

Finally, we note that changing the element spacing d changes
the separation between the dashed curves in these figures. For example,
Figure 9 shows the family of curves that result when d=2).. Obvicusly,
as d is increased, there will be more and more sets of critical angles.

It is clear from these curves that a two-element array with
dipole element patterns will always experience grating nulls for any
values of a and eo, as long as d > A/2. The only way to avoid these

nulls is to have d < A/2 and © =0. Note also that for af0, if & ¢0

19
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sign reversal grating nulls occur even if d < A/2! (For d = /2,
for example, solving Equation (30) for 9i vS. Od yields the same curve
as shown in Figure 6. This curve will intersect some of the solid
curves in Figure 8.)

We conclude from all of this that it is impossible to avoid grating
null problems with two elements having dipole patterns if d > N2,
If o=0 and 6°=0, grating null effects such as shown in Figure 4 occur,
and if of0, sign reversal grating nulls always occur.

Fortunately, grating null problems appear to be less severe if
more than two elements are used. In the next section, we discuss
the reason that additional elements are helpful and illustrate what
can be done with a three-element array.
IV. A THREE-ELEMENT ARRAY

With more than two elements, it is possible to find combinations
of element patterns for wide spacing that eliminate grating null prob-
lems. We first make some general remarks about the reasons for the
difference and then show an example. -

Assume we have a three-element array with one-wavelength spacing
(dzsx,d3=2A). Let the jth element have the pattern

fj(e) = cos(eboa). (32)
Suppose we wish to choose the o so grating null effects are minimized.

To prevent grating nulls, we must assure that the vectors Ud
and U1 do not become parallel for any combination of Bd and Gi (except ﬁ
Ghnﬁi) over the sector of interest. One way to do this is to choose
the 03 so the quantity

F(04,0,K) = lugku, 2 (33)

23 ‘i
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is nonzero for all (ed’ei)’ and for all values of the constant K.

For any given 6, and 6;, the value of K that minimizes F(ed,ei,K)

is

U U

K=, (34)
U;v3

(set 3F/3K =0). The value of F for this K, which we call I(ed,e])
is

T T
(UgU3) (U;0%

T

Ui“?

. (35)

1(64,0,) = min F(04,6,K) = uiuy -

We may view x(ed,ei) as a performance index that, to prevent grating
nulls, should be nonzero for all ed,ei.*
For a three element array, we substitute

f1(64)

RA
f,(0,)e (36a)
2\ %d

‘j¢’d3
f3(ed)e

o
[

fl( ei)
B
U; =| fo(0;)e (36b)
‘j¢i3
f3( ei)e

e e———————

*Note that I( Gd, 91) has the same dependence on 84 and 6, as the SINR
tn Equation (18), as long as E;l<<UIug, f.e., as long as the inter-

ference-to-noise ratio is high. 2




into Equation (35). The resulting expression may be manipulated

L s s R SR
" et g

into the form:

-

- +

2 2 2
Pyo " *+ ID331° + [Dp3]
3

o I(6y,0;) = , (37a)
£ (0,)f
where Dnm is the determinant*
. -3 ¢ -3 ‘
8§ n in
g fn( ed)e fn(ei)e -
), - ~30dm “304m o
\ i. Since the numerator of I(ed'ei) contains the sum of the magnitude-
§ squared value of three determinants Dm» the only way for I(ed’ei)
t o
i {J to be zero is for all three Dnm to be zero at the same (ed'ei)‘ But
- § I for a given Dnm to be zero requires the two vectors
L -3¢ -3¢,
" falogle " fa(ogde "
s and .
: =Jé -Jo;
T fm(ed)e dm fm(ei)e m
: ?. ¥
i

to be linearly dependent. However, this is just the condition for
the two-element array consisting of the nth and mth elements to have

a grating null problem at the given (6,, ei), as discussed in Section

SA R R
m———— —trtumy, [N

——

III. To have I(ed,ei)=o with the three-element array then requires
that D;,, Dy3 and D)5 all be zero at the same set of angles (64:6;).

*‘Hl and é;1 are used in Equation (37b) for notational convenience,

but are zero by definition. 25




I.e., all two-element pairs taken from the three-element array must

have the same grating null angles. This observation makes it clear
why one can avoid grating nulls with three elements, because it is
easy to arrange a three-element array so the critical angles for the
three element pairs are not the same. Then when one Dnm term in f£q-
vation (37a) is zero, the other two are not, and I&\d,ei) is necver
zero.

Figures 10a-g illustrate the type of performance that can be
obtained with a three-element array having one wavelength element
spacing and element patterns as given in Equation (32). These cal-
culations are for dp=x, dj=2), a;=-60°, 0,=0%, a,=60°, SNR=0 4 and
INR=40 dB. The figures show the SINR as a function of e; for several
values of 84 It is seen that grating nulls have been avoided with
this choicevof parameters.

The o's used in Figure 10 were obtained by trial-and-error,
and were selected to give good overall performance without grating b
nulls. However, it is not known whether this choice is optimum in
some sense or not. In fact, choosing the aj (and possibly dj) to

optimize an array design appears to be a difficult task. In this

report, we do not discuss the optimization problem.
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V.  CONCLUSIONS

We have shown that element patterns in an adaptive array have a
large effect on the grating null performance of the array. We have
found that the element patterns can cause extra grating nulls ("sign
reversal grating nulls"), in addition to conventional grating nulls.
For a two-element array with dipole element patterns, it was shown that
grating nulls cannot be avoided with element spacing larger than a
half wavelength. Moreover, sign reversal grating nulls occur
even with spacings less than a half wavelength if the element patterns
are not properly chosen.

With more than two elements in the array, however, it is possible
to overcome grating nulls by choosing the element patterns appropriately.
An example was given with three dipole elements one wavelength apart

in which no grating nulls occur.

e sy
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VI. APPENDIX
The purpose of this appendix is to derive Equation (18) from
Equation (14). The first step in this derivation is to determine
the weight vector in Equation (1), where ® is given by (see [quation
(9)):
T N |

& = 0%l + Aluspl + alusy!

730 (A-1)

1

To find ™", we make use of the following matrix inversion leuna,

(B-gz+27)~1=p"1 18 17427"1 | (A-2)
where B is a nonsingular NxN matrix, Z is an Nxl column vector, and

B and ¢ are scalars related by

wlagla 2Tl | (A-3)
We start by using this lemma on the matrix'021+A%UgU§. We find
T
U*U,
Sranlianty-1 _ 1 171
(0“I+ASURU) ™ = S5 (1 - Tt (A-4)
o 51 +U1U$
(£; is defined in Equation (19b).) Then by letting B=c?I+aZusul,

Z=U, and B=—A§, we use the lemma again to find

Ty (T
ol - U1

1 T T 1 (i) | o
—2' I - -T UdUd - '-T_T‘_ [L + T _ 1°d L U*U!
o o Y% 02 ;E £;1+U |

(A-5)




where

r (ugup) (Wug)

1
Ur - = .
d'd~ 2 £ 1+UTU*

-1 1 1
Ttz *(;?’U
d

It is helpful to define the quantity

. (uTu*)(ugu*)
d | YaYs “T’“T ,

<
it
>

and then Equation (A-6) may be written

2 -1
1 = Ad 1 + y'z' .
o

(A-6)

(A-7)

(R-8)

Now multiplying ¢'1 in Equation (A-5) onto S in Equation (13), we

have

-1
w=9% " A Adud’

which simplifies to

AA YA ulus
"=T(1'7 Z)Ua' LT 1)
c Ad £

o i +UiU§
Next we find

Ul = 2yt (1'7 "z)"%»
it 20 s A/

d

or, after substituting Equation (A-8) fort,

o +ty

%w-%(iL).

(R-9)

(A-10)

(A-11)

(A-12)

————




Therefore, from Equation (15), the output desired signal power is

2 2 2
P J UTwz = A x (A-13)
d =7 |Vg¥l 2 2, ’ t )
LR §
Similarly, we find
-1
A A E.
T r'\d Tty \,T ( ; ) ‘
Uiw = 1- UiV —1——/ > (a-12)
! ?( ?Xg)‘ag,wu*
so, from Equation (i6)
2
A
iy, T 2
2,2,2 -1 2
ACASAS ( £; )
r'd'i 1 i T T \
(U;U%)(UU%). (A-15)
2 (Tng,‘wTU? ivd’ M d

Finally, from Equation (A-10), we have

2 -1

2 _ p2,2( 1 T T & ,
™M RFA d(T) [% - (UdU’g)(UiUg) —1 ] {A-16)
so from Equation (17),
2
) AzAgAz( , ) ve;! (uTut)(UTU*\ e;! ) (A1)
n 2 oo+ y Ag AN ke RN a' ; +UTU* ’
Combining Equations (A-15) and (A-17) gives
aZn2 1 2

k)|

4




Then using Equation (A-13) for Py» we find that the SINR reduces to

the remarkably simple form

P
- d /
SINR = -F;T‘;; = ;} . {(A-19)

From the definition of y in Equation (A-7), we see that this result

is the same as Equation (18).
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