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I. Introduction

This is the final report on the research program "Resonance-,

of Radar Targets and Target Discrimination", supported by the

Naval Air Systems Command under Contract No. 1100019-79-C-0270, a:nd

covering the period March 6, 1979 to Zlarca 5, 19O.

The topic of the research program covers methods for target

discrimination by radar scattering, making use of the natural

resonances of the targets. The Tencral plan of the progran consi3ts

in a study of resonances of targets of simple shape (e.g., sphere)

but complex composition (e.g., dielectric coating of conductors)

during the first year, followed by simple conducting targets and

comparison with parallel measurements performed at NOWC Dahlgren in

the second year, with further extension to conductors or more complex

shapes, using Waterman's methods, later on.

The emphasis of our study is two-fold, namely: 1) to study

ways how the resonance structure of the radar echo can be used for

identifying the nature of the target (the *inverse scattering problem')

and 2) to obtain a physical understanding of the phenomena that cause

the resonances, and how they manifest themselves in both steady- I

state and pulsed echoes. Such an understanding, in preference to a

more mechanical use of the singularity expansion me-thod, will provide

us with the true capability of masterin" the target discrimination

problem.
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II. Proqros3 Achieved

The first year's research has concerned steady-state

studies of the resonances of dielectric spheres and dielectric-

coated conducting spheres. In the following, superscripts refer

to the list of publications w.hich were prepared under the auspices

*of this contract, and which are listed in Section III.

1) Dielectric Spherel . The Theory of Resonance Scattering 2

developed by the Principal Investigator and his collaborators has

beejapplied to this problem in order to

(a) obtain resonance frequencies (as a function of dielectric

constant) in a purely real calculation, in contrast to previous

tedious solutions of the complex problem

(b) interpret the resonances physically in terms of the phase

matching of circumferential waves, and

(c) obtain the properties (in particular, the dispersion

curves) of these circumferential waves.

This work has been submitted for publication in IEEE Trans. APl

and has been reported 3 at the National Radio Science Meeting,

5-8 November 1979, Boulder, Colorado.

2) Dielectric-Coated Perfectly Conducting Sphere. This

problem .has been approached from the stand point of inverse scattering,

in order to show how the dielectric constant and the thickness of the

coating can be obtained from the spacing and the widths of the

resonances4 "7  A complete resonance-theoretical treatment has been

performed on this topic8 #9, separating the scattering amplitudes
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into resonant terms and a non-resonant background, and obtaining

the dispersion curves of the cirfumferential waves that propagate

in tie coating and cause tho resonances9 .

Our work on this problem has been prepared for publication

in Journ. Appl. Phys 4 , and other aspects of it in Radio Science9

and it will be reported at the North American Radio Science/URSI

meeting, 2-6 June, 1980, Quebec, Canada 5 , (abstract attached) as

well as the Spring Meeting of the American Physical Society,

28 April-i May, Washington, D. C. (abstract attached). It will

further form part of an Invited Paper for a Special Issue on

"Inverse Methods in Ulectromagnetics" (1. M. Boerner, Editor),

IEEE Trans. A-P, Spring 1981. A copy of this latter paper is

attached to the present report.

3) The Transient Problem of Conductinq Bodies.

A collaboration with an experimental group at the Naval

Surface Weapons Center, Dahlgren, VA led by Dr. Bruce Hollmann

has been initiated, with pulsed measurements to be carried out at

the Dallgren radar range on conducting bodies of simple shapes, to

be compared to theory (both the Singularity Expansion Method or

SEM, and Creeping Wave Theory). Meanwhile, we obtained the theory

ior an experiment on a conducting sphere, and have established the

connection between SEM and Creeping-Wave theory, with the latter

providing physical insight into the SEM results. Our analytical

results are now being programed, and will be published for

acousticlO as well as radar targets11  of spherical

9 I
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shape in the near future. Similar studies are now: being

undertaken by A. Nagi and F. Cannata for conducting infinite or

finite cylinders.

III. Personnel

The follow.ing personnel has been involved in tLie work

described in tne pressnt progress report:

H. Uberall, Professor, Catholic University, Principal Investigator

A. Nagi, Catholic University, Research Associate

P. J. Moser, Catholic University, Graduate Student (a!lso iaval

Research Laboratory, Washington, D. C.)

F. Cannata, Catholic University, temporary Research Associate

J. 0, Murphy, Annandale, VA# voluntarj1 collaborator

L, Flax, Naval IRGsearch Laboratory,, 'Jashington, D. C.

G. C. Gaunaurd,UNaval Surface Weapons Center,, W.hite Oak,

Silver Spring, 14D

4 L, R. Dragonette, Naval Researca Laboratory, washainqton, D. C.

JSeverns, Naval Research Laboratory, Washington, I), C.
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III Publications and Astracti of Talks Sunoorted or Partly

Supported by Present Contract.

1. J. D. Murphy, P. J. Moser, A. Nagl, and If. Uberall, "A Surface

Wave Interpretation for the Resonances of a Dielectric Sphere",

IEEE Trans. AP (accepted for publication)

2. L. Flax, G. C. Gaunaurd, and H. Uberall, "Theory of Resonance

Scattering", Physical Acoustics Vol. 15, Academic Press,

New York, 1980 (in press).

3. J. D. Murphy, P. J. Moser, A. Nagl, and H. Uberall, "A Surface

Wave Interpretation for the Resonances of a Dielectric Sphere",

paper B4-3, International Union of Radio Science, National

Radio Science Meeting, 5-8 November 1979, Boulder, Colorado.

4. G. Gaunaurd, H. Uberall, and P. J. Moser, "Resonances of

Dielectrically-Coated Conducting Spheres and the Inverse

Scattering Problem", to be published in Journal of Appl. Phys.

5. P. J. Moser, J. D. Murphy, A. Nagl, H. Uberall, and

G. C. Gaunaurd, "Resonances of a Dielectrically Coated

Conducting Sphere: Surface Waves and the Inverse Scattering

Problem", paper submitted to the North American Radio Science

Meeting (URSI, Commission B), Quebec, Canada, 2-6 June, 1980.

6. G. C. Gaunaurd and 1I. Uberall, "Solution of Inverse Scattering

Problems in the Resonance Case", paper submitted to the

Washington Meeting of the American Physical Society, £

28 April - 1 May, 1980.

7. G. Gaunaurd, 11, Uberall, and L, R, Dragonettep "Solution na, the

Inverse Electromagnetic, Acoustic, and Elastic Scattering Problem

in the Resonance Case Invited paper for the IEEE Transactions AP,

Special issue on "Inverse Methods in Electromagentics" (W.M.Boerner

Editor), Spring 1981.
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8. J. D. Murphy, A. Naql, and H. Uberall, "Riesonance Effects

in Radar Scatterinq from Conducting Dielectric, and Coated

Targets", Navair Electronic Research Program Review, Stanford,

University, Stanford, CA, 6 :Iarch, 1979.

9. P. J. Moser, J. D. Murphy, and II. Uberall, "Resonances and

Surface Waves in Conducting Spheres with Dielectric Coating",

Radio Science (to be published).

10. H. Uberall, and J. D. Murphy, "Acoustic Surface 'ave Pulses

and the Ringing of Resonances", J. Acoust. Soc. Am. (to be

prepared for publication).

11. 11. Uberall and J. D. Murphy, "The Physical Content

of the Singularity Expansion Method", IELE Trans. A-P (to be

prepared for publication).

a
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RESONANCES OP A DIETLECRICAIr, COATED -+.,,J,.IN, SPIuR
SURFACE WAVES AND TIHE INVE-Sr SC .AT.RINC;, PR! . ..

Philip J. Moser, J. Dizrmuid Iurphy, Anton N agl, and
Herbert t oerall
Department of Physics, Catholic University
Washington, DC 20064
Guillermo C. Gaunaurd, Naval Surface Weapons Center
White Oak, Silver Spring, MD 20910

The theory of resonance scattering, developed by some of
the present authors in the context of the scattering of
acoustic waves from elastic obstacles, or of elastic waves
from fluid-filled cavities or solid inclusions, is here
applied to the problem of radar scattering from dielectrically-
coated, perfectly conducting spherical targets. The
numerous, sharp and nnrrow resonances obtained in previous
calculations of the corresponding radar cross sections (see,
e.g. , Ruck et al, Radar Cross Section Handbook, Plenum
New York, 1970) are shown here to correspond to the real
resonance frequencies of the target, which can be calculated
from a real characteristic equation and agree approximately
with the real part of the natural frequencies. A surface-
wave interpretation of these resonances is made entirely on
the basis of real analysis, thus avoiding the complexities of-
the Watson transformation. The dispersion curves for these
surface waves are obtained, which show (for the TM mode) a
discontinuous transition from conductor-type at low frequencies
to dielectric-type at high frequencies. The inverse problem
is also solved (see, e.g., G. C. Gaunaurd, H. Obarall, and

L. R. Dragonette, IEEE Trans. Antennas Propag., Special Issue
on Inverse Methods in Electromagnetics, W. M. Boerner, ed.,
to be published) by showaing how from the spacing and the
widths of the resonances, the dielectric constant and the
thickness of the coating may be obtained. Finally, the
relationship between the present resonance theory, and the
singularity expansion method or SEM (see, C. E. Baum,
Interaction Note 88, December 1971) is briefly qketched.

Commission B
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Physics and Astronomy Suggested title of session
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Interest.

Solution of Inverse Scattering Problems
in the Resonance Case. G. C. Gaunaurd and
H. tberall, Naval Surface Weapons Center,
White Oak, Silver Spring, MD 20910. We show
that whenever resonances are present in the
echoes of electromagnetic, acoustic or elastic
waves scattered from corresponding targets, the
"Theory of Resonance Scattering" recently
developed by usI leads to a simple and direct
solution of the inverse scattering problem. We
have found in all three cases that the spacing
between consecutive resonances, and their
widths, contain the information needed for a
determination of the material parameters of the
scatterer, and in the case of coated targets, of
the coating thickness. This constitutes a
straightforward answer to the inverse scattering
problem via the resonance formalism. ( H.tberall
is also at Catholic University, Washington, DC,
additionally supported by NAVAI Code AIR-310-B4
1. L.Flax, G.C.Gaunaurd, and H.Uberall, "Reso-
hance Theory of Scattering",Physical Acousticsl8.

(-.<Prefer Standard Session _ _ _ _,

Signature of APS Member

Herbert Uberall
Same Name Typewritten
Physics Department

Catholic Universtiy
Address
Washington, DC 20064
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Abstract

Conventional methods of attackiny the inverse scattering

problem are either based on the geometrical optics limit, or on

the use of Fredholm integral equations of the first kind. Ile

demonstrate here that for the (quite common) case that resonances

are present in the echoes of electromagnetic, acoustic or elastic

waves scattered from corresponding tarrfets, the theory of resonance

scattering recently developed by us represents a poerful tool for

the solution of the inverse scattering problem. For example, for

the case of elastic-wave scattering from fluid-filled spherical

cavities in solids, the spacing of successive resonances determines

the sound speed of the fluid-filler, and the resonance widths its

density. Measurements of the resonances were performed by us for

acoustic scattering from submerged elastic objects. For the case

of electromagnetic scattering from dielectric or coated conducting

targets, spacing and widths of the resonances are shown to determine

the dielectric constant and the coating thickness of the target

object in a direct fashion.

'Ai
A1

-. ,... .i I ~ i~i d m m m ml .. .. .. .. 4
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I. Introduction

Inverse scattering is of importance in many fields of Physics.

In quantum mechanics, inverse scattering methods try to determine

the potential if the scattering cross section is known. Geophysicist-

attempt to determine the distribution of density and of seismic

Velocity with depth, from ob3erved reflection responses. In general,

inverse scattering methods try to obtain information about a source

distribution, a scattering obstacle or inhomogeneity of a medium

from remotely-sensed field data.

Attempts at a solution of the inverse scattering problem have

conventionally proceeded via the use of the geometrical-optics

limit, or else via an exact treatment that leads to Fredholm

integral equations of the first kind1 , In the present review, we

wish to demonstrate that if resonances are present in the

scattering cross sections as a function of frequency, then the

measurable characteristics of these resonances furnish us with a

powerful tool for the solution of the inverse scattering problem,

i.e. for the determination of the geometry and the composition of

the target from the measured properties of the echo returns. In

fact, the presence of resonances in scattering echoes seems to be

the rule rather that the exception, as confirmed for the cases of

acoustic2 and elastic-wave3 , as well as electromagnetic4

scattering.

The theory of resonance scattering, as developed by us

recently 5 "8 provides a formalism that may be used for a

straightforward and direct solution of the inverse scattering problem.

LA
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Although this will be demonstrated in the following on the basis

of a few simple examples only (reflection of acoustic waves from

plane layersi of elastic waves from fluid-filled spherical cavities;

and of electromagnetic waves from dielectrically-coated conducting

spheres), it is clear that an elaboration of these procedures for

the case of more complex targets will, with proper attention to

detail, provide us with a wealth of information on bota the

geometry and the composition of the target which hitherto seems to

have been largely disregarded.9 Our =xamples show that, e.g., the

spacing of successive resonances in elastic-wave echoes directly

determines the sound speed in the fluid filler of a spherical

cavity, and that the resonance widths determine the density of the

fluid; or that for the case of electromagnetic scattering from

spherical dielectric or coated conducting targets, the spacing and

widths of the resonances determine the dielectric constant and the

coating thickness of the target object in a direct fashion. The

resonances thus characterize the scattering object as if they were

*its signature, and their spectrum constitutes a code identifyingi

the target in a way that resembles optical spectroscopy.

II. Acoustic Resonances

The first example to be discussed is the acoustic transmission

and reflection for a plane fluid I0 or elastic11 layer of thickness

imbedded in an ambient fluid. The latter will be characterized

by its density f and sound velocity c, while the (elastic) layer

is assumed to have density VA , and compressional and shear speeds

0d and ct , respectively. A plane sound wave be incident at an

i . ...... .- . . . . . i-
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angle e with the normal, and be refracted at angles a( for

compressional, or / for shear waves into the layer. The

transmission (T) and reflection coefficients (R) may be written in

the form

T (1a)

dse" + )l(b)
where

9=/COS 8 -A 1 (ic)

. ',A&c = ,C/,C (ld)

For a lossless layer, one has ITI + IRI " 1. Tae(usymmetric'. s,

and "antisymmetric", a) coefficients Cs and Ca are given in the

literaturell1 for a fluid layer (,- 0 one finds

ayer one find
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where

X - -/2. (2b)

using the abbreviations x = kd =c4d/c, y = sin . If nn<1,

the critical angles of total reflection

e4 -A I A19 (2c)

appear,

Equations (la, b) show that each of the two terms in T as

well as in R will exhibit a resonance behavior when the real parts

of the denominators vanish:

CS = 0 or Ca - O (3a)'

These equations also describe the free-plate dispersion relations10' I1

(corresponding to no fluid-loading, 0) for the characteristic

waves on the plate, The resonances will be the more pronounced, the a

smaller the imaginary part C of the denominator (rouchly speaking,

c/ 9.A 4 4 1), i.e. the lighter the fluid loading. For the fluid

layer, Eqs, (3a) have the solutions
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cot ~ -m .~7r- (3b)

or

~ -m 7r(3c)

with ms and ma being integers.

The two independent variables of the problem may be taken

-a as x and y. Resonance forms of T and R may be obtained in either

of these variables, holding the other one fixed.

Taking y fixed, we expand the functions Cs or Ca around their

resonance values:

I

Cs,a(x)= (X-Xms,a)Cs,ax (Xms,a)I (4)

where Xms,a designate the solutions of Cs,a(x) m 0, and

Cs,ax - x'C For the reflection coefficient, e.g., this

leads to the resonance form

AA

=_.. .. ._-_E (Sa)

' x-x,,,- xxs +t
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with each resonance expression being valid in the vicinity of its

own resonance position x - xms,a" For the elastic plate, Eqs. 3a)

have to be solved numerically for Xms,al for the fluid plate, one

has

The resonance widths are

F, : 2 /c~ soot5,L) (5c)

which for the fluid plate become independent of ms a:

[ = F4 / (F.4 Cos ) - (5d)

These resonances may be interpreted as poles in the lower half of

the complex x- plane, located at

Xo, - $f (5c)
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Similar resonance expressions may be derived for R, as well as

for T and R as functions of tiLe y- variable.

Equation (5a) is illustrated in rig. I for a water layer in

alcohol, at various values of e . Figure 2 illustrates resonances

in the angular variable of the transmission loss TL z log 1T1 2

for a steel plate in water. The figures show both the results for

the individual resonance terms, Eq. (5a), and as obtained from the

exact expression, Eq. (la). The value of the resonance formalism

lies in the fact that it furnishes explicit expressions for the

position, width, and strengthi of each resonance contribution,

Eqs. (5b)-(5d), as a function of all the material parameters.

It thus appears possible to carry out an inverse determination

of the material constants of a plate by examining the resonances

experimentally. In fact, for a fluid layer, Eqs. (5b) and (3b,c)

show that the resonance positions measure, via nd = C/Cd, the

sound speed cd in the layer, and Eq. (5d) shows that the width of

the resonances measures the density ratio V/94. This is the

simplest example for the solution of the inverse scattering problem

via a study of the resonances. For the elastic plate, the inverse-

scattering solution proceeds analogously and is only slightly more

involved. While for the fluid layer, Eq. (5b) is physically

understood by the kinematic condition that the normal component of

the layer wave number equals kd - mlr/d, corresponding to an integer

number of half-wavelengths across the layer, this pciture is no longer

true for elastic layers where shear waves enter also, Here, the

physical understanding is provided by the coincidence of the trace

velocity of the incident wave with the speed of the characteristic
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waves propagating along the free plate oever, Eqs. (5c)

or (5d) which complete the inverse problem, are only obtained

from a dynamic calculation.

III Elastic Wave Resonances

In this section, we shall discus3 an application of the

Resonance Theory of (visco)elastic wave-scattering that solves

an inverse scattering problem of elastodynamics. The procedure,

like that discussed in tie preceding section, sets the pace for

extensions to more general situations, as well as for direct

transfer to other neighboring scientific areas.

The amplitudes of backscattered waves returned by obstacles

in viscoelastic solids3 , when plotted as a function of freqequency,

exhibit so many rapid oscillations and complicated features that

until very recently it was not possible to extract the physical

information contained in them about the nature of the obstacle.

We can analyze these backscattered "echoes" using the Resonance

Theory of viscoelastic wave-scattering from cavities in solids, and

obtain from them, for a given shape of the cavity, the material

composition of the filler substance (assumad fluid in this example,

for simplicity).

When a (spherical) cavity filler is sent into oscillation by £

elastic (say, compressional, or p-type)incident waves, a set of

modal resonances (fundamental and overtones) are excited in it, that

characterize the filler as if it were its signature, The way these

resonances can be used for material discrimination purposes resembles
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the way chemical element3 are identified from their optical spectra.

The far-field backscattering araplitude of p-waves, returned by

4a spherical fluid-filled cavity of radius a in a solid under p-wave

incidence, is given 7 by the "partial wave sum"

(6)

where , k( A (14(a-Mi) (k/2 )C 4., dl4= p-wave velocity) is the

compressional wave number in the ambient solid, which is complex

if the solid is viscoelastic (.4# C). The S-matrix element SnPP

is given in the literature7 . Figure 3 showys tie plot of the

modulus of the summed amplitude in the backscattering direction

=-ir (i.e., IIPP(7f )/al ) for a cavity filled with ethyl-alcohol

in an aluminum matrix. This is the "echo" containing the rapid

oscillations and complex features mentioned above. Fifteen partial

waves were added to produce that plot, which for the ranqe

0.4 k a.< 10 of Fig. 3, yields enough accuracy. This is the

amplitude as a sensor would record it.

An analysis of the first partial-wave contributions making up

the sum is shown in Fig. 4. Each mode can be split into a

background (center graph) and resonances (bottom graph). An index

labels each resonance of each mode n. Overlaying the resonance3

whidh we just isolated, on top of the summed amplitude of Fig, 3,

k . identifies each extremum in that plot with the sets of modal reso-
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nances contained in the partial waves. The resonance responsible

for each wiggle of Fig. 3 is labeled by indices (n,/), and the

graph shows over thirty wig cles uniquely' identified with modal

resonances in this fashion. The location of all the resonance

spikes in fact iaentifie3 the ratio cf/Cd of the filler-to-.matrix

wavespeeds. The filler's sound-sneed c4 can be found from the

spacing A between any two high-order consecutive overtones

shown in Fig. 4. For spherical cavities in solids, we have shownl2 -14

that for > , one obtains

(7)

For alcohol in aluminum, that relation gives A!- 0.59, just as

observed in Fig. 4. Thus, knowing cd for the matrix, and the

spacing & between consecutive high-order modal resonances,

determines the sound speed cf of the filler, and vice versa.

As in the acoustic case, the resonance theory of scattering

leads to a resonance form of the scattering amplitude7 ,12:

e~x-x +qir
(8)

+ ~ -4~) ~ -,

-~ - -- --- -- --- -- -- ,-- --
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where Sn()PP -_ exp (24 .) represents the S- matri: element of a

"soft" (i.e., evacuated) cavity. The first tcrm in bracket3 of

Eq. (8 ) leads to the resonances (bottom portion of Fig. 4), and

the second term to the non-resonant background (center portion of

Fig. 4); their coherent addition produces the interference effects

in each partial wave (top portion of Fig. 4). The resonance

frequencies Xnj refer to a normalized frequency scale x = k da ,

The density ratio of filler-to-matrix materials (i.e., /97 )

is found from the resonance widths. Explicit forms for the widths

of the resonances may be given 7 , 12-14 were shoan to, and wr h:nt

depend on ?/ f , via thie mechanical impedance Fn(x) of the

obstacle which is a known quantity. If we evaluate the latter at

a point one half-width below any resonance peak (i.e.,

x = xn - ,e /2) and then expand for x >> 1, the result is

--. (9)+ 7r o, -+ A
2

(n -e - integers
which holds for integer n and F<2A , so that consecutive

M1s

resonance3 do not overlap. In the high-frequency limit, this gives

the filler-to-matrix density ratio in terms of the uniform aqvmptotic

spacing A , and the width of any (high-index) overtone t , of

any mode n, which are either all known or previously determined

quantities.' 2L
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For ethyl alcohol ( 9f = 0.79 CYn , Cf = 1.213 x. 10 5cm/sec)

in aluminum ( = 2.7 g/cm 3 , Cd = 6.420 x 105 cm/sec) we find

A 0.59, and for thie first (i.e, n = 1) mode, the craphical width

of its tenth overtone (i= 10), which occurs at x = & = 5.93,

i3 approximately 0.06, as found from a plot sinilar to the bottom

portion of Fig. 4. To obtain the width r as defined in

Eq. (8), we must still 12 divide by fi, and substitution into

Eq. (9) yields e /? = 0.296, which contains a neriligible error

when compared to the true ratio 0.79/2.70. The (fluid) filler is

completely identified once its sound speed and density are

determined by this asymptotic procedure. We conclude that the

sound-speed ratio between filler and matrix is extracted from the

spacing between any two consecutive overtones of any mode, and the

matrix-to-filler density ratio is extracted from the width og any

high-order resonance by rieans of Eq. (9). Thus, the high-frequency

region X '1, 1 1 contains all the information about the material

composition of the filler. The filler has been identified from its

"echo", and an inverse scattering problem has been solved in a novel

fashion,

Echo spectra from fluid filled cavities, such as that shown in

Fig. 3, have been measured by Pao and Sachse3 using ultrasonic

techniques, In acoustics , measurements of echoes from submerged

elastic objects have been performed using short-pulse experimental

2 8techniques Figure 5 shows thie (total) far-field scattering

amplitude modulus for an aluminum cylinder in water, plotted vs. ka

where k - /c is taie wave number of sound in water, and a the

cylinder radius. The measured points agree -dell with an exact

PM,]RIM
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calculation (solid curve), demonstrating the accuracy with which

the interference minima caused by tuie resonances ray be

experimentally determined in the acoustic case, and hence the

accuracy with which the inverse problem may be solved here.

IV Electromagnetic 1rave Rezonances

A procedure analogous to the one used above for elastic-wave

scattering will now be employed in order to solve te inverse

scattering problem for electromagnetic waves from a dielectrically

coated, perfectly conducting sphere. For a plane wave with

propagation constant k = (J/c incident along the z-axis on the

coated sphere, the far-field amplitude of the scattered electric

field is given by4

-e , kr
E - [Se ) - e0SU )si +],b

using spherical coordinates, and desig.nating

#0; 0 V ( 1a

4.4

14 Si1

"!" ' : ' , ., .:., .. . ........... .... ... ..
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The ":lie coefficients" are given by

x ~ ~ ~ % x x tZ ( ( ))/

where x = ka, a being the (outer) radius of the spherical target.

For a perfectly conducting sphere, the modal impedances and

admittances Zn and Yn' respectively, become Zn - 0 0 and Y,- o •

For a coated conducting sphere (radius b of the conducting core,

thickness O - a -b) which will be considered below, expression3 for

Zn and YIM are given in the literature
4

The eigenvibrations of te target correspond to the zeroes of

the denominators of an and bn. The resulting characteristic

equations .W

S( Y~/YX (X))  (TE modes) (13a)

2YOR= (TM! modes)(3b
AO=1b
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lead to complex eigenfrequencies. 1:owcver, since the re3onances

of the problem are sharp and narrow, (as seen from the following

figures), indicating small imnginary parts of the dc-nominator3,

it is sufficient to search for the zeroes of the real parts of the

denominators. The corresponding equations

- R ( (X). 1) (X)) '/ (TL rioces) (14a)

= P X))/ (VI mod.) (14U)

are solved by the real eigenfrequencies x = x

TM
and X , of the TE and TM modes, respectively.

Our resonance theory may again be applied to the present

scattering problem 15 , by urriting t/he Mie coefficients in the form

TE WYITS
_____________TE ~ (i5a)

____M__ (L) b)*T

( Z ) - <" '-+  ,:- ,,. ,

AoAo
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where

- ) (16)

and where we designated

(2.) TE

= (17a)

_ - .(17b)

these latter expressions representing thae scattering amplitudes

from a conducting sphere. While thus the second terms in brackets

of Eqs. (15) will provide a non-resonant background to the scattering

amplitudes, the first terms provide resonances as in the previous

sections, In fact, expanding their denominators about the resonance 4

frequencies and T, one may bring the Mie coefficients

into the form



TE i-c

( 13,0

00TM TM

~b~ & ~ II T~i+ 2 ~~~*T~(18b)

TM/-TM

exhibiting the resonances directly. From the mentioned expansions,

explicit expressions for the widths TS 7 M

15may also be obtained

The electromagnetic resonances are illustrated in Fig. 6 for

the example of a perfectly conducting sphere, coated with a

dielectric of relative coating thickness ; cYla = 0.1, and

dielectric constant E, = 6. The backscatterinq cross section ,

Ir coo(i)' j~h~ ~4 ) (18c)

is plotted vs. ka up to 25.. Numerous resonances are visible here,

and have been identified as TE or TII resonances by solvinq Zqs,

(14a) or (14b). These solutions, denoted by (nEf) or (n M2),

respectively, are marked by arrows in Fig. 6, thus indicating how

the resonances may be read off a measured backscatterinq cross

section curve obtained as function of frequency, in order to carry

out an inverse scattering analysis. In fact, Fiq. 6 may be viewod

M MWI
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as the "characteristic spectru.m" identifying the scattering

object.

We have also evaluated nirrically soma of the partial Javc

coefficients A, and 1 .,hich exhibit the (nEe) :ind (n: lt)

resonances for a given partial wave number n. Figure 7 presents

the TE moduli L(2nt 1)/n(n + 1)314,, for n = 9 (top) and 10

(bottom) plotted vs. ka. The fundamental (P= 1) partial wave

resonance is clearly visible on the left of each figure, while

the remaining broad structures are dominated by the conducting-

sphere background [second term in square brackets of Eq3. (18)]

in which the overtone (I > 2) resonances (first term in square

brackets) are imbedded. The senaration of these resonances from

the background will be described in a forthcoming paper 16 .

Using the expressions of Eqs. (18), and the known forms of

Zn and Yn. the inverse problem may now be solved as in the

previous cases. For the higher-order resonances located in tie

high-frequency spectral region (x > 1), one may show using

*asymptotic forms of the Bessel functions that

7 ~ OKC4 (1.9a)

i*.lo (19b)
fI

I
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(where kI  W/c I = ' L k, C1 beina the speed ol liriht in the

dielectric), and that in the same limit, the right-hand sides of

the characteristic equations Eqs. (14) vanish. Nccordingly, their

solutions are

TE

' Tr (20b)

withy = integer. We therefore have for the spacing of two

adjacent (TE or TMI) resonances in the high-frequency spectral

region (on the k- scale):

, '1-E TM .T-6,-M

k )T.M - ,(21a)

which represents one equation for the two unknowns J and £

of the inverse problem. Calling a-b = a(l-Xj, and
r(E,rM - X the spacing on the x- scale, Eq. (21a) may

be written as

* (2lb)

1 e (i-f



A second equation for t'he unknown:-, riay he found from a
consideration of the resonance widtis. Tlie-e are given by the

resonance theory in the form (e.g. for TE):

"F'- = ( -x )"£ (. (22a)

When evaluated at one half-width below the resonance, i.e. at

= X F /2- , and using asymptotic, forms, one

obtains the equation

= TF (1- )1 (22b)

which together with Eq. (21b) suffices to determine the two unknowns

E and y of the problem from the measured resonance spacinqs

A and resonance widtiis F in the high-frequency region of the

resonance spectrum,
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V. Conclusion

The foregoing discussion iias demonstrated on the basis of some

selected examples from acoustic, elastic-w.ave and electromagnetic

scattering, that the presence of resonances in scatterinq cross

sections, and their analysis by the resonance theory of scattering

as recently developed by us, may serve to solve the inverse

scattering problem in a rather direct fashion. For the simple

examples considered here, all the unknown material parameters of the

target could be obtained from a measurement of the asymptotic

spacing and of the width of the resonances. A known shape (flat

layers, or spherical objects) has been assumed for the targets of

t.he examplesconsidered. It i. clear, however, that the resonance

spectrum, and the widths as well as the intensities of the

resonance lines, will depend equally well on the geometrical shape

as on the material composition of the target (in fact, for

impenetrable targets such as acoustically rigid objects or perfect

conductors, the spectrum ill depend on shape only). A complete

experimental determination of the properties of all the resonances

appearing in the echo returns from scattering objects should

therefore identify the object as far as its geometrical shape and

material composition is concerned, in the same fashion in which

optical spectra identify chemical substances-that emit these

spectra. An entire scientific discipline of acoustic, elastic-wave

or electromagnetic spectral analysis could therefore be developed

for more or less complex scattering objects, with the above-discussed

basic examples to be considered as a starting point.
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rigure Caption3

Fig. 1. Plots of IT1 2 vs d at various angles of incidence e
for the exact expression (solid curves), and for tae

individual resonances in the resonance approximation

(broken curves); case of a water layer in alcohol.

Primed numbers corresponding to symmetric, unprimed

to antisyimetric resonances. Here c= 41.81020;

f - frequency.

Fig. 2. Transmission loss in decibels versus at 73.1

kHz-in.; (top portion): superposition of resonance

forms; (bottom ,ortion); calculated from exact theory;

for a steel plate in water.

Fig. 3. Modulus of summed p-ip backscattered amplitude plotted

vs, kda (adding 15 terms in the mode series)for an

alcohol-filled cavity in aluminum. Some of the rapid

oscillations in this plot are accounted for (as indicated)

by the resonances 3hown in the following fieTure.

Fig. 4. The zeroth (i.e. n = 0) modal contribution (top) of the

If F /al amplitude of an alcohaol-filled spherical cavity-

in an aluminum matrix, and its separation into a smooth

background (centor) and isolated resonances (bottom). The

resonances in this n-0 mode are labeled and marked. The

asymptotic spacing ia seon to be A Z 0.59. l

Fig. 5. Comparison of theory (solid curve) and experimental

observation (points) for the modulu3 of the far-field

acoustic backscattering amplitude of an aluminum cylinder

in water.
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Fig. 6. Backscattering cross section of a perfectly conductin?

sphere coated with a lossless dielectric of dielectric

constant 4 L= 6, and relative coating thickness

&r = 0.1, as a function of k . Electric (nnEA) and

magnetic (n:le) resonances are identified by arro-¢3.

Fig. 7. Partial-wave TE- moduli [(2n+l)/n(n+l)] j a nI plotted

vs. ka, for n = 9 (top and 10 (Lottom).
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Fig. 7 (top)
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