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I, Introduction

This is the final report on the research program "Resonances
of Radar Targets and Target Discrimination", supported by the
Naval Air Systems Command under Contract No, l00519-79-C-~0270, aud

covering the period March 6, 1979 to larca 5, 1980,

“

X The topic of the research program covers methods for target
discrinmination by radar scattering, making use of the natural
resonances of the targets. The nencral plan of the program consists
in a study of resonances of targets of simple snhape (e.g., sphere)
but complex composition (e.g., dielectric coating of conductors)
during the first year, followed by s3imple conducting targets and
comparison with parallel measurements performed at NSWC Dahlgren in
the seccnd year, with further extension to conductors of more complex
shapes, using Waterman's methods, later on,

The emphasis of our study is two-fold, namely: 1) to study

ways how the resonance structure of the radar echo can be used for
identifying the nature of the target (the ®inverse scattering problem®)
and 2) to obtain a physical understanding of the phenonena that cause
the resonances, and how they manifest themselves in both steady-
state and pulsed echoes, Such an understanding, in preference to a
more mechanical use of the singularity expansion method, will provide

us with the true capability of masterine the target discrimination

problem,
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"I, Proaress aAchicved

The first year's research has concerned steady-state

studies of the resonances of dielectric spieres and dielectric-

3 o
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coated conducting spheres, In the following, superscripts refer
to the 1list of publications which were prepared under the auspices

of this contract, and which are listed in Section III,

1) Dielectric sSpherel,

The Theory of Resonance Scattering?

developed by the Principal Investigator and his collaborators has
r ' beefapplied to this problem in order to
(a) obtain resonance frequencies (as a function of dielectric
constant) in a purely real calculation, in contrast to previous
tedious solutions of the complex problenm

(b) interpret the resonances physically in terms of the phase

matching of circumferential waves, and

(c) obtain the properties (in particular, the dispersion

curves) of these circumferential waves,
This work has been submitted for publication in ICEE Trans, APl
and has been reported3 at the National Radio Science Meeting,

i 5-8 November 1979, Boulder, Coclorado.

2) Dielectric-Coated Perfectly Conducting Sphére. This

f problem has been approached from the stand point of inverse scatterinjg,

[ § in order to show how the dielectric constant and the thickness of the

i coating can be obtained from the spacing and the widths of the

resonances4-7, A complete resonance-theoretical treatment has been

performed on this topicavg, separating the scattering amplitudes
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into resonant terms and a non-rescnant background, and obtaining

the dispersion curves of the cirfumferential waves that propagate
9

in the coating and cause the resonances
Our work on this problem has been prepared for publication

in Journ., Appl. Phys4

, and other aspects of it in Radio Scienceg,
and it will be reported at the Nortih American Radio Science/URSI
meeting, 2-6 June, 1980, QJuebec, Canadas, (abstract attached) as
well as the Spring Meeting of the American Physical Society,

28 April-l May, Washington, D. C., (abstract attached), It will
further form part of an Invited Paper for a gpecial Issue on

“Inverse Methods in Hlectromagnetics" (W, M, Boerner, Ediéor),
IEEE Trans. A-P, Spring 1981, A copy of this latter paper is

attached to the present report,

3) The Transient Problem of Conductinea Bodies,

A collaboration with an experimental group at the Naval

surface Jeapons Center, Dahlgren, VA led by Dr, Bruce Hollmann

has been initiated, with pulsed measurements to be carried out at
the Dahlgren radar range on conducting bodies of simple shapes, to
be compared to theory (both the Sinqularity Expansion !Method or
SEM, and Creeping wWave Tiheory), Meanwhile, we oﬁﬁained the theory
for an experiment on a conducting sphere, and have established the
connection between SEM and Creeping-Wave theory, with the latter
providing physical insight into the SEM results., Our analytical

results are now being programed, and will be published for

acousticl0 .5 yell as radar targetsll of spherical
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shape in the near future, similar studies are now being
undertaken by A, Nagl and F, Cannata for conducting infinite or

finite cylinders,

III, Personnel

The following personnel has been involved in the work
described in tne present progress report:
H. Uberall, Professor, Catholic Universityv, Principal Investigator
A. Nagl, Catholic University, Research Associate
P, J. Moser, Catholic University, Graduate Student (aizo_ Maval
Research Laboratory, Washinaton, D, C.)
F. Cannata, Catholic University, temporary Research Associate
J. D. Murphy, Annandale, VA, voluntary collaborator
L., Flax, Naval Resgearch Laboratory, 'Washington, D, C,
G. C. Gaunaurd,llaval Surface Weapons Center, White Oak,
Silver Spring, MD '

L. R, Dragonette, Naval Researca Laboratory, Washington, D, C.

J. Severns, Naval Research Laboratory, Washington, D, C.
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III rublications and Abstracti of Talks Su»norted or Partly

Supnorted by Present Contract,

l. J. D, !Murphy, P, J. Moser, A, Hagl, and lf, Uberall, "A Surface

Wave Interpretation for the Resonances of a Dielectric Sphere",

IEEE Trans. AP (accepted for publication)
2., L, Flax, G, C. Gaunaurd, and H, Uberall, "Theory of Resonance
B Scattering", Physical Acoustics Vol., 15, Acadenmic Press,
New York, 1980 (in press),
Y 3., J. b, Murphy, P. J. Moser, A, Nagl, and H. Uberall, "A Surface
Wave Interpretation for the Resonances of a Dielectric Sphere",
$ ) paper B4-3, International Union of Radio Science, llational

Radio Science Meeting, 5~8 November 1979, Boulder, Colorado,

% 4, G. Gaunaurd, H, Uberall, and P, J, Moser, "Resonances of
% Dielectrically-Coated Conducting Spheres and the Inverse
,i ‘ Scattering Problem", to be published in Journal of Appl. Phys.

5. P, J., Moser, J, D, Murphy, A. Nagl, H, Uberall, and
{ G. C, Gaunaurd, "Resonances of a Dielectrically Coated
Conducting Sphere: Surface Waves and the Inverze Scattering

Problem", paper submitted to the North American Radio Science

g RN e

Meeting (URSI, Commission B), Quebec, Canada, 2-6 June, 1980,
6. G, C..Gaunaurd and H, Uberall, "Solution of Inverse Scattering
Problems in the Resonance Case", paper submitted to the
; Washington Meeting of the American Physical Society,
28 April ~- 1 May, 1980,
7. G. Gaunaurd, H, Uberall, and L, R. Dragonette, "Solution of the '
Inverse Electromagnetic, Acoustic, and Elastic Scattering Problem

in the Resonance Case", Invited paper for the IEEE Transactions AP,

y Special issue on "Inverse Methods in Electromagentics" (W.M,Boerner

Editor), Spring 1981,




8.

10.

11,

J. D. Murphy, A. Nagl, and H. Uberall, "Rescnance Lffects

in Radar Scattering from Conducting Dielectric, and Coated
Targets"”, Navair Electronic Raesearch Program Review, Stanford,
University, Stanford, CA, 6 larch, 1979,

P, J, Moser, J, D, Murphy, and H, Uberall, “"Resonances and
Surface Waves in Conducting Spheres with Dielectric Coating",
Radio Science (to be published).,

H. Uberall, and J, D. Murpay, “"Acoustic Surface Wave Pulses
and the Ringing of Resonances", J. Acoust. Soc, Am, (to be
prepared for publication),

H, Uberall and J, D, Murphy, "The Physical Content ’

of the Singularity Expansion Method", IEEE Trans, A=-P (to be

\
v

prepared for publication),
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RESONANCES OF A DIDILECTRICALYTY COATED CONDUCTING SPIITR
SURFACE WAVES ILND THE IRNVERSE SCATTARING PROBLYM.

Philip J. Moser, J. Diarmuid rurphy, Anton Nagl, and
Herbert {herall

Depurtment of Physics, Catholic Uaniversity
Washington, DC 20064

Guillermo C. Gaunaurd, Naval Surface Weapons Center
White 0Oak, Silver Spring, MD 20210

The theory of resonance scattering, developed by some of
the present authors in the context of the scattering of
acoustic waves from elastic obstacles, or of elastic waves
from fluid-filled cavities or solid inclusions, 1s here
applied to the problem of radar scattering from dielectri
coated, perfectly conductirg spherical targets. The
numerous, sharp and narrow reconances obtained in previous
calculations of the corresponding radar cross secticns (sce,
e.g. , Ruck et al, Radar Cross Section Handbook, Plenum
New York, 1970) are shown here to correspond to the real
resonance frequencigs of the target, which can be calculated
from a real characteristic equation and agree approximately
with the real part of the natural frequencies. A surface-
wave interpretation of these resonances is made entirely on
the basis of real analysis, thus avoiding the complexities of-
the Watson transformation. The dispersion curves for these
surface waves are obtained, which show (for the TM mode) a
discontinuous transition from conductor-type at low frequencies
to dielectric-type at high frequencies. The inverse problem
is also solved (see, e.g., G. C. Gaunaurd, H. Uberall, and
L. R. Dragonette, IEEE Trans. Antennas Propag., Special Issue
on Inverse Methods in Electromagnetics, W. M. Bocrner, ed.,
to be published) by showing how from the spacing and the
widths of the resonances, the dielectric constant and the
thickness of the ccating may be obtained. Finally, the
relationship between the present resonance theory, and the
singularity expansion method or SEM (see, C. E. Baum,
Interaction Note 88, December 1971) is briefly sketched.
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Solution of Inverse Scattering Problems
in the Resonance Case. G. €. Gaunaurd and
H. Uberall, Naval Surface Weapons Center,
White Oak, Silver Spring, MD 20910. We show
that whenever resonances are present in the
echoes of electromagnetic, acoustic or elastic
waves scattered from corresponding targets, the
. "Theory of Resonance Scattering" recently
L developed by usl leads to a simple and direct
solution of the inverse scattering problem. We
have found in all three cases that the spacing
between consecutive resonances, and their
widths, contain the information needed for a
determination of the material parameters of the
scatterer, and in the case of coated targets, of
the coating thickness. This constitutes a
straightforward answer to the inverse scattering
problem via the resonance formalism. ( H.Uberall
is also at Catholic University, Washington, DC,
1 additionally supported by NAVAIR Code AIR-310-B) .
l. L.Flax, G.C.Gaunaurd, and H.Uberall, "Reso- ] ‘
nance Theory of Scattering”,Physical Acousticsl8. -
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SOLUTION OF THE INVERSE ELECTROMAGHETIC, ACOUSTIC, AND ELASTIC
SCATTERING PROBLE!M IN THE RESONANCE CASE,

G. Gaunaurd and H, ﬁberall*
Naval Surface Weapons Center

White Oak, Silver Spring, MD 20910
and

L, R, Dragonette
Naval Research Laboratory

Washington, DC 20375

* Also at the Department of Physics, Catholic University,

Washington, DC 20064
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Abstract

Conventional methods of attackina the inverse scattering
problem are either based on tae geometrical optics limit, or on
the use of I'redholm inteqral equations of the first kind. We
demonstrate here that for the (quite common) case that resonances
are present in the ecioes of electromagnetic, acoustic or elastic
waves scattered from corresponding tarrets, tiie theory of resonance
scattering recently developed by us represents a poverful tool for
the solution of the inverse scattering »roblem, For example, for
the case of elastic-wave scattering from fluid-filled spherical
cavities in solids, the spacing of successzive resonances determines
the sound speed of the fluid-filler, and the resonance widths its
" density, I!leasurements of the resonances were performed by us for
acoustic scattering from submerged elastic objects., For the case
of electromagnetic écattering from dielectric or coated conducting
targets, spacing and widths of the resonances are shown to determine

the dielectric constant and the coating thickness of the target

objact in a direct fashion,

co MR e
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"I, Introduction

Inverse scattering is of importance in many fields of Paysics,
In quantum mechanics, inverse scattering methods try to determine
the potential if the scattering cross section is known, Geophysicists
attempt to determine the distribution of density and of seismic

velocity with depth, from observed reflection responses, In general,

inverse scattering methods try to obtain information about a source
distribution, a scattering obstacle or inhomoqgeneity of a medium
- from remotely-sensed field data.

Attempts at a solution of the inverse scattering problem have
conventionally proceeded via the use of the geometrical-optics
limit, or else via an exact treatment that leads to Fredholm

. integral equations of the first kindl, 1In the present review, we
wish to demonstrate that if resonances are present in the

- scattering cross sections as a function of frequency, then the

‘ measurable characteristics of these resonances furnish us with a

‘e powerful tool for the solution of the inverse scattering problem,
i.e. for the determination of the geometry and the composition of
the target from the measured properties of the echo returns. 1In
fact, the presence of resonances in scattering echoes seems to be

+ _ the rule rather that the exception, as confirmed for the cases of

2

L acoustic“ and elastic-wave3, as well as electromagnetic4

gcattering,

e

The theory of resonance scattering, as developed by us

recentlys‘a' provides a formalism that may be used for a H

straightforward and direct solution of the inverse scattering problem,




Although this will be demonstrated in the following on the basis : u

of a few simple examples only (reflection of acoustic waves fron i

plane layers; of elastic waves from fluid-filled spherical cavities;

i%w- and of electromagnetic waves from dielectrically-coated conducting
: spheres), it is clear that an elaboration of these procedures for
f’ the case of more complex targets will, with nroper attention to
é detail, provide us with a wealth of information on bota the
s geometry and the composition of the target which hitherto seems to

have been largely disregarded.9 Our examples show that, e.q., the
: spacing of successive resonances in elastic-wave echoes directly
determines the sound speed in the fluid filler of a spaerical
i cavity, and that the resonance widths determine the density of the
fluid; or that for the case of electromagnetic scattering from
. spherical dielectric or coated conducting targets, the spacing and
widths of the resonances determine the dielectric constant and the
x coating thickness of the target object in a direct fashion. The
resonances thus characterize the scattering object as if they were
- its signature, and their spectrum constitutes a code identifyina
the target in a way that resembles optical spectroscopy.
;
; "I, Acoustic Resonances
% The first example to be discussed is the acoustic transmission
% and reflection for a plane fluidl0 or elasticll layer of thickness

A imbedded in an ambient fluid. The latter will be characterized
by its density @ and sound velocity c, while the (elastic) layer

is assumed to have density @ v and compressional and shear speeds

Cq and Cy o respectively. A plane sound wave be incident at an




angle @ with the normal, and be refracted at anqles o for ‘
compressional, or ﬂ for shzar waves into the layer, The

transnission (T) and reflection coefficients (R) may be written in

the form

T=4‘,'r( 1 + 11), (la)

2
'R - CsC,q i + 1 ) (1b)
Co+ Co VCi-diz Carir
- where
. /cosB n o - sive0 )
- = oc/cos _ P (ny -sin0) e
Cat Tt /cose Ca cosb ’
m,=x/%, , m, = /T, . (1a)

For a lossless layer, one has lTl" + IRI" = 1, The(“symmetric*, s,

N and "antisymmetric", a) coefficients Cg and C, are given in the

1iterature11, for a fluid layer (.‘C‘-DO v [3-»0 ), one finds ‘




C, > ot ], d, - tan (2a)

b
i where
? o
3 T X 2 2\*2 (2b)
-
3
2 .
. using the abbreviations X = kd =wd/c, vy = sinf , 1If n<n, <1,
3 the critical angles of total reflection
8, =~ sin*m, , 6 =sinin, (20)

: “
' appear.
Equations (la, b) show that each of the two terms in T as

; well as in R will exhibit a resonance behavior when the real parts

of the denominators vanish: -

Cg=0 or C,=0 (3a) °

-

These equations also describe the free-plate dispersion relationgl®s11
(corresponding to no fluid-loading, > 0) for the characteristic

waves on the plate, The resonances will be the more pronounced, the

puah. 9 -S68 o o0 B)

smaller the imaginary part T of the denominator (rouahly speaking,

90/9‘1 cy & 1), i,e. the lighter the fluid loading. For the fluid T
layer, Egqs., (3a) have the solutions
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cot I

i
&)
Qq
i
L%
|
3
"
-/
X

(3b)

orx

]
o

'&J.‘n) 1 35—; = m, T

™ & b (3C)

L with mg and m, being integers,

The two independent variables of the problem may be taken

as x and y. Resonance forms of T and R may be obtained in either

of these variables, holding the other one fixed,

Taking y fixed, we expand the functions Cg or C, around their
resonance values:

g

~ae

where xms,a designate the solutions of cs,a(X) = 0, and

i Cs,ax = 9Cg,,/ Px. For the reflection coefficient, e.g., this '

B

leads to the resonance form




with each resonance expression being valid in the vicinity of its

own resonance position x = Xmg a+ For the elastic plate, Egs. {3a)
’

have to be solved numerically for Xng a¢ for the fluid plate, one
’

has

-1/2
X =29 (%Al - m*f) . (5b)
'M.S a ’Ms,a.
The resonance widths are
¥ (5¢)

which for the fluid plate become independent of ms'a:

= He/(pag :0). e

These resonances may be interpreted as poles in the lower half of

the complex x- plane, located at

X

po(.c = ™

sa Ms,a (5¢)




1
Similar resonance expressions may be derived for R, as well as h

for T and R as functions of tue y- variable,

Equation (5a) is illustrated in Fig, 1 for a water layer in
alcohol, at various values of e, Figure 2 illustrates resonances
in the angular variable of the transmission loss TL = log |T|?
for a steel plate in water., The figures show both the results for
the individual resonance terms, Eq. (5a), and as obtained from the
exact expression, Eq. (la), The value of the resonance formalism
lies in the fact that it furnishes explicit expressions for the
position, width, and strengtli of each resonance contribution,

Eqs. (5b)-(5d), as a function of all the material parameters.

It thus appears possible to carry out an inverse determination
of the material constants of a plate by examining the resonances
experimentally. In fact, for a fluid layer, Eqs., (5b) and (3b,c)
show that the resonance positions measure, via ng = c/cd, the
sound speed ¢y in the layer, and Eq. (5d) shows that the width of
the resonances measures the density ratio 9‘/§;i. This is the
simplest example for the solution of the inverse scattering problem
via a study of the resonances, For the elastic plate, the inverse=-
scattering solution proceeds analogously and is only slightly more
involved, While for the fluid layer, Eq. (5b) is physically .
understood by the kinematic condition that the normal component of
the layer wave number equals kd - m1r/d; corresponding to an integer
number of half-wavelengths across the layer, this pciture is no longer -

true for elastic layers where shear waves enter also, Here, the

et

physical understanding is provided by the coincidence of the trace

velocity of the incident wave with the speed of the characteristic
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waves'prOPagating along the free platell. Hlowever, Egs. (5¢) “

or (5d) which complete tac inverse problem, are only obtained

from a dynamic calculation. 1

III Elastic Wave Resonances

In this section, wa 3hall discuss an application of the
Resonance Theory of (visco)elastic wave-scatterina that solves
an inverse scattering problem of elastodynamics., The procedure,
like that discussed in the preceding section, sets the pdce for
extensions to more general situations, as well as for diract

transfer to other neighboring scientific areas,

The amplitudes of backscattered waves returned by obstacles
in viscoelastic solids3, when plotted as a function of freqequency,
exhibit so many rapid oscillations and complicated features that -
until very recently it was not possible to extract the physical
information contained in them about the nature of the obstacle,
We can analyze these backscattered "echoes" using the Resonance
Theory of viscoelastic wave-scattering from cavities in solids, and .
obtain from them, for a given shape of the cavity, the material
composition of the filler substance (assumad fluid.in this example, .
for simplicity).
When a (spherical) cavity filler iz sent into oscillation by s
elastic (say, compressional, or p-type) incident waves, a set of 1
modal resonances (fundamental and overtones) are excited in it, that f ‘

characterize the filler as if it were its signature, The way these

resonances can be used for material discrimination purposes resembles
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!
the way caemical elements are identified from their optical spectra. h
% The far~field backscattering amplitude of n-waves, returned by i
- s a spherical fluid-filled cavity of radius a in a solid under p-wave ‘

7

incidence, is given’ by the "partial wave sum"

Lfme DA T et (SP1) @

oo 2ix @

; 2 )
where X A=k 4 “_40”)1/ (&EN/ACA, )y C4= p-wave velocity) is the
compressional wave number in the ambient solid, which is complex

if the solid is viscoelastic (4#(C). The S-matrix element Snpp

is given in the literature’, Figure 3 shows the plot of tae

modulus of the summed amplitude in the backscattering direction

0 = (i.e., Iipr(n')/a\ ) for a cavity filled with ethyl-alconol
in an aluminum matrix. This is the "echo" containing the rapid
oscillations and complex features mentioned above, Fifteen partial
waves were added to produce that plot, which for the range

0« k,a £ 10 of Fig. 3, yields enough accuracy. This is the
amplitude as a sensor would record it, |

An analysis of the first partial-wave contributions making up

the sum is shown in Fig. 4. Each mode can be split into a

e Mg
-

background (center grapih) and resonances (bottom graph). An index

A labels each resonance of each mode n. Overlaying the resonances

which we just isolated, on top of the summed amplitude of Fig. 3,

identifies each extremum in that plot with the sets of modal reso=-




nances contained in the partial waves., The resonance responsible
for each wiggle of Fig, 3 is labeled by indices (n,Ag), and the
graph shows over thirty wigeles uniquely identified with modal
resonances in this fashién. The location of all the resonance
spines in fact iaentifies the ratio cf/cd of the filler-to-matrix
wavespeeds., Tae filler's sound~speed Ce can be found from the

gpacing A between any two high-order consecutive overtones

shown in Fig, 4. For spherical cavities in solids, we have shownl2-14

that for4[2> 1, one obtains
A= TC (7C¢'//”§d.). (n

For alcohol in aluminum, that relation gives A= 0.59, just as
observed in Fig, 4, Thus, knowing c4 for the matrix, and the
spacing A between consecutive high~order modal resonances,
determines the sound speed c¢ of the filler, and vice versa,

As in the acoustic case, the resonance theory of scatterinqg

leads to a resonance form of the scattering amplitude?.12,

= fm”(rr) = (-2)™ Amed [ PR
ATy A =14 XX, ,+5dl

(8)

+ 2iexp (<1E) mg{l ,

oo e .-al
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where sn(o)pp = exp (24: E"‘) represents thie S= matrix element of a
"soft" (i.e.,, evacuated) cavity., The first term in brackets of
Eg. (8 ) leads to the resonances (bottom portion of Fig, 4), and
the second term to the non-resonant background (center portion of
Fig. 4):; their colerent addition produces the interference effects
in each partial wave (top portion of Fiq. 4), The resonance
frequencies Xh e refer to a normalized frequency scale x = kda.
The density ratio of filler-to~matrix materials (i.e.,?,/?f )
is found from the resonance widths, Exnlicit forms for the widths

; i 7, 12-14
f:ne of the resonances may be given/, , and were shown to

depend on §>/'?f » vVia tae mechanical impedance F,(x) of the
obstacle which is a lnown quantity. If we evaluate the latter at

a point one half-width below any resonance peak (i.e,,

X = X,0 - r;e/Q) and then expand for x > 1, the result is

§ we  (B2-2)A a2

(n,le = jntegers ),
which holds for integer n and r/.u £<2A ¢ 80 that consecutive
resonances do not overlap., In the high~frequency limit, this gives

the filler-to=-matrix density ratio in terms of the uniform asymptotic

spacing & , and the width I:‘t of any (high-index) overtone A » Of

any mode n, vhicha are either all known or previously determined

quantities.

v o s
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. ’ =4
For ethyl alconol ( ¢¢ = 0,79 q/cm3, c. = 1.213 x 10 cm/sec)

f
in aluminum (¢ = 2,7 g/cm3, Cq = 6.420 x 10° cn/sec) we £ind

A £ 0,59, and for the first (i.e, n = 1) mode, the araphical width
of its tenth overtone (£ = 10) , which occurs at xm_eg fA = 5,93,
is approximately 0,06, as found from a plot similar to the bottom
portion of Fig, 4. To obtain the width C;e as defined in

Eq. (8), we must stilll2 divide by -YS, and substitution into

Eq. (9) yields §¥ /§ = 0.296, which contains a nealigible error
when compared to the true ratio 0.,79/2,70, The (fluid) filler is
completely identified once its sound speed and density are
determined by this asymptotic procedure, We conclude that the
sound-speed ratio between filler and matrix is extracted from the
spacing between any two consecutive overtones of anv mode, and the
matrix-to-filler density ratio is extracted from the width of any
high-order resonance by means of Eq., (9). Thus, the higa-frejuency

region X ?1, /e»l contains all the information about the material

composition of the filler, The filler has been identified from its
"echo", and an inverse scattering problem has been solved in a novel
fashion,

Echo spectra from fluid filled cavities, such as that shown in
Fig. 3, have been measured by Pao and Sachse’ using ultrasonie :
techniques, In acoustics , measurements of echoes from submerged
elastic objects have been performed using short-pulse experimental
techniquesz. Figure 5 shows the (total) far-field scattering
amplitude modulus for an aluminum cylinder in water, plotted vs, ka

where k = W/c iz tae wave number of zound in water, and a the

cylinder radius, The measured points agree well with an exact
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calculation (solid curve), demonstrating the accuracy with which
the interference nminima caused by tiie resonances may be
experimentally determined in the acoustic case, and hence the

accuracy with which the inverse problem may be solved here.

IV Llectromagnetic V'ave Resonances

A procedure analogous to the one used above for aslastic-wave
scattering will now be employed in order to solve the inverse
scattering problem for electromagnetic waves from a dielactrically
coated, perfectly conducting sphere, For a plane wave with
propagation constant k = &W/c incident alonqg the z-axis on the
coated sphere, the far-fiecld amplitude of the scattered electric

field is given by4

kv
Esc E e [ 9):09% - €¢ S 9) $l‘v\¢>]

using spherical coordinates, and desiqnating

- 27{,1-1 R‘(COSO) _ dE\‘:(cosé)
S (®)=-4 Z( )%(M)[a% o ],

2y 2net [, dPlee) , Pled)
Sz(e)" Z ( ) ,'\'(-”_.,.1) [A Jd0 LM' Sin© !

nsq

(17)

(1la)




The ":lie coefficients" are given bv

X gon (X) = (2. (xg; (x))’

o = — , (12a)
~ . {1)

x 82 (%) = 4 Z. (xha"100) |
|
|

()= €Y (X2 ()’ .
’b‘n= X4 ) m 7 ) , (120)

/
x 4. - Y. (kA (w)

where x = ka, a being the (outer) radius of the spherical target,

For a perfectly conducting sphere, the modal impedances and

admittances z and Y , respectively, become Z, > O and X s

For a coated conducting sphere (radius b of the conducting core,

thickness J = a =b) which will be considered below, expressions for
4

2, and Yn are given in the literature
The eigenvibrations of tle tarqget correspond to the zeroes of

the denominators of a, and bn’ The resulting characteristic

equations ¥

i/{ Zm' = ()( Z:ﬁ (X)) //(X/AMM (X)) , (TE modes) (13a)

1) !
A an. . X'&M‘ﬂ (x)/(xlm (X)) (TM modes)
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lead to complex eigenfrequencies, hLowever, since the resonances

of the problem are sharp and narrow (as seen from the following
figures), indicating small imiginary parts of tae de2nominators,
it is sufficient to search for the zeroes of the real parts of the

denominators, The corresponding equations

1/4; Z,,L = 'RQS\ ()( Z.‘m(ﬂ) I/(X‘KM“) (X))}, (TE modes) (l4a)

€ Ym = RQ; (7‘ Q,‘M) (X)‘)/(Xﬁﬂu)(ﬂ)l§ (T:1 modas) (14L)

TE
are solved by the real eigenfrequencies x = X 0
T™
and ){“£ of the TE and TM modes, respectively,

Our resonance theory may again be applied to the present

. 15 Vo . e s p
scattering problem™, by writing the Mie coefficients in the form

2:%.° { (=) 5= (o)

vWwTE
+ e % Sim & } (15a)
(iZ,)*- =0t | '

. o wsTM (4) _ ~ (2) . g™ ™ -
,b =£224 ”y § C4N Z. + Zb-@ «;»1 Sf’nfﬂ, , (15‘.))3




where

(¢=14,2)

and where we designated

£ M - e 2 FIE
‘KM(“ (X) !
) / s TM
w (%) 24%,,
. (x .5 0) - e A

(x bt o)

me
into the form

these latter expressions representing the scattering amplitudes

from a conducting sphere, While thus tlhe second terms in brackets

of Eqs. (15) will provide a non-resonant background to the scattering
amplitudes, the first terms provide resonances as in the previous
sections, In fact, expanding their denominators about the resonance

TE
frequencies X and x;?“ , one may bring the Mie coefficients

- 18 -

(106)

(17a)

(17b)
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TE 2 TE —-
- i_e C g-n ~ M.A 2 _(EJE TE
Am = Z tiie sinf., (13a)
= _vTE 41 r~TE
A=1 X xm? * Z-C.P
i ™ ™
4 T Sz Z M. Die . . ‘ETM}} (18b)
== A v
»T o2 T™M, < ~TH ’

exhibiting the resonances directly, From the mentioned éxpansions,
explicit expressions for the widths E;;E ’ T;;r"
may also be obtainedls.

The electromagnetic resonances are illustrated in Fig, 6 for
the example of a perfectly conducting sphere, coated with a

dielectric of relative coating thickness ;; =Jd/a = 0.1, and -

dielectric constant £, = 6. The Dbackscattering cross section4,

b
kﬂ.

} is plotted vs. ka up to 25, lumerous resonances are visible here,

'Z (-4)" (m+d)(a.-5.) * y (18¢c)
m=4

and have been identified a3 TE or TI! resonances by solving Cgs,

(14a) or (14b), These solutions, denoted by (nE,f) or (n M.B),

? .‘u% 4 B v,

respectively, are marked by arrows in Fig, 6, thus indicating how
the resonances may be read off a measured backscattering cross

section curve obtained as function of fresjuency, in order to carry

out an inverse scattering analysis, In fact, Figq. 6 may be viewad
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as the "characteristic spectrun" identifving the scattering
objecct,

We have also evaluated numerically somz of the partial -rave
coefficients .a, and 19,” rfaich exhibit the (nr-,‘f) and (nt‘lﬁ)
resonances for a given partial wave number n, TIiqure 7 presents
the TL moduli [(2~H- 1)/n(n+ 1)]\»(1,,‘\ for n = 9 (top) and 10
(bottom) plotted vs. ka., The fundamental (f==]J partial wave
resonance is clearly visible on the left of each fiqure, while
the remaining broad structures are dominated by the conducting=-
sphere background [second term in square brackets of Eqs, (18)] '
in which the overtone (/£ = 2) resonances (first term in sﬁuare
brackets) are imbedded. The senaration of these resonances from
the background will be described in a forthcoming paperls,

Using the expressions of Egs. (18), and the known forms of
Zn andffn, the inverse problem may now be solved as in the
previous cases, For the higher-order resonances located in the

high-frequency spectial reqion (x> 1), one may show using

asymptotic forms of the Bessel functions that

ﬁ./‘f‘EZ,“ - €, cot Aﬁg;

’(:r —> -"\/Ei fQ‘P\. kig

(19a)

(19b)
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(where kl =‘~)/C1 = Qé:l k, c, beina the speed of liaat in the

dielectric), and that in the same limit, the riqght-hand sicdes of

the characteristic equations Lqgs. (14) vanish., Accordingly, their

solution3 are

(k.3 );E = (24+4)™/2 (20a)

(k3)™ = A

with,e = integer, Ile therefore have for the spacing of two

adjacent (TE or T!M) resonances in the high-frequency spectral

region (on tihe k- scale):

' (3, - (), =, 210

which represents one equation for the two unknowns J\ and 81

of the inverse problem., Calling = a=b = a(l-bf) , and
TE,TM TE T™M
=x,’ - !
Bp=%pes ~ %y

be written as

the spacing on the x- scale, Eq. (2la) may

.
o DR ek BR 2
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A second equation for the unknowns may bhe found from a

consideration of the resonance widtis. These are gqiven by the

g.
¥
*
¢

resonance theory in the form (e.g. for TL):

X ' TE
22

Re (=2 0oy - 4/iZ,, )

When evaluated at one half-width below the resonance, i.e, at
TE TE TE
X = %ﬁ - Fh /2 = )9 » and using asymptotic forms, one

obtains the equation

&, = Zan [)QTEVE (1-)’>J . : (22b)

which together with Eq, (21b) suffices to determine the two unknowns
3

61 and Y of the problem from the measured resonance spacinas

i % ZS

Y and resonance widtis (L in the high~-frequency region of the
resonance spectrum,

. W s




V. Conclusion 1

The foregoing discussion has demonstrated on the basis of soma2
selected examples from acoustic, elastic-wave and electromagnetic
scattering, that the presencs of resonances in scattering cross

sections, and their analysis by the resonance theory of scattering

as recently developed by us, may serve to solve the inver:se

* scattering problem in a rather direct fashion, For the simple
examples considered here, all the unknown material parameters of the

. target could be obtained from a measurement of the asymptotic
spacing and of the width of the resonances. A known shape (flat

3 layers, or spherical objects) has been assumed for the taraets of
the examplesconsiderad., It i3 clear, however, that the resonance

i - spectrum, and the widths as well as the intensities of the

resonance lines, will depend egually well on the qgeometrical shane

s as on the material composition of the target (in fact, for

impenetrable targets such as acoustically rigid objects or perfect

.k conductors, the spectrum will depend on shape only). A complete

experimental determination of the properties of all the resonances

appearing in the echo returns from scattering objects should

therefore identify the object as far as its geometrical shape and

material composition is concerned, in the same fashion in whica

. optical spectra identify chemical substances that emit these

spectra. An entire scientific discipline of acoustic, elastic-wave

:
¥
b
b )
! ”

or electromagnetic spectral analysis could therefore be developed

for more or less complex scattering objects, with the above-discussed

basic examples to be considered as a starting point,
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Fig. 1l.

Fig. 2.

Fig. 3,

Fig. 5.

Tiqure Captions

Plots of lle vs f£fd at various anqgles of incidence )
for the exact expr:szion (solid curves), and for the
individual resonances in the resonance approximation
(broken curves); case of a water laver in alcohol,
Primed numbers corresponding to symmetric, unprimed

to antisvumetric resonances., Here 9c = 41,8102°;

f = frequency.

Transmission loss3 in decibels versus 6 at 73,1

kHz=~in.; (top portion): superposition of resonance
forms; (bottom nortion); calculated from exact theory;
for a steel plate in water,

Modulus of summed p->p backscattered amplitude plotted
Vs, kda (adding 15 terms in the mode series) for an
alcohol~-filled cavity in aluminum, Some of the rapid
oscillations in this plot are accounted for (as indicated)
by the resonances shown in the following fiaure.

The zeroth (i.e. n = () modal contribution (top) of the

lf" /al amplitude of an alcohol-filled spherical cavity-

~in an aluminum matrix, and its separation into a smooth

background (center) and isolated resonances (bottom)., The
resonances in this n=0 mode are labeled and marked, The
asymptotic spacing i3 seen tobe A & 0,59,

Comparison of theory (solid curve) and experimental
obsaervation (noints) for the modulus of the far-field

acoustic backscattering amplitude of an aluminum cylinder

in water,

ot o
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Fig. 6.

Backscattering cross section of a perfectly conducting
sphere coated with a lossless dielectric of dielectric
constant 81_= 6, and relative coating thickness

J;, = 0,1, as a function of ka' Electric (n& ) and
magnetic hﬁLg) resonances are identified by arrows.
Partial-wave TE- moduli [(2n+l)/n(n+li] ‘an| plotted

vs, ka, for n = 9 (top and 10 (Lottom).
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Fig. 7(top)
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Fig. 7(bottom)
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