
AD-A083 656 MASSACHUSETTS INST OF TECH CAMBRIDGE DEPT OP MATHEMATICS FS11
AwPLICATION OF BEST L INEAR UNBIASED PREDICTION TO INTERPOLATION-EC (U)
APR 80 A CABANNES N000I875 C -55

UNCLASSIFIED TR-17 NLIm'IEIIEEIIIEE
mEEEEEEEEEllEI*lflll.llf_



,WPLICATION kINEAR UNBIASED
PREDICTION TO ;NTERPOLATION OF NDOM (

gIELDS AND TO NETWORK DESIGN,,

by

DEPARTMENT OF MATHEMATICS i
91MASSACHUSETTS INSTITUTE OF TECHNOLOGY-

TE. CHNICAL RE~9O . 17 " ' '/

SELECT F-74
APR 2 9 1980

DTIhBUTON sATEKENA
Apoved for public relo84

7N _UNDR COTRAT I Distribution Unlimited

(774- OF55(NR-042-331)
C) 0 !EPFIC OFNAVAL RESEARCH

Department of Mathematics
Massachusetts Institute of Technology

Cambridge, Massachusetts

,' 80 42 50 2 6



Ac 1.sson For +

APPLICATION OF BEST.LINEAR UNBIASED

PREDICTION TO INTERPOLATION OF RANDOM D TA

FIELDS AND TO NETWORK DESIGN icaton -,

bBy " °

Andr6 Cabannes Di Special

Massachusetts Institute of Technology

ABSTRACT

The practical problem of monitoring air pollutant concen-

tration over a geographical area, or of estimating the mining

resources in a region or a field can both be formulated as a

problem of interpolation of random field. -

Given a real-valued random field <Z(x),x'?) the basic

problem is to interpolate Z over an area A from measurements

taken at n stations xl,x 2,..., xn , when the distribution of

Z is only partially specified. The second proble-a is the

choice of the network of stations. After deriving the form of

the best linear unbiased predictor of Z we prove a general

updating theorem which is useful both practically to quicken

the computation of the new estimated map, and theoretically to

study the problem of network design. Then we use this theorem

to prove that when Z is a s'mooth"random field (essentially

differentiable in quadratic mean) the variance of estimation

error of Z(x) is a discontinuous function of the arguments

X1 X2 ,...,Ix n  We discuss the practical consequences of this

result in the design of networks of stations.___

Key words: Best linear unbiased predictor, random field,

covariance function, differentiability in quadratic

mean, network design.
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1. Introduction and summary:

The practical problem of monitoring air pollutant concen-

tration over a geographical area, or of estimating the mining

resources in a region or a field can both be formulated as a

problem of interpolation of a random field.

A random field is a real valued stochastic process

{Z(x),x e Im } indexed in a multidimensional set, usually a two-

dimensional spatial area. The problem considered here is to

estimate Z(x) for all xe A (some region of interest) from

observations Z(xl), Z(x2 ),..., Z(xn ) made at n points, and2 n
when the probability distribution of the random field is only

partially specified. The points xl,x.,... ,x are called the

monitoring stations.

After having presented the model, which is akin to a linear

regression nodel (mean function known up to a vector of parameters,

covariance function known) and the method of estimation, in

Section 2 we prove a useful updating theorem: if Z(x) is the

estimator of Z(x) based on Z(x l ) , Z(x 2 ) , . . . , Z(xn) and Z (X)

that based on Z(xI ),Z(x 2 ),...,Z(x ) and Z(y) we show that

z ( = z W)+ a4Z(y)- Z(y)]

where a has a simple form.

Then in Section 3 we apply this theorem to the problem of
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network design. It is shown that, contrary to a common belief,

a network of stations xiix2 ,...,xn1 where some stations are

close to each other does not in general produce redundant infor-

mation. Specifically

(1.1) lim VarfZ (x) - Z(x)} < Var{^Z(x) - Z(x)}y-bxKn  Y

The most interesting condition under which (1.1) is true

is when the covariance function (assumed isotropic) is of the

form

2(1.2) K(h) = 02 (i - 2--h 2  + o (h 2)

2

If the covariance function is only of the form K(h) = 2 (1-ah+o(h))

for a> 0 , then equality holds in expression (1). Explicit

formulas for lim VarfZ (x)- Z(x)} are given in each case.
Y-Xn  y

A stationary random field whose covariance function is of

the form (1.2) is differentiable in quadratic mean. As a conse-

quence of the above result it is possible to improve the estima-

tion, based on some network, of a smooth random field without

"building" new stations (see figure below showing the variance

of estimation of a stationary random field with covariance func-

tion K(h) e h ).
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Figture 1. Example of improvement of a network of six stations f or

estimation of a smooth random field. Fieure la represents the level

curves of the function Var(Z(x) - Z(x)) in the standard use of the

network; figure lb shows the improvement realized by taking three

measurements close to each other instead of one at a single station.
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The method that we use to estimate (or "interpolate", or "predict")

Z(x) is the classical best linear unbiased prediction. A simple

concise presentation of it is givan by Goldberger (1962). This

method has also been extensively applied, and given some new

theoretical developments, by Matheron and his colleagues. They

dubbed their whole body of techniques Kriging, see Delfiner (1975)

and further references given there.

In another paper (Cabannes 1979b) , meant to parallel the

present one, the author shows some optimal statistical properties

of best linear unbiased predictors.

2. The model; the best linear unbiased predictor; and an updating

theorem:

Given the random field {Z(x), x E]m} we want to estimate

Z(x) , at some fixed point x , from the observations Z(Xl),Z(x2

Z(Xn). To do that we assume the following model:

1) The random field has a covariance function K(x,y) =

cov(Z(x),Z(y)) which is entirely specified. That is to say, in

practice, it is known to us.

2) The mean function m(x) = E Z(x) is only partially specified.

We make the assumption that it is of the form

m(x) = alfW(x) + a 2 f 2 (x) +.. . a f (X)

where p and the functions f (x),f 2 (x),...,f (x) are known to1 2 p
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us, while the parameters al,a 2 ,... ap are unknown. The follow-

ing examples will make this assumption clear:

a) assume that the mean function is an unknown constant m.

This corresponds to p = 1, fl1(x) =_ 1, aI = M.
b) in a two-dimensional random field (Z(x),x =R 2} assume

the mean function is an unknown plane. If we denote by u(x)

and v(x) the components of the point x , this corresponds to

p = 3, f1 (x) 1- 1, f2 (x) = u(x) and f 3 () v(x) , while

al,a 2 ,a3 are the coefficients of the plane.

The method of estimation that we choose is the best linear

unbiased prediction. That is, we will use the estimator Z(x)

such that

1) Z(x) = X1 (x)Z(x1 ) + X2 (x)Z(x2 ) + ...Xn (x)Z(xn )

2) E Z(x) = m(x) for all values of the parameters ai 's.

2
3) E{Z(x) - Z(x)} is minimum.

Note: the third requirement is meaningful because an estimator

satisfying conditions (1) and (2) is necessarily such that its

mean squared error does not depend on the ai s.

We adopt the following condensed notation:

Z (x1 )
Z(x 2 )

Z= = the network observations

Z(xn )

.~~~ ~ ~ ... ..



K - covariance matrix of Z

kx = covariance vector between ZWx and Z

fx = (f 1 (x), f 2 (x),..., f (xW)

a - (al11a21,...1 a ) so that m(x) f a

If 1(x 1  f 2(x 1)....f (x 1 )

F-

Lf 1(x n f 2 (xn) ....... f P(xn

thus EZ = F'a

X= (X 1 (x),X 2(x),...,Xn(x)),

The calculations leading to the best linear unbiased pre-

dictor are classical (see Goldberger (1962), for instance). The

optimal X is

(2.1) X - k -_K1 F I(FK 1 F I)1 FK-k x1- 1F (FKlF')1 f

and the mean squared error using the B.L.U.E. is

(2.2) Var (Z W) - Z W) K (x, x) - k Kk

+ (FK- -kXf x)'(FK 1F)(FK_ k -_f )
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To the above list we add the following notation:

G = FK-1F'

= FK-lk -f
x X x

Goldberger made the observation that the B.L.U.E. of Z(x)

can be rewritten

Z -= fx a + k x K[F'

where a = G 1 FK-1 Z is the generalized least square estimator

of a using Z. For further explanations on the natural form

of Zix) see Cabannes (1979 a)

Theorem 2.1: (Updating theorem)

Let Z (x) be the B.L.U.E. of Z(x) based on the augmentedy

set of observations Z(x1) ,Z(x2 ),...,Z(xn) and Z(y). Then

Z yx) and Zlx) (which is the B.L.U.E. based on Z) are related

as follows:

(2.3) (x) = - cov( (x) - Z(x),Z(y) - Z(y)) £Z(y) - Z(y)]

Var(Z(y) - Z(y))

and

Var(Z y x) - Z (x)) 2
(2.4) = 1 - p (x,y)

Var(ZIx) - Z (x))
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where P(x,y) = corr(z(x) - Z(x),Z(y) - Z(y))

Proof: Since Z (x) is a linear function ofy

Z(x I ) , Z(x 2 ) , . . . , Z(xn ),Z(y) while Z(x) and Z(y) are linear

functions only of Z(x l ) , Z(x 2 ) , . . . , Z ( x n) , we can write

Z (x) - Z(x) = c[Z(y) - Z(y)] + 61Z(xI) + a2 Z(x2) + ... +6nZ(xn )

- z (Y) - z(y)] +

where the coefficients a and i'V 2'" a n depend on

XlX2,...,xn ,x and y

The first objective is to show that a Z = 0. Since

EZ (x) = E Z(x) and EZ(y) = EZ(y) , we deduce that Ea Z = 0.

Next suppose that cov(Z(x) - Z(x), 'Z) = c # 0 , then we

can construct a linear unbiased estimator of Z(x) which is

better than the B.L.U.E. Indeed consider Z(x) + y$'Z it is

linear, unbiased and

Var(Z(x) + yS Z - Z(x)) =

Var(Z(x) - Z(x)) + 2yc + y2 Var'Z

hence the choice y = c makes

Vart Z

Var(Z(x) + y$'Z - Z(x)) < Var(Z(x) - Z(x)). This is a contra-

diction. Therefore a'Z is uncorrelated with Z(x) - S(x).

(*)I am grateful to Yi-Ching Yao for this proof which simplifies
my original one using partitioned matrices.

..... ..
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The same argument shows that 3'Z is uncorrelated with

Z(x) - Z(x) , and also with Z(y) -Z(y). From this it is easy

to conclude that Var 3'Z =0 .This is done as follows:

note that S = Z (x) Z Z(x) - Od[z (Y) - Z (Y)]

z (x) - Z(x) - [i(x) - Z(x)] - a[i(y) - Z(y)]; hence, from
y

Var VZ = cov( 'Z, 'O'Z) ,substituting the above expression for

one of the Z Z , we get Var $'Z = 0 .From this we conclude

that 3'Z = 0.

It remains to show that the coefficient a has the form

given in formula (2.3). Since V'Z = 0 we can write

Z (x) - Z (x) -Z(x) - Z (X) O = ^ c4(Y) - Z(y)

take on both sides the covariance with Z(y) -Z(y), and note that,

for the same reasons as above, Z y x) - Z(x) is uncorrelated with

Z(y) -Z(y). This yields -cov(i(y) -Z(y), Z(x) -Z(x))=

a Var CZ (y) - Z(y)) and establishes formula (2.3).

To prove formula (2.4) write

Z (x) - Z(x) = Z(x) - Z(x) + ct[i(y) - Z(y)]

and take variances on both sides. This gives

Var(Z y(x) -Z(x)) Var(Z(x) -Z(x))

+ a 2Var(z(y) -Z(y))

" 2acov (Z (x) -Z(x) , Z (Y) -Z(Y))
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and using the expression obtained for a we get

Var(Z (x) - Z(x)) = Var(Z(x) - Z(x)) [ - (xy)] where
c (x,y) = corr(i(x) - Z(x), Z(y) - Z(y))

Q.E.D.

This updating theorem is very useful to compute the new

estimated map {Zy (X), x- A} from the already computed values

{Z(x), x-A} We refer the reader to Cabannes (1979a) for details

and an illustration of this point. The theorem is also useful

to study theoretically the problem of network design.

In Section 3, to apply theorem 2.1 it is convenient to have

for the coefficient a a more explicit form. We already have

the explicit expression

Var(Z(y) - (y)) = K(y,y) - ky K k + y G- I
y y

given (slightly differently) by formula (2.2). The next theorem

gives an analogous expression for the covariance term in the

coefficient a

Theorem 2.2

(2.5) Cov(Z(x) - i(x), Z(y) - Z(y))= K(x,y) - k 'K-ik + P X G-1D'x y x y.

proof: From formula (2.1) for the vector of coefficients X in

i(x), we can write

Z(x) = k 'K Z - x 'G-FK-Zx - x
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then cov(Z(x) - Z(x), Z (y) - Z(y))

= Cov(Z(x), ^Z(y)) - cov(Z(x), Z(y))

- cov(Z(x), Z(y)) + cov(Z(x), Z(y))

= (k x'K-l- x'G-IFK- 1 )K(K-Y- K-IF'G-Iy )

-V (Y)kx - X'(x)ky + K(x,y)

after developing and cancelling terms in this expression we

obtain formula (2.5)

Q.E.D.

3. Application to study of continuity of Var(Z(x) - Z(x)) and

to network design:

In this section we apply theorem 2.1 to the study of what

happens when two or more monitoring stations of the network are

close to each other. And we show that interesting results occur

when the random field Z is smooth in a stochastic sense.

In order to be able to state results with simple formulas

we will specialize to an isotropic covariance function: the

function K(x,y) will only depend on I1y-x I.

The hinge of the next theorem is that an isotropic random

field {Z(x), x J m} is differentiable in quadratic mean if

and only if its covariance function is of the form

?V
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K(x,y) = a - 2 2 . This result still

holds if Z has a differentiable non constant mean function and

an isotropic covariance function.

For convenience we introduce the following notation:

s(x;xldxf2,...,x n )  Var(Z(x) - Z(x)) where Z(x) is based

on the network x 1,x 2 , •,x n  Consequently, according to the
definition in Section 2,

s(x;xl,x21... ,xnY) Var(Z (X) - Z(x))

Theorem 3.1: If a random field {Z(x),x eP1m } , with differentiable

mean function and isotropic covariance function, is differentiable

in quadratic mean, then the function s(x;xl,x 2,...,IXny) is not

continuous in y , in the sense that

lim s(x; Xl, x 2,... , IXnY )  # s(x; Xl, x2,... , Xn).

y ).X n

Indeed, we have

(3.1) lim s(x; xl, x2 ,..., XnY ) =1

y -xn s(x; xl, x 2 ,... , Xn)
(with fixed direction)

with

(3.2) *= W(xn -Y)

[(Xn y) 'A(X y) 1/2n n
A.I
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where < is a constant, w is a vector, and A is a positive

definite quadratic form, each depending only on x,xI , x2 ,..., xn .

In the case n = 1 , formula (3.2) simplifies to

(3.3) P*= K cos(yx n x)

where y n x is the angle between the directions of y- xn and

X - Xn .

If the random field is not differentiable but continuous in

quadratic mean and K(h) = a 2 (1 - ah+o(h)) , a > 0, then

s(x; x1 , x2 ,..., XnY) is continuous in y in the sense indi-

cated above.

Finally, if the random field is not continuous in q.m., then

again the function s(x; x1l, x2 ..., xn,y) is not continuous

in y

Proof. If the random field, with differentiable mean function

and isotropic covariance function, is differentiable then

K(x,y) 2 a2 (1 -  2 o(jx-yI 2
2

With no loss of generality, let's take a = 1

In theorem 2.1 we proved that

s(x; x 1 , X 2 0... x n,Y) P 2 (xy)

s(x; X1, X2 ,..., xn )

where

I.
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(3.5) p (x, Y) = cov (Z (x) - Z(x), Z(y) -Z(y))
[Var (^Z(x) Z Z(x) )Var (i(y) Z- Y /

Zbeing computed on the basis of x1 , x 21. . ,x n To prove

theorem 3.1 we shall derive the expansion of p(x~y), when

y -- xn , by computing those of

-1 -

(3.7) Cov(Z(x) - Z(x),Z(y) - Z(y)) = K(x,y)- -k'K k y+Op'G 0

We need a Taylor expansion of K(x,y) when y- x n. To do

this it will be convenient to use for K(x,y) the form

(3.8) K (x, y) = R ( 2 !xYfll2 )

So we have R(t) = 1- t+ o(t) as t4-0O Next note that

(3.9) Ilx-yjl 2 = jix -XnII 2 + 2 (x -xn)(xn - ) + lXn- Y11 2

hence

22 2  2 n

a [2(x-x )'( Y)Ixny1 +R1 l~ i

o(lix Y1I)
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(REI ] denotes the first derivative of the function R). From

(3.8) we conclude that for all x

(3.10) K(x,y) = K(x,xn) +a 2(X-x ) ' x -Y)R- ) +o(l}x-Yij) 

while for xn

(3.11) K(x ,Y) = 1 - 2 liX-Y2 + o(Ijx n 2

First we apply (3.10) and (3.11) to

K(x n ,y)

y K(X n- y))

(K(x nY y)

With the following notation

(x l - n) R [1 ' 2  - l X - 1 2

(3.12) = a 2  a 2 ( x 2(xn -Xn R[ I ( I Xln 2

_(XnY)

and

(3.13) =
o(IX n-Y11)

O (JjX n-Y1 2 )
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we can write

(3.14) k =k + Q(x -y) + E
nn

Secondly, applying (3.14) to O = FK k -f we obtain
yy y

F~ FK k + F K1 (x-y) +F K1 E-f
yXn n y

n n

whereF f( -yxF [ga-ffI =
nny

each component of which is o(IIxn-yII)*

with these preliminaries, now we can compute the variance

and covariance given in (3.6) and (3.7). Using (3.14) and (3.15)

we obtain, on the first hand,

Var (i(y) -Z (y))=1 (k + 0(x -y) +:) 'K- l(k + n (x -y) .+ E:)
Xn nl x nn

(3.16)

+ C F KlIQ+ fx [1) (x-y) +n]'G 1l C(F K1 2 + fj)1) (x n-y)+n]
n n

Since k I K-1k 1, k' K 1  2 and
Xn Xnn Q X' ((n-y)i

k' Ke - o(fIxn-ylf ), the R.H.S. of (3.16) becomes

an 2 11Ix Y112 (xn-y)'9VK1-(nl )+ (jQ~~ 2) +

(3.17)

(x -y) fF K Q,+f l]'G 1 [FYK1 lsl+f 11] (x -Y)+o(IIxn YI 2)
n n
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or in condensed notation

(3.18) (xn-Y)'A(xn-Y) + o(IIxn-YI 2

where A (which depends only on x1 x2 ,... ,xn and x) is a

positive definite quadratic form since (3.18) is the expansion

of a variance. On the other hand, we have

Cov(Z(x)-Z(x),Z(y)-Z(y)) = K(x,y) - k'K (kxn + (Xn-Y) + E) +

n
(3.19) -1I

x (F K S +fXn)x-)+

Using (3.10) and kxK-lk = R,(x'xn) , the R.H.S. of (3.19)

simplifies to

a2 (xx ) ( y R[1] a2" 2 2) JI -I
a (XX)'(Xn Y)Rl(a IlXXn12 +o(nlXn-YII) -

(3.20) kxK-lk(xn-y) - k+K-lF +

x n

G-lF A-la+ fll I(x y)
n

or in condensed notation

(3.21) W' (xn-y) + o (II Xn-YII)

where w is a vector depending only on XliX 2 ,...xn and x



Now substituting (3.18) and (3.21) in formula (3.5) we obtain

(3.22) p(x,y) = W(xnY) + o(f1xn-yfl)(Var (Z (x)-Z (x) ) [ (Xn-Y) 'A (x n-Y) + o ( 1 Xn-Y 2 2)] }1/2

The first part of the theorem, i.e., formula (3.2), follows

from (3.22) when we let y tend to x

In the case n = 1, to establish the more explicit formula

(3.3), we must go back to formulas (3.17) and (3.20). Observe

that in this case

2
a) Q = - a (xn-Y)'

b) F = 1 and f[l] = 0.
xn

c) K, G, K 1 , and G-1 are equal to 1,

hence (3.17) becomes

(3.23) Var(Z(y) - Z(y)) = a2 lX n-Y112 + o(lx n-Yll 2)

and (3.20) becomes

(3.24) Cov(Z(x) - Z(x),Z(y) - Z(y)) =

2 (( +°2lxnylI)
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Since we have

(2 11 2 +o(llx -Yjj2)]l/2 = alixn-YlI +o(Ilxn-yII)

from (3.23) and (3.24), we conclude that

(x-xn),'(y-xn

p(x,y) = (Xm n)' (y-xn) + o(Ilxn-ylJ)II-XnII IIY-Xn!I

where K is a scalar independent of y This completes the

proof of formula (3.3)

Some more calculations, that we omit, show that in the case

n = 1 the constant K is actually equal to

allx-xn11 R[1] (a llx -xn 112)
n n d [(l1- R(u 2 ) ) 1 / 2 ]

[21- ~ 2 IIx-x2))] 1/2 du

2 'n"

where U = a IIx-xnIl

We now consider the case when the random field is not differ-

entiable but continuous in q.m. and K(h) = 1 - ah + o(h), with

a>O . To establish the continuity of s(x; xlx,2,...,xny) we

use the same scheme as before. The important difference is that

2IIx-yll plays the role of Ilx-y(l and formula (3.9) is replaced by
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lix-yil [ Ilx-xnlH2 + 2 (x-x n) , (xn-y) + 11 Xn-yI 12 1l/2

= [x + 2 (x-xn)' (xn-y) + ~lx 2]]1/2

n~-x [ (x-x n11 (xy OIx n 1I 2

=l-nl + 2xx) (ny + o(Iix nY

Ilx-x nil

Formulas (3.10) and (3.11) become the following: For all x

(x-xn) ' (xn-Y) [] I-y)
(3.26) K(x,y) =K(Xxxn + a I X-XniI R (allx-x n1 + 0(II Xn-1)

while for xn

K(x n ,y) =1 a aixn-ylj + O(Iixn-yII)

To express k ywe use the new notation

R(11 (al x Xf 1 x II)

(3.28) S1 Rl a~n~n

(xx-)

lxn-yll
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and

O(IIxn-YII)

The difference between e given by (3.13) and el given by (3.29)

is that the last component Of E1is O(!IX n-yII instead of being

O~jj n 112 )

Formulas (3.14) and (3.15) still hold with Ql ande1

substituting for 11 and e. But the calculations made in (3.16),

(3.17), and (3.18) are replaced by

(3.30) Var(Z(y) - Z(y)) = aIIxn-yII + O(IIxn-yII).

On the other hand, formula (3.21), giving the development of

COV(Z(X) - Z(x) , (y) - Z(y)) is still true. Therefore

Cov(Z(x) - ZWx),(y) - Z(y)) = (IIxn-YII)

whereas, from (3.30)

(Var (Z(y) -Z(y)))
1/2 = (j O(In-YI11 2)~

we conclude that
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lim P(x,y) = 0
Iy-xnit 0

and this, in view of (3.4), establishes the continuity of

s(x; xlX 2p...,Xn,Y) .

Lastly, when the random field is not continuous in quadratic

mean, the covariance function K(h) is not continuous at the

origin. Then neither Cov(Z(x) - Z(x),Z(y) - Z(y)) nor

Var(Z(y) - Z(y)) tend to zero when !Y-xnI tends to zero.

Hence p(x,y)74. 0 and s is not continuous. Q.E.D.

We now conclude this section with a discussion of the inter-

pretation of the theorem just proved, and a discussion of the con-

sequences for network design. Consider for simplicity a two-di-

mensional random field T Z W), x r=R2 }

Before interpreting the theorem just proved, we observe that

expressions (3.17) and (3.20) are often well approximated by ex-

pressions (3.23) and (3.24). As a consequence, the formula

0= c cos(y- n)

is an approximation, even when n> 1, to the more complicated

formula (3.2) which enters expression (3.1), giving the reduction

of uncertainty at x when a station y is added in the vicinity

of x

The i.terpretation of Theorem 3.1 is that when station y is

very close to xn  three possibilities can arise:

1. K(h) has a jump at the origin and Z can be decomposed
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into two parts

Z r + ,

where is a random field with isotropic covariance function

continuous at the origin, and e is an independent stationary white

noise. Then the couple (Z(y), Z(xn)} provides information on
n

the variance of e that Z(Xn) alone does not provide.

2. K(h) = 1 - ah + o(h), Z is continuous in q.m. but not

differentiable. Then Z(y) and Z(Xn), in the limit, measure

the same thing and do not provide more information than Z(xn) alone.
2

3. However, if K(h) = 1 - a- h 2 + o(h2) Z is differentiable,
2

and then {Z(y), Z(x n)} provides information on the partial deri-

vative of Z at xn in the direction of y - xn In the case

n = 1 the reduction of uncertainty about Z(x) at any x is

proportional to the square of the cosine of the angle between

y - x1 and x - x1

The three cases considered above do not exhaust the possible

2forms of isotropic covariance functions in 3R However, the

cases left over are pathological cases such as, for instance, a

function K(h) for which lim sup K(h) # lim inf K(h)
h -O h -O

or, an isotropic covariance function continous but not differentiable

at the origin. Such covariance functions are not used in prac-

tice.

The preceding interpretation can be given the following ex-

tension, that we have not proved: When the random field Z is
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differentiable in quadratic mean, three measurements

fZ(Xn), Z(yl), Z(y2 )} , where Yl and Y2 are very close to

xn P and the directions of yl - xn and Y2 - Xn are different,

for instance perpendicular, will provide all possible information

on the first-order partial derivatives of Z at xn They will

determine the tangent plane. Moreover, in the limit the reduction

of uncertainty on Z(x) at any point x will be independent of

the directions yl - Xn' Y2 - Xn ' provided they are not the same.

We can give the following non rigorous justification for this fact:

when yl and Y2 are very close to xn the data

{Z( I), Z(x2 ),...,Z(xn), Z(yl), Z(y2 )} is equivalent to

{Z(x1 ), Z(x2 ),. . . ,Z(xn), Zyl (xn), Zy2 (xn)}. Moreover, if z

and z are two other points close to xn Z' (x and Z (x
2n Y, ; n

are related to (Zzl(Xn)' (Xn) by a linear relationship; therefore

the data are also equivalent to fZ(xl),Z(x2 ),...,Z(xn )'Z' (x),, , z1

Zz  (Xn)} , and finally to (Z(xl),Z(x 2 ),...,Z(xn),Z(zl),Z(z 2 )}

In the design of networks used to monitor smooth random

phenomena like, for instance, barometric pressure, or variation of

temperature over an area in high altitude, or used to estimate

smooth geological random fields, the discontinuity of

s(x; XlX 2,...,x ,y) and of its average t(xlx 2,...,Xny) =

- s(x; XlX 2 ,...,Xn,Y)dx when y - x n is of practical interest.AJ
If we want to improve an existing network in a given area

the first idea, if we are to use the criterion t , is to find

the point y in A minimizing t(xlX 2,... ,xn,y) and build a

new station or take a new measurement there.
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However, we can generally do better in terms of the same

criterion by taking, at each already existing stations, three

measurements close to each other and forming an angle. This

would require only some minor modification in the routine of

taking measurements at stations, and would altogether cost much

less money than to build a new station.

sum
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