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The practical problem of monitoring air pollutant concen-
tration over a geographical area, or of estimating the mining
resources in a region or a field can both be formulated as a
problem of interpolation of random field. eroen T b R T e

Given a real-valued random field {Z(x) xCiﬁﬁ? the basic

problem is to interpolate Z over an area A from measurements

taken at n stations x{,xg,...,x; , when the distribution of
Z 1is only partially specified. The second problen is the
choice of the network of stations. After deriving the .form of
the best linear unbiased predictor of 2 we prove a general
updating theorem which is useful both practically to quicken
the computation of the new estimated map, and theoretically to
'study the problem of network design. Then we use this theorem
: to prove that when 2 is a “Ehooth*krandom field (essentially ]

differentiable in guadratic mean) the variance of estimation
error of 2(x) is a discontinuous function of the arguments l
x;,xg,...,x; . We discuss the practical consequences of this i
result in th i twork i .

u e design of networks of stations. |

Key words: Best linear unbiased predictor, random field, y

covariance function, differentiability in quadratic

mean, network design.




l. Introduction and summary:

The practical problem of monitoring air pollutant concen-

tration over a geographical area, or of estimating the mining
resources in a region or a field can both be formulated as a
problem of interpolation of a random field.

A random field is a real valued stochastic process
{Z(x),xezngw indexed in a multidimensional set, usually a two-
dimensional spatial area. The problem considered here is to
estimate 2(x) for all xe A (some region of interest) from
observations Z(xl), Z(xz),..., Z(xn) ﬁade at n points, and
when the probability distribution of the random field is only
partially specified. The points Xys1Xar--.,X, are called the
monitoring stations.

After having presented the model, which is akin to a linear
regression nodel (mean function known up to a vector of parameters,
covariance function known) and the method of estimation, in
Section 2 we prove a useful updating theorem: if E(x) is the
estimator of Z(x) based on Z(xl),z(xz),...,Z(xn) and ﬁy(x)

that based on 2(x Z(xz),...,Z(xn) and 2Z(y) we show that

XL

Ey(x) = z2(x) + a[Z(y) - 2(¥)]

g
bt L

where a has a simple form.

Then in Section 3 we apply this theorem to the problem of
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network design. It is shown that, contrary to a common belief,
a network of stations {xl,xz,...,xn} where some stations are
close to each other does not in general produce redundant infor-

mation. Specifically

(1.1) lim Varfﬁy(x)-Z(x)} < Var{z(x) - 2(x)}

-y

The most interesting condition under which (l1.1) is true

is when the covariance function (assumed isotropic) is of the

form
2 a? 2 2
(1.2) K(h) = 02(1 - & h? + o(h?))
2

If the covariance function is only of the form K(h) = 02(1-ah-+o(h))
for a>0 , then equality holds in expression (l). Explicit

formulas for 1lim Var{zy(x)- Z2(x)} are given in each case.
y=x

n
A stationary random field whose covariance function is of
the form (1.2) is differentiable in guadratic mean. As a conse-
quence of the above result it is possible to improve the estima-
tion, based on some network, of a smooth random field without
"building” new stations (see figure below showing the variance
of estimation of a stationary random field with covariance func-

2
tion K(h) = e ).
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estimation of a smooth random field.

curves of the function Var(Z(x) - Z(x))

Example of improvement of a network of six stations for

Figure la represents the level

in the standard use of the

network; figure 1lb shows the improvement realized by taking three

measurements close to each other instead of one at a single station,




The method that we use to estimate (or "interpolate", or "predict")
Z(x) 1is the classical best linear unbiased prediction. A simple
concise presentation of it is givan by Goldberger (1962). This
method has also been extensively applied, and given some new
theoretical developments, by Matheron and his colleagues. They
dubbed their whole body of techniques Kriging, see Delfiner (1975)
and further references given there.

In another paper (Cabannes 1979 b) , meant to parallel the
present one, the author shows some optimal statistical properties

of best linear unbiased predictors.

e

2. The model; the best linear unbiased predictor; and an updating 3

theorem:

Given the random field {2z(x), x < R"} we want to estimate
Z2(x) , at some fixed point x , from the observations Z(xl),Z(xz),...,
Z(xn). To do that we assume the following model:

1) The random field has a covariance function K(x,y) = ;
cov(Z(x),Z(y)) which is entirely specified. That is to say, in
practice, it is known to us.

2) The mean function m(x) = EZ(x) is only partially specified.

We make the assumption that it is of the form

m(x) = a;f, (x) + a,f,(x) +...+ apfp(x) 3

where p and the functions fl(x),fz(x),...,fp(x) are known to

JEVE
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us, while the parameters al,az,...,ap are unknown. The follow-
ing examples will make this assumption clear:

a) zssume that the mean function is an unknown constant m.
This corresponds to p =1, fl(x) =1, a; = m.

b) in a two-dimensional random field {Z(x),xejmz} assume
the mean function is an unknown plane. If we denote by u(x)
and v(x) the components of the point x , this corresponds to
p = 3, fl(x) 1, fz(x) = u(x) and f3(x) = v(x) , while
a;,a,,a; are the coefficientsiof the plane.

The method of estimation that we choose is the best linear
unbiased prediction. That is, we will use the estimator Z (x)

such that
1) ﬁ(x) = Al(x)Z(xl) + kz(x)Z(xz) + ...Xn(x)Z(xn)

2) E %(x) = m(x) for all values of the parameters ai's.

3) E{Z(x) - Z(x)}2 is minimum.
Note: the third requirement is meaningful because an estimator

satisfying conditions (1) and (2) is necessarily such that its

mean squared error does not depend on the ai's.

We adopt the following condensed notation:

z(xl)
z(xz)

13
"

. = the network observations

Z(xn)
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K = covariance matrix of Z

k_ = covariance vector between 2(x) and 2Z
£o= (E10x), £5(),0en, £(x))]

a = (al,az,...,ap)' so that m(x) = fx a

’fl(xl) fz(xl) ceeea fp(xl)'

F = -

Lfl(xn) £y (Xp) nenn £(x))-
thus EZ = F'a

A= (xl(x),xz(x).--.,xn(x))'

The calculations leading to the best linear unbiased pre-
dictor are classical (see Goldberger (1962), for instance). The

optimal A is

(2.1) A = K‘lkx-x'lF'(Fx’lp')‘lFx’lkx-+x’lr'(Fx‘lp')'lfx

and the mean squared error using the B.L.U.E. is

1

(2.2) Var(Z(x) - 2(x)) = K(x,x)-—kx'x’ K,

+ (Fx1

V= lot =1l o=l
k= £ (FKTOF ) TH(FK "k, - £)




To the above list we add the following notation:

G = FK IF'

= -1, .
¢, = FK "k =~ f_

Goldberger made the observation that the B.L.U.E. of 2(x)

can be rewritten
~ _ 1A ' -l - A
2(x) = £ 'a +k 'K [2-p'3]

1 1

where a = G "FK "Z is the generalized least square estimator
of a wusing Z. For further explanations on the natural form

of %(x) see Cabannes (1979 a) .

Theorem 2.1: (Updating theorem)

E- Let ﬁy(x) be the B.L.U.E. of 2(x) based on the augmented
set of observations Z(xl),Z(xz),...,Z(xn) and 2Z(y). Then
iy(x) and 2Z(x) (which is the B.L.U.E. based on Z) are related

as follows:

(2.3) 2y(x) = 2(x) - cov(Z(x):-Z(x),Z(y)-Z(y)) [Q(y)-Z(y)]
Var(2(y) - 2(y))

and

Var (2. (x) - Z(x))
b4 =1 - pz(x,y)

(2.4)

Var (2 (x) - 2(x))




where p(x,y) = corr(Z(x) - Z(x),a(y) - Z(y))

Proof:(*) Since Ey(x) is a linear function of
Z(xl),Z(xz),...,z(xn),Z(y) while 2Z(x) and E(y) are linear

functions only of Z(xl),z(xz),...,Z(xn), we can write

iy(x) - 2(x) = aZ(y) - 2()] + BLZ(x)) + By2(x,) + ...48 Z(x)

alZly) -2z(y)]) + 8'2

where the coefficients a and 81,82,...,3n depend on

XysXogreoorX, 4 X and y .

The first objective is to shéw that B'E = 0. Since
Eﬁy(x) = EZ(x) and EZ(y) = EZ(y) , we deduce that Es'g = 0.
llext suppose that cov(f(x) - Z(x),s'g) = c¢c # 0 , then we
can construct a linear unbiased estimator of Z(x) which is
better than the B.L.U.E. Indeed consider §(x) + ys'g : it 1is

linear, unbiased and

var(a(x) + y8 2 - 2(x)) =

Var (Z(x) - Z(x) + 2yc + YZVarB'g

hence the choice y = - < makes

—
Varg 2

Gk L

Var(z(x) + Y8'2 - Z(x)) < Var(Z(x) - z(x)). This is a contra-

diction. Therefore B'Z is uncorrelated with Z(x) - «(x).

*
( )I am grateful to Yi-Ching Yao for this proof which simplifies
my original one using partitioned matrices.

-




The same argument shows that 3'Z 1is uncorrelated with

i(x) - 2(x) , and also with i(y) - Z(y). From this it is easy

to conclude that Var3'Z = 0 . This is done as follows:

note that 3'zg = iym - Z(x) - alz(y) = z(y)] =

éy(x) - z(x) - [2(x) - 2(x)) - a[2(y) - 2(y)]: hence, from
Var 8'2 = cov(8'Z, 2'2) , substituting the above expression for
one of the 3'Z , we get Varg8'zZ = 0. From this we conclude
that 8'Z = 0.

It remains to show that the coefficient o has the form

given in formula (2.3). Since £'Z = 0 we can write

Ey(x) - z2(x) - [2(x) - 2(x)] = afZ(y) - z(y)]

take on both sides the covariance with %(y) - Z(y), and note that,
for the same reasons as above, iy(x) - Z{(x) 1is uncorrelated with
Z(y) - z(y). This yields - cov(z(y) - 2(y), 2(x) - Z(x)) =

avar (i(y)- Z(y)) and establishes formula (2.3).

To prove formula (2.4) write

Ey(x) - 2(x) = 2(x) - 2(x) + a[2(y) - 2(v)]

and take variances on both sides. This gives

Var(iy(x) - 2(x)) = Var(z(x) - 2(x))

+ a2Var(§(y) - z(y)) o

+ 2acov(Z(x) - Z2(x), Z(y) - 2(y))




and using the expression obtained for o we get
Var(Z (x) - 2(x)) = Var(2(x) - 2(x)) [1 = o®(x,y)] where

cz(x,y) = corr(Z(x) - Z(x), %(y) - Z(y))

Q.E.D.

This updating theorem is very useful to compute the new
estimated map {Qy(x), x <= Al from the already computed values
{i(x), xz A} . We refer the reader to Cabannes (1979a) for details
and an illustration of this point. The theorem is also useful
to study theoretically the problem of network design.

In Section 3, to apply theorem 2.1 it is convenient to have
for the coefficient a a more explicit form. We already have

the explicit expression

1 -1

k, + 3.,'G "¢
y ?

var (2 -z = K(y,y) - kK 'K~
ar(z(y) (y)) (Y.y) y K y g

given (slightly differently) by formula (2.2). The next theorem
gives an analogous expression for the covariance term in the

coefficient a

Theorem 2.2

(2.5) Cov(Z(x) - 2(x), 2(y) - 2(y)) = K(x,y) - kx'x'lky + ax'c'lo

proof: From formula (2.1) for the vector of coefficients X in

ﬁ(x) we can write

o = ' - 17
Z2(x) k 'K 72 .'G

y
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then cov(%(x) - 2(x), %(y) - Z2(y))

cov(%(x), i(y)) - cov(Z(x), E(y))

- cov(Z(x), Z(y)) + cov(Z(x), Z(y))

1 1

NS RS TS BRSNS IR W |
(k' K7 = ¢ "G TFK K(K Tk - K F'G o)

—X'(y)kx - k'(x)ky + K(x,y)

after developing and cancelling terms in this expression we

obtain formula (2.5)

3. Application to study of continuity of Var (Z(x) - Z(x)) and

to network design:

In this section we apply theorem 2.1 to the study of what
happens when two or more monitoring stations of the network are
close to each other. And we show that interesting results occur
when the random field 2 is smooth in a stochastic sense.

In order to be able to state results with simple formulas
we will specialize to an isotropic covariance function: the
function K(x,y) will only depend on ||y -x ||.

The hinge of the next theorem is that an isotropic random

field {2(x), x< R"} is differentiable in quadratic mean if

and only if its covariance function is of the form
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Kix,y) = 02<l - %; |h<-y|l2 + O(Hx"YIIZO . This result still
holds if 2 has a differentiable non constant mean function and
an isotropic covariance function.
For convenience we introduce the following notation:
s(x;xl,xz,...,xn) = Var(z(x) - Z(x)) where %(x) is based

on the network KyrXgreeosXy o Consequently, according to the

definition in Section 2,

s(x;xl,xz,...,xn,y) = Var(ﬁy(x) - 2(x))

Theorem 3.1: If a random field {2(x),x elﬁn}, with differentiable

mean function and isotropic covariance function, is differentiable

in quadratic mean, then the function s(x;xl,xz,...,xn,y) is not

continuous in y , in the sense that

lim s (x; X1r Xgreoay xn,y) # s(x; Xys Xopeooy xn) . ]
y>x,

Indeed, we have

s (x: SR YERRY, xn,y)

(3.1) lim =1 - 0*2
Y x, s (x; X1v Xgrene, Xn) 1
(with fixed direction) i
with |

w'(x -y) 3

(3.2) p¥ = g

[xy = ) 1A G, - ]2 -

e
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where « 1is a constant, w is a vector, and A 1is a positive
definite gquadratic form, each depending only on XiXqo Xgreoes Xooo

In the case n =1 , formula (3.2) simplifies to
(3.3) o* = « cos(y/xn\x)

where ?1%:? is the angle between the directions of Y- X, and
X=X,

If the random field is not differentiable but continuous in
quadratic mean and K¢(h) = 02(1 - ah+o()), a > 0, then
s (x: Xpr Xgreeny xn,y) is continuous in y in the sense indi-
cated above.

Finally, if the random field is not continuous in gq.m., then

again the function s(x; Xy Xgreeey xn,y) is not continuous

in y

Proof. If the random field, with differentiable mean function

and isotropic covariance function, is differentiable then

2
K(x,y) = o2(1- a‘7nx-yn2 +olllx-y|I*N

With no loss of generality, let's take o =1 .
In theorem 2.1 we proved that
S(X;: Xy, Xnreea, X_,Y)
(3.4) 1 2 .t =1 - oz(x,y)

s (x; Xyr Xgreeoy xn)

where
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cov(Z(x) - 2(x), Z(y) - 2(y)) '
[var(Z(x) - Z(x))Var(i(Y)-Z(y))]l/z

(3.5) px,y) =

-~

Z Dobeing computed on the basis of Xyr XgrewosXy - To prove

n

theorem 3.1 we shall derive the expansion of p(x,y), when

Y>x, by computing those of

- o S | -1
(3.6) Var(z(y) - 2(y)) 1 kyK ky + ¢yG ¢y

and

A ~ _ _ '-1 '-1
(3.7) Cov(2(x)-2(x),2(y)-2(y)) = K(x,y) ka ky+-¢xG ¢y

We need a Taylor expansion of K(x,y) when y+x, - To do

this it will be convenient to use for KX(x,y) the form

2
Kix,y) = R (3 [Ix-yll®

So we have R(t) = 1l-t+o(t) as t+0 . Next note that

(3.9) Ix=yll? = llx-x 1%+ 2= %) (k=) + llxg =yl

hence

2 2
a 2 a 2
RE- [Ix-ylI? = RE|Ix-x,11%) +

2
2
5 I

a2 ' 2 tl] -
5 [20x=x) " (x =y) + % =yl “IRYY (5 llx=x 1)

o=yl
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(R[I] denotes the first derivative of the function R). From
(3.8) we conclude that for all x
2 , [1] a° 2
(3.10) Kix,y) = K{x,x ) +a”(x-x)" (x -y)R"" (5 |lx-x || ©) +o(lx -yl ,

while for x,
(31l Ky = 1 - 2 flx-yll? + olllx~v]I®)
: n’ 2 H®q n

First we apply (3.10) and (3.11l) to

K(xl,y)

K(xn-l'y)

K(xnlY)

With the following notation

s

(%)-%,) R[l](%;“xl'xnnz)
(3.12) o = a® (xn_l_xn)- R[ll(%;|gxn_l-xnuz)
! -%(xn-y)' i
and
o(llx =¥l
(3.13) €=

o(llx -yl

f 2
| o (l1x ~y1|%)



we can write

t (3.14) ky = kx + Q(x -y) + ¢
i n
[ Secondly, applying (3.14) to q;y = FK-lkY - fY we obtain
b
3
i IS | -1 -1
;. ¢y-FK kxn+ FK "Q(x -y) + FK s-—fy

= f +FK(x_ -y)+ FK le-f

X, n~Y y

(F x1q+ f}grll] ) (x =y) +n

(3.15)

where fx[l:l = [grad fy] y=x_ ' and n 1is a p-dimensional vector,
each compgnent of which is rc;(Hxn--yH).

With these preliminaries, now we can compute the variance
and covariance given in (3.6) and (3.7). Using (3.14) and (3.15)

we obtain, on the first hand,

Var (2(y)-z(y)) = 1- (k +Q(x ~y)+e) ‘KT (k, +(x -y) + €) :
n n
(3.16)
-1 1 v =1 -1 1
+ [(FK Q"'fer]) (xn-y)+n] G “[(FK Q+fx£ ]) (x =y)+n] .
-1 -1 a’ :
Since k. K "k_ =1, k! K "Q = - 5 (x_-y)' and i
X, X, X, 2 ‘*n |
i
Ky K le = o(Hxn-sz), the R.H.S. of (3.16) becomes j
n . .

a2llx ~y1? = (x =y) '2'K IR x,-y) + otllx -y|l%) + i
(3.17) 3
(x,-y) ' [F K‘lQ+f’Ei]]'G-l[F K 1o+ f}s;] ] (x,-y)+ol( len-yllz) ;
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(3.18) (x,=y) "Alx,y) + o(llx -yl '

or in condensed notation

where A (which depends only on XyrXgreoo s Xy and x) is a
positive definite quadratic form since (3.18) is the expansion

of a variance. On the other hand, we have

-1

COV(a(x)-Z(x),ﬁ(y)-Z(y)) = K(x,y) - k;{K (kx +Q(xn—y) +¢e) +

(3.19) -
1 Q+f 1 )(xn-y) +n .
n

Using (3.10) and k;x‘lkx = K(x,x_) , the R.H.S. of (3.19)
n [
simplifies to ‘ ]

2‘ .
a2 (x=x)* (xy=y) RE (B (e 120 + oLy D) -

11 - - vl i
(3.20) ka Q(Xn Y) ka e +

Lot

¢XG'1[E'K'1Q-+f£i]](xn-y)-+¢;G'ln

or in condensed notation

htihingion i din

(3.21) w'(x -y) + olllx -yl . |

where w 1is a vector depending only on X rXgyese Xy and x .




Now substituting (3.18) and (3.21) in formula (3.5) we obtain

w'(x =y) + otllx =yl

(3.22) p(x,y) = -
{Var(Z(x)-Z(x))[(xn-y)'A(xn--y)-i-o(llxn"Yllz)‘]}l]7

The first part of the theorem, i.e., formula (3.2), follows
from (3.22) when we let y tend to X, -
In the case n = 1, to establish the more explicit formula

(3.3), we must go back to formulas (3.17) and (3.20). Observe

that in this case

a) Q= - a (Xn'Y)'
b) F=1 and f£1] =0
n
1 1

c) K, G, K~ , and G are equal to 1,

hence (3.17) becomes

a _ .2 2 2
(3.23) var (z(y) = z(y)) = a%[lx ~y[|® + o(llx =y ||*)
and (3.20) becomes

(3.24)  Cov(Z(x) - Z2(x),2(y) - Z(y)) =

2 3
a? (x=x) * (x - RED B [1xex 1) +olllx vl o
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Since we have h

Z)Jl/2

[a?llx -y 112 + ol x -yl = allx -yl +olllx=vID

from (3.23) and (3.24), we conclude that

(x=x_) "' (y-x)
pix,y) =« it 2 + O(Hxn-yll) ,
llx-x_ Il lly-x_|I

where «k 1s a scalar independent of y . This completes the
proof of formula (3.3)

Some more calculations, that we omit, show that in the case
n =1 the constant «x 1is actually equal to

2
1] a 2
al|x-x_]|| R[ (Sl x=x_|I )
n 2 n - ddu[(l_R(uz))l/z] )

2
[2(1- R(-az— llx-xnllz) )] 172

where u = [| x=x

a
V2

We now consider the case when the random field is not differ-
entiable but continuous in gq.m. and K(h) =1 - ah + o(h), with
a>0 . To establish the continuity of s(x; xl,xz,...,xn,y) we

use the same scheme as before. The important difference is that

||x-y|| plays the role of |Ix~y||2 and formula (3.9) is replaced by
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x-y|| = [“""‘n“2 + 2(x=x) " (% =y) + IIx,,-lez]l/2
2 7
2(x-x ) ' (x_-y) |lx_-vl|
= llx=x 0l |1+ —— . 2]
[l x-x_ |l lx=x_I|
[ (x~-x_) "' (x_-y) 1
= llx=x 1l {1+ ~—a— + o(llx -yl
i | x-x_ 1| ]
(x-x_) ' (x_-Yy)
= llx=xyll + —2——— + ollx;~yID)

Formulas (3.10) and (3.11) become the following:

(3.26) K(x,y)

while for X,

K(Xn,Y)

K(X;xn) + a

lx-x_ |l

(x-xn)'(xn-y)

Txx_ ]

1
R[ ](a||x-xn|

=1 - allx -yl + ollx ~yID

To express ky we use the new notation
I r[1 (ajx - 11)
(xl-xn)'
%, -x |l
(3.28) Q, = :
' ( ) R[l](a“xn-l‘xn”’
X -x_)'
n=1""n" Tk =x ]
) (x,-y)'
i fx =yl
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and

o(llx,=vl|

€ = :
o(llx =¥l

o(llx,=yIl)

The difference between ¢ given by (3.13) and € given by (3.29)
is that the last component of ¢, is o(Hxn-yH) instead of being
2
olllx,-v11%).
Formulas (3.14) and (3.15) still hold with 2, and ¢,
substituting for @ and €. But the calculations made in (3.16),

{3.17), and (3.18) are replaced by
(3.30) var(Z(y) - 2(y)) = allx_~yll + o(llx_-vI]).

On the other hand, formula (3.21), giving the development of

Cov(%(x) - Z(x),ﬁ(y) - Z(y)) is still true. Therefore
Cov(Z(x) - 2(x),2(y) - 2(y)) = o(llx~yID) .,

whereas, from (3.30)

1/2

ll/z).

[var (Z(y) - 2]~ = o(llx -yl

We conclude that
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lim pix,y) = 0,
lly=x_1 =0
and this, in view of (3.4), establishes the continuity of
s(x; xl,xz,...,xn,y) .

Lastly, when the random field is not continuous in quadratic
mean, the covariance function K(h) 1is not continuous at the
origin. Then neither Cov(Z(x) - Z(x),ﬁ(y) - 2(y)) nor
var(z(y) - 2(y)) tend to zero when ||y—xn![ tends to zero.

Hence op(x,y)”~ 0 and s is not continuous. Q.E.D.

We now conclude this section with a discussion of the inter-
pretation of the theorem just proved, and a discussion of the con-
sequences for network design. Consider for simplicity a two-di-
mensional random field { 2(x%), x e]RZ}

Before interpreting the theorem just proved, we observe that
expressions (3.17) and (3.20) are often well approximated by ex-

pressions (3.23) and (3.24). As a consequence, the formula
o* = k cos(ﬁn\x)

is an approximation, even when n>1, to the more complicated
formula (3.2) which enters expression (3.1), giving the reduction
of uncertainty at x when a station y is added in the vicinity
of X, -

The i-+terpretation of Theorem 3.1 is that when station y is

very close to X, three possibilities can arise:

1. K(h) has a jump at the origin and Z can be decomposed




into two parts

where  1is a random field with isotropic ccvariance function
continuous at the origin, and ¢ 1is an independent stationary white
noise. Then the couple {Z(y), Z(xn)} provides information on
the variance of ¢ that Z(xn) alone does not provide.

2. K(h) =1 -ah + o(h), 2 is continuous in g.m. but not
differentiable. Then 2Z(y) and Z(xn), in the limit, measure

the same thing and do not provide more information than Z(xn) alone.

2
3. However, if K(h) =1 - %; h2 + o(hz), 2 1is differentiable,

and then {Z(y), Z(xn)} provides information on the partial deri-
vative of 2 at X, in the direction of y - ¥, - In the case
n = 1 the reduction of uncertainty about 2(x) at any x is
proportional to the square of the cosine of the angle between
y - ¥ and x - X, -

The three cases considered above do not exhaust the possible
forms of isotropic covariance functions in I@ . However, the

cases left over are pathological cases such as, for instance, a

function K(h) for which lim sup K(h) # lim inf K(h)
h+20 h -0

or, an isotropic covariance function continous but not differentiable
at the origin. Such covariance functions are not used in prac-
tice.

The preceding interpretation can be given the following ex-

tension, that we have not proved: When the random field 2Z is
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differentiable in quadratic mean, three measurements

{Z(xn), Z(yl), Z(y2)} , where Yy andé y, are very close to

X, and the directions of Yy T %, and Y, - X, are different,
for instance perpendicular, will provide all possible information
on the first-order partial derivatives of 2 at X, - They will
determine the tangent plane. Moreover, in the limit the reduction
of uncertainty on Z(x) at any point x will be independent of
the directions Yy T Xqr Yo T X provided they are not the same.
We can give the following non rigorous justification for this fact:
when Yy and Yy, are very close to X, the data

{Z(xl), Z(Xy) seeesZlx]), Z(yl), Z(yz)} is equivalent to

{Z(xl), Z(x2),...,Z(xn), z. (x,) 4 z.

Yy Y

z, are two other points close to Xy

(xn)}. Moreover, if 2y

z. '

Y1 Y2

are related to (z' (x )2 (x )) by a linear relationship; therefore
z, *n%z, ¥n

and (x,) and 2z, (x)
the data are also equivalent to { Z2(x;),2(x,),...,2(x.),2 (%),
1 2 n zy 'n
v .
Zzz(xn)} , and finally to [Z(xl),Z(xz),--..Z(xn),Z(Zl),Z(zz)} .
In the design of networks used to monitor smooth random
phenomena like, for instance, barometric pressure, or variation of

temperature over an area in high altitude, or used to estimate

smooth geological random fields, the discontinuity of

s (x; xl,xz,...,xn,y) and of its average t(xl,xz,...,xn,y) =
/ s(x; xl,xz,...,xn,y)dx when y ~+ X is of practical interest.
A

If we want to improve an existing network in a given area
the first idea, if we are to use the criterion t , is to find

the point y in A minimizing t(xl,xz,...,xn,y) and build a

new station or take a new measurement there.




However, we can generally do better in terms of the same

criterion by taking, at each already existing stations, three
measurements close to each other and forming an angle. This
would require only some minor modification in the routine of
taking measurements at stations, and would altogether cost much

less money than to build a new station.




(1)

(2}

(3)

(4)
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