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I. INTRODUCTION SUMMARY

1.1 INTRODUCTION

Systematic procedures for the identification of dynamic

systems have been developed over the last two decades. These

methods have been successfully applied to a variety of vehicles

and other systems. Most of the methods are based on several

significant assumptions.

(1) Models used in parameter estimation step are correct.

(2) The state and measurement noise follows a Gaussian
distribution (this assumption is made both in model
structure determination and parameter identification).

(3) The noise sources are white or have a known rational
spectrum.

(4) All unknown parameters about which there is information
in the data are identified.

(5) Sufficient data is available such that asymptotic

estimator properties are valid.

Real data often do not follow these assumptions leading

to an inefficient estimator. The following symptoms which indicate

a lack of estimator efficiency have been observed.

(1) Residuals are non-white and non-Gaussian.

(2) The actual estimation errors are much higher than
those predicted by statistical analysis (Cramer-Rao
bounds).

(3) The estimation errors are unacceptable when too many
parameters are estimated.

(4) The parameter estimates often have smaller error when
zero state noise is used compared to the estimates
when true state noise is used.

(5) It is extremely difficult to get good results from
short data records.
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System identification methods are at a stage where the

issues described above need to be attacked. This report formulates

* !procedures to treat non-Gaussian, non-white noise statistics

in order to develop systematic algorithms and an interpretative

framework for treating actual data.

1.2 RESULTS

The investigation into nonconventional noise sources has

been divided into two parts. The first part develops parameter

estimation methods with non-Gaussian noise in state and measurement

equations. The following is a summary of significant results

of this work.

(1) Heavy tailed distributions can markedly degrade estima-
tion accuracy. Thin tailed or amplitude limited noise
has minor influence on estimation error.

(2) A simple rejection of outliers approach is both statis-
tically inefficient and computationally undesirable.

(3) Advanced methods are developed that lead to improvements
in both state and parameter estimation accuracy.
(Thus, a robust Kalman filter is a byproduct).

(4) A simple example demonstrates that parameter estimation
errors can be reduced by a factor of three by using
robust estimation. A larger improvement is expected
in parameters which are only marginally identifiable.

The second part of the work studies non-white noise. The

following results have been obtained.

(1) The non-white noise does not cause a bias in estimates.

(2) Low frequency noise usually increases estimation error
while the high frequency noise decreases it. Unfortu-
nately, most systems have low frequency noise.

(3) The non-white noise could be corrected by building
an appropriate filter or a whiteness insensitive esti-
mator can be designed.

(4) Cramer-Rao bounds based on white noise assumptions
are significantly different than if a colored noise
assumption is used. Since most current analyses are

2



based on the the white noise assumption, Cramer-Rao

bounds have been a poor measure of estimation errors.
The noise spectrum should be estimated and the correct] spectrum should be used in deriving estimates of errors.

(S) When the noise spectrum is nonrational (not a ratio
of polynomials), optimal parameter estimators are
difficult. It is often reasonable to approximate
the spectrum by a ratio of polynomials.

1.3 SUMMARY

Section II of this report describes parameter estimation

problems associated with non-Gaussian noise. This is followed

by the discussion of non-white noise in Section III. Finally,

conclusions and areas of future investigation are given in Section IV.

3
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II. PARAMETER ESTIMATION IN THE PRESENCE OF
NON-GAUSSIAN NOISE

2.1 INTRODUCTION

Measurement errors are the sum of inaccuracies from a number

of sources. These errors can be divided into two broad classes:

(1) systematic errors, and (2) random errors. Each error follows

some probability distribution but is otherwise unpredictable.

The systematic errors are identified during the measurement

system calibration tests. During the parameter estimation stage,

these errors are set to test values or are jointly estimated
with states/parameters of interest. Since random errors change

with time in an unpredictable manner, their effect is minimized

by the use of a filter.

For measurements z, dependent on parameters e, the

most likely values e of the parameters e can be determined

by least squares, minimum variance, or maximum likelihood methods.

All these methods assume that noise probability distributions

are known and all errors follow the assumed probability distribu-

tions. The Gaussian assumption, for example, leads to the least-
squares solution. Approximations are required to provide practical

solutions in estimation problems. Failures of components in
instrument systems, local inaccuracies, sudden environmental

changes, and the occurrence of gross errors are normally not

considered in the assumed probability distribution of the measure-

ment system noise parameters. Because of largely increased
complexity in modern sensor systems, however, these errors have

become increasingly more important and define the need for estima-

tion procedures that are not very sensitive to departures from

the assumptions on which they depend, robust estimation.



2.2 TREATMENT OF NON-GAUSSIAN NOISE

To treat the subject of non-Gaussian noise sources, two

cases are considered: (1) the noise distribution is known,

and (2) the noise distribution is not known.

When the noise distribution is known, maximum likelihood,
minimum variance or Bayes' approaches may be used for parameter

estimation. Such approaches give nonlinear estimators even

for linear systems. In general, optimal estimators for nonlinear

systems are complex. To illustrate the likelihood method, Appen-

dix A derives a maximum likelihood parameter estimation algorithm

for Poisson noise distribution.

When the noise distribution is not known, two approaches

may be used for estimation and identification.

(1) In the first approach, noise probability density functions
are estimated. These probability density functions
are used to derive optimal estimators.

(2) In the second approach, robust methods are used.
These methods are minimally sensitive to distributions
of noise. Some efficiency (e.g. accuracy) is lost
if the distribution is, in fact, Gaussian.

The rest of this chapter will deal with robust estimators.

2.3 REVIEW OF PREVIOUS WORK

The significance of the Gaussian assumption has been known

for a long time. Tukey (1960) and Huber (1972) compared variances

of parameter estimates computed by minimizing mean deviations

dn = arg min ( ix i  - i) (2.1)
3 1

to thos9 computed by minimizing mean square deviations

sn =arg min( (xi - ) (2.2)
x6

(6

.



for an error which is normally distributed but is contaminated

by another normally distributed random variable whose mean square

value is three times higher. They showed that a contamination

of 0.2% suffices to make the asymptotic efficiency of the mean

deviation larger than the asymptotic efficiency of the mean

square deviation (Huber, 1977, p.2). Thus, some estimation

methods are very sensitive to deviations from the assumed distri-

bution. Note that the mean deviations method is not the best

for mixtures of distributions or distribution uncertainties.

Maximum likelihood methods, which fit smooth distribution functions

through the actual error statistics (Hall/Gupta, 1974) give

generally much better results.

One of the main reasons for the sensitivity of the estimation

methods to deviations from assumed error statistics results

from their extreme behavior in the distribution tails (Huber,

1972; Hampel, 1971). Pierce (1852), Freedman (1966), and others

showed that engineering and scientific data have typically outliers

of several percent that fatten the tails of the distribution

of random variables. Test data of submarines and aircraft have

typically 1% to 5% outliers. Legendre (1805) suggested robustify-

ing the least-squares estimator by rejecting all data which

have obvious errors much larger than the remaining data. Airy

(1856) pointed out that this rejection method is not optimal,

since it ignores the information content of the rejected measure-

ment. During the last 100 years, different weighting methods

were developed that reduce the sensitivity of the least-squares

estimator. This research led to the maximum likelihood method

as one of the best linear estimators.

Noether (1967), Birnbaum/Laska (1967), H~yland (1968) show

that the sample mean is very sensitive to grouping effects (e.g.

tests or experiments done at different times at changed environ-

mental conditions), and pairwise median estimators reduce the

error covariance of the estimate up to 18% in the prcsence of

gross errors.

7



H6yland (1968), Gastwirth/Rubin (1969), Parks (1967), and

Jain (1975) show the sensitivity of estimates to dependencies

and correlations between the errors.

2.4 CONFIDENCE MAPPING FOR ROBUST ESTIMATION IN STATIC SYSTEMS

In the following sections, the method of confidence mapping

is introduced that makes the estimates less sensitive to the

extreme tails of the data, with only a small sacrifice in optimal-

ity of the estimate. This method assumes that only statistics

that belong to the open set, bounded by the confidence boundaries,

follow the assumed error distribution function and errors outside

the confidence boundaries belong to different and unknown distribu-

tion functions. Using this binary order statistic, the errors

outside the confidence boundaries are mapped inside the boundaries

by a confidence function and then treated as if they follow

the assumed distribution of errors. For the estimation problem,

the confidence boundaries have to be chosen such that the error

inside the boundaries are sufficient statistics for the problem

(generally around 2a) and the confidence mapping function has

to be chosen such that it does not violate the conditions for

global optimality (convexity condition).

2.4.1 Effect of Deviations from the Assumed Probability

Distribution

The mean of a random variable is

= fx p(a,x) dx , (2.3)

and its covariance is

var x = fx 2 p(ax)dx, (2.4)

8
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where p(a,x) is the probability density function of the random
variable x, and "a" is a parameter defining the density function

from a particular class.

Deviations from the assumed distribution function (Prokhorov,

1956) occur when the random variables temporarily belong to
a different distribution function. To determine the effect

of deviations from the assumed distribution function we find

the sensitivity of incremental contributions to mean and covariance

due to distribution parameter changes.

The incremental contributions of particular values of the
random variable, x, to mean and covariance are

Px = x p(a,x) (2.5)

vx = x2 p(a,x) (2.6)

and the sensitivities to distribution parameter changes are

Xa = x ap(a,x) (2.7)x a  @a

vx = x 2 ap(a,x) (2.8)xa  a .8

The sensitivity of some of the common symmetric density functions

are shown in Table 2.1. The highest sensitivity to deviations
from the assumed distribution functions have normally distributed
random variables. The sensitivity is small for random variables
less than 2a away from their mean, but it becomes large further
away from the mean. The sensitivity of the mean of normally
distributed random variables increases with the 3rd power of
x, and the sensitivity of the variance with the 4th power.
This explains the high sensitivity of the least squares method
to deviations from the assumed probability distribution (Newcomb,

1886; Tukey, 1960; Huber, 1972).

9
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The sensitivity function of an exponential distribution

function increases only with the 2nd power of x for the mean

and 3rd power of x for the variance; it is therefore less

sensitive to deviations from the nominal distribution function

for large values of x or outliers. The sensitivity function

of a uniform distribution increases only with 1st power of x

for the mean and 2nd power of x for the variance. It is there-

fore least sensitive to distribution uncertainties.

The sensitivity functions show additionally that the mean
of symmetrically distributed random variables is not changed

by corruption from other symmetrically distributed random variables,

since the sensitivity functions for the mean are of odd powers

of x. The variance and the uncertal ty in an estimate are
of even power of x and are therefore affected by errors in

distributions.

We also observe that the sensitivity increases with the

third power of the inverse of the uncertainty for normally distri-
buted random variables. This is of particular importance for

the update of innovation processes, which are generally weighted
with the inverse of the square of the estimate uncertainty.

For the number of data n- - the estimate uncertainty becomes

very small and therefore the ratio x/a becomes very large.

Hence, the relative sensitivity to distribution uncertainties
increases with the number of data points.

In summary, the more concentrated the assumed distribution
is at its mean and the flatter the assumed tail, the more sensi-

tive the estimates are to deviations from the assumed distribution.

In order to robustify an estimator, we have to reduce the
sensitivity of the estimator to the tail distribution at the

cost of a small increase in the variance of the estimate for

nominal distribution.

11
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2.4.2 Common Probability for Errors Outside and Inside the
Confidence Boundaries

Errors within the measurement accuracy of a sensor system,

e.g. errors within our confidence boundaries, can often be assumed

normal or Poisson-distributed. Errors outside the confidence

boundaries are generally due to failures, partial failures of

components, and signal combinations not considered in the design

of the measuring system. These errors are typically exponentially
distributed or do not belong to any dense set of values. An

estimator based on the exponential closure to this mixture of

errors does not give sufficient weight to measurements with

small errors. This estimator will be very robust to uncertainties

in the distribution, but it will sacrifice on optimality, i.e.

the uncertainty of the estimate will be unnecessarily large.

2.4.3 Rejection of Outliers

Legendre (1805) and Merrill (1972) treat errors outside

some confidence boundaries as total failures of the measurement

system and ignore the corresponding measurements for estimation

purposes. Airy (1856), Ellis (1844), Fisher (1926), and Huber
(1964) point out that environmental influences and partial failures

often cause outliers which contain information in a degraded

but not lost form. Rejecting these measurements eliminates

the corresponding information contents and hence makes the estimator

nonoptimal. Additionally, this method can lead to estimator

instabilities for errors about the confidence boundaries.

De Laplace (1818) and Edgeworth (1886) showed that the

median is the optimal estimator when errors follow no particular

distribution and can be assumed to be uniformly distributed

in a non-dense set of values. This is a non-parametric estimator

that chooses the median random variable in an ordered set as

the best estimate and rejects all other data. Therefore, its

expected accuracy is directly proportional to the density of

12
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the measurements. Edgeworth (1886) showed also that the median

is better than the least squares estimator for mixtures of Gaussian-

distributed errors.

2.4.4 Confidence Mapping

Weighting the variables with some confidence measure that

reduces the incremental influence of random variables from the

tails of a distribution will robustify the estimator. This

confidence mapping function (Salzwedel, Gupta, 1979) has to

be chosen in such a way that it robustifies the estimator without

destabilizing it for particular errors or groups of errors and

leaves the estimator nearly optimal in the strict parametric

sense.

Instead of using the estimate

E(x) = fx p(x) dx, (2.9)

where p(x) is the nominal probability density function, the

estimate has now the form

fx
E(x) = fx c(x) p(x) dx, (2.10)

where c(x) is a confidence mapping function of the form

c(x) = Probust(x) (2.11)
p(x)

The variance is then

var(x) = fx2 c2(x)p(x) dx (2.12)

The rejection method of Section 2.4.3 can be seen as a
confidence mapping function which maps the measurement into

the a priori estimate and hence does not change the estimate.

13
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Winsorizing maps the errors outside the confidence boundaries

into the confidence boundaries. Huber's M-estimator uses a

straight line continuation on the convex maximum likelihood

function inside the confidence boundaries to reduce the destabiliz-

ing effect of outliers.

The estimation problem can be formulated in the form

ZP~xi,8 = min, (2.13)
i

where P(x,8) is some arbitrary function and 9 is the optimal

estimate of the parameter e.

If xi belongs to a dense set, Rx, the problem can be

stated in differentiated form

P(xi,e) = 0, (2.14)
1

where

(x,e) = P(x,e)

(Note: P(x,e) = - log f(x,e) gives an ordinary ML estimate.)

If 8 is a location parameter, the problem becomes

Z o(xi-5) = min (2.15)
1

or

i -e) M 0. (2.16)

Equation (2.14) can be written

.wi(xi-e) = 0; (2.17)
i

with

wi =xi-

14
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we get the weighted mean

w.x.i XI

w i (2.18)

2.4.4.1 Huber's M-Estimator

Discus gGauss's arithmetic mean (solution to I(xi - a)=0),

Ellis (1844) introduced a function . that gives different

weight to measurements further away from the mean,

*(x i-a) = 0, (2.19)

and brought up the question of choosing the function such as

to obtain a stable estimator. Huber (1964) calls this estimator

M-estimator (maximum likelihood estimator) and modifies the

function 0 such that it corresponds to the ordinary inverse-

log maximum likelihood function,

p(x,e) = - log f(x,e) (2.20)

and '(x,e) = a P(x,e), for random variables inside the confi-

dence boundaries and a straight line continuation of p(x,e)

outside the confidence boundaries. This corresponds to a normal

distribution function inside the confidence boundaries and an

exponential distribution function outside. This likelihood

function gives minimum weight to measures outside the confidence

boundaries without violating the convexity condition for a global

optimal estimate.

For normally distributed errors inside the confidence boun-

daries and exponentially errors outside, P, is of the form

15



(2x for xl < c

(x) = 2 (2.21)

clxi -- for IxI > c

and

[ -c for x < -c

p(x)= x for -c < x < c

c for x > c (2.22)

The estimator has thus the form

_wi(xi-e) = 0 (2.23)

with weights wi mapping errors outside the confidence boundaries

on the confidence boundaries (Winsorizing), which is similar

to the confidence mapping proposed by Newcomb (1886).

2.4.4.2 Robust Likelihood Functions in the Class of Linear
Estimates

The condition for a linear estimator is that the likelihood

function has no power higher than two. The condition for a

unique optimum is that the likelihood function is convex. These

two conditions require that the likelihood function has the form

p(x) = ax2 + bixI + d. (2.24)

Any robust likelihood function must therefore be a linear combina-

tion of Eq. (2.24) (see Figure 2.1).

16 {.
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REGION OF ROBUST

(1) LIKELIHOOD FUNCTIONS

(2)

, 2
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"K ~J LIKELIHOOD /

al 2 (4)

(1) Maximum likelihood function O(x) = ax2

(2) Huber's robust likelihood function (2.10). This
likelihood puts minimum weight on random variables
outside the confidence boundaries without violating
the convexity condition.

(3) Robust likelihood function.

(4) Region of robust likelihood functions that
violate the convexity condition.

Figure 2.1 Robust Likelihood Functions
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2.4.4.3 Robust Likelihood Estimates in a Class of
Distribution Functions

In Section 2.4.4.1, we discussed Huber's robust M-estimator

for a given distribution or density function. In the following

the theory is extended for the case where the density function

is unknown, but it is known to which class of density functions

it belongs,

f e F, (2.25)

where F is a class of density functions, e.g. symmetric density

functions, and f is a density function out of F, described

by the parameter ,

£ = F( ). (2.26)

The robustified likelihood function is then

f for Ix-el < c
Q(x,e,¢) = -(2.27)

r(f(x,e,0)) for Ix-el > c

where c is the confidence boundary, k is a likelihood function

for innovations x-e inside the confidence bounds (e.g. inverse-

log likelihood function for purely exponential distributions

f), and r is a robustified likelihood function outside the

confidence boundaries, that reduces the sensitivity of the esti-

mator due to outliers and deviations of random values, x, from

the assumed distribution.

* The optimal estimate 6 of the parameter is the solution

of

P(xo,) = min (2.28)

i



If P(x,e,f) is convex and the derivative

= - P(x,,) + a P(x,e,)

is continuous and bounded, Eq. (2.28) reduces to

(2.29)

and in the case of a location parameter to

E (x.- ,) = 0 (2.30)

2.4.5 Robustness of Estimators for Finite Density Functions

Finite density functions have nonzero values only for random

values Xmin < x < Xmax . Therefore, maximum likelihood functions
of estimators for random variables with finite density functions

have the form
zero for x < Xmin

=(x,e) 
=  (x,e) for xmin < x < Xmax (2.31)

zero for x > Xmax

Hence, maximum likelihood estimators for finite random variables
have natural confidence boundaries, and values outside the confi-

dence boundaries are considered outliers and rejected for the
estimation problem. The robustness of maximum likelihood esti-
mators for finite random variables is inversely proportional

to the difference between the confidence boundaries.

2.5 APPLICATION TO DYNAMIC SYSTEMS

The concepts presented above for static systems may be
extended for dynamic systems. This section shows the difficulties
in this xtension and how some of the problems are resolved.

19



Consider a dynamic system in discrete form with state x,

controls u, outputs y, and parameters 0.

Xk+ 1 = f(Xk,Uk,e) + wk k=0,1,2...N-1 (2.32)

h(xk'uk e ) + Vk k=l,2,...,N (2.33)

wk  and vk are process and measurement noise sources. The

standard procedures for the estimation of parameters 6 are

based on the assumption that wk and vk are white with Gaussian

densities.

In general, this problem can be solved as an estimation

problem along the time-coordinate in n+l-dimensional space. The

n-dimensional state x of the dynamic system is known with some

uncertainty Ro at time t=to . Using the m-dimensional parameter

state of the sytem the state is predicted for the time t=t =to+At.

Using 8, the uncertainty 110 is mapped i-nto the n-dimensional
plane at t=t1 , 1104 ]I,. Because of parameter errors and disturbances

on the system, the uncertainty increases to NZ = 11innlp A measure

Yl is taken and an innovation v= yl-hl(Xl,) is formed.

The problem we face now is to decide where the confidence region

lies. It is better to expand the confidence region about the

predicted state or the measurement, or should we expand it about

the updated state, formed using the assumption that the measurement

as well as the predicted state are included in the assumed proba-

bility space? As long as the confidence region Hc of the measure-

ment is included in the state uncertainty, Hc cl!2 , it cannot
be detected whether a particular measurement falls within its

tail-statistics if it is also included in nT.

We shall first look at the case where the process noise RPcHc.

Then, after a sufficient number of measurements n2c 11c , and

the confidence region can be expanded about the predicted state

and confidence mapping can be applied to the innovation sequence, V
(Hampel, 1971; Papantoni-Kazakos/Gray, 1978).

20
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2.6 NO PROCESS NOISE

When there is no process noise, estimators which are robust

for deviations from the nominal measurement noise probability den-

sity may be designed. Following along the lines of the static es-

timation, a cost functional is defined in the following manner,

j N CeT1 _ r~
E k k )e(2.34)

k=l [ekRl(ek)ek + logIRe 011

The weighting R is a function of the error itself. If the

errors in the measurements are known to be uncorrelated, the

matrix R is diagonal. The functional forms for the diagonal

terms of R must be such that the dimensions of the particular

measurement do not affect the confidence bound. Therefore

ek(i) 
(2.35)

Rii(ek) = 2iP(9k(i)) (2.36)

where ek(i) is the ith component of the error vector at time k.

The function p(.) is the same for each measurement. To estimate

ti' we differentiate Eq. (4.3) with respect to ai and set the

result to zero (assuming P( k(i)) is differentiable everywhere).

a N ek(i) + 1I -
2 2 2 .1.)

i ki)) + 2 aiP(&(i)) = (2.37)

21



and

ap(Ek(i)) ap(Ek ( i )) r k i l

''i " a k(i) "L

-P (kk(i)) L" k (2.38)

Therefore

N ek(i)
wk(i)

2 k (k(i)) (2.38)

k1 wk(i)

with

Wk(i) = 2 -a(k(i)P (ekTi)7 "k(i) "

If p is a mild function of the variable Ek(i), the above

equation may be simplified to

N x 2
a . k(i) (2.40)

1 IT k.1 P(k(i))

The estimation of parameters based on the likelihood function of

Eq. (2.34) must therefore be done in two steps.

(1) Select an mi and perform a Newton-Raphson optimization

to estimate the system parameters. In this step, deriv-

atives of P(Ck(i)) with respect to system parameters

may be ignored.

22



(2) Use the above equations to estimate ai. Repeat

the procedure till convergence occurs.1 This technique may be modified for the case of gaussian pro-

cess noise and nongaussian measurement noise.

2.7 PROCESS NOISE

To develop procedures for Non-Gaussian process noise, we

assume that its distribution is generally normal with some

contamination from another normally distributed noise of higher

standard deviation. Suppose at any point in time, the process

noise is a realization of the higher variance random variable.

The state at the next point will be highly perturbed from its

expected value. This perturbation may reduce in the following

step, if the system is stable. Nevertheless, its effect will

be felt in a number of subsequent steps. This is very different

from the case of the non Gaussian measurement noise where the

effect of each deviation is felt only in the particular step.

The previous discussion points to two aspects of problems

with nongaussian noise. The nongaussian effect (particularly

the case when one basic distribution is contaminated by another

distribution with higher variance) at one sample point lasts

over many future points. This complicates the problem. However,

because of this reason, it appears that more information is

available to isolate nongaussian behavior.

The critical problem in the development of an algorithm

is to ensure that the nongaussian effects at one point do not

influence the estimates of noise sources at other points. The

most direct procedure to achieve this objective is to identify

the system parameters as well as the process noise variable w
without making any a priori assumption about w. In other words,

w is assumed to be a completely unknown input signal with unspecified
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characteristics. With no assumptions on w, it is possible to
find its estimate only when the number of measurements exceeds

the number of process noise sources.
Let w(k k - 1,2,3,.. .N) be the estimate of w based on no

a priori information. Using this estimate, it is possible to

select the values of k for which wk may be assumed to come

from a Gaussian distribution. A Gaussian covariance may be speci-

fied for process noise at those points while the other points are

assumed completely unknown. This procedure is repeated till con-

vergence occurs.

The difficulty with using this procedure is its integration
with the parameter estimation algorithm. It appears that the

procedure for specifying Wk has to be reinitialized following

each parameter iteration. The computation time requirements may

be unacceptable. It may be sufficient, however, to update wk
once after several iterations.
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2.8 EXAMPLE OF ROBUST LIKELIHOOD ESTIMATION

Many problems have been solved by the use of robust maximum

likelihood methods. This section presents an example to demonstrate

the improvement in estimation accuracy which may be achieved

by the application of these methods. Monte Carlo methods are

used to demonstrate a quantitative reduction in variance.

Consider the following nonlinear system.

2

xI = e11 xI + 812 xI  + 813 X2

+ e4 022 + uI  2.2(2.42)

x2 = 821 xi + e22 x 2 + e23 x2
2

24 x2 + U2

with parameters

[-1.0 .01 .2 -.0251 (2.43)
.lS .03 -1.0 .01S

and forcing functionro
u e(2.44)

=['e-"lt

was observed by measurements

y = x + n.

The errors in the measurements are a mixture of normally distributed

random variables
n I = N0, 010

and

n N 0, - o J (2.47)
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nI  90% of the time

n =(2.48)

n2  10% of the time

Figure 2.2 shows maximum likelihood and robust likelihood esti-

mates of the parameters ell and e23  respectively, for differ-

ent n E/4V, the space of all random variables, defined by Eq.

(2.48). The variances of the parameter estimates and the output

errors are

MAXIMUM ROBUST MAXIMUM LIKELIHOOD
LIKELIHOOD LIKELIHOOD ROBUST LIKELIHOOD

al .095 .033 2.9

a 23 .201 .050 3.7

a .02758 .02804 .98°y1

a 9.205 9.205 .99

[NUMBER OF DATA POINTS N=50]

The robust likelihood estimation gave parameter estimates for

this example that are 2.9 and 3.7 times better than the parameter

estimates of the maximum likelihood estimator with an average

increase in output error of less than 2% and a maximum increase

of output error of less than 5%.

When the number of parameters is large or if some parameters

are marginally identifiable, further improvements in estimation

accuracy may be achieved by the use of robust procedures.
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2.9 CONCLUSIONS

* I Accuracy of estimates resulting from experimental data

may be significantly enhanced by applying robust techniques.

These techniques require modification to the least squares type

of performance index in general and to the maximum likelihood

method in particular. Huber's work [15-171 provides good background

for the development of robust methods for dynamic systems.

Though this section has been concerned with parameter estimation,

similar methods apply for state estimation also. Application

of these methods could provide significant improvement in dynamic

state estimation when Kalman filters are used.

i2
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III. PARAMETER ESTIMATION WITH NON-WHITE ERRORS

3.1 INTRODUCTION

Measurement errors are generally correlated due to instrument

dynamics, finite moments of inertia, dynamics and environmental

influences. The environmental influences disturb the system

and the measurement instruments at the same time or with some

time-delay and hence correlate the system noise and the measurement

error.

The nonwhiteness and the cross-correlation between system

and measurement errors correlate the innovation process in the

Kalman filter unless these effects are compensated for. It

is shown that estimates will have increased covariances but

will not be biased. Techniques for including the effects of

known measurement error correlations in state estimation problems

have been considered by several previous authors (Kalman, 1963;

Henrikson, 1968; Jazwinski, 1970). This chapter describes state

as well as parameter estimation methods for non-white noise.

3.2 PROBLEM FORMULATION

In non-white noise problems, the spectrum of the process

and measurement noise sources is often not known. Without a priori

knowledge of the noise power spectrum, one of the following

is required:

(1) Estimate the correlation and adapt the state and param-
eter estimator to the determined correlation.

(2) Sacrifice some of the sensitivity of the estimator
to make it insensitive (robust) against a set of pos-
sible correlations of the worst case correlation.

In the first approach, an additional spectrum estimation step

is required. Once the spectrum is known, procedures for the

known spectrum can be used for state and parameter estimator.
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The second approach leads to a worst case estimator. A

certain efficiency is lost if the noise is white but the

estimators are robust with non-white noise, particularly when

the noise has a spectrum similar to that of the signal.

3.3 ESTIMATORS FOR KNOWN CORRELATIONS BETWEEN ERRORS

Let the discrete linear system (A non-linear system can

be approximated by piece-wise linear systems) be

'k+l '"k Xk + rk wk , k = 0,1,...,N-1, (3.1)

with measurement outputs

Yk = Hk xk + Vk , k = 1,2,...,N, (3.2)

where

Xk E Rn is the system state,

E Rm  is the measurement of the output Hkxk,

wk E RP  noise sequence of the system

Vk E Rm noise sequence of the measurements

Xk = E[xkl

Efwk] = E[vk+l] = 0 k = 0,1,...,N-1

Define the correlation matrices

Rxx(k,j) . E[(xk-ik)(xJi xj) T ,

Rww(k,J) E[Wkwj T],

Rvv (k,J) E[Vkv iT],1 (3.3)

Rwv(k,j) E[wkV T ],

k A^k k TI

Pk+l E[(xk+l-x k+l)(xk+lf k+l)Tk]'
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where

Xk+l = ~k~llYkl.

For the white noise ease with a priori known covariance,

T
E lwkwj R = Rw(k, k)6kj,*

E Ivkvj Tj = R v(k~k)6kj,

E 1wkvj T] =0

the minimum variance filter is between measurements,

Xk+l =0k X k (3.4)

Pk +l E[( (k(xk-xk)+ rk w 00 wkk)+rkw T~k

Pkl kk k ww +r )rkT (3.5)

and at observations

-k k-l ; k-1Xk Xk +K k(yk-Hk k ),(3.6)

Pk P k-l _KHpk- 1 (37
k k - kk k k 37

where

Kk P 1H[THPH + Rvv k -1 (3.8)

* is the Kalman gain.

3.3.1 Correlated State and Measurement Noise with A Priori
rn-own covrariance

For the a priori known covariance, E~w k v iT] Rwv (k~k)6 kj OV0

between state and measurement noise an optimal estimator can be

assigned by the method of Kalman (1963), and Jazwinski (1970).
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Let U k ={U 1,... ,uk be an orthonormal basis for the measurement

YkS.t. EIuU~ T Since the best estimate xkl

is the orthogonal projection of xk+l into Y ,it can be described

by k k T
xk~ E E ]k~u, (3.8)

l Ixk~ i

and with (3.1)

'Ic k TTXk~ = E[(q ~ X Fk)Ui ]u. + E[xv~iujl (3.9)k+l1 Ju rw)k k

Since wkis not sequentially correlated, it is independent of

Y -1and

^k k-l T (.0Xk+l k 0Xk + E[x k+lu k lUk. 3.0

Because the innovation = Y - H kk is orthogonal to Yk-

but included in k

E~k~Tju ^~[Y~ k-1] (3.11)

The error in the estimate,x k~ xkl k +,sindependent

of the measurement hence E[ 4 k k T 0. This gives,

K [k-l T +- Pkw [k~~ T + vv 1 (3.12)
k Okk k kwk kk k vk

with

pk E[k R kT 1 = k- + r R rP (3.13)

-K* k[HkPkl kT + RwvT kTIk

The filter for correlated state and measurement noise is then,
Measurement update:

=k ^k-1 + K( - Hxl (3.14)
Xk Xk k~yk k k

Pk P k- K H P k-l (3.15)k k k k k

K pk- H T [H k-lH T + R ~l(3.16)
kc kk kkk W k
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Time update:.k 1k +R k +Rl Hk(-3.
xk+l k k k + Rv]I k kIx) (3.17)

Sk kkT + k r T rkR [H Pk-IH T + R ]1-  (3.18)
k1 Ok k wk k k k k VV k

R wvT T - KR wvT kT r RwvKkT kT

3.3.2 Sequentially Correlated Measurement Noise with A Priori
Known Covariance

Let the measurement noise be correlated through the Markov

sequence

vk+ I  vkVk + uk (3.19)

with driving noise uk ' N(O,Rulu ) uncorrelated to the state

noise Wk, E[UkWk = 0. Kalman (1960) solves this problem by

augmenting the Markov sequence (3.19) to the state eettiation (3.1):

a [x] a £ 0 ]0a a [wx , [= ' " Lf w -

H a a[H I], R au l

X al 0 a xa r (3.20)

with noiseless measurements

yak = H xak* (3.21)

In the formulation (3.20), (3.21), the error covariance of the

estimate becomes singular. To overcome this problem, Bryson/

Henrikson (1968) and Bryson/Ho (1969) used the difference of

successive measurements, which has additive white noise.
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jk Yk = k-iyk-1 (3.22)

=H*_%1 k (3.23)

with

k~ = Hk Ok-i k-i Hki

k 1 = k Fki Wki Uk-i

and

* T
Ruu~ E[u~* ki = Hkrk iR W krk T kT -

The system is now

Xk+i = OkXk +r"kwk (3.24)

ki=H k xk +k+jrk wk + Uk, k>i1

H*k = Hk+iok - 'k H k

withyv0 n- N(0,R vv0) and E~ooT =0, we get from the augmented

equations (2.20, 2.2i)

UT T 1i
xi x0 + P0 Hi [HiP0Hi + R I (YrHi ) (.5

p 1 = - POH T [HiP HiT R ]i H P

The filter for system (2.34) is found by the method of Section (3.3.1),

k~i k k * k T (.6
~k~i = k xk [Ikpk H k + r k Rwu* k (326

.* Pk H* T+ * 1-1-H Ak

.k kH k uu1  [ck+i - H~k 1

pk+1 l p k T + r R r T (3.27)
k~i k k k k wwk kc

-[0kPk Hk + rkRwu*I[H kkHkT + R yJ] [ k T +

kH*wT u k uu IH~o

R~T~kT1 36



with

R wwkTH k+ T (3.28)
k

~, T TRR* Hk l rkRww 'k Hk+l + Ruuk k

The solution for time correlated measurement noise of continuous

systems is shown by Bryson/Ho (1969) p. 405ff, Mehra/Bryson (1968),

Bryson/Johansen (1965)

3.4 CORRELATED ERRORS WITH UNKNOWN COVARIANCE

3.4.1 Impact of Correlations

Comparing the optimal estimator for white noise (3.3 - 3.7)

with the estimators for correlated measurement and state noise

(3.14 - 3.18) and sequentially correlated measurement noise, we

observe the following:

(1) Contrary to the white noise case, the time update of
the optimal filter for the correlated noise requires
feedback of the innovation sequence, y - Hx.

(2) If the measurement noise couples with the state equations,
the Kalman gain for the optimal filter is different than
the gain for uncorrelated errors.

To further investigate the impact of correlated noise on the

estimation problem, the worst type of correlation is determined

in Section 3.4.2, and its effect on a parameter estimation that

assumes uncorrelated noise is investigated.

3.4.2 Worst Type Correlation Function

We first consider a system without process noise, but with

additive measurement noise. Let the system be defined by
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f = (x, e, u, t) (3.29)

y = h (x, e, u, t) + v, (3.30)

where x: state space

e: parameters

U: control

V: additive measurement noise with
covariance R.

To obtain the maximum likelihood estimate, we minimize

J = f (y-h)TR-l(y-h)dt, t < t < t (3.31)

The worst case noise maximizes estimation error and hence

minimizes the information matrix. Since functional char-

acteristic of non-white noise is best described by its

frequency distribution, we transform our estimation pro-

blem into the frequency domain. Assuming all functions have

Fourier transforms, the cost function in the frequency domain

is,

* S-l yh ( 2
Jf = f (y-h) Svv (y-h) dw (3.32)

The information matrix for the parameters a is then

f max ah -1 ahMf f i ne Svv - dw , (3.33)
W min

where

coy 8 = M - .

We now find a frequency distribution of the noise spectrum such

that the information matrix, M , is a minimum and the co-

variance of the noise is a constant.
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Smax

min M f S vv(w) dw = constant. (3.34)

Svv (W) max

Adjoining the constraint and the information matrix gives
Sv - *

M = fmax ah ___ (w) ah + A Svv dw-const. (3.35)

max

A good measure of matrix M is its trace,

tr M = f tr{ ah*S -1 ah + A S ()l dw - c (3.36)
W ae vv vv

tr M is a minimum if

,

trM = R{-(Svv l o a S ) + A*} dw = 0 (3.37)
a vv W v D6aea vv

For the integral to be zero, the expression under the integral

has to be zero. We get, therefore,

S vv (w) A S vv M 9- E()e Doh )- H(M. (3.38)

dim e > dim v

f Svv(w) dw = const = S. (3.39)
WL

Since both S vv(w) and H(w) are symmetric,A also has to be

symmetric, and we can decompose the equation

(S vA (S~vA) = H =H H ; (3.40)

hence,

S (w) = A H . (3.41)

vv
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Using the constraint

A r H (w) du = S (3.42)
• OA)

the language multiplier is

A = (I H2 (w) dw} S . (3.43)
W

Then the spectral noise distribution for the extremum of the

information matrix is
-i

Svv(w) = [ f H "()dw}Sl] H (w) (3.44)

S (w) = SfH (w)dw}'H (1 ) (3.45)

Writing the equation in the form

fSvv(w)dw} Sv(w)  = { H ()dw}lH (w) (3.46)

shows that the information matrix M is a minimum if the dis-

tribution of SVV(w) is the same as the distribution of H (w).

For an estimator of this type, the estimates follow the weighted

noise in a maximum fasion, as observed in many estimation prob-

lems. The residual errors of the estimates will then be mini-

mized and give the illusion of a good parameter estimate; even

so, the parameters just follow the noise. Clearly, estimation

errors may be significantly increased if the noise is the same

frequency range as the signal.

3.4.3 Effect of Worst Case Noise Distribution on Estimation Error

The information matrix is

tr Mf max dw (3.47)
f min P - v v
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and the trace of the information matrix is

= max h -lahtr Mf = tr{-~ S -l)dw

f max ah sh (3.48)I tr{D 36 Svv d
min

V Itr M = max tr[H(w)S M(w} dw

Wmin

The worst case noise of the optimal filter is

S () 'I (H WlH
vv S

f v lw trH(H* W)lf ld

tr Mf = fm tsl}
Wmm

tr Mf = tr {{fH I(W) dwl~fH G()dw}S'}. (3.49)

For the filter assumption that the noise is white, S (W)=S=
vv

constant, the trace of the information matrix is

Wmax 1
tr Mf f tr{H (wi) S I dw

-fma tr{H'~wH~()' dw
Wmi

tr Mf tr{{fma {H() (W)} dw S~l(.0

Since the product of integrals is larger or equal to the integral

of a product,
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Therefore, the error in the parameter estimate increases if

white noise is assumed for an estimation problem with non-

white errors. A good measure for the degradation of the

maximum likelihood estimator if worst type noise is present

and white noise is assumed is,

1 tr [Mf-IMfa ] = tr {[H H *]l H(M) dwl} . (3.52)

where p is the number of parameters. The error covariance

of the parameter estimate e increases, therefore, by the noise

distribution factor

f[H_ H_ ' ]  (3.53)

trf[H 2H 2 ]"fH(w)d}

3.4.4 Example: First Order System

Let the parameter sensitivity be

1
( .h for 0 < w < Wmax (354)

0 for w, > wmax

with the noise spectrum

C for w < Ww
S(W) , max (3.55)

Wfor max <W < max

and the covariance
Wmax
f S(w) dw R (3.56)
0

The trace of information matrix is, tr M = f tr A S( 1 h (3.57)
Whae "vv R .

R
In the white noise case the spectral distribution is constant, S(U)) = -ma

The trace of the information matrix is, therefore,

trMw ..fmax 1 maxd = maxtrMw 'fd()arctan (j)ax (3.58)
"min 1,E2 R R max
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For a mixture of white and non-white noise:

CSlwma for 0< < w wmax

S(M : Vl+ 2 (3.59)

wmax

for e< < wWWmax - max

l ld = arctan 'w (3.60)

0it C

non-white section,

1 max v1U 2 d - 1~a d -~ ATsh(W)lmax1 lw Arsh1wl*

= w+ w r h mArsh w*tr Mnw R [arctan (w + ), with (3.61)

SWmax 1+ w - W max

The error covariance of the estimate for the non-white case
relative to the white noise case is then trMnw-I/trMw-I.

Figure 3.1 shows this covariance ratio for different degrees
of non-whiteness, indicated by the ratio Wwa/max. In

this example, the error covariance for the worst type of noise
spectrum is 64% larger than the covariance for white noise.

For higher order systems non-white noise will degrade parameter
estimates even more.

parameter estimates and should be considered in estimation predures.
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3.5 ESTIMATION OF CORRELATION

If large data sets are available the distribution function

and/or density function may be estimated. In the following,

a method for estimating the distribution function is outlined;

the density function can be estimated in a similar way.

The estimate F(x) of a distribution function F(x) may

be described by a parametric form,

F(x) = f(a, (x)), (3.62)

where x is a vector of unknown coefficients and 4(x) is

a set of independent functions of x, e.g. moment functions.

The coefficients a may then be estimated by minimizing

a suitable function of the error f(ac(x))-F(x). In the least

square sense, the estimate of a of a is,

a = arg min E[f(x, (x))-F(x)]2  (3.63)
a

If f(x, x)) is a linear function of a,

f(a,(x) = a T (x) , (3.64)

the least squares estimate CLSE) of a becomes

a = [E( T](x)x)}. (3.65)

For numerical evaluation, it suffices generally to replace the

estimate by an integral. The estimate of a becomes then,

a= [f (x) T(x)dx] "I f O(x)F(x)dx, (3.66)
R R
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.1.

where Hdx = dxi' and R is the range of x where the estimate

is desired. Kashyap/Blaydon (1968) developed a gradient algorithm

which sequentially updates estimates a when new data are avail-

able.

For the estimation of mixtures of normal or exponential
density functions, it is numerically easier to estimate the

logarithm of the density function, by either maximizing a regres-

sion criteria,

J R = E [in f(a,x)] = !f(x) In f(a,x)dx,

(3.67)

ff(a,x) dx = 1

or, equivalently, minimizing an error or information criteria

(Young, Coraluppi, 1970),

= Efln x) J = f f(x)ln f.(x) dx . (3.68)
f(a,x) f(a,x)

The estimated density function may now be used to design a maximum

likelihood estimator. The sequential correlations of the residuals

of this estimator can then be computed and adaptively or iteratively

included in the estimator.
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3.6 BOUNDING LINEAR ESTIMATOR

1 ! In many measurement systems, auto correlations of

measurement errors are known, but little information is

available about cross correlations between error sources,

correlations between system and measurement errors, and

sequential correlation (non-white errors). Hence, an es-

timator that includes a priori knowledge of cross correlations

and sequential correlations cannot be designed. Estimators

for such systems can be designed with an upper bound on

estimation errors.

3.6.1 Bounding Linear Miminum Variance Estimation

Let us assume a system,

Xk+l = Ok Xk + Fk wk, k=O,1,...,N-i

with output measurements,

Yk = Hk Xk + Vk' k=l,2,...,N,

where xk £ Rn; Yk' vk E Rm; Wk e RP.

Then a bounding estimator provides as estimate x of x, such that

E[kX Xk T ] < PB(klk).

Combining x0 , w, v in a composite state,

T T T T T Tx i: [xo0, woT, vlT,...,w i. I, vi ]

and with the composite measurement vector,

ziT: [ziT, zzT ,...,ziT],

the measurement matrix becomes,
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H 'Yo H11% 1 0 0 0

H2 0 1  H241P0  0 H 2 r 0 0
H: i mi

LH. .OO *OFj 1  Hiol. ilr 0  H i 2-oi-.cjr,1 Hiri-1  I-

n + (p+ M) i

Then the causal system can be written

Z = Hi Xi

For w, v random zero mean variables the predicted value for

the composite state x.i is

E~xi = Fi = [i1

with positive semi-definite covariance

R. = E[(x.i - 3i)(x. - RiT]

of order n + (p + m)i.

For sequentially and colored noise, the correlation matrix is,

0wO 0 Rw 0w0 R v w :w Ov2 Rw Ji
R. = R (00 Rw Rxv Rx w Rv ** Rv

Rw x R'Rw v Rw w Rwv* Rwi~lvi

RRv Rv R Rv ... Rvv
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with no sequential correlation,

Rw wk Rwjv RVk = 0 for k j

the covariance matrix Ri becomes block diagonal and the

estimator can be written in a Kalman filter type sequential

updating form. With Rvw = 0, no correlation between the

noise sources, R becomes diagonal. The estimator becomes

now a regular Kalman filter for Gaussian white noise. If Ri^1

is known, the linear minimum variance estimate xi of xi is,

xi " Xi + RiHiT[HiRiHiT]l[zi -H i I

with error covariance,

1 T T T-
E[(x i - xi)(x i - x) R - Ri Hi [HiRiHi iRi

For an estimator of the form,

xi= i + Ki(zi -Hii)

the error covariance of the estimate is

E[(x i - xi)(x i - xi )T [I - Kil i ] Ri [I  KiHi ]T

For an upper estimate Qi > R

[I -K iHi] Ri [I - Killi ]T _ I [I - K iHi] Qi [I - KiHi ]T

(pos. semidefinite if m'n). With the minimum variance gain

Ki QiHiT [HiQiHi T
]-1
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the bounding estimator is

i i QiHi [HiQiHiT -1[zi - i

E[(xi xi)(xi xi)T] £ Qi - QiHiT[HiQiHiT]-IHiQi

Since this estimate is a bounding estimator for every Q>R, Q

can be chosen such that
Q = diag Q,

and a sequentially updating bounding estimator can be designed.

The residuals of the bounding estimator may be tested for non-

white and correlated noise. This information can then be used

to tighten the bounds of the estimator.

3.6.2 Bounding Likelihood Estimators

In a similar way, for the bounding linear minimum variance

estimator bounding likelihood estimates can be determined by

deweighting the innovation sequence of a sequential estimator.

The negative log-likelihood function becomes then
^ ~T -I

NLLF = (y Hx) Q- (y - Hx) + lnIRI,

where Q = diag Q > R is an upper bound of the error covariance.

This change can be incorporated in existing state and parameter

estimation algorithms in order to get a bounding estimator for

correlated and non-white noise.

3.7 CONCLUSIONS

The estimation problem for correlated as well as non-white

noise was analyzed. Estimation for a priori known correlations

are shown. The degradation of a filter due to non-whiteness

of the noise was shown for a linear filter that assumes white

noise. Estimators that give unbiased estimates for correlated

so



and non-white noise, with bounds on the estimate error co-

variance, are shown. Further research is necessary to deal
with the problem of non-white noise due to non-linearities
and unmodeled states.
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IV. CONCLUSIONS AND RECOMMENDATIONS

4.1 CONCLUSIONS

Analysis of test results indicates that the measurement

and process noise is significantly non-white and non-Gaussian.

Some analyses indicate that 10% to 15% of the data points may
deviate significantly from non-Gaussian distribution. In addition,
numerous sources lead to non-white noise.

These errors effect both the accuracy of state and parameter
estimates as well as the estimation of accuracy levels. In
this report, techniques have been developed to treat systems
with non-white and non-Gaussian noise. These techniques provide
good estimates under given whiteness and Gaussianess conditions.

The procedures are simple and can be easily incorporated in
the standard maximum likelihood and model structure determination

methods.

4.2 RECOMMENDATIONS

Algorithms used in system identification and parameter
estimation should be modified to include the effects of non-
white and non-Gaussian noise. Such modifications are necessary

to significantly improve the accuracy with which parameters/states
are estimated.
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INTRODUCTION

In many problems of interest, the state equations are governed

by

=Fx + Gu t o0  t<T (1)

and the measurements are arrival times based on Poisson processes.

The probability of arrival in an interval t to t+At depends

on a linear combination of the state variables

p(t, t+At) = Hx(t)At (2)

Consider a scalar arrival sequence described by the above process.

Given the arrival times tI < t2 < t3 ... tN, the problem is

to estimate unknown parameters in F, G, and H.

This solution will be useful in low-intensity image processing

(where photon release follows Poisson process) and medical imaging

with radioactive tracers.

MAXIMUM LIKELIHOOD ESTIMATION

The probability density functin for arrival times

ti , i=1,2, ...N follows the equation
N (3)

2(6J ti) - f(tl,t2...tN) = -Pi e'i

i=l1
Pi f ' Hx(t)dt (4)

t. 1t -1

The negative log likelihood function (NLLF) of parameters

given the arrival times is

N
1 i-l 1i
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The first gradient of the NLLF is

z [ 1 1 (6)i=1 i -.1(

aMe-

~ x~t) + H
Mei x~t) + H -n-] dt (7)

The second gradient is obtained as follows

2 N 311. a L ( -1. i

The second gradient may be approximated as follows

a2  N 
(9)~\1.\

1

For a single count at tI , one parameter may be estimated by
setting 

tu 1= Hx(t)dt = 1 (10)

to

The second gradient matrix has a complex distribution. Its

expected value may be approximated by

( N2 J)%N iLTi (11
ie -1

where ti's are such that

t i (12)
f Hx(t)dt 1
ti-1
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COUNTS OVER A SAMPLE PERIOD

The arrival times are difficult to use in estimation when
there are many occurrences over the time period of observations.

The estimation may be based on the number of counts over a set

of sample periods. Let yj, y2 ... 'YN be the number of counts

over periot to, to+ t,~ ...to.N t. The likelihood function of

parameters e based on measurements yi, i=1,2... .N is

N y- (13)
(61y) = f(yie) = nI (i 1e')/y)

4j f .+i Hx (t) dt(4)

The negative log-likelihood function is

N
J Z l[2e~) [-y. ln(p.±) +vi. ln(y.,) (S

i=l 1 1 1 1

The first and the second gradients are

ai N (16)
iapl

31 N y.l i y au.
307 (17)~

ii

An approximation to the second gradient is

a2i N yi / a p T (18)
ae i~ ~ ae

A Newton-Raphson step may be taken in an iterative procedure

as follows
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.k+l ek - '(J4) (19)

This procedure may be continued until convergence occurs.

The expected value of the second gradient matrix is

U 76-i (20)

There is no approximation in the above equation.
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