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Governmert procurement operaticn, the United States Government
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SECTION I
INTRODUCTION

i ',-! -! ‘ R

This 1s the first Quarterly Progress Report on "Advanced Target
Tracker Concapts," NV&EOL Coutract No. DAAK70-79-C-0150, It reports

‘e the results of the work performed between 28 September and 28
December 1979.

Tracking *targets in viden from TV and FLIR sensors is essential

for fire control in weapon systems using electro-ogtical target
) . S UAUNR, ¢
acquisition, iagure*%—shed;>gypical Army applicationsp a remotely

piloted vehicle (RPV); an advanced attack helicopter (AAH);
and a combat vehicle (CV). Target tracking in these applications

yields the target position for accurate pointing of a laser de-
signator for a smart munition, such as Hellfire and Copperhead,
or for fire control of conventional weavons, —

Currently fielded trackers rely on numerical correlation cver
: successive frames on a window around the target to be tracked.

s it ey Bl

oS Several variations of the bhasic correlation scheme exist, and

a detailed survey can be found in ref. 1. Conventional trackers i
zre capable of tracking a manually acquired single target in ?
. ‘ relutively clutter-free backgrounds. But target-tracking require-

Ff i : menis in the increasingly sophisticated weapon systems have grown
beyond ype capabilities of the current correlation trackers.1 i

1Reischer, B., '"Assessment of Target Tracking Techniques," Proc.,

SPIE, pp. 67-71, Vol. 178. Smart Sensors, 1979.

/
.
), . z i
: ;

il =L L b

5
"
' . i'\ n
- v B R B W L e R T T P T LT TR SRR PR IR T S PR TR S VLR PRSP T - R L o
< . i . {
i . R Y- o NIt e
R L . : : . - X Sl T AT R




YA e e

IR e e

ju—
RPV AAH

ATTAGK MILIRPTIR

== T\, —
T @Q u&“\ —. %

W .
/ Ss . ML -
DATA TRARSMISSGR
. i PR AU :
rox ¢ - | %
v

|

Figure 1, Typical Army Scenarios Which Require
Advanced Multiple-Target Tracking
Through High Clutter

Among these requirements are: 1) automatic target detection

(acquisition), recognition, and prioritization; 2) simultaneous
tracking of multiple targets in the presence of high clutter,
obscuration, and low contrast; and 3) critical aimpoint selection.

In this program, Honeywell Systems and Research Center is develop-
ing an advanced target-tracker approach based on dynamic scene
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capabilities:

e Acquires targets automatically

e Tracks multiple targets (in and out of the field of
view)

e Tracks partially occluded targets
® Recognizes and assigns priorities to all objects

e Performs critical aimpoint selection

e Tracks in low-contrast, high-clutter backgrounds
SUMMARY OF PROGRESS

- were made in this reporting period:

3 : e A simple feature-based, object-matching algorithm
T was developed, implemented, and tested on digitized
FLIR imagery.

e A fast silhouette-based, object-matching algoritihm
was developed, implemanted, and tested. This algorithm
is capable of finding precise (to the pixel) positions
I of corresponding objects, even in the presence oi seg-
mentation noise and target obscuration.

e Dynamic models of sensor/platform motion were derived,
and several alternatives were evaluated and sucess-
fully demonstrated.

' analysis. This approach integrates the target screening functions

» with target tracking to pro‘ride sutomatic acquisition and multi-
ple-target tracking capabiliity with minimum additional hardware.

- The advanced target tracker will feature the following functional

Several significant accomplishments toward the program objectives

i it A L b




® An integrated-system simulation incorporating both
object-matching algorithms and the sensor/platform
model was implemented and demonstrated on two se-

quences of FLIR images with multiple targets from pe
moving and stationary platforms. The results demon- :
strate precise tracking capability with multiple .
targets in high-clutter scenes, as well . : detection

of minute target motion in the presence ¢ extreme

sensor motion--for moving-target detection.

‘ e A preliminary data base of two sequences (10 frames o ; 1
each) of FLIR imagery was digitized to evaluate ‘
the algorithms and the current system simulation,

The seguences represent high clutter, partial ob-
saurstion, and multiple moving targets from stationary
and hoving platforms.

® Prototype Automatic Target Screener (PATS) software
was partially converted to the NV&EOL image-pro-

! ces: ing system to facilitate the installation of the
software at NV&EOL in the next reporting period.

a6 i LAt A

T

REPORT ORGANIZATION

The remaining sections of this report are organized as follows:

e System Overview (Sectinn II) !

e Object-Matching Algorithms (Section III) N

Sbbvan n

e Scene Model (Section IV)

e
 §
e,

F"} - e System Simulation (Se.tion V)
e Data Base (Section VI)

e Plans for the MNext Reporting Period (SecionVII)
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SECTION II
SYSTEM OVERVIEW

?' . This section presents the system overview to introduce the program
approach and terminology. The subsequent sections report the pro-
gress accomplished in this reporting period against the program
objectives described in this section,

The performance goals of the advanced target tracker include:

: e Automatic target detection (acquisition), recognition,
] and prioritization.

it

¢ Simultaneous tracking of multiple targets in the
presence of clutter, obscuration, and low contrast.

o A S il L vl il

e Critical aimpoint selection.

An obvious approach to add the automatic target detection (acqui-

sition) and recognition functions to a tracker system would be to

2,3

use a target screener (cuer). The target screener would detect

i oo i sk i

2Sola.nd, D. and Narendra, P., "Prototype Automatic Target Screen-
er," Ibid, pp. 175-184.
3Soland, D., et al., "Prototype Automatic Target Screener, Goals

and Implementation,'" U.S. Army Missile Command Workshop on iImaging
Tracker and Autonomous Acquisition,'" November 1979,
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and recognize the target and "hand off'" to a separate conventional
correlation tracker by supplying the target position to center the
tracker window. Indeed, this distinct cuer and tracker approach has
been suggested.4 However, while the target screener (cuer) does
provide the automatic target acquisition capability, this approach
suffers from essentially all the drawbacks of conventional trackers
with manual acquisition; that is, multiple-target tracking requires
multiple copies of the correlation tracker hardware, and the
tracking performance through clutter and obscuration is still
limited by the correlation tracker,

The advanced target-tracker approach being developed in this pro-
gram is an integrated target-screening/tracking approach which
can provide automatic acquisition and multiple-target tracking
through low signal-to-noise and high clutter conditions. This is
done with minimal additional hardware to a target screener.

Figure 2 is an overview block diagram of the basic approach, which
builds upon the scene analysis functions performed by the target
screener to perform the advanced tracking function. The basic pre-
mise is very simple: the target screener segments and classifies
significant objects (targets and clutter) in real time on a frame-
by-frame basis. The symbolic descriptions of the objects in each
frame are used to find the corresponding objects in previous frames
encompassing the history of the scene., Once the corresponding
object matches are made, the scene model, which includes the seasor
and object dynamics as well as the target classes, is updated.
Because we are keeping track of the positions of all the objects

in the scene (targets and clutter), we can predict impending oc-
clusion and future target/background signatures. Multiple-target

4Willet, T. and Raimondi, P.K., "Intelligent Tracking Techniques -

A Progress Report,'" Proc., SPIE, pp 72-75, Vol. 178, Smart Sen-
sors, 1979.
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Figure 2. Overview of the Advanced Target-Tracking Approach

v

tracking, of course, comes free., The scene model, based on the past

history of the 3cene, can extend beyond the current field of view,

This allows reacquisition and tracking of targets which wander in
" and out of the field of view because of sensor platform motion.

3
t

1
k:

i g Not only does this approach exploit the segmentation of objects -f
' from the target-screening function, but it actually improves the a
target detection and recognition performance over single-frame

screening/cueing. First, the single-frame classification decisions :
of the corresponding objects are accumulated over several frames
' to compute an a posteriori estimate of the classification. This
f ' improves the ratio of probability of correct classification to

: false alarm by an order of magnitude. Second, target motion re-
lative to the scene is detected because of the precise matching
of object positions inherent in the approach. This is especially
advantageous in the presence of extreme platform motion, as with

. 5.-:’NH’A..*l.«-z:"'.i-nlw.l-l,"—
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an unstabilized platform on an RPV. Motion cues can ennance the
long-range target detection capability in scenarios in which a :
significant fraction of the targets are moving. Conventional o
moving-target indicator (MTI) approaches fail in these unstabilized '
moving-platform applications.

i A complete block diagram of the major functions necessary to im-

= plement the advanced target-tracker concept is shown in Figure 3.
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Figure 3. Adagﬁced Target Tracker Progrém Overview
witper, the Key Functions

These functions regpresent the major thrusts of the current program.

They are:

e Efficient motion enhanced scene segmentation schemes ;

‘ e Object-rmatching technigues capable of precise matching
?i' of objects in the new frame to the scene model derived

g from previous frames

® A scene model capable of characterizing object and plat-
ﬂ form dynamics, target/background signatures, and object
] occlusion
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° Target/background signature prediction techniques to
impreﬁe the probability of target acquisition in low
signal-to-noise ratios

e Advanced target detectioh/recognition/prioritization ;
and critical aimpoint selection algorithms, which can
exploit the dynamic multiframe information

Each of these functions is Lntvoduqed briefly below.

MOTION-ENHANCED SEGMENTATION SCHEMES

Object extraction (segmentation) in the irtegrated tracker)scre-
ener applicaticn is unique in that each frame 1s being auaiyzea

in the context of the previous frames. However conventional tech-
niques for image segmentation do no; use information from the
previous frames to segment objects hn the current frame. The
current 0r0gram useslthe Honeywe1l!Prototype Automatic Target
Screener (PATS) sugmentation algornthm 'as the baseline segmentation
approach. This segmentat1on.techn1que will be modified to incor-
porate the a priori predicted infdkmation on object/backgrouna
signatures for more optiual segmeﬂtation. This effort will be
directed at incorporating the interframe knowledge of the target
shape and intensity sigratures, as well as background charncteris-
tics expected at various locations in the frame as predicted by
the scene model below.

OBJECT-MATCHING TECHNIQUES

The key to successful tracking of multipie targets in our approach
depends on precise matching of segmented objects in the current

.
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Trame with the scene model derived from previous frames. This
allows the precise tracking of the object positions for laser
~designation or for hand-off to other subsystems. Key issues inu

of occlusion and segmentation differences due to noise, and com-
putational effic’ ncy of the algorithm. The development of object-
matching techniques has been one of the major thrusts of this pro-
- gram in this reporting period. A simple object-matchiag technique
has been developed for preliminary metching, to be followed by a
sophisticated yet fast silhouette-based object-matching technique
which yields the precise position of the target in successive
frames.

'SCENE MODEL

The scene model is a colle:tion of information from previous
irames, against which the new frame can be compared. It consists

of the object shapes and positions from previous frames, the object
dynamics (obJectfpositions and velocities), and the sensor/plat-
form motion dynamics (position and velocity). In addition, the
scene model must be capable of predicting occlusion and signature
change of a target as it approaches occluding objects. The de-
velopment or the scene model is an evolutionary process. The im-
plementation of the scene model at this time includes the estima-
tion of the sensor position based on the positions of corresponding
stationary cbjects found by the object-matching algorithms. This
scene model successiully aligns frames which have been transformed
because of sensor/platform rotion and is capable of discriminating

SIE A TSR

a minute relative target motion in the presence of extreme sensor/
platform rotion.

10

object-matching techniques are unambiguous matching in the presence

PO NPT Ree S o R Lo o)

o em 3
[P IR SRR ads

o Laii a



TARGET /BACKGROUND SIGNATURE PREDICTION TECHNIQUES 1
ﬁ; The purpose of this effort is to use the multiframe infopmation on i
?g the target position and dynamics to predict the target shape, in- _3
%é ) v tensity signaturesland position, and background characteristics ;
;i o expected at various locations in the frame. This information is E:
Ej used by the motionéenhanced segmentation scheme to improve the 3
éﬂ . target acquisition probability in the presence of low signal-to- 5
Ef . noise ratios and high clutter. c%
B :
é. ADVANCED ALGORITHMS FOR TARGET DETECTION;RECOGNITION/ '5
§y PRIORITIZATION AND CRITICAL AIMPOINT SELECTION A
; These functions are performed in current target screeners on a _g
i;j frame-by-frame basis. The purpose of this task is to use the g
gl multiframe information to improve the performance of these func- é
%_ tions in the integrated system., This improvement will be brought ‘i
j . about in two ways. First, by accumulating muitiframe decisions af 3

»

y corresponding objects to improve the classification accuracy over

- :.- : ? single-frame analysis. The second improvement to the classifica-
tion function takes audvantage of the fact that moving objects will,
in general, be targets. Thus, the problem of targest recognition :
can be improved by a moving-target detection aigorithm. In this
reporting period, we have demonstrated the teasibility of moving-~
target detection in the presence of substantial sensor/platform

} A.\ motion using these techniques. Critical aimpoint selection is an |
importunt function required in terminal homing munitions and its ;
implementation with syntactic techniques will be addressed in

O Y

et DAL s A LR Bl 1,

peomaliitite Gl ik 1Eae 4
t

o ; subsequert reporting periods.
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SECTION III
OBJECT-MATCHING SCHEMES

As noted in Section II, object matching is performed on the out-
put of object segmentation. Its purpose is to find the positions
of corresponding objects in successive frames. It is therefore
key to track the cobject positions as the sensor and the targets
move from one frame to the next. Object matching not only

finds the positions of the moving targets in successive frames
but also identifies corresponding stationary (clutter) objects
in the scene. The pesitions of these corresponding stationarv
objects are input to the scene (sensor/platform) dynamics wmodel
for computing the platform motion, as discussed in the next
section,

The key issues to be addressed in the development of succesful
object-matching algorithms are:

® Occlusion

1~

® Inconsistent segmentation

The principal effect of object occlusion (partial or total) is
that the object shape descriptors change, making it difficult to
match objects in successive frames. For example, when a target
goes behind concealing background, the leading edge of the tar-
get disappears. Inconsistent segmentation usually results from
poor signal-to-noise ratio and segmentation algorithm anomalies.
For example, objects extracted in one frame may not appear in
the subseguent frames; an object extracted as one segment in one

12
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frame may appear as multiple segments in the subsequent frames

or vice versa. The outlines of the segments extracted may change
shape drastically because of change in target/background contrast
from one frame to the next.

These issues are illustrated in the example in Figure 4, which
shows two successive frames (240 msec apart) from a sequence of
FLIR imagery of a scene containing multiple moving and stationary
targets (tanks and APCs). The two hotspots represented by A

in Figure 4a have been merged into one segment in Figure 4b, as
the two tanks move close together so as to partially occlude
each other. Other objects, such as object B, have drastically
changed their shapes. An even more challenging example is seen
with objects D and E. Object d in Figure 4b is a combination of
parts of objects D and E in Figure 4a. Object e in Figure 4b is
a combination of parts of objects D and E in Figure 4a. This
example illustrates that one-to-one, many-to-one, one-to-many,
and many-to-many object matches will have to be found. Further-
more, not all objects have corresponding matches in successive
frames. For example, object f in Figure 4b does not have a
counterpart in Figure 4a.

It is not sufficient to identify corresponding objects in suc-
cessive frames; it is necessary to find their precise positions,
This is especially important in the light of inconsistent seg-
mentations and target obscuration which can cause the shape of
the object to change drastically from one frame to the next.

To illustrate this point further, consider two objects with
drastically different shapes in successive frames. After per-
forming object association, if we use the positions of the
centroids of the object in each frame as the apparent position
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of the object in the field of view, there would be an apparent
motion (jitter) in the position vf the target, even if the tar-
get has not moved, because the centroid positions change because
of the change in target shape. Therefore, the object-matching

" technique must determine precisely how much the objects have

= N moved from one frame to the next.

- - Two distinct techniques for performing the object matching have
5_ been developed. One is the simpie feature~based object-matching
o . technique which finds corresponding objects based on simply
oo derived object descriptors such as contrast, shape, etc. It
succeeds in finding initial matches of corresponding objects
with consistent segmentations. To handle inconsistent segmenta- 3
) tions and to obtain precise positions of objects in successive
frames, a fast silhouette-matching algorithm has been developed. ]
This algorithm works on the segmented outlines of the objects 3
and rapidly converges to a precise registration of objects in 3
successive frames. The nature of this aléorithm allows it to
handle inconsistent segmentations which result in one-to-one,
one-to-many, many-to-one, and many-to-many object matches, as

NP YT o T e i 1 i e

discussed below.

R L D R - S

A SIMPLE OBJECT-MATCHING SCHEME

e ahh R

' ) A simple feature-bascd object-matching sciieme was developed to
rapidly find those objects which have nearly identical segmenta-
2 ~lons in two successive frames. Since feature matching is the
v first step in the object-matching process, it will operate on
two frames which have not been aligned to account for sensor
motion; the algorithm should not be sensitive t¢ improper frame i
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registration. Object matches found by this scheme are used to
estimate the transformation from the previous frame to the cur-
rent frame., Therefore, the matching algorithm must provide an

'adequate number of accurate matches for this estimation. The

folloving paragraphs describe the algorithm.

The PATS segmentation yields object outlines and associated
feature vectors. The feature-based algorithm attempts to match
objects between frames by comparing a subset of PATS features.
The subset contains the following features:

e Obje ¢ centroid position
e Object contrast

¢ Object area

These three features are used to find a corresponding object in
the current frame for each object in the previous frame. This
matching process is illustrated in the flow chart in Figure 5
and described in the following paragraphs.

a

The obiect centroid position is used to limit the size of the
search region in the current frame. Only those objects in the
current frame which are within a given number of pixels, N, of
the object position in the previous frame are considered for
matching. This, of course, limits the amount of frame motion
that the algorithm can withstand. However, the search region
can be made large enough, say one-eighth the frame sirze, to
accommodate extreme sensor motion.

A distinguishing characteristic of an object is whether it is

hotter or colder thar the local background. Therefore, the cbject
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contrast was chosen for use in the simple matching algorithm.
The contrast test limited the search to chose objects which had
the same sign on the contrast. This ensured matching hot objects
with hot objects and cold objects with ~ol! ones.

The centroiv and contrast tests verify that the object locutions

and intensities are similar. The comparison of object areas tests

the relative sizes of the objects to be matched. Only those
objects which differ by iess than some percentage, P, of the
area of the obhject in the previous frame are considered in the
matching process.

For a given object in the previous frame, several objects from
the current frame can pass all three tests, If this occurs, then
the object which is closest to the object position is chosen as
the match. This method will provide accurate matches when the
frame displacement is small or when the two frames are approx-
imately alighed. The approximate alignment can be derived from

a history of the platform motion or, as currently implemented

in the system simulation, by using the simple matching algorithm
to find matching objects and compute an approximate transforma-
tion. This sequence is iterated until no new matches are fcund,

The results of applying the simple object-matching algorithm to
a tactical scene are shown in Figures 6 and 7. Figure 6 is a
sequence of four FLIR {rames approxim~tely 0.2 second apart. A
coluinn of moving tanks and APCs is seen in the background, while
stationary tanks are seen in the foreground. Figure 7 shows the
results of segmeatation and object matching on this sequence.
Objects bearing the same label have been matched between scenes.
Objects not matched have new labels. Numerous object metches
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have been found. However, because of inconsistent segmentation
and target occlusion, some object matches have been missed and
some have been mis-matched.

Figure 7 points out several of the weaknesses in the simple
object-matching scheme. Note that object 23 was successfully Ej
matched between the first two frames. However, in the third %
frame, the cold region beneath the tank was segmented along with i
the target. This increased the area of the object beyond the ‘
threshold (P = 0.25), which prohibited matching. i

~ 4

1
¥
s ol e, itz e sl

Furthermore, this method does not yield the precise motion of "}
an object between frames. It produces matching pairs of objects 43{
and their corresponding centroid positions. Simply subtracting - %

T, S [ S

the centroid positions does not yield an accurate estimate of R
object motion, because the centroid position will vary with X
occlusion and with different segmentations of the object. R

Ry T

FAST SILHOUETTE-MATCHING ALGORITHM 'id

The Fast Cilhouette-Matching Algorithm (FSMA) achieves rapid and .
precise matching of objects in two frames in the presence of oc-
clusion and inconsistent segmentations and overcomes the limita-

tions of the simple feature-based approach. To accurately track
moving objects and estimate their velocity, the movement of an I
object between frames must be precisely determined. This requires

knowing the object motion to a pixel, or less. Furthermore, the f%
matching algorithm must function even when the target is occluded -
or missegmented, by matching portions of the target which are Tej
consistent between frames. -ig
¥
22
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As in the simple feature-matching élgorithm,_we wish to find tﬁes\'
corresponding object(s) in the previcus ffame(s).'ﬂoweﬁer;'the
additional requirement is that precise position of the object

must also be found. To find this movement, the outlines of .the
objects are aligned by the algorithm, so that those edges which
have been found in both frames (that is, the consiatent edges )

Ef match exactly. The dispiacement required for this alignment is
3 . the interframe object motion which is desired: Since the matching
?, is done using only those edges (or portiomns thereef) which have

- N been extrected in bnth frames, the algorithm wiil succeed even
f when the segmentation of the objects rhanges because of occlu-~
sion. The following paragraphs describe the élgorithm.

L The FSMA also useé the output of the PATS segmentation for object
matching. In addition to using the object centroid position and
contrast, FSMA also uses the object outline (silhouetté) in the 3

2 e Sy e e - o,

'
i
E
A
v
1A

matchiag process. ) "

As in the simple feature-matching algorithm, tilé sbject centroids
are compared to limit the size of the search régicn in the cur-

rent frame. The centroids are also compared {o the object outlines
to see if an object in the current frame could be included in the

NSt WL et et N e

T P R I T e !
S .

object from the previous frame.

- .

Figure 8 illustrates this initial pruning step. If only the dis-
tance between centroids was examined, thi®n the object in the cur-
rent frame would have beer incorre~tly excluded from matching
with the object in the previous frame. However, when the check
for inclusion is made, the current object passes the test and
the matching will continue. Similarly, if the centroid of an
object in the previous frame falls within the outline of an
object in the current frame, then the matching will continue.
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This allows for precise matching in the presence of irncomplete
segmentation, The contrast feature is used, as in the simple
feature~-matching algorithm, to prevent further processing of
hot-to-cold object matches. Similarly, only the sign of the con-
trast is checked, and the object eliminated if it does not match

the object in the previous frame.

CURRENT FRAME
OBJECT CENTROID

CURRENT FRAME
OBJECT QUTLINE

PREVIOUS FRAME
OBJECT CENTROID

N-PIXEL SEARCH
PREVIOUS FRAME
OBJECT OUTLINE T FRAME | CURRENT

Figure 8. Centroid Test for FSMA

The precise matching is performed by the silhouette-matching
algorithm. The algorithm will shift the object outline found

in the previous frame until similar parts of the outline have
been matched with an object in the current frame. The algorithm
determines the amount of the shift by histogramming the dif-
ferences in the endpoints of the object outlines. A flow chart
of the algorithm is shown in Figure 9 and a description of the

algorithm follows.
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FIND THE PEAK

IN THE HISTOGRAM
AND SHIFT THE
OBJECT OUTLINE
BY THAT NUMBER
OF PIXELS.

X

CONSTRUCT
Y-DISPLACEMENT
HISTOGRAMS .

¥

FIND THE PEAK

IN THE HISTOGRAM
AND SHIFT THE
OBJECT OUTLINE
BY THAT NUMBER
OF PIXELS.

IS
THERE
ANY CHANGE
IN THE
0BJECT
POSI;I'ION

SILHOUETTE
MATCH HAS

BEEN FOUND.

Figure 9. FSMA Flow Chart
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The first step in the matching process is to calculate the left-
edge X-displacement histogram, This is found by histogramming
the differences in the columns positions of left-edge endpoints
in each line for the two objects. The number of points in the
histogram will be equal to the number of lines (rows) which
contain both objects. This process is shown in Figure 10a. A
similar histogram can be constructed for the right-edge end-
points of the object as shown in Figure 10b.

After forming the histograms, the X-displacement of the object
is determined. The peaks in both the left- and right-edge
X-displacement histograms are found. The larger of the two peaks
determines the correct X-displacement. In Figures 10a and 10b,
the left-edge histogram has yielded the highest peak. Therefore,
the X-displacement of the object is found to be +3 pixels.
Furthermore, because the right-edge histogram did nct yield a
peak at +3 pixels, only a left-edge match will be declared at
this time.

Before forming the Y-displacement histograms, the X-displacement
found in the previous step is used to displace the coordinates
of the silhouette. Now, top-edge and bottom-edge Y-displacement
histograms are formed as shown in Figures 10c and 10d. The peaks
in these two histograms both occur at the same place, +2. In
this case, the Y-displacement is set to +2, and both a top-edge
and bottom-edge match are declared.

The two-pixel Y-displacement is removed from the coordinates

of the silhouette, and X-displacement histograms are formed again
in Figures 10e and 10f. The peaks in both the left- and right-
edge histograms are equal and both occur at -2. Thus, the X-
displacement is set to -2, and both a left-edge and right-edge
match is declared.
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Figure 10. Silhouette-Matching Example
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- Figure 10. Silhouette-Matching Example--Concluded
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The results ot the matching example are shown in Figure 10g. The v
objects are periectly aligned and the total object displacement )
has been computed. The example in Figure 10, of course, is con-
trived and serves “ !'llustrate the scheme. Real-world objects
will not be segmen.: “dentically in successive frames nor will
> they present such continuous edges.

The real-world object-matching problem will look like that of
Figure 1la. Note the displacement and different segmentations in
the two frames. The left- and right-edge X-displacement histo-
grams are shown in Figure l1lla. The displacement indicated by the
histograms is six pixels and a left- and right-edge match was
indicated. These histograms were computed in the same manner as
those in Figures 10a and 10b.

Because of the nature of the PATS segmentation algorithm, the
Y-displacement histograms are computed in a manner somewhat
different from that which was described for Figures 10c and 10d.
Because of line~wise processing implicit in PATS, objects ex-
. tracted by PATS tend to have long, flat top and bottom edges.
% 7 If the Y-displacement histogram were computed over the entire
f I length of the object, it would be biased by the long top and
bottom edges. Therefore, the Y-displacement histograms are com-
puted for only those points which are in the left or right edge
K S of the object. Figure 1llb shows the original objects which the
six-pixel X-adjustment and the left- and right-edge Y-displace-
ment histograms. A displacement of -2 pixels is indicated by the
histograms. Note that the peak of the right-edge histogram was
used to compute the disnwlacement (-2 pixels) although the left-
edge histogram also gave two peaks of equal size at -3 and -4
pixels. This is because the histogram peaks are implicitly scaled
by the total number of edge points. Thus, a peak of two out of
two edge points is greater than a peak of two out of six edge

L e e e e T L e e S i, S B B i e e et M B, T A i L o= - 2 R et i AT N ey

A i 3L

%

it il ;

points.
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Real-World Silhouette-Matching:

Example 1
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No further displacement of the object is indicated. Note that in
Figure 1llc similar portions of the right edge have been aligned
exactly., Other examples of Fast Silhouette-Matching are shown

in figures 12 and 13. Figure 12 is the outline of a moving tank,
while Figure 13 is a group of trees.

The result of applying the FRMA to all the objects in a tactical
scene is shown in Figures 14 and 15, Figure 14 shows two FLIR
scenes taken approximately 240 msec apart. Figure 15 shows the
segmentations of the two scenes with matching objects bearing
similar lapbels. Note that object 4 in the first frame was seg-
mented into two objects in the second frame. Both these objects
were found to match object 4. Similarly, note that the two objects
labeled "3" in the first frame have been correctly matched to
one object in the second frame. These examples of one-to-many
and many-to-one matching show the capability of the algorithm to
find matches in the presence of inconsistent segmentations.

A significant feature of this iterative algorithm is its rapid
convergence. In Figure 10, three iterations were required to find
the precise silhouette match. An exhaustive search of all possible
object positions would have required, in the worst case, search-
ing an area of 4 x 4 pixels, or 16 iterations, to find the two-
pixel motion of the target. Furthermore, the number of iterations
required by an exhaustive search technique will be proportional

to the square of the allowed target motion. The convergence of the
FSMA, on the other hand, does not depend directly on the amount

of displacement.

Another feature of the algorithm is that it allows the tracking
of a specified location on a target. Given a point on the target
in one frame, we wish to find that same point in the next frame.
The FSMA tells us which edges of the object have been matched
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Figure 12. Real-World Silhouette-Matching: Example 2

32

¢ euthaniell'

i i

ot 1 B2, 2 S bt . e i L

1) Ll Bl i

L b

e e AR

Lo dusamaialid e

e Ve T T ean)




ot Sl Grumaiteh Ll it 9 T A P

m ¥
4
e i
—~
£
%
L ] . 0
[ [ 2 :
L w r o 7
- n = = .o m m B . ;
- M b Mnn LR N ﬁ4 o F T P ) 4 $
3 =4 8 1 = K
t m |4 o b4 eeoelm e F @ 2 — i
<« « ] «a o !
b T of?_ F3 selto I . ﬁ2 E b
= = R R 9
I~ & i * i E =
¥ = = o = —_— O = 5
! o uw ———e—y O g —r-— ] ut wid M :
1 M_u._c Q ﬁc br1s] . :
m TR Y ] X DM YR EEEE Xl WH\._ o2 000 b ..n.w._M es oo b ED..M o 4
Wwa a o~ o o. :
m evocenss oo by O u.oooc...to.&- Mmu eo by o ®esev e fa/.. | =d7] L .
. g g2 L2 27 s W
w QOOOIOOQQlﬁJ; ¢ ttf.c-. ax F o > oo N > % u
i o
H et -7 e r ¥ 4 3 » ”
H L o Ko o ;
H eoftw . 0 <=
H D-% orf P
t w
: 4
M g} ’
: — !
a P
i 2 " :
: 3 o ;
: w b
| 2 S B i
w -4
: "M w — a
: = i < 3
i = 0 < Q :
(=3 4 .
: bt = = 21
. = = , 5 M
. e }
; 4 2 2 .
‘ % it ! & . .
: o .
; < ] 1 pr: o 3
“ = o _, zy — A
: = < : uw S
: - = = o
G = _ ]
i ~
L =
']
-
=

EINARE I 0] s pan < e e s

: . . _ = wme EES =
* - > ¢ - v . . - e =




i

¢

o -

4

s

T

.
.‘:.

5

¢ .
(: »
3

N

Figure 14.

Two FLIR Inages,

From

o

a

)

Moving Platform

¥

34

i e eaaceis

From a Sequence

P — e s g

: i T R
bl At e e ot - a1

e bk et L AR ittt

PUESU SIS WUS TEP BT NS

b e A

ol

TEP I T IR BT

]



i e TR AT 1

ke A Tt Gl

=
i‘.
f

.f

.
(a)

3 T2

AR

(h)

Figure 1&. g»svlt of Segmentation and Silhouette-Matching.
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-to-many match of object 4 and many-to-1

match of object 3.
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between frames. If we calculate the location relative to the
matched edges in the previous frame, we can then find the same
location, relative to the matched edges, in the current frame.
In this manner the specified location can be tracked between
frames. This is critical for the homing scenario and for laser

iy

designation.

The FSMA has performed well on the test images which have been

. tried. Most matches are found within two to three iterations
and few incorrect matches are made. However, the sensitivity of
the algorithm to the initial object positions and extremely dif- _
ferent segmentations has not been studied. The study of these ‘E
topics as well as the verification of the algorithm on a larger
sample of objects will be done during the next reporting period.

AR TT T AT ITR <  mwe y
. ' . el g0
P

L
i

We have demonstrated two object matching schemes in this section. ;
We have found that the simple object-matching scheme succeeds in '
finding dorresponding objects in successive frames in unambiguous

cases, Because of its computational simplicity, it is useful in .
providing an initial estimate of scene motion for input to the B
scene uiodel, as we will see in the next section. It also serves :i*
to compute the initial values for the more sophisticated silhou-
ette-based object-matching algorithm. The silhouette-based object-

matching algorithm was found to perform extremely well even in
the presence of target obscuration and inconsistent segmentations
from one frame to the next. The algorithm was also demonstrated
to be computationally elegant and simple and does not require

an exhaustive search to find the optimum match. Both the simple
algorithm and the sophisticated silhouette-based algorithm are
used in the advanced target systems simulation, as we will see in

-
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=
L
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F' the systems simulation section.
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‘SECTION IV
SCENE MODEL

The primary function of the sc:ne model is to keep track of and
infer informatior about objects in the scene as Well as the plat-
form dynamics derived from the analysis of the previous frames.
More specifically, the scene model comprises:

-? o e Platform dynamics (position and velocity} H

® Object dynamics

e Object shapes and classifications
v - e Occlusion prediction e

Shape prediction

—..—_'
v

e Background prediction

"t The platform dynamics correspond to the motion of the sensor and
the RPV (or the AAH) and its impact upon the received image. i
Knowledge of the platform dynamics is useful both in finding the ;
relative motion of targets with respect to the scene and in pro-
viding scene-track information to the platform gimbals if scene
stabilization is required. Platform dynamics are computed from the
positions of corresponding clutter (stationary) object matches.

e S TR A e

Individual object positions computed by tie segmentor and the ob-
ject matcher are used to compute the individual object dynamics
vver several frames. Ohject dynamics can be represented either
relative to the sensor field cof view or relative to the scene
after the platform dynamics have been accounted for. The former

e ) Ui~ i

i T e
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is useful for multitarget tracking -- say for laser designation --
where only the positions of the target relative to the current
field of view are desired. The latter also estimates the motion

of the target relative to the scene (independent of the sensor
motion) and permits target/clutter discrimination based on motion,.

Because the scene model keeps track of all the object positions,
as well as the background characteristics in different regions of
the image, it can be used to predict the onclusion of objects that
are moving toward each other, an object which moves into a low-
contrast background, etc. The shapes of occluded objects can also
be predicted so that the object matcher can use the predicted
shapes to perform better matches in successive frames. Furthermore,
the artificial intelligence capability of the scene model will
allow inference of the target shape from its segmentations in
previous frames. For example, if multiple segments of an object
appear to move together over several frames, then the inference
is that they belong to the same object.

In this reporting period, we concentrated primarily on the esti-
mation of platform displacement from the result of object-matching
algorithms described in the previous section. We have successfully
demonstrated that the platform dynamics can be computed accurately
(to the pixel) using the techniques described below.

Three increasingly complex models of scene motion have been de-
rived. The three-parameter model estimates rotation and transla-
tion of the field of view from one frame to the next. Therefore,
it does not account for the motion of the sensor in space. A more
complex five-parameter model allows sensor motion, but only in the
vertical plane containing the target. A complete six-parameter
model can account for sensor translation and rotation as well as
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the sensor motion in free space in all three degrees of fiecedom.
This model has been implemented in the system simulatlon and the
results are shown in the system simulation section.

THREE-PARAMETER ESTIMATION OF SCENE MOTION

Consider a sensor fixed at a point in space and free to rotate
about all three of its axes as shown in Figure 16. We will show
the effects of these three rotations on the field of view (FOV)

of the sensor.

Figure 16. A Sensor Fixed in Space

Rotation about the ¢1 axis by an angle, 6, will produce a similar
rotation of the FOV. The rotation of the sensor has caused an ap-
parent rotation of all objects in the FOV. This is illustrated in
Figure 17. If the sensor is rotated about the ¢2 axis, as shown
in Figure 18, then there will be an apparent vertical motion of
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all the objects in the FOV. The slight distortion caused by the
different viewing angle is neglected by this model. Similarly,
rotation about the ¢3 axis will cause an apparent horizontal dis-
placement of all the objects in the FOV,

If the platform velocity is small, compared with the sensor in- ;
stability, this three-parameter model estimates the apparent
motion of the sensor. This is done by finding least squares esti-~
mates of the following quantities:

- e
et o i ke i

e 6 - angle of rotation about ¢1.

T AT R A AR e e
»

RS TG TRRETPO

® XO - horizontal displacement caused by rotation about ¢3.

° YO ~- vertical displacement caused by rotation about ¢2.

The locations of matched-object pairs are used as input to the
least-square estimator as follows.

Let (x,y) be the position of an object in the previous frame and
(x“,y”) be the position of the matching object in the current

frame. :

L, .
R R oo s SLRVTE

Tind 0, x Yo such that ' ]

f)’

- WEHE WA W e deed s e e e e b bl ened e em eaw AW

. cos 6 sin 0 x X X ;

e -sin 8 cos © Vo y Al i

3

E};: is a minimum, or

afl ]
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T;V E[(x cos 6 + y sin 6 + X, - x’)2
+ (~x sin 6 + y cos 6 + y -y’)2]=E
L 0 J
i
: is a minimum.
3
E) Differentiating with respect to 8, x_, y, and distributing the
b expectation yie’ds the following equetions:
.
E e
E 35 (Ey) X, cos 8 - (Bx) x, sin 8 - (Ex) Y, €os 8
- (Ey) y, sin 6 + [(Exy‘) - (ny‘)] cos 8 o
? + [(Exx‘) + (Eyy‘)] sin 9 ;
3! - - . p . J
ol (Ex“) - (Ex) cos 8 - (Ey) sin 68 - N :
o
22 = (By") + (Bx) sin 0 - (Ey) cos 6 - y_
Yo g
Equating these to zero and solving for 0, X and Yo yields the %‘
following equations: : ‘
»
A~ S xl - Sx -, ‘ \i
tan 8 = SX r— J (1) .
xx” " Cyy”
x, = (Ex") - (Ex) cos ¢ - (Ey) sin @ (2) B
Vo = (Ey”) + (Ex) sin 6 - (Ev) cos 8 (3)
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where
Snb = (Eab) - (Ea) (Eb)

Because we are given the pairs of points (x,y) and (x",y”), we can

calculate Syx”, Sxy”, Sxx”, and Syy”. Combining these in Fquation

(1) yields tan 8. Since 6 represents the rotation of the sensor

between frames, we can assume that 6 lies in the interval -80° <

6 < 90° and take the inverse tangent to find 6. Then, using Equa-
and Vo

tions (2) and (3) we can find the values of X,

FIVE-PARAMETER ESTIMATION OF SCENE MOTION

The three-parameter solution assumes that the motion of the sensor
through space can be neglected. For high-velocity aircraft (muni-
tion or RPV), this is not a valid assumption. The five-parameter
model allows the sensor to rotate about its three axecs and also to
move in the plane defined by the ¢3 and ¢1 axes. Sensor motion
within this plane causes the FOV to increase (as the sensor moves
away from the scene) or decrease (as the sensor approaches the
scene). This change in the FOV introduces a linear scale change,
in both horizontal and vertical directions, into the transforma-
tion from the last frame to the current frame. The transformation
then assumes the following form:

cos 6 + klisin ) X, X _ [x ]

-sin 6 ‘cos 5 + kzjyo y
1

Note here that k1 and k, are scale factors in the x and y direc-
tions, respectively.
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The least-square estimates of the 5 parameters 6, Xor Y1 kl’ and

k2 can be calculated and yield the following values:

S - Sxxs ( - S, ,») -8_,.8

S IS S -, JS
sin 6 = XYYy UxX Y§ Xy yX Xy xx““yy
SxxSyy = Sxy xy) (Sxx * vy’

- Sxx‘ - Sxx cos 6 - SKY sin ©
1 ‘S;x

S. .. -8 cos 8 + Sxy sin 6

k, = - A T

vy
X, = Ex® ~ Ex (cos 6 + kl) - Ey sin 8
Vo = Ey” + Ex sin 6 - Ey (cos 8§ + kz)

SIX~-PARAMETER ESTIMATION OF SCENE MOTION

The six-parameter scene model allows the sensor to rotate about
its axis and also move in any direction in space, This is the
transformation which is currently used in the system simulation.
It has the following form:

I-all 812 213 | ¥
La21 492 293 |V
1

i
»
[T |

Y
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The least square estimates for the 9.1‘j will minimize %
;

2 .\2
+ (agyx + aggy + ayg - v

E [(allx + 80y * ay4 = Xx%)

b N Solving for By 4 vields the following two matrix equations: 3
i o - ad - 7
b "Ex2 Exy Ex| fa,, Exx” 3

SR |

E, Exy Ey2 Ey ayo| = Eyx“| and b
N Ex By 1| |a Ex* ?
E. L X y 1 P13 i X ]

Je

i 2 16 1 Texol ;
El Ex” Exy Ex 894 Exy 3
% Exy Ey2 Ey| |agy,| = |Eyy~ ;
; _Ex Ey 1 1 [®23. _Ey 1 i

Given the positions of the matched objects (x,y) and (x”,y”), the
expected values can be calculated and the two sets of equations

N ki i b L it

can be solved for the six parametecrs.
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SECTION V
SYSTEM SIMULATION

The previous sections discuss the progress during this reporting
period on two key facets of the advanced target tracker system --
the object-matching techniques and the scene model. These indivi-
dual techniques have been incorporated into a complete systems
simulation of the advanced target-tracker system in the Honeywell
Image Processing Facility. This simulation allows the evaluation
of the algorithms as they are developed in the system context.
This section discusses the status of the system simulation and
simulation results on two sequences of FLIR images from moving
and stationary platforms. The results demonstrate precise track-
ing capability with multiple targets and high clutter scenes, as

well as moving-target detection capability, even with unstabilized

moving platforms. This system simulation will be expanded as new

algorithms and software are developed for such factors as occlu-

sion prediction, target/background signature prediction, and ad-
vanced scene models.

A block diagram of the current system simulation is shown in
Figure 19. The simulation currently consists of the following

software modules:

e PATS segmentatioa
e Simple object-matching

e Fast silhouette-matching
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1) Finds object outlines

PATS
and object features
SEGMENTATION s o

current frames .

N\

= a 1) Pg?vldes Imatchlng--
) SIMPLE OBJECT- foacLoa st
4 . pproximate
3 MATCHING interframe scene
motion,
Fae N
E ,
P " 1) Finds all object
: FAST !
; - matches (1-to-1
a&#gg&gﬁ 1-to-many, etc.)’.
' 2) Finds precise
: object location, ;
Lo 3) Finds precise interframe z
* scene motion.

4) Finds interframe
object motion,

PRy R P TRORRR

Figure 19, System Simulation Block Diagram

In the system simulation, the PATS segmentation is applied to the
two input frames. This produces a list of object outlines and
features which will be matched. Thu simple object-matching algo-
rithm matches objects between the two frames to find the approxi-
* N mate interframe scene motion. This approximate transformation is
L applied to the objects in the previous frame and the Fast Sil- :
houette-Matching Algorithm is applied. The FSMA will match all é
l the objects which are present in both scenes and find their exact
» displacement. Using these matches and th2 determined displacements,
Qf‘ l a finer estimate of the scene motion cau be computed. Finally, the
|

PP P PO

Rkt

T i e

results of scene motion model and object matching can be combined
to yield an estimate of the interframe object motion.
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The advanced tracker system simulation block diagram has been ex-
panded in Figure 20. We can see that simple object-matching is
first applied to the objects found by the PATS segmentations. The
centroids of the matched objects are used to calculate an aHproxi-
mate transformation from the previous frame to the current frame.
This transformation is then applied to the objects from the previ-
ous frame. Simple object-matching is applied to the adjusted ob-
jects from the previous frame and the current frame objects. The
second application of the simple object-matching scheme will, in
general, find more matches than the first. This is due to the better
frame alignment after applying the approximate transformation.

If more matches have been found during the second pass, then a ‘
new transformation will be computed. This sequence is iterated 3
until no new matches can be found by the simple object-matching v
scheme. |

After simple object-matching, the two frames have been brought A
into approximate alignment and the Fast Silhouette-Matching Algo- .yd
rithm is applied. The FSMA will find all object matches between o
the two frames including the one-to-one, one-to-many, many-to-one,
and many-to-many object matches which were not found by the simple
matching process. The FSMA also determines the precise location 13

B prtans
inka ol Lol 1

of the objects in the current frame. Using these precise locations, -i3

an accurate estimate of the interframe transformation can be made. .

.
"y

Using this transformation, we can predict the location of a pre-

-k

’
[ S

vious frame object in the current frame. Subtracting this predicted
location from the actual location found by the FSMA yields an esti-
mate of target motion relative to the background. This velocity

[P
[

will be used in future versions to predict occlusion and to aid
in tracking the target if it leaves the FOV,

L st L oot s 111 o i+ 2 e
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PATS SEGMENTATION OF
CURRENT FRAME AND
PREVIOUS FRAME

4
SIMPLE FEATURE -
MATCHING ALGORITHM

SAVE PAIRS OF POINTS (P,P%.

P = LOCATION OF OBJECT IN
PREVIOUS FRAME.

' LOCATION OF MATCHING
OBJECT iN CURRENT FRAME.

FAST SILHOUEYTE-
MATCHING ALGORITHM

ARE
THERE MATCHES
RS WhcH

P = LOCATION OF AN OBJECT
WERE NaT FOuD I IN PREVIOUS FRAME .

P’ LOCATION OF THAT OBJECT
IN THE CURRENT FRAME.

SAVE PAIRS OF POINTS (P, P .

L ]
ADJUST ALL OBJECT POSITIONS
S T o Y To USING STORED (P, P") PAIRS,
ACCOUNT FOR INTERFRAME  fab— coMpuTe APPROXIMATE USING STORED PAIRS (P,P 3.
MoTI0 TRANSFORMATION. M T2 ECURAT
TRANSFORMATION,
K=1

DOES

0BJECT

THE PREVIOUS FRAME
HAVE ATCH

IN CURRENT
FRAME

Figure 20. System Simulation Flow Chart
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USING SCENE MOTION MODEL, PREDICT
THE LOCATION OF OBJECT K IN THE' .
CURRENT FRAME. CALL THIS VALUE P.

y

DEFINE OBJECT MOTIOw AS ACTUAL
OBJECY POSITION IN THE CURRENT
FRAME, AS FOUND BY FSMA MI;JU%
THE PREDICTED POSITION, drP =P,

1&

K=K+1

K< NO. OF OBJECTS IN
-PREVIOU,S FRAME

Concluded
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Figure 20, System Simulation Flow Chart--

Results of the system simulation are shown in TFigures 21 through
30, Figure 21 shows a sequence of three FLIR images from high
velocity aircraft. A small moving target can be observed near the
center of the image. Because of the sensor motion, we can see tlie
translation and rotation between the images. Furthermore, the
movement f the aircraft toward the target has caused dilation
(scale change) between frames,

Yigure 22 shows the three segmentations superimposed. Again, note
the translation uand different segmentations between frames. In
Figure 23 the frames have been aligned to account for sensor
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Figure 23. Object Outlines After Alignment
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motion. Note the alignment of the stationary clutter objects and
the movement of the tank between frames in the magnified portions
of the aligned frames in Figures 24 and 25.

To judge the effectiveness of this scheme for moving target detec-
tion, the apparent motion of each object (which appeared in all
three frames) was computed after compensating for the sensor mo-

tion. The moving tank had a cumulative displacement of seven

pir- . ‘>ver the three-frame sequence), while all other objects
ga. ~ vise to net displacements of less than two pixels. Note
that this encouraging result was obtained from only three frames.
1t is expected that filtering the displacement over several con-
secutive frames with Kalman filters will discriminate the con-

) o e A A AR, Nl i e A - s el

sistent target motion even better,

Figure 26 shows two FLIR frames from a sequence of 10 which were
input to the system simulation. Even though these frame. were

I T o TR T T SR R

taken from a ground platform, they exhibit slight interframe

.

scene motion, The scene motion is removed and the segmentations
of the two frames are superimposed in Figure 27. Note the alignment
of the stationary targets in the foreground and the movement of

the objects in the background. Magnified views of these targets

are shown in Figures 28, 29, and 30, A stationary tank from the .§
foreground is shown in Figure 28, while a moving APC and a tank i

AN an e

are shown in Figures 29 and 30, respectively.

These examples have demonstrated that precise object position

tracking can be achieved even when the platform and sensor are E
moving rapidly as in the AAH, RPV, and CV applications. These '
examples also illustrate the power of the approach in detecting

minute relative target motion in the presence of extreme platform
motion,
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(a)

(b)

Figure 24, Magnified View of Aligned Clutter Object Outlines
in Figure 23
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Figure 25. Magnified View of Moving Tank Outline
in Fignre 22

(b)

Figure 26. Two Successive FLIR Frames From a
Stationary Platform
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Figure 28. Magnified View of Stationary Tank in Figure 27,
After Frame Alignment., Note precise registration,

Figure 29. Magnified View of Moving APC in Figure 27

Figure 30. Magnified View of Moving Tank in Figure 27

57

CHaRMALE U oayea L

o e et ) AR ;

P

S o KL b i R 5 R o ST S, _,




S g AT w

SECTION VI
DATA BASE

This section summarizes the continuing tracking data base genera-
tion effort. An extensive FLIR video tape library of tactical
targets in various backgrounds exists at Honeywell, acquired from
NV&EQL and other sources under the current program and several
others. Qur approach to the selection and digitization of sequences
for the simulation effort in this program will continue to be
evolutionary. As each algorithm or subsystem is developed, we
select image sequences which contain the features required for its
evaluation. For example, the two FLIR sequences which have been
digitized to date contain multiple moving targets with occlusion,
from a stationary platform and a moving target from a fast moving
platform. These have served to test the platform motion estimation
and multiobject precision tracking capabilities. One of our next
sequences will contain maneuvering targets, to test the object
dynamics estimator to be developed next.

Following is a partial description of our video tape library con-
taining the FLIR image sequences we have digitized to date.

The video tape data base for the verification of the algorithms

we have discussed consists of six video tapes from FLIR and visual
sensors. The six tapes contain interesting homing and tracking
scenarios which will exercise all aspects of the tracking algor-
rithm. The following paragraphs describe the different data
sources and show examples of the imagery they contain.
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NV&EOL "FORT POLK'" SELECTIONS

This 525-line video tape was taken from a FLIR sensor mounted on a
ground platform., Contained in this tape are examples of multiple
moving and maneuvering targets in a high-clutter environment.
Figure 31 shows a sequence of 11 frames which have been digitized.
The entire sequence represents approximately 2 seconds. Note that
some targets are occluded by the trees in the background and by
the other targets in the image. This video tape also contains
several examples of small long-range moving targets (from a wide
field of view).

HIGH-PERFORMANCE AIRCRAFT SELECTIONS

This 525-1ine video tape was taken from a common-module FLIR sensor
mounted on a high-performance aircraft. This tape provides exam-
ples of extreme sensor and platform motion. Figure 32 shows a
sequence of eight digitized frames from this tape. Note the changes
caused by platform motion and also the number of clutter objects

in the scene. This sequence also contains a moving target.

NV&EOL FLIR TRACKING DATA BASE

These two 525-line video tapes of common module FLIR data contain
both moving and stationary targets at various ranges. These tapes
also provide some examples for the homing scenario. Two frames
from this tape are shown in Figure 33.
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PATS TRAINING DATA BASE

This is an 875-1line video tape from a common-module FLIR sensor
mourted in en air platform. The targets from this tape include
tanks and APCs from several aspect angles. Examples of this tape

are shown in Figure 34.

NV&i:OL TV TRACKING TAPE

This is a 525-line tape taken from a helicopter mounted TV sensor,
This tape contains examples of gross sensor motion and multiple
moving targets. In some sequeinces the targets leave and reenter the
FOV because of the sensor platform instability. This tape also con-
tains some good examples of the homing scenario.

65

. S e A, .
SR A e T e B O e B T vl




R e DA S At R et I A

i
S
]
- (h)
'f
Figure 34, DPATS Training Data Base
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SECTION VII
PLANS FOR THE NEXT REPORTING PERIOD

This section outlines the program plans for the next reporting
period. Emphasis will be on:

e PATS simulation transfer

e Object-matching algorithms

e Scene model

e Background prediction techniques

e Advanced target recognition techniques
e Homing algorithms

e Data base generation

PATS SIMULATION SOFTWARE TRANSFER
The PATS simulation software, which has been converted to the

EIKON image-handling formats, will be installed on the NV&EOL
IBM 360 facility in this reporting period.

OBJECT MATCHING ALGORITHMS

Evaluation of the Fast Silhouette-Matching Algorithm will continue
to characterize its performance and validate it with new data.
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In particular, the number of iterations required and performance
as a function of the initial position will be determined.

SCENE MODEL

The scene model which now contains only the platform displacement
estimator will be extended in numerous ways. The scene motion
model will be extended to include multiple frames from the cur-
rent model which uses frame pairs. This implies matching objects,
not only from the previous frame, but also from the preceding
several frames. Inference techniques will be developed to asso-
ciate multiple segments of the same object, for comparison with
the new images. Using Kalman filter techniques, the apparent
motion of both the objects and the platform derived from success-
ive frames will be filtered over several frames to derive robust
estimates of the platform and target motion dynamics. Object
occlusion prediction will also be incorporated in the scene
model .

BACKGROUND PREDICTION

Techniques for characterizing backgrounds (e.g., texture) will
be developed. This will be incorporated in the motion-enhanced
segmentation scheme to improve its performance, using the pre-
dicted target/background signatures.

68

Coi A a,

PO P e P I

S et ek




.- ADVANCED TARGET RECOGNITION TFCHNIQUES

Single frame target recognition algorithms developed under PATS
will be improved to use the information from multiframe object
matching in two ways -~ first, through the accumulation of the
decisions over several frames and computing the a posteriori
probabilities; and second, through moving-target detection using
target motion computed by the precise object-matching techniques.
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HOMING TECHNIQUES

é _ This includes the development of algorithms for critical aimpoint
. selection. Syntactic component recognition techniques developed

A under the "Automated Imagery Recognition System"* program will be
applied to homing sequences to recognize target components and
hence critical aimpoint selection.

- DATA BASE

3

£

E The preliminary data base will be expanded by digitizing new

! ’ sequences from our video tape library which contains maneuvering
targets, target occlusion, and varied background signatures,

The development of the data base will run parallel with the
development of the algorithms as the need arises for representa-
tive scenes for evaluating the algorithm.

*DARPA Contract No. F33615-76-C-1324.
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