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NOT ICE

When Government drawings, specifications, or other data are used

Government procurement operation, the United States Government

theebyincurs no responsibility nor any obligation whatsoever;

andth fact that the government may have formulated, furnished,

or in anyj way supplied the said drawings, specifications, or other I
data, is not to be regarded by implic tion or otherwise as in any

manner licensing the holder or any other person or corporation, or
conveying any rights or permission to manufacture, use, or sell

any patented invention that may in any way be related thereto.
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SECTION I

1] INTRODUCTION

This is the first _uarterly Progrc.•s Report on "Advanced Targetb Tracker Concepts," NV&EOL Coutract No. DAAK70-79-C-0150. It reportsK the results of the work performed between 28 September and 28

December 1979.

Tracking targets in voidle from TV and FLIR sensors is essential

for tire control in weapon systems using electro-optical target

acquisition. 4r • t e-'- ypical Army applicationsA a remotely

piloted vehicle (RPV), an advanced attack helicopter (AAH);

and a combat vehicle (CV). Target tracking in these applications
yields the target position for accurate pointing of a laser de-
signator for a smart munition, such as Hellfire and Copperhead,
or for fire control of conventional wearons. .

Currently fielded trackers rely on numerical correlation ever

successive frames on a window around the target to be tracked,

Several variations of the basic correlation scheme exist, and
a detailed survey can be found in ref. 1. Conventional trackers

are capable of tracking a manually acquired single target in

relatively clutter-free backgrounds. But target-tracking require-

ments in the increasingly sophisticated weapon systems have grown

beyond tpe capabilities of the current correlation trackers. 1

iReischer, B., "Assessment of Target Tracking Techniques," Proc.,
SPIE, pp., 67-71, Vol. 178. Smart Sensors, 1979.
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Figure 1, Typical Army Scenarios Which Require
Advanced Multiple-Target Tracking .
Through High Clutter

Among these requirements are: 1) automatic target detection
(acquisition), recognition, and prioritization; 2) simultaneous
tracking of multiple targets in the presence of high clutter,

obscuration, and low contrast: and 3) critical aimpoint selection.

In this program, Honeywell Systems and Research Center is develop-
ing an advanced target-tracker approach based on dynamic scene I

2
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analysis. This approach integrates the target screening functions

"-* with target tracking to pro',ide automatic acquisition and multi-

ple-target tracking capability with minimum additional hardware.

The advanced target tracker will feature the following functional

capabilities:

• Acquires targets automatically

* Tracks multiple targets (in and out of the field of

view)V Tracks partially occluded targets

o Recognizes and assigns priorities to all objects

o Performs critical aimpoint selection

o Tracks in low-contrast, high-clutter backgrounds

SUMMARY OF PROGRESS

Several significant accomplishments toward the program objectives

were made in this reporting period:

* A simple feature-based, object-matching algorithm
was developed, implemented, and tested on digitized
"FLIR imagery.

o A fast silhouette-based, object-matching algorithm

was developed, implemanted, and tested. This algorithm

is capable of finding precise (to the pixel) positions

of corresponding objects, even in the presence ot seg-

mentation noise and target obscuration.

I " Dynamic models of sensor/platform motion were derived,

and several alternatives were evaluated and sucess-

I fully demonstrated.

13
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* An integrated-system simulation incorporating both

object-matching algorithms and the sensor/platform

model was implemented and demonstrated on two se-

quences of FLIR images with multiple targets from

moving and stationary platforms. The results demon-

strate precise tracking capability with multiple

targets in high-clutter scenes, as well detection

of minute target motion in the presence extreme

sensor motion--for moving-target detection.

e A preliminary data base of two sequences (10 frames

each) of FLIR imagery was digitized to evaluate

the algorithms and the current system simulation.

The sew4uences represent high clutter, partial ob-

scuration, and multiple moving targets from stationary

and moving platforms.

• Prototype Automatic Target Screener (PATS) software

was partially converted to the NV&EOL image-pro-

ces, ing system to facilitate the installation of the

software at NV&EOL in the next reporting period.

REPORT ORGANI ZAT ION
lJ

The remaining sections of this report are organized as follows:

o System Overview (Section II)

o Object-Matching Algorithms (Section III)

* Scene Model (Section IV)

o System Simulation (Section V)

o Data Base (Section VI)

o Plans for the Next Reporting Period (SecionVII)

4
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SECTION II

SYSTEM OVERVIEW

This section presents the system overview to introduce the program

*i approach and terminology. The subsequent sections report the pro-
gress accomplished in this reporting period against the program

objectives described in this section.

The performance goals of the advanced target tracker include:

* Automatic target detection (acquisition), recognition,
and prioritization.

. Simultaneous tracking of multiple targets in the
presence of clutter, obscuration, and low contrast.

* Critical aimpoint selection.

An obvious approach to add the automatic target detection (acqui-

sition) and recognition functions to a tracker system would be to
2,3

use a target screener (cuer). The target screener would detect

V2S I
Soland, D. and Narendra, P., "Prototype Automatic Target Screen-
er," Ibid, pp. 175-184.

' 1 3 Soland, D., et al., "Prototype Automatic Target Screener, Goals
and Implementation," U.S. Army Missile Command Workshop on 'Imaging
Tracker and Autonomous Acquisition," November 1979.

I5
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"and recognize the target and "hand off" to a separate conventional

correlation tracker by supplying the target position to center the

tracker window. Indeed, this distinct cuer and tracker approach has
4been suggested. However, while the target screener (cuer) does

provide the automatic target acquisition capability, this approach

suffers from essentially all the drawbacks of conventional trackers

with manual acquisition; that is, multiple-target tracking requires

multiple copies of the correlation tracker hardware, and the

Itracking performance through clutter and obscuration is still

limited by the correlation tracker.

The advanced target-tracker approach being developed in this pro-

gram is an integrated target-screening/tracking approach which

can provide automaLic acquisition and multiple-target tracking

through low signal-to-noise and high clutter conditions. This is

'." done with minimal additional hardware to a target screener.

Figure 2 is an overview block diagram of the basic approach, which

builds upon the scene analysis functions performed by the target

screener to perform the advanced tracking function. The basic pre-

mise is very simple: the target screener segments and classifies

significant ob.jects (targets and clutter) in real time on a frame-

by-frame basis. The symbolic descriptions of the objects in each

frame are used to find the corresponding objects in previous frames

encompassing the history of the scene. Once the corresponding

object matches are made, the scene model, which includes the sensor

and object dynamics as well as the target classes, is updated.

Because we are keeping track of the positions of all the objects

in the scene (targets and clutter), we can predict impending oc-

clusion and future target/background signatures. Multiple-target

4 Willet, T. and Raimondi, P.K., 'Intelligent Tracking Techniques -

A Progress Report," Proc., SPIE, pp 72-75, Vol. 178, Smart Sen-

!;ors, 1979.
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PREDICTED INFORMATION

SEGMENT MATC1H NEW OBJECTS UDT

SGETTO SCENE MODEL SCENEE
NE MAE INTO OBJECTS FROM THE PAST MODCELNTAC

FRAME INFORMATION

.UPDATE OBJECT CLASS

.PREDICT NEW SIGNATURES

.. rc----~3  *UPDATE STATE VECTOR

Figure 2. Overview of the Advanced Target-Tracking Approach

tracking, of course, comes free. The scene model, based on the past
history of the scene, can extend beyond the current field of view.I
This allows reacquisition and tracking of targets which wander in

and out of the field of view because of sensor platform motion.

Not only does this approach exploit the segmentation of objects
from the target-screening function, but it actually improves the

target detection and recognition performance over single-frame

screening/cueing. First, the single-frame classification decisions

of the corresponding objects are accumulated over several frames

to compute an a posteriori estimate of the classification. This

improves the ratio of probability of correct classification to
false alarm by an order of magnitude. Second, target motion re-[~. lative to the scene is detected because of the precise matching
of object positions inherent in the approach. This is especially

advantageous in the presence of etmeplatform motion, as with

7



an unstabilized platform on an RPV. Motion cues can enhance the

long-range target detection capability in scenarios in which a

significant fraction of the targets are moving. Conventional

moving-target indicator (MTI) approaches fail in these unstabilized

moving-plat form applications.

A complete block diagram of the major functions necessary to im-

plement the advanced target-tracker concept is shown in Figure 3.

TARGET/
"BACKGROUND
PREDICTION
TECHNIQIJES

MOTIýN-MULTIFRANIE TARGET
ENHAONCED OBJECI- SCENE MODEL WITH DETECTION/
IMENAGCED MATCHOBJECT AND PLATFORM RECOGNITION/SEGMIMAGE MATCHING IQUE DYNAMICS AND PRIORITIZATION AND TRACK

OBSCURATION CRITICAL AIMPOINT AND•', SCHEMES / ISELECTION lN" I I CLASSIFI-
• ... .. ICATION

Figure 3. Ad;,aieed Target Tracker Program Overview
witpi the Key Functions

These functions represent the major thrusts of the current program.

They are:

* Efficient motion enhanced scene segmentation schemes

9 Object-rmatching techniques capable of precise matching

of objects in the new frame to the scene model derived

from previous frames

:•.. /.. •A scene model capable of characterizing object and plat- •

form dynamics, target/background signatures, and object

occlxsion

8Vi
-, - -.



a Target/background signature prediction techniques to

improve the probability of target acquisition in low

signal-to-noise ratios

. Advanced targct detection/recognition/prioritizat ion

and critical ainmpoint selection algorithms, which can

exploit the dynamic multiframe information

Each of these functions is .rt oduced briefly below.

MOTION-ENHANCED SEGMENTATION SCHEMES

Object extraction (segmentation) in the integrated trackeryscre-,

ener applicatico is unique in that each frame is being analyzed

in the context of the prt:vious frames. However, conventional tech-

niques for image segmentation do not use information from the

previous frames-to segment objects 'in the current frame. The

curetprorz ussteHnywelii~ Prototype Automatic Target

"Screener (PATS) segmbntation algoriithm as the baseline segmentation
approach. This segmentation teclinique will be modified to incor-

• 1 porate the a priori predicted info'tmation on object/background
signatures for more opti..,ial segmentation. This effort will be

directed at incorporating the interframe knowledge of the target
shape and intensity signatures, as well as background charn.cteris-

tics expected at various locations in the frame as predicted by
the scene model below.

OBJECT-MATCHING TECHNIQUES

The key to successful tracking of mnultiple targets in our approac-h

depends on precise matching of segmented objects i~r the current '

9

}'ii'•')•ti~i• •i4A'••'% "•;('i• i'•u!O •'•':•x •' ...... *)"... ....... . ..... ... ......... . "-• I• ••; ,.. .'



frame with the scene model derived from previous frames. This
allows the precise tracking of the object positions for laser
designation or for hand-off to other subsystems. Key issues in
object-matching techniques are unambiguous matching in the presence

K of occlusion and segmentation differences due to noise, and com-
putational effic" ncy of the algorithm. The development of object-

.. matching techniques has been one of the major thrusts of this pro-
gram in this reporting period. A simple object-matching technique

has been developed for preliminary matching, to be followed by a
sophisticated yet fast silhouette-based object-matching technique

which yields the precise position of the target in successive
frames.

SCENE MODEL

The scene model is a collection of information from previous
frames, against which the new frame can be compared. It consists

of the object shapes and positions from previous frames, the object
dilnamics (objectpositions and velocities), and the sensor/plat-
form motion dynamics (position and velocity). In addition, the

scene model must be capable of predicting occlusion and signature
change of a target as it approaches occluding objects. The de-
velopment of the scene model is an evolutionary process. The im-

plementation of the scene model at this time includes the estima-
ti~on of the sensor position based on the positions of corresponding

stationary objects found by the object-matching algorithms. This
scene model successlully aligns frames which have been transformed

S~because of sensor/platform mrotion and is capable of discriminating .

a minute relative target motion in the presence of extreme sensor/

platform motion.

10
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[ TARGET/BACKGROUND SIGNATURE PREDICTION TECHNIQUES

The purpose of this effort is to use the multiframe information on

the target position and dynamics to predict the target shape, in-

tensity signatures and position, and background characteristics

expected at various locations in the frame. This information is

used by the motion-enhanced segmentation scheme to improve the

target acquisition probability in the presence of low signal-to-

noise ratios and high clutter.

ADVANCED ALGORITHMS FOR TARGET DETECTION/RECOGNITION/

PRIORITIZATION AND CRITICAL AIMPOINT SELECTION

These functions are performed in current target screeners on a

frame-by-frame basis. The purpose of this task is to use the

multiframe information to improve the performance of these fune-

tions in the integrated system. rhis improvement will be brought

about in two ways. First, by accumulating muitiframe decisions of

corresponding objects to improve the classification accuracy over

single-frame analysis. The second improvement to the classifica-

tion function takes advantage of the f/act that moving objects will

in general, be targets. Thus, the problem of target recognition 2

can be improved by a moving-target detection aigrrithm. In this

reporting period, we have demonstrated the feasibility of moving-

target detection in the presence of subtstantial sensor/platform

motion using these techniques. Critical aimpoint selection is an

important function required in terminal homing munitions and its

implementation with syntactic techniques will be addressed in

-. - subsequent reporting periods.

V I
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SECTION III

OBJECT-MATCHING SCHEMES

As noted in Section II, object matching is performed on the out-

put of object segmentation. Its purpose is to find the positions

of corresponding objects in successive frames. It is therefore

key to track the object positions as the sensor and the targets

move from one frame to the next. Object matching not only

finds the positions of the moving targets in successive frames

but also identifies corresponding stationary (clutter) objects

in the scene. The positions of these corresponding stationary

objects are input to the scene (sensor/platform) dynamics wodel

for computing the platform motion, as discussed in the next

section.

The key issues to be addressed in the development of succesful

object-matching algorithms are:

*Occlusion

e Inconsistent segmentation

The principal effect of object occlusion (partial or total) is

that the object shape descriptors change, making it difficult to

match objects in successive frames. For example, when a target

goes behind concealing background, the leading edge of the tar-

get disappears. Inconsistent segmentation usually results from

poor signal-to-noise ratio and segmentation algorithm anomalies.

For example, objects extracted in one frame may not appear in i
ij the subseaquent frames; an object extracted as one segment in one

12
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I frame may appear as multiple segments in the subsequent frames

or vice versa. The outlines of the segments extracted may change

shape drastically because of change in target/background contrast

from one frame to the next.

These issues are illustrated in the example in Figure 4, which

shows two successive frames (240 msec apart) from a sequence of

FLIR imagery of a scene containing multiple moving and stationary

targets (tanks and APCs). The two hotspots represented by A

in Figure 4a have been merged into one segment in Figure 4b, as

the two tanks move close together so as to partially occlude

each other. Other objects, such as object B, have drastically

changed their shapes. An even more challenging example is seen
with objects D and E. Object d in Figure 4b is a combination of

parts of objects D and E in Figure 4a. Object e in Figure 4b is

a combination of parts of objects D and E in Figure 4a. This

example illustrates that one-to-one, many-to-one, one-to-many,

and many-to-many object matches will have to be found. Further-

more, not all objects have corresponding matches in successive

frames. For example, object f in Figure 4b does not have a

counterpart in Figure 4a.

It is not sufficient to identify corresponding objects in suc-

cessive frames; it is necessary to find their precise positions.
This is especially important in the light of inconsistent seg-

mentations and target obscuration which can cause the shape of

the object to change drastically from one frame to the next.

To illustrate this point further, consider two objects with

drastically different shapes in successive frames. After per-

* forming object association, if we use the positions of the

centroids of the object in each frame as the apparent position

1 13
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of the object in the field of view, there would be an apparent

motion (jitter) in the position of the target, even if the tar-

get has not moved, because the centroid positions change because

of the change in target shape. Therefore, the object-matching

technique must determine precisely how much the objects have

moved from one frame to the next.

Two distinct techniques for performing the object matching have
been developed. One is the simple feature-based object-matching
technique which finds corresponding objects based on simplyI.
derived object descriptors such as contrast, shape, etc. It

succeeds in finding initial matches of corresponding objects

with consistent segmentations. To handle inconsistent segmenta-

tions and to obtain precise positions of objects in successive

frames, a fast silhouette-matching algorithm has been developed,
This algori'thm works on the segmented outlines of the objects
and rapidly converges to a precise registration of objects in
successive frames. The nature of this algorithm allows it to
handle inconsistent segmentations which result in one-to-one,
one-to-many, many-to-one, and many-to-many object matches, as
discussod below. J

A SIMPLE OBJECT-MATCHING SCHEME

, I A simple feature-based object-matchiag scheme was developed t3

rapidly find those objects which have nearly identical segmenta-
,Aons in two successive frames. Since feature matching is the

AF! first step in the object-matching process, it wjill operate on
two frames which have not been aligned to account for sensor
motion; the algorithm should not be sensitive tu improper frame

'I ~ i3 I
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F..
registration. Object matches found by this scheme are used to

estimate the transformation from the previous frame to the cur-

rent frame, Therefore, the matching algorithm must provide an

adequate number of accurate matches for this estimation. The

follo'9ing paragraphs describe the algorithm.

hii The PMTS segmentation yields object outlines and associated

feature vectors. The feature-based algorithm attempts to matchV" objects between frames by comparing a subset of PATS features.

The subset contains the following features:

. Obje, centrold position

* Object contrast

* Object area

These three features are used to find a corresponding object in

k the current frame for each object in the previous frame. This

matching process is illustrated in the flow chart in Figure 5

and described in the following paragraphs.

The object centroid position is used to limit the size of the

search region in the current frame. Only those objects in the U
current frame which are within a given number of pixels, N, of

the obJect position in the previous frame are considered for

maiching. This, of course, limits the amount of frame motion

that the algorithm can withstand. However, the search region

can be made large enough, say one-eighth the frame size, to

accommodate extreme sensor motion.

A distinguishing characteristic of an object is whether it is i
hotter or colder that the local background. Therefore, the object

16
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contrast was chosen for use in the simple matching algorithm.
The contrast test limited the search t3 0hose objects which had
the same sign on the contrast. This ensured m.tching hot objects
with bot objects and cold objectb with 'ýo1l ones.

The centroi* and contrast tests verify that the object locations
and intensiti.s are similar. The comparison of object areas tests
the relative sizes of the objects to be matched. Only those

objects which differ by less than some percentage, P, of the
area of the object in the previous frame are considered in the

matching process.

For a given object in the previous frame, several objects from

the current frame can pass all three tests. If this occurs, then
the object which is closest to the object position is chosen as
the match. This method will provide accurate matches when the
frame displacement is small or when the two frames are approx-

imately aligned. The approximate alignment can be derived from
a history of the plat-form motion or, as currently implemented
in the system simulation, by using the simple matching algorithm
to find matching objects and compute an approximate transforma-

tion. This sequence is iterated until no new matches are fcund.

The results of applying the simple object.-matching algorithm to

a tactical scene are shown in Figures 6 and 7. Figure 6 is a
sequence of four FLIR frames approxim-tely 0.2 second apart. A
column of moving tanks and APCs is seen in the background, while
stationary tanks are seen in the foreground. Figure 7 shows the
results of segmentation and object matching on -this sequence.
Objects bearing the same label have been matched between scenes.

Objects not matched have new labels. Numerous object me~tches

18U
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have been found. However, because of inconsistent segmentation

and target occlusion, some object matches have been missed and
some have been mis-matched.

Figure 7 points out several of the weaknesses in the simple

object-matching scheme. Note that object 23 was successfully

matched between the first two frames. However, in the third

frame, the cold region beneath the tank was segmented along with

the target. This increased the area of the object beyond the

threshold (P = 0.25), which prohibited matching.

Furthermore, this method does not yield the precise motion of

an object between frames. It produces matching pairs of objects

and their corresponding centroid positions. Simply subtracting

the centroid positions does not yield an accurate estimate of

object motion, because the centroid position will vary with

occlusion and with different segmentations of the object.

FAST SILHOUETTE-MATCHING ALGORITHM

The Fast Silhouette-Matching Algorithm (FSMA) achieves rapid and

precise matching of objects in two frames in the presence of oc-

clusion and inconsistent segmentations and overcomes the limita-

tions of the bimple feature-based approach. To accurately track

moving objects and estimate their velocity, the movement of an

~ I object between frames must be precisely determined. This requires

knowing the object motion to a pixel, or less. Furthermore, the

matching algorithm must function even when the target is occluded
or missegmented, by matching portions of the target which are -

consistent between frames.

22
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As in the simple feature-matching algorithm, we wish to. find the:

corresponding object(s) in the previ6us frame(s). Howeyer, the

additional requirement is that precise position of the object .

must also be found. To find this movement, the outlines of the

objects are aligned by the algorithm, so that those edges which

have been found in both frames (that is, the consistent edges)

match exactly. The displacement required for this alignment is

the interframe object motion which is desired,'Since the matching.

is done using only those edges (or portions thereof) which have

been extracted in b'th frames, the algorithm, will succeed even

when the segn'entation of the objects ahanges because of occlu-

sion. The following paragraphs describe the algorithm.

The FSMA also uses the output of the PATS segmentation for object

matching. In addition to using the object centroid position and
contrast, FSMA also uses the object outline (silhouptto) in the

matching process.

As in the simple feature-matching algorithm, t, object centroids

are compared to limit the size of the search :r(gicn in the cur-

rent frame. The centroids are also compared Uo the object outlines

to see if an object in the current frame could be included in the

object from the previous frame.
I *

Figure 8 illustrates this initial pruning step. If only the dis-

tance between centroids was examined, th'•n the object in the cur-

rent frame would have been incorrectly excluded from matching

with the object in the previous frame. However, when the check

for inclusion is made, the current object passes the test and

the matching will continue. Similarly, if the centroid of an

object in the previous frame falls within the outline of an

K object in the current frame, then the matching will continue.

:-•23
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This allows for precise matching in the presence of incomplete

segmentation. The contrast feature is used, as in the simple

feature-.matching algorithm, to prevent further processing of

hot-to-cold object matches. Similarly, only the sign of the con-
trast is checked, and the object eliminated if it does not match

the object in the previous frame.

CURRE,.T FRAME
OBJECT CENTROID

CURRENT FRAME
OBJECT OUTLINE

PREVIOUS FRAME
OBJECT CENTROID

N-PIXEL SEARCHPREVIOUS FRAME RFGGION IN CURRENT
OBJECT OUTLINE FRAME

Figure 8. Centroid Test for FSMA

The precise matching is performed by the silhouette-matching

algorithm. The algorithm will shift the object outline found
in the previous frame until similar parts of the outline have

been matched with an object in the current frame. The algorithm

determines the amount of the shift by histogramming the dif-

J: ferences in the endpoints of the object outlines. A flow chart

of the algorithm is shown in Figure 9 and a description of the

algorithm follows.

_24
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CONSTRUCT
X-DISPLACEMENTHISTOGRAMS,

, FIND THE PEAK
IN THE HISTOGRAM
AND SHIFT THE
OBJECT OUTLINE
BY THAT NUMBER
OF PIXELS.

"CONSTRUCTi Y-DISPLACEMENT
HISTOGRAMS.

p FIND THE PEAK
IN THE HISTOGRAM

[ AND SHIFT THE
• OBJECT OUTLINE

BY THAT NUMBER
OF PIXELS.

THEREYES ANY CHANGE
IN THE•-, OBJECT

' POSITION

'NO SILHOUETTE
MATCH HAS
BEEN FOUND.

i STOP

,I' Figure 9. FSMA Flow Chart
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The first step in the matching process is to calculate the left-

edge X-displacemient histogram. This is found by histogramming

the differences in the columns positions of left-edge endpoints

in each line for the two objects. The number of points in the

histogram will be equal to the number of lines (rows) which

contain both objects. This process is shown in Figure 10a. A

similar histogram can be constructed for the right-edge end-

points of the object as shown in Figure 10b.

After forming the histograms, the X-displacement of the object

is determined. The peaks in both the left- and right-edge

X-displacement histograms are found. The larger of the two peaks

determines the correct X-displacement. In Figures 10a and 10b,

the left-edge histogram has yielded the highest peak. Therefore,

the X-displacement of the object is found to be +3 pixels.

Furthermore, because the right-edge histogram did nct yield a

peak at +3 pixels, only a left-edge match will be declared at

this time.

Before forming the Y-displacement histograms, the X-displacement

found in the previous step is used to displace the coordinates

of the silhouette. Now, top-edge and bottom-edge Y-displacement

histograms are formed as shown in Figures +2c and 10d. The peaks

in these two histograms both occur at the same place, +2. In
this case, the Y-displacement is set to +2, and both a top-edge

and bottom-edge match are declared.

The two-pixel Y-displacement is removed from the coordinates

of the silhouette, and X-displacement histograms are formed again

"in Figures 10e and lOf. The peaks in both the left- and right-

edge histograms are equal and both occur at -2. Thus, the X-

displacement is set to -2, and both a left-edge and right-edge

match is declared.

26
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Figure 10. Silhouette-Matching Example--Concludedj
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The results of the matching example are shown in Figure lOg. The

objects are perfectly aligned and the total object displacement

has been computed. The example in Figure 10, of course, is con-

trived and serves 'Illustrate the scheme. Real-world objectsVill not be segmen.. dentically in successive frames nor will pi

they present such continuous edges.

The real-v'orld object-matching problem will look like that of

"Figure 11a. Note the displacement and different segmentations in

the two frames. The left- and right-edge X-displacement histo-

grams are shown in Figure 11a. The displacement indicated by the
histograms is six pixels and a left- and right-edge match was

indicated. These histograms were computed in the same manner as

those in Figures 10a and lOb.

Because of the nature of the PATS segmentation algorithm, the

Y-displacement histograms are computed in a manner somewhat

different from that which was described for Figures lOc and 10d.

Because of line-wise processing implicit in PATS, objects ex-

tracted by PATS tend to have long, flat top and bottom edges.

If the Y-displacement histogram were computed over the entire

length of the object, it would be biased by the long top and

bottom edges. Therefore, the Y-displacement histograms are com-

puted for only those points which are in the left or right edge

of the object. Figure lb shows the original objects which the

six-pixel X-adjustment and the left- and right-edge Y-displace-

ment histograms. A displacement of -2 pixels is indicated by the

histograms. Note that the peak of the right-edge histogram was

used to compute the displacement (-2 pixels) although the left-

'' edge histogram also gave two peaks of equal size at -3 and -4
pixels. This is because the histogram peaks are implicitly scaled

by the total number of edge points. Thus, a peak of two out of

two edge points is greater than a peak of two out of six edge

points.
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Figure 11. Real-World Silhouette-Matching: Example 1
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No further disiplacement of the object is indicated. Note the~t i.n

M ~Figure 11c similar portion8 of the right edge have been aligned

exactly. Other examples of Fast Silhouette-Matc~hing are shown

in F~igures 12 and 13. Figure 12 is the outline of a moving tank,
while Figure 13 is a group of trees.

K ~The result of applying the FESMA to all the objects in a tactical

.wcene is shown in Figures 14 and 15. Figure 14 shows two FLUR

scenes taken approximately 240 msec apart. Figure 15 shows the

segmentations of 'the two scenes with matching objects bearing
similar labels. Note that object 4 in the first frame was seg-

mented into two objects in the second frame. Both these objects

were found to match object 4. Similarly, note that the two objects

labeled tY311 in the first frame have been correctly matched to

one object in the second frame. These examples of one-to-many

'And many-to-one matching show the capability of the algorithm to

find matches in the presence of inconsistent segmentations.

A significant feature of this iterative algorithm is its rapid

convergence. In Figure 10, three iterations were required to find

P the precise silhouette match. An exhaustive search of all possible

object positions would have required, in the worst case, search-

-- ing an area of 4 x 4 pixels, or 16 iterations, to find the two-

pixel motion of the target. Furthermore, the number of iterations

required by an exhaustive search technique will be proportional

to the square of the allowed target motion. The convergence of the

FSMA, on the other hand, does not depend directly on the amount

of displacement.

I Another feature of the algorithm is that it allows the tracking
of a specified location on a target. Given a point on the target

a in one frame, we wish to find that same point in the next frame.
1 The FSMA tells us which edges of the object have been matched

1 31
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between frames. If we calculate the location relative to the

location, relative to the matched edges, in the current frame.

In this manner the specified location can be tracked between

frames. This is critical for the homing scenario and for laser

designation.

[The FSMA has performed well on the test images which have been

tried. Most matches are found within two to three iterations

and few incorrect matches are made. However, the sensitivity of

the algorithm to the initial object positions and extremely dif-

ferent segmentations has not been studied. The study of these

topics as well as the verification of the algorithm on a larger

sample of objects will be done during the next reporting period.

We have demonstrated two object matching schemes in this section.

p We have found that the simple object-matching scheme succeeds in

finding clorresponding objects in successive frames in unambiguous

cases. Because of its computational simplicity, it is useful in.

providing an initial estimate of scene motion for input to the

scene uiiodel, as we will see in the next section. It also serves

to comrute the initial values for the more sophisticated sil~hou-

ette-based object-matching algorithm. The silhouette-based object- f
matching algorithm was found to perform extremely well even in

the presence of target obscuration and inconsistent segmentations

from one frame to the next. The algorithm was also demonstrated '
to be computationally elegant and simple and does not require

an exhaustive search to find the optimum match. Both the simple

- algorithm and the sophisticated silhouette-based algorithm are

j used in the advanced target systems simulation, as we will see in1

the systems simulation section. i
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I SECTION IV

SCENE MODEL

IThe primary function of the sc.,.ne model is to keep track of and

infer information~ about objects in the scene as well as the plat-

form dynamics derived from the analysis of the previous frames.

More specifically, the scene model comprises:

*Platform dynamics (position and velocity)

*Object dynamics

e Object shapes and classifications

e Occlusion prediction

o Shape prediction

*Background prediction

The platform dynamics correspond to the motion of the sensor and

the RPV (or the AAH) and its impact upon the received image.

Knowledge of the platform dynamics is useful both in finding the

relative motion of targets with respect to the scene and in pro-

viding scene-track information to the platform gimbals if scene

stabilization is required. Platform dynamics are computed from the

positions of corresponding clutter (stationary) object matches.

Individual object positions computed by t~ie segmentor and the ob-

ject- matcher are used to compute the individual object dynamics

- eiver several frames. Object dynamics can be represented either

relative to the sensor field of view or relative to the scene

after the platform dynamics have been accounted for. The former

7'I37
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is useful for multitarget tracking -- say for laser designation -

where only the positions of the target relative to the current

field of view are desired. The latter also estimates the motion

of the target relative to the scene (independent of the sensor

motion) and permits target/clutter discrimination based on motion.

Because the scene model keeps track of all the object positions,

as well as the background characteristics i~n different regions of

the image, it can be used to predict the op~clusion of objects that

are moving toward each other, an object which moves into a low-

contrast background, etc. The shapes of occluded objects can also

be predicted so that the object matcher can use the predicted

shapes to perform better matches in successive frames. Furthermore,

the artificial intelligence capability of the scene model will

allow inference of the target shape from its segmentations in

previous frames. For example, if multiple segments of an object

appear to move together over several frames, then the inference

is that they bel.ong to the same object.

V ~In this reporting period, we concentrated primarily on the esti-

mation of platform displacement from the result of object-matching

algorithms described in the previous section. We have successfully

demonstrated that the platform dynamics can be computed accurately

(to the pixel) using the techniques described below.

4 Three increasingly complex models of scene motion have been de-,

rivedi. The three-parameter model estimates rotation and transla-

tion of the field of view from one frame to the next. Therefore,

it does not account for the motion of the sensor in space. A more

complex five-parameter model allows sensor motion, but only in the

vertical plane containing the target. A complete six-parameter

model can account for sensor translation and rotation as well as 1

38.1



the sensor motion in free space in all three degrees of freedom.
This model has been implemented in the system simulation and the

r I results are shown in the system simulation section.

V THREE-PARAMETER ESTIMATION OF SCENE MOTION

4 Consider a sensor fixed at a poi.Lnt in space and free to rotate

about all three of its axes as shown in Figure 16. We will sh~ow
I the effects of these three rotations on the field of view (FOV)

of the sensor.

10

Figure 16. A Sensor Fixed in Space

1 Rotation about the 01axis by an angle, e, will produce a similar
rotation of the FOV. The rotation of the sensor has caused an ap-

* mb parent rotation of all objects in the FOV. This is illustrated in
UFigure 17. If the sensor is rotated about the *2 axis, as shown

in Figure 18, then there will be an apparent vertical motion of
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I all the objects in the FOV. The slight distortion caused by the

different viewing angle is neglected by this model. Similarly,J rotation about the ý3 axis will cause an apparent horizontal dis-

placement of all the objects in the FOV.

. If the platform velocity is small, compared with the sensor in-

1i stability, this three-parameter model estimates the apparent

I motion of the sensor. This is done by finding least squares esti-

mates of the following quantities:

, e - angle of rotation about

0 X - horizontal displacement caused by rotation about 3'

• Y - vertical displacement caused by rotation about I2'

The locations of matched-object pairs are used as input to the

I least-square estimator as follows.

Let (x,y) be the position of an object in the previous frame and

(xA,yý) be the position of the matching object in the current

frame.

' nd 6, xO, yo such that

KE E 112
-jsin e cos e yoA

II

is a minimum, or J
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r 2

E[(x cos e + y sin e + xo- x')

+ (-x sin e + y cos e + y- y,)21

is a minimum.

Differentiating with respect to e, x0 , Yo and distributing the

expectation yields the following equations:

at-=(Ey) x cos - (Ex) xosin8 (Ex)y cose

- (Ey) yo sin 8 + [(Exy') - (Eyxy)] Cos e

+ fExx') + (Eyy')j sin 9

• • = (Ex') - (Ex) cos 8 - (Ey) sin 6 -ax0
0'A

at
= (Ey') + (Ex) sin e - (Ey) cos -y

Equating these to zero and solving for , xo and y yields the
0' 0

following equations:

Syx- - S
tan 8 00 (ys (1) ASxx. +yy.,•

Sx0 (Ex') -(Ex) cos e -(Ey) sin (2)

"Yo = (Ey') + (Ex) sin 0 - (Ey) cos 0 (3)

42
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"where

S = (Eab) - (Ea) (Eb)

Because we are given the pairs of points (x,y) and (x',y'), we can

calculate Syx', Sxy', Sxx', and Syy. Combining these iln Fquation
"(1) yields tan e. Since 6 represents the rotation of the sensor

between frames, we can assume that e lies in the interval -900
"- e 6 900 and take the inverse tangent to find 6. Then, using Equa-

tions (2) and (3) we can find the values of x and yo0

FIVE-PARAMETER ESTIMATION OF SCENE MOTION

The three-parameter solution assumes that the motion of the sensor

through space can be neglected. For high-velocity aircraft (muni-

tion or RPV), this is not a valid assumption. The five-parameter
model allows the sensor to rotate about its three axes and also to

move in the plane defined by the ¢3 and €i axes, Sensor motion
within this plane causes the FOV to increase (as the sensor moves

away from the scene) or decrease (as the sensor approaches the

•, iscene). This change in the FOV introduces a linear scale change,
in both horizontal and vertical directions, into the transforma-

tion from the last frame to the current frame. The transformation
then assumes the following form:

cos e + kl)sin 8 xo x x

2 L) [] y
I Note here that k1 and k2 are scale factors in the x and y direc-

tions, respectively.
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The least-square estimates of the 5 parameters e, xo, yo, kj, and

k2 can be calculated and yield the following values:

sS - Syy -S S (S - Syx) -S Sx S
sine XVV +XSXY VY YX Y

xx yy xy xy xx yy I
S - Sx cos e - Sxy sin e

S y S cos +S sin ek2 _ yy ,,, Syxy _

k2 = yy-,

x= Ex' - Ex (cos e + kI) - Ey sin e

y= Ey" + Ex sin 6 - Ey (cos 0 + k 2 )

SIX-PARAMETER ESTIMATION OF SCENE MOTION

The six-parameter scene model allows the sensor to rotate about

its axis and also move in any direction in space. This is the

transformation which is currently used in the system simulation.

It has the following form:

a a12 11 [x]

La21 a 2 2  a 2 3  y

*L1
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The least square estimates for the a will minimize
(a x + aj y')

1 1a2Y + x)3 + (a 2 1x + a 2 2 Y + a 2 3  Y

Solving for aij yields the following two matrix equations:

Ex Exy Ex a 1  LExx'

~Exy Y Ey 73 Ey and

ExExy Ex a 21  Exy~

Given the positions of the matched objects (x,y) and (x",y'), the

expected values can be calculated and the two sets of equations

can be solved for the six parameters.

4.1'
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SECTION V

SYSTEM SIMULATION i

The previous sections discuss the progress during this reporting

period on two key facets of the advanced target tracker system -

the object-matching techniques and the scene model. These indivi-

dual techniques have been incorporated into a complete systems

F'. simulation of the advanced target-tracker system in the Honeywell

Image Processing Facility. This simulation allows the evaluation

of the algorithms as they are developed in the system context.

This section discusses the status of the system simulation and

simulation results on two sequences of FLIR images from moving

* and stationary platforms. The results demonstrate precise track-

ing capability with multiple targets and high clutter scenes, as

well as moving-target detection capability, even with unstabilized

moving platforms. This system simulation will be expanded as new

algorithms and software are developed for such factors as occlu-

sion prediction, target/background signature prediction, and ad-

vanced scene models.

* A block diagram of the current system simulation is shown in

Figure 19. The simulation currently consists of the following

software modules:

. PATS segmentation

C * Simple object-matching

* Fast silhouette-matching
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tI
1) Finds object outlines

PATS and object features
SEGMENTATION in previous and

current frames.-I
fII

1) Provides matchin-

SIMPLE OBJECT- object pairs to
MATCHING find approximate

Interirame scene
motion.S- a

FAST 1) Finds all object
S T matches (1-to-i,

MATCHING 1-to-many, etc.).
2) FInds precise, ~object location.

3) Finds precise Interframe
scene motion.

4) Finds Interframe
object motlion.

Figure 19. System Simulation Block Diagram

In the system simulation, the PATS segmentation is applied to the

two input frames. This produces a list of object outlines and

features which will be matched. Thu simple object-matching algo-

rithm matches objects between the two frames to find the approxi-

mate interframe scene motion. This approximate transformation is

applied to the objects in the previous frame and the Fast Sil-

houette-Matching Algorithm is applied. The FSMA will match all

the objects which are present in both scenes and find their exact

displacement. Using these matches and the determined displacements,

a finer estimate of the scene motion cau be computed. Finally, the

results of scene motion model and object matching can be combined

to yield an estimate of the interframe object motion.
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The advanced tracker system simulation block diagram has been ex-

panded in Figure 20. We can see that simple object-matching is

first applied to the objects found by the PATS segmentations. The

centroids of the matched objects are used to calculate an a)proxi-
H mate transformation from the previous frame to the current frame.

This transformation is then applied to the objects from the previ-

ous frame. Simple object-matching is applied to the adjusted ob-

jects from the previous frame and the current frame objects. The
second application of the simple object-matching scheme will, in

general, find more matches than the first. This is due to the better

frame alignment after applying the approximate transformation.

If more matches have been found during the second pass, then a

new transformation will be computed. This sequence is iterated
until no new matches can be found by the simple object-matching

scheme.

After simple object-matching, the two frames have been brought

into approximate alignment and the Fast Silhouette-Matching Algo-

rithm is applied. The FSMA will find all object matches between

the two frames including the one-to-one, one-to-many, many-to-one,

and many-to-many object matches which were not found by the simple

matching process. The FSMA also determines the precise location

of the objects in the current frame. Using these precise locations,

an accurate estimate of the interframe transformation can be made.

Using this transformation, we can predict the location of a pre-

vious frame object in the current frame. Subtracting this predicted

location from the actual location found by the FSMA yields an esti-

mate of target motion relative to the background. This velocity

will be used in future versions to predict occlusion and to aid

in 'racking the target if it leaves the FOV.
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PATS SEGMENTATION OF
CRETFRAME AND

PREVIOUS FRAMEj

SIMPLE FEATURE-
MATCHING ALGORITHM

SAVE PAIRS OF POINTS (P,P).

P = LOCATION OF OBJECT IN
PREVIOUS FRAME.

P' LOCATION OF MATCHING
OBJECT IN CURRENT FRAME.

• FAST SILHOUETTE-"VMATCHING ALGORITHM

THERE MATCHES NO SAVE PAIRS OF POINTS (P, P ').

PASS HICHP = LOCATION OF AN OBJECT
WERENOTFOUN ININ PREVIOUS FRAME.

P' LOCATION OF THAT OBJECT
IN THE CURRENT FRAME.

ADJUST ALL OBJECT POSITIONS USING STORED (P,P') PAIRS,
IN PREVIOUS FRAME TO COMPUTE APPROXIMATE USING STORED PAIRS (P,P").ACCOUNT FOR INTERFRAME INTERFRAME COMPUT. ACCURATEMOTION. TRANSFORMATION. INTERFRAME

TRANSFORMATION.

]i I

II
DOES

Li) _ _N



II
K-A

USING SCENE MOTION MODEL, PREDICT
THE LOCATION OF OBJECT K IN THE'
CURRENT FPAME. CALL THIS VALUE P.

-i DEFINE OBJECT MOTION, AS ACTUAL
OBJECT POSITION IN THE CURRENT TEATA

FRAME, AS FOUND BY FSMA, MINU$
THE PREDICTED POSITION, OR P'-

.
K= K+ I

Figure 20. System Simulation Flow Chart--
"Concluded

Results of the system simulation are shown in Figures 21 through

30. Figure 21 shows a sequence of three FLIR images from high

velocity aircraft. A small moving target can be observed near the

center of the image. Because of the sensor motion, we can see the

translation and rotation between the images. Furthermore, the

movement (.f the aircraft toward the target has caused dilation

(-cale change) between frames.

Figure 22 shows the ihree segmentations superimposed. Again, note

the translation and different segmentations between frames. In

Figure 23 the frames have been aligned to account for sensor
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Figure 22. Unaligned Object Outlines From Three
Frames Shown Superimposed

--

Figure 23. Object Outlines After Alignment
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I motion. Note the alignment of the stationary clutter objects and
* the movement of the tank between frames in the magnified portions

of the aligned frames in Figures 24 and 25.

1 To judge the effectiveness of this scheme for moving target detec-
I tion, the apparent motion of each object (which appeared in all

three frames) was computed after compensating for the sensor mo-

tion. The moving tank had a cumulative displacement of seven

pi- '.)ver the three-frame sequence), while all other objectsi~..ga-. eise to net displacements of less than two pixels. Note
that this encouraging result was obtained from only three frames.

it is expected that filtering the displacement over several con-

secutive frames with Kalman filters will discriminate the con-

sistent target motion even better.

Figure 26 shows two FLIR frames from a sequence of 10 which were

input to the system simulation. Even though these frame..# were

taken from a ground platform, they exhibit slight interframe

scene motion. The scene motion is removed and the segmentations

of the two frames are superimposed in Figure 27. Note the alignment

of the stationary targets in the foreground and the movement of
the objects in the background. Magnified views of these targets
are shown in Figures 28, 29, and 30. A stationary tank from the
foreground is shown in Figure 28, while a moving APC and a tank

are shown in Figures 29 and 30, respectively.

These examples have demonstrated that precise object position

tracking can be achieved even when the platform and sensor are

moving rapidly as in the AAH, RPV, and CV applications. Thesef

examples also illustrate the power of the approach in detecting

minute relative target motion in the presence of extreme platform

motion.
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Figure 24. Magnified View of Aligned Clutter Object OutlinesI
in Figure 23
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Figure 25. Magnified View of Moving Tank Outline
in Fir:'.rv e

(a)

I- , (b)

"Figure 26. Two Successive FLIR Frames From a
Stationary Platform
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Figure 28. Magnified View of Stationary Tank in Figure 27,
After Frame Alignment. Note precise registration.

Figure 29. Magnified View of Moving APC in Figure 27 L

Figure 30. Magnified View of Moving Tank in Figure 27
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SECTION VI
V DATA BASE

This section summarizes the continuing tracking data base genera-
tion effort. An extensive FLIP, video tape library of tactical

targets in various backgrounds exists at Honeywell, acquired from

NV&EQL and other sources under the current program and several

others. Our approach to the selection and digitization of sequences
for the simulation effort in this program will continue to be

evolutionary. As each algorithm or subsystem is developed, we

select image sequences which contain the features required for its

evaluation. For example, the two FLIR sequences which have been

digitized to date contain multiple moving targets with occlusion,
from a stationary platform and a moving target from a fast moving
platform. These have served to test the platform motion estimation

and multiobject precision tracking capabilities. One of our next
sequences will contain maneuvering targets, to test the object

dynamics estimator to be developed next.

Following is a partial description of our video tape library con-
taining the FLUR image sequences we have digitized to date.

The video tape data base for the verification of the algorithms

we have discussed consists of six video tapes from FLUR and visual
sensors. The six tapes contain interesting homing and tracking
scenarios which will exercise all aspects of the tracking algor-
ri~thm. The following paragraphs describe the different data
sources and show examples of the imagery they contain.
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I NV&EOL "FORT POLK" SELECTIONS

V This 525-line video tape was taken from a FLIR sensor mounted on a

ground platform. Contained in this tape are examples of multipleJ moving and maneuvering targets in a high-clutter environment.

Figure 31 shows a sequence of 11 frames which have been digitized.

SIThe entire sequence represents approximately 2 seconds. Note that

I some targets are occluded by the trees in the background and by

the other targets in the image. This video tape also contains

I several examples of small long-range moving targets (from a wide

field of view).

HIGH-PERFORMANCE AIRCRAFT SELECTIONS

This 525-line video tape was taken from a common-module FLIR sensor

mounted on a high-performance aircraft. This tape provides exam-

ples of extreme sensor and platform motion. Figure 32 shows a

sequence of eight digitized frames from this tape. Note the changes

caused by platform motion and also the number of clutter objectsI •in the scene. This sequence also contains a moving target.

NV&EOL FLIR TRACKING DATA BASE

These two 525-line video tapes of common module FLIR data contain

both moving and stationary targets at various ranges. These tapes

also provide some examples for the homing scenario. Two frames

from this tape are shown in Figure 33.
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PATS TRAINING DATA BASE

This is an 875-line video tape from a common-module FLIR sensor
mounted in an air platform. The targets from this tape include

j tanks and APCs from several aspect angles. Examples of this tape

are shown in Figure 34.

j. NV&•EOL TV TRACKING TAPE

This is a 525-line tape taken from a helicopter mounted TV sensor.

This tape contains examples of gross sensor motion and multiple

moving targets. In some sequences the targets leave and reenter the
FOV because of the sensor platform instability. This tape also con-

tains some good examples of the homing scenario.
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SECTION VII

PLANS FOR THE NEXT REPORTING PERIOD

This section outlines the program plans for the next reporting

period. Emphasis will be on:

F' e PATS simulation transfer

0 Object-matching algorithms

*Scene model

* Background prediction techniques

* Advanced target recognition techniques

Data base generation

- PATS SIMULATION SOFTWARE TRANSFER

-. The PATS simulation software, which has been converted to the

EIKON image-handling formats, will be installed on the NV&EOL

IBM 360 facility in this reporting period.

OBJECT MATCHING ALGORITHMS

- 1 Evaluation of the Fast Silhouette-Matching Algorithm will continue

I to characterize its performance and validate it with new data.
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In particular, the number of iterations required and performance

as a function of the initial position will be determined.

SCENE MODEL

The scene model which now contains only the platform displacement
H estimator- will be extended in numerous ways. The scene motion

F model will be extended to include multiple frames from the cur-

rent model which uses frame pairs. This implies matching objects,

V- not only from the previous frame, but also from the preceding

several frames. Inference techniques will be developed to asso--

ciate multiple segments of the same object, for comparison with

the new images. Using Kalman filter techniques, the apparent

motion of both the objects and the platform derived from success-

ive frames will be filtered over several frames to derive robust

estimates of the platform and target motion dynamics. Object

occlusion prediction will also be incorporated in the scene
model.

BACKGROUND PREDICTION

Techniques for characteriding backgrounds (e.g., texture) will

be developed. This will be incorporated in the motion-enhanced

segmentation scheme to improve its performance, using the pre-

I dicted target/background signatures.
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"' "ADVANCED TARGET RECOGNITION TECHNIQUES

Single frame target recognition algorithms developed under PATS

K will be improved to use the information from multiframe object

matching in two ways -- first, through the accumulation of the

:- decisions over several frames and computing the a posteriori

probabilities; and second, through moving-target detection using

target motion computed by the precise object-matching techniques.

HOMING TECHNIQUES

This includes the development of algorithms for critical aimpoint

selection. Syntactic component recognition techniques developed

under the "Automated Imagery Recognition System"* program will be

applied to homing sequences to recognize target components and

hence critical aimpoint selection.

DATA BASE

V The preliminary data base will be expanded by digitizing new

sequences from our video tape library which contains maneuvering

targets, target occlusion, and varied background signatures.

The development of the data base will run parallel with the
L ..

development of the algorithms as the need arises for representa-i tive scenes for evaluating the algorithm.

i I *DARPA Contract No. F33615-76-C-1324.
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