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SUMMARY

An interpretation technique has been developed for the determina-

tion of laterally homogeneous earth structure using body-wave travel time

and amplitude data. A family of p(x) (ray parameter vs distance)

functions consistent with the data are obtained as solutions to an inverse

problem. Each p(x) solution has a corresponding velocity-depth function

which maximizes or minimizes the depth for one velocity. The family of

allowable p(x) curves therefore defines a velocity-depth envelope

which bounds the range of earth structures consistent with these data.

I INTRODUCTION

Earth structure cannot be determined uniquely from a finite set

of body-wave observations cortaining errors. In general, there is a

broad range of velocity-depth models which are consistent with a given

data set. In recent years, several authors, most notably Bessonuva, et al.

(1974, 1976), have proposed methods for estimating bounds for the allowable

earth structures by inverting travel time data. However, since these

techniques neglect amplitude information, the resulting bounds are somewhat

less restrictive than may be indicated by the observed data. Mellman (1978)

has taken a different approach, whereby velocity-depth models are deter-

mined by matching the waveforms of observed and synthetic seismograms.

The non-uniqueness of the resulting earth models is estimated from the

discrepancy between solutions obtained by using different starting models

in the inversion scheme.
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In the following communication, we propose a technique for inter-

preting seismic refraction data which incorporates both amplitude and

travel time information. The data are inverted to determine the range of

seismic velocity-depth models which are consistent with these observations.

The earth models in this investigation are restricted to be laterally

uniform, since we allow the velocity to vary only as a function of depth.

Furthermore, this investigation is restricted to velocity-depth models

which contain no low-velocity zones.

The central idea in this interpretation scheme is the choice of

the function p(x) (wave slowness as a function of source-receiver

distance) for performing the inversion. There are several advantages

for deforming the p(x) curve to fit the data: - ,. _

(a) The travel time at any distance is a linear integral

of the p(x) curve.

(b) The velocity-depth (v(z)) model can be obtained by

a simple linear Weichert-Herglotz integral of the

p(x) curve.

(c) Amplitude information can be recovered from the p(x) '

curve through a simple Disc Ray Theory integration

(Wiggins, 1976).

Hence, all of the desired transformations can be made directly from the

p(x) curve. These transformations are well-defined and stable functions

of the p(x) curve.

I. -
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Another important reason for choosing the p(x) function for per-

forming the inversion is based on the need for a simple representation

of the non-uniqueness. McMechan & Wiggins (1972) and Wiggins, et al.

(1973) have shown how the uncertainty of the earth structure can be

represented by an envelope in the p-x plane, which bounds the set of

allowable p(x) curves. They have also shown how the p(x) function

can be manipulated in order to determine extremal depths corresponding

to any velocity. Their methodology will be used in this interpretation

* scheme and will, in fact, be incorporated directly into the inverse

problem so that extremal depths can be determined for the set of per-

missable velocity models.

The interpretation procedure involves a combination of forward and

inverse modeling. The inverse problem consists of determining the set of

p(x) curves for which the velocity-depth functions are extremal. The

forward problem consists of determining the synthetic seismograms corres-

ponding to these extremal p(x) solutions. In general, all of the data

cannot be fit in one iteration, so the problem proceeds iteratively. The

seismograms corresponding to the initial p(x) solutions have amplitudes

and travel times which are inconsistent with the observed data. This can

be remedied in subsequent iterations by imposing limits which restrict

the p(x) curves from certain regions of the p-x plane. These bounds

form a p(x) envelope which is refined on each iteration until all of

the solutions match the observed data to within some uncertainty. The

scatter of the calculated seismograms is governed by the width of the

* *. 4



p(x) envelope, which, in turn, determines the range of allowable earth

structures.

The interpretation scheme will be illustrated in detail in a

later section. First, we turn our attention to the most complex aspect

of the procedure - the inverse problem.

2 THE INVERSE PROBLEM

*The inverse part of the interpretation scheme consists of deter-

mining an optimal p(x) curve which satisfies certain travel time

constraints and at the same time maximizes or minimizes the depth for

some velocity. Both of these conditions are quite straightforward in

that they involve transformations from the T-x and v-z to the p-x

domains. The transformations are linear and are written mathematically

as equalities. However, there are also a number of bounding or inequality

constraints which we wish to impose on the p(x) solutions. Two of these

require the velocity-depth function corresponding to any p(x) solution

to be physically meaningful; that is, the velocity must be single valued

in depth and the depths for all velocities must be positive. A third

inequality constraint stems from the forward problem, where bounds are

imposed on the solutions limiting them from certain regions of the p-x

plane. Least-squares error techniques are not well suited to problems

containing many inequality constraints. We have turned, therefore, to

the realm of Ll-norm linear estimation in order to solve our inverse

problem. However, before we discuss our method for solving it, let's

examine the problem more closely.
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We cast the inverse problem in the form of a system of equations

with the p(x) curve as a vector of unknowns x, i.e.,

Ax- e (1)

where each row has the form

M

L Akj xj - dk - ek  k =, N. (2)
' j=l

Here x is the discretized p(x) curve, d is the "data" vector, and

A is the transfer matrix which relates the unknowns x to the "data"

d. The optimum solution for x is determined by minimizing the error

vector e in some way.

The unknowns in this problem are chosen to be the discrete source-

receiver distances xj, j = 1, M corresponding to finite samplings pj,

j = 1, M of the ray parameter over some interval of interest [Pmin' Pmax ]"

The distance x is chosen to be the dependent variable because it is

generally interpreted as being single-valued in p. (The converse is

not true if there are any triplications in the p(x) curve.) We use

linear interpolation between the discrete points xj and xj+ l  in

order to approximate a continuous p(x) curve. We have found that

this piecewise linear representation has significant benefits over a

constant interpolation scheme, since discretization effects are reduced.

(For simplicity, the equations in this communication are presented as

having constant interpolation, i.e., as simple summations.)
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The p interval depends on the problem at hand and must be deter-

mined first. In general, pMax is equal to (velocity)-I at the surface and

is assumed to be known. The lower limit p min is estimated from the

travel time data at large source-receiver distances.

3 SOLVING THE INVERSE PROBLEM

The bounding constraints which we impose on the solution mani-

fest as inequality equations. For example, the equations restricting the

p(x) curve to lie within some limits xLO and xHI are simply

LO HIH
Xj < xH I j 1, M. (3)

One way to ensure that such bounding constraints are always satisfied is

to insert the relevant equations directly into the inverse problem.

Claerbout & Muir (1973) have devised an algorithm for solving an over-

determined system of equations that can be used to include inequality

constraints into the problem. Their algorithm optimizes the solution

according to the absolute value error criteria, or L1  norm:

N

I ekj = minimum (4)
k=l

in contrast with the L2 norm which minimizes the sum of the squares of
+

the errors. The term wk in equation (4) is a special weighting function

which may be asymmetric about ek = 0. Each row in the inverse problem (1)

is assigned two weighting coefficients, one for positive error and the

other for negative error. If w+ = k - this particular equation is a

simple equality. However, if one of the weights is made substantially

7



larger than the other, the positive and negative errors are penalized

differently and the corresponding equation becomes an inequality. This

asymmetric error capability proves very useful in many applications such

as this one, where a large number of inequality constraints are imposed

simultaneously on the solution.

In this, as in any inverse problem, difficulties can arise if the

number of unknowns exceeds the number of observations, or if the distri-

bution of data is biased in such a way that certain parts of the solution

are ill-determined. In these situations, some kind of smoothing condition

must be applied in order to ensure a unique solution. The smoothness

4condition used in this application is a linear depth vs velocity relation.

(Since a linear interpolation is used for the x(p) curve between successive

points x(pi) and x(pi+l), the corresponding depth vs velocity curve cannot

be linear. The smoothness condition applies only to the sample points pi,

i.e., z(l/pi_ l) -
2z(l/pi) + z(lI/pi+) = 0.) The smoothness condition is

applied by simply adding the relevant equations to the system of equations (1)

and adjusting the weighting function w- in such a way that the data

constraints always dominate. The necessary adjustment is that the w for

the linear depth vs velocity relations must be less than the weighting

function for the data divided by the total number of linear z(l/p)

constraints.

In its final form, the inverse problem contains equations corres-

ponding to five different types of constraint: travel time information, an

extremal depth condition, a single valued velocity restriction, p-x bounds,

and a smoothness criterion. Clearly, all of these conditions together give

us an over-determined system of equations. The L1  algorithm solves this

type of problem by selecting M of the N equations to be satisfied

8



exactly (M is the number of unknowns). We point out that this feature of

the L1  solution does not imply that the remaining N-M equations are

ignored; the particular set of M equations to be satisfied are selected

so as to minimize the cumulative errors from the problem as a whole.

4 TRAVEL TIME CONSTRAINTS

The ray parameter p at some range x is related to the travel

time curve through a derivative;

p dT(x) (5)
* P =dx

The travel time is therefore simply an area under the p(x) curve

X

T(x) f p(y) dy (6)

0

Since p is not always single valued in x, it is more convenient

to conduct the integration in p rather than x. Integration of

equation (6) by parts yields

Smax

T(x) = p • x(p) + f x(q) dq

p(x)

= p . x(p) + T(p) (7)

The delay time T(p) represents the time intercept at x = 0 for ray

parameter p and travel time T(x). For a discrete p(x) curve, T(p)

is simply a summation of the source-receiver distances over some interval

of ray parameters [Pi. P max ]

9



= max(8Ti : 'j Apj (8)

j=i

Equation (8) is in the same form as one row of the inverse problem,

equation (2). Thus, T(p) data can be entered directly into the inverse

problem and fitted in one iteration. However, this is not the case for

T(x) data. Travel times must be converted to the appropriate integral

form using equation (7) before they can be entered into the inverse problem.

Note that in equation (7), each T(x) pair requires a corresponding p

value in order to set the lower limit of integration. Initial estimates

for p at each observation distance x can be obtained by differentiating

the T(x) curve. One way to improve these p values is by solving the

inverse problem iteratively without the extremal depth condition until the

p(x) solution matches the p limit used to evaluate equation (7).

In the inverse problem, T(x) data provide simple integral constraints

on the p(x) curve, just as T(p) data do. Integral constraints place

no restrictions on the individual distances xj, which means that the travel

times for the initial solution may not match the observed T(x) values. In

other words, the velocity-depth model is not yet consistent with the travel

time data. One way to remedy this situation is to place bounds on the

p(x) solution. These bounds are determined by comparing the travel times

of the inverse solution with those of the observed seismograms. In general,

this p(x) envelope must be refined by performing the inverse and forward

problems several times, until a satisfactory fit is obtained. The discrepancy

between the observed and calculated seismograms depends on the width of

the p(x) envelope used to constrain the solution. Thus, two types of

constraints are needed to match travel time data. The procedure for
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matching travel time data will be illustrated further in the following sections

when we present some examples.

If there are any triplications in the observed T(x) data, it is

advantageous to use the differential travel times between the early and

later arrivals to constrain the p(x) solutions. The differential travel

times provide integral constraints over smaller sections of the p(x)

curve and therefore provide stronger constraints than do the absolute arrival

times. By a similar argument, we expect the extremal velocity-depth limits

to reflect the number of integral constraints imposed - in other words, the

number of T(x) data used.

5 EXTREMAL DEPTH CONSTRAINT

McMechan & Wiggins (1972) and Wiggins, et al. (1973) have shown

how the p(x) function can be manipulated in order to obtain maximum and

minimum depths correspondinq to any given velocity. In this section,

we will illustrate how such an extremal depth condition can be incorporated

directly into the inverse problem. This will automatically give an extremal

earth model which is consistent with the data each time the inversion is

performed.

The depth z(p) corresponding to the turning point of ray p is

obtained by the Weichert-Herglotz integral of the p(x) curve:

l max

z(p) f x(q) 1/2 dq (9)
P {q2 _ p 2)

where the corresponding velocity is v : I/p. For a discrete p(x)

.* curve, equation (9) becomes
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pmax ij+l

pj 2 2 12' (10)
j=i , q2 - )

which is simply a weighted summation of the discrete distances x. over

the p interval [pi, pmax ]. These weighting coefficients are positive

and decrease monotonically in p. In order to determine the p(x) curve

which satisfies the data constraints and gives an extremal depth for some

ray parameter p*, say, one row containing the Weichert-Herglotz coefficients

for z(p*) is added to the inverse problem, equation (1). Let's say we

* wish to minimize the depth for p*. The corresponding depth value in the

rvector d is then set to zero and the asymmetric weighting function w-
+

for this equation is set to some value less than w- for the data con-
+

straints and larger than the sum of the w- for the linear v(z) relations.

If the weighting function w- is chosen correctly, the LI algorithm will

find a solution which accomodates for this extremal depth constraint, but

does not actually solve it. The data equations will take precedence.

Consider the following example.

6 MONOTONIC p(x) EXAMPLE

Fig. l(a) shows three seismograms which were computed from the

p(x) curve in Fig. 1(b) using Disc Ray Theory integration. The solid curve

in Fig. 1(c) shows the corresponding earth model. These three seismograms

provide three travel time data which were used as input data for the inverse

problem. The travel times, along with their corresponding p values, are

listed in Table 1.

12



4 . - -  
. . . .. . . . .. .... . .. .

To fix ideas, we first illustrate the set-up of the inverse Droblem

for this example. The ray parameter ranges from .12 to .18 sec/km. If a

sampling interval of Ap = .01 sec/km is used, the inverse problem

is set up to estimate six values of x. (x(.18) is zero):

X = x l , x2 , ... x6 ]T (11)

The matrix A and vectors d and w- are

Row 
,.

1 .01 .005 .15 -1. I .

2 .01 .005 .25 -I. I.
3 .01 .01 .01 .005 .75 -1. I,
4 .01 .01 .01 .005 .85 -.
5 .01 .01 .01 .01 .01 .005 1.75 -1. 1.
6 .01 .01 .01 .01 .01 .005 1.85 -1. I.
7 I. 0. -L
8 . 0. -L .
9 1. 0. -L
01. 0. -L

11 .. -L
12 1. 0. -L c
13 -.011 .075 0. - ,

14 -.021 -.011 .077 0. -L
15 -.007 -.021 -.012 .080 0. -L
16 -.004 -.007 -.022 -.012 .083 0. -
17 -.003 -.004 -.008 -.023 -.012 .086 0. -L

18 -.252 .203 0. -.001, .001
19 -.020 -.231 .185 0. -.001. .001
20 .035 -.018 -.210 .168 0. -.001, .001
21 .008 .032 -.016 -.189 .151 0. -.001, .001
22 .003 .007 .028 -.014 -.170 .134 0. -.001, .001
23 .029 .034 .043 .068 .083 0. -.01 , .01

13



The precedence of each equation is determined by its corresponding weighting
+

function wi Here L and c are very large and small numbers, respec-

tively, which serve to make the corresponding equations into inequalities.

Rows 1 through 6 impose the travel time observations. Notice that each observa-

tion is entered twice in order to incorporate the range of uncertainty in

the observation. Rows 7 through 12 impose the condition xi >0. Rows 13

through 17 impose the condition that z be single valued in V, i.e., zi > Z i_.

* The coefficients for these rows were obtained by taking the first differences

of the Weichert-Herglotz coefficients defined in Equation (10). Rows 18 through

22 suggest that in the absence of other constraints, the velocity depth function

should be linear. These rows were obtained by taking second differences of the

Weichert-Herglotz coefficients. Finally, the last row requests that the

solution minimize the depth corresponding to p = .13 sec/km.

The Weichert-Herglotz weighting coefficients for p = .13 sec/km are

shown in Fig. l(b). (A sampling interval of z'p = .005 sec/km was used for

these calculations.) The minimum depth condition for p = .13 requires

that the weighted sum of the solution x. over the p interval [.13, .18]

be zero, since the corresponding depth value in the d vector has been

set to zero. To obtain the velocity model which gives a maximum depth

for p = .13 sec/km, the inverse problem is solved with a very large

depth value in the data vector d. The p(x) curves which give the

maximum and minimum depths are shown in Fig. l(b). In the region around

p = .13 sec/km, the solutions behave as would be expected, considering

the nature of the extremal depth constraints. At about p = .15 and

p = .125 sec/km, the two solutions cross one another. This is because the

*- three travel times constrain the areas under the p(x) curves over the

14



intervals [.16, .18], [.14, .18], [.12, .18] and the large excursions

at p = .13 sec/km must be compensated elsewhere. The velocity-depth

models show a similar cross-over behavior. The tolution which minimizes

the depth at p = .13 sec/km has maximum depths at p = .16 and p = .12

s-c/km. However, the depths for ray parameters other than .13 sec/km are

not necessarily extremal. We have determined only two of all the possible

earth structures consistent with these data constraints. The v(z)

envelope which encompasses all these models is obtained by repeating the

inverse problem with extremal depth conditions applied to each discrete pj

in turn.

Note that both v(z) solutions in Fig. l(c) have regions where z

is constant in v. This shows that the single-valued velocity criterion,

which was imposed as an inequality equation, was actually solved as an

equality in the final solutions. Without this constraint, the v(z)

functions would not be physically meaningful. The single-valued velocity

condition controls the shape of the reverse branches ( x> 0) of the p(x)
t p

functions. The small irregularities in the reverse branches are due to the

discrete nature of the Weichert-Herglotz integral. Note that some of the

linear v(z) relations are also satisfied in the final solutions. The

linear portions of the v(z) curves correspond to the forward branches

(Lx < O) of the p(x) curves.

The travel time curves and synthetic seismograms for the two extremal

earth models are presented in Fig. 1(d). The calculated travel times are

not consistent with the "observations" because we have not used an envelope

to limit the individual distances xj. So far, we have only placed integral

15



constraints on the p(x) curves, which is, in effect, the same as using

three T(p) data. At those points on the travel time curves in Fig. l(d)

where the slopes are .16, .14 or .12 sec/km, the corresponding delay time

values are correct. However,.the T(x) values are incorrect because these

slopes do not occur at distances of 20, 40 or 60 km, as they should.

Fig. 2 shows the solutions which maximize the minimize the depths for

each discrete ray parameter between p = .12 and p = .16 sec/km, with

Ap = .005 sec/km. The only difference between each of these solutions is in

, the row containing the Weichert-Herglotz coefficients in the inverse problem.

The width of the v(z) envelopes in Fig. 2(b) changes substantially with p.

This behavior is controlled by the p limits on the travel time integrals.

The v(z) envelope is narrower for p values close to these limits. Many

of the velocity-depth models cross from one extremal limit to the other for

different values of p. Note, however, that one particular solution cannot

exhibit maximum or minimum depths for every p, since this would violate

the travel time integrals.

7 EFFECTS OF OBSERVATIONAL ERRORS AND NUMBER OF DATA

Intuitively, we expect the width of the velocity-depth envelope to

reflect the amount of uncertainty associated with each data point. Obser-

vation error can be incorporated into the inverse problem in the following

manner: First, an estimate of the uncertainty + Adk associated with

each data value dk is made. For example, in the previous problem, each

travel time observation was assigned an uncertainty of + .05 sec. Then,

two equations for each data constraint are simultaneously added to the

inverse problem; one containing the value (dk + Adk) and the other with

(dk - Adk) in the data vector . The extremal depth constraint causes

16



the final error in the L1  algorithm to be minimized at either one of

the endpoints. The algorithm automatically selects the best equation

to be exactly satisfied. In general, the minimum depth solution selects

the one endpoint and the maximum depth solution the other. Hence,

the larger the uncertainty in the data, the greater the difference between

the two solutions. The effect of data uncertainty in the previous problem

can be seen in Fig. 2(b), where the v(z) envelope for travel time uncer-

tainties of + .1 sec. is also shown. However, since the widths of the

two v(z) envelopes are nearly identical, we can conclude that the large

depth limits in this example are caused by factors other than observation

error.

The next example shows how the number of observations affects the

resolution of earth structure. It is essentially a repeat of the previous

problem, except that six travel time constraints are used. Their associated

p values are .12, .13, .14, .15, .16 and .17 sec/km. Again, extremal depthts

for each discrete ray parameter p, in the interval [.12, .16] are found

in turn. The solutions are presented in Fig. 3. The range in velocity-

depth models is much smaller than in the previous example. In particular,

the number of "steps" in the v(z) envelope has increased. The T(x)

and p(x) solutions are also better behaved than the ones in Fig. 2.

However, there is still a considerable discrepancy between the observed

and calculated travel times. The next step in the interpretation scheme

is to limit the p(x) solutions in such a way that the corresponding

velocity-depth models become consistent with the observed seismograms.

17



8 MATCHING THE OBSERVED SEISMOGRAMS

In order to depict accurately the range of earth structures consis-

tent with a given data set, the inverse problem requires more than simple

linear constraints on the p(x) curve. As we saw in the previous examples,

the arrivals corresponding to the initial p(x) solutions have travel times

and amplitudes which are radically different from the observed seismograms.

Travel time inconsistencies can be eliminated by constructing bounds in

the p-x plane and thereby restricting the range of allowable travel time

integrals for the p(x) solutions. For example, the travel time for a

synthetic arrival which occurs earlier than indicated by the observed data

can be increased in the next iteration by imposing bounds which limit the

minimum values attained by the p(x) solutions.

* Amplitude information is also incorporated into the inverse problem

through the p(x) envelope. The objective is to make the amplitudes of

the synthetic seismograms match the amplitude vs distance behaviour of the

- recorded data. The p(x) envelope is used to restrict the slopes of the

p(x) solutions and to control the locations and lateral extensions of any

triplications. Since recorded seismograms usually exhibit a "scatter" in

amplitude between adjacent traces, an attempt is made to match only those

amplitude-distance variations which can be attributed to gross changes in

the velocity-depth function.

18

*_~. * 'I-. .2V . . "



The strategy for matching the travel times and amplitudes of the

observed seismograms is interactive. The first step is to obtain a set

of extremal solutiQns with no p(x) envelope constraint. We then examine

the synthetic seismograms corresponding to each of the solution models.

Some of the synthetic arrivals will be consistent with the observations

and some will not. If we were to color the sections of the p(x) curves

that correspond to inconsistent arrivals, we would conclude that certain

portions of the p-x plane should be excluded in order to obtain the

* desired time-amplitude behaviour. If we then incorporate such limits

on the p(x) solutions, we can perform another iteration and continue

this process until all of the models have a satisfactory distribution of

arrivals.

Obviously, this approach is fairly crude. There may be types of

amplitude variations that are not simply correlated with areas in the p-x

plane. The approach used here could not address such possibilities. Our

experience from initial applications of this technique is that the use of

p(x) limits has handled the incorporation of amplitudes to the degree that

we are willing to trust the amplitude variations.

To illustrate the effects of the p(x) envelope constraint, the

T(x) data in Table 1, which were used as data constraints for the solution

in Fig. 2, have been inverted with limits on the p(x) curves. The results

are presented in Fig. 4. Two things are immediately obvious: The v(z)

envelope is much narrower than the one in Fig. 2(b) and the synthetic

seismograms are now very similar to the "observed" seismograms in Fig. l(z).

The spurious arrivals have been completely eliminated. Again, maximum and

minimum depths for p only in the ranqe p .12 to p = .16 sec/km have
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been determined. Also shown in Fig. 4(b) are the extremal depth limits for

a slightly wider p(x) envelope. There is a close relationship between the

width of the p(x) envelope and the range of allowable earth models.

9 TRIPLICATION EXAMPLE

The next example is more realistic. Fig. 5(a) shows four seismo-

grams computed from the p(x) curve in Fig. 5(b). The earth model has a

high velocity gradient at a depth of about 10 km which causes a triplication

in the p(x) and T(x) curves. This example is different from the previous

one because all of the arrivals have associated p values which fall on the for-

ward branches (dp/dx < 0) of the p(x) curve. These regions of the p(x) curve

are therefore quite well constrained while the solutions of the range p = .14

to .16 sec km are under-constrained. Fig. 6 shows the extremal depth solutions

for each discrete ray parameter between p = .12 and .18 sec/km. The uncer-

tainty in the solutions is strongly dependent on p. The v(z) envelope

in Fig. 6(b) shows no indication of the large velocity gradient at 10 km

depth. However, the T(x) curves in Fig. 6(c) do indicate the presence of

a triplication. Also shown in Fig. 6(b) is the v(z) envelope obtained

when the differential travel time constrains are omitted. These data have

a significant effect on the width of the velocity-depth limits.

Fig. 7 shows the extremal depth solutions obtained using the same

data as above with an envelope limiting the p(x) curves. The range in

v(z) models is decreased considerably relative to the results in Fig. 6(b).

The travel times and amplitudes are now quite similar to the "observations"

in Fig. 5(z). Even though the p(x) envelope here is quite narrow, there

are still some obvious discrepancies between the observed and calculated

travel times of the second arrivals. Thus, the p(x) limits could be made

even narrower. Also presented in Fig. 7(b) is the v(z) envelope obtained

by using a slightly wider p(x) envelope.
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10 OFFSHORE EXAMPLE

As a final example, we present the results of our interpretation

scheme applied to oceanic crustal data from Spudich, et al. (1979). These

data have been interpreted by Spudich, et al. (1979) by matching the

waveforms of the observed seismograms and synthetics computed using the

reflectivity method. They have also interpreted these data using the

travel time inversion scheme of Garmany, et al. (1979). This technique

uses linear programing to invert for a velocity-depth distribution directly

from a T(p) envelope. Fig. 8 shows the final solutions obtained by

applying our interpretation scheme to the same T(p) data used by Spudich,

et al. (1979). The p(x) solutions have been forced to lie within a narrow

envelope in order to match the first arrival times and amplitudes of the

observed data. The travel times for the later arrivals could not be deter-

mined from the observed seismograms with any reasonable accuracy and so are

not shown. Because these data are lacking, the amplitude information is

essential for determining the nature of the triplications in this example.

The relative amplitudes shown in Fig. 8(d) are the maximum displacements

for each of the observed seismograms and for synthetics which were computed

from the p(x) solutions using Disc Ray Theory integration.

Fig. 8(e) shows the velocity models for the offshore data obtained

by Spudich, et al. (1979) and by our interpretation method. The depth limits

obtained using the travel time inversion scheme of Garmany, et al. (1979) are

somewhat larger than those obtained using our procedure in the first iteration

(e.g., without a p(x) envelope). We have attributed this discrepancy to

two factors; the travel time inversion scheme of Garmany, et al. (1979) does

not utilize an explicit smoothing constraint such as a linear velocity-depth
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relationship, and the earth model used by Spudich, et al. (1979) for their

inverse problem had more degrees of freedom than ours did.

11 DISCUSSION

We have presented a technique for interpreting body-wave seismograms

which involves modifying the p(x) curve until a best fit is obtained for

travel times and amplitudes. The p(x) function is represented by the

discrete distances xj, j = 1, M corresponding to finite samplings of the

ray parameter, pj, j = 1, M. Up to this point we have not mentioned any

criterion for choosing a sampling interval Ap. Ideally, the discretization

of the p(x) curve should not affect the solutions. In other words, the

sampling interval should be small enough to make the p(x) curve appear

continuous. In practice, the number of degrees of freedom in the inverse

problem is limited by computer time. The computing effort for the inverse

problem is proportional to NM3, where M is the number of unknowns and N

is the number of rows in the transfer matrix A. An upper bound for Ap

for each Droblem is determined by the complexity of the p(x) curve. The

linear interpolation of p(x) is an implicit smoothing constraint which

increases in significance as the sampling interval is increased. In

general, Ap should vary as a function of p. In the examples presented

above, the sampling interval was deliberately kept large in order to keep

the diagrams readable.

We feel that there are two aspects of this interpretation procedure

which require additional research. The first involves extending the scheme

to include earth structures containing low-velocity zones. The second is

related to the method for determining the p(x) envelope, which, at the

present time, requires human intervention. We found that one quickly

learns how to manipulate the p(x) curve in order to effect desired changes
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in the travel times and amplitudes of the synthetic seismograms. However,

with some additional programming, this step could be made automatic.
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TABLE CAPTIONS

Table 1. Travel time data for the three seismograms in Fig. 1(a).

S



Table 1

x T P

(km) (sec) (sec/km)

20 3.4 + .05 .16

40 6.4 + .05 .14

60 9. + .05 .12

4

r

0,

2!



FIGURE CAPTIONS

Figure 1. Two solutions to the inverse problem which give extremal

depths for one velocity. (a) shows three seismograms which

provide the data for the inversion. The solid circles represent

travel time uncertainties of + .05 sec. The seismograms were

computed from the monotonic p(x) function in (b) (solid curve)

which ha- a corresponding earth model depicted as a solid curve

in (c). The Weichert-Herglotz coefficients for p = .13 used

in the extremal depth condition are shown schematically as solid

circles in (b). The short and long dashed curves in (b) are

the p(x) solutions which minimize and maximize respectively

the depth for p = .13 sec/km. (c) shows the corresponding

velocity-depth models. The T(x) curves and synthetic seismo-

grams for the extremal depth solutions are presented in (d).

Note that that travel times and amplitudes for these solutions

are not consistent with the data.

Figure 2. Extremal depth solutions for each discrete ray

parameter between .12 and .16 sec/km. The data consist of

three travel times with uncertainties of + .05 sec, as for

the results in Fig. 1. The dashed curves in (b) represent

the depth limits obtained by using three travel time data

with uncertainties of + .1 sec. Note the discrepancies

between the T(x) curves in (c) and the data in Fig. 1(a).
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Figure 3. Extremal depth solutions for six travel time data with

uncertainties of + .05 sec. The "true" earth model for

this example is the solid v(z) curve in Fig. 1(c). The

only difference between the solutions presented here and those

in Fig. 2 is in the number of travel time data used to constrain

the p(x) functions. Note that the extremal depths in (b) are

much narrower than the ones obtained using three T(x) data,

presented in Fig. 2(b). The dashed curves in (b) represent the

* depth limits obtained by using travel time uncertainties of

+ .1 sec.

Figure 4. Extremal depth solutions for the three travel time data in

Fig. 1(a) with a p(x) envelope constraint added. The T(x)

data have uncertainties of + .05 sec. The v(z) envelope in

(b) is much narrower than the one obtained without using a p(x)

envelope, presented in Fig. 2(b). The travel times and synthetic

seismograms in (c) are quite similar to the data in Fig. l(a).

The dashed curves in (b) are the depth limits obtained by using

the p(x) envelope shown as a dashed curve in (a).

Figure 5. (a) shows four seismograms which provide the data for the

"triplication" example. The "true" p(x) and v(z) functions

are presented in (b) and (c). The travel time uncertainties

are + .05 sec.



Figure 6. Extremal depth solutions for the travel time data in Fig. 5(a).

No envelope was used to restrict the p(x) curves. The data

constraints for these results consist of four first arrival

times and two differential travel times. The depth limits

shown as dashed curves in (b) were obtained using the four

first arrival time constraints only.

Figure 7. Extremal depth solutions for the data in Fig. 5(a) with a p(x)

envelope constraint added. Note how narrow the depth limits

in (b) are compared to those obtained without using a p(x)

envelope (Fig. 6(b)). The first arrival times for the above

solutions are comparable to the "observed" values in Fig. 5(a)

However, the p(x) envelope must be made even narrower in

order to fit the travel times for the later arrivals. The

dashed curves in (b) represent the depth limits obtained by

using the dashed p(x) envelope in (a).

Figure 8. Results obtained by inverting oceanic c.,ustal data. The

v(z), p(x), T(x) and amplitude functions obtained in the final

iteration are presented as solid curves in (a), (b), (c) and

(d) respectively. The final p(x) envelope for these solutions

can be seen in (b). The first depth to be maximized occurs at

v = 4 km/sec and the next one is at 5.9 km/sec. Between 5.9

and 8 km/sec the velocity increments are quite small. The

solid circles in (c) represent the errors for the observed



(Figure 8 continued)

travel times. The maximum amplitudes for the observed

seismograms are depicted as solid circles in (d). (e) shows

the depth limits obtained by the travel time inversion scheme

of Garmany, et al. (1979) ("+"'s) and by our technique, with

and without using the p(x) envelope constraint (long dashed and

solid curves respectively). The layered crustal model obtained

by Spudich, et al. (1979) by waveform fitting is shown in (e)

as a short dashed curve,
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