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PREFACE

This study, a two-phase program, was sponsored by the Federal

Aviation Administration through Inter-Agency Agreement No. DOT FATOWAI-
848, "Nondestructive Testing for Light Aircraft Pavements:;_—gﬁggg—ihbf

the study, which is reported herein, was conducted during the period

April 1978 - July 1979 under the direction of Messrs. J. P. Sale, Chief,
"Geotechnical Laboratory (GL); R. G. Ahlvin, Assistant Chief, GL; R. L.
N : Hutchinson, Pavement Program Manager; A. H. Joseph, Chief, Pavement
A Investigations Division; and J. W. Hall, Jr., Chief, Evaluation Branch,
of the U. S. Army Enginesr Waterways Experiment Station (WES).
} Messrs. J. L. Green, D. R. Elsea, and A. J. Bush III actively partici-
pated in the study. The report was prepared by Mr. Bush.

Acknowledgement is made to Dr. M. C. Wang and the Pennsylvania
Transportation Institute for allowing the testing and providing data on
the Pennsylvania Transportation Research Facility. ©Special thanks are
also extended to Messrs. Gaylord Cumberledge, the Pennsylvania Depart-
ment of Transportation; Paul Teng, the Mississippi State Highway Depart-
ment; T. O. Edick, Region 15, Federal Highway Administration; and D. M.
- Greer and R. N. Stubstad, private consulting engineers, for the use of
their nondestructive test devices.
Directors of the WES during the conduct of the investigation and

the preparation of this report were COL John L. Cannon, CE, and
COL Nelson P. Conover, CE. Technical Director was Mr. F. R. Brown.
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INTRODUCTION

BACKGROUND

The Federal Aviation Administration (FAA) has sponsored several
studies to develop methodologies for nondestructive testing (NDT)
evaluation and overlay design for air carrier airport pavements. These
studies, reported by Green and Hall,* Weiss,*¥ and Yang,+ all utilized
the U. S. Army Engineer Watcrways Experiment Station (WES) 16-kip (7.3-
metric ton) vibrator, which applies a maximum peak-to-peak load on a
pavement of 30,000 1b (133.4 kN). The WES 16-kip vibrator is considered
undesirable for light aircraft pavements (design gross loading less than
30,000 1b (133.k kN)) because this load may overstress ths light air-
craft pavement; smaller, less expensive, and more air-transportable
equipment may provide an accurate evaluation for thinner pavements.
Therefore, the FAA sponsored the research project described herein to
evaluate the applicability of loads lighter than those produced by the
WES 16-kip vibrator for testing light aircraft pavements.

The overall study of NDT for light aircraft pavements is a two-
phase program. Phase I, which is reported herein, is for the evalu-
ation of the applicability of light load devices for the NDT of light
aircraft pavements. Phase II will develop a methodology for evaluation
of light aircraft pavements based upon multilayered elastic models and

limiting strecss/strain criteria.

*# J. L. Green and J. W. Hall, Jr., "Nondestructive Vibratory Testing
of Airport Pavements," Evaluation Methodology and Experimental Test
Results, Vol 1, Report No, FAA-RD-73-305-1, Department of Transporta-
tion, Federal Aviation Administration, Washington, D. C., 1975.

¥%¥ R, A. Weiss, "Pavement Evaluation and Overlay Design by Combined
Methods of Layered Elastic Theory and Vibratory Nondestructive
Testing" (in preparation), Department of Transportation, Federal
Aviation Administration, Washington, D. C.

+ N. C. Yang, "Nondestructive Evaluation of Civil Airport Pavements,
Nondestructive Tests-Frequency Sweep Method, Part I," Report No.
FAA-RD-T6-83, Department of Transportation, Federal Aviation Admin-
istration, Washington, D. C., 1976.




PURPOSE

The purpose of Phase I of this study is to evaluate the loading
required for the NDT of light aircraft pavements with respect to pavement
response monitoring, equipment size and transportability, and equipment

initiel and operating cost.
SCOPE

The study will only include equipment that is commercially avail-
able and measures the structural characteristics of the entire pavement
section by means of steady-state vibration, static loading or impact
loading, and the resulting deflection measurements. Optimization of the
loading devices will be accomplished through both laboratory and field

pavement tests.




DESCRIPTION OF DEVICES TESTED

The devices evaluated during this investigation were limited to
those that are commercially available to consulting engineers or airport
administrators. They include the Benkelman Beam, the Dynaflect, the
Falling Weight Deflectometer (FWD), and three models of the Road Rater.
The WES 16-kip (T.3-metric ton) vibrator is also included since it was
used as a standard to which these devices were compared. Table 1 pre-
sents the loading characteristics of all devices tested. The following

paragraphs describe each device .n detail.

BENKELMAN BEAM

The Benkelman Beam was developed at the WASHO Road Test* for the
purpose of measuring the deflection of a flexible pavement under a
loaded pneumatic tire. It consists of a lever rotating about a fulcrum
that is fixed to a datum beam. The datum beam is supported on the
pavement at three points. Figure 1 shows the dimensions of the beam.

A variation of the Benkelman Beam was developed by the California
Highway Department in the form of a truck-mounted device. As the truck
moves continuously along the road surface, a beam is alternately placed
on the pavement and permitted to rest at a specific point until the
wheel passes over the reference point. After this reading is taken,
the beam is mechanically moved forward; the readings are repeated. The
truck travels at a speed of one~half mile (0.8 km) per hour and is
capable of taking continuous readings at 20-ft (6.1-m) intervals. This
variation was not tested during this study primarily because it would
not be air-~-transportable.

The procedure for testing with the Benkelman Beam was taken from

the Asphalt Institute.¥* Basically, the toe of the beam is placed

* Highway Research Board, "The WASHO Road Test, Part I," Report No.
HRB Special Report 18, National Academy of Sciences, National Re-

search Council, Washington, D. C., 195k,
, "The WASHO Road Test, Part II," Report No. HRB Special

Report 22, National Academy of Sciences, National Research Council,

Washington, D. C., 1955.
*## pAgphalt Institute, "Asphalt Overlays and Pavement Rehabilitation,"

Manual Series No. 17, College Park, Md., 1977.
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Figure 1. Benkelman Beam

between the dual wheels of a single axle loaded to 18,000 1b (8,615 kg).

The dials are zeroed and the truck is driven forward at _.-ast 30 ft (9.1

m). The rebound deflection is then measured.
DYNAFLECT

The Dynaflect is an electromechanical system for measuring the

dynamic deflection of a pavement caused by an oscillatory load. It is

manufactured by SIE, Inc., Fort Worth, Texas. The trailer-mounted
device (Figure 2) applies a 1000-1b (4L48-N) peak-to-peak sinusoidal

load to the pavement. This load is generated by two counterrotating

masses that are rotating at a constant frequency of 8 Hz. The force is

transmitted to the pavement through two 4-in.~ (10.2-cm-) wide, 16-in.-

(40.6-cm—) OD polyurethane-coated steel wheels spaced 20 in. (50.8 cm)
apart. The Dynaflect applies a 2000-1b (907-kg) static weight to the

pavement.

The pavement response to the dynamically applied load is measured

with 210-ohm, L.5-Hz geophones that are shunted to a damping factor of

approximately 0.7. One geophone is located directly between the two
steel wheels. The other four geophones are spaced at 1-ft (30.5-cm)

intervals to the front of the trailer.




s

Figure 2. Dynaflect

Two types of signal conditioning and recording devices are avail-
able with the Dynaflect. With the standard control unit, the frequency
(8 Hz) is monitored on a meter, but the deflections from each of the five
sensors must be hand-recorded from a single meter by switching an indi-
cator to each of five positions (Figure 3). The optional device is a
digital control system (Figure 4), which has a digital display for each
of the five sensors as well as a meter for monitoring frequency. A
thermal printer can be attached to the optional recorder that will

record each of the five deflections and a test number.
FALLING WEIGHT DEFLECTOMETER

The FWD (Figure 5) is a relatively new NDT device, particularly
to the United States. Extensive research has been performed with the FWD

in Europe by different recearchers.¥*»®* Basically, a mass (Figure 6)

¥ A. Bohn et al., "Danish Experiments with the t'rench Falling Weight
Deflectometei," Proceedings of the Third International Conference on
Structural Design of Asphalt Pavements, Vol 1, London, 1972.

*% A. Claessen et al., "Pavement Evaluation with the Falling Weight
Deflectometer,”" Proceedings of the Association of Asphalt Paving
Technologists, Vol L5, 1975.
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Figure 5.

Overall view of the FWD
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Figure 6.

Closeup of the FWD
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weighing 330.7 1b (150 kg) is dropped on a set of rubber cushions, and

the resulting force and deflection are measured by load cells and

velocity transducers. The drop height can be varied from O to 15.7 in.
(40 em) to produce a force from 0 to 13,488 1b (60 kN). The device is
trailer-mounted, having a total weight of 1,200 1b (544 kg). The load
.-S transmitted to the pavement through an 11.8-in. (30-cm) plate that

has a rubber cushion attached. The signal conditioning equipment

(Figure 7) displays the resulting pressure in kilopascals and the maxi- g
mum peak displacement in micrometres. As many as three displacement

sensors may be recorded. Two people are required for an efficient

operation.
MODEL 400 ROAD RATER

The Road Raters are manufactured by Foundation Mechanies, Inc.,
El Segundo, California. The Model 400 is an electrohydraulic loading
device mounted on the front of a truck or van (Figure 8). The control
display console (Figure 9) contains all the controls and readout meters
required to operate the hydraulic system and read the data. Power for
this unit is from the vehicle's 12-volt electrical system.

The mass weight of 160 1b (73 kg) and the actuator (hydraulic ram)
are mounted with the rod end upward. (The opposite is true for the 16~
kip (T.3-metric ton) vibrator.) The actuator is capable of a 0.3-in.
(7.6-mm) peak-to-peak stroke and produces a vibratory load ranging from
0 to 800 1b (3558 N). The dynamic load is transferred to the pavement

surface through two 7- by bt-in. (17.8~ by 10.2-cm) rectangulsr steel
pads, which are spaced 6 in. (15.2 cm) apart (10 in. (25.4 cm) center-to-
center), The static weight of the Model 400 Road Rater can be varied
through hydraulic lines that are separated from those used for the .
oscillation to system pressure. Figure 10 shows the relationship of
static load versus system pressure. Normal pressure for the Modz1 LOO

is 600 psi (421,860 kg/mg). Pavement deflection is monitored with four

velocity sensors. One is located between the two steel pads. The
others are equally spaced at l1~ft (30.5-cm) intervals away from the

first one. Variation of force and frequency is provided through a four- 3

way servo valve, which allows flow to either chamber of the vibrator

10
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Figure 8.

Figure 9.

Model 400 Road Rater

RATER

Road Rater readout unit
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l

1000 | 1 | |

300 400 500 600 700 800 900
SYSTEM PRESSURE, PSI

Figure 10. ©Static load versus system pressure fgr
Models 400 and 510 Road Raters (1 psi = 703 kg/m";
1 lbm = 0.45 kg)
actuator in direct proportion to an oscillating electrical current
applied to a torque motor within .the valve,

Force and deflections are measured as percentages of full-scale
readings on the scales of the control display console (Figure 9). A
range switch selects the range value of the displacement readout meters.
For example, when the range switch is set at "1," all meters will read
displacement as a percentage of 0.00l in. (0.025 mm). Range switches
may be set at 1, 2, 3, 5, 10, and 20. Frequency is controlled by a
five-position rotary switch, which provides for oscillation at 10, 20,
25, 30, and 4O Hz.

The Model 400 Road Rater has no load cells. Force indicated on
the display console is the theoretical calculated force that is based

on the sinusoidal oscillation of the mass (acceleration is the second

13
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derivative of the displacement equation for sinuscidal motion). The

dynamic force can be calculated from the following equation:
F = mwex

where
F = dynamic fbrce coincident with deflection -
m = mass of the vibrator
w = angular frequency
x = dynamic deflections
For a frequency of 20 Hz and a mass displacement of 0.10 in. (2.54 mm),

the force is

2
F = ——¥g§l}§L——-x (20 cycles/sec x gﬂg%% )
32.2 ft/sec ¢y

1 ft

x 0,10 in. x 15 in.

F

654 1b peak to peak (2909 N)
MODEL 510 ROAD RATER

The Model 510 is basieally the same device as the Model LOO Road
Rater with three major exceptions. First, the Model 510 is housed in
a 5- by 6~ft (1.5- by 1.8-m) two-wheeled trailer (Figure 11). The mass
weighs 320 1b (145 kg) compared with 160 1b (73 kg) for the Model 400
Road Rater. Last, the electrical power is supplied by a self-contained
12-volt direct current (d-c) electrical system.

As with the Model 400, the static weight of the Model 510 is
dependent on the system pressure (Figure 10). Normal pressure for the
Model 510 is 575 #25 psi (Lok,283 +17,578 kg/mg) for a static weight of
1,350 1b (6.12 kg). The dynamic force is also calculated the same as
with the Model L0OO. Figure 12 shows a relationship for this force
versus the frequency and mass displacement.

The controls for the Model 510 (Figure 9) can be operated from

the driver's seat of the towing vehicle. One man can operate this

1k
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‘ Figure 11. Model 510 Road Rater
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Figure 12. Mass displacement versus dynamic force
b for the Model 510 Road Rater (1 in. = 2.54 cm;
11b, = L, 448 N)




device, but two would be more efficient by having one man drive, operate

the controls, and read out the data while the other records.
MODEL 2008 ROAD RATER

As with the Model 510, the Model 2008 Road Rater is a trailer-
mounted, electrohydraulic vibrator (Figure 13). Also, like the WES
16-kip vibrator, the Model 2008 has a variable force and frequency
capability. Furthermore, the Model 2008 has a digital control unit
(Figure 14) with a light-emitting diode (LED) display that by activating
the proper switch, the force, frequency, or any one of four of the
velocity sensors can be monitored during a test. Data for the Model
2008 are recorded on a thermal printer located in the control console.
The test label number (0-9999), frequency, force, and four deflections
are recorded either on the operator's command or during the automatic
mode. Under the automatic mode, the operator activates the mode by
pushing one switch. The mass is lowered to the pavement, the vibrator
is turned on, vibrations are generated at a preselected force and
frequency, data are recorded by the printer, and the vibrator is

turned off and raised from the pavement.
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Figure 13. Model 2008 Road Rater
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Figure 14. Model 2008 Road Rater control unit

The Model 2008 has a self-contained power supply. The gasoline

engine supports the hydraulic and electrical systems of the device.
The mass of the Model 2008 is 4000 1b (1814 kg). During this research
effort, the 4000-1b (181Lk-kg) mass was lowered to the pavement and
disconnected from the trailer. A recent modification was made that
allows the use of the trailer for the reaction force similar to the
Model 510.

The Model 2008 Road Rater has three load cells to monitor the
force. The loads are summed for a total force output. Deflection is
monitored by four velocity sensors. The first is located in the center
of the 18-in.- (L45.7-cm-) diam load plate. The sensor actually rests
on the pavement in a hole in the load plate. The other sensors are
spaced at 1-ft (30.5-cm) intervals to the rear of the trailer from the

first sensor.

17




WES 16-KIP VIBRATOR

Part of the description of the WES 16-kip vibrator given by Green
and Hall* is repeated here for the convenience of the reader. The 16~
kip vibrator, which is an experimental pro*otype model, operates elec-
trohydraulically and is housed in a 36-ft (11-m) semitrailer that
contains supporting power supplies and automatic data recording systems.
The vibrator mass assembly consists of an electrohydraulic actuator
surrounded by a 16,000-1b (7,257~kg) lead-filled steel box. The actuator
uses up o a 2-in. (5.1l-cm) double-amplitude stroke to produce a vibra-
tory load ranging from O to 30,000 1b (133.4 kN) peask to peak with a
frequency range of 5 to 100 Hz for each load setting. Electric power
is supplied by a 25-kw diesel-driven generator set. The hydraulic
power unit is diesel-driven and has a pump that can deliver 38 gal/min
(143 2/min) at 3,000 psi (2,109,300 kg/mz).

Major items of electronic equipment are a set of three load
cells (BLH Electronic Model U3L1l, 20,000-1b (88.9 kN) capacity), which
measure the load applied to the pavement; velocity transducers (Mark
Product Model L-1-U) located in the 18-in.- (L45.7-cm-) diam steel load
plate and at points away from the load plate, which are calibrated to
measure deflections; a servomechanism, which allows variation of fre-
quency and load; an X-Y recorder, which produces load versus deflection
and frequency versus deflection curves; and a printer, which provides
data in digital form. Figure 15 shows an overall view of the 16-kip
vibrator.

With this equipment, the vibratory load can be varied at constant
frequencies, and load versus deflection can be plotted. These load-
deflection data are used to compute the dynamic stiffness modulus (DSM)
for a pavement structure. Frequency can be varied from approximately 5
to 100 Hz at constant force levels to produce the frequency response of
the pavement structure. Also, at any selected load or frequency, a plot

of the deflection basin shape can be drawn using data from the velocity

¥ Green and Hall, op. cit., p. 1.

18

Y et e

e




*¢T aan8tg

203BXqTA dI¥~9T SHM U3 JO #STA 1TBISA0

AN D S
thi 57




— U TSI o

transducers. The WES 16-kip vibrator can also be used to measure the

velocity of shear waves propagated through various pavement layers.

Wavelengths can be measured by manually moving a velocity transducer on
the ground, observing the results on an oscilloscope, and manually
recording the results. This procedure is repeated for different fre-
quencies of loading, and the wave velocity is obtained by multiplying

the frequency times the corresponding wavelengths.
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EVALUATION RESULTS

OPERATIONAL CHARACTERISTICS
EASE

In evaluating each device for ease of operation, one important
evaluation criterion was the operator training required before opera-
tion. Another criterion was the amount of physical labor required for
a test. Both of these criteria were evaluated equally. The Benkelman
Beam is the simplest device of all, but in terms of operator training,
it requires probably as much or more than any of the other devices. The
Benkelman test is a cumbersome test. truck must be positioned and the
arm placed between the dual tires, the gages zeroed, the truck moved
away, the gage read and recorded, and then the equipment picked up and
moved to the next test location.

The Dynaflect requires about one hour of operator training. The
velocity pickups must be calibrated, then attached to the device. After
the initial warmup and calibration, the Dynaflect is relatively simple
to operate. There were two different models evaluated under this
project. One had a digital control unit, while the other had a standard
analog control. The digital system had an optional printer system,
which was not evaluated. The digital unit displays the results from all
four or five velocity sensors. The standard control requires changing
a dial so that each sensor can be monitored using only one meter. To
conduct a test, the vibratory wheels are lowered to the test position.
Another switch is tripped to lower the velocity pickups, the displays
are allowed to stabilize, and the values recorded. The pickups are then
raised. If the test interval is short enough and the pavement is smooth,
the vibrator is left running with the wheels down. When the next posi-
tion is reached, only the pickups have to be lowered. After the initial
setup, and if the vibrator wheels can be left down, the Dynaflect with
the digital control is the easiest to operate of all devices evaluated.

The operational ease of the Models 400 and 510 Road Raters will

be discussed together since they are so similar. These vibrators
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require very little calibration. The manufacturer recommends calibra-
tion once a month. The operation then consists of initially removing a
locking mechanism that holds the vibrator in the "up" position. Then,
for a series of tests, the vibrator is lowered to the pavement and
activated at the desired frequency, the force output is checked, and a
switch is engaged to allow reading all four velocity sensors. The
vibrator is then raised and the vehicle moved to the next location. In
comparing the two vibrators, the Model 400 allows easier operation than
the Model 510 since the operator does not have to maneuver a trailer.
The Model 400 with a mirror positioned correctly allows the driver to
easily position the device over a preselected test point. All other
devices require another person to guide over a preselected point.

The Model 2008 Road Rater has a digital control unit that also
allows for simple operation. On a normal setup, the support arm for the
velocity gages and the gages must be installed and the pressure in the
air bags checked. A set of locking bars are removed so that the mass
can be lowered by the hydraulic 1ift cylinders, and the device is then
ready for operation. In the automatic cycle setting, one switch causes
the vibrator to conduct the test, record the data, and prepare to move

to the next location.
SPEED

The criterion for evaluating speed was established as the time
required to conduct one test, move 100 ft (30.5 m), and then be prepared
to begin the second test. OSpeed of operation is a function of manpower
requirements. For this evaluation, the optimum case was selected to
evaluate speed. Hence, if a device can be operated by one person but
two are more efficient, speed was evaluated with two operators. The
Road Raters have the capability of operating at varying loads and fre-
quencies. The load of the FWD can be varied by changing the drop height.
For evaluation of operation speed, only one test load and one frequency
were considered.

According to the results of the speed evaluation given in Table 2,

the Benkelman beam and the FWD rank first and second, respectively, in
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Table 2

Speed of Operation

Daily Time Required
Set-Up/Calibration per Test
Device Time, min min
Benkelman Beam 10 3-1/h
Dynaflect
Standard Control Unit 20 1-1/h
Digital Control Unit 20 3/4
FWD 20 1-1/2%
Model 400 Road Rater 15 1
Model 510 Road Rater 15 1
Model 2008 Road Rater 15 1
WES 16-kip Vibrator 60 1-1/2

* Estimated (no production-type tests were conducted).

consuming more time per test than the other candidate devices. The FWD
time could be reduced if the velocity sensors could be mechanically

placed rather than hand placed.
MANPOWER REQUIREMENTS

Table 3 lists the manpower requirements for each device. Each
device that requires recording of the data by hand is more efficiently
operated by one additional person. Those devices with automatic re-
cording (Dynaflect and Model 2008 Road Rater) do not require the addi-

tional person.
COSTS
INITIAL

Table 4 presents the initial costs based on manufacturers' 1979
prices, Note that the Road Rater is listed in this table as the Model
LOOA. After completion of the evaluation tests on these devices, it was
learned that neither the Model 510 nor the Model 400 were any longer in
production. Difficulties with the front mounting of the Model 400
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Table 3
Manpower Requirements
Minimum Opt imum )
Device No. No.
Benkelman Beam 2 2 "
Dynaflect
Standard Control Unit 1 2
. Digital Control Unit 1 1*
° FWD 1 2
- Model 400 Road Rater 1 2
}' Model 510 Road Rater 1 2
1 Model 2008 Road Rater 1 1
WES 16-kip vibrator 3 L
' *¥ With printer.
Table 4
Equipment Costs
.
1 Device Cost
Benkelman Beam $ 666
; Dynaflect
With Standard Control Unit 16,000
- With Digital Control Unit 19,333 '
E FWD (Hydraulic 1ift, measures
E load and three deflections) 28,000 .
; Model LOOA Road Rater {does
| \ not include vehicle) 22,000
’- Model 2008 Road Rater 40,000




xe,

resulted in a unit mounted in the rear of the van, hence the Model 400A.
The mass of the Model 400A is 320 1b (145 kg), the same as the Model
510. A Road Rater Model 2000 is also manufactured with a 2,000-1b (907-
kg) mass at a cost of $36,000. This model was not tested during this
study but will deliver one-~half the force of the Model 2008.

OPERATING

During this study, the devices were not operated for a long enough
period to establish a precise operating expense comparison. Observations
made during this study and during other projects where candidate
devices were used will be discussed.

The primary cost for operating all the candidate devices will be
attributed to the cost of labor reguired for operation, assuming that
vehicles are available to tow the trailer-mounted rigs (Dynaflect, and
Models 510 and 2008 Road Raters) and that there is a truck for the
Benkelman Beam. Fuel costs would be approximately the same for all
candidate devices. The Models 510 and 2008 would require some addi~
tional fuel for their power supply engines, but these engines only use
about 5 gal (19 %) in an 8-hr day. This cost would be minimal when an
operator cost of $100 per day is estimated.

Maintenance costs would be nil for the Benkelman Beam. The
Dynaflect seems to require little maintenance, particularly if it is not
abused., Maintenance was required on two of the three Dynaflects we
observed. One case was caused by not operating according to the manu-
facturer's recommendations (i.e., driving too fast with the wheels down
in the vibratory mode). 1In the other case, maintenance was required to
the digital system, probably because of lack of use for long periods of
time. In both cases, the devices were corrected in the field with
minimum delays.

The Models 400 and 510 Road Raters require very little mainte-
nance. Maintenance costs are insignificant if a few preventive mainte-
nance steps are followed. The Model 2008 Road Rater is relatively new.
Effects of age and continued use cannot be evaluated. The FWD should

not require any maintenance costs, since it is a very simple apparatus.
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Therefore, because maintenance requirements are few and fuel costs are
very nearly equal, the operator cost will govern the operating cost for

all devices.
TRANSPORTABILITY BY CARGO AIRCRAFT

The problems associated with transporting the WES 16-kip vibrator
overseas led to the evaluation parameter of transportability. Since
this large device can only be carried by the C-5 aircraft, any commer-
cial transportation is eliminated. 1In the evaluation of this parameter,
it was found that the Benkelman Beam is completely transportable by
practically any means. Since the Model 400 Road Rater has to be per-
manently attached, it has to be evaluated with the truck attached, which
also makes it the largest of the candidates.

In evaluating the trailer devices, it was found that if the air-
port is serviced by a major cargo carrier, all can be transported. If
the airport does not have a cargo carrier, it will depend on the local
situation as to the transportability. Different carriers have different
operating procedures, and airports have different loading equipment. Gen-
erally, ranking of the trailer devices in terms of their gross weight
would be in the order of the FWD, the Dynaflect, the Model 510, and the
Model 2008. However, according to air cargo personnel at several air-
ports, each of these devices would require the same aircraft. The size
of the van on which the Model LOO Road Rater was mounted would restrict
this device to some extent (i.e., would not fit in the cargo area of a
B-727). Therefore, in rating air transportability, the Benkelman Beam
is first, the Model 400 Road Rater is last, and all the others are
grouped between these two devices.

ACCURACY AND REPRODUCIBILITY
OF MEASUREMENTS

DEFLECTION

The accuracy of the deflection measurement of the Benkelman Beam
was checked by placing premeasured calibration shims under the beam toe

and recording the readings. A wide range of deflections was selected
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since the static deflections measured in the Benkelman Beam tests are

generally larger than the dynamic deflections under the vibrators.

Table 5 presents the results of these tests.

Table 5

Accuracy of Benkelman Beam Deflection Measurements

Known Input Measured Deflection Percent
in. in. Error
0.0640 0.066 3.1
0.0372 0.036 -3.3
0.0270 0.0279 3.3
0.0220 0.0238 8.2
0.0140 0.0160 14,3
0.0080 0.0083 3.8
0.0190 0.0200 5.3
0.0050 0.00kLT -6.0
0.0030 0.0036 20.0
0.0020 0.0024 20.0

Mean Percent Error

8.7

Note: 1 in. = 2.54 cm.

To determine the accuracy of deflection measurements of the
vibrators, a calibrated shake table was used. Each transducer was
vibrated at known deflections on the shake table, and the output signal
from each transducer was recorded on the particular device's datas acquisi-
tion system. The calibration of the shake table was based on an MB
Model 1241 vibration transducer, which was precision-calibrated by MB
Electronics.

In Table 6, the results of the tests on the five Dynaflect sensors
are tabulated. Each sensor was vibrated at six different known deflec-
tions ranging from 0.5 to 20 mils (0.012 to 0.51 mm), and the measured

Dynaflect deflection recorded. The percent error in each Dynaflect

reading was also computed (Table 6).
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Deflections were measured with the Model 510 Road Rater for eight

known input deflections at frequencies of 10, 20, 25, 30, and 40 Hz

RD—

(Table 7). The mean percent error varied with frequency from -3.3

percent at 4O Hz to -26 percent at 10 Hz and with known deflection from

1
+1.4 percent at 0.00140 in. (0.035 mm) to -16 percent at 0.00040 in.
(0.01 mm) (smallest known input). The mean percent error was greater ]
than 10 percent for only measurements at 10 HEz and known input deflec- |

tions of less than 0.00080 in. (0.02 mm) peak to peak. Velocity trans- ]
ducers of the Model 510 Road Rater and the WES 16-kip vibrator are
comparable in the accuracy of their measurements. Velocity sensors of
the Model 400 Road Rater are the same as those of the Mode' 510. The
control box is also the same; therefore, the accuracy will be assumed

similar for both devices.

The accuracy data for the velocity sensors of the Model 2008
Road Rater are summarized in Table 8. Note that the deflections pre-
sented are the average for frequencies of 5, 8, 15, 25, and 50 Hz and
the percent errors presented in the lower part of the table are averaged
for the six known deflections ranging from 0.5 to 20 mils (0.012 to 0.51
mm). Again, this is very similar to the accuracy for the WES 16-kip
vibrator in that the error is greater at 5 Hz and becomes more con-
sistent at the other frequencies,

Accuracy tests for the FWD consisted of placing the velocity
sensor of the WES 16-kip vibrator beside the sensor of the FWD and
comparing results (Figure 16). This check is not as precise as the
use of the calibrated shake table; therefore, the differences in method
should be considered when comparing the FWD accuracy with the accuracy
of the other devices. This expedient method was used due to constraints
of time and funding.

FORCE AND FREQUENCY

To test the accuracy of force for each device, load cells were
used to measure the output. Frequencies were counted electronically
from the load cell signal in the form of periods.

To measure the dynamic force output from the Dynaflect, a BLH
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load cell was placed under each of the steel loading wheels, and the
results were tabulated (Table 9). Since the Dynaflect force is a com-
puted value and is assumed to be constant, tests were conducted to see
if this force actually remained constant with variations in deflection
of the loaded surface. Both rigid and flexible pavements were tested
to determine if the high deflections on flexible and lower values for
rigid might influence the force output. Changing the amount of deflec-
tion did change the error in load. The frequency dial on the Dynaflect
control is divided by tick marks with 8 Hz being in the center of the
dial. Frequency was measured with the frequency adjusted so that the
dial registered one mark above and again at one mark below 8 Hz.

Table 9 also presents these test results.

The impulse load input to the ground surface was measured for the
FWD by dropping the weight on three BLH load cells sandwiched between
two 18-in.- (L5.7-cm-) diam steel plates. Plates were firmly bolted to
the load cells. The FWD plate was placed on top of this sandwiched
construction. Measured loads were determined from oscillograph records
of the load signal. Table 10 summarizes the results of these tests.

As noted, the measured force was consistently higher for the different
drop heights.

For the Model 510 Road Rater, the same sandwiched load cell
apparatus was used to measure the load. Table 11 shows the comparisons
of calculated to measured peak~to-peak loads. Loads were compared
at frequencies of 10, 20, 25, 30, and 40 Hz. Calculated loads were
consistently higher than measured loads but tend to agree best at high
loads and higher frequencies. The worst agreement was at a measured

load of 1100 1b (4893 N) and 25 Hz where the calculated load minus the

measured load expressed as a percentage of the measured load was ~5T7.3 ﬂ

percent. The best agreement was also at 25 Hz and measured load of 2075
1b (9230 N) where the percent difference, computed as above, was ~12.3
percent.

Again, the Model LOO was not tested, but being so similar to
the Model 510, differences in measured and calculated loads should be

similar. Accuracy of frequency was not tested on the Model 510 Road
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Table 9

Accuracy Test for Dynaflect Force and Frequency

Rigid Pavement Flexible Pavement
Measured Measured
Dynaflect  Measured Percent Dynaflect Force Percent Force Percent
Frequency Frequency Error Force 1b Error 1b Error
8 8.26 -3.1 1000 10L4 ~bh. 21 1148 -12.9
S+1% 8.50
B-1%» 7.9%

Note: Percent error =

*
%

Dynaflect value - measured value
measured value

1 1b = L, LL8 N.
Indicated frequency of 8 Hz plus 1 gradation on the dial.
Indicated frequency of 8 Hz minus 1 gradation on the dial.

Table 10

Accuracy Test for FWD Force

FWD Measured
Force Force Percent
1b 1b Error
5,640 6,075 -7.2
5,687 5,975 4.8
11,311 11,810 -L.2 ’
Mean percent error =5.4

FWD force - measured force
measured force

Note: Percent error =
1 1b = L.L48 N.
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Rater, but by counting cycles on oscillograph output, a good agreement

in frequency was indicated.

Being a vibrator with a variable frequency and force capability,
the Model 2008 Road Rater required much more testing. The force and
frequency were varied to check the accuracy. Accuracy checks (Table 12)
were made at two force levels of 3,000 (13,445 N) and 5,000 1b (22,241
N) over a frequency range from 5 to 50 Hz. The frequency was generally
between 3 and 4 percent higher than the measured frequency, whereas the
indicated load was about 4.5 percent lower than the actual measured
load. During another test for accuracy, the force signal was filtered
with a band pass filter which removed all harmonics that may add to or
subtract from the input signal. By filtering the force signal, the
percent error was reduced to less than 1 percent (Table 13). The
force signal will be presented later to illustrate this error.

FORCE, VELOCITY, AND

DEFLECTION SIGNALS

To better understand the parameters inputted to the pavement and
the response of the pavement to these parameters, traces of the force,
velocity, and deflection are discussed. Figure 17 presents the Dyna-
flect signals. The sine wave for each parameter is excellent; however,
the velocity signal does show some overriding noise. Figure 18 shows
the force and velocity for the FWD. Note that the response on the FWD
registration equipment records only the first peak., During accuracy
testing of the FWD and also on the depth of influence tests to be dis-
cussed later, deflections were calculated by measuring with a planimeter
the area under the velocity trace. The electronic system used for
accuracy tests on the other vibrators required a steady-state signal to
integrate velocity for deflection determination.

For the Model 510 Road Rater, only the force signal was recorded.
The traces are for loads near the upper limits for frequencies of 10,
20, 25, 30, and 40 Hz (Figure 19). These traces approach a sinusoidal
solution. The Model 400 Road Rater was not available for this type
testing, but except for magnitude, the shapes will be similar to those
of the Model 510.
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Table 13

Accuracy Test for Model 2008 Road Rater Force and Frequency
(Measured Force Filtered)

* L W e, AR A TR AT T ¥ I TR TR e e AL T T

RR2008 Measured RR2008 Measured

Frequency Perlod Frequency Percent Force Force Percent

Hz millisec Hz Error 1b 1b _Error
5 226.0 L. 43 12.9 5187.5 LT43.5 9.1
6 186.0 5.38 11.5 5307.5 5078.3 L.5
7 156.6 6.39 9.5 5150.0 5213.5 -1.2
. 8 134.5 T.43 T.7 5152,2 5252,2 -1.9
B 9 118.2 8.46 6.4 5055.0  5118.1 -1.2
, 10 105.0 9.52 5.0 5010,0 4913,1 2.0
11 95.0 10.53 4.5 5005.0 5085.5 -1.6
. 12 86.8 11.52 4.2 5042.5 5106.0 -1.2
r 13 79.3 12,61 3.0 5087.5 5226.2 =2.7
1k 73.7 13.57 3.2 5077.5 5219.0 -2.7
15 68.5 14.60 2.7 5082,5 5029.7 1.0
16 64,2 15.58 2.7 507T.5 5115.L4 -0.7
# 18 56.6 17.67 1.9 so47.5  506k.2 -0.3
. 20 50.8 19.69 1.6 L975.0 4905.4 1.4
22 45.8 21.83 0.8 5000.0 4912,5 1.8
24 k2.0 23,81 0.8 L997.5 5111.9 -2.2
26 38.4 26.0k -0.2 4970.0 5016.9 -0.9
28 35.6 28.09 -0.3 4982.5 5030.3 -1.0
30 33.3 30.03 =0.1 5250.0 5169.2 1.6
35 28.2 35.L46 -1.3 5037.5 5169.6 -2.6
- ko 24.6 40.65 -1.6 5062.5  5303.7 <h.5
45 21.8 45.87 -1.9 3950.0  4174.3 5.4
. 50 19.7 50.76 -1.5 2985.0  3261.5 -8.5

RR2008 value - measured value

Note: Percent error = x 100 .
11b = 4,448 N.

measured value

=
-
.
>
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Figure 17. Dynaflect signals
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Figure 19. Model 510 Road Rater force signals
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Figure 20 precents the force signals for the Model 2008 Road
Rater. Note that at low frequencies the signal does not resemble a
sinusoidal motion. Thus, when this signal is filtered as reported
previously, there is a much better agreement to the load reported by the
Model 2008. According to the manufacturer, the load signals from each of
the three load cells are summed and the peaks are averaged to give the
dynamic force. The signal equipment used to monitor these loads during
the accuracy testing, which is the same as used by the WES 16-kip
vibrator, selects the peak force signal and holds this until the voltage
(signal) crosses zero. At this time, it resets and captures the next
peak. Filtering of these signals provides a much improved sinusoidal
motion to be sampled. Figure 21 presents the Model 2008 Road Rater
velocity signals. Again, only at the higher frequencies do they even
approach a sine wave. The Model 2008 deflection signals (Figure 22)
are shown for three different frequencies. Even after integration the
signal at 5 Hz is ragged. Both the 15- and 26-Hz signals approach a
sine wave.

To compare the signals of these devices, the force, velocity,
and deflection signals from the WES 16-kip vibrator are presented. The
force signals (Figure 23) are ragged below 10 Hz and above 35 Hz.
Between these extremes, the sinusoidal motion is good. This band is
narrowed for the velocity signals between 15 Hz and 24 Hz (Figure 2k).
Deflection signals are shown for three frequencies (Figure 25). As with
the Model 2008 Road Rater, the 5-Hz signal is very ragged, whereas the

15- and 25-Hz signals are sinusoidal.
DEPTH OF SIGNIFICANT INFLUENCE

The determination of the depth of significant or measurable
dynamic influence from the various devices was accomplished by placing
velocity transducers in :he pavement foundation at different depths.
Deflections were then measured at the different depths as a result of
the input loading. The loading device was located directly over the
velocity transducer and at various offset distances to evaluate the

capability of the input loading to adequately excite the entire pavement
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Figure 20. Model 2008 Road Rater force sighals
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Figure 22. Model 2008 Road Rater deflection signals
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Figure 25. WES 16-kip vibrator deflection signals
L ]
structure. Two existing pavement test sections at the WES were selected
for these tests. One section consisted of an asphaltic concrete (AC)
overlay over portland cement concrete (PCC) pavement placed directly
over a lean clay subgrade. Velocity pickups were placed in the subgrade
prior to placing the PCC. Figure 26 shows a layout of this AC/PCC test
section. The other section was an AC pavement with a L-in. (10-cm) AC
i- over T-in. (17.8-cm) crushed stone base over a 26-in. (66-cm) sand-
\ gravel subbase over a lean clay subgrade. Figure 27 presents a layout
t of this AC test section with the velocity sensors.
Results from the depth of influence tests are presented in the
4 N form of deflection contour lines plotted versus depth and distance from

L8
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the applied load. Figure 28 shows the test results of the Dynaflect f

and the WES 16-kip (7.3-metric ton) vibrator operating at the same load !

and frequency on the AC section. Note that the Dynaflect has higher

deflections near the surface and center of the load. This is due to the
smaller contact area. Away from this area, the contours are similar.

The FWD tests on the AC section (Figure 29) produced about 10 times

greater deflections than the Dynaflect at the 60-in. (1.5-m) depth.

Figure 30 illustrates the contours for the Model 2008 Road Rater and the

WES 16-kip vibrator operating at 15 Hz and 7,000-1b (31,138-N) force.

. These deflections at 60 in. (1.5 m) are similar to those for the FWD but
are less near the surface under the applied load. Again, the contact

i pressure is greater for the FWD. (One hundred psi (70,310 kg/me) for

¥ the FWD and 27.5 psi (19,335 kg/mg) for the Model 2008 Road Rater.)
Tests were not conducted on these sections with either the Model L0O or
Model 510 Road Rater.

. ' Figure 31 shows the depth of influence contours for the Dynaflect
and the WES 16-kip vibrator on the AC/PCC instrumented section. The
deflections of the WES 16-kip vibrator are greater than those for the
Dynaflect at all locations but particularly near the surface. This
could be attributed to the mass of the vibrator. The higher contact
pressure for the Dynaflect will have little significance on the PCC

. pavement due to the stiffness of the upper layer. The FWD tests on the

AC/PCC section (Figure 32) again obtained roughly 10 times the deflec-

tion of the Dynaflect with depth. Figure 33 illustrates the results of

the Model 2008 Road Rater and WES 16-kip vibrator tests. As expected,
these deflection contours are less than the FWD. To compare all deflec-
tions, the WES 16-kip vibrator was tested at a normal operating force
level of 10,000 1b (44,48 kN) peak (20,000 1b (88.96 kN) peak to pesk).

The tests results shown in Figure 34 indicate that these deflections are ’

3 to b times the values of the FWD and Model 2008 Road Rater, and 25

times the Dynaflect.

SUITABILITY FOR USE IN EVALUATING
JVee s LIGHT AIRCRAFT PAVEMENTS

Suitability for use in evaluating light aircraft pavements was
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Figure 26. Depth of influence contours for the Dynaflect
and the WES 16-kip vibrator on the AC instrumented section
(1 mil = 25.4 microns; 1 in. = 2.54 cm; 1 1b = 4 . LL8 N)
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Figure 32. Depth of influence contours for the FWD on the AC/PCC
instrumented section (1 mil = 25.4% microns; 1 in. = 2.54 cm;

1 1b = L.4L8 N)
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Figure 33. Depth of influence contours for the Model 2008 Road
Rater on the AC/PCC instrumented section (1 mil = 25,4 microns;
1 in. = 2.54 em; 1 1b = 4.448 N)
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vibrator on the AC/PCC instrumented section operating at a
normal force level (1 mil = 25.4 microns; 1 in. = 2.54 cm;

1 1b = 4.448 N)
rated in the final analysis based upon the ability of the input loading
to produce a pavement response of sufficient magnitude to achieve con-
sistently reliable measurements for a full range of light aircraft pave-
ment thicknesses and foundation conditions.

PENNSYLVANIA TRANSPORTATION

RESEARCH FACILITY TESTS

The Pennsylvania Transportation Research Facility (PTRF), de-
scribed by Kilareski et al.,* was used as one of the field test sites.
The PTRF has 21 flexible pavement test sections with varying thicknesses
of AC, base and subbase (Figure 35). Three of the sections, 9, H, and
14, were rutted and thus were not tested. Sections la-1ld, 7, and 8 were

superelevated. The Models 400, 510, and 2008 Road Raters, the Dynaflect,

* W. P. Kilareski et al., "Modification Construction and Instrumenta-
tion of an Experimental Highway," Report No. PTI7T607, Pennsylvania
Department of Transportation, Harrisburg, Pa., 1976.
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and the WES 16-kip vibrator were used in the testing. Tests were con-
ducted at 25-ft (7.6-m) intervals alternating between the inner and

outer wheel paths. In addition, four Benkelman Beam tests were conducted
in each section at designated positions. These were paired tests with
one in each wheel path. The beam testing was completed two weeks prior
to the dynamic testing. Additional tests with the vibrators were con-
ducted in the shorter alphabetically labeled sections to give a better
statistical average. Generally, there were 8 to 15 test locations in
each test section. These additional tests were located in the opposite
wheel paths. Table 14 presents the loads and frequencies at which the

vibrators were tested.

Table 1k

Test Loads and Frequencies for Vibrators

Dynamic Load

Frequency Peak to Peak
Device Hz 1b
Dynaflect 8 1000
Model 400 Road Rater 25 726
Model 510 Road Rater 25 1800
Model 2008 Road Rater and 8 1000
WES 16-kip vibrator 25 1800
15 1000
15 3000
15 5000
15 T000

Note: In addition to the above tests, a load sweep was conducted with
the WES 16-kip vibrator at 15 Hz with the load varied from
0 to 15,000 1b (1 1b = 4.448 N).

Temperature adjustment. During the testing at PTRF, the surface

temperature of the pavement was monitored at regular intervals. Using
the Asphalt Institute method,* which incorporates the previous five-day
mean air temperature, asphalt thickness, and surface temperature, mean

pavement temperatures were calculated for all test items and test

* Asphalt Institute, op. cit., p. 3.
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times. Mean pavement temperatures varied from & low of 68°F to a high
of 98°F. To establish an adjustment for temperature, selected test
points in items of varying AC thickness were tested with each device at
periods of high and low temperatures. Results from these tests were
inconclusive since the extreme high and low temperature times could rot
be anticipated. There was a trend in these data which indicated that
the adjustments given by Green and Hall¥ would apply. Further study
indicated that the corrections for the Benkelman Beam by the Asphalt
Institute bisect the geometric center of the Green and Hall¥* cor-
rection (Figure 36). Additional temperature adjustment data were
obtained from the Minnesota Department of Transportation. These data
were taken with a Model 2000 Road Rater on conventional and full-depth
asphalt pavements. The results also presented in Figure 36 show that
the conventional pavement correction is near the 4-in. (10.2-cm) asphalt
curve and that full-depth approaches the 8-in. (20.3-cm) curve. Based
on these factors, it was decided to use the WES correction factors for
the PIRF temperature correction. For the DSM, the adjustmeni factors
are multiplied times the measured DSM to obtain the corrected value.
For deflection, the adjustment factors are divided into the measured
deflection to give the corrected deflection. Sections with AC thick-
nesses of less than 3.0 in. (7.6 cm) were not corrected.

Test results. Aveiage deflections for each device given in
Figure 37 are corrected for temperature as described previously. For
the WES 16-kip vibrator and the Model 2008 Road Rater, the frequency was
15 Hz and the force was TOOO 1b (31.135 kN) peak to peak. Note that
there are no data for the Model 2008 on sections lc, 1d, and 7. This
was due to the superelevation of the test track. It was discovered that
the loading plate (Figure 38) would not contact the pavement evenly due
to the lowering mechanisms. Also, tests were not conducted in section D
because rutting would not allow the plate to rest evenly on the pave-
ment. Figure 39 shows the coefficient of variation for each test sec-

tion and each device. These coefficients correspond to the deflections

* (Green and Hall, op. cit., p. 1.
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Figure 39. Coefficient of variation of measurements for
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in Figure 37. Since only four tests were conducted with the Benkelman
Beam, the coefficient of variation would be meaningless and is not
presented.

The primary test for evaluating airport pavements with the WES
16-kip vibrator has been the DSM. During this test, the load is varied
from 0 to 30,000 1b (133.4 kN) (peak to peak) and plotted against the
resulting deflection. The DSM is defined as the slope (load/deflection)
of the upper one-third portion of this line. The method for calculating
the DSM is as follows:

28 - 20

A - A
0(28) ©(20)

DSM =

kips/in.
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where

DsM
28 - 20

Dynamic Stiffness Modulus, kips/in.

selected peak-to-peak force levels, kips

]

o deflection of the loading plate from the
(28) 28-kip (12L.5 kN) load, in., peak to peak

A

o deflection on the loading plate from the
(20) 20-kip (88.96 kxN) load, in., peak to peak

Since the»Model 2008 Road Rater has the capability to vary loads as the
WES 16-kip vibrator, another stiffness was calculated for comparison
during this study. Since the mass of the Model 2008 Road Rater is one-
fourth the size of the WES 16-kip, the force values in the DSM equation
were divided by four and the DSM is termed LDSM. A DSM value for the
WES 16-kip vibrator was computed at force levels comparable to the
Model 2008 and is also termed LDSM. Therefore, the resulting modulus is

expressed as

where

F , F = force level within 10 percent of 7 or 5 kips
(7)> “(5) P
(31.1 or 22.2 kN) peak to peak

A = deflection associated with the T-kip (31.1-kN)

(1N force, in., peak to peak
B = deflection associated with the S-kip (22.2-kN)
(5) force, in., peak to peak

All modulus testing was conducted at 15-Hz freguency. In some cases for
the DSM, the resulting deflection associated with the 20- and 28-kip
(88.96- and 124,5-kN) loads would be of a magnitude that exceeded the
range of the velocity sensors. Therefore, the force would be terminated
at that point. The DSM in a case such as this would be the slope of the
upper one-third portion of the plotted line. The lower plot of Fig-

ure 40 shows a comparison of the average values for each test item of
the PTRF. A very interesting note is that the Model 2008 Road Rater
LDSM tracks very close to the DSM, not the LDSM. Also shown in Figure

Lo is the coefficient of variation for each test item. The high
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Figure 40. Comparison of DSM averages and coefficient

of variation for the Model 2008 Road Rater and the WES

16-kip vibrator (kips/in. = 1.75 kN/em)
variability of the Model 2008 Road Rater in items la, a, and ¢ could be
attributed to the superelevation in la, and slight rutting in sections A

1 ) and C.

PTRF date comparisons. To statistically compare the data taken

k at the PIRF, two computer programs were used. The first calculated the
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best fit line through the origin. The second program fit six different
curves to the data. These possible curves are given as
y =a+ Bx
- AeBx
= AXB
A + B/x
1/(A + Bx)
x/(A + Bx)

To compare these data, onl) those test locations where both of the

< < YW <9 %
1}

devices in question were tested were used. The results of the com-
parisons with the Benkelman Beam (Table 15) show that very poor corre-
lations were obtained in all cases. The comparisons for the Dynaflect
(Table 16) indicate that good correlation was obtained when compared
with the WES 16-kip DSM. The Model 400 Road Rater comparisons (Table
17) show that a fair correlation is obtained with the WES 16-kip DSM.
The comparisons for the Model 510 Road Rater (Table 18) show that the
best correlation with DSM is obtained in this case. Table 19 presents
the comparisons for the Model 2008 Road Rater. Summaries of *hese

tables are given in the analysis portion of this report.
TESTING ON PCC PAVEMENT

Tests were conducted on a PCC road at the WES with the WES 16-kip
vibrator, the Dynaflect, and the Model 2008 Road Rater. The Benkelman
Beam and the FWD were also used in a limited number of test locations.
The pavement section on this road consisted of a 6-in. (15.2-cm) wire-
reinforced PCC over a 6-in. (15.2-cm) clay gravel base over a lean clay
subgrade. Figure 41 presents the results of deflection tests, which
show a close relationship between deflections of the Model 2008 Road
Rater and the WES 16-kip vibrator and no relationship with deflection
of the Benkelman Beam. Figure 42 compares the slope of the deflection
basin neasurements from the Dynaflect, the Model 2008 Road Rater, and
the WES 16-kip vibrator. The deflection basin is defined as a ratio of
the deflection 36 in. (91.4 cm) from the center of the applied load
divided by the deflection at the applied load. The Dynaflect follows
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the same trends as the WES 16-kip vibrator, whereas there is greater
varisbility in the Model 2008 Road Rater. Figure 43 is the same type
ratio except the deflection 18 in. (45.7 cm) from the load is used as a
base. This 18-in. (U5.7-cm) offset deflection is an averaged value for
the Dynaflect and the Model 2008 Road Rater. The average is between
deflections measured at 12 and 24 in. (30.5 and 61 cn) offset. Never-
theless, the Dynaflect again follows very closely to the WES 16-kip
vibrator. Best-fit comparisons for these data were also conducted.
Table 20 presents the results of these comparisons. The correlation
coefficient for the Dynaflect and WES 16-kip data presented in Figure 43
is 0.93, which is very good, particularly for only 10 values. DSM
measurements were also computed on the PIRF as shown in Figure Lb.

Deflection basin tests were conducted on the PCC road at three
locations with the FWD and the WES 16-kip vibrator. At two of the
locations, the Model 2008 Road Rater was also used. Figures 45, 46, and
LT show the results of these tests. The tests were conducted first with
the FWD. After the magnitude of the force was determined, the WES 16-
kip vibrator and the Model 2008 Road Rater were tested as close as
possible to that load. The comparisons of the WES 16-kip vibrator and
FWD are very good.

OTHER SELECTED TESTS

In addition to tests on the PCC road, tests were conducted on
selected AC pavements at the WES with the FWD, the Model 2008 Road
Rater, the WES 16-kip vibrator, and in some cases the Dynaflect.

Table 21 lists the properties of these pavement sections. The first
area was on pavement traftic test section. Tests were conducted inside
the traffic lane after the pavement had been subjected to 2700 coverages
of a dual-tandem C~14l aircraft gear. There were also tests conducted
outside the traffic lane adjacent to the tests located inside the lane.
The outside tests designations will be preceded with an 0 and the inside
preceded by an I. Figures 48 and L9 show Tests IS and 0S. In each case,
the impulse load of the FWD was matched as nearly as possible with the
peak-to-peak load of the Model 2008 Road Rater and the WES 16-kip

T1
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Figure 45. Deflection basins on Slab No. 6 of the PCC road
{ mil = 25.4 micronsy 1 It = 0.3048 in.; 1 1b = L.4LB N)

OISTANCE FROM LOAD, FT
[ 2
8 1
e FWD-S5710 LBS.

Lw

9 s WES18-5B4B LBS.. 13Hx
‘ = = RR2006 - 5948 LBS., 20Ha
L. = 2 -
| : =
. 5l e
;‘ - ’;/
it =
[. 2o
DISTANCE FROM LOAD, FT DISTANCE FROM LOAD, zrr .
] 2 3 2 1
. 3 4 [y GRS S W | g_r———-—‘»L__.__..J._‘___AL_AW_*I
e FWD- 8038 LBS.
" « VESIO-B1B4 LBS., 1SHx “w e FWO- ‘1184 LBS.
g o] = RR2006-6100 LBS., 2Bx 2 a4 o VESIE-11501 LBS. 15
g
= P < o4 /'/
O 5. /,{/ 2 8 //
74 124
Figure 46, Deflection basins on Slab No. 7 of the PCC road
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Figure 48. Deflection basin on test location IS
(1 mil = 25.4 microns; 1 ft = 0.3048 in.; 1 1b =
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Figure 49. Deflection basin on test location 0S
(1 mil = 25.4 microns; 1 £t = 0.3048 in.; 1 1b =
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vibrator. Using data from Figures 48 and 49, the force level versus
deflection could be projected through 0 so that deflections for the
force level of the Dynaflect (1000 1b (4LL8 N)) couldlbe interpolated.
The results of these interpolations (Figures 50 and 51) indicate that
on all of the tests, the WES 16-kip vibrator and FWD deflections agree
with each other at distances of 2 and 3 ft from the applied load.

Tests on the conventional AC pavement, A, produced higher de-
flections (Figures 52 and 53), but again the basin data are consistent
at distances away from the applied load. Additional tests on the weaker
AC section (Table 21) produced the same results. Figure 54 presents
the results for only the FWD and the WES 16-kip vibrator at higher
loads.

In June 1978, an evaluation of Dulles International Airport (DIA)
was made using both the Dynaflect and the WES 16-kip vibrator. The
pavements at Dulles consist of 15 in. (38.1 cm) of PCC over a 9-in.
(22.9~cm) granular base over a silty clay subgrade. NDT data from both
the Dynaflect and the WES 16-kip devices were analyzed for the three
runways at DIA. The testing with the Dynaflect consisted of deflection
measurements at an 8-~Hz frequency and 1000~1b peak-to-peak load. Two
types of tests were conducted with the WES 16~kip device: (a) deflec-
tion at 20,000-1b (88.9-kN) peak-to-peak load and 15-Hz frequercy,
and (b) dynamic stiffness modulus (DSM) at 15 Hz with the load swept from
0 to 30,000 1b (133.4 kN) peak to peak. Approximately twice as many
tests were conducted with the Dynaflect, but only data from the loca-
tions tested by both devices were used in this analysis. In this
comparison, the WES 16-kip deflections will be reported in peak-to-peak
values.

Tests at DIA were conducted at the center of the PCC slabs and
adjacent to the transverse joints. Table 22 summarizes the results of
regression analyses comparing data from the Dynaflect and WES 16-kip
vibrator. Equations of the best-fit lines were determined by selecting
the best correlation coefficient from six different curve equations from
the curve-fit computer program. The correlations are based on 319 data

points (159 center and 160 joint). The best agreement was obtained by

79
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Figure 50. Dynaflect deflection basin and projected 1000-1b deflection
basin for the FWD, the Model 2008 Road Rater, and the WES 16-kip
H vibrator on test location IS (1 mil = 25.4 microns; 1 ft = 0.3048 in.;
1 1b = L, LL8 N)
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Figure 51. Dynaflect deflection basin and projected 1000-1b deflection
B TR basin for the FWD, the Model 2008 Road Rater, and the WES 16-kip
’ vibrator on test locstion 0S5 (1 mil = 25.4 microns; 1 ft = 0.3048 in.;
11b = L4.448 N)
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combining all the 319 data points, which produced a correlation coeffi-
cient of 0.76. This is not considered a very good agreement. Data from
the jJoints gave a higher correlation coefficient than the slab center
data. This is probably explained by the fact that the deflections are
larger at the joint. A very poor correlation was obtained using only

the slab center data, and this is the location at which the evaluation

tests are conducted.
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ANALYSIS OF RESULTS

During this study, each of the candidate devices were evaluated
based on six parameters. These included operational characteristics,
which encompass ease, speed, and manpower requirements. The second
parameter was cost, which was subdivided into initial cost and operating
expenses. Accuracy was the third parameter. Both accuracy of force and
deflection were considered. Transportability by cargo aircraft was
fourth, the depth of measurable or significant influence was fifth, and
suitability for testing light aircraft pavements was sixth. No weight-
ing was given to any parameter, and each device was evaluated in as near
the same manner as possible under the time and funding constraints.

The operational characteristics of the Dynaflect are better than
any of the other candidate devices. The FWD could be improved if the
pickups did not require hand placement.

Costs were evaluated based on a three-year life of the machine,
It was assumed that an owner would conduct 20,000 tests a year (50 days
at 400 tests per day). Based on this assumption and the time per test
data in Table 2, the optimum manpower requirement in Table 3, and a $100
per day labor charge, yearly operating costs can be determined (Table
23). By adding the initial cost and the yearly operating cost for three
years, total costs are compiled (Figure 55). Interest and inflation
costs are neglected.

In the evaluation for accuracy of deflection and force, the
rating is based on the accuracy at the frequency at which the vibrator
is normally operated. For the Models LOO and 510 Road Raters, this is
25 Hz. For the Model 2008 Road Rater, the normal operating frequency is
15 Hz. The accuracy of the Benkelman Beam would be a function of
operator's ability to obtain an accurate test axle load of 18,000 1b
(8,165 kg), which is estimated to be within +1 percent. Table 24
summarizes the accuracy data.

Transportability by cargo aircraft did not differ for any of the

trailer-mounted devices. The Benkelman Beam was the most transportable,
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Table 23

Yearly Operating Costs

No. of
Device Tests/Day Days/Year Cost/Year
Benkelman Beam 150 13k $26,800
Dynaflect
Digital 640 31 3,100
Standard 384 52 10,400
FWD 320 63 12,600
Model 400 Road Rater L80 Lo 8,400
Model 510 Road Rater 480 Lo 8,400
Model 2008 Road Rater 480 63 L ,200
Note: Based on 20,000 tests per year and time per test in Table 2,
optimum manpower requirements in Table 3, and a $100 per day
labor charge.
100 r
$81,066
*r
$65,800
g or
§ $52,600
;5‘ $47.200 $47,200 $47,200
4
3w}
8
$28,633
208
O GENKELMAN  DIGITAL _ STANDARD FALLING ROAD ROAD ROAD
BEAM DYNAFLECT WEIGHT RATER RATER RATER
DEFLECTOMETER 400 510 2008
Figure 55. Three-year total costs
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Table 2L

Summary of Accuracy Data

Accuracy of Velocity Transducers/Deflection
Percent Error at

Device Operating Frequency
Benkelman Beam 8.7
Dynaflect 5.5
FWD ' 5.1
Models 40O and 510 Road Raters 5.5
Model 2008 Road Rater 6.8

Accuracy of Applied Force

Percent Error at

Device Operating Frequency
Benkelman Beam N/A
Dynaflect
Rigid Pavement 4.2
Flexible Pavement -12.9
FWD 5.4
Models 400 and 510 Road Raters -12.3

Model 2008 Road Rater

Unfiltered -8.3
Filtered +1.0
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whereas the Model 400 Road Rater was the least, due to being mounted on
a truck.

Depth of influence evaluation is based primarily on the force
output. The Models 400 and 510 Road Raters were not tested during this
study, but data collected earlier with the Model 510 on 15-in. (38.l1-cm)
PCC indicated that its ability to load pavement at depth was more than
the Dynaflect. The Benkelman Beam was ranked No. 1 because of surface
deflection magnitudes.

The suitability ranking is based primarily on judgment and the
correlations obtained when comparing experimental data with data col-
lected with the WES 16-kip vibrator. Table 25 summarizes these com-
parisons. There were not enough data collected with the FWD to place it
in these comparisons, but based on the limited data, the magnitude of
the force, and the accuracy of the measurements, it was ranked high for
suitability. The Benkelman Beam is rated last in suitability because of
the low correlation results with the PTRF data. Also, the Benkelman
Beam has not been reported as an evaluation tool for rigid pavements,
possibly because the reference beam may be within the deflection basin
and therefore will give erroneous results. The toe of the beam is only
8 £t (2.4 m) from the first reference support. On large slabs with the
WES 16-kip vibrator, deflections of sufficient magnitude to affect an 8-
ft (2.4-m) reference have been measured.

Another factor in the suitability ranking is the feature of being
able to vary the dynamically applied force. It has been shown through
resilient modulus testing that the modulus values of both subgrade and
base materials are stress dependent. Therefore, in developing the
evaluation methodology, the determination of this stress dependency by
varying the dynamic load may prove to be an important factor. Based on
these factors of correlations and variable force, the Model 2008 Road
Rater and the FWD would rank best.

In order to analyze the results of the six evaluation parameters
established for this study, a rating scheme was utilized, whereby each

device was ranked in order of comparison with the other devices (Table 26).
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For the parameters that involved more than one evaluation, the parameter
ranking was based on the sum of the particular evaluations. For

example, accuracy was ranked based on the sum of rankings for accuracy

of force and accuracy of deflections.
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CONCLUSIONS AND RECOMMENDATIONS

CONCLUSIONS

.

Based on the results of this study, it is concluded that:

a. The Dynaflect rated best in operational characteristics,

the Model 2008 Road Rater second, and the Benkelman Beam 7
last.
b. When considering both initial and operating costs, the
Dynaflect ranked best of all devices. 1
¢. The FWD rated best in overall accuracy.
d. The Benkelman Beam rated best in terms of air transportability

and the Model 400 Road Rater poorest.

e. The Benkelman Beam ranked best in the depth of influence and
the Model 400 Road Rater poorest. 3

f. The FWD and the Model 2008 Road Rater ranked best under the
evaluation parameter of suitability.

“re,

This study also evaluated three devices, the Dynaflect, the ‘
Model 2008 Road Rater, and the FWD, applicable for testing light aircraft i
pavement. The Dynaflect presently leads the group in cost and opera-
tional characteristics. Modifications to the Model 2008 Road Rater to 3

improve its accuracy would improve its overall rating. Also, modifica-

")

tions to the FWD to allow mechanical placement of the velocity sensors
would improve its rating. Further study with the FWD would likely cause
a better rating for this device. The FWD was only tested for two days

during the study.
RECOMMENDATIONS

It is recommended that three devices be considered in the develop-
ment of the methodology for light airports: (a) the Dynaflect, (b) the
Model 2008 Road Rater, and (c) the FWD. Furthermore, additional data
should be collected with these three devices on rigid pavements and with

the FWD on flexible pavements.
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