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A RECURSIVE MTHOD FOR

SOLVING ASSIGNMENT PROBLEMS

by

Gerald L. Thompson

ABSTRACT

* The recursive algorithm is a polynomially bounded nonsimplex

method for solving assignment problems. It begins by finding the op-

timum solution for a problem defined from the first row, then finding

the optimum for a problem defined from rows one and two, etc., continuing

until it solves the problem consisting of all the rows. It is thus a

dimension expanding rather than an improvement method such as the simplex.

During the method the row duals are non-increasing and the column duals

'non-decreasing.

Best and worst case behavior is analyzed. It is shown that some

problems can be solved in one pass through the data, while others may

require many passes. The number of zero shifts (comparable to degenerate

pivots in the primal method) is shown to be at most n 2/2.

Extensive computational experience on the DEC-20 computer shows

the method to be competitive for at least some kinds of assignment problems.

Further tests on other computers are planned.

Key Words: Recursive algorithm, Assignment problems, Polynomially
bounded algorithm, Linear programming.
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A RECURSIVE METHOD FOR

SOLVING ASSIGNMENT PROBLEMS

by

Gerald L. Thompson

1. Introduction

The recursive algorithm is a nonsimplex method for solving assignment

problems. It begins by finding the optimum solution for a problem defined

from the first row, then finding the optimum for a problem defined from rows

one and two, etc., continuing until it obtains the optimum for the problem

containing all the rows. It is thus a dimension-expanding rather than an

improvement method such as the simplex. Throughout the steps of the method

the dual variables vary monotonically, with the row duals being non-increasing

and column duals non-decreasing.

In this paper it is shown that in the best case the recursive method

is a one data pass algorithm for some special kinds of assignment problems.

That is, the method can solve such problems after looking each piece of data

-exactly once. (This should be compared with simplex type methods which

require several data passes to get feasible starting solutions, additional

passes to choose pivots, and a final complete data pass to verify optimality.)

Although the classes of problems for which these one data pass solutions are

possible are. not very interesting, computational experience is presented to

show that more interesting problems can be solved by the recursive method with

only slightly more than one data pass. Because only a relatively slow computer

yas available for testing, the number of data passes as wall as computational

times were recorded and presented here. It appears from this computational

II- _ _ I -- .-..
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experience that the recursive method is competitive with other methods on

most problems and unbeatable by other methods for the one pass and near one

pass problems.

Worst case analysis is also presented which shows that the worst case

bound for the recursive method is a polynomial which is less than half of

the bound for other polynomially bounded assignment algorithms such as Ford-

Fulkerson [5 1, Balinski-Gomery [1], and Srinivasan-Thompson [10]. Examples

* which exhibit both best and worst case bounds are presented.

* This paper came out of earlier work by the author on auctions and

market games [11,12] and is based on previous work in these areas by Shapley

and Shubik [7] and Barr and Shaftel [3]. The idea of solving bottleneck

assignment problems by adding rows one by one hqs been previously used by

Derigs and Zimmermann [4]. The backshift operation used in this paper is

similar to analogous operations in the Derigs -Zimmermann paper and also to the

one in the relaxation method of Hung and Rom [6]. Finally, the alternating

path basis, which is shown in this paper to correspond to Ordens perturbation

method, and also to the dutch auction procedure of Barr and Shaftel, was

previously employed by Barr, Glover, and Klingman [2].

The recursive method has been extended to transportation problems, and

to bottleneck assignment and transportation problems. Those extensions will

be presented elsewhere.

2. Notation and Preliminary Results

We consider the assignment problem to be a market game with the rows

representing sellers and the columns buyers. The index sets of the sellers

and buyers are
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II = {1 . ..,ni (1)

j,- (....n) (2)

We assume each seller has one unit to sell and each buyer wants to buy one

unit. Let

cij > 0 (3)

be the bid of buyer j for seller i's good. For technical reasons we add

a dummy seller and a dummy buyer so that the index sets (1) and (2) become

I = I' U (n+ll = (1,...,n,n+l} (4)

SJ -JJ U (n+11 (1,...,n,n+ll (5)

The bids for these dummy players are

cn+i,j - 0 for jeJ, and ci,n+ 1 - 0 for ieI. (6)

The assignment problem can now be stated as

Maximize Z cij xij (7)
ieI jcJ

Subject to Z x.. i for ieI' (8)
jdJ 1

Z x I1 for. jej' (9)il x ij

xii 0 (12)

It is well known that the assignment problem is massively (primal) degenerate.

One way of handling this problem is to perturb the right hand sides of (8)

and (11) as follows:

P V
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E x I + e for ieI' (8')
jeJ

(P1) E xn+l,j  (10')
jeJ

E Xin+1 (n+l)e (11')
ieI

where 0 < e < 1/2(n+l). We call this perturbation (P1). (Another pertur-

bation (P2) which adds e to the right hand sides of (9) and (11) and (n+l) C

to the right hand side of (10) leads to an equivalent algorithm which we do

* not discuss here.)

The following facts are well known. For a small positive c, a basic

feasible solution to (8'), (9), (10') and (11') has exactly 2n+l cells (i,j)

with xii > 0; all other xij - 0. If B is the set of basis cells then

the graph G - (I U J, B) is a tree. Let X(e) be a basic solution, let xij

be the optimal shipping amount for basis cell (i,j), at let R(xij) be the

scientifically rounded value of xij; if R(x ij) - 1 then we say cell (i,j)

ships 1, and if R(xij) = 0 then we say cell (i,j) ships 0.

Lemma 1. Given perturbation (PI) a feasible solution is basic if and

* only if each row (except n+l) has exactly 2 basis cells, one shipping 1 and

the other shipping 0.

Proof. Each row iel' has a supply of 1+c and row n+l has a supply

of e, while each column JcJ' has a demand of 1 and column n+l has de-

mand of (n+l)e. Hence each row iel' must have at least two basis cells to

use up its supply, and row n+l must have at least one basis cell. Since this

adds up to 2n+l basis cells, each row ieI' has exactly 2 basis cells and

row n+l has 1. To show the rest of the statement, recall that every tree

has at least one pendant node, i.e., there is at least one cell (i,j) which

I..
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is the only basis cell in column j for some J. Since the solution is

assumed feasible, x j = 1 i.e., (i,j) ships 1. The other basis cell in

row must therefore ship 0. Now cross out row i and column j and repeat

the same argument for the rest of the rows.

We now introduce some graph terminology. Assume the tree G = (I U J, B)

is drawn with row n+l as the root, see [8], which appears as the node at the

top of the tree, and with downward pointing arcs going to other nodes. Let a

downward arc be the son (or successor) relation and the reverse relation be

the father (or predecessor) relation. All nodes, except row n+l, have fathers.

. Definition. A basis tree has the unique row-son property if every row

node (except possibly the root node) has one and only one son.

Lemma 2. Given perturbation (P1).

(a) The graph of a feasible solution has the unique row son property.

(b) The graph of a feasible solution is an alternating path basis in the

sense of Barr, Glover, and Klingman [2 ].

Part (a) can be proved by using the crossing out routine given in the

proof of Lemma 1. The unique row-son property is simply another way of stating

definition of an alternating basis, see [2 1.

The dual problem to the perturbed problem (7), (8'), (9), (10'), (1l')!

(12) is

Minimize [ u (l+) + u + E v. +v (n+l) (13)iei' U n+il jeJ' J  n+l

Subject to

ui + v cij for iel, jeJ . (14)

Because of assumption (3), it can be shown (see [11]) that we can also

impose nonnegativity constraints
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u > 0 and vn+l 2 0 (15)

This, together with (6), implies un+ Vn+ - 0 so that (13) becomes

Minimize [[ u + E V + C E u (16)
i6l' jj vj ieI'

Definition. We call ui  the price for seller i, and v the
ij

surplus of buyer j.

Lemma 3. The solution of the problem with perturbation (P1)

, simul taneously

, (a) Minimizes the sum of the sellers prices;

(b) Maximizes the sum of the buyers surpluses.

Proof. An optimal solution to (7), (8'), (9), (10'), (11') and (12)

for e > 0 remains optimal when e is replaced by 0, see [101. Let Z

be the value of the optimal solution when e = 0. By the duality theorem if

ui and v. are optimal solutions to (14), (15), and (16) when c = 0

Z u. + v v (17)
ie1  I jej,

Substituting (17) in to (16) gives for e > 0

Minimize (Z + C Z u (18)iei'

which, since Z is constant, proves (a). Solving (17) for Z ui and

Substituting into (18) gives

Minimize (Z(l+e) - e E v (19)
jeJ' J

which proves (b).
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The set of all solutions to (14), (15), and (16) with e = 0 is

called the core of the game by Shapley and Shubik [ 7]. In [11], the author

gives an algorithm for finding all basic solutions in the core, starting with

the maximum buyer surplus solution of Lemma 3.

One last bit of terminology is appropriate. A dutch auction is a

concealed bid auction in which the price (indicated by a "clock") starts high

and steadily drops; when the highest bidder makes his (concealed) bid he is

certain to get the object being sold; however, the price continues to drop

until the second highest bidder makes his (concealed) bid which "stops the

* clock"; the price the highest bidder pays is therefore determined by the

bid of the second highest bidder. The solution procedure to be proposed is

formally like a dutch auction. As we saw above, the perturbation (P1), the

solution has two basis cells in each row one shipping 1, corresponding to

the highest bidder who gets the good, and the other shipping 0, corresponding

to the second highest bidder who determines the price. In the description of

the algorithm of the next section, economic as well as mathematical terminology

will frequently be used because it provides intuitive reasons as to why the

procedures are carried out as they are.

3. Outline of the Recursive Method

As noted earlier, the recursive method is not a simplex method even

though it uses some of the terminology and concepts of that method. In order

to emphasize this difference we state two characteristics of the recursive

method which are distinctly different from those of the simplex method.

(a) In the recursive method every feasible primal or dual solution

found is also optimal.

NI- 'en.
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(b) In the recursive method a primal solution is not proved to be

optimal by means of the dual; in fact, it is possible to find

an optimal primal solution to an assignment problem without ever

finding its optimal dual solution.

Definition. Problem Pk consists of the first k sellers, the dumy

seller n+l who is given n-k dummy units to sell, and all the buyers in-

cluding the dummy buyer. In other words, problem Pk can be obtained from

* (7) - (12) by replacing I by Ik - (1 .... k,n+l, and the right hand side

of (10) by n-k.

A brief outline of the recursive method is! solve P0 ; from its

solution find the solution to P1; from P1 solve P2 ; etc.; continue until

the solution to Pn is produced from the solution to Pn-l"

A more detailed outline is given in Figure I. As indicated we first find

the optimal primal and dual solutions to P0 which is the trivial one row

problem consisting of the slack row only. From them we find the optimal primal

solution to- Pi. which consists of the first row of the assignment problem,

and the slack row. Then we find the optimal dual solution to P1. Then we

0 find the optimal primal solution to P2  followed by its optimal dual solution.

Etc. Finally, the optimal primal solution to Pn is constructed from the

optimal solution to P As noted in Figure 1, the actual finding of the
n-l1

optimal dual solution to Pn is optional, and need not be carried out if

only the optimal primal solution is wanted. As noted in the figure there are

two recursive steps A and B, where step A constructs the optimal primal

solution to Pk from the optimal solution to Pk-l, and step B constructs

the optimal dual solution to Pk from its optimal primal. These two steps

will be discussed in detail in the next two sections. In the remainder of

this section we discuss the solutions of P0 and P1 .
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The initial basis graph for P0  is shown in Figure 2. It corresponds

to the solution

Xn+lj ' 1 for JeJ', x n+l,0+ , U+ 1  0 and vj - 0 for jeJ.

In order to solve P1 we find the two largest reduced bids in row 1.

Let C 4 and Cs be columns in which the largest and second largest reduced

bids are, i.e., since all vj = 0,

cg,-Maxc 1j c Is = Max c
jcJ - l

We then perform an easy back shift to get the optimal primal and dual solutions

for P1 as illustrated in Figure 3. First node C% is cut out of the P0

basis graph; then node R1  is made the son of Cs, node C- the son of Rip

and finally we set u1 = cIs and vt -cit - cis. As is evident, only a few

instructions are needed to perform the easy back shift. Also it is easy to

check that the indicated solution is optimal for problem PI"

Surprisingly, it turns out that the same easy back shift operation

suffices to solve many of the sub problems. As will be seen in Section 8 on

computational experience, for most problems from 40 to 95 percent or more of

the sub problems Pk and be solved in this extremely simple fashion.

4. Recursive Step A

The purpose of recursive step A is: from the known basic optimal primal

and dual solutions to problem Pk-l find an optimal primal solution to Pk"

This will be done by carrying out a back shift step, to be defined next. Recall

that the basis tree Tk.l for Pk-l is always stored with node Rn+l as the

root.

k

.... p. - - ':-
-

....
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The (Ordinary) Backshift Step.

1. In one pass through row k find the two largest reduced cost

entries; i.e.

ck4- vt - Maximum (Ckj - v)

jcJ

C - v ' Maximum (c vCks Vs JeJ-[t } ( k ' j

2. Set uk =Cks - v s

3. Add node k and arc (k,t) to Tk. I .

4. Suppose the backward path (found by applying the father relation)

from Rk to R n+ is RkC,...,C p,R n+I  Interchange fathers

and sons along this backward path from Rk to Cp

5. Cut (remove) arc (p,n+l) from Tk-l"

A picture of the ordinary backshift step is shown in Figure 4. Note

that the unique row son property is preserved in the relabelling of Step 4.

Notice also that at Step 5 of the backshift step the tree is broken into two
*

subtrees: tree Tk which has root R.k, and tree T n+ which has root Rn+1 .

Also, as marked in the figure, because no dual variables are changed during

the backshift step, all arcs are dual feasible except (possibly) for the new

arc (k,L).

The comparison of the backshift operation with a primal pivot step is

instructive. The search for the incoming cell in Step 1 is confined to a

single row; there is no cycle finding; there is no search for the outgoing

cell, since it is known in advance to be (p,n+l); finally no dual changes are

made during the backshift operation. Hence the backshift step requires less

than half the work of a primal pivot.



Counting easy backshifts, there are always exactly n backshift steps

made in the course of solving an nXn assignment problem. As will be seen

empirically in Section 8, from 40-95 percent of the backshifts are easy and

the rest are ordinary. A final remark is that the backshift step is the only

operation of the recursive method in which the father-son relationships at a

node are interchanged.

Lemma 4. The backshift operation produces a primal feasible solution

whose objective function satisfies

SZ=Z + (C - v (20)

where Zh is the objective function value for problem Ph and v, is the

dual variable for column - in problem Pk-l"

Proof. The fact that the backshift step preserves the unique row-son

property and hence produces a primal feasible solution was noted above. Let

s and s' be the son functions for the solutions of P k- and Pky

respectively, let f be the father function for Pk-l' let h - (1,...,h],

and let Bk. I be the set of rows on the backward path in Tkl1 from node CL

to node C Then we have
p

Zk - k-l c h,s'(h) h h,s(h)
helk hek-l

-c k, + k [ch,s'(h) - ch,s(h)]

hC kI h,s(h) h,f(h)]

c -
k,4 t 

•
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The third step follows from the fact that s'(h) - s(h) for h 0 B and
k-i

sI (h) - f(h) for h e Bk. . The last step follows from the facts that

U n+l  vp - 0 in the solution to Pk-l' and v, can be computed by working

down the tree from node C to node C .

Theorem 1. The back shift step produces a primal optimal solution to

Problem Pk"

Proof. We present two proofs of this theorem. The first rests on an

economic argument which some readers may not find completely convincing. The

* second proof, however, rests on standard linear programming reasoning.

* Economic Optimality Proof. Think of the change from P k- to Pk as

that of an auction in which one more seller is added. The buyers positions

cannot be worsened by this change, i.e., buyer surpluses v. will stay the

same or increase. Consequently buyer J's bid in Pk for seller k's good

is Ckj - vj, i.e., it is his original bid ckj less his current surplus vj.

The maximum change 6. - Zk - Zk_ that can be made in the objective function

is obtained by "selling to the highest bidder," buyer C. By Lemma 4, this

sale actually produces the maximum possible change ck- vt in the objective

function, hence the theorem.

Duality Proof. As will be shown in the next section (see Theorem 2),

recursive step B produces in a finite number (at most k) of steps a feasible

dual solution to Pk corresponding to the primal solution obtained from the

backshift step. From the duality theorem of linear programming both the

primal and dual solutions to Pk are therefore optimal.

5. Recursive Step B.

The purpose of recursive step B is: from the primal solution to Pk

* %*..
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found at the end of recursive step A, construct a basic (maximal buyer surplus)

dual feasible (hence optimal) solution to Pk without changing the primal

solution. As can be seen in Figure 4, this step has two objectives: (a) to

make arc (k,L) dual feasible, and (b) to join together the trees Tk and

Tn+1 •

To help intuition concerning recursive step B it is best to revert to

economic terminology. In Figure 4, the row and column nodes in tree Tn+l

represent sellers and buyers whose prices and surpluses, respectively, are cor-

rect for problem P ; however, the sellers (row nodes) in tree Tk have
I.

prices which are (possibly) too high while the buyers (column nodes) in Tk

have surpluses which are (possibly) too low.

In the first part of recursive step B, called step Bl, we simultaneously

reduce all prices for sellers in Tk and increase all surpluses for buyers

in Tk. As prices drop, a buyer in Tn+1 may become a second highest bidder

for the good of a seller in T . Then, as illustrated in Figure 5, part of

tree Tk is removed and attached to T+ I. This is called a zero shift opera-

tion. Recursive step BI continues with zero shifts being made as needed until

it is seller k whose good has a second highest bidder in tree Tn+l* At

this point, no zero shift is made, and recursive step B2 is initiated. Note

that the infeasibility of arc (k,t) has not changed during step Bl. What

has been accomplished during this step is that the correct selling price uk

for seller k has been determined.

During recursive step B2 the selling price uk is held fixed while
*k

all other sellers' prices in Tk are reduced, and all buyer surpluses vj for

j in Tk are increased simultaneously, with zero shifts being made as needed.

Since the reduced cost of arc (k,L) is Ck - uk - v we see that arc (k,4.)

/j



-14-

becomes steadily less infeasible as v increases. When v has become large

enough so that arc (k,,) is just feasible, changes in seller prices a: d buyer

surpluses stop, tree Tk is pasted to tree Tn+ 1 and recursive step B2 ends

with dual and primal feasible (hence optimal) solutions to problem Pk'

In order to describe these steps precisely we define two subroutines

which depend on a subset of rows, called ROW/S, of Tk and a subset of columns,

called COLS, of Tn+1 . The first subroutine, SEARCH, is defined as follows:

q

SEARCH Calculate

X - Mini mum (cij - ui - v )
i e ROWS
j e COLS

Let (r,s) be a cell on which the minimum is taken on.

Let h be the father of r in Tk.

Let Tr be the subtree of T which is below r.
r k

The second subroutine, DUAL, is defined as:

DUAL. Let

u i  ui - X for i e ROWS

vj -v + for j c COLS.

Note that application of the dual operation, which is the only step in which

dual variables are changed can only decrease seller prices and increase buyer

surpluses.

Given these subroutines we can now define Recursive Step Bi.

law-'
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Step B1

(1) Let RWS be the set of rows in Tk;

let COLS be the set of columns in T

(2) Use SEARCH to find X, r, h, Tr.

(3) Change dual variables by applying DUAL.

(4) If r - k go to recursive step B2.

Otherwise go to 5.

(5) Cut arc (r,h) and paste arc (r,s).

(6) Go to (1).

9

We can define Recursive Step B2 similarly.

Step B2

(1) Let ROS be the set of rows in Tk

except for row k; let COLS be the set

of columns in T+1 .

(2) Let X = -ckt" + u(k) + v(&), where t

was found as the largest reduced bid in row k.

* (3) Use SEARCH to find X, r, h, Tr

(4) If X > X go to (7); otherwise go to (5).

(5) Change dual variables by applying DUAL;

let X* - X - X; let v(tL) = v(4) + X.

(6) Cut (r,h);paste (r,s). Go to (1).

(7) Let X - X ; apply DUAL, let v(tL) - v(t) + X.

(8) Paste (k,s).

(9) END

I

* -
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Each time the cut and paste operation is performed in either step Bl

or B2 we will say a zero shift has been made. Sometimes during the course of

application of the SEARCH subroutine it finds X - 0; when this happens it is

possible to do the cut and paste operation without making a dual change and

continue the SEARCH routine without finding ROWS and COLS again; such a zero

shift is called an easy zero shift. Use of easy zero shifts has greatly

speeded up the performance of the code, see Section 8.

The maximum number of elements in the set ROWS for either step Bl or

B2 is k. Each time the cut and paste step is made at least one row (and at

least one column) is transferred from the tree Tk to tree Tn+ and ROWS

is correspondingly made smaller. Therefore k is the maximum number of zero

shifts that can be made by Recursive Step B at step k.

Note that when Tk consists of just row k and its son, the set ROWS

in (1) of Step B2 is empty, so that X found in (3) is + -. In this case

the algorithm is certain to terminate since X = > X in (4). Also when

(8) of Step B2 is made, a basic feasible dual solution has been found.

We summarize the above in a theorem.

Theorem 2. Given the primal feasible solution to Pk produced by

Recursive Step A, the application of Recursive Steps BI and B2 will produce

a basic feasible dual solution to Pk after making at most k zero shifts.

During the application of recursive step B the seller prices are non in-

creasing and the buyer surpluses are non decreasing.

6. Solution of an Example

Consider the 3X3 example shown in Figure 6(a) in which a slack row

and column have also been added. Figure 6(b) shows the solution to prcblem P0

Aw- W. M
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where the basis cells are circled, and the shipping amounts for each basis

cell are marked above the circle. Dual variables are marked to the left and

the top of the figure. These conveations hold for the rest of the figures as

well.

Since 17 and 15 are the largest and second largest bids in the first

row of the problem, the easy backshift operation applied to P1 yields the

optimal solution in Figure 6(c); the optimal basis tree for P1 is shown

in Figure 7(a).

As can be seen in Figure 6(d) the two highest bids in row 2 of P2 are

22 and 19, because the reduced cost in column 3 is 18. The situation at the

end of the first backpivot is shown in Figure 6(d). The corresponding two

parts of the basis tree are shown in Figure 7(b). Because Tk has only row

k in it recursive step BI is empty, and step B2 can be carried out by pasting

R2 to Cl by means of arc (2,1); also the X in figure 6(d) is set equal

to 3 as indicated in (5) of B2. The resulting tableau is shown in Figure 6(e)

and the optimal basis tree appears in Figure 7(c).

When the third row of the original problem is added, it can be seen

that the highest reduced bid of 18 occurs in column 2 and the second highest

* bid of 17 is in column 1. The backpivot step involves adding R3 as a son

of C2 in Figure 7(c) relabelling the tree back to Cl, and cutting arc (4,1).

The resulting two parts of the basis tree appear in Figure 7(d). The tableau

at the end of the backpivot step appears in Figure 6(f). Note that the ship-

ping amounts have changed as follows: x22 from i to 0, x2 1 from 0 to 1, and

x41 from 1 to 0. The actual transfers of goods from sellers to buyers are

indicated by the basis cells which ship 1 in Figure 6(f). These transfers

are, in fact, the optimum assignment as proved in Theorem 1. Of course, the

* . . - . ..
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dual solution in Figure 6(f) is neither feasible nor basic and we go to re-

cursive steps Bl and B2 to achieve that. The direction of price and buyer

surplus changes for step Bl are indicated by the X's marked in Figure 6(f).

Here ROWS = (1,2,3) and COLS - (43; hence X - 15, r = 1, h - 1, and s - 4.

Hence we change duals by 15, cut arc (1,1), paste arc (1,4) and arrive after

one zero shift at the situation indicated in Figures 6(g) and 7(e). We re-

peat step Bl with ROWS - (2,3), COLS = (3,41 and X changes as marked in

Figure 6(g). Now X = 1, r = 2, h - 2, and s = 3. Hence we change duals by 1,

cut arc (2,2), paste arc (2,3) and arrive at the situation depicted in Figures

6(h) and 7(f). Now ROWS - (31, COLS = (1,3,43, Xf 0, r - 3, h is not

defined, and s = 1. We are now in step B2 with X 1 and ROWS and COLS

as before. Now X = - so we paste arc (3,1) increase v(2) by 1 and come

to the optimal tableau in Figure 6(i) and its corresponding optimal basis

tree in Figure 7 (g).

7. Best Case and Worst Case Analysis

In contrast to many other mathematical programming algorithms, it is

easy to determine the best and worst case behavior for the recursive algorithm,

and it is also easy to find examples which have either kinds of behavior. In

fact, a single example will be given which exhibits both kinds of behavior, de-

pending on the order of introduction of the sellers (rows)! A second example

which shows not quite such extreme behavior is also presented.

The numbers of easy backshifts, ordinary backshifts, and zero shifts for

the best and worst cases are shown in Figure 8. These numbers for the best case

are easy to determine. The maximum number of easy backshifts is n-I, since

in the most favorable case all the second highest bidders can be chosen to be in

,p -.
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the same column, and that column is therefore not available for an easy back-

shift. The minimum number of zero shifts is 1 (at least if the optimum dual

to Pn is desired) since at step n the tree Tn+I has just two elements
.

R+l and C 1 , and at least one zero shift is needed to hook T and

T n+ together.

For the worst case analysis, recall that the solution to P involves

an easy backshift, and that there are always exactly n backshifts. Hence

the worst case involves I easy backshift and n-l ordinary backshift. To

determine the maximum number of zero shifts recall that no zero shift is needed4

for P1; for problem Pk with k > 2 the maximum number of rows in Tk

after the backshift is k, and at each zero shift at least one row is shifted

from Tk  to Tn1 ; therefore the maximum total number of zero shifts is
kn2 nn-1

2 + 3 + (n-) + n - 2 (21)
2

as indicated in Figure 8.

To exhibit the various best and worst cases consider the following

four examples with m u n = 100,

1 , if jAl

cij 101-i, if j (22)

1 1 , if j 1
Cij - i if (23)

cij - (l0l-i)(101-j) (24)

cij -i. (25)

* . w'. -. \ - .
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Note that problems (22) and (23) are related in that the order of listing the

rows is reversed. Problems (24) and (25) are similarly related.

The computer solution statistics for these four problems are given in

Figure 9. Note that problem (22) is a one-pass problem, while problem (23),

which is the same except for order of rows, has the maximum number (5049)

of zero shifts which is given by (21) when n - 100. However, the area search

factor (that is, the ratio of the number of data calls to the number of data

* ,elements) which indicates the number of times the data is searched to solve

(23), is only 50 percent more than one data pass and more than 98 percent of

the zero shifts are easy zero shifts; also the time to solve (23) is more than

10 times that of (22).

Problem (25) is known to be of maximum difficulty for the Hungarian

algorithm, aid is also of maximum difficulty for the recursive method; as in-

dicated in Figure 9, its solution requires 5049 zero shifts none of which is

easy. The time to solve (25) is nearly 640 times as long as the time to solve

(22), which is somewhat less than the ratio of the areas searched. Problem (24),

which is the same as (25) except for order of rows, is much easier in that it

requires 99 zero shifts none of which is easy. The time to solve (25) is 20

times as long as (24), which is somewhat less than the ratio of the areas

searched. Note that the costs in problems (24) and (25) range from I to 10,000.

Another way to evaluate the recursive method is to compare its worst

case behavior with worst case behaviors for three other methods due to Ford-

Fulkerson [5 1, Balinski-Gomery [I ], and Srinivasan-Thompson [101, which are

known to be polynomially bounded, see Figure 10. The amount of work needed

for primal or dual non-breakthrough steps is approximately the same as a primal

pivot step in the cost operator method (see [10]) and is somewhat more than a
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zero shift step in the recursive method. However the recursive method's

worst case behavior is less than half that of other methods.

Comparisons of worst case behavior are not usually good indicators of

average case behavior. In the next section some computational results on

randomly generated problems is discussed.

8. Computational Experience

The recursive method has been programmed in FORTRAN and extensively

tested. The computer used was a DEC-20 which is (a) relatively slow, (b) has

a limited memory, and (c) is always operated in a multi-programming environment

so that timing results can vary by as much as 10-50 percent on different runs

of the same problem.

Table I presents computational experience for 150 randomly generated

problems having n = 100,.200, or 300 so that the number of nodes (2n) is

200, 400, or 600, and approximately 4000 arcs with arc costs unformly distributed

between 0 and the indicated maximum cost. Each row of the table presents

average results for 5 randomly generated problems. The maximum cost ranged

from 1 to 1000. By observing one of the problem sizes for various maximum

costs the so-called "minimum cost effect" (which we will call the "maximum cost

effect" since we have a maximizing rather than a minimizing problem) first

observed by Srinivasan and Thompson in L9 ] will be seen; that is, for a fixed

number of nodes and arcs, as the maximum cost increases from I to 1000 the time

and area search factor increase while the percentages of easy backshifts and

zero shifts decrease. In other words, for a fixed problem size, the larger the

cost range, the harder the problem.

M..
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As indicated in the previous section the area search factor is the ratio

of the number of times arc cost data is called by the code to the total number

of arcs. For instance for n - 100 the area search factor in the table is 1.08

(meaning 8 percent of the data is called twice, the rest once) when the maxi-

mum cost is 1 and 21.97 when it is 1000. The corresponding computation times

are .14 and 1.91. The ratio of the area factors (20.3) is greater than

the ratio of the times (13.6) for this example. The same result is true for

other cases in the table, but it is clear that the two ratios are highly cor-

related. Since the area factors are independent of the computer being used,

they give a measure of problem difficulty which is independent of the computer

being used.

In Table 2 computational experience with 90 problems each having approxi-

mately 18,000 arcs and nodes ranging from 400 to 2000 (n = 200 to 1000). For

each problem with a given set of nodes and arcs, two sets of costs are generated,

one with maximum cost 1 and the other with maximum cost 100. The results are

shown on successive lines, and indicate that the second type of problem is about

10 times as hard as the first.

Another result that was evident when step by step solution data was

printed, was that the easy backshifts tend to occur early in the solution process,

i.e., the time needed to solve problems PV,...,Pn/2 was much less than the

time needed to solve problems Pn/2'"Pn. In fact the last step of finding

the optimal dual solution co Pn always involves at least one and usually many

zero shifts. An example of this is shown in Table 3, where cumulative data for

the solutions of P9 2 - P10 0 are shown. Note that Problems P1 - P92 are

solved by easy backshifts, without entering the main part of the program; P93

and P94  require 1 ordinary backshift and 1 zero shift each; P95 is solved by

.. .. I
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an easy back shift; P96  requires 1 ordinary backshift and 1 zero shift;

P and P98  are solved by easy backshifts; P99  requires an ordinary

backshift and 20 zero shifts, 19 of which are easy; finally, P10 0 requires

I ordinary backshift and 2 zero shifts. The total area searched to solve

this problem was only 4 percent more than a 1 pass solution would require even

though the problem is only 50 percent dense. The ease of its solution is due

to the fact that the maximum cost was 1.

Problems which are larger, have larger maximum costs, or which are less

dense than the one shown in Table 3, have more complicated solutions than the

* one illustrated there. Nevertheless their solution behavior is similar with

the first few subproblems being very easy to solve and later ones becoming

progressively harder.

The author is currently trying to test the recursive algorithm code on

faster computers so that meaningful timing comparisons with other algorithms can

be made.

9. Practical Coding Considerations

The computational results of the previous section indicate that the

recursive method is a competitive algorithm for solving assignment problems.

Several considerations should be taken into account in the design of a practical

code for this purpose.

First, objective function (7) is maximizing rather than minimizing which

is more common. If we change a minimizing objective to a maximizing one by

multiplying each cost by -1 then the nonnegativity assumption (3) is violated.

It is easy to get around that difficulty by adding 1 minus the most negative cost
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to each cost, and suitably adjusting the optimal objective function when found.

Of course, finding the most negative cost requires one data pass, unless it is

supplied by the user.

Another good idea would be to find the largest entry in each row and

introduce the rows in decreasing order of these largest entries. This again

would involve one pass through the data (which could be the same as the data

pass to find the most negative cost). The evidence from examples (22) - (25)

indicate that the value of having a good order in which to introduce rows can

be considerable.

The memory requirements for the recursive method can be stated in terms

of N the number of nodes and A the number of arcs. For the version of

the code which solves completely dense problems (i.e., A = n 2 ) the memory

requirements are 4N + A; and for the sparse version of the code, the memory

requirements are 4N + 2A. These compare favorably with similar requirements

for the alternating path algorithm [2]. The number of FORTRAN instructions

required for the recursive method is less than half of those needed for the

primal code in [ 9]

Because of the relatively small memory requirements and relatively small

running times it is likely that the recursive method will be a good choice for

installation in minicomputers.

10. Comparisons with the Simplex Method

Although the recursive method is not a simplex method, it is instructive

to make comparisons between the steps of the two methods. A detailed comparison

between a primal pivot step and the ordinary backshift and zero shift operations

is presented in Figure 11. Note that aside from the search step which is ex-

tremely difficult to compare since it is problem dependent as well as algorithm
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dependent, both the backshift and zero shift operations invoL.4 less work than

the primal pivot (roughly one-half as much). This comparison is even more

pronounced in the case of easy backshifts and easy zero shifts.

In Table 1(B) of [9] it was reported that the solution by a primal algorithm

of a 100 x 100 assignment problem having about 4000 arcs and maximum cost of

100 required 651 primal pivots and 2.187 UNIVAC-1108 seconds. In Table 1

it can be noted that the solution of a similar problem by the recursive method

requires 66 ordinary and 44 easy backshifts,and 255.4 zero shifts of which more

than 57 percent were easy, and took 1.12 DEC-20 seconds. Comparison of these

. times on two different machines is very difficult, but it is a common belief

that the UNIVAC-1108 is considerably faster than the DEC-20.

The author is undertaking more extensive testing on a single computer of

these and other methods. Others have also volunteered to help in this testing.

It should also be noted that the recursive method requires neither a

starting solution nor a phase I part of the code. Also it does not require

artificial arcs; even for sparse problems. It does not need degeneracy pre-

vention techniques since as noted in Section 2, the dutch auction solution is,

in fact, equivalent to the usual well-known perturbation technique.

Another feature of the recursive method is that it is able to take ad-

vantage of alternate optimal solutions when selecting the two highest bids in

a row. When several choices are possible, it is a good idea to select, when

possible, these two highest bids so than an easy backshift can be performed.

Note in Table 1 that the number of easy backshifts goes down from over 90

percent to the low 40's as the maximum cost increases from 1 to 1000. The

primary reason for this is the decreasing number of alternate optimal solutions

as the maximum cost increases. This gives another explanation for the maximum

(minimum) cost effect.
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11. Conclusions

The recursive algorithm has been described and tested, and shown to be

superior for ac least those problems which it is capable of solving in one

pass or only slightly more than one pass. It's full comparison with other

methods awaits further computational testing by the author and others. How-

ever, it is clearly a competitive algorithm for at least some kinds of assign-

ment problems.

The author will report on further tests of the method elsewhere. Also

extensions of these ideas to the solution of sum and bottleneck transportation

problems will be discussed at a later time.

0%
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P0 P1 P2 Pk- I Pk Pn-1 P n
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Figure 1. Order of solution of problems Pk in the recursive method.
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00

Figure 2. Optimal basis graph for PO"
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Figure 3. An Easy Back Shift. It is always

possible to solve P~ by an easy backshift.
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Figure 4. An Ordinary Backshift Step
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0 0 0 0

15 14 17 0 1 0 ® 01 ® 0°0 3

19 22 20 0 1 1 1 1 0

17 21 14 0 1

0 0 0 0 0

1 1 1 1

(a) Original Problem (b) Optimal Solution to P0.

* 0 0 2 0 0 0+% 2

15 (Do 14 (a1 0 15 @o 14 @ 0 0

U00 0 19 19 20 0

0 0 0

(c) Optimal Solution to P1. (d) End of Backpivot Step for P2

0 3 2 0 0A 3+ 2+) 0

15 @0 14 @ 0 15-, @0 14 @1 0

19 @0 @1 20 0 19- @1 @0 20 0

" 0 0 0 ( 17-k 17 14 0

0 0 0

(e) Optimal Solution to P2. (f) End of Backpivot Step for P
Note that the optimal assignments

are now determined.

Figure 6. Solution of an Example
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15+k. 18A. 17 0

0 15 14 (a 1 0

4-X @1 @0 20 0

2-X 17 @1 14 0

0 0 0 0 &0

(g) End of first zero shift

I

16 19+k 17 0

0 15 14 ©1 @O

3 01 22 00 0

1-x 17 @ 14 0

0 0 0

(h) End of second zero shift

* 16 20 17 0

0 15 14 1

3 1 2 @22 0

1 0° @1 14 0

0 0 0 0 c)0

(i) End of third zero shift.

Optimal Solution to P3"

Figure 6 (continued)
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(a) Optimal basis tree for P2  () End of backpivot step for P 3
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R3 R4

C2 C4

R2 R

(a) End of first zero shift

R4

R3R4 C4

C C4 R1

Rl C3

C3 R2

R2 Cl

-Cl R3

(f) End of second zero shift C2

(g) End of third zero shift.
Optimal basis tree for P 3

Figure 7
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Number Number of Number of
of Easy Ordinary Zero

Backshifts Backshifts Shifts

Best Case n-i 1 1

Worst Case 1 n-i (n+2)(n-i)2

Figure 8. Number of operations for the

best and worst cases.

Problem Easy Area Time
Defined In Easy Zero Zero Search DEC-20
Equation Backshifts Shifts Shifts Factor Secs.

(22) 99 1 0 1.00 .26

(23) 1 5049 4949 1.51 2.99

(24) 1 99 0 34.48 8.22

(25) 1 5049 0 859.48 166.20

Figure 9. Best and Worst Case Examples

Ford-Fulkerson Dual Method [ 5] n 2-1 non-break throughs
2

Balinski-Gomory Primal Method [ 1 n 2 non-break throughs

Srinivasan-Thompson Cost n(2n+l) primal pivots
Operator Method ( 10 1

(n+2) (n-i)
Recursive Method 2 zero shifts.

Figure 10. Worst case bounds for various polynomially bounded algorithms.
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Primal Pivot Backshift Zero Shift

Find incoming arc Area search Row search Area search

Find cycle Yes No No

Find outgoing arc Yes No No

Cut and paste Yes Yes Yes

Relabel Yes Yes No

Change duals Yes No Yes (No for an easy
zero shift)

I. Figure 11. Comparison of steps in a primal pivot

with those in a backshift or zero shift.
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Average Percentage Number Percentage Area Time
Maximum Number of Easy of Zero of Easy Search (DEC-20

cost n of Arcs Backshifts Shifts Zero Shifts Factor Secs.)

1 100 3980 90.4 81.8 85.46 1.08 .14
200 3968 82.5 263.6 85.5 1.25 .27
300 4267 78.1 630.6 89.36 1.60 .54

2 100 4002 87.0 100.8 81.93 1.14 .16
200 4017 76.3 396.2 86.94 1.56 .34
300 4278 64.9 858.6 86.75 2.42 .75

5 100 3973 73.8 144.4 80.91 1.39 .20
200 3981 59.0 650.0 86.75 3.83 .74
300 4256 54.3 1304.4 88.84 8.41 1.34

10 100 3994 60.6 233.4 86.68 2.79 .42
200 4016 48.7 658.8 82.19 7.38 .93
300 4298 47.6 1104.4 82.84 11.57 1.88

20 100 4003 53.2 275.2 80.52 5.74 .61
200 4016 45.7 721.0 79.00 11.66 1.43
300 4321 44.9 1078.6 77.36 15.24 2.18

50 100 3999 45.6 281.4 69.59 10.04 .97
200 4023 44.9 586.2 64.73 16.24 1.92
300 4336 43.7 889.0 60.21 20.70 2.88

100 100 4025 44.0 255.4 57.15 12.38 1.12
200 4000 43.3 595.4 49.02 24.23 2.74
300 4263 43.2 925.6 47.98 31.45 4.30

200 100 3997 43.8 275.4 46.54 17.79 1.63
200 4019 42.0 525.8 35.48 28.65 3.09
300 4308 42.7 882.4 35.16 43.06 5.74

500 100 3992 46.6 234.4 23.97 19.91 1.89
200 3997 43.4 535.8 20.29 37.7 4.05
300 4314 43.5 864.8 20.18 52.8 6.47

1000 100 4016 42.6 234.4 16.87 21.97 1.91
200 4003 42.5 571.2 11.42 44.74 4.82
300 4330 43.0 842.6 11.44 58.17 7.60

Table 1. Computational experience for problems
having approximately 4000 arcs. Each
row presents averagq results for five
randomly generated test problems.
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Average Percentage Number Percentage Area Time
Number Maximum of easy of Zero of Easy Search (DEC-20

n of Arcs Cost Backshifts Shifts Zero Shifts Factor Secs.)

200 17948 1 96.8 106.4 74.11 1.03 .47
100 44.9 679.8 77.32 12.17 4.72

300 18009 1 94.27 230.8 89.68 1.05 .63
100 46.47 1000.0 74.14 16.24 6.61

400 17917 1 93.3 362.8 90.56 1.07 .82
100 45.25 1457.0 72.44 22.43 9.99

500 18063 1 90.8 628.0 92.32 1.12 1.14
100 44.28 1893.4 71.45 25.46 12.36

600 18048 1 88.9 1000.6 92.68 1.18 1.49
100 43.67 2095.0 67.37 27.78 14.73

o1

700 18704 1 86.2 1304.6 92.32 1.22 1.96
100 43.14 2690.2 67.70 35.27 19.64

800 18627 1 83.68 1745.0 92.07 1.29 2.42
100 43.50 2952.8 66.04 36.07 20.87

900 18292 1 81.82 2191.8 92.26 1.36 3.00
100 42.33 3402.0 64.70 39.84 24.21

1000 17976 1 79.66 2958.4 92.93 1.49 3.66
100 42.82 3877.8 64.00 46.34 31.17

Table 2. Computational experience for large problems
having about 18000 arcs. Each row presents

0 average results for five randomly generated
test problems.

ki
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Easy Ordinary Easy
Back Back Zero Zero

Step Shifts Shifts Shifts Shifts

92 92 0 0 0

93 92 1 1 0

94 92 2 2 0

95 93 2 2 0

96 93 3 3 0

97 94 3 3 0

98 95 3 3 0

99 95 4 23 19

100 95 5 25 19

Table 3. Cumulative data from the solution

of a randomly generated 100 X 100

problem with 5028 arcs and maximum

cost 1. The area search factor

was 1.04.
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