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ABSTRACT

This research effort is directed at determining the fea-

sibility of using structural-sensitivity measures as the basis

for simplifying large mathematical models of dynamic systems

(e.g., models of tactical command, control, and communication

* Isystems). Toward this end, a FORTRAN program was written which

can be used to simplify models characterized by sets of linear

differential equations. Specifically, the program determines

the optimal simplified model (i.e., the set of coefficients

characterizing the set of linear differential equations) of

specified dimension corresponding to the original linear model

of higher dimension.

The algorithm, on which the FORTRAN program is based,

minimizes an objective function which is defined in terms of

the structural sensitivities of the state variables to be pre-

served in the simplified model. The program inputs are the set

of coefficients which define (1) the linear differential equa-

tions representing the original model, (2) the dimension of the

simplified model to be determined, and (3) the set of parameters

defining the objective function to be minimized. The program

outputs are the set of coefficients which define the optimal

simplified model and the value of the objective function cor-

responding to the optimal simplified model.
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* INTRODUCTION

* An approach is proposed to simplifying complex mathemat-

ical models of dynamic systems. The approach is based on the

concept of structural sensitivity.

The mathematical model to be simplified is represented

as a graph in which each link of the graph represents the de-

pendency of one system variable on another. The state varia-

bles of the system are selected so as to include all the sys-

tem variables of interest which are also to be included in the

simplified model. The remaining state variables are selected

so as to minimize the sensitivity of the interesting state var-

iables to the cutting of all the links between the interesting

4 state variables and the remaining state variables. When this

minimization is realized, the optimal simplified model, which

includes all the interesting state variables, can be "cut" out

* .~ of the original system model. This process involves findin~g

that transformation of the original state variables which pre-

serves the interesting state variables while minimizing the

structural sensitivity of these state variables with respect to

the remaining state variables.

In situations where the best possible simplified model

that can be cut out of the original system model is not an

acceptable representation of the original system, the dimension

of the simplified model can be increased to improve its accur-
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acy. In this case, a transformation must be found which not

only preserves the interesting state variables, but which also

partitions the remaining state variables into two sets. One

set of state variables from this partition is added to the set

of interesting state variables to produce an augmented set of

interesting state variables; the simplified model will now in-

clude this agumented set and thus be of higher dimension, and

of improved accuracy. The other set of state variables from

the partition is selected so as to minimize the structural

sensitivity of the set of interesting state variables with

respect to this remaining set.

4
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MODEL SIMPLIFICATION: THE GENERAL AGGREGATION PROBLEM

The general aggregati6n problem is stated here for the

case that the system of interest is well modeled by a set of

ordinary differential equations. However, the extention of

these results to those important systems which are best mod-

eled by discrete-event models is not trivial, particularly

with respect to the computation of sensitivities within dy-

namic systems. Additional research is called for here.

Consider that the system to be studied is well modeled

by a set of ordinary differential equations given in canonical

. .state-variable form:

dtx 0 x 0o  t ' t 0
.

where

" > x x  u 1l  f .

Lx.

For the case that n is very large, one is seldom interested in

observing all the state variables. In such cases, one observes

only a small subset of the state variables: i.e.,

q = g(x) (2)

where

q= g 4



-5-

!£

and p < n. The function g is called the aggregation function.

The problem of aggregation is that of trying to find a simpler

model to generate the observed variables q than that provided

by equations (1) and (2). Ideally, one seeks an aggregated

model characterized by function fq such that

'K whr: =f (qu), q(t) g(x), t >.to (3)
° dt q0 00

fqp1tf

In general there exists no f such that an aggregated
q

' -model can generate the observed variables of a disaggregated

model (If the state x is observable through output q, then q

cannot, in general, be generated by a system of dimension less

- than n). In special cases where an fq can be found such that#q

N equation (3) is valid, the aggregated model is said to be dy-

namically exact to the disaggregated model with respect to q.

However, dynamic exactness is so rare in practical situations

that, practically, the problem of aggregation is that of find-

ing a function fq that can be used to generate an approxima-

tion q to q:

dqa_ = fq(qaU),q(o g(xo )  1
dt q a a 0 0

where

q al1
a

q apJ



Often, the variables of interest are so few in number

compared to the dimension of the disaggregated model (e.g., one

may be interested in only the average of all the state varia-

bles in a complex system having, say, 50,000 state variables)

that there is little hope of finding any fq to generate a rea-

sonable approximation to q. In such cases, it is necessary to

increase the dimension of the aggregated model. Toward this

end the aggregation function is redefined:

q ] (x

where

wheec= rc q W ~~ri

where qc represents the variables of interest and qv represents

the additional variables to be included in the aggregated model

to increase model dimension for purposes of improving the ap-

proximation. Thus, function g. is a fixed function defining

the variables of interest and function gv is a function to be

selected in the most advantageous manner in designing the ag-

gregated model.

In trading dynamic exactness for model simplicity, by ac-

cepting an approximation to q, a difficult problem arises.

Namely, one must have a basis for comparing alternate approxi-

mations. Clearly, the effectiveness of an approximation is

closely tied to the use that the aggregated model is to be put

to. Thus, the criteria that might be used in evaluating ag-

gregated models to be used for estimation and prediction could
I 2
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be significantly different from the criteria used when the mo-

dels are to be used for determining controls. The develop-

ment of pertinent criteria for evaluating aggregated models

is an essential part of the aggregation problem.



A QUANTITATIVE APPROACH TO AGGREGATION: STRUCTURAL SENSITIVITY

The approach taken to the aggregation problem is based on

system structure. Specifically, system models are represented

* Iby graphs such as link-node structures (1), system diagrams (2),

or signal-glow graphs (3, 4) in which certain points on the

* 1 graphs represent system variables and the influence of one vari-

able on another is denoted by the existence of a path from that

variable to the other. Fundamental to this approach is the pre-

mise that a proposed aggregated model can be imbedded within a

larger system defined by the disaggregated system (i.e., the

funciton f ) and the aggregation function (i.e., the functionsx

g c and gv . Importantly, in order that the proposed aggregated

model exactly generate the variables of interest qc' it is nec-

essary that additional variables, say xA, which are functions of

the state variables of the disaggregated model, be provided as

special inputs to the aggregated model. These relations be-

tween the larger-system variables, xA, and the proposed aggre-

gated system variables, gc and qv, represent connections in the

system graph. Perfect aggregation is achieved when the qc gen-"

erated by the aggregated model is totally insensitive to the ex-

istence of these connections.

With such insensitivity, all connections from the larger

system can be literally cut and the aggregated model can be re-

moved from the larger system. This sensitivity of a system's

variables to the cutting of connecting links is called structural

sensitivity. By introducing a gain parameter in such connecting

links it is possible to relate structural sensitivities to the



well-defined parameter sensitivities (e.g., a link gain equal

to 1 implies the connection exists, and a link gain equal to 0

implies the connection is broken). The following example ill-

ustrates the proposed approach to aggregation.

Consider a continuous autonomous system that is well mod-

eled by

dx d- = f  (x)
ct x

(x is an n vector). We would like to design an aggregated model

of this system and we demand that the aggregated model generate

a specified set of outputs qc defined by a fixed aggregation

function:

q= g(x)

(qc is an r vector). However, although we wish to design an

r-th order aggregated model in which qc is the state, we are

willing to increase the dimension of the aggregated model by

adding variables qv to the state in the hope that the inclusion

of important dynamic modes in the aggregated model will lead to

a better approximation of q. The variables qv are selected by

the designer as a function of the state variables:

qv = gx)

(qv is a p vector). Thus, here we seek an aggregated model of

the form:

dq c = fqc (qC q V)

dq v
dt = f qv(qclq v
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With proper care in selecting the aggregation functions g. and

gv, so as to avoid algebraic dependencies among the elements of

qc and qv, one can think of qc and qv as being a set or r+p

state variables in a new state description. Denoting the new

state vector by x, we have

LxAl
where xA is an n-p-r vector that is augmented to qc and qv to

complete the state description. x A is not unique and can be

obtained by an appropriate transformation from the original

state description.

xA -- gA (X).

Thus, the transformation from x to x is given by

= gvCx) g t (x)

g~xgA (x)J

where gt is a transformation function and, as such, has an

inverse: i.e.

-i
gt ( )

Differentiating ^ with respect to time gives

__Ir (g (x))1L VxI(g(x)) dx

where Vx(gc(x)) is an rxn matrix such that each row of V (gc(x))
is the gradient, in the x space, of the corresponding element of

gc(x). Thus for example, the i-th row of Vx(gc(x)) is



XCx)) =I c IgC 9

taxl ax2  axj

Similarly, Vx(gv(x)) is a pxn matrix and Vx(gV(x)) is an (n-p-r)xn

dxmatrix. Since -=f (x) ,we may writedt x

vxg (x))

xgA(x)) fx

And since g= t Wx we obtain a set of transformed state equa-

*tions for the original system:

g (g Q i)

V x (g (

or, equivalently

dq

dq V= f (q ,q ,xA) (5)
dt qv cvA

dx,
dt = f M (q a x)x

where

f (q ,qvx )= V ( (g- ( ()) (X^)qv A x c t x t ()

f, (q ~x) = (



Figure 1 shows the system diagram for this transformed systen.

Clearly, if gv and gt can be selected so that q c is completely

independent of xA, then perfect aggregation is achieved. This

independence is equivalent to being able to cut the connection

marked with "X" without affecting qc" Note that perfect aggre-

7 gation is achieved if f (qc q How-

qc C 3,A is insensitive to xA. Hw

ever, in terms of designing an aggregated model, this condiz.ion

may be much too strong. For example, suppose the system's oper-

dxA ~
ation is such that - - 0 (i.e., fx(qv ) ) and f is such

that fxA(qc,qx) = 0 can be solved for xA in terms of qc and

qv" In this case although fqv (q c ,q vXA) is a function of x.,

the additional relation relating xA to qc and qv makes perfect

aggregation possible.

In situations where no functions gv and gA can be found

that descnsitize qc to cutting the connections that bring xL

to the f and fqv blocks, an approximation procedure is sug-qc q

gested which is based on introducing a cutting parameter a.

Figure 2 shows the system diagram of equations (5) with such

a cutting parameter: a = 1 gives the original system: a = 0

cuts the connections. In this system, one may use the sensitiv-

ity of qv to the cutting parameter a as an indicator of the effec-

tiveness of aggregation and proceed to look for the functions

gv and gA that minimize this sensitivity. It should be noted

that the sensitivity of q c to a not only depends on the aggre-

gation function gv but also on the set of state variables selec-

ted for xA : i.e., on the selection function gA"

The approach to the computation of the structural sensi-
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tivities is straightforward. The outputs qc are computed with

a = 1. For large systems, this computation could strain the

capacity of the computer being used and, perhaps, prove to be

impractical in certain cases. In such situations where the

limits of the computer are being tested, it is essential that

efficient computational algorithms be used (4, 5). By setting

a = 0, the smaller proposed aggregated system is separated from

the larger system and the outputs of this smaller system, qca,

* are computed. The structural sensitivities are simply the dif-

ferences:

Aqc q q
A =ca c

Perfect aggregation (i.e., dynamic exactness) is achieved

when the structural sensitivities are zero over the time inter-

val of interest. However, given that dynamic exactness is gen-

erally not possible, one then seeks the functions gv and gA that

" in some way minimize the structural sensitivities. For example,

a figure of merit can be defined in terms of the structural sen-

sitivities. There are many possibilities for defining a figure

of merit. Some examples are:

[1 . 2
(-t-))2W(T) ACdt

McM2

0

M3 JT) d

0

0 Act.

'40
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Figure of merit M, stresses the importance of the final value

* of qc; M2 and M 3 consider the accuracy of qc to be important

over the entire time interval (the weighing function w allows

the emphasis to vary over the time interval); and M4 is in

j terms a normalized sensitivity for situations in which one is

* I concerned with percent errors. Clearly, the figure of merit

to be used in any instance depends on the system being modeled.

a ,

4f



LINEAR SYSTEMS

Although it is quite unreasonable to expect that any

3tactical C system could be realistically represented by a

linear time-invariant model, it is nevertheless useful to

look at the aggregation problem for this special case. Im-

portantly, many large subsystems of tactical CO~ systems are

well modeled by linear differential equations and some pro-

gress toward obtaining useful aggregated models can be made

by aggregating individual subsystems separately. Further,

* some of the ideas set forth here are rather simply illustrated

using linear systems as examples. However, it must be noted

that the assumption of linearity gives rise to significant

simplifications that do not exist for any other class of sys-

tems.

Consider the case that the system of interest is well

modeled by tha set of linear differential equations, written

in matrix form:

dx = Ax( f (x))
A, d t x

where x is an n vector and A is an nxn matrix of constants

with the element in the i-th row and the j-th column repre-

sented by aij The variables of interest, which are to be

outputs of the aggregated model, are linear combinations of

the original set of state variables:

qc= G c x (xgC 0)

where q is an r vector (r<n) and G is an rxn matrix. Vari-

ables qcare to be state variables of the aggregated model.

Additional state variables qv, where qvis a p vector (p<n-r),
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may be allowed in the aggregated model to improve accuracy:
qv = G x (= g ))

v v

where G is a pxn matrix. If q and q are considered to be

* state variables in a transformed coordinate system, an addition-

al n-p-r state variables must be selected, also as a linear

. combinations of the original state variables, to complete the

transformed state description:

XA = GAX (= gA(x))

where xA is an n-p-r vector and GA is an (n-p-r)xn matrix. Thus,

representing the new state description with the n vector x, we

have

[G

x = GCx = Gx (= g(x))
GCA

where G is an nxn nonsingular transformation matrix appropri-

ately constructed from submatrices Gc, Gv, and GA. Differen-

tiating the transformation equation =Gx with respect to t gives

d = GAGx = GqvAX

where

GqvA = GAG
-1

This can be written in expanded form as

dqc CGq (C
dt Gqq qc Gqv qv + GqAXA fqc(qcqvXA)

dq 
v

d- G vq qc + Gvvq v + GvAXA (= qCqvXA)) (6)

dxA
d--= Gqc + Gvqv + GAAxA (= fxA(qc,qvx A))
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where the matrix coefficients of qc, qv, xA are the appropriate

partitions of GcvA. Figure 3 shows the system diagram corre-

sponding to equations (6) with the cutting parameter a included.

The objective, of course, is to find the transformation subma-

I trices Gv and GA that minimize the sensitivity of qc to the cut-

ting parameter a.

*) I



A DIGITAL COMPUTER PROGRAM

A FORTRAN program was written which can be used in simpli-

fying linear systems. The program determines the optimal simpli-

fied model (i.e., the coefficient matrices Gcc and G cv) of speci-

fied dimension r+p from the original linear model of dimension n

(n>r+p). The program minimizes a figure of merit which is de-

fined in terms of the structural sensitivities and the time in-

terval of interest. The program inputs are the original n-di-

mensional model (i.e., the coefficient matrix A) and the dimen-

sion of the simplified model to be developed. Powell's algorithm

(6) is used to execute the minimization.

The program consists of two major parts (see Figure 4).

One part consists of the algorithms required to compute the value

* of the figure of merit from the original model ard the proposed

aggregated model; the other part consists of the optimization

algorithm. Figure 5 details the algorithm for the linear case.

Note that the A and G matrices are specified as input and G

. and GA are determined from the optimization process. In the

program written, Powell's method (6) was used as the basis for

the optimization algorithm; Appendix 1 details the optimizatic..

algorithm used to determine the optimal aggregated system (i.e.,

the matrices Gv and GA ) and the corresponding figure of merit.

Appendix 2 gives the definitions of the important FORTRAN vari-

ables. A listing of the resulting FORTRAN program is given in the

Appendix 3. The results of a sample run are given in Appendix 4.
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CONCLUSIONS

The research done thus far on using structural sensi-

tivities as a basis for a measure of effectiveness of aggre-

gation seems promising. The FORTRAN program written, which

J determines aggregated models for linear systems, establishes

the feasibility of the approach, at least for an important

class of systems. Especially important, insofar as competi-

tive systems is concerned, is that by using structural sen-

sitivities in the design of an aggregated model, attention

must be given to all excluded dynamic modes; it is simply not

sufficient that the variables of interest appear to be re-

sonably approximated. In minimizing structural sensitivities

it is virtually not possible to accidently overlook important

system dynamics in the aggregated model.

Use of this FORTRAN program on a variety of examples

makes it clear that additional research is required to an-

NN swer important questions concerning both the effectiveness

and the applicability of the approach. As a first step for

future research, I suggest a complete rewriting of the aggre-

gation program either in a language such as APL so as to enor-

mously simplify the program or, if again in FORTRAN, on a sys-

tem with efficient linear algebra software packages. Certainly,

having an experienced programmer write the program in a well-

documented modular form would be advisable. In addition, the

optimization algorithm should be carefully studied for the pur-

pose of improving its covergence properties. Other optimiza-
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tion algorithm should also be explored to determine whether the

efficiency of the search can be improved.

With an improved aggregation program, it will be possible

to begin to categorize models in terms of whether or not they

can be simplified using this approach. By characterizing the

properties of models that cannot be aggregated using structural

sensitivity measures, insights will be obtained that should

allow us to either develop methods to extend the applicability

of the approach or to better define the limits of the approach.

*Fundamental questions have been raised which should be

the subject of future research efforts:

1. To test the feasibility and effectiveness of the proposed

Happroach to aggregation based on structural sensitivities

by applying it to model well-known test systems from the

literature (e.g., the examples used in references 7 and

8). This should provide a comparison of the proposed

approach to aggregation to some of the existing aggregation

6. methods in terms of the effort involved, the usefulness of

the resulting model, and the generality of the method.

2. To identify a suitable subsystem of an actual Air Force

tatical C3 system to be the subject of a modeling and sim-

ulation effort based on the proposed approach to aggrega-

tion.

3. In designing aggregated models of large-scale systems, a

minimization must be carried out with respect to a large

parameter space. Such minimizations can be difficult,



especially when there are many local minima to contend with.

Attention should be given to trying to reduce the dimension

of the parameter space by4 using the least number of parame-

ters possible in defining the transformation functions g

1and gin this application.

4. By actually cutting the connecting links, the variables xA

* I being fed to the proposed aggregated model are actually set

to zero. This is of no concern when dynamic exactness can

* be achieved. However, when the aggregated model can only

generate an approximation to the variables of interest,

one should consider the possibility of introducing bfis in-

puts to the aggregated model at the points where the links

have been cut.

5. Frequently, one may wish to constrain the form of the aggre-

gated model, even at the cost of having a deteriorated ag-

gregated model or one of higher dimension. For example, one

may require that the aggregated model be linear and time-

invariant so as to permit analytic studies of the model in'

- stead of, or in addition to, simulation studies. Methods

for introducing this model constraint into the setting of

structural sensitivities should be studied. This possi-

bility was briefly considered and the simple ploy of re-

placing the first of equations (5) by the following equa-

tion seems promising:

d q
d t f q(qcCV +, fq qCpq) A ql
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where function f qcharacterizes the constrained aggregated

model. However, further study is necessary to determine how

variations in the constrained model parameters affect the

dynamics of the sensitivity function.

26. Considerable effort should be directed toward developing

rationales for various forms of figures of merits derived

from structural sensitivities. Many possibilities come to

mind, including integral forms (with and without weighting

* functions) and those based on final values, and the impli-

cations of each ought to be examined, particularly with

respect to the relationship of the effectiveness of the

aggregated model to the magnitude of the figure of merit.

*7. Since the computations of sensitivities are so much simpler

for static systems than for dynamic systems, the possibility

of designing aggregated models by examinig only the right-

hand side of the canonical state equations should be care-

fully investigated.

8. Linear time-invariant systems should be studied as an in-

portant special case. Certainly, many important real sys-

tems are modeled as linear time-invariant systems. How-

ever, the fact that linear time-invariant systems yield to

analysis can be quite helpful in developing valuable in-

sights into the implications of structural sensitivities.

9. A system can be defined such that the sensitivities Aq / AcI

appear as the system outputs. Using this system, the prob-

lem of aggregation can be cast as a control problem in

which the sensitivities can be considered to be error so
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nals to be driven to zero. Such an approach to the aggre-

gation problem should be studied. It seems likely that

certain aspects of control theory will prove useful here.

10. The proposed approach to aggregation should be studied

with respect to the zero-state response of systems to clas-

sical test inputs (e.g., unit steps, sinusoids, etc.). It

is clear that the aggregated models depend on the system's

initial state. Yet, in many systems it is unlikely that

certain system state variables will ever assume signifi-

cant values because of the large attenuations between the

input and the storage devices associated with those state

variables. In such cases, determining acceptable aggre-

gated models might be simplest by dealing only with zero-

state input-output responses. For the linear case, this

is equivalent to looking for aggregated transfer functions.

11. A study should be made on the controllability of systems

using controls derived from aggregated models. It seems

that such a study makes sense only if a weaker definition

of controllability is used so as to take into account the

extraordinary controls generally necessary before the neg-

lected dynamics modes can significantly affect the outputs.

Particular attention should be given to the role of the

extra state variables q v which are included in the aggre-

gated model only for accuracy. It may be desirable to in-

clude some additional state variables for purposes of con-

trollability. ror competitive systems, it is especially
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important to determine the effect that an opponent can have

on controllability and to try to design an aggregated model

so as to minimize this effect.

12. A study should be made to extend the results to discrete-

J event systems.

13. A study should be made to examine the possibility of using

structural sensitivity measures f'or decoupling subsystems.

Such an application seems straightforward in that the coup-

* ling of subsystems can be represented graphically as links

in the system graph. Then, all that is required is to find

the transformations to minimize the sensitivity of the sub-

system variables to the cutting of these links subject to

the constraints that particular system variables be iden-

tified with particular subsystems.
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APPENDIX 1

Powell's Multiparameter Optimization Method

Powell's method, which is perhaps the most powerful of

the direct search methods, has the property that it converges

to the exact optimum in a finite number of steps when the

* function being optimized is a quadratic function. The algor-

ithm finds the maximum value of the function f(x) and the m-

vector x giving that maximum. It is based on a series of one-

dimensional searches, each defined by an m-dimensional direc-

tion vector p. The method of selecting directions of the one

dimensional searches lies at the essence of the algorithm.

The algorithm proceeds as follows:

4

11 For each of the first m iterations, the direction vectors
(1) (2) (m)

S, p ... , p are defined so as to step in each of

the n coordinate directions.

62) a is the size of the step taken in direction p. The size

of the steps in the first n iterations (a(C),(2) ,... ,

(m)), however, is not predetermined. One moves in each

direction until the maximum in that direction is determined.

Thus for each step, a single variable search is conducted

in one of the m directions, using any efficient single-

variable search algorithm. In this program, a Fibonaci

search was used.
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3) Generate a new set of search direction vectors as follows

p (1) p (2)

(2) (3)
p p

- (m-1) (m)
P P

(m) (m) (0)
p =x -x

*" 1 (0)
4) Define a new starting point x as the maximum in the new

(m)
p direction

(0)
5) Repeat these steps with the new x and the new directions

(1) (2) (m)
P ,P ,.-, P

" -Powell has modified his algorithm to give better conver-

gence when the initial guess of x(0) is a bad one.

i ) (2) (m ) in the m coordinate directions.

(0)
Start at x

2) For k=l,2,...m

x (k) = x (k-1) t L(k) )p(k)

where a (k) is selected so as to maximize

f(x (k-1) + a (k)(1)), maxL (x(k-l) 
(k) (k))] -f(x (k)

) (k)+ -a

3) Find integer j, lj~m, so that f(x 
( j ) - f(x ( j - l ) is a

maximum and define Af(x
( )) - f(x 1)

4) Compute
( ( m) (0) Cm) (0)

f3 = f(x ()+2(x -x )) f(2x -x )

Define

Co)
f = f(x )

f 2 = f(x(m))

"- . ,A ... .. . . . .. ~ I I 1. .... .. ... ... . .. ...... ... rl ... . . . . . .... . . ... .. .....f .... ...x. ..
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5) If either

f 3  f:

or

2 >2(f 1-2f 2+f 3)Cf1 -f2-) A.Cf1- f3)

use old directions p ( , ' p (2) . p ()and new x X

for the next iteration.

6) If neither inequalities in (5) are true, define

C ( m)- (0)

(0) C)Cm
*look for new x =X +ctp where ai minimizes f~x +ap)

and define new direction vectors p~i (2 (jl

(m)
.., p , p



APPENDIX 2

Important FORTRAN Variables

A an n vector derived from the A matrix

j all a2 1 .- anl a1 2 a2 2 .. .an2.. .aln a2n...ann

GC = an ran vector derived from the Gc matrix

= gcll gc2l*''gcrl'''gcln gc2n' gcrn

GV = a pan vector derived from the the G matrix
V

. gvll gv 2l'gvpl'''gvln gc2n'''gcpn

GD = a (n-r-p),n vector derived from the G matrix
tA

9 Al : g l gA21 -''gA(n-r-p)l'''g Aln g A2n '''gA(n-r-p)n

Y a pen + (n-r-p)-n vector derived from the Gv and the GA

matrices (Y is the vector to be determined in the minimi-

zation process)

o [GV GD]

. G = an n vector derived from the Gc, Gv, and GA matrices

I 1GC:.GV:.GD

GAG = an n2 vector derived from the GcvA matrix

(GC = GAG 1)
cvA

X = an n vector representing the state of the original model

(X = x)

XHAT = an vector representing the state of the transformed model

(XHAT
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APPENDIX 3

FORTRAN Program

I COMMON S(1O),Y(1O),P(10,10),V(10),R(10),X(10,10),FUNCT(10)

COMMON EO,XX,H ,JE,FO,F,F9 ,C9 ,F3,D,C8,N,J5,FGRAD
*. ;COMMON/XXX/A(100),XS(10),GC(10),Nh, RR,PP,DELT,FMERIT,TFINAL

COMMON/GET1/GCC
COMON/TRAJEC/JOUT
DIMENSION GCC(!0)

INTEGER RR,PP
JE=O
JOUT=O

C(150) INPUT CONVERGENCE DATA(730)
CALL CONVDATA

C(350) INPUT INITIAL PARAMETERS(620)
CALL INPPARAM

C INPUT SYSTEM PARAMETERS
CALL SYSPAR(A,XS,GC,RR,PP,DELT,TFINAL,NN)

C(230) OUTPUT INITIAL PARAMETERS AND CONVERGENCE DATA(840)
CALL OUTPARAM

C ESTIMATION OF PARAMETERS
"4 C

C(370) COMPUTE INITIAL F(1820)
CALL CMPINITF

C(390) INITIALIZE DIRECTION VECTOR P(1920)

CALL INDIRVEC
* ~-C(410) STEP(2020) IN EACH DIRECTION P
• 410 CALL STEPP

* . C(430) CHECK FOR CONVERGENCE(2220)
CALL CHEKCONV

C C9=1 IMPLIES CONVERGENCE
IF(C9.EQ.1) GO TO 590

C(450) FIND DIRECTION GIVING GREATEST INCREASE IN F(2420)
CALL RAPIDF

C(470) COMPUTE TEST POINT F(2X(N)-X(O))(2530)
CALL TESTPNT

C(490) CHECK WHETHER DIRECTION VECTORS ARE TO BE CHANGED(2600)
CALL CHKDIRVK

C C8=1 IMPLIES DIRECTION VECTORS ARE TO BE CHANGED

IF(C8.EQ.1) GO TO 509
C(504) DON'T CHANGE DIRECTION VECTORS(2710)

CALL DIRVECOK
C(507) REPEAT PROCESS WITH NEW STARTING VALUES

GO TO 410
C(509) CHANGE DIRECTION VECTORS(2820)
509 CALL NEWDIREC

C(530) REVISE ESTIMATES OF PARAMETERS(2910)
CALL REVEST



C(540) COMPUTE NEW DIRECTION VECTORS P(2960)
CALL COMPNEWP

C(570) REPEAT ESTIMATION PROCESS WITH NEW STARTING ESTIMATES
GO TO 410

590 CONTINUE
STOP
END

730 SUBROUTINE CONVDATA
COMMON S(10),Y(10),P(10,10),V(10),R(10),X(1O,10),FUNCT(10)
COMMON EO,XX,H,JE,FO,F,F9,C9 ,F3,D,C8,N ,J5,FGRAD

C N=NUMBER OF PARAMETERS
C EO=THE CONVERGENCE FACTOR FOR THE MAIN MINIMIZATION
C CONVERGENCE IMPLIES ABS(SUM(XN-XO)) < EO
C H=THE CONVERGENCE FACTOR FOR THE ONE-DIMENSIONAL SEARCH
C JE=THE NUMBER OF TIMES THE FUNCTION IS COMPUTED

READ,N,EO,H,FGRAD
RETURN
END

620 SUBROUTINE INPPARAM
COMMON S(10),Y(1O),P(10,10),V(10) ,R(10),X(10,10),FUNCT(10)
COMMON EO,XX,H,JE,FO,F,F9,C9,F3,D,C8,N,J5,FGRAD
READ, (S(I),I: I,N)
DO 630 I=I,N

* 630 X(1,I)=S(I)
Rr.TURN
END

840 SUBROUTINE OUTPARAM
COMMON S(I0),Y(10),P(10,10),V(10),R(10),X(10.10),FUNCT(1O)
COMMON EO.XX,H,JE,FO,F,F9,C9,F3,D,C8,N,J5,FGRAD
WRITE(01,842)N

842 FORMAT('THE NUMBER OF PARAMETERS IS',I5)
WRITE(01,843)EO

843 FORMAT(' CONVERGENCE FACTOR FOR MAIN MINIMIZATION :,,F10.7)
WRITE(OI ,844)H

844 FORMAT(' CONVERGENCE FACTOR FOR ONE-DIMENSIONAL SEARCH :',F10.7)
WRITE(Ol ,845)FGRAD

845 FORMAT(' GRADIENT CUTOFF FOR ONE-DIM. SEARCH :',F10.7)
WRITE(01.850)N

850 FORMAT(H'TE ',15,' INITIAL PARAMETER VALUES ARE:')

WRITE(01.855) (S(I).I=1,N)
855 FORMAT(OE12.4)

RETURN
END

1820 SUBROUTINE CMPINITF
COMMON S(10).Y(10),P(10,10),V(10),R(10),X(10,10),FUNCT(10)
COMMON EO,XX.1I,JE,FO,F,F9,C9,F3,D,C8,NJ5.FGRAD
COMMON/XXX/A(100) ,XS(10) ,GC(10) ,NN .RR,PP.DELT,FMERIT,TFINIAL
INTEGER RR.PP
DO 1850 I=1,N

1850 Y(I)=S(I)
CALL FUNCTION

FO=F
RETURN
END

I.
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4970 SUBROUTINE FUNCTION

COMMON S(1O),Y(10),P(1O,1O),V(1O),R(1O).X(1O,1O),FUNCT(1O)
COMMON EO,XX,H,JE,FO,F,F9,C9,F3,D,C8,N,J5,FGRAD
COMMON/XX(X/A( 100) ,XS( 10) ,GC( 10) ,NN.RR ,PP,DELT,FMERIT,TFINAL
INTEGER RR,PP
JE=JE+1
CALL MERIT(A,Y,GC,XS,NN,RR,PP,DELT,FMERIT,TFINAL)

'4972 CONTINUE
RETURN

* END
1920 SUBROUTINE INDIRVEC

COMMON S(10),Y(1O),P(10,10),V(10),R(10),X(1O,1O),FUNCT(1O)
COMMON EO,XX,H,JE,FO,F,F9 ,C9,F3,D,C8,N1,J5,FGRAD
DO 1950 I=1,N
DO 1950 Jl1,N

1950 P(I,J)=O
DO 2000 I=1,N

2000 P(I,I)=1
RETURN
END

2020 SUBROUTINE STEPP
COMMON S(10),Y(1O),P(1O,10),V(1O),R(10),X(10,10),FUNCT(10)

COMMON EO,XX,H,JE,FO,F,F9 ,C9 ,F3,D,C8,N4,J5,FGRAD
DO 2190 1=1,14
DO 2120 J=1,N
VCJ)=PCI,J)
IF(I.GT.1)GO TO 2110
R (J) =S (J)
GO TO 2120

2110 R(J)=X(I-1,J)
N2120 CONTINUE

CALL MAX
FUNCT(I)=F

* DO 2180 J=1,N
2180 X(I,J)=R(J)+XX*V(J)
2190 CONTINUE

F9=FUNCT (N)
RETURN
END

4180 SUBROUTINE MAX
COMMON S(10),YC1O),P(10,10),VC1O),R(10),X(10,10).FUNCTC1O)
COMMON EO.XX,H ,JE,FO,F,F9 ,C9 ,F3 ,D.C8 ,N ,J5,FGRAD
REAL M1,M2
X4=0. 1
X0 0

4200 M1=XO-X4
M2=XO+X4
xX:X0
CALL STEPFUlJC
QO:F
XX:M1
CALL 7TEPFUNC
Ql:F
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XX=M2
CALL STEPFUNC
Q2=F

4330 IF(QO.GT.Q1)GO To 4400
IF(QO.GT.Q2)GO To 4480
WRITEC(l ,4300)

4300 FORMAT('MINIMUM DISCOVERED IN SUBROUTINE MAX')

432WRITE(6,'4302)Q1 ,QO,Q2
432F0RMAT('Ql=',El2.

4,' QO=',E12.4,' Q2=',El2.4)

IF(Q2.LT.Q1)GO TO 4350
xO=142
GO To 4200

~4350 XO=M1
GO TO 4200
STOP

4400 IF(QO.GT.Q2)GO TO 4550
4410 X)4=2*XI

* Ml=XO

XO=M2
QO=Q2
M2=XO+X4
FOLD=QO
XX=M2
CALL STEPFUNC
Q2=F
IF(ABS(F-FOLD).GT.FGRAD)GO TO 4430
GO TO 4570

4430 GO TO 4400

'4480 X4=2*X4
M2:XO
Q2=QO

N Xo:M1
QO:Q1
Ml=XO-X4
FOLD=QO
XX=M1
CALL STEPFUNC
Q1=F
IF(AI3S(F-FOLD).GT.FGHAD)GO TO 4485

GO TO 4570
4485 GO TO 4330
4550 A=M1

B=M2
GO TO 4580

C ********#**

C
C ONE-DIMENSIONAL SEARCH All INTERVAL (A.B)

4580 ANEW(A+B)/20.l(B-A)
BN'tJ(A+B)/2+O. l*(B-A)

4582 FORMAT(2E15.5)
XX=AIJEW
CALL ZTEPFUIIC
Q11JE:W=F
X= BN EW
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CALL STEPFUNC
Q2NEW=F
IF(QlNEW.GT.Q2NEW)GO TO 4585
A =AN EW
GO TO 4590

4585 B=BNEW
4590 IF((B-A).GT.H)GO TO 4580

XX=(B+A)/2
j CALL STEPFUNC

4570 CONTINUE
RETURN
END

4760 SUBROUTINE STEPFUNC
COMMON SC 10) ,Y( 10) ,P( 10,10) ,V(10) ,R( 10) ,X( 10,10),FUNICT(10)
COMMON EO,XX,H,JE,FO,F,F9,C9 ,F3,D,C8,N,J5,FGRAD
DO 4790 I=1,N

*4790 Y(I)=R(I)+XX*V(I)
CALL FUNCTION

4795 FORMAT(4E15.5)
* RETURN

END
2220 SUBROUTINE CIIEKCONV

COMMION S(10),YC1O),P(10,10),V(10),R(10),XC1,10.FUICT(1O)
COMMON EO,XX,H,JE,FO,F,F9 ,C9,F3,D,C8,N,J5,FGRAD
COMMON/GET 1 /GCC
COMMON/TRAJEC/JOUT
DIMENSION GCC (10)
IF(ABS(FO-F9).GT.FGRAD)GO TO 2250
WRITEC(l ,2240)

2240 FORMAT(FGRAD > ABS(FO-F9)')
C9=1
GO TO 2298

N2250 SUM=0
DO 2260 J=1,N

2260 SUM=SUM+ABS(X(N,J)-S(J))
WRITE(01 ,2290)SUM,F

2290 FORMAT('SUM=',El2.4,' F=',El2.4)
WRITE(01 ,2294)N

2294 FORMAT(TZE,15,' PARAMETER VALUES ARE:')
WRITE(01 ,2295) (XCN,J) .J=1 ,N)

2295 FORMATC1OE12.4)
IF(SUM.GT.EO) GO TO 2325
C9=1

2298 CALL SUMMARY
JOUT1l
CALL FUNCTION
GO TO 2330

2325 C9=0
2330 RETURN

END
2340 SUBROUTINE SUMMARY

COMMON S(10),Y(10),P(10,10).V(10).R(10).X(10.10).FUICTC10)
COMIMON EO.XX.11.JE,FO.F.F9.C9,F3,D.C8,N ,J5.FGRAD
COMMON /GET1 /GCC
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COMMON/XXX/AC100),XS(10) ,GC(1O) ,NN,RR,PP,DELT,FMERIT,TFINAL
DIMENSION GCC(1O)
INTEGER RR.PP
WRITEC(l ,2350)F

2350 FORMAT(THE FUNCTION VALUE IS' ,E15.5)
CALL GETOUT(GCC,Y,N,NN,RR,PP)
WRITE(01,2390)JE

2390 FORMATHE FUNTION WAS COMPUTED ',I10,' TIMES.')
1 RETURN

END
2420 SUBROUTINE RAPIDF

COMMON S(10),Y(10),P(10,10),V(10),RC1O),X(10,1O),FUNCT(1O)
COMMON EO,XX,H.JE,FO,F.F9,C9,F3,D,CS,N1,J5,FGRAD
DI=FUNCT(1) -FO
D=DI
J5=1
IF(N.EQ.1)GO TO 2515
DO 2510 IK=2.11

* DI=FUNCT(K)-FUNCT(K-1)
IF(DI.LT.D)GO TO 2510
D=DI
J5=I(

2510 CONTINUE
2515 CONTINUE

* RETURN
END

2530 SUBROUTINE TESTPNT
COMMON S(10),Y(10),POO0,10) V(10),R(10),X(10,10).FUNCT(10)
COMMON EO,XX,Ui,JE,FO,F,F9 ,C6 ,F3,D,C8,N ,J5,FGRAD
DO 2560 J=1,N

2560 Y(J)=2*X(N,J)-S(J)
CALL FUNCTION
F3=F

RETURN
END

2600 SUBROUTINE CHKDIRVK
COMMON S(10).Y(10),P(10,10),V(10),R(10),X(10,10),FUNCT(1O)
COMMON EO,XX,Hi,JE.FO,F,F9 ,C9.F3,D,C8,N ,J5,FGRAD
F5= (F0-2*F9+F3)* (FO-F9-D) **2
F6=(1/2)*D*(F0-F3)**2
IF(F3.LT.FO)GO TO 2670
IF(F5.LT.F6)GO TO 2690

2670 C8=0
GO TO 2700

2690 C8=1
2700 RETURN

END
2710 SUBROUTINE DIRVECOK

COMMON S>(10).Y(10),P(10.10),V(10).R(10).X(10.10).FUIICT(10)
COMMON E0.XX.H,JE,FO,F.F9,C9,F3,D,C8.N,J5,FGRAD
DO 2740 J=l.H

2740 SCJ)=X(N,J)
FO=F9
RETURN
END
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2820 SUBROUTINE NEWDIREC
COMMON S(10),Y(10),P(10,1O),V(10).R(10),X(10,10),FUNCT(10)
COMMON E0,XX,liJE,F0,F,F9 ,C9,F3,D,C8,N,J5,FGRAD
DO 2860 J=1,N

CALL MAX

* RETURN
END

2910 SUBROUTINE REVEST
COMMON S(10),Y(10) ,P(10,10).V(10) ,R(1O),X(10,10) .FUN4CT(10)
COMMON E0.XX,H,JE,F0,F,F9,C9 ,F3,D,C8,N,J5,FGRAD
DO 29140 J=1,N

29140 S(J)=R(J)+XX*V(J)
RETURN
END

2960 SUBROUTIN4E COMPNEW
COMMON Sc 10) .Y(1O) ,P(1O, 10) ,V(1O) ,R( 10) ,XC 10,10) ,FUNCT(10)
COMMON EO,XX,H,JE,F0,F,F9,C9,F3,D,C8,N,J5,FGRAD
IF(J5.EQ.N)GO TO 3050
J6=N- 1
DO 3010 I=J5,J6
DO 3010 J=1,N

3010 PCI,J)=P(I+1,J)
DO 30140 J=1,N

3040 P(N,J)=V(J)
3050 RETURN

END
* -. SUBROUTINE GETOUT(GCC ,Y,N ,NN,RR ,PP)

INTEGER RR,FP,RP
DIMENSION GCC(1O),YC 10)
WRITE(01,10)N

10 FORMAT('Tl]E ',15,1 FINAL PARAMETER VALUES ARE:?)

12 FORMAT(10E12.4)
RP=RR+PP
WRITE(01, 15)RR,RR

15 FORMIAT('TH-E 1,15,' X ',15,' AGGREGATED SYST. COEF. MATRIX:')
DO 100 I=1,RP
J1=I
J2=(RP-1)*RP+iI
WRITE(01 .200) (GCC(J) ,J:J1 ,J2,RP)

100 CONTINUE
200 FORMAT(10E12.4)

RETURN
END
SUBROUTINE MERIT(A,Y,GC,XINJIT,Nl,R.P,DELT,FM'ERIT.TFINIAL)
DIMENSION A(100).X(10),Y(10).GCC1O).GD(10),G(100).GA(100)
DIMENSION XINIT(1O),XIIAT(1O),QCB(10).QCA(10)

DIMENSION QC(1O),LXX(10),MXX(10).GV(10),GAG(100),GCC(10)
COMMON /GETi 1IGCC
COM!-ON /TRAJ EC 'JOUT
INTEGER R,P
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C EXTRACT GV FROM Y
K=0
IF(P.EQ.0)GO TO 1500
DO 1001 I=1,P
DO 1001 J=1,N
K=K+ 1

1001 GV(K)=Y((I-1)*P+J)
1500 CONTINUE
C EXTRACT GD FROM Y

NRP=tl-R-P
* IF(NRP.EQ.O)GO TO 2010

K=0
DO 2000 I=1,NRP
K=K+ 1

NM1 =N-1
DO 2000 J=1NM1
K=Ki-

2000 GD(K)=Y(P*N+(I-1 )*IIRP+J)
2010 CONTINUE
C FORM G FROM GC, GV, AND GD

K=0
DO 6000 I=1,N
DO 3000 J=1,R

300K=K-i.

IF(P.EQ.O)GO TO 4500
DO 4000 J=1,P
K=K+ 1

/4000 G(K)=GX((I-1)*P+J)
/4500 CONTINUE

IF(NRP.EQ.0)GO To 6000
DO 5000 J=1,NRP
K=K+ 1

5000 G(K)=GD((I-1)*NRP+J)
6000 CONTINUE
C COMPUTE XHAT(0)

CALL GMPRD(G,XINIT,XtHAT,14,N,1)
C EXTRACT QCA(O) FROM XHAT(O)

K=0
DO 6555 I=1iR
K=K+1

6555 QCA(K)=XliAT(K)
T=0
IF(JOUT.EQ.0)GO TO 6666
WRITE(01 ,9550)T, (QCA(I) .QCA(I) ,I=1 ,R)

6666 CONTINUE
C OBTAIN GAG

CALL GMPRD(G.A,GA,tl,N,N)
CALL MIflV(Gf .DXX,LXX.MXX)
CALL GNPRD(GA.G,GAG,fJ,N)

C EXTRACT GCC FRCM GAG
K= 0
KRP= R+P



DO 7000 I=1,KRP
DO 7000 J=1,KRP
K=K+l

7000 GCCCK)=GAG((I-1)*N+J)
FMERIT=0
T= 0

8000 IF(T.GT.TFINAL)GO TO 9999
C XIIAT(T+DELT) =XHAT(T)+DELT* (GAG*XHAT(T))-I GALL GMPRD(GAG,XIHAT,X,N,N,1)

DO 9000 I=1,N
9000 X(I)=DELT*X(I)

CALL GMADD(XHAT,X,XHAT,N,l)
C EXTRACT QC FROM XHAT

K=O
DO 9300 I=1,R
K=K+ 1

9300 QC(K)=XIIAT(K)
C QCACT+DELT)=QCA(T)+DELT*(GCC*QCACT))

CALL GMPRD(GCC,QCA,QCB,R,R, 1)
DO 9500 I=1,R

9500 QCB( I) =DELT*QCB(I)
CALL GMADD(QCA,QCB,QCA,R91)

C COMPUTE EMERIT
DO 9600 I=1,R
FMERIT=FMERIT+DELT*ABS((QCA(I)-QCCI))/QC(I))

9600 COIITIN4UE
IF(JOLJT.EQ.0)GO TO 9555
TD=T+DELT
WRITE(01 ,9550)TD, (QC(I) ,QCA(I) ,I=1 ,R)

( 9550 FORMAT(F1O.6,10E12.4)
9555 CONTINUE

* -* T=T+DELT

GO TO 8000
9999 CONTINUE

* RETURN
END
SUBROUTINE SYSPAR(A,X,GC,R,P,DELT,TFINAL,N)
DIMENSION A(100).X(1O),GC(1O)
INTEGER R,PL
READ, n,R,P,DELT,TFINAL

WRITE(O1 ,39)N
39 FORMAT( 'DIMENSION OF ORIGINAL LINEAR SYSTEM:',I5)

NN =N*N
WRITE(01 ,79)R

79 FORMAT('NUMBER OF STATE VARIABLES OF INTEREST: ',15)
WRITE(01 ,78)P

78 FORMAT('NUMBER OF EXTRA STATE VARIABLES: 1,15)
WRITECOl ,77)DELT,TFIINAL

77 FORMAT( INTEGRATION INTERVAL=' ,FlO.5,' TIME INTERVAL=' ,F1O.5) I
WRITEC(l .75)

75 FORMAT(ORIGIJAL SYSTEM A-MATRIX:')
DO 70 I=1,fl
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RlEAD), (A (J) J=J I , J2. N)
70 WRITE(01,76)'(A(J),J=Jl,J2,N)
76 FORMAT(10F12.1)

READ, (X(I),I=1,N)
WRITE(01 ,55)

55 FORMAT('THE INITIAL STATE IS:')
WRITE(01 ,59) (X(I),4=1 ,N)

59 FORMATC1OE12.4)
WRITEC(l ,65)R,N

65 FORMAT('THE ',15,' X ',15,1 AGGREGATION MATRIX:')
DO 60 I=1,R
Jli 

* J2=(14-1 )*R+I
READ, (GC(J)-,J=J1,J2,R)

60 WRITE(01,76)(GC(J),JzJ1,J2,R)
RETURN
END

/INC GMPRD,MINV,GMADD
/DATA
2,.01,.01,.000001
0,0,0
3,2,0, .05,1
0,1,0
-257-9047,-10,0
1,1,-5
1,1,1

1,.00001 ,00001
.00001,1,.00001
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APPENDIX 4

A Sample Run

DIMENSION OF ORIGINAL LINEAR SYSTEM: 3
NUMBER OF STATE VARIABLES OF INTEREST: 2
NUMBER OF EXTRA STATE VARIABLES: 0
INTEGRATION INTERVAL= 0.01000 TIME INTERVAL= 1.00000
ORIGINAL SYSTEM A-MATRIX:0J .0000 1.0000 0.0000

-257.9048 -10.0000 0.0000
1.0000 1.0000 -5.0000

THE INITIAL STATE IS:
-0.1000E 01 -0.1000E 01 -0.1000E 01

THE 2 X 3 AGGREGATION MATRIX:
1.0000 1.0000 1.0000
1.0000 0.0000 0.0000

THE NUMBER OF PARAMETERS IS 2
CONVERGENCE FACTOR FOR MAIN MINIMIZATION : 0.0100000
CONVERGENCE FACTOR FOR ONE-DIMENSIONAL SEARCH : 0.0100000
GRADIENT CUTOFF FOR ONE-DIM. SEARCH : 0.0000010
THE 2 INITIAL PARAMETER VALUES ARE:

O.OOOOE 00 O.OOOOE 00
SUM= 0.1071E 01 F= -0.2782E 00
THE 2 PARAMETER VALUES ARE:

i 0.2383E-01 -0.1047E 01
SUM= 0.1332E 00 F= -0.5726E-01
THE 2 PARAMETER VALUES ARE:

0.1567E-01 -0.9223E 00
SUM= 0.9421E-02 F= -0.3173E-01
THE 2 PARAMETER VALUES ARE:

0.1692E-01 -0.9304E 00
- THE FUNCTION VALUE IS -0.31729E-01

THE 2 FINAL PARAMETER VALUES ARE:
0.1692E-01 -0.9304E 00

THE 2 X 2 AGGREGATED SYST. COEF. MATRIX:
-0.7946E 01 -0.2458E 03

* 0.9821E 00 -0.2038E 01

THE FUNTION WAS COMPUTED 116 TIMES.

T Ql(T) QAI(T) Q2(T) QA2(T)
(TIME (ORIGINAL (AGGRE- (ORIGINAL (AGGREGATED
UNITS) SYSTEM GATED SYSTEM SYSTEM

VARIABLE) SYSTEM VARIABLE) VARIABLE)
VARIABLE)

0.000000 -0.3000E 01 -0.3000E 01 -0.1000E 01 -0.1000E 01
0.010000 -0.3010E 00 -0.3037E 00 -0.1010E 01 -0.1009E 01
0.020000 0.2208E 01 0.2201E 01 -0.9932E 00 -0.9915E 00
0.030000 0.4476E 01 0.4463E 01 -0.9520E 00 -0.9497E 00
0.040000 0.6463E 01 0.6442E 01 -0.8894E 00 -0.8865E 00
0.050000 0.8137E 01 0.8109E 01 -0.8084E 00 -0.8052E 00
0.060000 0.9479E 01 0.94414E 01 -0.7127E 00 -0.7091E 00
0.070000 0.1048E 02 0.1044E 02 -0.6056E 00 -0.6019E 00
0.080000 0.1114E 02 0.1109E 02 -0.4909E 00 -0.4871E 00
0.090000 0.1146E 02 0.1140E 02 -0.3720E 00 -0.3683E 00
0.100000 0.1146E 02 0.1140E 02 -0.2523E 00 -0.2488E 00

0.110000 0.1118E 02 0.1111E 02 -0.1350E 00 -0.1318E 00
0.120000 0.1062E 02 0.1055E 02 -0.2299E-01 -0.2000E-01
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0.130000 0.98341E 01 0.9760E 01 0.8135E-0 0.8'402E-0
0.1140000 0.88514E 01 0.8778E 01 0.1758E 00 0.1782E 00
0.150000 0.7720E 01 0.76142E 01 0.2588E 00 0.2607E 00
0.160000 0.6472E 01 0.63914E 01 0.3289E 00 0.3305E 00
0.170000 0.5150E 01 0.5074E 01 0.3853E 00 0.3866E 00
0.180000 0.3795E 01 0.3721E 01 0.14276E 00 0.'4285E 00

0.190000 0.2444E 01 0.2372E 01 0.14558E 00 0.'4563E 00
0.200000 0.11T30E 01 0.1062E 01 0.14701E 00 0.14703E 00

*10.210000 -0.1136E 00 -0.1788E 00 0.14712E 00 0.14712E 00
*0.220000 -0.1262E 01 -0.1323E 01 0.14601E 00 0.14598E 00

0.230000 -0.2291E 01 -0.23148E 01 0.'4379E 00 0.43714E 00
0.2140000 -0-31814E 01 -0-3236E 01 0.14061E 00 0.4055E 00

*0.250000 -0.3928E 01 -0-3976E 01 0.3662E 00 0.365'4E 00
0.260000 -0.14515E 01 -0.14558E 01 0.3198E 00 0.3189E 00
0.270000 -0.149J41E 01 -0.14980E 01 0.2685E 00 0.2677E 00
0.280000 -0.52L-7E 01 -0.52142E 01 0.21142E 00 0.2133E 00

*0.290000 -0.5319E 01 -0.5350E 01 0.15814E 00 0.1575E 00
0.300000 -0.5285E 01 -0-5312E 01 0.1026E 00 0.1017E 00

*0.310000 -0.5116E 01 -0.5139E 01 0.'48314E-01 0.14748E-01
0.320000 -0.'4828E 01 -0.148'48E 01 -0-3158E-02 -0-3961E-02
0.330000 -0.14436E 01 -0.41453E 01 -0.5075E-01 -0-51149E-01
0.3140000 -0-3958E 01 -0-3972E 01 -0-9350E-01 -0.9'418E-01

-I0.350000 -0-31413E 01 -0-31425E 01 -0-1307E 00 -0-1313E 00
0.360000 -0.2820E 01 -0.2830E 01 -0.1617E 00 -0.1622E 00
0.370000 -0.2198E 01 -0.2207E 01 -0.1863E 00 -0.1867E 00
0.380000 -0.1565E 01 -0-1572E 01 -0.20142E 00 -0.20146E 00
0.390000 -0-9381E 00 -0.9446E 00 -0.2156E 00 -0.2159E 00
0.1400000 -0-33314E 00 -0-3389E 00 -0.2205E 00 -0.2208E 00

-'0.1410000 0.23514E 00 0.2306E 00 -0.21914E 00 -0.2196E 00
-~0.1420000 0.7561E 00 0.7520E OC -0.2127E 00 -0.2128E 00

0.1430000 0.1219E 01 0.1215E 01 -0.2010E 00 -0.2011E 00
*0.1440000 0.1617E 01 0.1613E 01 -0-1850E 00 -0.1851E 00

0.1450000 0.19143E 01 0.19140E 01 -0.1654E 00 -0.1655E 00
0.1460000 0.2195E 01 0.2192E 01 -0.1430E 00 -0. 1430E 00
0.1470000 0.2373E 01 0.2370E 01 -0.1186E 00 -0.1186E 00
0.1480000 0.21476E 01 0.21473E 01 -0.9295E-01 -0.9291E-01
0.1490000 0.2508E 01 0.2505E 01 -0.6679E-01 -0.6673E-01
0.500000 0.21473E 01 0.21470E 01 -0.14085E-01 -0.14077E-01
0.510000 0.2377E 01 0.23714E 01 -0-1578E-01 -0.1568E-01
0.520000 0.2227E 01 0.2224E 01 0.7836E-02 0.7955E-02
0.530000 0.2031E 01 0.2027E 01 0.2950E-01 0.2963E-01
0.5140000 0.1797E 01 0.1793E 01 0.14879E-01 0.148914E-01
0.550000 0.1535E 01 0.1531E 01 0.65140E-01 0.6556E-01

0.560000 0.1252E 01 0.12148E 01 0-7908E-01 0-7925E-01
0.570000 0-9583E 00 0.9539E 00 0.8971E-01 0.8990E-01
0.580000 0.6619E 00 0.6572E 00 0.97214E-01 0.9743E-01
0.589999 0.37014E 00 0.3655E 00 0-1017E 00 0.1019E 00
0.599999 0.9120E-01 0.8596E-01 0.1032E 00 0.1034E 00
0.609999 -0. 1695E 00 -0. 1751E 00 0.1019E 00 0.1022E 00
0.619999 -0.14065E 00 -0.14122E 00 0.9814E-01 0.9835E-01
0.629999 -0.6152E 00 -0.6212E 00 0.9209E-01 0.9230E-01
0.639999 -0-7925E 00 -0-7987E 00 0.81411E-01 0.81432E-01
0.6149999 -0.9361E 00 -0.91425E 00 0.71456E-01 0.71475E-01
0.659999 -0.10145E 01 -0.1051E 01 0.6379E-01 0.6397E-01
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0.669999 -0.1118E 01 -0.1125E 01 0.5218E-01 0.5234E-01
0.679999 -0.1158E 01 -0.1164E 01 0.4008E-01 0.4023E-01
0.689999 -0.1164E 01 -0.1171E 01 0.2785E-01 0.2797E-01
0.699999 -0.1140E 01 -0.1146E 01 0.1580E-01 0.1591E-01
0.709999 -0.1088E 01 -0.1094E 01 0.4244E-02 0.4324E-02
0.719999 -0.1012E 01 -0.1018E 01 -0.6565E-02 -0.6512E-02
0.729999 -0.9152E 00 -0.9211E 00 -0.1640E-01 -0.1638E-01
0.739999 -0.8020E 00 -0.8077E 00 -0.2509E-01 -0.2509E-01
0.749999 -0.6766E 00 -0.6818E 00 -0.3248E-01 -0.3251E-01
0.759999 -0.5429E 00 -0.5477E 00 -0.3849E-01 -0.3855E-01
0.769999 -0.4051E 00 -0.4095E 00 -0.4306E-01 -0.4314E-01
0.779999 -0.2670E 00 -0.2709E 00 -0.4618E-01 -0.4628E-01
0.789999 -0.1322E 00 -0.1356E 00 -0.4787E-01 -0.4800E-01
0.799999 -0.4037E-02 -0.6846E-02 -0.4821E-01 -0.4835E-01
0.809999 0.1148E 00 0.1125E 00 -0.4728E-01 -0.4744E-01
0.819999 0.2219E 00 0.2202E 00 -0.4519E-01 -0.4536E-01

* 0.829999 0.3154E 00 0.3142E 00 -0.4210E-01 -0.4228E-01
0.839999 0.3938E 00 0.3931E 00 -0.3815E-01 -0.3833E-01
0.849999 0.4563E 00 0.4561E 00 -0.3351E-01 -0.3369E-01
0.859999 0.5024E 00 0.5027E 00 -0.2835E-01 -0.2852E-01

0.869999 0.5322E 00 0.5328E 00 -0.2284E-01 -0.2300E-01
0.879999 0.5461E 00 0.5470E 00 -0.1715E-01 -0.1730E-01
0.889999 0.5448E 00 0.5461E 00 -0.1144E-01 -0.1158E-01
0.899999 0.5297E 00 0.5311E 00 -0.5863E-02 -0.5977E-02
0.909999 0.5020E 00 0.5036E 00 -0.5458E-03 -0.6385E-03
0.919999 0.4635E 00 0.4652E 00 0.4391E-02 0.4321E-02
0.929999 0.4159E 00 0.4176E 00 0.8849E-02 0.8801E-02
0.939999 0.3611E 00 0.3628E 00 0.1275E-01 0.1272E-01
0.949999 0.3011E 00 0.3027E 00 0.1603E-01 0.1603E-01
0.959999 0.2378E 00 0.2392E 00 0.1865E-01 0.1867E-01

N 0.969999 0.1731E 00 0.1743E 00 0.2060E-01 0.2064E-01
0.979999 0.1087E 00 0.1097E 00 0.2187E-01 0.2193E-01
0.989999 0.4634E-01 0.4710E-01 0.2248E-01 0.2256E-01
0.999999 -0.1258E-01 -0.1210E-01 0.2247E-01 0.2257E-01
1.009998 -0.6679E-01 -0.6661E-01 0.2188E-01 0.2199E-01
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