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I. INTRODUCTION

A one-dimensional random walk (r.w.) is a sequence, (Z,}, whose terms are given by

n
Zn = UK, (1.1)

K-1

where {UK} is a random sequence of real numbers. A segment of the random walk {Zn} is simply a
set of the form, { Zn NIN consisting of (N2 - N1 + 1) consecutive terms of ( Zn1. In this report
we will confine our attention to r.w.'s whose underlying random sequences, {UK}, are stationary,
gaussian, and zero mean.

The usual interpretation of a one-dimensional r.w. may be stated as follows. Suppose that a
particle is constrained to move along the x-axis. If the particle starts at the origin and at time
tK = Kh, K = 1, 2, ... , moves IUK units to the right if UK is positive or to the left if UK is nega-
tive, then Zn represents the position of the particle at time t.. The constant, h, denotes the time
interval between steps. Thus, using this interpretation, we may think of {UK} and {Zn } as time
sequences; i.e., let UK = U(tK) and Zn = Z(tn).

In many applied problems that involve r.w.'s, it is necessry to model segments of an Y.w. as
simple algebraic functions. Assuming that Zn = Z(t n ), polynomials of the form,

I .' d

Pd(t) = t ,  d degree of Pd(t), (1.2)
q j=0

are particularly convenient models for various applications. Given an r.w. segment, a polynomial
of degree d may be fit to the points of the segment, using some fitting criterion. Throughout this

N report, we will use the least-squares (l.s.) criterion for all polynomial fits; i.e., the coefficients of
the polynomial will be determined such that the sum of the squares of the fit residuals is minimized.
The fit residuals, ri, are simply the differences between the points of the segment and the values of
the fit polynomial at corresponding times. We will take these residuals in the sense,

ri Zi - Zi, (1.3)

where Zi = Pd(ti) •

It is important to note that by fitting (in the least-squares sense) a polynomial to an r.w.
segment we are not performing linear estimation. Instead, we are performing linear approximation.
When you perform linear l.s. estimation to determine the coefficients of a fitting polynomial on the
basis of a particular set of data, you make two assumptions. First, you assume that the data you
are given consist of observations that have been corrupted by noise. Second, you implicitly assume
that, if the noise on the data was not present, then the estimation algorithm would yield a perfect
fit; i.e., that the polynomial is a perfect model for the process that generated the basis(uncorrupted)
data. Thus, the coefficients determined by the l.s. estimation algorithm will be in error due to the
effects of the data noise, in the sense that they will differ from the exact values they would have if
no data noise was present.
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ij
In contrast, when you perform linear approximation using the l.s. criterion you make two

very different assumptions. First, you assume that the given data set has not been corrupted by
noise. Second, you assume that the form of the fitting polynomial is not equivalent to the process
that generated the data but is simply an approximation to that process. Thus, the coefficients
determined by l.s. approximation are not in error; they are correct in the sense that any other
polynomial of the same degree would yield a larger sum of the squares of the residuals, taken with
respect to the given data set. It follows that it is not meaningful to talk about the statistics of
errors in fit coefficients, as we would if l.s. estimation was being performed.

I

We may, however, ask meaningful statistical questions about l.s. polynomial fits to r.w.
segments, even though the coefficients are exact in the sense explained in the preceding paragraph.
For example, what are the statistics of the fit residuals for a l.s. polynomial fit of degree d to an
r.w. segment of length m? If more than one segment of a given r.w. has been approximated, how

are the residuals of the fits to the different segments related statistically? For an arbitrary segment
of length m of a given r.w., what is the variance of each of the coefficients in the fit polynomial?
These, and other questions to be discussed later, are well posed and have definite answers once the
statistics of the underlying random sequence, IUKI, have been specified.

The primary purpose of this report is to answer the three questions just mentioned. We
begin with a brief discussion of one-dimensional r.w.'s whose underlying random sequences, f UKJ,
are stationary, gaussian, and zero mean. The special case of first degree l.s. polynomial fits to r.w.
segments is then examined in some detail. Next, the machinery needed to treat the general case of
fits of arbitrary degree is developed. Finally, we present a nontrivial example of our main results
by calculating the statistics of the fit residuals when the given r.w. is generated by the fractional
frequency errors of an atomic clock.

I1. ONE-DIMENSIONAL (GAUSSIAN) RANDOM WALKS

One-dimensional random walks (as defined by Equation (1.1)) arise in many areas of both

the "hard" and "soft" sciences. Fluctuations in stock market indices, the size of biotic populations,
the fortunes of a gambler, and the errors in a clock are common examples. The motivation for the
work we are reporting on comes from the need to model segments of the r.w.'s that occur in some
physical systems because of random errors at the input of a summing subsystem. These random
errors are often composites, composed of errors generated by several separate error mechanisms
such as thermal noise, stiction (i.e., stick-and-slip resulting from nonuniform friction in mechanical
assemblies), and random environmental influences on sensitive components. When digital processing
is included in the system, roundoff and truncation are also sources of error within the system.

It was mentioned in section I that we will restrict our attention to r.w.'s whose underlying

random sequences, (UKI, are gaussian, stationary, and zero mean. In many physical systems, the
composite errors that exist at the input of the summing subsystem may be assumed to be gaussian.
The mathematical basis for this assumption is a remarkable theorem known as the central limit

theorem. For our discussion, a useful form of this theorem is (from Reference 1):

2



Theorem. "Let x1 , x2 , x3 , xm be a series of statistically independent random variables
having arbitrary distributions for which the means P1,142, ... , pm and variances al2 , 02, ...

2a exist. If m is sufficiently large, the sum mi 1 xi will be approximately normally dis-
tributed [i.e., gaussian ] with mean M and variance o2, whether the xi's are normally distributed
[gaussian] or not and where the mean and variance of the sum are given by p = 2InI i and
02 = ylp i a?, respectively."

It follows that if each UK (interpreted as the input to a summing subsystem at time tK) is composed
of a large number of independent random errors, x1(tK), x2 (tK), ... 1 Xm(tK), then, for large m, we
are justified in assuming that each UK is gaussian. (In fact, m may not need to be very large at all
before the distribution of UK becomes essentially gaussian. An excellent example is given by
Papoulis on pages 267 and 268 of Reference 2.) The assumption that {UK} is a stationary sequence
is based on a requirement that the systems under consideration be in steady state.

We are fortunate that composite errors in many systems may be assumed to be gaussian
because gaussian random variables have several properties that simplify any analysis involving them.
For example, a gaussian distribution is completely specified by its first two moments (i.e., by its
mean and variance). This is not the case for arbitrary distributions. Also, a linear transformation
of a set of gaussian random variables yields a set of gaussian random variables. This is clearly not
true for sets of random variables with arbitrary distributions, as evident from the central limit
theorem. (Demonstrations of the truth of these two statements concerning gaussian random
variables may be found in Reference 2.)

The final restriction concerning fUK} that holds throughout this report is that it be a zero
mean sequence. This restriction guarantees that the terms of fZ n} (as defined by Equation (1.1))
represent random sums. If underlying sequences with nonzero means were allowed, the resulting
r.w.'s would be composed of terms of the form,

Zn =(E= WK) + nb,

where ( WK} is a zero mean sequence and b is a constant bias. Clearly, the ramp sequence, inb},
may be approximated exactly by a polynomial and so is of no interest in this report.

Now, let's examine the r.w.'s whose underlying sequences satisfy our three restrictions. We
will look at two cases.

Case (1): (UK) Uncorrelated (White)

Let (UK) be a white, stationary, zero mean gaussian random sequence, with variance o2 .
Then, the r.w. defined by

n

Z n = UK

K=1

is a zero mean gaussian sequence, and for this case the variance of its nth term is given by

3



2  E[Z2 1 nU, (2.1)

where E [ ] denotes the expectation operator. The correlation between Z, and Zj, I < J, is given
by the correlation coefficient,

pz(I,J) = E[ZiZjI/ui J  (I/J) 1 2 . (2.2)

In particular, if J = I + q,

SI 
1 / 2

pz(I, I+ q) = \I + (2.3)

(Of course, pz(J, I) = pz(I, J).) *

Case (2): {UK} Correlated

2
Let (UKI be a stationary, zero mean gaussian random sequence with variance au, and with

the correlation between UK and UK+q given by the correlation coefficient, pu(q) :k 0. Then, the
r.w. defined by

Zn L U K

K=1

is a zero mean gaussian sequence, and for this case the variance of its nth term is given by

S2(1) --= 2 2

az(n) = E[Z n + 2 ipu(n-i) o2, n 2.(.

The correlation between Z, and Zj is given by the correlation coefficient, (I < J),

pz(I,J) = E[ZjZj]/Oz(I)oz(J) = (2.5)

(I+S )1/2(J + Sj)
1/2

where

I-1

S, = 2 ipu -(I -i,

J-1
Sj = 2 ip J - i),

i=1

I J
= \ ' \' p1 (J-SlJ P L' )

i=1 j=l+1
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Notice that if pu(q) = 0 for q = 1, 2, ... , then Equations (2.4) and (2.5) reduce to Equations (2. )
and (2.2), respectively, as we would expect. Also, pz(J, I) = pz(I, J), as in case (1).

* * *

It should be emphasized that when we compute the expectation of a function of terms from
an r.w., the implied average is taken over the ensemble of all possible r.w.'s whose underlying
sequences have the specified statistics. For example, the variance of the nth term of {Zn } in
case (1) is interpreted to be the "average" value of the squares of the nth terms from all possible
r.w.'s whose underlying sequences are white, stationary, zero mean, gaussian and have variance
O2 . In both case (1) and case (2), it is clear that [Zn} is a nonstationary sequence.

In Figure 2 and Figure 3 we have examples of the first hundred steps of an uncorrelated r.w.
and a correlated r.w., respectively. These examples were prepared as follows. The first hundred
steps of a white, stationary, zero mean gaussian sequence with unit variance were chosen from
table XXIII of Reference 1. These numbers will be denoted by {UK} 00 1, and are plotted in
Figure la. Next, the first hundred terms of a stationary, zero mean, first-order gauss-markov
sequence, with unit variance were generated. The correlation time of this gauss-markov sequence,
T, was chosen to be five times the step increment, h. This second set of numbers will be denoted by

VKK= 01, and are plotted in Figure lb. They were generated from (UK}°=1 by the difference
equation,

V1 = U1,

VK = PV(1)VK-1 + 1- p2(1)]1 2 UK, 2 K < 100, (2.6)

where pv(q) exp (--qh/r) = exp (-q/5). A derivation of Equation (2.6) is given in Reference 3.
100 100

Finally, iUK :K =I and {VK}K=I were each summed to obtain the r.w.'s {Zn} and {Yn}, respec-
tively, shown in Figure 2 and Figure 3, where the points have been connected by straight lines.
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In addition tothe r.w.'s, one other item is plotted in Figures 2 and 3. Each r.w. was fit by a
first-degree l.s. polynomial, and the line segments defined by the fitted polynomials are plotted.
When looking at these figures, it should be remembered that both r.w.'s were generated by under-

lying sequences with the same variance, i.e., ou = O= 1.0. The differences between the two
r.w.'s result from the fact that {VK} is correlated and{UK} is not. The two most noticeable
differences are that {Yn} is much smoother than fZn}, and the variances of the terms of fYnI are

larger than those of the corresponding terms of { Zn}.

The last two plots in this section illustrate the statistics of fZ n} and JYnj" Figure 4a shows
the variance of the terms of { Zn and (Yn}, and Figure 4b gives the corresponding .tandard
deviations. Figure 5 is a plot of pz( 1, J), pz( 2 5 , J), pz( 5 0, J) and pz(lO0, J).
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III. FIRST-DEGREE LEAST-SQUARES FITS

In this section, only first-degree l.s. polynomial fits to r.w. segments are considered. This

special case is of importance for two reasons. First, the simplicity of first-degree fits allows the
derivation of analytic results that are instructive and form the basis for the generalization to fits of
arbitrary degree. Second, many practical applications use first-degree fits to r.w. segments, so the
development of the fit residual statistics without resorting to matrix notation is computationally
useful.

Our immediate objective may be stated as follows. Given a segment of the r.w. (Zn1, gen-
erated by the underlying sequence (UK), express the residuals of the first-degree J.s. polynomial fit
to this segment as linear combinations of the terms of fUK) . Once this is accomplished, the statis-
tics of the fit residuals may readily be found in terms of the statistics o f .UK

Consider the r.w. segment, fZn} nf, consisting of the first N terms of {Zr}. (It will be
shown later in this section that no generality is lost by treating the first segment of length N.)
The first degree l.s. polynomial fit to this data will be

Z - a0 + at9, tQ = ih, Q = I,2, ... ,N (3.1)

where

[ a0  [2N + Zn + 1)N] Nt Z ' (3.2)ao .- Zn- hN(N -1) L, n - g
n=1 n=1

and

a, 6 N 12 N(3.3)_--a 1 -' -Zn 1)] ~ .(33
1 hN(N- 1) L h2 N(N 2 - 1) Y

Substituting the expressions for a0 and a1 into Equation (3.1) and collecting terms yields

N
= C(Q,n)Z n  (3.4)

n=l

where

C(R,n) = co[c 1 + c 2(2+n) + c3 nQJ (3.5)

with

S2 6
S2N(N-1) c1 = (2N+1), c2 = -3 and c, -(N+)"

But, Zn is just the sum of the first n terms of {UK) (by Equation (1.1)), so Equation (3.4) may be
written in the form,

8



N n
N n C(Q,n)UK.

n-I K-i

This double sum may be written as a single sum by introducing a new set of weighting coefficients.
Thus,

N

Z = D(Q,K)UK, (3.6)
K-i

where

N
D(R,K) = L C(, j). (3.7)

j=K

--- Substitution of Equation (3.5) into Equation (3.7) yields

D(Q, K) = do[(d 1 + d2 R) + (d 3 + d4 Q)K + (d 5 + d6 k)K2J (3.8)

where
1

do d, = (N + 1)(N + 2), d2 = -6
o=N(N- )' 2

6(N + 2) -6

d3  -(4N + 5), d4 = (N + ) d5= 3, d6  (N + - )

Finally, from Equation (1.3),

r= Z9 - ZR, = 1, 2, ... ,N.

So, using Equations (1.1) and (3.6) the fit residuals for the first degree l.s. fit become

e N
r= L UK - L D(Q ,K)UK

K-i K-i

or

N
rf L F(R, K)UK, (3.9)

Kai

where

I - D( K) for 1 < K <
F(Q,K) -D(, K) for 9 < K < N. (3.10)

9



Thus, by introducing a third set of weighting coefficients, the F(Q, K)'s, we have met our immediate
objective. Before using Equation (3.9) to determine the statistics of the fit residuals, several facts
concerning the three sets of weighting coefficients should be pointed out.

From the definitions of C(Q, n), D(R, K), and F(Q, K) given by Equations (3.5), (3.8) and
(3.10), respectively, the following facts may be established:

C(R, n) = C(n, 2) (3.11)

C(R, n) = C(N - n + 1, N - + 1) (3.12)

N
"  C(Q' n) = 1, Q = 1, 2, ""N (3.13)

n1=1

D(k, 1) = 1, = 1, 2, ... ,N (3.14) )
N

L D(RK) = 2, Q = 1, 2.... N (3.15)
K=1

F(Q,1) = 0, 2 = 1,2 .... N (3.16)

N
L F(Q,K) = 0, 2 = 1, 2,... N. (3.16)

K=

It might be noted that the computation of all three sets of weighting coefficients depends
only on the value of N, the number of terms being fit. The facts presented in Equations (3.11)-
(3.16) represent only a few of the results and relations that might prove useful in various applica-
tions, but they should serve as a basis for further derivations. For example, if we think of the
C(V, n)'s as the elements of an N X N matrix, C, then Equations (3.11) and (3.12) show that C is
symmetric about both of its diagonals. Equation (3.13) implies that the rows of C all sum to one,
and Equations (3.11) and (3.13) together imply that the columns of C also sum to one.

The C(2, n)'s are particularly useful in different applications since they define the relationship
between the value of ZQ = Z(tq) for a first-degree l.s. polynomial fit and the data values, Zn = Z(tn),
over which the fit was performed. The only assumption made during the derivation of Equa-
tions (3.4) and (3.5) was that the data be equally spaced. If we think of C(2, n) as a function of n
for some fixed value of 2, we see from Equation (3.5) that C(2, 1), C(Q, 2), ... , C(Q, N) lie on a
straight line whose y-axis intercept is c0 (c1 + c2 ), and whose slope is c0 (c2 + c3A. The constants
CO, c1, c 2 , and c 3 depend only on N.

Similarly, the D(Q, K)'s define the relationship between the value of Z 2 = Z(tQ) for a first-
degree L.s. polynomial fit and the values (UK K=1 of the underlying sequence that generated the
r.w. segment over which the fit was performed. In this instance, we see from Equation (3.8) that
for fixed values of 2, the weighting coefficients D(2, 1), D(Q, 2), ... , D(Q, N) lie on a quadratic
curve. Figures 6 and 7 are plots of the C(2, n)'s and D(Q, K)'s, respectively, for the case N = 10,
and Figure 8 is a plot of the associated F(Q, K)'s for this case. For the sake of clarity, Figure 8
consists of two plots, Figures 8a and 8b, showing F(1, K) through F(5, K) and F(6, K) through
F(10, K), respectively.

10
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Returning to our main theme, we see from Equation (3.9) that the mean of rk is zero, since
{UK} is a zero mean sequence. The variance of r2 is given by

2(q) = E[r#] = o F2(QK) + 2 02 F(Q, i)F(Qj)pu(j -i) (3.17)

L K=I i=1 j=i+l

The correlation between r, and rj, I < J, is given by the correlation coefficient,

Pr(I, J) = E[rjrj]/r(I)or(J), (3.18)

where

E[rjrj] =a2 F(I,K)F(J,K)

K=1

N-1 N FI )(,i]uJ-i
+ 2 { . [F(I,i)F(J,j) + F(I.)F(Ji)1pU(-i) (3.19)

i=1 ji=i+l

Since Equation (3.9) equates the fit residuals to a linear combination of the UK's, it follows
a .- that the residuals are gaussian and so Equations (3.17), (3.18), and (3.19) completely specify their

statistics. These equations represent the answer to one of the primary questions addressed by this
4study.

Figures 9, 10, and 11 display the variances of the fit residuals for three different values of N.
Each of the plots shows the results for (UK) uncorrelated and for fUK) a first-order markov
sequence with ru = 5.0. In all cases, a2 = 1.0 and h = 1.0. The values of N used in Figures 9, 10,
and 11 are 10, 15, and 50, respectively. Since only two levels of correlation of the underlying
sequence are shown in these plots, it is not possible to conclude much from them concerning the
effect on the fit residual statistics of increasing the correlation of {UK }. For this reason, Figure 12
has been included. It shows the effect of various values of TU on a;(1), o(4), and or(8), with
N = 15, au = 1.0, and h = 1.0. The results for TU = 0 (i.e., for (UK) uncorrelated) through
ru = 10.0 are plotted; then a break in the plot is indicated, followed by the values corresponding
to TU = 99.0 (The fact that the values of a2(k) approach zero as -u cc is easily explained. For
very large values of TU, (UK) looks like a random constant sequence, so {Z,} is almost a random
ramp sequence. The more closely {Zn} resembles a ramp the better it will be approximated by a
first-degree polynomial.) The last plot associated with the fit residual statistics is Figure 13. It
shows correlation coefficients Pr(I, J) for I = 1, 10, 20, 25, and J = 1, 2, ... , 50, for the case N = 50,

= 1.0, h = 1.0, and fUK} uncorrelated.

In the third paragraph of this section, we claimed that no generality is lost by developing the
fit residual statistics for fits to r.w. segments of length N by treating the segment (Zn n.1 .At this
point, we will show that for first-degree l.s. polynomial fits the fit residual statistics are identical
for fits to arbitrary segments of length N of a given r.w. (Our usual assumptions concerning {UK)
still obtain, of course.) This result will be demonstrated for l.s. polynomial fits of arbitrary degree
in the next section.
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Let f Z,,} be an r.w. whose underlying sequence, f UK)I, is a stationary, zero mean gaussian
sequence. Suppose that an arbitrary segment of length N has been chosen from (Zn}. We will
denote this segment by f ZnI n= 1. The terms of this segment are given by

= +Q UK = + Utj 9 1, 2,..N.
K-1 K --i

14



The values of the first degree l.s. polynomial fit to this segment, corresponding to the times t +,
are,

NN N
= . C(Q, n)Z n  D(k, K)U +K + Z L C(R, n).

/~k nn-i.n=1 \K=1 n=1

But, from Equation (3.13),

N

1 . C( Q,n) = 1, for Q = 1,2 .... N.
n =1

Thus,

N

4i + L D(Q, K)Ut+K
K=1

and so, the Vth fit residual is

N
r= Z+ -ZV += L F(Q, K)Ut+K. (3.20)

K=I

Since {UK is stationary, rV is zero mean and the variance and correlations are given by Equa-
tions (3.17), (3.18), and (3.19). This completes the demonstration.

Now, the second of our primary questions concerns the relationship between the fit residuals
of fits to different segments of the same r.w. Given our usual restrictions on {UK), suppose that
two nonoverlapping segments of length N of the r.w. { Zn} have been fit by first-degree l.s. poly-
nomials. To be specific, let Z Z _-+N+I and {Zn) n+ with t > 77+ N, be the first and second
segments, respectively. Then by the argument leading to Equation (3.20) we find that the Qth
residuals of the fits to the first and second segments are given by

Nr.) = F(Q, K)U,+K

K=1

and (3.21)

N

(2) = F K)Ut+ K ,

K=I

15
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respectively. We have just shown that the statistics for these two sets of residuals are identical, so
the only remaining question concerns the correlation between a residual of the first fit and one of
the second fit.

From Equations (3.21), the correlation between r1i) and r(2) is given by the correlation coef-
ficient, (I < J),

(, 2 ) )(I, J) = E rGj2 10Ir Grj (3.22)

where

N N

i=1 j=1

The standard deviations in Equation (3.22) are found from Equation (3.17) and do not depend

upon which set of residuals are under consideration. It is clear that if [UKI is a white sequence
then the correlation between any residual from the first fit and any residual from the second fit
will be zero.

The third, and last, of the primary questions mentioned in section I asks about the statistics
of the fitted coefficients, a0 and a,. The statistics of a0 represent the first occurence in this report
of statistics that depend upon where the fitted segment occurs in {Zn}. We will begin by deriving
the statistics for these coefficients when the first N terms of {Zn} constitute the fitted segment
and then will show how the statistics for a0 are computed for an arbitrary segment.

4N
Consider the segment, Zn)n=1, of the r.w. fZ n} whose underlying sequence is zero mean,

gaussian, and stationary. Using Equation (1.1) in Equations (3.2) and (3.3), we may write a0 and
a, in terms of fUKI, for N > 2;

N
a0 = L GO(K)UK, (3.23)

K=1

N

a, = Gl(K)UK, (3.24)
K=1

where

G°(K) N(N- 1) 13K2 - (4N + 5)K + (N2 + 3N + 2) (3.25)

and

K2K)= (N +2)K + (N +1)J (3.261GI(K = hN(N 2 - 1)

It follows from Equations 13.23) and (3.24) that a0 and a, are both zero mean and gaussian and

that their variances are given by

16



a 2 21 02 i 2N -1 U(j - i)

a,,(N) = aq u Gq(K) + 2 Gq(i)Gq(j)p (3.27)
K=1 fi ~~

where q = 0, 1. The correlation between a0 and a1 is given by the correlation coefficient,

Paoal = E[aoa1]/Oaoa (3.28)

where

E[aoal = o2 L Go(K)G1 (K)
' K=1

N-1 N

+ . [GO(i)Gi(j) + GO(J)Gj(i)jpu(J-i) . (3.29)
j=1 Jj+i

1

From the definitions of G0 (K) and GI(K) given in Equations (3.25) and (3.26), respectively,
the following facts may be established. For N = 2, 3,

Go(1) = 1, (3.30)

N

L Go(K) - 0, (3.31)
K=I

N

G2(K) = [(2N + 1)(N + 1)(N + 2)J/[15N(N- 1)], (3.32)
K=1

GI(1) = 0, (3.33)

N

L G1(K) = 1/h, (3.34)
K=I

N

L G2(K) = [6(N 2 + 1)1/[h 2 5N(N 2 -1)]. (3.35)
K=1

For white underlying sequences the double sum in Equation (3.27) vanishes, so for cases where
JK is white,

17



a2 (N)= [(2N + 1)(N + 1)(N + 2) 1 2
Gao 15N(N-1)

and

6(N 2 + 1) 1 2

In Figures 14 and 15 we have plotted a2 and o , respectively, for the case of a white underlying

sequence with unit variance and time step h = 1, for 2 < N < 25.

Now, let's consider the arbitrary segment, {Zn} A-+1, of length N. We may define a new

segment, {Xn } N where

Xn =Z+ n - Zt, n = 1, 2 ... N; (3.36)

so

n
Xn= T Ut + K "  (3.37)

K=1

. Since Zt+n =Z + Xn , it is easy to see (from Equations (3.2) and (3.3)) that the first-degree l.s.

polynomial fit to the segment fZ n l} n+ 1 is given by Z plus the first-degree fit to {xn}N 1 " That

is, the desired fit is given by

Z+= (Zt + a) + atV, tQ Qh, Q = 1, 2, ... ,N, (3.38

where

Na0 = E GO(K)U +K

K=I

N
a, = E GI(K)Ut+K "

K=1

The sequence (UK) is stationary so a0 and a, are zero mean and their variances are given by
Equation (3.27).

The constant term in Equation (3.38), i.e., the constant term in the first-degree fit to
*Zn n has a variance given by

-2 = E[(Z +ao) 2 1 E[Z2] + 2E[Ztao1 + Eja2 . (3.39)

18
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The expectation E[Z21 is given by Equation (2.4), E[a ] is given by Equation (3.27) as mentioned
above, and

E[Ztao] = o2 L Go(J)pu( +j-i (3.40)

i=1 i)]

For white underlying sequences, the right-hand side of Equation (3.40) vanishes.

19
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Similarly, the correlation between a1 and the constant term in Equation (3.38) is given by the
correlation coefficient,

Paoai = E[(Z + a0)a1 ]/
5aouai (3.41)

where

E[(Zt +a0 )a,] = E[Z~al] + E[a 0 al]. (3.42)

Finally, the expectation E[a 0 aI ] is given by Equation (3.29) and

2 N
E[Ztal l = °2 L GI(J)Pu(t+J-i)]" (3.43)

l

IV. LEAST-SQUARES FITS OF ARBITRARY DEGREE

In this section, we generalize the results given in section III in three ways. The principal
generalization is that polynomial fits of arbitrary degree are allowed. In addition, the independent
variable will be (t - to) instead of t, where to is arbitrary. Thus, the fitted polynomials will be of
the form,

d
Pd(t) = L aJ(t-to) j . (4.1)

j=o

Finally, the terms of {UK} and {Zn} will not be assumed to be evenly spaced in time.

These generalizations are easily accomodated by the introduction of matrix notation. As in
section III, we will begin by considering fits to the r.w. segment, { Zn) n= , consisting of the first
N terms of {Zn}, and show later that no generality is lost by this choice. As usual, we will assume
that the underlying sequence, (UK), is a stationary, zero mean gaussian sequence. The (column)
vectors U, Z, Z, r and a are defined by

U = 1U 1 , U 2 , .... UNIT

Z = [Z 1 Z 2 , ..., ZN] T

Z = [Z1, 7 2, -. ZN]

r = [rl, r 2 , .... rNI

a = [a 0 , a1 , ..., ad]T

whereZQ = Pd(tQ), rv ZQ - ZQ, and a1, i = 0, 1 ... , d are the coefficients of the l.s. polynomial
Pd(t). We will always assume that N > (d + 1).
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The dth-degree 1.s. polynomial fit to Z is given by

a = (ATA)-IATZ, (4.2)

where A is the N X (d + 1) observation matrix. For this case, A is simply

1 (t, -t 0 ) ... (t, -t0 )d

A 4 ( 2 - to) ... (t 2 t- t) d (43A = (4.3)

1 (tN-to) ... (tN - to)d

The values of the fitted polynomial and the associated residuals at the times t 1 , t2, ... , tN, are
given by

= CZ (4.4)

and

r = HZ (4.5)

where C and H are the N X N matrices defined by

r C = A(ATA)-IAT, (4.6)

H = (I-C), (4.7)

with I denoting the N X N identity matrix.

Now, since Zn is just the sum of the terms UK, K 1, 2,..., N, Z and U are related by

Z = SU (4.8)

where S is the lower triangular N X N matrix whose elements on and below the main diagonal are
all unity. Thus, using Equation (4.8) in Equations (4.4) and (4.5) we have

= DU (4.9)

and

r = FU, (4.10)

where D and F are the N X N matrices defined by
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D = CS, (4.11)

F = HS. (4.12)

Since {UK} is zero mean and gaussian, it follows that r is also zero mean and gaussian. Thus,
the statistics of r are completely specified by its covariance matrix, Qr. From Equation (4.10),

Qr = ElrrT ]  FQuFT, (4.13)

where Qu = E[ UUTI is the covariance matrix of U.

At this point, we have determined the statistics of the fit residuals for fits to the segmentN
fZnn=,1 . We will now show that, for any other segment of length N, whose spacing scheme is iden-
tical to that of {Zn n=l, the fit residual statistics will also be given by Equation (4.13). The proof
of this claim will make use of the fact that the rows of C all sum to one. So, we need the following
lemma.

Lemma (1): Let A be the N X (d + 1) observation matrix, given in Equation (4.3), associated
with a dth-degree l.s. polynomial fit to N points, and let C be the N X N matrix defined by
C = A(ATA)l'AT. Then the rows of C each sum to one.

Proof of Lemma (1): Consider the matrix H = (I - C). The product ATH vanishes because

ATH = AT(I-C) = AT(I-A(ATA)-IAT) = AT - AT = 0.

By Equation (4.3), the first row of AT consists of N ones, so it follows from the fact that ATH = 0
that

: N

L Hij 0, for j 1, 2, .. ,N.

Since H is symmetric, this implies that

N

L = 0, for i = 2, N.
j=1

Now, from the definition of H, C = I - H, so

N N

L Cij -= 1 - L- Hij = 1 ,  for i=1,2 ... ,N,
ji 1 j=1

i.e., the sum of each row of C is one. Q.E.D.

It should be noted that if A is an arbitrary observation matrix associated with some l.s. proce-
dure, the rows of A(AT A) - AT will not, in general, sum to one. For example, consider the 4 X 2
matrix,
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i:T
A --

2[ 3 1 

For this case, ATA is nonsingular and the four rows of A(ATA)-'AT sum to 21/29, 38/29, 30/29,

and 17/29, for i = 1, 2, 3 and 4, respectively.

With the preceding lemma in hand, we may now prove the following theorem.

Theorem: Let fZnj be a r.w. whose underlying sequence, fUK }, is zero mean, stationary,
and gaussian. Consider the two segments of {Zn} denoted by

ZI = [Zl, Z2, -.-, ZN]T

and

ZI = [Zt+ 1 , Zt+ 2 ..... Zt+N] Tj

where is an arbitrary integer such that t > N. If the spacing schemes for the two segments are
identical;i.e., if (t i+1 - ti) -(tt+i +1 - t+) for i = 1, 2, ... , N - 1, and each segment is approxi-
mated by a dth-degree l.s. polynomial, then the fit residuals for the two fits will have identical
statistics, given by Equation (4.13).

Proof of Theorem: Let U1 = [U1 , U2 , ... , UNIT and U11 
= [Ut+1 , Ut+ 2 1 .... Ut+NIT, with

associated covariance matrices QuI and Qu 1 , respectively. The elements of ZII are given by

Thus 1  Zmab = UK = Z + UK, for 9 = 1,2, ... , N.

Thus, ZI1 may be written in the form,

Zii = SUl, + Z [1, 1, ... , 1

The fit values, Z1 , are given by,

Z11 = CZ11 = CSu1 1 + ZtC[I, 1,..., 1 T

= DU n + Z C[ I, 1, ... , IT

= DU n + Zjl1, ... 1 IT,

where the last equality follows because the rows of C all sum to one. The fit residuals for the fit
to Zl1 are then

r11 = 21 - 211 = SUl, - DUll = FUl.
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Clearly, rui is zero mean and gaussian, with covariance matrix,

QrH = FQU FT.

By Equation (4.13), the fit residuals for the fit to Z, have covariance matrix,

Qr, = FQU IFT

Since (UK} is stationary and U, and U11 have identical spacing schemes, by assumption, it follows
that Qu 1 = Qu1 and hence QrH = Qr. Q.E.D.

We have just shown that if the conditions stated in the preceding theorem are met then the
individual statistics for r, and r]n are identical. To complete our discussion of the relationship
between the two sets of residuals we need to determine the cross-covariance matrix, R11 1, , for rI
and r11. Since r, = FUI and r1n = FUn1 , both are zero mean and R1I1 is given by

= TI U T T.

R, 11 = E[r1 r1  = FE[u 1u 1 FT
. (4.14)

If (UKJ is a white sequence, it follows from Equation (4.14) and the fact that JUKI is gaussian
that r, and r11 are statistically independent for this case.

- Finally, we need to address the question of the statistics of the fit coefficients, a. As men-
tioned in section III, the statistics of the constant term, a0 , depend on where the fitted r.w. segment
occurs in (ZnI. We will begin, as before, by deriving the statistics of a for the segment consisting
of the first N terms of {Zn ) and then will show how the statistics are computed for an arbitrary
segment. The extension will require the result given in the following lemma.

-. Lemma (2): Let A be the observation matrix associated with a I.s. dth degree polynomial fit
to the N data points, Zn = Z(tn), n = 1, 2, ... , N, given explicitly by Equation (4.3). Let
W be the (d + 1) X N matrix given by W = (AI'A)-IAT, V be an N-dimensional column vector of
ones, and e be the (d + 1)-dimensional column vector whose first component is one and whose re-
maining components are all zero; i.e., V = [1 1, ..... 1 IT and e = [ 1, 0, 0, .... 0 ]T . Then, WV = e.

Proof of Lemma (2): By hypothesis (see Equation (4.2)), W acts on a given set of N
points to yield the coefficients of the unique dth-degree polynomial which minimizes rTr, where
r is the column vector of fit residuals. Thus, WV will be the coefficients of the dth-degree polyno-
mial which best fits (in the l.s. sense) the components of V. If WV = e, then r = V - Ae = 0 and
rTr = 0. But rTr > 0 for any r, so it follows that no other (d + 1)-dimensional column vector,
i t e, could yield a lower value for Jr. Since the best fitting l.s. dth-degree polynomial is unique,
WV must equal e. Q.E.D.

N

Consider the segment fZn I n= of the r.w. (Zn l whose underlying sequence, (UK f, is zero
mean, stationary, and gaussian. From Equations (4.2) and (4.8) we have

a = GU, (4.15)
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where

G = (ATA)~IATS. (4.16)

It follows from Equation (4.15) that a is zero mean and gaussian, and that its covariance matrix
is just

Qa = GQuGT. (4.17)

Now, let's consider the arbitrary segment, {Zn } n++, of length N. Proceeding as we did in
section III, we define a new segment, {Xn } N 1, where (see Equation (3.36))

Xn = Zt. n - Zt , n =1, 2,...N

or

n
X n = T UK.

K=I

Letting Z = [Zt+ 1, Z+ 2 .... Z N+]T and

X = [X 1 , X 2 .... XNIT

we see from the definition of Xn given above that these vectors are related by

X = Z - ZtV

" or

Z = X + ZtV,

where V is an N-dimensional column vector each of whose components is one, i.e., V = [ 1, 1, .... 1 IT.

The fits to X and Z are thus given by

ax = (ATA)-IATX = WX (4.18)

and

az = (ATA)-IATZ = WZ = WX + ZWV = ax + ZtWV.

But, from Lemma (2) we know that WV = e, so

az = ax + Z~e. (4.19)
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Thus, the covariance matrix of the coefficients of the fit to Z is just,

Qaz = E[aza T I = Qax + E[axeTZt] + E[ZteaT ] + E[Z~eeT , (4.20)

where Qax is the covariance matrix of ax.

Since X = SUx, where UX =lU+ 1, Ut+2, ... , Ut+N]T and Zt is simply the sum of U1
through Ut, it follows that Qax is given by

T T
Qax =GE[UxUT]G T = GQUGT,

and the other terms of Equation (4.20) are also easily rewritten in terms of the statistics of {UK J.It should be noted that the second, third, and fourth terms on the right of Equation (4.20) act to
modify only the first row and first column of Qax.

Figures 16 and 17 display the variances, o2(V), of the fit residuals for fits of degree d = 1, 2, 5
and 8. In each case, N = 50, a2 = 1.0, and (tK+1 - tK) = 1.0, for K = 1, 2, .... The results shown
in Figure 16 are for the case with (UK) a white sequence. Figure 17 shows the corresponding re-
suits with {UK} a first-order markov sequence whose correlation time, ru, is equal to 5.0. (Samples
of the underlying sequences and the associated random walks for these two cases were presented in
Figures 1, 2, and 3.) It should be noted that the vertical scales for the plots with d = 1 and d = 2
differ between Figures 16 and 17, while the plots with d = 5 and d = 8 have the same vertical scales
in both figures.

It is interesting to note that the values of 2(Q) with d = 8 are slightly higher, for most values
of V, when f UK] is white than they are for the correlated case. This is due to the fact that an r.w.
generated by a white underlying sequence contains more power at higher frequences than one
generated by a correlated underlying sequence. This is illustrated by a comparison of Figures 2
and 3.

V. EXAMPLE; ATOMIC CLOCK ERRORS

A clock is any device which counts the cycles of a periodic phenomenon. Among the most
stable clocks in use are the atomic clocks which form the basis for atomic time scales such as Inter-
national Atomic Time (TAI). Atomic time is used primarily as a measure of time interval and is
based on the electromagnetic oscillations produced by quantum transitions within the atom.

If an atomic clock is used as a component of some distance measurement system, then clock
errors become part of the total measurement error of the system. When data analysis is performed
on the output of such a system, it is often convenient to model (approximate) the clock errors
over some time interval by a polynomial. In this way, a substantial portion of the clock's contribu-
tion to the total measurement error may be removed. This is the motivation for the work presented
in this example.
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Atomic clocks are subject to both deterministic and random errors causing deviations from an
idealized time scale. The random time error, X(t), results from the summation of all prior time
changes induced by random changes in frequency, known as fractional frequency fluctuations,
y(t). These are defined by

y(t) = AF(t)/F,

where F is the ideal frequency of the clock's oscillator and AF(t) represents the departure of the
actual frequency from F. Standard procedures for specifying the statistics of y(t) involve the use
of the Allan variance or the use of power spectral densities (see Chapter 8 of Reference 4).
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Since the random time error is the sum of all prior random time errors caused by the random
* frequency fluctuations, the statistics of the random time error may be developed from the statistics

of y(t). In the present example, we have assumed that measurements of X(t) have been made
discretely with a fixed-time interval, At, between measurements and that y(t) may also be approxi-
mated as a discrete sequence. Thus, in terms of our previously adopted notation, {YK plays the
role of {UK) and {X.} the role of {Zn}. Given that the error in the clock at time to is zero (i.e.,
that to corresponds to a reset or calibration time of the clock) then {Xn } takes the form of a
random walk, with

• Xn =At L YK"-

K-I

Figure 18 is a plot of the square root of the Allan variance for a typical cesium clock. Using
this information, a sequence of random time errors was generated whose Allan variance closely

approximates that shown in the figure. These time errors were converted to range or distance
errors by multiplying by the speed of light. The plot of these errors is labeled "actual range error"
in Figure 19. The data are given over a five-day period with the clock error assumed to be zero
initially. Notice that the error appears quite systematic over the five-day span, even though it does
represent a segment of a random walk. This is a result of the long correlation time of the under-
lying sequence, so the horizontal scale would have to be extended over a much longer time period

'- iin order to see a pattern more representative of the behavior we expect to see from a random walk
process.
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A second-degree polynomial of the form,

P2 (t) = a0 + alt + a2 t

was fit to the range errors over the five-day period. The resulting coefficient values were
4

a0 = 1.0589 m

a, = 0.39213 X 10 - 4 m/sec
a2 = -0.12103 X 10-1 °m/sec2 .

The associated fit residuals are plotted in Figure 19. The contributions of the linear and quadratic
terms at t = 0.432 X 106 sec (= 5 days) are 16.94 m and -2.26 m, respectively, so for time intervals
of much shorter duration than five days a first-degree polynomial should be adequate.

For example, an eight-hour span of this simulated cesium clock error was fit with a
polynomial of the form,

Pl(t) = a0 + alt.

The fit residuals for this case are shown in Figure 20. The theoretical standard deviations of the
residuals for a first-degree fit over eight hours are given in Figure 21.

Finally, Figure 22 gives a contour plot of the matrix of correlation coefficients of the fit
residuals for the linear model over the eight hour span. Notice that the correlation between
residuals separated by a fixed time interval varies with the location of the residuals within the fit
span. This, as well as the curve in Figure 21, demonstrates the non-stationarity of the statistics of
the residuals.
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* * *

This concludes the present report. Clearly, the practical application of l.s. polynomial approxi-
mations to one dimensional r.w. segments raises many questions that were not addressed in this
report. It is hoped, however, that the results and techniques that have been presented will serve as
a basis for the derivations required to answer specific questions of interest to the reader.
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