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Foreward

This report is Chapter XII of the twelve in a forthcoming research

monograph on the mathematical theory of laminar combustion. Chapters I-IV

originally appeared as Technical Reports Nos. 77, 80, 82 & 85; these were

* later extensively revised and then issued as Technical Summary Reports

No's 1803, 1818, 1819 & 1888 of the Mathematics Research Center, University

of Wisconsin-Madison. References to I-IV mean the MRC reports.
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Chapter- XII

Ignitionl I Explosion

1. Synopsis.

The phenomenon of ignition has already been encountered in at least

three contexts: burning of a linear condensate (Ch. IV), spherical diffusion

flame (Ch. VI) and. spherical premixed flame (Ch. VII). From the S-shaped

response curves determined by steady-state analyses it was argued that the

" ~ burning rate would jump from a weak, almost extinguished, level to a vigorous

one as the pressure (and hence the Damk6hler number) is increased through

some critical value (corresponding to-the lower bend of S). An intrinsically

unsteady phenomenon, appropriately called ignition in these contexts, was

thereby inferred from existence results for the steady state.

), Such analyses have a fairly long history in combustion, the simplest

example being the ,thermal theory of spontaneous combustion identified

with the name of its originator, Frank-Kamenetskii (1969). Sec. 2 will give

a mathematical version of that theory, which shows an early appreciation of

-' activation-energy asymptotics (though not in the formal sense of the present

monograph).

Useful though steady-state analyses undoubtedly are, such phenomena

demand unsteady descriptions; and that is the main goal bf the present

chapter. The three contexts already encountered are, however, too

complicated for our purposes and we turn instead to a simpler problem

containing the essential feature, namely the evolution of a deflagration

wave from an unburnt state.
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Consider a thermally insulted enclosure containing a mixture at

sufficiently low temperature for the reaction though present, to be very

weak. Since the heat released cannot escape the temperature must rise,

albeit very slowly. After a long time the heat generated by the initially

weak reaction will have raised the temperature of the mixture enough to

excite rapid reaction somewhere and, if the combustion field iS inhomogeneous,

f, -4 a deflagration wave will sweep across it. To distinguish this type of

rapid reaction from that caused by external agencies, the term thermal

explosion is used. (Thermal refers to the temperature sensitivity of the

reaction rate. Another type of explosion is due to a rapid chain reaction

2 being initiated when conditions are such that -a .,few necessary radicals are

produced from one of the reactants.)

A spatially homogeneous explosion is described by Ordinary differential

-iequations. Its study in See. 3provides insight into the mathematical nature

"I- of the rapid transients characteristic of the explosion process. That

prepares the way for a discussion Of the spatially inhomogeneous problem

in Sec. 4.

A distinctive feature of thermal explosion is the very rapid temperature

increase, known as thermal runaway, that occurs at the end of a well-defined

induction period. The mathematical manifestation is unboundedness in the

solution of an equation for small perturbations of the initial state.

(Evolution equations that generate unboundedness solutions after a finite

time have recently attracted the attention of mathematical analysts.) The

subject of tdka thermal ignition provides other examples, one of the simplest

being a half space filled with a combustible mixture, at the boundary of

which a positive heat flux is applied. After a certain time, ignition

-|



occurs at the boundary and a plane deflagration wave propagates into the

interior, consuming.the mixture in its pasaage. The early stages of the

process are described in Sec. 5.

The problems in Secs. 2-5 are all concerned with reactants that are

[! premixed; a whole range of such problems, to which activation-energy

asymptotics could be profitably applied, is discussed by Merzhanov &

Averson (1971). By contrast See. 6 treats the so-called Marble-Adamson

(1954-) problem, in which a fuel and oxidant in separate half-spaces are

brought into contact at the initial instant so as to interdiffuse and burn.

There are many points of similarity with the spatially inhomogeneous thermal

S explosifn, and a reasonably complete description of the combustion process

is possible.
IkJ

2. SpontaneouS Combustion.

Exothermic chemical-reaction is a well-known hazard of certain bulk

materials in storage or transit. Joseph Conrad in his story "Youth"

graphically describes the peril. Take one ship with a cargo of coal

dampened down because of an earlier leak (now fixed); embark on a.slow

voyage to Bangkok; and before the China Sea is reached the legend "Do or

Die" proves ominous rather than brave.

Cj. Any moist Volume of organic material (e.g. wood chips, wool, corn

cobs, compost) will, because of chemical reaction initiated by micro-

v, organisms, get hot. (The reduction of spontaneous reactions in fruits

and vegetables is a major concern of post-harvest physiologists.) Certain

inorganic material such as ammonium nitraie, lead azide or a hydrogen sulphide/ t

oxygen mixture will also heat up because of chemical decomposition.

I -~-.- ------- o---.' --en ~
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If the reaction were independent of temperature there would be a I

maximum, depending on the dimensions, to which the temperature of a voltue

of material would rise after a long time. (That maximum holds steady over

an even longer period, but there is an eventual decay due to reactant

depletion.) In the quasi-steady state the rate of generation of heat,

which is proportional to e3 for a volume of characteristic dimension a,

would be balanced by lozs through the surface, which is proportional to

2a with a factor of proportionality an increasing function of temperature

there. Clearly the larger the voltzti* in- equilibrium the hotter it would be.

However, the reaction does depend on temperature, proceeding much more

vigorously at higher temperatures, so that there Vill be a critical value of

a -beyond which the efflux at the surface is insufficient to dispose ot the

heat generated and unsteady combustion will occur. Our first task then

is to look for steady states.

Any steady state is described in equation (1.56) with a/It 0 0, i.e.

"() V2 = a- where IZ De-

the latter being appropriate when the length a is used in non-dimensionaliza-

tion. For solids, the density has a constant value, which may be designated

CP so as to replace p by 1 in the definition (1.59) of D; pressure does

not arise, which means that p should be replaced by p-QR/c m in that
c c p

definitiAon (thus eliminating the gas constant R from it); and a is A

usually taken to be zero. The only new assumption is that reactant depletion

may be neglected (the constant mass fractions in Q being absorbed into

D) because the steady state is close to the initial state, a condition ensu.red

a posteriori when 0 is large. For gases, of primary interest to us,
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there is the additional assumption of small heat release so that the constant

dehsity approximation can be made to ensure that the mixture stays effectively

at rest.

For an initially uniform temperature To  such as we have so far

envisaged, this purely thermal problem can be treated in the limit e

by setting

(2) T =T + - + 1T"+.

To order we find

(3v = -6ef,

where

T1/TZ -T 0  2-
(1/T) and 8 D8e- /T

Note-that the steady state being sought is close to the initial state,

so that neglect of reactant depletion is justified. Iowever, for natural

organic materials such as wood chips the activation energy is not large

and depletion is not small; in either circumstance the present analysis 'A

is not appropriate.

The approximation (2) is familiar from our earlier ignition studies

(sees. VIA1 & VII.6). In the present context it is due to Frank-Yamenetskii,

constituting an early example of activation-energy asymptotics. References

and- a discussion of the solutions of equation (3) are given in his book

(1969). On the other hand, linear ization of the exponent O/T in the

Arrhenius factor has sometimes been adopted as a model not rationally

consistent (in an asymptotic sense) with the underlying equation (1) for

2l~
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the specific problem being examined. The blafe forid of equation, (3) has

a long history (Stuart (1967), going back at least to Liouville (1853), to

whom it is sometimes attributed. The general solution is known, but thj'e

appears to be no way of fitting it to boundary conditions of interest. As

a consequence, solutions of complete boundary-value problems have only

been constructed in a few special cases.

-Amongst these are problems depending on x alone. Indeed the correspond-

ing problems for the exact equation (1) can then be solved, providing useful

checks for the present asymptotics [cf. Shoxuman & Donaldson (1975)3. A

particularly simple example is an infinite slab lxi _I of combustible

material whose surfaces are held at the temperature T0 , so that

(5) = 0 for x ±1.

Such a surface condition corresponds to the limit of an efflux I(T - T0 )

0

per unit area as k - , and it is the * 'lity of the material in the slab

J! to conduct that heat to the surfaces whLn determines whether a steady state

exists or not. By symmetry w will attain its maximum, m say, atK x= 0; and in terms of it le have

2 */2
(6) -e2 mn e sechoe 2V ).

(Cf. Fig. 2a for a graph of this function.) The boundary conditions

(5) therefore require

-/ /2 /

(7) 46711 Cosh_( 06

a relation fixing the maximum tcnpcrature.in terms of 6. For a given

material 6 can be varied through a, the semi-thickness of the slab,

-i!- -- '*j - ' - .7:--~



or To, the temperature at its surfaces [see equation (4b) and the definition

(i.6o) of D].

Fig. 1 shows the response (7), which has the typical shape of an

ignition curve. There is a critical valuei
(8) Se .878.

above which no solution exists and below which there are two solutions. A

value of 8 greater than 6c is said to be supercritical wh-ile a smaller

value is said to be subcritical. The implication is that thick hot slabs,-

being supercritical, will burst into flames but thin cold slabs, being

sui.c ritical, will-not; and this general picture has been confirmed experi-

-mental~y for a number of substances.

The symmetry of the boundary conditions makes the solution atypical however,

as we shall see from another example in which the surfaces x = ±1 are held

-at temperatures T0 and cTo, respectively, where 0 < a < 1. Now the

reaction is confined to a neighborhood of the hot boundary in the limit

e -0-M instead of being spread:across the slab, so that conduction of

its heat to that surface is much easier and 6 is much larger.

The initial temperature in the slab, due entirely to conduction, is

(9) T- [1 + c+ (- )xT/

and we seek a steady state within O(W-). For such a state the 0(l)

temperature has its maximum at the hot boundary, so that reaction only

occurs in a zone near there. The expansion (2) is still valid, but

its variable is now

(10) = e(l - x).

Sg ---
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The structure of the reaction zone is found to be governed by

1i d2/dE - de with 6

and

(12) df/dg =(- )/2T0 + (i) as g. -- ,o 0 for g =0,

where the first boundary condition comes from matching with the temperature

(9) outside the zone. The general solution of equation (ii) is

(13) 2 In {e 0 sech iep'j (g- - )JJ"0

where g is the location of the maximum 0; and to satisfy the conditions

S"(12) must set
-- ':L . (la) 2 e@O h 1 / 2 Jehl_-O2

(114) -T e 0 and = 2' .ech e

Since vanishes at the surfaceceO ranges from 0 to-- (otherwise

to is complex), so that 6 cannot exceed -
-(15) - = C.)2 2

The + signs on 0O provide two solutions when 6 <6c  (see Fig. 2a); for

the plus sign, Fo lies outside the slab and the maximum t. in the slab

is zero (its surface value) and not 0" If m denotes this maximum, then

for 1; < 0,
(16) 0m fo 00
n-()0 for th >  0

!il_{ •and the relation (iti)leads to the response shown in Fig. 2b.
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Note that 6 = e 6 im .ies that the D corresponding to i is much

C

larger than that corresponding to 6 We conclude that raising the

temperature of the cold boundary to that of the hot will greatly increase

the risk of explosion. In fact the formula (15)- suggests that the risk-2 1
increases sharply as soon as a is within o(W ) of 1.

Two further points should be noted. The second problem illustrates

I,. ignition rather than explosion. With an ambient tempersture cTo, an

: I external agency is required to raise the surface temperature at x = I

to TO; and if that is ultimately done slowly enough the conduction profile

(9) will be established. Also we note that nothing has been missed in

either problem by looking for steady states within o(0" ) of the initial

state. Any steady state further away would correspond to a D of exponential

order 0/-, where the maximum temperature T is greater than, TO" it

would therefore correspond to the origin in Figs. 1 and 2b.

For a review of the subject, including other geometries and boundary

conditions, see Gray & Lee (1967). They do not use formal asymptotics,

and indeed there is room for a comprehensive treatment doing so.

3. Adiabatic Explosion.

To describe an unsteady phase of the combustion, equation (1) is

replaced by

(17) lT/Bt - V -T De- I'

so that the small-disturbance equation (3) becomes

2(18) at - v = .

I I

-;2



S" ' Th- jroblem is completed by the initial condition

0(19) -0 for t= 0

and suitable boundary conditions.

The non-existence of a steady-state solution for the slab with equally

hot surfaces and supercritical 6 implies that 4 must increase without

bound, i.e. that T goes further than o(e- ) from T0  Indeed this haprens

at a finite time, as we shall now show for the spatically homogeneous problem

of a material thermally insulated at its boundary surface, when equation (17'

reduces to

(20) dT/dt D

J
Our object in the present section is to gain insight into thermal explosions

generally by examining those that are spatially homogeneous.-

The corresponding small-disturbafice equation is

'21) dW/dt =e

which has the solution

' (22) 5 -kn(l -'T)

satisfying the initial condition (19); here

(23) St

At the finite induction time 6- , the perturbation becomes unbounded

and we speak of thermal runaway.. Note that the phenomenon occurs for all

values of 6 in the spatially homogeneous problem because the heat genera-U

4 1

Ko/ . ___ ......... ........... .. .. .. .. .. . .. .IJ.~~
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by the reacts cannot escape, i.e. conditions are adiabatic. On the

other hand, if an artificial heat-loss term is introduced then subcritical

behavior can be restored, see Kassoy & POland (1975).

Clarification of the runaway process requires a return to equation (20).

However, beyond thermal runaway a purely thermal model is of little practical

significance since it predicts an unbounded increase in T, whereas the

rise ceases when the reactant is consumed. Under the assumption that a

single (decomposing) reactant is involved, its depletion can be incorporated

by reinstating the mass fraction in equation (20), i.e. writing

(24) dT/dt = D(Y/Y0 e ,

and adding

(25) 6e/T .-' (25) dY/dt =-D(Y/Yo)e ,

where Y is the initial fraction of reactant in the material. Clearly

the Shvab-Zeldovich relation

(26) Y + T Y + T F. (say)

holds. No change in our analysis of the induction phase (Sec. 2) is necessary

because Y then stays within O(e- ) of Y and hence may be replaced by

it in equation (24). We are therefore led to the problem

(27) dT/dt = (T 2S/Ye)(0 - T)exp(e/T0 - O/T), T =T for t = 0.

Clearly T is monotonically increasing but the factor (H0 - T), corresponding

to reactant depletion; ensures that it does not go beyond H0; in fact it

rapidly approaches H0  (exponentially in time).I0
LL________
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K~ssy (975-ha0 dscusedthe asyivptotics of this problem directlY

here tie- shall verify the salient features of his results from the exact

[-solution. With the confidence so gained we shall attack spatially
inhomogeneous problems~ in~ Sec. 4, for which there are iio exa~ct solutions

against which to check the asymptotics. The exact solution here is expressed

in terms of the exponential-integral function

(2)Ei(x) f eU du,

where the principa-vdl3ue sigh is unnecessaxy for x 0. With the timre

variable (23) we find

(29) T2 e (T- Y 0 /110 6T o/1) iO/)
0 (TeTVO i0T-oH)-E~I)

'where.

(30) (Y e ey e0 /T )[e EL o/a1 -- 0 T 0.j
e 0 %io/ 0ei)E I 0.

Since

(31)- Ei(x) Znjxvj + o(0.) as x -- 0

the formula confirms that T approaches H0 exponentially as

-11

Three phases can be distingi~ishod when 0 is large: induction,

explosion and relaxation. If T is bounded away from Hthe arguments

of both Ei-functions in the solution (29) become large so that, since

(32) Ei(x) x xe [3. + x 1 + (x2  as Y

we fin3
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• ~2 2 - + i

(33) T e-T=YoT /T(Ho-T)]exp(e/T-OITo)[i+O(6 o)],.

-which reveals two of the phases. In the first phase T is still within

O(e- ) of TO  and the right-hand side is 0(I), corresponding to induction.?0

In fact, the result (22) is recovered when

(34e ) T + TO(2 + T01' + o(0-)

is noted. In the sec6nd phase T is bounded away from TO  (as well as

from RO) and the right-hand side is exponentially small, showing that

most of the change inToccurs within an exponentially small interval Just

before the time T In that sense T is the time at which the explosion_e e

takes place.

The-third, relaxation phase corresponds to values of T within

O(e) of HO; then the argument of the first Ei-function in the solution

(A1) is 0(l) and we have

(35) -e- (Yoe/T ).exp(0/Ho-8/To)Ei(o/T 01Ho)[- + 0(6-

The final consumption of the reactnat also takes place within an exponentially

small interval which, since the Ei-function changes sign at some positive

values of its argument, spans T

We now turn to the question of deriving these asymptotic results directly

from the governing equation (24). Consider first the induction phase and-

set

(36) T= T + 0 t) + T(t) +o(0).

Then we find



(37) T1  7*T2 kn(l-
.0

as in the earlier result (22), and

(38) T2 = T3 Un2(1 t) " (2'+ T /Y )[n(1 - T) tUC1 - )1J.

The logarithm in T1  suggests that breakdow.n occurs when t is

to algebraically close; and correctly so since the explosion time (34) is

6(e- ) away from 1. To restore exponential closeness it is only necessary

to absorb the pole into T, by writing

(39) T1  -n[1 + TO(2 +ToYo) -T /,

-which amounts to introducing the 0(e- ) approximation to t'. The same
e

4 end can be achieved formally by considering both T and r to be functions

of a new time variable T. If

with =+

(41) T!(0) 0 and t'(1) TO(2 + Yo/To)

'r otherwise being arbitrary), then the explosion is fixed at TL

and no pole occurs in T2 (r). In short, the time to explosion has been

determined asynptotically by considering on.y the induction phase; it is

reasonable to suppose that the same procedure will work in other problems.

The description (33) of the explosion phase can also be derived directly

from equation (24) but we shall not go into details. The most important

5- I

*

ilCI
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feature is the-time scale

(4~2) a 02n. T)

which plans a key role in the study of the inhomogeneous problem, as

~;Iwe shall1 see in Sec. 4. As a ranges from 0 to Y /PP 11 the temnperature

(43) T ft011 aT) +0O(l)

ranges from T to H0  to leading order.

For the final1,-relaxation phase we write 22
(144) T H +0- 2 4)+ae

01

in equation (24), which--shows that the appropriate time variable is

e

where

(46) -( O/ 2y /T)exp-YIH)60 oOT

Then

(4)d/du -oe with 0 =lO

the general solution- of which is

(48) - E(. i-)

here 1, is just the value of 0S when -1. The requirement that + 0
Y

as wp+ c (i.e. all reactant is consumed) is satisfied automatically, as

is that of matching with the expansion (43). For the latter, note the

- -k.



result

(49) 14c k.

[ of introducing V into the expansion (33) and then keeping it fixed under

expansion. Comparison with the solution ()18) shows that the integration

constant i is left undetermined and in fact cannot be determined by

j ,asymptotic development: however many terms are retained in the expansion

(33) it will never recapture the Ei-functions of 'he exact solution, whereas

those functions determine . It is therefore fortunate that results

analogous to

(50) l -Ei (1),

J here obtained from the exact solution, will not be needed in the sequel.

4' 14. ~Explosion with etLs

J Kassoy (1977) has incorporated non-adiabaticity into the spatially

homogeneous problem by inserting a distributed heat-loss term proportional

to T - T into equation (24). Apart from the lack of a Shvab-Zeldovich
0

relation, the new features are the inability of the reaction to produce

the adiabatic temperature H0 and the eventual decay to T . To obtain

the essentially new phenomena of hot-spot formation and subsequent

flsh-through it is necessary to consider a more realistic problem

involving spatial inhomogeneity, and that can be done without sacrificing

the Shvab-Zeldovich relation.

Consider once more the infinite slab with equally hot surfaces.

The equations (214,25) are now replaced by
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2 2 -1 2(2yo)eje/T

(51) DDt- a T/ax 7(DY/Dt 3 Y/D = Y

cf. equation (17). For a solid, where the reactant is unable to diffuse,

the Lewis number a is infinite. Nevertheless we shall takef = 1 so as
to have the simplifiction of a Shvab-Zeldovich integral (26). Bather than

maintaining the reactant there it would be more practical to prevent its

flux. We shall see, however, that the boundary condition on Y does not
influence the solution until after the main events have taken place. The

problem we shall treat is therefore

(52) 3T/at- i = 2 e)(H-T)exp(/T0- e/T)

(53) T To for t =O and for x=±l.

I 19 By symmetry the condition at x = -I can be replaced by

(54) 3/Dx-- 0 for x= 0,

with only the hal-slab 0 < x < 1' considered.
In addition to the induction, explosion and relaxation phases found

in the spatially homogeneous problem (27) there are now transition and

propagation phases. These arise because the explosion is here confined to

a single location and then propagates elsewhere, involving a transition

from the formation of a hot spot to the flash-through of a deflagration

wave. These two new phases postpone the relaxation phase, which is the

only feature affected by the boundary condition on Y.

As for the homogeneous problem, the induction phase is described by

an expansion of the form (36), but now the coefficient functions depend

on x also and T1 =T satisfies

- ~ -- - - - - - - - - - - - - -
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(55) -/at - /ax 6e

(56) /Dx =0 for x = 0, =0 for x 1 and for t =O.

If 6 is greater than l€' as we shall suppose, the solution cannot tend

to a steady limit. Since the solution of the corresponding homogeneous

problem becomes unbounded in a finite time, it is not surprising to

find that the same is true here (cf. Payne 1975 and Ayeni 1978). Thermal

runaway can no longer occur everywhere when the surfaces are held at TO but
1

is localized at the symmetry plane x = 0. The runaway time -e (6) is no

longer fixed on the '-scale, but is a function of 6 that was first

determined (nimierically) by Poland (1979), see Kassoy & Poland (1980a),

and then independently by Kapila (1980). As 6+ 6c the time to runaway becomes

A indefinitely long.

While cannot be calculated analytically, its form as T T can be
e

determined, a step that is crucial for the subsequent development. Backward

integration of a parabolic equation away from a singularity (in this case

at t = 6-1 T) is no novelty; more than thirty years ago Goldstein (1948)

encountered such a question in his discussion of Prandtl's boundary-layer

equations near a stagnation point. He showed that the similarity variable,

here

: }: L iI 1/2/T )1/2

~5j(57) p1/ e

plays a central role near the singularity. In terms of TI,T our equation

becones

(58) /D - e -"e)-l[c)2< /arl- (ri/2)ac/n)] = e".

eI

~ -- - -



19

In view of the result (34) for the homogeneous problem, a uniform

asymptotic appi 0ximation

(59) W - ) + ( + o(l) as r+ To eI
Li is sought for n bounded. We find

*0z (6o) 0- (n/2)0 + e = 1 where O(0) = 0

according to the symmetry condition (54); the other boundary conditions

cannot be applied. But to determine 00 another boundary condition is

needed and that comes from matching with the induction solution. Since 0

cannot be exponentially large, it has the asymptotic form

(61) *0  -2nn+ A+ o(l) as n ,

which provides the needed condition once the constant A has been

determined by matching. To effect the matching we write the explicit

terms (61) as functions of x and T, and expand in Te - T to obtain

(62) O= -2 In x -n 6 + A + o(I)

as the behavior of the induction solution as ' + re with x bounded away

from zero. The numerics mentioned above do indeed exhibit such a behavior,

so that A() can be determined (Poland 1979, see Kassoy & Poland 1980a;

Kapila 1980). The procedure fails if 6 is subcritical because the

numerical integration does not yield the required form (62) but tends to a

steady state instead.

The expansion (59) exhibits a focutsinj effect in that constant values

of 00 moves towards x = .0 as T + T.el i.e. the peak of the temperature

=mom
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distribution for T constant becomes sharzper as thermal runaw-,N

approached. This 'feature.bersists into the Oxplosion phase, as wie t~ialHsee shortly, so that a well-defined hot spot is formed. A comn6naic

asymptotics and numerics therefore provides a com~plete picture for -r,< 'Ta

Induction is-immediately followed by explosion, discussed by Kassoy &

Poland (1980b) and by Kapila (1930), for which the time variable (4f ) isV ~ appropriate. WThile nonlinear scalings have been encountered before in

asymptotics, even in combustion (Sec.- 11.5), an-exponential 6tie appars to

be novel. It is fundamentUl to the process considered here. In view ofL its

role in thermal runaway it is not surprising that rl is the other appropriate

variable for the explosion phase. In-terms of aor the governing iquation -
becomes

(63) T/aa + 0[(nf2)DT/an a 2T/Th21 ='?/ Mt" 0fep( -OIT -0a).

Since

the ft) valesofa nenfor which the-equation is valid correspondA

to an exponetially thin region, the hot spot, that rapid!y gets thinner

as time increases. The focussing as thermial runaway is approachod therefore

continues during the explosion stage.

If the reaction term in equation (63) is to play a role, ,:e must write

(65)~ 3-~/J a 0  
1 ~na (~(6) T 0. 1T+0 na 0

0 0

(cf. the result (4i3)]. The variabl~e a only appears as a parameter in

the equation for T, so that its soluI~ion may be written
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(66) T1 =T (r() - £n[(l T0)( 0HTc)/Yo}/(l T a)2

where

(67) ,"- (n/2)' + e = 1 with '*'(o) = 0.

This is identical to the problem (60) for *0; indeed, matching the

expansions (36) and (65) under the transformation (42) demands

(68)H0
:2~ omleel dtemidbyt h -oustn eecintexlosicton pase andIt follows that the boundary layer at x = 0 in the explosion phase is

: .. I ,.completely determined, by the focussing effect in the induction phase and

indeed inherits the spatial structure of that effect.

The explosion is so rapid that the temperature in the slab away from

x = 0 stays sensibly frozen at the value

A 1 2

(69) T =T + e-Ti -nx- In + A) + o( - )
0 0

attained during the induction phase. Clearly this does not match the

expansion (65), even to leading order. An intermediate expansion is needed

to describe the structure left behind by the rapidly shrinking hot spot.

The breakdown of the approximation (69) when In x = 0(0) suggests that

(70) X -2e" £n x a-8 £n(2/6)

is an appropriate variable to use with a. In fact, the intermediate

expansion is independent of a , which means that the residual structure

is stationary too. Details have been given by Kapila (1980); we merely

note here that the leading term T/l - ToX) ranges between those in

the expansions (65) and (69) as X decreases from a to 0.

Ly--
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Within the hot spot the .-xpansio(5)ivadunl apohe

Y6 /H Ot , i.e. T approaches HO If a gaseous reactant is being ednsidered'

and 1 differ *prcably from To, aS it often does in practice, the

fluid mechanics can no longer be ignored through adoption-of the constant-

density a-pproximation (Icassoy & Poland 1980bD). Otherwise one continues wit"'Li Kap-ila (1980) to subsequaent phase where the time variable (4i5) is appropriae

tha-t is not suggested the ti expansion (65)-a§ far as we have taken it

but by the nexrt term. The corresbonding space variable -is

sicetat/2 i116l/2

sine tatensures a diffusion term in the ecuation

(7-2) _ 2 4

governin- the coefficient T in the generalization of the exoansion

7 (11) The initial condition.

-~ (73)- k n(-w) - nk.n(-I.) + ijr)+ o(l)- as to+ -co uith
-A

~/(-.w) fixed

comes from miatchin, vit the expl6sion phase while the boundary conditio

(711) k,-n 2 n kn + oft) as - co vith L, fixedA

comes from matching with the into rnmediate expansion, neither of which

will be derived here; in addition

(75) D / E0 for F,0.

These conditions the origin of ta undetermiAned, as in the homogeneous

problem, but otherwise ensure a unique solution.j

OL, 

_
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Fig. 3 shows the picture which emerges from the numerical solution

(Kapila 1980). Since the initial condition (73) is effectively independent

of when that variable is 0(l), the curves at first have a plateau on

the left which is continually eroded by the boundary condition (7h). There

comes a time, however, when the erosion is stopped and the plateau begins

to reestablish itself over ever-increasing distances, i.e. an incipient

deflagration wave is formed. The focussing effect is then being limited

A by reactant depletion and the hot spot, now fast approaching the temperature

2O, begins to spread as the reaction zone detaches itself from the center

and starts to propagate across the cold unburnt slab, leaving behind

almost depleted reactant. Most of what was the final relaxation phase in

-A the homogeneous problem is now taken up by this transition from hot spot

*"1 to flash-through.

The remainder and more is swallowed up by the propagation phase, which

takes much longer than the transition phase but is still very brief. Indeed

the result (11.22) shows that, for an o(e e / ) value of D, the

deflagration wave takes a time to reach the surface of the slab.
-A This suggests using the variables

11/

(76) = [X(s) - xs = (T - e)

to investigate the flash-through, where is measured from the location

x, of the flame front. The fact that O(8 1 changes in 4 measure the

same distances as 0(1) changes in , i.e. that the flame structure will

be described on the scale of , supports this suggestion.

To trace the progress of the deflagration wave through the intermediate

region into the main part of the slab, note that the region is both
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stationary and much thicker than the preheat zone of the wave. Far ahead

of the flame sheet (on the scale of the preheat zone) at the instant it

reaches the position X the temperature is TO/(I - ToX) while everywhere

behind the temperature is . ccording to the -osu.t (iI.22) the flame
01

velociy is therefore given by

(77) (s) = Sh ( 1 T0 X)/%O - H x).

-' , As X decreases from Y /H0 T to zero through the intermediate region,

the wave decelerates rapidly from infinity to r H/Y 1/26 the velocity
0 0

S', at which it fl'shes through the main part of the slab. (The flame moves

more rapidly the closer the unburnt mixture is to the flame temperature

H0 because the heat of combustion is able to preheat a larger amount.)

The propagation phase ends when the preheat zone reaches the surface.

In the ensuring relaxation phase the wave rapidly decelerates to zero,

thereby establishing a steady state with the reaction zone just inside the

slab. Details are given by Kapila (1980); we merely note that the relaxation

take a very short time 0(O6/ to be completed [cf. the O(C) relaxation

time for the homogeneous explosion].

We do not go into details of the relaxation phase because it is a

creature of the unphysical boundary condition on Y. If instead of maintaining1

the reactant at the surface ih is prevented from diffusing across the surface,

then nothing changes until the relaxation bhase since Y + T is constant to

leading order everywhere. At that tie the wave does not come to rest,

but is quenched by the cold surface (Buckmaster 1.979), leaving behind

reactant-depleted material at temperature 11 except for a small amount of

unburnt reactant near the surface. Since the boundary continues to be
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maintained at T0 , there follows a relaxation phase of duration 0(l)

during which essentially pure heat c6nduction lowersthe temperature

everywhere to T- again and the residual reactant spreads across the
0

slab, being slowly burnt in the process.

Our analysis describes the formation of a hot spot from which emerges

a deflagration wave that rapidly consumes the combustible material.

These are characteristics of actual explosions, s.o that the model has

-Ki4 , I clearly retained the essential physics. For a solid, modifications are

necessary to account for infinite Lewis number but these only change details.

For a gas, the neglect of the fluid mechanics has undoubtedly excluded

significant effect (Kassoy & Poland 198Ob), in particular the evolution of

the deflagration into a detonation. The real value of the discussion,

'however, lies in its elucidation of the extremely rapid transients typical

of the explosion process, one of the most challenging aspects of combustion--5

theory.

' 5. °Ignition.

Thermal explosion is triggered in a combustible material by the build-up

of heat which cannot escape in sufficient amounts through the boundary.

By contrast, ignition is caused by some external source of energy. For

example, part or all of the boundary may slowly be raised to a high

temperature so that reaction starts nearby. Such a problem was considered

in Sec. 2 for a slab. (Sudden elevation of temperature is of more interest.) ;

Alternatively, a radiative heat flux may be applied, a mechanism that is some-

times a factor in the spread of fires.

! -
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y Thermal runaway is not only a characteristic of explosion but also J

of ignition. As is clear from Sec. 4, if the goal is limited to calculating

the time to runaway, then only the induction stage need be considered.

Indeed, that is as far as the analysis has been taken by anyone to date.

Our intention is not only to draw attention to ignition problems and

what needs to be done (problems which only make sense in the context of

% I large activation energy) but also to disclose another way in which runaway

can occur.

The specific problem we shall examine is that of ignition of a half

space by a constant energy flux (Linan & Williams 1971). Modifications for

a slab with its other surface insulated (say) are minor and will be 6bvious.

Since the discussion does not go beyond thermal runaway, reactant depletion

may be neglected; so that only the temperature equation (17) need be

considered, i.e.

(78) T/ t T/ x De

in the present geometry. The boundary and initial. conditions are

(79) T/x =T; > 0 for x =O, T =T o for t 0 and as x + -

if the half-space lies in - < X < 0. Initially the temperature is uniform

so that, in the absence of external stimulus (e.g. when the surface is

insulated), there will eventually be an explosion if D is large enough.

However, we are concerned with the (earlier) occurrence of runaway due to

the constab heat flux applied at the boundary.

!2I'.
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To e stablish some preliminary ideas define Tr a temperature

characterizing the reactiVity of the material, by

(80) D = A(O)e/ O

where A(e) is algebraic in e. Clearly Tr should be greater than To;.

otherwise there will be reaction from the start (0 < T < To) or no reactionr-

-at all (Tr < 0). The equation governing T is then

(81) DT/at - a T/Dx2  A(O)exp(e/Tr - e/T)

where, at times sufficiently small for T to be less than Tr. everywhere,

the right-hand side is negligible. The solution

* 2(82) T = TO + T[2 - exp(-x /4t) + x erfe (x I/2t)I40
satisfying the conditions (79) increases monotonically in t but decreases

monotonically in jxj, so that the value Tr is first attained at x = 0,

the.time being

(83) t = ( - T )/4T

At that instant the reaction term must be reinstated. [To obtain tr in

terms of D, correct to leading order, insert Tr = e/kn D.)

An accurate estimate of the runaway time must involve A(e), i.e. the

reaction (as in Sec. 4). Nevertheless, the notion that the temperature

rises purely by heat conduction until it reaches some specific value

determined by the magnitude of D, whereupon reaction becomes important

enough to produce runaway within a time oe!, is central to the

development.
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For times -close to t r the reactionless solution (82) is only valid

away from x =0, i.e. it becomes an outer expansion. Since reaction

requires T to be within o(0 of T and runaway is expected to occur
rVwithin a time 0(0 ) of tr we introduce an inner expansion

(8)-1 -3/2 3/2

; I where

(85) g Ox and a e ot - tr)

The choice of scale for is dictated by the requiremient that

T /DC be 0(1) so as to accomodate the imposed heat flux, namely

(86) DT /g~ at F, 0,

-3/2.
while the term in 0 is indiiced by an intermediate expansion which

must, be introduced later.

The equation for T1 is

(87) aT/t -li[&A(Oflex.p(T,/T)

2 2

while Da T /D 2 o(1) as a -- cones froma matching with the solution

(82). we conclude that A must be a(G) and, in view of the condition (86), that

(88) T1  T1  +O

where

(89) T (a) T or/ V'Ft_" o(l) as a+' -
10 0 r

but is othervise undetermined at this stage. The equation for T2  is

(90) a T /aD2 =*C exp(T /T)
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if the choice A(12

(91) k C / Oe11/

V22J is made, the requirement a yt 2/ = (1) ast -- being met for any

contstant C. The solution satisfying

(92) T2/t O for =

has the property

0(01/2 sinc on
2/a (C:T -ep(Tc/T *) is not reso

whih i &Awe hal ned t knw aoutit.So airtheeisner eason

to uspct unaay:inded-he acttha beomeininteafers tat

e equaion fr T i

IXl
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the temperature being too far from T r for there to be any reaction (to

anyr order). MatchingS with the inner and outer expansions-and with the

sol.ution (82) require

(9T T1  0, DT /DX T_ for X =0

(98) T, TVX+ oft) as X + - and as d---3

There is one boundary condition too many but that does not prevent there

being a solution

(90) T O = X.

Continuing to T2 yields

(00) (D/ G - 2/X)T 2  0

~TJ~X (CM/T as 2 ~- ada
(101) T2 =T 10, 2~/I -r/)ey,,(Tl rT f or- X 0,

(102) T2 =Of + 2a)/2vAt+o~)a ada

unlike that for Tthis problem is not overdeterinined since T0has yet

to be found. Indeed its elimination from the boundary conditions (101) gives

the single nonlinear condition

(103) T/X (T/T1)eYxp(T./T) -or X =0.

All1 paraxieters can be purged by writing

rp T'(X 2a)/2AF"p ~
-2 0 r rT2,X(Tt/ 0

r ,1I2)1/2[. 1 16 4 )]
Lir r7T T77 r j nT0/r
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to obtain

(105) /a)'- T : o,

(1o6) exp + T) X = 0,

(107) T o(i) as X - and as -

*Numerical solution of this problem shows that becomes unbounded at a

definite time

(108) a =-.431

(inan & Williams 1971). In terms of the original time variable, runaway

i*- *.I therefore occurs at-

ti +e-l( rTI2 / 1 1.6/rTr) 4 ]
(109) tr i T /T2) [-.431 + tn (T nTC

r + r 0 0 rr

The mathematical problem for runaway can therefore assume different

forms. The nonlinear driving term is in the governing equation (55) and

acts on 0(l) time and length scales. Here it is in the boundary condition

(106) and acts over a time 0( - ) at distances o(-l/2). Moreover the

occurrence of runaway depends on the reactivity of the material in some

cases but not in others. The explosion of Sec. 4 requires Tr T0  and

JF4 materials of lower reactivity (T > TO ) will never explode; on the other

hand, the ignition considered here will occur for any T > To, as will the

explosion of Sec. 3 (albeit after an exponentially long warm-up period) if

Tr is also less then H0 .

r-0*

I I

t I
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6. Explosion of Separated Reactants.

If two parallel streams, one a combustible mixture and the other

j- a hot inert, are allowed to' come into contact then eventually the mixture will

be ignited by the inert. Such is the steady problem considered by Marble

& Adamson (1954). Here we shall treat a soimewhat different problem having

some of the same features biut closer to the thermal explosion investigated

-in Sec. 4. Vathematically it is identical to a special case of the unsteady

'4 mixing and explosion of twJo initially separated reactants considered by

-Linean & Crespc (]972). Indeed we shall retain the notation of the unsteady

problem so as to use results from Sec. 4 without translation. 0n& feature

missing from the 1Marble-Adamson problem is the diffusion flame which manifests

itself as a Burke-Schuman flame sheet sufficiently far downstream.

Consider a semi-infinite flat plate (Fig. 4) separating fast parallel

streams containing oxidant X and fuel Y that come into contact at the

trailing edge and then interdiff'.sc to form a combustible mixture down-

stream. For simplicity the speeds reactant concentrations and temperatures

of the streams Will be taken equal. (Liian & Crespo s problem is ecuivalent

to one allowing for unequal concentrations and temperatures. ) For small

values of t no significant reaction occurs; for large values there is

chemical equilibrium, with a Burke-Schumann flame sheet separating a

ree-ion in which x is zero from one in which Y is zero. How the com-

bustion field evolves from the initial regime to the final one as t

increases is the main question. Such a transition arises in many combuztion

processes, another example beirg the unsteady ignition of a fuel drop, so that

a ma! "e-natical description is of considerable interest. oreoe,, ,

experiments have been carried out under conditions similar to those in

Fig. [Lichnian, Corry & Pcrlee (1970j].KI
V ',



The essential details of the c6mbustion field can be uncovered by

activation-energy asymptotics, as was shown by Linan & Crespo (1972). Their

discussion is highly intuitive since asymptotic methods were not well

developed at that date, but nevertheless they accurately described the

main features of their more general problem. The present discussion is

more systematic and the description richer; only for the sake of simplicity

is the problem specialized.

The high velocity of the streams enables longitudinal diffusion to

be neglected (cf. Sec. Viii.6); in addition we adopt the constant-density

approximation. Taking unit Lewis numbers then leads to the governing

equations

(110) (/at - a2/ 2 )T -2(a/at 2/x2) = -2(9/at -y = _/Y2)

S0

if the reaction is first-order in both fuel and oxidant. Such equations,

being parabolic, require only initial condition; we shall take

.xO 1 for x <0
(ill) T T X Y at t = 0

0 , Y for x > 0

with

(112) Xo Yo0 0
to guarantee symmetry about the t-axis, a simplification that does not

exclude any essential feature. The variable t is time-like, so that

corresponding terminology will be adopted; when t is interpreted as time,

equations (110) govern Liin & Crespo's one-dimensional unsteady problem

of two half-spaces of fuel and oxidant brought suddenly into contact at

the initial instant. (Their generalization consists of different
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temperatures for x: 0 and X- Y^; they also take variable density

into account by means of the Howarth-Dorodnytsin transformations)

The linear combinations

j (13) G=T+2X, H-T+ 2Y

Satisfy pure heat equations everywhere with step functions for initial

IT values; whence follow the Shvab-Zeldovich relations

(114) G=H - Y erf , H =H 0 + Y erfr1  (H0  T + Y
0 00 0 0

vwhere the simila rity variable

](115) x/2 A

arises naturally. We now need only consider the temperature equation
which, in terms of t and n as independent variables, becomes

2(1I' t Ti_ T 1 a T =2 - /T

(116) t... "tD(XY/Y )e-

where X and Y have Just been determined as functions of T and n j
Behavior for small and large values of t can be inferred from this form

of the equation, for any value of 0 , by noting that the effective

Damkohler number is tD: for t small the combustion is nearly frozen

whereas for t large it is near equilibrium.

in the linit t 0 we find

(117) T = To, X = Yo(l - erf ;)12, Y = Y0(l + err )2.

A'. any finite value of x when t is small there is a combustible

mixture, formed by interdiffusion of the reactants, in which no

significant reaction has taken place. We may therefore expect a thermal
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explosion similar in many respects to the spatially inhomogeneous one

discussed in Sec. 4.

In the limit t, + we must have

(118) xy o

and then the relations (114) show.that

[HO+ Y erf f1- r 0 -for x<O0,

(119) T= x> 

IT Y erfr, 0 oerf Ufor x > 0.
0o0

There is a Burke-SchuImann flame sheet, corresponding to in-finite Damk6hler

A

-(120) T Ho

On the scale of n the flame sheet is a discontinuity so that, to

Al investigate its structure, we introduce the variables
4A

(121) t= x/2t1/6 , rt= vl/3(T* - T)/2Y 0

and seek a solution for which G is a function of 4 alone. This

choice of variables ensures a meaningful balance of diffusion and reaction,

i.e. a distinguished limit of equation (116) in asymptotic parlance. The

limit is

(122) d= C(( - with C =2De

and matching with the outer solutions (i19) requires the boundary conditions

(123) de/dr = ±1 +o(1) as +- ..

:" -. . . . . . . . . . .-."
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The problem (122,123) is that for the classical Burke-Schumann structure

(cf. Sec. VI.2).

L " The evolution from the frozen regime to the equilibrium regime

turns out to be remarkably simple in the limit e 6 o. Thermal runaway

occurs in the diffusion-generated mixture at a point on the line of

symmetry and a hot spot develops just as for the spatially inhomogeneous

explosion of Sec. 4. As the temperature in the hot spot approaches its

ultimate value H (corresponding to complete consumption 61 the reactants)

::ia symetrical pair of deflagration wves is formed, which penetrate the

large temperature gradients left behind by the focussing hot spot and

flash through the layers of frozen mixture consuming all of the deficient

reactant. All this happens within a range of t (including the runaway

point) that is exponentially smaller than the scale of mixing. AA

A detailed description starts with the induction phase, during

.1I which the temperature rises from the-initial value T yO n% a

41 0"(') amount. The corresponding small-disturbance equation

(124) W/at - ax/2x' = 6(1 - erf )e *

differs from that (55) for an initially uniform slab only in having an

extra factor on the righthand side; if we now restrict the discussion
A

to the region x > 0, the boundary conditions

(125) 3/Zx =0 for x O, = 0 for t= 0

are the same. As there the solution becomes unbounded at a point

(126) T T on x 0H~i which can be determined numerically (Liian & Crespo, 1972).
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The behavior of 4 as T e is given by equation (59) since r

is O(T - -)i/ in the variables T and n • The function 0 is

changed because the constant A in its asymptotic expansion (61) is different,

being determined by the asymptotic form (62) of the solution to a different

problem. (The value of A has never been computed.)

The explosion phase is governed by the equation (63) with right-hand

side re-laced by

(127) (T2/4Y 2)(HoT)2exp(O/T0 -T -6a)

I since n is effectively zero there. The reactant concentrations are

changed from YO/2 to zero as T increases from T to H *The

0 0- 0

, expansion (65) is still valid, but now

(128) T1  T 2{j(i) - 2kn((Y 0 - HoTo)/2Yo])/(l - T 0 ,)2

where again i satisfies the equation (67) and hence the identity (68)

with the -ew 0" Between the hot spot described by this expansion and J '<.
the essentially frozen combustion field on either side there is a

stationary intermediate structure on the scale (70), the leading term

- of which is again T /(l - T X).
0 0

" - The transition phase which follows is governed by the modification

(129) / /w-2 2 e

of the equation (72), provided the definition (46) is replaced by

Y222 22

(130) E= (4Y0 O/HoTo)exp(-OY0 /H0 To).

The modification arises because the hot spot contdins the reactants in

stoichiometric proportion, which results in a truly second-order reaction
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rather than an essentially first-order one. The initial condition (73) is

* replaced by

(131) = -zn(-w)-2tnzn(-w) + p(r) + o(l) as w --

with r F I(-wi) 12fixed

while the boundary condition (74) is replaced by

(132) = 2 kn n t + A + 0(l) as cowith w fixed.

It appears that no numerical investigation of the problem (129, 131, 132)

has yet been undertaken, but similarity to the problem (72,73,74) leaves

little doubt that it would yield a transition from a focussing hot spot

to an Incipient deflagration wave.

The wave must first traverse the intermediate structure left by the

shrinking hot spot. The situation is the same as that in Sec. 4 except

that ahead there is a-mixture of fuel and oxidant in stoichiometric

proportion, i.e. X = Y [cf, equations (114) with n = 0], instead of

a single reactant. It follows that the variables (76) are again

appropriate, if the new definition (130) of E is used, but that the

velocity (77 bis) must be replaced by

H3

(133) W =/6---exp(Y 0/210 T 0)(YoHoT0)
0 00 000

in accordance with the result (11.52). As decreases from Yo/HoTo

to zero through the intermediste region the wave decelerates rapidly from

infinity to

(134) W = To/Yo 0)exp(Yo/2HTo),

0 0 0 10 0



-39-

the velocity with which it enters the near-frozen external field.

For the slab considered in Sec. 4, the wave then continues at the

same speed to the surface, but here it encounters non-uniformities in

available enthalpy which produces 0(1) changes in its temperature and hence

exponentially large changes in its velocity. These non-uniformities have

been formed by interdiffusion of the reactants up to t =e /6, i.e.
e e

(135) T To, X Yo(l- erf n)/2, Y Y + erf )/

e 0 e

where

(136) ne x/2/,-

and have no time to chafige during transit of the wave.

The situation is similar to that in the intermediate region: the

combustion field is stationary and has a much larger scale than that of

the preheat zone of the flame. Far ahead of the wave on the latter scale

the temperature and mass fractions have the distributions (135) at the

. instant the wave reaches the position x; while behind

(137) T H Y erf X O, Y Y erfrn for x > 0.
0 0 e 0 e

To determine the velocity of the wave we use the result (1M.51) which, as

was pointed out there, holds both near and far from stoichiometry. Thus

(138) W /(T /Y6.)(1 H - f [(H-YeY e rf- Ile
0 0 e 0 0erfe)L 0 l 0 e Oee

where

(139) C : (I - erf ne)/2To( Ho-Y 0 erf

0. 0 0 0 e

ik~ ,:+ ,,. ;:..-.+ , ,.+ +. ..... + ,.r,, , ... _+_ + ._ ++_. ._ + .+, +:,+ + + _,. +...-" : . " + '+ -'' ... ...... ....... .. . .. ... 0;
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L. ~is the wave speed, which clearly reduces to the-value (13 ) for = 0.i i 
ne

The result cannot be valid as + since the propagation is then

associated with significant changes in t; well before then, however, the

formula (11.51) fails because J (i.e. the oxidant flux) becomes small.

The correct result has not yet been obtained, perhaps because it would

add very little to the picture. Note that equilibrium with a Burke-

Schumann flame sheet holds at any finite x immediately after the explo-

sion: the combustion field (137) is precisely of the ultimate form (11b).

The picutre which has emerged is remarkably simple, 
consisting of

regions of frozen chemistry and equilibrium with reaction zones between

them, the hallmark of activation-energy asymptotics. To secure the

essential features very little analysis was required beyond that for

} :'Ithe 
thermal explosion 

of Se .
.

I -

I177
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