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Foreward

This report is Chapter XII of the twelve in a forthecoming reseéarch

~ e

monograph on the mathematical theory of laminar combustion. Chapters I-IV
originally appeared as Technical Reports Nos. 77, 80, 82 & 85; thesé were
later extensively revised and then issued as Technical Summary Reports

No's 1803, 1818, 1819 & 1888 of the Mathematics Research Cénter, University

of Wisconsin-Madison. References to I-IV mean the MRC reports.
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Chapter XIT

Ignitios & Explosion

The phenomenon of ignition has already beén ericountéred in at least

et -
> s

three contexts: burning of a linear condensate (Ch. IV), sphericel diffusion

flame (Ch. VI) and. sphérical premixed flame (Ch. VII). From the S-shaped

response curves determined by steady-staté analyses it was argued that the

Maben e i woemy oy

burning rate would jump from a weak, almost extinguished, level to a vigorous
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one as the pressure (and hence the DamkShler number) is increased through

some critical valué (corresponding to- the lower bend of S). An intrinsically ‘

unsteady phenomenon, appropriately called ignition in these contexts, was

theréby inférred from existence results for the stéady state. :

Such analyses have & fairly long history in combustion, the simplest “
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example being the thermal theory of spontaneous combustion identified

with the name of its originator, Frahk-Kaménetskii (1969). Sec. 2 will give

a mathematicel version of that theory, which shows.an -early appreciation of

activation-energy asymptotics (though not in thé formsl sense of the present
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monograph).
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Useful thcugh steady-state analyses undoubtedly are, such phenomena
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demand unsteady descriptions; and that is the main goal of thé present
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* chapter. The three contexts already encountered are, however, too
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complicated for our purposes and we turn instead to a simpler problem

- containing the essential feature, namely the evolution of a deflagration
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i wave from an unburnt state.
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Consider a thermally insulted enclosure containing a mixture at
sufficiently low temperature for the reaction though présént, to be very
weak. Since the heéat released cannot escapé the température must rise,
albeit very slowly. After a long time the heat genérated by the initially
weak réaction will have raised the teémperature of the mixture enough to
excite rapid reéaction somewhere and, if the combusticn field ;s inhomogeneous,
‘& deflagration wave will sweep across it. To distinguish this type of
rapid reaction from that causéd by external agencies, thé term thermal
explosion is used. (Thermel refers to the temperature sensitivity of the
reaction raté. Another type of explosion is due to & rapid chain reaction
béing initiatéd when conditions are such that -4 few necessary rédicais are
produced from one of the reactants.)

A spatially homogeneous explosion is deséribed by ordinary differential
-equations. 1Its study in Sec. 3 provides insight into the mathematical nature
of the rapid transients characteristic of the explosion process. That
prepares the way for ézdiscussion of the spatiallj inBomogeneous problem
in Sec. k.

A distinctive feature of thermal explosion is thé very rapid temperature

increase, known as thermal runawvay, that occurs at the end of a wéll—definé§
' induction period. The mathematical maenifestation is unboundednéss in the
golution of an equation for small perturbations of the initial state.
(Evolution equations that generate unboundedness solutions after a finite
time have recently attracted the attention of mathematical analysis.) The
subject of e thermal ignition provides other examples, one 6f the simplest
being a half space filled with a combustible mixture, at the boundary of

which a positive heat flux is applied. After = certain time, ignition
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occurs et the boundary and a plane deflagration wave propagates into the
interior, consuming.the mirxture in its pasaage. The early stages of the
process -are described in Sec. 5. -

The probléms in Secs. 2-5 are all concerned with reactants that are
premixed; a whole range of such prohlems, to which activation~energy
asymptotics could be profitably applied, is discussed by Merzhanov &
Averson (1971). By contrast Sec. 6 treats the so-called Marble-Adamson
(195&),problem} in which a fuel and oxidant in separate half-spaces are
brought into contact at the initial instant so as to interdiffuse and burn.
There are many points of similarity with the spatiglly inhomogeneous thermal
explosion, and a reasonably complete description of the combustion process

is possible.

2. Spontaneous..Combustion.

Exothermic chemical-reaction is a well-known hazard of'certgin:bulk
materiﬁis in storage or transit. Joseph Conrad in his story "Youth"
graphically describes the peril. Take one ship with a cafgo of coal
dampenéd down because of an earlier leak (now fixed); embark on a.slow
voyage to Bangkok; and before the China Sea is reached the legend "Do or
Die" proves ominous rather than brave.

Any moist volume of organic material (e.g. wood chips, wool, corn
cobs, compost) will, beéause of chemical reaction initiated by micro-
organisms, get hot. (The reduction of spontaneous reactions in fruits
and vegetables is a major concern of post-harvest physiologists.) Certein
inorganic material such as ammonium nitrate, lead azide or a hydrogen sulphide/

oxygen mixture will also heat up because of chemical decomposition.
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If the reaction were independent of temperature theré would bé a

maxXimum, depénding on the dimensions, to which the temperature of a volume
of material would rise after a long time. (That ma¥imum holds stéady over
an even longer period, but there is an eventual decay dué to reactant
depletion.) In the quasi-steady staté the rate of generation of héat;
which is proportional to a3 for a volume of characteristic dimension a,
would be balanced by lozs through the surface, which is proportional to

a2 with a factor of proportiocnality an increasing function of temperature
there. Clearly the larger the volé&é’iﬁ'équilibrium the hotter it would be.
Howevér, the reaction does depend on temperature, proceeding much more
vigorausly~at highéer temperatures, so that there wiil be a critical vaiue of
a beyond which the efflux at the Surface is insufficient t6 dispose of the

héat generated and unstéady,COmbﬁstioh will occur. Our first task then

is to look for steady states.

Any steady state is describéd in equation (I.56) with 3/3t = y = 0, i.e.

(1) © vPr = = where Q = De’e/‘T,

the latter being eppropriate when the length a is used in non-dimeénsionslizi~

tion. For solids, the density has a constant value, which may be designated
P, SO as to replace o by 1 in the definition (I.59) of Dj pressure does
not arisé, vhich means that 5; should be replaced by ;CQR}cpm in that
definition (thus éliminating the gas constant R from it); and o is
usually taken to be zero. The only new assumption is that reactant depletion

may be neglected (the constant mass fractions in @ bteing absorbed into

D) because the steady state is close to the initial state, a condition ensuze:

& posteriori when 6 is large. For gases, of primary interest to us,
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there is the additional assumption of small heat réléase so that the constant

S
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density approximation can be made to ensure that the mixture stays effectively

at rest,
For an initially uniform temperature Ty such as we have sco far
envisaged, this purely thermal problem can be treated in thé limit 6 » o

by setting

. = a1 ~{

’ (2) T=1,+0 T +o(87).

3 v

4 To fi;i order we find
i (3) v’y = -set,

:‘;{‘3 j\

28

;i‘ﬁ where

e . . : 1
7{;"'! 2; "O/To 2 N §
‘(“5“'«2 ¥ b = B ’ ’ ‘{;3
N (4) ¢=1T/T) and & = Dee /To. ¥
- P

A
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Note that the steady state being sought is close to the initial state,
so that neglect of,regctanf,depletion is Justified. However, for natural

organic materials such as wood chips the activation energy is not large =

and depletion is not small; in either circumstance the present analysis

is not appropriate.

Faanr e "
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‘The approximation (2) is familiar from our earlier ignition studies

(secs. VI.h & VII.6). 1In the present context it is due to Frank-Kamenetskii,

s TIBU AR r e w4l

constituting an early example of activation-energy asymptotics. References

Lay,,

and & discussion of the solutions of equation (3) are given in his book

(1969). On the other hand, lineaFilzation of the exponent 6/T in the
o

Arrhenius factor has sometimes been adopted as a model not rationally

consistent (in an asymptotic sense) with the underlying equation (1) for
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the specific problem béing examined: The plané form of equation (3) has

a long history (Stuart (1967), gotng back at least to Licuville {1853), to
whom it is Sometimes attributed. The genéral solution is known, but thére
appears to be no way of fitting it to boundary conditions of interest. As
a consequence, soluticns of compléte boundary-value problems have only
been constructed in a few special cases.

‘Amongst these are problems depending 6n x -alone. Indeed the corresponé-
ing problems for the exact equation (1) can thén be solved, providing useful
checks for the present asymptotics [cf. Shouman & Donaldson (1975)]. A
particularly simple éxemplé is an infinite slab [x| <1 of combustible

s S50 that

material whose surfaces are held at the temperature TC

(5) $=0 for x= #l.

Such a surface condition corresponds to the limit of an efflux k(7 - TO)
per unit aréa as k + w, and it is the¢ ~ility of the material in the slab
to ¢onduct that heat to the surfaces whiin determines whether a steady state

exists or not. By symmetry ¢ will attain its maximin, .¢m say, at

x = 0; and in terms of it we have

) /2 ? Ll
(6) 4=21m (" b2y,

sech

(c£. Fig. 2a for a graph of this function.) The boundary conditions

(5) therefore require
(1) J6/2 = ¢

a relation fixing the meximum temperature in terms of 6. For a given

material § can be varicd through a, the semi-thickness of the slab,
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or T;, the temperature at its surfaces [see equation {kb) and the definition
(1.60) of D].

Fig. 1 shows the response (7), which has the typical shape of an

ignition curve. There is - a critical value

_ (8) 5, = -878.
é;é.j above which no solution exists and below which there are two solutions. A
i?;’ value of § greater than §, 1is said to be supercritical while a smaller
?;ﬁ,f . value is said to be suberitical. The implication is that thick hot slabs,
Qf.q N b2ing supéreritical, will burst into flames but thin cold. slabs, being

N i ) )
(suféicritiéal, will not; and this general picture has béen confirmed experi-

mentally for a number of .substances.

] . :
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The symmetry of the boundary conditions makes the solution atypical nowever,

E

;i :é as we shall see from another example in which the surfacés x = %1 are held

?3 ti ‘at temperatures T, and aTo,;rgspectivély, where 0 < o < 1. Now the .
if :§ reaction is confined to a neighborhood of the hot boundary in the limit

*
(R

‘9 + » instead of ﬁeing'spread%acrOSS the slab, so that conduction of

o
Ly

. Caont e e h e
R oA A o T e "

its neat to that surface is much easier and Gc is much larger.

The initial temperature in- the slab, due entirely to conduction, is

R R Ll S Ty e

(9) T=[1+a+(1-a)xiT/2 i
:f:r‘i and we seek a steady state within 0(6-1). For such a state the 0(1) :
‘ temperature nas its maximum at the hot boundary, so that reaction only
§
occurs in a zone near there. The expansion (2) is still valid, dut 1
E its variable is now - i*

(10) £=6(1 - x).

I T o) e i s e i o i e .
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The structure of the reaction zone is found to be governed by

(11) ,a%/age = - §e® with § = 9’25
and
(12) ap/ag = (1 - a)/2T, + o(1) as > -=,¢ = 0 for g = O,

where the first boundary condition comes from matching with the temperature
(9) outside the zone. The general solution of eguation (11) is

¢ /2 L 9qy. e
(13) $=2 fn ,{e 0 sech[ige 72}}/"’"3('5— 'Ejo) ]}

where is the location -of the maximum ¢o; and to satisfy the conditions

%0
e
(12) 22 must set

~ (1-)2 =% 1/2 . %72
(lh) § = -1-]-'-—3—)—" e 0 anéd . = i( 2) sech l(e -0 ,)‘
$7 0 ~ <"’0 ;
=Y de

Since ¢ vanishés at the surface, ¢y Tanges from 0 to-w (otherwise
£y is complex), so that § cannot exceed

(25) 5, = (1 - a)?/8e,

The * signs on 50‘ provide two solutions when 8 <§c (see Fig. 2a); for

the plus sign, £, lies outside the slab and the maximum +t. in the sled

0

is zero (its surface value) and not ¢o. If ém denotes this mexinum, then

={¢no for go < 0,
0 for go >0

(16) b

and the relation (14) leads to the response shown in Fig. 2b.
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. ignition rather than éxplosion. With an ambient temperature “TO’ an

-9-

Noté that § = 9-26 implies th;t the D- corresponding to gc is much
larger than that correésponding %o Gc' We conclude that raising the
temperaturé of thé cold boundary to that of the hot will greatly increasé
the risk of explosion. In faet the formula (15) suggests that the risk
increases sharply as soon as o is within ole”) of 1.

Two further points should be noted. The second problem illustrates

external agency is required to raisé the surface temperature at x =1
to To; and if that is ultimately done slowly enough the -conduction profile

(9) will ve established. Also we note that nothing has been missed in

either problem by looking for steady states within 0(9-1) of the initial
state. Any steady state further away would. correspond to-a D of exponential
order e/:m? vhere the maximum temperature Tm is greater than, T.. It
would theréfore‘correspond to the origin in Figs. 1 and 2b.

For a review of the subject, including other geometries and boundary
conditions, seé Gray & Lee (1967). They do not use formal aSymbtotics,

and indeed theré is room for a comprehensive treatment doing so.

3. Adiahatic Explosion.

. replaced by

To describe an unsteady phase of the combustion, equation (1) is

(17) 3T/3t - v°T = pe8/T
so that the small-disturbance equation (3) becomes

(18) 3¢/ 3t - 72 = §ed.




Th problém is completed by the initial condition

(19) $=0 for t=0

end suitablé boundary conditions.

The‘hoh-existénce of & steady-staté solution for the slab with équally
hot surfaces and supéercriticel § implies that ¢ must increase without
bound, i.é. that T goes further than O(e—l) from T,. Indeed this happeus

et a finite time, as we shall now show for the spatically homogenéous protien

RN

of a material thermally insulated at its boundary surface, when equation (17)

reduces 10 : B

(20) ar/as = pe~0/7,

'

. Lo L
B s St L

Our object in- the present section is to gain insight into thermal explosicns

N
A

generally by examining those that are spatially homogeneous.

The correspénding smaell-disturbance equatfbn is

T
s

ot

o B S

f21) ag/at = se?,

o

o

vhich has the solution

i

SenE

TR st

(22) ¢ = -gn(1l =1)
satisfying the initial condition (19); here

(23) T = §t.

At the finite induction time s-l, the perturbation ¢ becomes unbounded

and we speak of thermal runaway. Noté that the phencmenon occurs for all

values of § in the spatislly homogéneous problem beceuse the heat genera-si
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by the reactégg cannot éscape, i.é. conditions are adisbatic. On the
other hand, if an artificial heat-loss térm is introduced then suberiticzl
behavior can be restored, seé Kassoy & Poland (1975);

Clarification of the runaway process requires a return to equation (20).
However, béyond thermal runaway a purely thermal model is of little practical
significanceé since it predicts an unbounded increase in T, whereas the
risé ceases when the r?actant'is consumed. Under the assumption that a
single (decoémposing) reactant is involved, its depletion can be incorporated

by reinstating the mass fraction in eguation (20), i.e. writing

(24) ar/at = D(Y/Yo)e"e/ T,
and adding
(25) av/at =-D(Y/YO,>é‘-e/ T

where YO is the initial fraction of reactant in the material. Clearly

the Shvab-Zéldovich relation

(26) Y4 T=Y + T =H (say)

holds. No change in our analysis of the induction phase (Sec. 2) is necessary
bécause Y then stays within 0(6-1) of ¥0 and hence may be replaced by

it in equation (24). We are thérefore led to the problem

(27) dT/dt = .(TgG/YOB)(HO - Texp(e/T, - 0/T), T = T for ¢ = 0.

Clearly T is monotonically increasing but the factor (HO - T), corresponding
to reactant depletion, ensures that it does not go beyond H_; in fact it

rapidly approaches HO (exponentially in time).
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Kassoy (1.975) hag discussed the asymptotics of this problém directly;
hére we shall verify the salient featurés of his results from the exact
-solution. With the confidence so gained wé shall attack spatially
inhomoggneous problems in Sec. 4, for which there are ho éxact solutions
‘against which to check the asymptotics. The exact solution hére is expressed

in terms of theé exponéntial-integral function

(28) Bi(x) = f et &,

where the principal-value sign is unnécessary for x < 0. With the time
variable (23) wé find

/1
=r )/"}(0'9 = e

5 8/
(29) T

2 o 0
0

Ei(e/T - o/H,) - Eilp/1),

-
.Lo(
Te

‘where.

-8/Ty o 6/H, )
(30) ts = (Yg0e /Té)[e Ei(O/TOéélﬁé)in(é/TO)].

(31) Bi(x) = anfxz| + 0(2) as x>0

the formula confirms that T s&pproacheés HO exponentially as
-1 s B
6 exp(6/T -0/H,) © ve.
Three phases can be distingiished when ¢ is large: ‘induction,
explosion and relaxation, If T dis bounded away from HO, the arguments

of both Ei-functions in the soélution (29) become large so that, since

-1 x 1

x e[l + x % O(x;a)] 85 X% o +o,

(32) Ei(x)

ve find
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= [ 2 2 T 2w - V -J,'
(33) To~T = [YGT/To(H-T) Jexp(0/T-6/T ) [1+0(67") ],
which reveals two of the phases. In the first phase T is still within
0(9—1) of T, and the right-hand side is 0(1), corrésponding to induetion.
In fact, the result (22) is recovered when

(34) rg =1+ (2 + 1 /5006 + o(e7?)

‘is noted. In the second phase T 1is bounded away from TO (as well as

from HO) and the right-hand sidée is exponéntially small, showing that
most of the change inToccurs within an expcnentially small intérval just
‘before the time Te* In that sense Te is the time at which the e%plbsibn
takes place.

The third, relaxation phase corresponds to values of T within

..1)

ole of HO; then the argument of the first Ei-funétion in thé solution

(29) is 0(1) and we have

(35) v = (¥be/T§)exp(e/Ho-e/Tb)Ei(e/T - e/HO)[i + ole™hHI.

small interval which, since the Ei-function changes sign at some positive
values of its argument, spans Te*
We now turn to the question of deriving these asymptotic results direetly

from the governing equation (2b4). C(onsider first the induction phase and

set

(36) T=T,+ e‘lTl(t) + e'QTQ(t) + 0(g™3).

Then we find

The final consumption of the reactnat also takes place within an exponentially

2 T, T o ORGSO Bt Ll = = = " e i a2 T
Y 12N 2 , ;s -
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1),

I

.2
(37) T, = T 2n(1

as in the earlier result (22), and
(38) m, =1 (0?1 - 1) < (@4 T Y )lml1 - 1) + /(1 - D).

The logarithm in Tl suggests that breakdown occurs when t is
exponentially close to 1, while the pole (1 - D7 in T,. changes that
to algebraically eélose; and correctly so sincé the explosion time (34) is

b(e”l) away from 1. To restore éxponential closeness it is only necessary

to absorb the pole into T, by writing

. - =1
g - . -
(39) T, = =l + 7(2 + T /Y )07 - 1,

which amounts to introducing the o(e"l) approximation to Té- The same

3

end can be achiéved formally by considering both T and 1 to be functions

of a new time variable 4& ir

(40) T =T+ e"lrl(?) + 0(9"2)
with
(41) 11(0) =0 and fl(l) = TO(2 + YO/TO)

( T othervise being arbitrary), then the explosion is fixed at ¢ = 1

and no pole occurs in Te(f). In short, the time to explosion has been

determined asymptotically by considering only the induction phase; it is

reasonable to suppose thal the same proceduvre will work in other problens.
The description (33) of the explosion phase can also be derived directly

from equation (24) but we shell not go into details. The most imporbtant
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feature is thée timé scale
R .
(h2) o = =67 m(t_ - 1),
which plans a kéy rolée in the study of the inhomogeneous problem, as '§€‘

we shall see in Seé. 4. As o ranges from 0 to YO/TOHO the tempéerature
(43) T = 1,/(1 - 0T ) + 0(1)

ranges from TO to HO, to leading order.

For the final, relaxation phase we write

(k) T=H, + e’lwl(u) + a(87®)
r
in equation (2k), which shows that the appropriate time variable is i

() = (v -1/ e
where | ) . )
(46) €= —(Yoe/Tg)exp(~eYo/HoT0).

Then

(47) ap/ae = ~¢e? with 5 = 2 12,

the general solution o6f which is

AN D A

(48) @ - @ = Ei(1) - Ei(-p); :
here u& is just the value of @ when ¢ = -1. The requirement that ¢ +0 é:
as @ - 4o (i.e. all reactant is consumed) is satisfied automatically, as it
is that of matching with the expansion (43). For the latter, note the a




result

(49) ="

of introducing @ into the expansion (33) and thén keeping it fixed under
expansion. Comparison with the solution (48) shows that the integration
constant o, is left undetermined and in fact cannot te determined by
asymptotic development: however many terms are retainéd in the expansion
(33) it will néver recapture the Ei-functions of “hé exact solution, whereas

thosé functions determine ¢. It is theérefore fortunatée that results

analogous to
(50) w, = -Ei(1),

here obtained from the exact solution, will not Le néeded in the sequel.

L. Explosion with Heat Loss.

Kassoy (1977) has incorporatéé non-adiabaticity into the spatially
homogeneous problemfby'insertinga distributed heat-loss term proportional
to T - TO into equation (2h). hpart from the lack of & Shvab-Zeldovich
relation, the new features are the inability of the reaction to produce
the sdiabatic temperature Ho and the eventual decay ‘o To. To obtain
the essentislly new phenomena of hot-spot formation and subsequent
flash~through it is necessary to consider a more realistic problem
invelving spatial inhomogeneity, and that can be done without sacrificing
the Shvab-Zeldovich relation.

Consider once more the infinite slab with equally hoi surfaces.

The equations (24,25) are now replaced by
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GU - S = v -2 Pyl = iy )l

cf. equation (17). For a solid, where thé reactant is unable to diffuseé,

the Lewis numbet-. is infinite. Nevértheless we shall take = 1 so as

to have the simplification of a Shvab-Zeldovich integrai—zggysz Rather than
meintaining the reactant thére it would be more practical to prevent its
flux. We shall see, hovever, that the boundary condition on Y does not
influénce the solution until after thé main events have taken place. The

problem we shall treat is thérefore

(52)  oT/at -32p/px2

(156/100) (Hy-Texp(a/T, - /1)

(53) T=T, for t =0 and for x = #l.

By symmetry the condition at x = =1 can be replaced by

- (5h) 3T/3x = 0 for x =0,

wiﬁh only the half-slab 0 < x <1 considered.

In addition to the induction, explosion and relaxation phases found
in thé spatially homogenecus problem (27) there are now transition and
propagation phases. These arise because the explosion is here confined to
a single location and then bropagates elsewhere, involving a transition
from the formation of a hot spot to the flash—through—of a deflagration
wave. These two néw phases postpone the relaxation phase, which is the
only feature affected by the boundery condition on Y.

As for the homogeneous problem, the induction phase is described by
an expansion of the form (36), but now the coefficient functions depend

2 e ne
on x also and T, = Totf satisfies
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(55) 29/36 = 224/0x2 = 8e?,

(56) 3¢/ox = O for x = 0, $ =0 for x =1 and for t = 0.

If & is greater than ﬁé, as we shall suppose, the solution cannot tend
to a steady limit. Since the solution of the corresponding homogeneous
problem becomes unbounded in & finite time, it is not surprising to

find that the Same is true here (ef. Payne 1975 and Ayeni 1978). Thermel
runavay cen no loénger océur everywhere when the surfaces are heéld at TO but

is localized at the Symmétry plahe x = 0. The runavay time —s“lfe(c) i no

longer fixed on the t~5cale, but i5 a function of § that was first
detérmined (numericelly) by Poland (1979), see Kassoy & Poland (198Ce),

and then independently by Kapila (1980). As &+ §, the time to runaway becomes

indefinitely long.

While ¢ qanqot be calculated analytically, its form as t T, can be
determined, a step that is cruciai for the subsequent developmént. Backward
integration of a parabolic equation away from e singularity (in this case
at t = G"lre) is no novelty; more than thirty years ago Goldstein (1948)
encountered such a question in his discussion of Prandtl's boundary-layer
equations near a stagnation point. He showed thal the similarity variable,

here
6517 n o= &M/ - M2,

plays a central role near the singularity. Jn terms of n,r our eqguation

becones

IR

(58) 8¢/t = (1, - O Ma%e/ant - (n/2)as/an] = e,

4o s

i
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In view of the result (34) for the homogeneous problem, a uniform

asymptotic approximation
(59) ¢ =~ tnlr - 1)+ ¢0(n) +o(1) as 1 41,

is sought for n bounded. We find

$
{60) ¢ = (n/2)¢6 + e ©_1 vhere ¢o(0) =0

according to the symmétry condition (5b4); the other boundary conditions
cannot be applied. But to deteéermine ¢0 another boundary condition is
needed and that comés from matching with thé induction solution. Since ¢

0
cannot bé exponentially large, it has the asymptotic form

(61) —’¢o =-2mn+ A+o(l)as nrew,

which provides the needéd condition once the constant A has been
determined by matching. To effect the matching we write the explicit
terms (61) as functions of x and 7, and expand in =

e =T to obtain

(62) ¢= -2 tn x ~ 2n § + A+ o(1)

as the behavicr of the induction solution as 1 4 Te with x bounded away

_from zero. The numerics mentioned above do indeed exhibit such a behavior,

so that A(8) can be determined (Poland 1979, see Kassoy & Poland 1980a;
Kapila 1980). The procedure fails if § is suberitical because the
numerical integration does not yield the reauired form (62) but tends to a
steady $§ate instead.

The expansion (59) exhibits a focussing effect in that constant values

of ¢O moves towards x =0 as 1 4 Tos i.e. the peak of the temperature
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distridbution for T constant becomes sharpér as thermal runaway
approached. This feature.versists into the explosion phase, as we shall
see shortly, so that a well-defined hot svot i§ formed. A combinatic ..
asympto?ics and numerics therefore provides a complete picture for 1 < Tg
Induction is immediately followsd by explosion, discussed by Kassory &
Poland (1980b) and vy Kepila (1980), for which the time variahle [42) is
appropriate. While nonlinear scalings heve been gncountered before in
asymptotics, even in combustion (Sec. II.5), an exponentizl one appears to
be no;el. It is fundamentzl to the process considered here. In view of its
role in thermal runewsy it is not surprising that n is the other approf:iate

variable for thé explosion phase. In terms of ¢,n the governing eéquation

becones

(63) " o1/30 + 6l(n/2)53/an - P2/3r2) = (/) (5 -Dexnlo/t, ~o0/T ~a).
Since |

(6h) = 6-1/2 ne—ec/Q,

the 0(1) values of ¢ and n for which the equation is valid correspond
to an exponerntially thin region, the hot spot, that rapidlyigets thirner

as time increases. The focussing as thermal runawvey is approached therefore
continues during the explosion stage.

If the reaction term in equation (63) is to play a role, we wmust write

(65)  m=m/1 - ang) + 07T (nse)  o6™)

\
o
[ef. the result (43)]. The variable o only appears as z paremeter in

the cquation for 7., so that its solubion may be written
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(66) 1, = Ttyln) - #l(1 - TON¥, - BTEO/¥ 1N - 7,90
where
(67) - (n/2)y' + Y = 1 with ‘w'(o) = 0.

This is identical to the problem (60) for ¢y3 indeed, matching the

éxpansions (36) and (65) under the transformation (42) demands

It follows that the boundary layer at x = O in thé explosion phase is
completely determined by the focussing effect in the induction phase and
indeed inherits the spatial structure of that effect.

‘The explosion is so fapid that the température in the slab away from

x = 0 stays sensibly frozen at thé value

(69) S T=T ¢ e'ng(-zznx - 06 + A) + o(67%)

attained during the induction phasé. Cléarly this does not match the
expansion {65), even to leading order. An intermediate expansion is needed
to describe the structure left behind by the rapidly shrinking hot spot.

The breakdown of the approximation (69) when fn x = 0(8) suggests that

1

(70) = 20" gnx= o= 07F n(n/s)

is an appropriate variable to use with o. In fact, the intermediate
expansion is indepénd;nt of ¢ , which means that the residual structure
is stationary too. Details have béen given by Kapila (1980); we merely
note here that the leading term TO/(l - TQX) ranges between those in

the expansions (65) and (69) as X decreases from ¢ to O.
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Within the hot spot the sxpansion (65) is valid until 0 approaches

&l

/H TO, i.e. T approaches Hb . If a gaseous reactant 1S being cénsidere

and 'HO differs appreciably from LAPREL it often doeés in practice, the
fluid mechanics can no longer be ignored through adoption of the constant-

density approximation (Kassoy & Poland 1980b). Otherwise one éontinues with
Kapila (1980) to subsequent phase where the timé variable (45) is sppropriats;

that is not suggested the tise expansicn (65) as far as we have taken it
gg

but by the nezt term. Thé corresponding space variable is

: R T - R W /-

- (12) g=5/x/e/
since that ensures a diffusion term in the egwation ¥
‘g;‘,
) f o 2. ,..2 ] ¥
(72) 36/5s - 5 o/2E" = ~pe? ’
governing the coefficient T1(g,w) in the generalization of the expansion Af
(bk). The initial condition =
(13) ¢ = - ail-2) - gngn(—=e) + y(y) + o(1) as wr ~w vwith
/e . :
n= gf(-u) / fixed -
kel
comes from matching with the explésion vhase vhile the boundery condition ;
] 2 2 . 4 - . ;
(74) = - on g = ntn g + A+ o(l) as £ wvith @ fixed E
B
comes from matching with the intermediate expansion, neither of which E
will be derived here; in addition 3

, Lo
Corr§ate ol

'

(15) 34/38 = 0 for ¢ = 0. )

v

o eyt

bopre
These conditions kuwsw the oxrigin of ®w wundetermined, as in the honogeneous

|

L

problem, but othcrwise ensure a unigque solubion.
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Fig. 3 shows the picture which émerges from the numerical solution
(Kapila 1980). Since thé initial condition (73) is effectively independent
¢f £ when that variablé ic 0(1), the curves at first have a plateau on
the left which is continuaelly eroded by the boundary condition (T4). There

comes & time, however, when the erosion is stopped and the plateau begins

iﬁlr to reestablish itself ovér ever-increasing distances, i.e. an incipient

Ef%}g . @eflagration wave is formed. The focussing effect is then being limited

i;;; by reasctant depletion and the hot spot, now fast approaching the temperature

5:;1‘ —Ho, begins to -spread as the reaction zone détaches itself from the cénter
R and starts to propagate across the cold unburnt slab, leaving behind

AR almost depleted reactant. Most of what was- the final relaxation phase in
the homogeneous problém is now taken up by this %ransition from hot spot
to flash-through. . ,

The remainder and more is swallowed up by the propagation phase, which
takes much longer than the transition phase but is still very brief. Indeed ‘jéu
the result (II.22) shows that, for en O(e-lee/To) value of D, the
deflagration wave takes a time O(eGl/a) to reach the surface of the slab.

This suggests using the variables
(76) = [xyls) - /062, s = (x - )/0c'?

"to investigate the flash-through, where ¢ is measured from the location

Xy Of the flame front. The fact that O(e-l) changes in ¢ measure the

same distances as O0(1) changes in £, i.e. that the flameé structure will
be described on the scale of g, supports this suggestion.

To trace the progress of the deflagration wave through the intermediate

region into the main part of the slab, note that the region is both

\\
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: stationary and much thicker than the preheat zoné of the wave., Far ghead
of the flame sheet (on the scale of the preheat zone) at the instant it
reaches the position X the tempérapure is To/(l - TOX) while eveérywhere
behind the temperature is Hye According to the result (II.22) the flame

velociy is therefore given by
. 2
(77) ku(s) = J2/<5 1y (1 - TX) M, ~ HEX).

As X decreases from YO/HOTO to zero through the intermediate region,

/2

Y the veve decelérates rapidly from infinity to ﬁ§§'Hi/YoeGl , the velocity

k at which it fleshes through the main part of the sladb. (The flame moves

T

moré rapidly the closer the unburnt mixture is to the flame temperature

Pl n

: H

o R

o because thé heat of combustion is ablé to préheat a larger améunt.)

The propagetion phase ends when the preheat zone reaches the surface.

In the ensuring relazstion vhase the wave rapidly decelerates to zero,
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thereby establishing & steady state with the reaction zone just inside the

EE

Gy,

slab. Details are given by Kapila (1980); we merely note that the relaxation

i
et

Ve "t
&4
Ve

N _ L]

¢§ take a very short time 0(053/2) to be completed [ef. the 0(€) relaxation 5
s
Y time for the homogencous explosion]. 13
! We do not go into details of the relexation phase because it is 2 é
] creature of the unphysical boundary condition on Y. If instesd of maintaining Sg
; the reactant at the surface if is prevented from diffusiﬁg aéross the surface, g

b 433

! then nothing changes until the relaxation bhase since Y + T is constant to ,§

; ' leading order everywhere. Al that tine the wave does not come to resi, :g
but is quenched by the cold surface (Buckmaster 1979), leaving behind Eg

"

. reactant-depleted material at temperature I, except for a smoll amount of §§

i

PacCe

unburnt reactant near the surface. Since the boundary continues to be .
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maintained at T,, there follows a relaxation phase of duration o(1)
during which esséntially pure heat conduction lowersthe temperature
evérywhere to Tb again and thé residual reactant spreads across the
slab, béing slowly burnt in the process.

Our analysis describes the formation of a hot spot from which emerges

& deflagration wave that rapidly consumeés the combustible material.

These are characteristics of actual explosions, so that the model has
cléar}y retained the éssential physics. For & solid, modifications are
necessary to account for infinite Léwis number but these only change—de?ails.
For a gas, the neglect of the fluid mechanies has undoubtedly excluded
significant effect (Kassoy & Poland 1980b), in particular the evolution of
the deflagration into a detonation. The real value of the discussion,

‘however, lies in its elucidation of the extremely rapid transients typical
of the explosion process, one of the most challenging aspects of combustion

theory.

5. Ignition.

Thermal explosion is triggered in a combustible material by thé build-up
of heat which cannot escéapé in sufficient -amounts through the boundary.
By contrast, ignition is caused by some external source of energy. For
example, part or all of the boundary mey slowly be raised to a high
temperature so that reaction starts nearby. Such a problem was considered
in Sec. 2 for a slab. (Sudden élevation of temperature is of more interest.)

Alternatively, a radiative heat flux may be applied, a mechanism that is some-

times & factor in the spread of fires.,

A TRIPSIELIPE, SR - S ¥ Lol NTTRRRSY  OILW o

¢

i
ARy

L . o s
ol L b L T U sl e oSl e

i

0h ol B 0 L st e ek e

Lo bt 0

bt e o0 o e e

S Pl ® 7 e n ot g e ad ol




3
&
ki

P

PRGN

TR FR ey
M . B

O Rl et
s TRy

Thermal runaway is not only a charactéristic of explosion but also
of ignition. As is clear from Séé. 4, if the goal is limited to caleulating
the time to runaway, then only thé induction stage need be considered.
Indeed, that is as far as the analysis has been taken by anyone to date.

Our integtion is not only to draw attention to ignition problems and

what needs to be done (problems which only make sense in the context of
iarge activation energy) but also to disclose another way in which runavay
can occur.

The spec¢ific problem we shell examine is that of ignition of & half
space by a constant energy flux (Linan & Williams 1971). Modificatgons for
e slab with its otheér surface insulated (say) are minor and will be obvious.
Since the discussion does not go beyond thermal runaway, reactant depletion
may be neglected; so that only the temperature equation (17) need be

considered, i.e.

(78) 21/t - 307/ 35 = pe~O/T

in the present geometry. The boundary and initial conditions are

(19 oT/ox = Té >0 for x=0, T=T, for t = 0and as x + -o

.

if the half=space lies in -« < x < 0. TInitially the temperature is uniform
so that, in the absence of external stimulus {e.g. when the surface is
insulated), there will eventually be an explosion if D is large cnough.
However, we arc concexned with the (earlier) cccurrence of runavay due to

the constant neat flux applied at the boundary.

gt A 5 st R A O o 5 A 3 i . bevt v Mo pns o i itneht minrre s

"?
¢

ey

S S Mg e g L G
(LRSI VA S NIEE Y

B0l A o e Y v

ottt

RN

o e da et

ot 1at 1 s

oS e R b

DT,

A 2 e

kY

T i

i

i

Noager

¥

SR e S, et
bl o R Pt i

At Ao gy At

il o et sat,
PRI :

U3 s




T
A W I e AR SR
e s A TN £ PR RS SRS . '
RAS AP L

- [P B
eyt .- -

~27-

To éstablish some preliminary ideas défine T,.» & temperature

charscterizing the reactivity 6f the material, by

(80) D= ACe)e®Tr

vhere A(9) is algebraic in 6. Clearly T, should be greater than TO;.

otherwise there will be reaction from thée start (0 < T <,To) or no reaction

at all (Tr < 0). The equation governing T is then

(81) 30/t - 3°0/0x° = Ale)exp(e/T, - 6/T)

vhere, at times sufficiently small for T +to be less than Tr. everywhere,

the right-hand sidé is negligidble. The solution

(82) T =1+ T(2A/ exp(-x2/kt) + x erfe (|x|/2v)1

satisfying the conditions (79) increases monotonically in t but decreases
monotonically in |x|, so that the value T. is first attained at x = 0, g

the -timz being

' 2, 2
(83) t, = a(T, - 7)) /hwé .

\
S 1 e S B SR, e VA DR

At that instant the reaction term must be reinstated. [To obtain tr in

terms of D, correct to leading order, insert Tr = §/¢n D.]

An accurate estimate of the runaway time must involve A(9), i.e. the

_reaction (as in Sec. 4). Nevertheless, the notion that the temperature

rises purely by heat conduction until it reaches some specific value

determined by the magnitude of D, whereupon reaction becomes important

o TSR R EE SR SFETAL TTINAY NEEERD Y

enough to produce runaway within a time 0(6"1), is central to the

development.
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For times close to t., the reactionless solution (82) is only valid
awey from x = 0, i.é. it becomes an outer expansion. Since reaction

" requires T +to be within o(6™Y) of T, and rusavay is expected to oceur

says . =1, . ea A . .
within a time 0(6 ~) of t, we introduce an InAeTr expansion

(&) 7=, + 07 (6,0) + 07y (5,0) + o679,
vhere
(85) £=6x and o = 8(t - tr).

The choice of scale for & is dictated by the requirement that

aTl/ag be 0(1) so as to accomodate the imposed heat flux, namely

(86) aTl/ag # T6 et £t =0,

wvhile the term in 6-3/2

is indiiced by an intermediate expansion which
must be introduced later.

The equation for T, 1is

1l
(87) 32T1/8€2 = ~ 1lim [e—lA(é)]exp(Tl/Te)
B0 r

vhile BeTl/aé;2 = o(ll) as ¢ + -» comes from matching with the solution

(82). We conclude that A must be o(6) and, in viev of the condition (86), that

= '

(88) Ty = Tyt TAE

where . ?é
(89) 110(0) ioc/ ﬁtr v o(l) as o> -

2 e ket

but is otherwise undetermined at this stage. The equation for T2 is

(90) _ 32T2/ag2 = -C exp(Tl/Ti)
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- if the choice

(91) A= co? 4 o(st/?)

is made, the requirement 82T2/352 =o(l) as ¢ + -w being met for any

consvant C. The solution satisfying
(92) ¥,/ =0 for £=0

has the property
: . 2, 2
(93) 3T,/ 3k = (CTr/Té')exp(‘I‘lo/Tr) + o(l) as g + ~w,

which is all we shall need to know about it. So far there is no reason
to suspect runaway: indeed the fact that Tio becomes infinite after a
finite time comes from consideration of an intermediate region, to which
we now turn.

The innér approximation must break down wh;n'g—t 0(01/2) since on

the ‘scale
(9k) x = ov/%

the time derivative 3/3¢ is as important as 3°/3%°. The inner expansion
suggest that the temperature differs from Tr by 0(9“1/2) there, so that

we write the intermediate expansion

' (95) T=T, +e”l/2Tl(x,o) + 67 m,(%,0) + o(1).

The equation for Tl is

(96) (3/20 - 2°/3%°)T, = 0,
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the temperature being too far from T,

solution (82) require

H,
I

(97) = 0, awl/ax =)

(98)

3|
fl

R ‘
8 TOX4 o(1) as

being a solution

(99) Tl = TX.

Continuing to T2 yields

15

the single nonlinear condition

{

|1, = Té(x? + /e, + T
(10k)
' o = (ut ka"e)l/e[c +

unlike that for T., this problem is not overdetermined since T

]
L on(eC/me 1M

for there to be any reaction (to

any order). Matchingiwith the inner and outer expansions and with the

for X = 0,

X+ - &nd 85 § > =,

There is one boundary condition too many but that does not prevent there

(200) (3/%0 -82/8X2)T2 =

. . ) 2 ; 2 o
(101) T, = Tio,-awé/ax = (CTr/Té)exp(Tlo/Tr) for X = 0,
(102) T, = T&(XQ + 20)/2/nt; + o(l) as X > -» and as o + -o;

10 has yet

to be found. Indeed its elimination from the boundary conditions (101) gives

S 2y . .
(103)  omy/8X = (CTy/T))exp(T,/T]) for X = 0.

A11 paranmeters can be purged by writing

;2, ¥ = (11* 7 /”’?)l/hN

3
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to obtain

(205) (285 = 23R, = o,
(106) aié/ai = explo + T,) for X=0,

(107) Tp = o{l) as X+ -» and as g + -o.

‘Numerical solution of this problem shows that 52 becomes unbounded at a

definite time

(108) 0= -.431

(Liﬁéh % Williams 1971). 1In terms of the original time variasble, runaway

therefore occurs at-

1

(109) b+ e"l(ntrwﬁ/rée)l/g[-.h31 + i o (TgelwtthCh)],

The mathematical problem for runaway can therefore assume different
forms. The nonlinear ariving term is in the governing equation (55) and

acts on O0(1) time and length scales. Here it is in the béunaary condition

-1/2)

(106) and acts over a time 0(9-1) at distences 0(8 . Moreover the

occurrence of runaway dépends on the reactivity of the material in some
cases but not in others. The explosion of Sec. U4 requires T, = T, and

materials of lower reactivity (Tr > TO) will never explode; on the other

hand, the ignition considered here will occur for any Tr > TO

explosion of Sec. 3 (albeit after an exponentially long warm-up period) if

s as will the

Tr is also less tham HO.

I "

RS 7 b
Vh SRA K5t Lty

R

prarrteucrry

e e ant YY)
R Lo i

prryyTE,

R

e

v

T ’,;i S o

s 4
I bl xd

et dis

e

e
b 2 U SRR

e yapercarty

)

e ™ "
SR S SR

i 3, i

e e g

RN

¥
I
I
‘i
3
=
3
%
b
3
4
5
s

i
b
z




naddNon nn s

¥
Yo S

~3

-

‘6. Explosion of Scparated Reactants.

If two parallel streams, one a combustible mixturé and the other

‘a hot inert, are alléwéd to come into contact then éventually the mixture will
be ignited by the inert. Such is the steady problem considered by Marble

& Adamson (195L4). Here we shall treat a somewhat difféerent problem having
some of the same features but closer to the thermal explosion investigated
.in Sec. 4. Mathematically it is identical to a special case éf the unsteady
mixing and explosion of two initially separated reactants considered by

Linan & Crespe (1972). Indeed we shall retain the notation of the unsteady
problew so as to -use results from Sec. 4 without trenslation. One-feature
missing from the Marble-Adamson problem is the diffusion flame which manifests
itself as & Burke-Schuman flame sheet sufficiently far downstrearn.

Consider a semi-infinite flat plate (Fig. 4) separating fasi parallel
streams containing oxidant X and fuel Y that come into contact at the
trailing edge and then interdiffuse to form a combustible mixture down-
stream. For simplicily the speédsjreactan% concentrations and temperatures
of the streams vill be taken equel. (Linan & Crespo'’s provlem is eguivalent
40 one allowing for unequal concentrations and temperatures.) For small
values of t no significant reaction occurs; for large values there is
chemical equilibrium, with a Burke-Schumann flame sheet separating a

' rersion in which ¥ is zero from one in which Y is zero. How the come-
bustion field evolves from the initial regime to the final one a2s ¢
increases is the main question. Such & Lransition srises in many combustion
processes, anothe; example being the unsteady ipnition of a fuel drop, so that

of considerable intercst. Noreover,

[

a ma! .enatical description i

experimenis have been carried out under conditions sinilar to those in

Fig. 4 [Licbman, Corry & Perlee (1970) 1.
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The essentisl details of the combustion field can be uncovered by

s e - T
o . -+

activation-encrgy asymptotiecs, as was shown by Linan & Crespo (1972). fTheir

discussioni is highly intuitive Since asymptotic methods were not well .

30 W 4 s

developed at that date, but nevertheless they accurately deéscribed the
main features of their more general problém. The present discussion is

more systematic and the description richer; only for the sake of simplicity

1 i v ra e s evte b

is the problém specialized.

The high velocity of the streams enablés longitudinal diffusion to

P

be neglected (cf. Sec. VIII.6); in addition we adopt the constant-density

epproximation. Taking unit Lewis numbers then leads to the governing :

equations ;

(110)  (9/5t - 32/axP)T = -2(a/5t - 22/25)% = -2(3/9t - 220y = D(X¥lY§)é'G/T

’

if thé reaction is first-order in both fuel and oxidant. Such equations,

being parabolié, require only initial condition; we shall take

[ Xy» 0 for x<O0 ' :
X = Y = at t =0 .

0, YO for x>0

(111) T= Ty,

with

L PO AR

(112) X =Y

CR T

e B T e e i s,

to guarantee symmetry about the t-axis, a simplification that does not ¥

o

s

exclude any essential feature. The variable t 1is time-like, so that
ecorrespending terminology will be adopted; vhen t is interpreted as time,
equations {110) govern Lifidn & Crespo's one~dimensional unsteady problem

of two half-spaces of fuel and oxidant brought suddenly into contact at

the initial instant. (Their generalization consists of daifferent

e e e T e A PN s 2 ad e (Ha,,,. o, i s e e 2B B AL et 7R i
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témperaturés for x z 0 and X # Y, théy also take variable density

into account by méans of the Howarth-Dorodnytsin transformetion.)

The linear combinations

B i L Y v
.1 g

e

s

{113) G=T+2X, H=T+ 2Y

satisfy puré heat equations everywhere with step functions for initial

o Secwr A T e ¢ N Tn e
N T AR )

valués; vhence follow the Shvab-Zeldovich relations

11k =H o~ n = ; = -
(11k) G=Hy~Y erfn, H=Hy+Y) erfn (HO Ty * Yo)s | é
vhere the similerity variable Cd
. . 2
(115) n = x/2/ E
4

arises naturelly. We now need only consider the température equation ﬁ
4

vhich, in terms of + and n as independent variables, becomes f
R

6 ¢ lp ot 1 LT _ (xx/v2)e= &/T ]
(116) t-é—t---é' 'gﬁ'-E -;;]-2--1}1) XY/YO)e :‘3

i g e

whére X &nd Y have just been determined as functions of T and 71 .

”':1,

Behavior for smell and large values of t can be inferred from this form

)

»
TR

of the equation, for any value of 6 , by noting that the effective

4% o4

Damkohler number is tD: for t small the combustion is nearly frozen

Zivia

P

vhersas for t large it is near equilibrium.

P ST
il

«

in the linit + = 0 we find

s o

! e S

LA
—— Al

T

i

(117} T X = Yo(l - erf n)/2, Y= Yo(l + erf n)/e.

o’

N 1t
i

A% any finite value of x when ©t 1is smell there is a combustible

L
s

mixture, formed by interdiffusion of the recactants, in vhich no

significant reaction has taken place. We may therefore expect a thermel
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explosion similar in many respects to the spatially inhomogeneous one
discussed in Sec. k.

In the limit + + « wé must have
(118) XY =0

&nd then the reletions (114) show .that

. Hy + Y, erf f, Vf-Yoerf n 0 for x < 0, :

(119) T = X -_-t , Y=

] ~ ] ~ - -3

Ho - YO erf n, 0 Yo erf n- for x> 0. E

: .

There is a Burke-Schumann flame sheet, corresponding to infinite Damkohler 5

number (cf. Sec. VI.2), located on the t-axis at a temperatire %

3

(120) Ty = Hy )

On the scale cf ﬁ the flame sheet is a discontinuity so that, to 3

investigate its structure, we introduce the variatles f
s 6 ‘

(121) = 2/ 3 = x/2tl/ , = el 3('3:* - T)/2Y, ~

g ]

and seek 2 solutien for which (:) is a function of & alone. Thisg E

:

choice of variables ensures a meaningful balance of diffusion and reazction, §

. 3

i.e. & distinguished limit of equation (116) in asymptotic parlance. The :

T4

Limit is E

— -0/8_[f/xY

(122) £@/a® = c(@® - ¢?) with ¢ = 2ne (ﬂ o)

§

4

and matching with the outer solutions (119) requires the bvoundsry conditions -

(123) a6/dg = 21 + o(l) as ¢+ te . ) <

b
E:
3

A
K
K
-3
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The problem (122,123) is that for the classical Burke-Schumann stricture
(ef. Sec. VI.2).

The evolution from the frozen r?gime to thé eéquilibrium: reginme
turns out to be remarkably simple in the limit 6 + ®». Tnermal runaway
occurs in the diffusion-generated mixture at a point on the line of
symiétry and a hot spot develops just as for the spatially inhomogéneous
explosion of Sec. 4. As the temperature in the hot spot approaches its
ultimate value Ho (corresponding to complete consumption 6f the reactants)
a symmetrical pair of deflagration waves is formed, which pénetrate the
large temperature gradients left behind by the focussing hot spot and
flash through the layers of frozen mixture consuming all of the deficiént
reactent. All this happens within a range of t (including the runaway
point) that is exponentially smaller than the scale of mixing.

A detailed description starts with the induction phase, during
which the temperature rises from the initial value T, by only an

0(651) amount. The corresponding small-disturbance eguation
(12k) 36/0t - azé/3x2 = §(1 - erfgﬁ)e¢

differs from that (55) for an initially uniform slab only in having an
extra factor on the righshand side; if we now restrict the discussion
A :

to the region x > O, the boundary conditions

(125) 3/ox =0 for x =0, ¢=0 for % =0

are the same. As there the solution becomes unbounded 2% 2 point
t126) T=T1, on x=0

which can be determined numerically (Lifian & Cresyo, 1972).
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stoichiometric proportion, which results in a truly second-order reaction
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The behavior of ¢ as T+t . is given by equation (59) since n
is O(Te - T)1/2 in‘the variables T and 1n . The function $o is
changed because the constant A in its asymptotic expansion (61) is gifferent,
being determined by the asymptotic form (62) of the solution to a different
probleﬁ. (The value of A has never been computed.)

The explosion phase is governed by the equation (63) witp right-hand

side rejlaced by
(227) (Ta/hYe)(H —T)eexp(e/T -8/T -60)
ol "o’ o 0

since ﬁ is effectively zero there. The reactant concentrations~ére
changed from YO/2 to zero as T increases from T,. to Hye The

expansion (65) is still valid, but now

(128) T, = Tg{w(n) - 22n[(Y0 - HOTOG)/EYO]}/(l - Too)2

vhere again 1y satisfies the equation (67) and hence the identity (68)
with the new 9o Beéween the hot spot described by this expansion and
the essentially frozen combustion field on either side there is a
stetionary intermediate structure on the scale (70), the leading term
of which is again TO/(l - TOX).

The transition phase which follows is governed by the modification
(129) 34/ dw- 82¢/852 = -¢2e¢
of the equation (72), provided the definition (46) is replaced vy
070

(130) €= (hYgG?/Hng)GXP(~6¥O/H T )..

The modification arises becesuse the hot spot contdins the reactants in

o At e, DU LIS o B xS N, i b arid | gitfiheia dssiex X Atk 2 S
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rathér than an essentially first-order one. The initial condition (73) is

replaced by

(131) ¢ = =an(-w)-2en2n(-w) + ¥(n) + o(1) as w + -o

with n = £/(-0)'/? pixea

while the boundary condition (Th) is replaced by

(132) ¢ = -zngg - 24n¢n 52 + A+ 0(1) as £ » & with o fixed,

It appears that no numérical investigation of the problem (129, 131, 132)
has yet been undertaken, but similarity to the probdlem (72,73,T4) leaves
little doubt that it would yield a transition from a focussing hot spot

to an incipient deflagration wave. .

The wave must Tirst traverse the intermediate structure left by the
shrinking hot spot. The situation is the same as that in Sec. Y} except
that ahead there is a-mixture of fuel and oxidant in stoichiomefric
proportion, i.e. X =7Y [cfi equations (11h) with n = 0], instead of
& single reactant. It follows that the variatles (76) ere agein
appropriate, if the new definition (130) of € is used, but that the

velocity (77 bis) must be replaced by

3
o7 1-1X
070 0
(133) W =/6 exp(Y.08/28 T Y o—vs)
Y062 0”0”0 Y K T X

in accordance with the result (II.52). As X decreases from YO/HOTO

to zero through the intermediate region the wave decelerates rapidly Jrom

infinity to

N

22
(134) W= /G(HgTO/Yoe Jexp(¥ 0/28,7,),
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the velocity with which it enters the near-frozen external field.

For the slab considered in Sec. U, the wave then continues at the
same speed to the surface, but here it encounters non-uniformities in
available enthalpy which produces O(1) chenges in its temperature and hence
exponentially large changes in its velocity. These non-uniformities have

been formed by interdiffusion of the reactants up to te = Te/G, i.e.

(235) T=T,X= Yo(l - erf ﬁe)/e, Y = Yo(l + erf ﬁe)/e
where
(136) ng = x/zv%e,

and have no time to charge during transit of the wave.

The situation is similar to that in the intermediate region: the
combustion field is stationary and has a much larger sczle than that of
the preheat zone of the flame. Far zhead of the wave on the latter scale
the temperature and mess fractions have the distributions (135) at the

instant the wave reaches the position xj while behind

(137) T = Hy - Y, erf ng, X=0, Y=Y, erfn, forx>0.

0 0

To determine the velocity of the wave we use the result (II.51) which, as

was pointed out there, holds both near and far from stoichiometry. Thus

. 2 2 -~ "'l . ~ L] ,'\~ 2 = 1/2 ae
(138) VW = ¢%(TO/Y06.)(1-erfne) (Ho-foerfne)[(aO-YOezxne) +9Y0erfne] e

where

(139) o = Yo(l - erf ne)/2TO(HO-YO erf ne)
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is the wave speed, which clearly reduces to the-value (13k) for ﬁe = 0,
The result cennot be valid as ﬁe + « since the propagation is then
3' associated with significant changes in 1t; well before then, however, the

formula (II.S51) fails because Jg (i.e. the oxidant flux) becomes small.

The correct result has not yet been obtained, perhaps because it would
8dd very little to the picture. Note that equilibrium with a Burke-
Schumenn flame sheet holds at any finite x immediately after the explo-
sion: the combustion field (137) is precisely of the ultimate form (119b).
The picutre which has emerged is remarkably simple, consisting of

regions of frozen chemistry and equilibrium with reaction zones between

then, the hallmark of activation-energy asymptoties. To secure the
essential featurés very little analysis was required beyond that for

the thermal explosion of Sec. k.
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