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Foreward

This report is Chapter XI of the twelve in a forthcoming research

monograph on the mathematical theory of laminar combustion. Chapter I-IV

originally appeared as Technical Reports Nos. 77, 80, 82 & 85; these were

later extensively revised and then issued as Technical Summary Reports

No's 1803, 1818, 1819 & 1888 of the Mathematics Research Center, University

of Wisconsin-Iadison. References to I-IV mean the MRC reports.
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Chapter XI

Stability

1. Scope

Flame stability is a subject of enormous breadth, which could easily

fill a monograph by itself albeit a less analytical one than ours; bothL the mechanisms and manifestations of instability a5sume many forms. It
has been studied at least since the observations of Higgins (1777) on

singing flames, a phenomenon involving interaction of the kind described

in Chapter V between an acoustic field and an oscillating flame. Such

interactions were laboratory curiosities for many years, but lately they

have assumed technological importance in the development of rocket motors

and large furnaces. This type of instability is distinguished by being well

understood (Chu, ),at least qualitatively. Other types of instability

are in general poorly understood and, in some cases, even in doubt, in the

sense that instability is suspected of playing a role but no certain

evidence is yet available. The following examples, though by no means con-

stituting a complete list, convey some idea of the richness of instability

phenomena in combustion.

The stability of burner flames depends on an arpropriate interaction

between flame and surroundings, in particular a flux of hcat from the flame

to the burner rim. The role of this flux in anchoring the flame and prevent-

ing blow off has already been mentioned in Chapter IX.

Propagation limits are important questions for premixed flames, steady

sustained combustion being possible only for a certain range of the fuel to

oxidant ratio. If a mixture is too rich or too lean it will not burn, and

instability may well play a role in the matter. A possible related
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phenomenon is quenching by heat loss or non-uniformities (Chapter X), but

whether this is a question of existence oir stability (or some combination of

the two), is not yet known.

Flow is turbulent in the right circumstances and indeed turbulent com-

bustion is of paramount importance in many technological applications. How

burning influences the transition from laminar to turbulent flow is not well

understood at present. Instability may also play a role in another transi-

tion, that from deflagration to detonation (DDT). A flame propagating through

a mixture will, under appropriate stimulus, accelerate and change from being

an isobaric deflagration wave into a detonation wave, with shock-like

structure.

Instability is invariably invoked to eliminate branches of multiple

responses for being physically unrealizable. Several examples are provided

by the burning of a condensate (Chapter IV), and others by fuel- and mono-

propellant-drop combustion (Chapters VI and VII).

Finally, a striking manifestation of instability is provided by cellular

flames, which are discussed in detail by Markstein (1964). Under certain con-

ditions a nominally plane wave displays cells, i.e. an unsteady, quasi-periodic,

two-dimensional, transverse pattern (Fig. 1). On average the cells have a

characteristic dimension, but large cells grow and divide while small cells

shrink and vanish. The corresponding phenomenon in highly curved burner

flames leads to beautiful polyhedral tips (Fig. 2), ,17hich sometimes are quite

steady and sometimes rotate but never exhibit the unsteadiness of plane

cellular flames. Cells have also been observed on a spherical flame spread-

ing out from an ignition source (Istratov & Li!)rovich 1969).
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All ihese examples apply to premixed flames and some to diffusion flames,

which introduce their own peculiar questions associated with the separation

of the reactants. However, we shall be concerned only with the stability

of the freely propagating premixed flame, and cellular flames will play a

central role in the development. Such a narrour focus is dictated by the

state of the art, analytically speaking: certainly it is the only area that

has been explored by activation-energy asymptotics to any siginificant extent,

a big attraction being the simple closed form of the unperturbed steady state.

Even then formidable difficulties remain; that they have ben overcome is due

to the tenacity with which Sivashinsky, the principal architect of the theery

we shall describe, has pursued the problem.

In our opinion, the material in the present chapter, answering as it

does questions that have long frustrated the combustion scientist, is one

of the triumphs of activation-energy asymptotics.

2. Slowly Varying Perturbations of the Plane Wave

The motion of a- slowly varying flame is governed by the basic equation

(VIII.32), where v1 is to be determined from a coupled hydrodynamic analysis.

There the flame appears as a discontinuity across which the jump conditions

(VIII.l,2,3) hold and on either side of which Eulers equations (VIII.34) are

valid.

If the gas is quiescent for ahead of the flame there is a solution

-0, - - 1, K = 0, (K)

namely the steady plane flame. Small perturbations of this stationary state,

to be denoted by primes, then satisfy
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A'- 'yv l- V = o , (2)
n p 1  n

where

2
MV P P(vl(V -F) , 8 = TPlb (3)

and we have used V =.i/p'1. Without loss of accuracy, the , , C-frame

may be fixed at an arbitrary point of the undisturbed plane wave. The

velociby perturbation must be determined by the hydrodynamic analysis

mentioned above, a step to which we shall return shortly.

Only for one-dimensional disturbance of the flame surface can the

velocity perturbations be neglected, as will becoiie clear in the sequel.

Nevertheless, doing so in general leads to a correct description of one of

the disturbance modes as k-0 or [8! -.  (The latter corresponds to

small heat release, when the unit of temperature becomes small and hence T,

large, or to a Lewis number close to one.) Sivashinsky (1977a) then speaks

of the diffusional-thermal effect, since these are the processes left. With

y = 0 and hence M' = -p,F' (4)

equation (2) admi~ts spatially periodic solutions

FT= plA ex p (aT + ikn) (5)

provided

(k 2 Pla -2BPla)A = 0 i.e. pla = -8 + , (6)
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where no loss of generality results from considering disturbances independent

of .

For one-dimensional disturbances k = 0 the two roots are

p t 0, -20, (7)

and the flame is unstable if and only if 0 is negative, i.e. the Lewis

number is greater than 1. This result was uncovered in our earlier discussion

of plane flames (Sec.Il.5). On the other hand, for k # 0 there is a

positive root whatever the value of ;e so that instability always occurs.

The conclusion-:is found to be correct when velocity perturbations are taken

into account, although the smaller (in absolute value) of the roots (6), on

which it is based, is spurious, i.e. not associated with any of the actual

modes. On the other handAlarger root does correspond to an actual mode in

the limit 1fl! + - or k , 0, though only to leading order. Thus there is

a diffusional-thermal mode but it is not necessarily unstable. We turn now

to the hydrodynamic problem.

The jump conditions (VIII.I,2,3) show that the state behind the plane

flame is

P2 ' P 1-YI ' u2 = YI 1  v2 = 0 (8)

while the- perturbations on the two sides satisfy

P2= p-2(-l)(uj-F,) , u • u-O-l)F' 2, v v ,

(9)

Here u and v are the velocity components in the - and n- direction

and
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a = T2 /T 1 = I+Y i/T (10)

When account is taken of the convective accelerations due to the velocities

T1 (= l/p1 ) and T2 in front of and behind the discontinuity, Euler's

equations (VIiI.34) are seen to have the solutions

[p',u',v'] = [-(pc+IkI),Ikl,ik]Plexp(aT+!kk +ikn) for C < 0 (

[p',u',v'I = [p2c-kJ,k[,-ik]P 2exp(aT-!kJC+ikn) j
+[0,aJkJ,-ip 1 sgnk]SCxp(aT-P2a&+ikn) for > 0

The P-terms form potential fields for the velocities while the S-terms, which

are only solenoidal, take account of (convected) vorticity behind the flame.

Thesosolutions are appropriate for a flame surface (5), and substituting

into the jump conditions (9) yields

aip 1a+(2a-l)Ik
J]PI +.(pla- a lk)P 2 - 2a(a-l)plA = 0

alkIP I - JkP 2 -aIkIS- (C-l)plaA = 0 , (12) i

JkJP 1 + ikP 2+PlaS- (a-l)kJA = 0

If the flame displacement A were specified, the equations would determine

the hydrodynamic fields on the two sides of the surface. In fact A is

related to P1 for slowly varying flames, as the basic equation (2) shows.

Landau (1944) and, independently, Darrieus (1946) supposed, in the

absence of a theory, that the flame speed is unaffected by the perturbations;

which, as we shall see, is true in theory of slowly varying flames for

k * 0 or 101 * . The response of the flame Is thereby eliminated and it

is appropriate to speak of the hydrodynamic effect. Setting the flame-speed

-- ~ -



perturbation U4F' equal to zero gives

IkIP 1 -p laA = 0 , (13)

and then the homogeneous system for P1 9 P2 v S and A has a non-trivial

solution if and only if

22

pla = olkI or (c+l)p2Cc +201klp a-a(a-l)k = 0

i.e. p = o(-i ± 41 7k/(+l) (14)

The first root gives P1 = A = 0 so that the stability of the flame is not

involved, although disturbances behind the flame are amplified. However, A

is non-zero fortthe second root, which is always :ositive in view of 7 > 1,

and we conclude that the flame is unstable. Note that the result is quite

independent of the theory of slowly varying flames (even though ,,n, L"

were used): the hydrodynamic effect is always destabilizing though. of course,.

it may only be present when the variations are slow.

We now come to the stability of the plane wave to slowly varying dis-

turbances, including both the diffusional-thermal and hydrodynamic effects.

The basic equation (2) provides

(k 2+plaIki +26Ikl)Pl+ (k -P2 a 2Qla)A = 0 (15)

as fourth equation of the homogeneous system, in p!ace of (13), so that the

condition for a non-trivial solution becomes

3 3 2 2+a2P a+a 0 0
aopl +alPla 3 0 (16)



where

a° 0 o+ , a1 = (o+l)(tk+2) , a2 = ajkI[-(3o-l) Ik+4q,

a3 = -ok2 [(3o-i)jkl+2(a-1)B] )
if P = aok I is again discarded.

From their behavior as k - 0 or 1 B1 it is clear that one of the

three modes may be called diffusional-thermal and the other two hydrodynamic.

In either case the cubic becomes

(p a+2+)(o+l)p2a 2 2 kjp l a-o (Q-l)k 2  = 0 (18)

so that the larger of the roots (6) and the two relevant roots (14) are

obtained. Correspondingly the basic equation (15) reduces to

(p 1 2 +2 l+ p )A = 0 (19)

That the condition (19) agrees with the diffusional-thermal condition (6)

only in the limit k - 0 or - itself shows that the smaller root

(6) is spurious. It predicts p a O(k 2 /2B) for k small or 161 large,

whereas the actual remaining modes have p = 0(k).

The cubic shows that steady corrugations (a = 0) with wavenumber

1k! = -2(a-l) /(3o-i) (20)

are possible when is negative Q > 1). The result was first obtained

by Sivashinsky (1973) but is of historical interest only since for that value

of k (and indeed all values) we shall see that there is at least one root

of the cubic with positive real part, implying instability.
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A result of the type (16), for a more complicated model, was first

obtained by Eckhaus (1961) from a thin-flame analysis which did not use

formal activation-energy asymptotics. Instead he adopted a formula of Mallard

and LeChatelier (see Emmons, 195/ which leads to the perturbations of flame

temperature and speed being proportional, a relation concistent with the

asymptotic result (VIII.30) after linearization. The first complete deriva-

tion was given, somewhat heuristically, by Sivashinsky (1977b) and, rigorously,

by Buckmaster (1977)

Necessary conditions for every root of tie cubic (16) to have a negative

real part are a1 , a3 > 0. Stability would therefore require'

-Iki < 2B < Ikl

which, for o > 1 as here, is a contradiction. We are forced to conclude

that plane flames are unstable.

The instability occurs whatever the wavenumber k, but it would be a

mistake to infer that all steady, slowly varying flames are unstable. Such

an extrapolation implies taking the short-wave limit k - (so as to screen

out boundedness and curvature) and hence violating the assumption of slow

variations on which the conclusion of instability kor unbounded plane flames

was based. In any event the consequences of linear instability are not

necessarily catastrophic; the result may be a nonlinear, unsteady structure

suiperimposed on the steady state without oblite-rating its essential character.

Even the instability of unbounded plane Flames to long-wave disturbances

cannot be considered definitive, since there may be stabilizing influences

that have been ignored so far. Two such influences are gravity and curvature,

which we now examine.
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3. Buoyancy and Curvature

The influence that gravity has on flames by virtue of the induced

buoyancy forces is clear from a commonplace observation: an inverted candle

does not behave in a desirable fashion. A less obvious manifestation is the

dependence of the vertical propagation limit (i.e. the dilution beyond

which the mixture is not inflammable) on whether the propagation is upwards

or downwards. Instability should play a role in such limits since for up-

ward propagation the light burnt gas underlies the heavy unburnt gas, so that

Taylor-type instability can be anticipated. (The characterization is not

entirely accurate since the flame is not a material surface.)

A flame of characteristic dimension 1cm. and speed 45 cm./sec. has

approximately equal gravity and d%-iamic heads. These quantities are typical,

and faster or smaller flames are correspondingly less influenced by gravity.

Moreover, since flame thickness is typically much less than a millimeter (Sec.

11.4), gravity can only be important in the hydrodynamic field of a nominally

plane flame. Support for that conclusion comes from the derivation of the

basic equation (VIII.32) of slowly varying flames, which does not use momentum

balance (the only governing equation influenced by gravity, see Sec. 1.2).

3 5 -The unit of acceleration is c pM / CX, which is typically 2x 10 cm./sec 2 .

The dimensionless gravity force is then 5x 10- 3 and we may reasonably con-

sider it 0(1/8). The momentum equation (VIII.34) now gains a term -p(g,0)

on its right-hand side, where g is positive for downward propagation, so

that terms

-Pig and -p2gE (21)

are added to the pressures in front of and behind the flame, respectively.
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The perturbations p and p in equation (9) are now the sums of terms

coming from equation (11), as before, and terms

2 2 Z
-pIgF' = -p 1 gAexp(aT+ikn) -p 2 g F' = -P1 a exp(aT+ikn)

so that the first of conditions (12) is replaced by

a[plc+(2-l) kj !Pl+ (pla-alki)P 2 - (a-l)(2a pl-plg)A = 0 . (22)

Clearly there is no limiting effect on the diffusional-thermal mode but

there is on the hydrodynamic modes, the roots (14) becoming

= a-l- (23)

Since g is negative for upward propagation, we immediately see that gravity

is destabilizing when the hot gas underlies the cold. When the reverse is

true, disturbances for which

jk < p2g/o (24)

are stable. For a downwardly propagating flame, modes of sufficiently long

wavelength are therefore stabilized.

That these conclusions do indeed hold is seen from the cubic (16) with

terms

(a-l)p 2gjkj (pl + Ikt + 28)
1 1

added to account for gravity. In either of the limits k - 0 or 8 -

the cubic becomes
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(p I+2)[o +l)Pl 2 +a 2o+ k plt-a (o-l)k2 + (G-l)plglkj = 0 (25)

so that the diffusional-thermal mode is unaffected hut the modifications

(23) of the hydrodynamic modes are obtained. For the latter, the stabilizing

effect is most clearly seen for long waves, when

P.=  = ±i Y IkI 1 /  -0-  lk +O0(k / 2  (26)
Io+i o-li26

We conclude that for Xe> 1 gravity cannot completely stabilize even long

waves, since the relevant root (7) is a creature of purely one-dimensional

disturbances and these are unaffected by the hydrodynamics; but for C < I

it can.

As k m the cubic reduces to

(P 1a+jkj)[(+l)p2a 2 - a(O-l)k2 1 = 0 , (27)

which is independent of g: short waves are unaffected by gravity, as

expected. Note how instability persists in the limit: there is always a

positive root, though the other two are negative.

We now examine the effect of curvature, but only on the limit of the

diffusional-thermal mode. A full treatment is quite complicated, much more

so than for a plane flame, and in any event gravity stabilizes the other modes

(at least for long wavelengths). Attention will be confined to a plane source

or sink flow

u = c/r, v = 0 (28)

where Or is radial distance and u, v are polar components. The undisturbed

flame is then circular, with curvature

MVAOW
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- -1/p1c (29)

determined by the requirement that the mass flux is 1 at it.

Such a flame corresponds to the solution

= 0, M = 1, V = 0 (30)

of the basic equation (VIII.32), and perturbations of this steady state

satisfy

R vpl - KV' + O12M 0. (31)
n ~ 1n

Here v' is due to the displacement of the flame in the source or sink

flow, distftbances of which have been ignored. It is sufficient to consider

plane disturbances, for which the flame may be written

r = P1 cl +F',(,T) (32)

in polar coordinates r, 4. Then

V1 = TF , M' = T(F'/p c+p F') V 'v' = +-F' /plc , (33)
T n 1iT -pl1 * 1

according as c is positive or negative, and the behavior of modes

F' = plA exp(aT+ino) (34)

is determined by

2 2 2plot + 2(6+I/Plc)Pla+ (2B-n2/PlC)/Pl c =0 (35)
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as

P 1 a -(6+i/plC) ± VU+i/0 1 c)2- (2-n-/p 1 c)/ 1 c (36)

Clearly the roots are always real.

To discuss the result we introduce the wavenumber

k = n/plIcl (37)

and note that the formula (6) is recovered in the limit Ic! -o with k

fixed. Since the smaller root was then found to be spurious, we shall

discard the corresponding root here. The larger root is negative if and only

if 0 > -1/p1c, so that curvature is a stabilizing influence for the source

flow but destabilizing for the sink flow. The conclusion must however be

considered tentative until incorporation of the hydrodynamics shows that we

are in fact dealing with the limit B or k - 0.

The requirement that c be positive corresponds to a flame that is

concave towards the fresh miXture, as for a closed burner flame. Such

flames were found for X < 1 (Sec. IX.3) and our theory predicts stability

of the diffusional-thermal mode. On the other hand, the open flames found

for X> 1 correspond to c < 0 and instability is inferred. Extrapolations

of this kind are, however, little more than guesses.

4. Stability of Near-Equidiffusional Plane Flames.

The conclusion that modes of short wavelength will always be unstable

according to the theory of slowly varying flames, while not a valid one,

nevertheless stands in sharp contrast to experimental results. We therefore

A .
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turn to near-equid[ffusional flames for clarification, and here compromise

is necessary. On the scale of the flame thickness slowly varying flames are

almost plane and almost steady; these characteristics allow the fluid

mechanics, in particular variable density, to be incorporated without difficulty.

By contrast, the continuity and momentum equations do not simplify when the

flame is near-equidiffusional, so that perturbations of even the plane flame

lead to non-constant coefficients. For that reason most discussion of near-

equidiffusional stability has relied on the constant-density approximation,

as embodied in equations (VIII.62, 63), and with , single exception of Sec. 6

that is the framework adopted here.

For flames in a quiescent gas, the governing equations reduce to

a(T,h)/It = 7 2 (Th+XT) ; (38)

to these are added the jump conditions (VIII.64). The steady plane wave cor-

responds to the solution

T = T1 + Y .e n ,h - -XYnen for n < 0

(39)

T = T = H I , h = 0 for n > 0

where

n - x+t , (40)

the flame sheet being located at x = -t (cf. equations (IX.29,30)]. Its

stability to small perturbations is our first concern.

The class of disturbances is limited: 0(1) perturbations of T are

admitted provided they are balanced by 0(l) perturbations of Y which

keep the sum of order 8 -1 It follows that a finding of stalility (in
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contrast to instability) is not definitive. Nevertheless the conclusions

are very convincing and it seems unlikely that an analysis dealing with a

larger class of disturbances would alter the picture substantially.

Such perturbations satisfy

-(T',h')/Dt 
= V2 (T',h'+ XT') (41)

on both sides of the disturbed flame sheet

n = F'(y,t) (42)

The appropriate solution is

T' = 0 for n > 0 (43)

behind the flame sheet. Continuity of T and h, plus the jump conditions

on their derivatives, yield

T' = -YIF' , [h'] -XYIF' zfor

aT'/3n = -Y1F' +Y 1h'/2T* , [h'/3n]= XY1h'/2T*
- 2XY 1F

(44)

where the right-hand sides of the last two equations are to be evaluated for

n = 0+, i.e. on the hot side of the flame sheet.

Variations in the z-direction may be ignored without loss in generality

of the conclusions. The solution corresponding to

F' = A exp (tt + iky) (45)

is
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(T',h') = (B,C+X(K-k 2)Bn/(1-2K ))exp(t+iky+Kln) for n < 0

(46)

h' = Dexp (at+ikY-+K2 n) for n > 0 ,

where

1 2
I1, 2  - [1 ± ]+4a+4k , -7 < arg(l+4a+4k ) < 7 (47)

To be admissible the solution must vanish far ahead of the flame sheet and

be bounded far behind, i.e. Re Ki must be positive and Re K 2 non-positive...

For Re a > 0 (i.e. the unstable modes of intearest and their neutral limits)

these requirements are met automatically, so we need not concern ourselves

with them further. Equations (44) ncWyield a homogeneous system for k, B',

C, D which has a non-trivial solution only if

(l-KM)(l-2 )2 +?[(l- 1 ) 2-k 2  = 0 , X = YlX/2T , (48)

a result first obtained by Sivashinsky (1977a).

This condition determines all those modes, i.e. values of a, correspond-

ing to any given and k. For Re a > 0 we can be sure the mode is

admissible, the boundaries of regions of instability Re a > 0 being

curve$ Re a = 0. There are just three such curves, namely

the K-axis: k = 0 , (49)

the parabola P: 4k2 = -(+1) , (50)

the branch B of the curve (1+12k2)i
2 - 4(1+8k 2)X-

- 8(1+8k )2 = 0 for which > > 16/3 . (51)
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For the first two Im a = 0 also.

The regions of instability can now be determined from explicit results

for small k, namely

-(+l)k 2+2 (X-3)k 4+0(k 6 ) [2_ 4-8+' X0-8)]/32+O(k )

(52)

where both square roots are implied for 0 < X < 8. Clearly there is a mode

with Re a > 0 for

< -1 or > 2(1+/3) (53)

respectively, but not otherwise, so that the stability regions are as marked

in Fig. 3. Note how misleading results would be obtained by considering only

one-dimensional disturbances: for k = 0 the first of the values (52) vanishes

and no instability is predicted for < -1. The resulting stability condition

< 2(1+/3) can be considered a refinement of X < 1 for slowly varying

disturbances [Sec. 2, cf. equation (7)].

For each value of k there is a band of Lewis numbers, always including

-1 < < 16/3 and hence = 1, for which the flame is stable. The conclusion

is in accord with that for slowly varying disturbances, where instability is

found for all I 1 1 (Sec. 2) and, moreover, provides a possible explanation

of why stable flames are observed, a possibility that makes near-equidiffusional

flames of great practical importance. To be sure, in the limit e -+ the

stability band in X is vanishingly small, but in practice 0 is only

moderately large. Since Lewis numbers are invariably close to one, it is con-

ceivable that all flames adequately described by activation-energy asymptotics

may be considered near equi-diffusional.
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On the boundary B the neutral stability modes are oscillatory, i.e.

Im a 0 0. The boundary is relevant to mixtures whose deficient component

is heavy and therefore has relatively small diffusivity (e.g. for lean

hydrocarbon or rich hydrogen flames in air), but it has received no attention

to date.

On the parabolic boundary and on the )-axis the neutral modes are non-

oscillatory, i.e. Im a = 0. (In fact, all modes inside the parabola are

non-oscillatory too.) For any X < -1 and wavenumber in the range

0 < Jkl < C-j+I)/2 (54)

there is a mode that will grow. Moreover, since ReoC vanishes at the ends

of the range there must be an intermediate value, namely

4+15 -9 2 + (4-6 )/1-i]i/2
k = 108X (55)

for which the growth is a maximum. Although the instability does not favor

one wavelength to the exclusion of all others, an arbitrary disturbance can

be expected to grow in such a way that the length l/ki plays a significant

role. As we notedin Sec. 1 it is characteristic of cellular flames, which

are usually observed when the deficient-component is light. (X negative), for

many modes to contribute to the structure, but nevertheless an average dimension

can be assigned to the cells.

That the stationary mode corresponding to the parabola has relevance to

cellular flames is supported by the behavior of the flame-temperature perturba-

tion

6-
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2T* (1-K1)A exp iky =T(/T+i7-l)A exp iy+1T(k /

(56)

corresponding to the displacement

F' = A exp iky , (57)

with which it is exactly out of phase. Viewed from the burnt mixture, the

crests are colder than the troughs. We would therefore expect the crests to

be the least luminous part, which is in fact a well-known characteristic

of cellular flames.

5. Cellular Flames

The linear analysis of the previous section predicts that infinitesimal

disturbances will grow without bound when is less than -1, but there is

str~ongevidence that the growth actually leads to cellular flames. In that

case, nonlinearities must limit the growth; the nature of that interaction

will now be investigated. Attention will be focussed on the neighborhood

of X = -1 by setting

A = -X with X = 2T /YI  , (58)

where c > 0 is vanishingly small. Only the top sign on c is of interest

here, corresponding to the linearly unstable waves in that neighborhood

(i.e. the long ones), but the bottom sign will be used later. Such a focus

can be treated by a perturbation analysis in E. The stability boundary (50)
shor"' that these waves have a wave-number k = 0( 1/2) at most, while the

2result (52) shows that they grow no faster than a = 0(c ). Accordingly the

slow variables

m,,. I ...
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,/2 T C t (59)

are appropriate for their description.

For fixed c, an infinitesimal disturbance will grow according to the

linear analysis until its size makes some nonlinear term comparable to the

linear terms. Its amplitude is then O(c) so that, following Sivashinsky

(1977b), we take the flame sheet as

x = -t+ CF(n,T) (60)

Nonlinearity has certainly intruded by then, as is seen from the resulting

flame speed

W = 1-3 (F + F /2) +0( 6 ) 6 (61)
W - n

but it could conceivably intrude elsewhere for amplitude o(c); the consistency

of the analysis stemmiag from the assumption (60) shows that it does not.

If now the coordinate

n = x+t-EF(1/2 y,E 2t) (62)

is introduced in place of x, so that n = 0 is the flame sheet, then derivatives

in equations (38) become

_ = _ 3/2F  3 1/2 a (1(C_3F )_I_+ 22

ax 3n ' ay n 3n a t T 3 T

while the normal derivative in the jump conditions is

1 3 2 32(1 + F -
fl^3n n an

I



- 22 -

Perturbation expansions are now introduced for T, h and F, for

example

2 3
T = To + T 1+e T 2 + C T 3 (63)

where the coefficients are functions of n, 1, T. A sequence of problems

then results, whose solutions are subject to the requirements that

T1 2 = T 3 = = 0 for n > 0, that conditions as n - - are undisturbed

and that exponential growth as n -. +- is disallowed (though algebraic growth

cannot be prevented). At the fourth problem, for T3  and h3 , the nonlinear

equation (75) for F is obtained as a solvability condition.0

The first problem is

2 2
PT ) 0 = f(h) - Xo 3To/9n = 0 for all n,

(64)

[T] = [ho  = 0 X [3T/an] = [3ho/n] -XoYexp(h 0 at n =0-'

where

f a 2 /an2 - 3/9n (65)

As expected, its solution is the steady plane wave

fTI+ Y1 e  f Y 1 ne
n

+ en n

T =  h = for n 0 (66)
' 0

no confusion will result from the double use of T, since we shall show

immediately that the expansion coefficient is identically zero. In fact the

second problem is easily seen to be
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(T) =0, (hl)-)o 2 TI/D 2 
= 0±YTen for n 0

1 0 t~o(67)

[TI] [hl = 0 , [3T 1 /an] = -h A ° , [h 1/3n] -(h 1Y )at n 0

when the Independence of T and h from n, T is used; so that0 0

T fo hI  n for n 5 0 (68)

to ,

is obtained without using the jump conditio 3n 3hl/On, which is then

automatically satisfied. The information o~tained so far enables the third

problem to be written

C(T = YlFonen 2o /2= X YIF o h  for n 0,

2 1  e ' ~ 2 oa 2 0 1 onrn

0i2  2 = 1" 0 L(69)

(T2 ] =[h 0 (3T2/an] -h o 3h/n] -h 2  at n 0

Again, the solution

n 2 r
Fo n e  I YiF (1+n e

T2 = . = for n 0 (70)

is determined without using the jump condition on 9h2/n, which is then

satisfied automatically.

Finally we reach the fourth problem, which can now be written

(h) a 1 aT2 e n2 2 =l(a3n2+a4 n+a 5 )e n

g.(T) r 3  Ta an2{ for n > 0(3 0 0 3X oyla 1

[T [h 0 , [3T3Fn] - YI F n/2-h3Ao [3h3/an] -h

3  3 3 1 o n 3 F)YF o 1 .o .

at n- 0 (71)
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a = -F a = -F +F -F 2  aa3  = a

onnnn ' a2 OT on 3 01

(72)

a4  - (F -F -F +F 2)± 2F , a5  =-X (F +F +F )±2Fo t ornn on or o at onnnr on onn

The solution is determined without the last jump condition as

2 n 3 2 4ben
1 (b1n +b2 n)e h Y1 (b 3n +b4 n +b 5 n b6 ) e

3 fo fY1 (b7n+b6)

(73)

where

b1  = a1/2 , b 2 = a2 -a1 , b3  X0a1 /2

b4 = (a4+Xoa 2-2Xoa1 )/2 , b5 = a5 - a 4+ Xo (a2+a1 ) , (74)

b6  = -X(F -F -F +F2 /2), b7 = - oa'
o ot onrnnn i on 

Note that h3 must be allowed to increase algebraically. The jump condition

on 3h3/n is not satisfied automatically but requires

F +4F + F /X+F 2 /2 = 0. (75)
Ot orinnn arm 0 on

This result is due to Sivashinsky (1977b), who generalized it to

4 2 2
F OT+ 41F 0± VF/X 0+ (V F0) /2 = 0 (76)

fo ariations in both the y- and z- direcions.

The equation has an interesting implication for the flame speed. Ihile

the expression (61) is purely kinematical, its approximation

L~.



- 25 -

W = l+C (4F ±F /X ) (77)

is a profound consequence of the diffusional-thermal processes. Markstein

(1964), in an attempt to modify Landau's conclusion that all flames are hydro-

dynamically unstable, assumed that the flame-speed perturbation is proportional

to curvature and so incorporated the term in F but not the other.

The linearized form of equation (75) has solutions proportional to

exp(at/2 +ikn/ I/ 2 ) if

2 4
a = kA -4k (78)

which coincides with the first of approximations (52) in the neighborhood of

" = -X, k = 0 This result is graphed in Fig. 4. The maximum growth rate

occurs for

k = /8 , (79)

which is an approximation to the general formula (55). The connection of

this maximum with the characteristic cell size has already been noted.

Existing discussion of the nonlinear equation (75) is limited to numerical

I computations 6 shins Miche 1977). Integration of the initial-

value problem with periodic boundary conditions (using a period large compared

to k 1 ) leads to results like those in Fig. 5 when the plus sign is taken

in the equation. (For the minus sign there is decay to zero, corresponding

to linear stability.) The nonlinearity prevents unlimited growth of the

disturbance and the resulting structure, being quasiperiodic with characteristic

Tdimension k i, Ls highly suggestive of cellular flames.
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6. Hydrodynamic Effects

The analysis of Sec. 5, leading as it does to a balance of small effects,

provides a framework within which several generalizations can be discussed so

long as the additional effects are appropriately small. Here we shall con-

sider weak interaction of the flame with the hydrodynamic field. A rigorous

derivation of the governing equation replacing (75) requires analysis similar

to that in Sec. 5. A more transparent derivation can be made by plausible

arguments.

The constant-density model is studied because it is simple and yet

retains some of the key physical ingredients that govern flame behavior.

Nevertheless it is a rational asymptotic limit (a - 1), albeit one of limited

practical interest since density changes across flames are rarely small. When

- ~a is close to 1, the hydrodynamic effects can be incorporated in a rational

fashion as perturbations just strong enough to influence the flame behavior

described in Sec. 5. Since we are only concerned with wavelengths O(c- /2),

the field outside the flame sheet has a dual structure similar to that of

slowly varying flames (Sec. VIII.3): hydrodynamic disturbances described on

the scale n = 0(O I / 2) must be matched with those in the diffusion zone,

where n = 0(l).

The flame speed (61) is now augmented by

(u - EB/F v')[l+0(C 3 )

where u', are the components of the velocity disturbance im-ediatcly

ahead of the flame shect. If this -s to be perturbation juc-t comparable to

the existing one, then u' must be O(C) in which case v' (bing of t"1e

3
same order) makes a smaller contribution and W is, to order E , sinply

angmented by u.
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the problem now is to express u1 in terms of F which involves

treating the flame sheet in the same way as the hydrodynamic discontinuity

was in Sec. 2. Indeed, the weakness of the velocity perturbation ensures

that Euler's equations are satisfied even in te diffusion zone, so that we

may read off the result

P1  = (a-l)A/2 (80)

of solving the jump conditions (12) when k and a are appropriately small

and a is close to 1. Equation (80) relates ui and Fo when they are

proportional to exp(at+iky) and hence the Fourier transforms of general u'

and F (since a is not involved). It follows that0

=(c-l)t f f Ikeik(Y-Y)F (i,T)d dk4rp -® -C 0

(81)

(CF-I)3/2 CO F on( 0

where

a= 1+0( 3 / 2) (82)

if u' is to be 0(c 3).

So far we have been concerned with modifying the kinematical result (61)

for the flame speed; now we come to the result (77) of the diffusional-thermal

processes, which is found to be unchanged. Certainly it is plausible that

such weak density changes do not affect these processes. That being the case,

the generalization

LiL
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0 0 F n O T) ' T )
F +4F +F / +F /2+- di 0 (83)
OT onnnr- oqin o or) I O -n

of equation (75) follows, where

y -(-1)/2TrP l 3/2 (84)

The destabilizing effect of disturbances in the hydrodynamic field can

be seen from considering small F . Under linearization, i.e. on dropping

F2 /2, there are solutions exp(aT+ikr) with
071

= -4k4± k2/Ao+ +y *i (85)

and Fig. 6 shows graphs of these curves. As expected from the last section,

for y = 0 the lower sign gives stable modes only, but the upper sign involves

unstable modes. For y > 0, i.e. when the hydrodynamic field is disturbed,

both signs give unstable modes. The possibility of stabilizing the modes

again by gravity can also be seen. Gravity changes the velocity by an amount

proportional to the displacement of the flame sheet (cf. Sec. 3), which cor-

responds to adding a constant to the righ-hand side of equation (85). If

the constant is negative (i.e. gravity points from burnt to unburnt gas) and

sufficiently large, then the curves in Fig. 6 are translated downwards into

the quadrant a < 0.

Sivashinsky & Michelson (1977) have treated the full equation (83) also,

in particular for the p , j sign when the hydrodynamics is an extra destabiliz-

ing effect. Results similar to Fig. 5 are obtained, except that now the

large wrinkles thcms lves contain several small wrinkles,. '.:, shall consider

just two limits of the equation, both corresponding to si5nificantly larger
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departures of X from -X than of a from 1, i.e.
0

6 (a-l)c 3/2 +0 (86)

If changes remain on the scale of n and T then the hydrodynamic

term drops out and equation (75) is recovered in the limit. This tendency

was found by Michelson & Sivashinsky (1977b) in their numerical work.

If, however, changes occur on the slower scales 6n and 6 2T then

the fourth derivative drops out and the equation reduces to

F ± F / +F /2+y d = 0. (87)OT -onn 0 on - d5=0.87

Interest now centers on the minus sign, i.e. the destabilizing effect of the

hydrodynamics when there is stability otherwise.,Michelson & Sivashinsky's

computations show that from initial data of long period (but otherwise

arbitrary) there emerges at large times a steady progressive wave of the same

period. For such a wave F is replaced by a constant - V and, except
OT

near points of relatively large curvature, F may be neglected. The shapeon?'

is then described by the nonlinear integral equation

Ff/2+ ( - =) ( )da = 0 (88)on --- nFon

for the slope F on. Here n is measured from a point where the slope

vanishes, so that

V - Y -di . (89)

~~~~~~- m .I i I II I I I
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The equation expresses constancy of the flame speed, as Landau assumed in

his stability analysis.

A continuous periodic solution for F , obtained numerically, is shown

in Fig. 7;1'(A solution for any other period can be obtained from it by

scaIi-g--i$- he discontinuities in F at ±n are smoothed out by the
on

neglected F on-term, whose inclusion perturbs the flame speed. We are

therefore led to tIe suggestion that, under more general circumstances, the

destabilizing effect of hydrodynamics first discovered by Landau does not

result in chaotic structure but just a wrinkling of the nominal flame con-

figuration. Such fine wrinkles are sometimes observed on actual flames

(Markstein, 1964).

7. Curved Cellular Flames.

The cellular pattern in Fig. I is formed by a flame located in a large

(10 cm. diameter) vertical tube and, consistent with the results of Sec. 5,

is highly unsteady. By contrast, cellular flames stabilized on burners are

usually steady, which suggests a classical bifurcation phenomenon similar to

Taylor cells in cylindrical Couette flow. At a critical value of some para-

meter disturbances cf a single finite wavenurmber become unstable, and beyond

that value there is an alternative (stable) steady state. Here we shall

establish curvature as such a parameter, leadinqto a steady cellular pattern.

As in Sec. 3, attention will be confined to the plane flow

u = c/r , v = 0 (90)

with c now positive only (source flow); r is measured on the scale of

the flame thickness. If disturbance of the hydrodynamic fie+Id is again

neglected then equations (38) govern provided the replacement
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a ca
at 3t r 3r

'is made. These possess a steady solation satisfying the jump conditions

(VIII.64) in which the flame sheet is located at

r = c (91)

and

C cc-iT= T1 +YI(r/c) , h = XY (rc/c )Zn(c/r) for r < c

1J
(92)

T = HI , h = 0 for r > c

Such is the undisturbed flame.

The result (91) implies that the dimensionless burning rate is 1, i.e.

the dimensional burning rate is the same as that of an adiabatic plane flame.

There is an apparent contradiction with previous sections, where we saw a

change in burning rate with curvature, which is resolved on recognizing

change in curvature as the determining factor. The essential process is

transverse diffusion, which is absent from the cylindrical flame because of

symmetry, and its presence is detected by changes in curvature. The simplified

treatment to be presented next will ensure that only disturbances in

curvature influence the burning velocity.

The objective is to admit curvature disturbances just strong enough to

modify equation (75). Since the F n-term corresponds to curvature O(E2),

we are therefore led to introduce

2R = - (93)
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as the 0(1) scaled radius of the undisturbed flame sheet. An 0(E - 1 /2)

change in y nearby they corresponds to a change 0( 3/ 2) in the polar

angle , so that we also introduce

-3/2 (94)

and take the disturbed position of the flame sheet to be

r 2 eR+ef(w,T) (95)

in a polar representation. The corresponding displacement from the tangent

to the nominally circular flame sheet is then

F = -Re + f(W,T) (96)
0 2

in the notation of earlier sections, where

W = n/R (97)

to sufficient accuracy.

The requirement that the existing curvature should not influence the

flame velocity suggests modifying the result (77) to read

3 -
W = + [4Fo ! (F -R )/X o

ornnril on-. 0
(98)

3 -4 + R-2f
1= c~ [4R f ±R /X I

To sec that the nodification agrees with Sec. X.3 we note that for a flat

flame it reads

3 1W = I:F3R-/ = 1- (X+'/) ) v/3y (99)
0 0 0
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where v is here the velocity In the y-direction. However, the radial

flow is locally just a weak simple strain superimposed on a uniform flow,

so that the result (99) is recovered by letting the strain rate become small

in Sec. X.3. It is no accident then that X = -X plays a role both ino

the effect of straining flows on a flame and in linear stability analysis.

A modification of the kinematical result (61) arises because the flame

sheet moves in a non-uniform velocity field (without disturbing the field).

The accompanying changes (-E3F /R, c3/2 /R) in fluid velocity at the sheet

lead to the new approximation

W = 1- [Fo +F 2 /2+ R-I(Fo-nF )]
OT on 0 on

(100)

= i- 3(f +f 2/2R 2 + f/R)
T W

Comparing the results (98) and (100) establishes

f + 4R -4f ±R-2f /X + R-i f + R-2f2 = 0 (101)
T £&XO W 0

as the fundamental equation, governing the radial perturbation f in the

position of the flame sheet. The term R-If arises from the perturbation

in radial velocity at the flame, so that for nominally spherical flames

(where the velocity is proportional to r- 2) the term is replaced by 2R-1 f

(Sivashinsky, 1978). We shall pursue the stability of the cylindrical

flame; the spherical flame requires only minor changes, including generaliza-

tion of the w-derivatives (which is also needed here for variations in the

z-direction).

For linear stability we set f proportional to exp(aT+ivw) and neglect

the quadratic term to obtain
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= ±R-2 2 - 4R-4N) 4 R- 1 (102)
0

3/2
where, although it is strictly a discrete parameter (being e times an

integer), v effectively takes all real values. (If variations in the
2

z-direction are admitted, with wave number k, then V. is replaced by
2 R2k2
v + k and the conclusions are modified in an obvious way.) As R -

Sk (103)

held fixed the result (78) is recovered; and finite R clearly has a

stabilizing effect. For X > -X curvature only argments the existing0

stability, but for X < -X it can overcome the instability at sufficiently
0

small wavenumbers k (see Fig. 8). For all R the maximum growth rate is

attained for the value

k2 = l/8X , (104)
c 0

cf. equation (79), and it is zero when R has the value

R = 16X 2 (105)C 0

for R < R there is stability, but for R > R there is a band of unstable

waves.

The stabilit'y rcgions in the plane of Akj and R/X2 are shown in

Fig. 9. As R increases through R a small band of unstable wavenumbersc

appears. suggesting a classical bifurcation. The corresponding Landau

equation (cf. Matkovm ky, 1970) is obtained in the usual way be setting

2 R 2:)/R , f = (106)
E R C + Ef 2 /
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with

f = cAcosv i for T* = 0 (107)C

To leading order we find that

f = A (T*)cos(v cu) A (0) = A (108)

and then that secular terms appear in f2  unless

A' = A (-x 2A 2)/144X2 (109)o 0 00 0

It follows that the amplitude asymptotes to the constant value

A = ±3/X according as A 5 0 (110)o o

We conclude that the cylindrical flame sheet is stable for R < R but

unstable for R > R ; and that for small positive values of R-R there
C c

is a stable cellular configuration, with amplitide proportional to (R-R)1/2,

to which the originally cylindrical flame sheet tends after disturbance.

A characteristic feature of stationary cellular flames (including

polyhedral flames) is that the crests, i.e. the portions of the flame that

are convex towards the burnt gas, are sharper than the troughs. Here the

variations in curvature are given by

f e{-32X3 (A cos(v w)+EA Cos(v )+B sin(v w)]-(64 4/9)A 2cos(2v ) +0(E 3)
W 0 0 C C c 0 0 c

where A has its ultimate value (110) as do the integration functions
0

A1(T*) and B (T*) in f For A 0 0 the crests lie at w 2n/v

1 " I't. ... .. . - . .1 V ... a c'- --... .
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and the troughs at '~(2n+l)ir/\vc where n is an intc gcr. Clearly ctie

O(c 2) harmonic increases the maganitude of the cur-vature at the crests and

decreases it at the troughs, consistent with observations.
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