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Foreward

This report is Chapter XI of the twelve in a forthcoming research
monograph on the mathematical theory of laminar combustion. Chapter I-IV
originally appeared as Technical Reports Nos. 77, 80, 82 & 85; these were
later extensively revised and then issued as Technical Summary Reports
No's 1803, 1818, 1819 & 1888 of the Mathematics Research Center, University

of Wisconsin-Madison. References to I-IV mean the MRC reports.
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Chapter XI

Stability

1. Scope

Flame stability i{s a subject of enormous breadth, which could easily
fill a monograph by itself albeit a less analytical one than ours; both
the mechanisms and manifestations of instability agsume many forms. It
has been studied at least since the observations of Higgins (1777) on
singing flames, a phenomenon involving iﬁteraction of the kind described
in Chapter V between an acoustic field and an oscillating flame. Such
interactions were laboratory curiosities for many years, but lately they
have assumed technological importance in the development of rocket motors
and large furnaces. This type of instability is distinguished by being well
understood (Chu, ), at least qualitatively. Other types of instability
are in general poorly understood and, in some cases, even in doubt, in the
sense that instability is suspected of playing a role but no certain
evidence is yet available. The following exampleg,lthough by no means con-
stituting a complete list, convey some idea of the richness of instability
phenomena in combustion.

The stability of burner flames depends on an appropriate interaction
between flame and surroundings, in particular a flux of heat from the flame
to the burner rim. The role of this flux in anchoring the flame and prevent-
ing blow off has already been mentioned in Chapter IX.

Propagation limits are important questions for premixed flames, steady
sustained combustion being possible only for a certain range of the fuel to
oxidant ratio. If a mixture is too rich or too lean it will not burm, and

instability may well play a role in the matter. A possible reclated
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phenomenon is quenching by heat loss or non-uniformities (Chapter X), but
whether this is a question of existence of stability (or some combination of
the two), is not yet known.

Flow 1s turbulent in the right circumstances and indeed turbulent com-
bustion is of paramount importance in many technological applications. How
burning influences the transition from laminar to turbulent flow is not well
understood at present. Instability may also play a role in another transi-
tion, that from deflagration to detonation (DDT). A flame propagating through
a mixture will, under appropriate stimulus, accelerate and change from being
an isobaric deflagration wave into a detonation wave, with shock-like
structure.

Instability is invariably invoked to eliminate branches of multiple
responses for being physically unrealizable. Several examples are provided
by the burning of a condensate (Chapter IV), and others by fuel- and mono-
propellant-drop combustion (Chapters VI and VII).

Finally, a striking manifestation of instability is provided by cellular
flames, which are discussed in detail by Markstein (1964). Under certain con-
ditions a nominally plane wave displays cells, i.e. an unsteady, quasi-periodic,
two-dimensional, transverse pattern (Fig. 1). O©Cn average the cells have a
characteristic dimension, but large cells grow and divide while small cells
shrink and vanish. The corresponding phenomenon im highly curved burner
flames leads to beautiful polyhedral tips (Fig. 2), vhich sometimes are quite
steady and sometimes rotate but never exhibit the unsteadiness of plane
cellular flames. Cells have also been observed on a spherical flame spread-

ing out from an ignition source (Istratov & Librovich 1969).
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All these examples apply to premixed flames and some to diffusion flames,
which introduce their own peculiar questions associated with the separation
of the reactants. However, we shall be concerned only with the stability
of the freely propagating premixed flame, and cellular flames will play a
central role in the development. Such a narrow focus is‘dictated by the
state of the art, analytically speaking: cértainly it is the only area that
has been explored by éctivation—energy asymptotics to any siginificant extent,
a big attraction being the simple closed form of the unperturbed steady state.
Even then formidable difficulties remain; that they have ten overcome is due
to the tenacity with which Sivashinsky, the principal architect of the thecrv
we shall describe, has pursued the problem.

In our opinion, the material in the present chapter, answering as it
does questions that have long frustrated the combustion scientist, is one

of the triumphs pf activation-energy asymptotics.

2. Slowly Varying Perturbations of the Plane Wave

The motion of a slowly varying flame is governed by the basic equation
(VIII.32), where Vi is to be determined from a coupled hydrodynamic analysis.
There the flame appears as a discontinuity across which the jump conditions
(VI11.1,2,3) hold and on either side of which Euler’®s equations (VIII.34) are
valid.

If the gas is quiescent for ahead of the flame there is a solution

v, = 0, M = 1, k = 0, (L)

namely the steady plane flame. Small perturbations of this statiomary state,

to be denoted by primes, then satisfy




. 1
' _ P I LR LAV =
Mn 1 Ypl YLF 5 Mn 0, (2)
1 1
where
M' p,(v' -F') B = sz /b (3
n 1*'nl1 7 ° LUl | i

and we have used V =.1/pl. Without loss of accuracy, the £, n, g-frame
may be fixed at an arbitrary point of the undisturbed plane wave. The
velocity perturbation must be determined by the hydrodynamic analysis
mentioned above, a step to which we shall return shortly.

Only for one—diﬁensional disturbance of the flame surface can the
velocity perturbations be neglected, as will become clear in the sequel.
Nevertheless, doing so in general leads to a correct description of one of
the disturbance modes as k>0 or !B!-*w. (The latter corresponds to
small heat release, when the unit of temperature becomes small and hence T,
large, or to a Lewis number close to one.) Sivashinsky (1977a) then speaks

of the diffusional-thermal effect, since these are the processes left. With

yi = 0 and hence M; = -plF; . )
equation (2) admézks spatially periodic solutions

F' = plAexp (aT + ikn) (5)
provided

(kz-piaz-ZBpla)A = 0 i.e. pja = -B # /gf:]:r . (6)
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where no loss of generality results from considering disturbances independent
of .

For one-dimensional disturbances k = 0 the two roots are

“' pla = 0 ’ —28 ’ ) (7) i

and the flame is unstable if and only if B 1is negative, i.e. the Lewis

number is greater than 1. This result was uncovered in our earlier discussion

of plane flames (Sec.[II.5). On the other hand, for k # 0 there is a

positive root whatever the value of L so that instability always occurs.
The conclusion-:is found to be correct when velocity perturbations are taken
into account, although the smaller (in absolute value) of the roots (6), on
which it is based, is spurious, i.e. not associated with any of the actual
modes. On the other hand:T:arger root does correspond to an actual mede in

) the limit IB|-+ o eor k -+ 0, though only to leading order. Thus there is
a diffusional-thermal mode but it is not necessarily unstable. We turn now
to the hydrodynamic problem.

The jump conditions (VIII.1,2,3) show that the state behind the plane

flame is
pz = pl_Yl ’ U2 = Yl ’ V2 = 0 (8)
while the- perturbations on the two sides satisfy

1) \J

p, = pi—z(o-l)(ui-F;) y uy = oui—(o—l)F; , Vvl =v!-Y F'

Here u and v are the velocity components ir the £- and n- direction

and




g = TZ/T1 = l:*YI/Tl (10)

When account is taken of the convective accelerations due to the velocities
T1(= 1/01) and T, in front of and behind the discontinuity, Euler's

equations (VIIT.34) are seen to have the solutions

(]

[p'u'v'] = [~Gojatlk]), [k],ik]P exp(at+|k|E+ikn) for £ <O,

(11)

[

[p',u’',v'] [pza—]k],lkl,—ik]Pzexp(ar—]k]5+ikn)

+[0,0]k|,—iplasgnk]Sexp(ar-p2a£+ikn) for £ >0

The P-terms form potential fields for the velocities while the S-terms, which
are only solenoidal, take account of (convected) vorticity behind the flame.
These solutions are appropriate for a flame surface (5), and substituting

into the jump conditions (9) yields

o[pla+(2c—1)]kl]P1+_(pla—clk|)P2~2o(c-1)plaA =0 ,
olklpl—]k]Pz-o]k}s—(o-l)plaA =0 , (12)
]klpl+lk]p2+plas-(o—l)[klA = 0 .

If the flame displacement A were specified, the equations would determine

the hydrodynamic fields on the two sides of‘the surface. In fact A is

related to Pl for slowly varying flames, as the basic equation (2) shows.
Landau (1944) and, independently, Darrieus (1946) supposed, in the

absence of a theory, that the flame speed is unaffected by the perturbations;

which, as we shall see, is true 1nA;%eory of slowly varying flames for

k+0 or IB] + », The response of the flame is thereby eliminated and it

is appropriate to specak of the hydrodynamic effect. Setting the flame-speed
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perturbation ui-F; equal to zero gives

lk'Pl-plaA = 0, (13)

and then the homogeneous system for Pl’ P2, S and A has a non-trivial

solution if and only if

. 2 2 2
pla = olk|] or (o+1)pja +20|k|ola-o(c-l)k = 0
i.e. pja = o(-1# /T#o-173) k[ (c+1) . (14)

s’
I

The first root gives = A =0 sc that the stabilitv of the flame is not
involved, although disturbances behind the flame are amplified. However, A
is non-zero for.the second root, which is alwavs nositive in view of ¢ > 1,
and we conclude that the flame is unstable. Note that the result is quite
independent of the theory of slowly varving fiames (even though &, .n, g
were used): the hydrodynamic effect is alwavs destabilizing though. of ccurse,
it may only be present when the variations are slow.

We now come to the stability of the plane wave to slowly varying dis-

turbances, including both the diffusional=-thermal and hvdrodynamic effects.

The basic equation (2) provides

(k2+plo.|k]+28|k|)?1+(kz-piaZ-ZSQla)A = 0 (15)

ot oo

as fourth equation of the homogeneous system, in place of (13), so that the

condition for a non-trivial solution becomes

33 2 2 _
aopla +a1p1c| +azplcx+a3 = 0 ,
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where
a, = ofl, a; = (o+1) ([x[+28) , a, = o|k|[-(30-1) |Kk[+48] ,
| an
a; = —ckz[(30—1)|k1+2(0—l)8] R
if pye = olk] is again discarded.

From their behavior as k + 0 or |B| + o it is clear that one of the
three modes may be called diffusional-thermal and the other two hydrodvnamic.

In either case the cubic becomes
22 2
(p,0+28) [(o+1)p]u +20lk|pja-0(e-DK] = 0 (18)

so that the larger of the roots (6) and the two relevant roots (1l4) ar=

obtained. Correspondingly the basic equation (13) reduces to
22
(pla +ZBpla)A = 0. (19)

That the condition (19) agrees with the diffusional-thermal condition (6)
only in the limit k > 0 or lBl + o jtgelf shows that the smaller root
(6) is spurious. It predicts P = 0(k2/28) for k small or [8! 1large,
whereas the actual remaining modes have pio = o(k).

The cubic shows that steady corrugations (a = 0) with wavenumber
(k] = -2(o-1)8/(30-1) (20)

are possible when 8 is negative & > 1). The result was first obtained
by Sivashinsky (1973) but is of historical interest only since for that value

of k (and indeed all values) we shall see that there is at least one root

—_
of the cubic with positive real part, implgying instability.




A result of the type (16), for a more complicated model, was first
obtained by Eckhaus (1961) from a thin-flame analysis which did not use
formal activation-energy asympc;;éps. Instezd he adopted a formula of Mallard
and LeChatelier (see Emmons,’{;Sgk which leads to the perturbations of flame
temperature and spced being proportional, a relation concistent with the
asymptotic result (VIII.30) after linearization. The first complete deriva-
tion was given, somewhat heuristically, by Sivashinsky (1977b) and, rigorously,
by Buckmaster (1977)

Necessary conditions for every root of tie cubic (16) to have a negative
real part are ajs ag > 0. Stability would therefore require

30-1

=

-Ikl < 2B < —(

which, for ¢ > 1 as here, is a contradiction. We are forced to conclude
that plane flames are umnstable.

The instability occurs whatever the wavenumber k, but it would be a
mistake to infer that all steady, slowly varying flames are unstable. Such
an extrapolation implies taking the short-wave limit k - = (so as to screen
out boundedness and curvature} égg hence violating the assumption of slow
variations on which the conclusion of instabilicty for unbounded plane flames
was based. In any event the consequences of linear Instability are not
necessarily catastrophic; the result may be a noniinear, unsteady structure
superimposed on the steady state without oblitzrsting its essential character.

Even the instability of unbounded plane flames to leng-wave disturbances
cannot be considered definitive, since there may be stabilizing influences

that have been ignored so far. Two such influences are gravity and curvature,

which we now examine.

- e Ao

- i

-u'il I,»




3. Buoyancy and Curvature

The influcence that gravity has on flames by virtue of the induced
buoyancy forces is clear from a commonplace observation: an inverted candle
does not behave in a desirable fashion. A less obvious manifestation is the
dependence of the vertical propagation limit (i.e. the dilution bevond
which the mixture is not inflammable) on whether the propagation is upwards
or downwards. Instability should play a role in such limits since for up-
ward propagation the light burnt gas underlies the heavy unburnt gas, so that
Taylor-type instability can be anticipated. (The characterization is not
entirely accurate since the flame is not a material surface.)

A flame of characteristic dimension 1cm. and speed 45 cm./sec. has
approximately equal gravity and dyvnamic heads. These quantities are tvpical,
and faster or smaller flames are correspondingly less influenced bv gravity.
Moreover, since flame thickness is typically much less than a millirmeter (Sec.
IT.4), gravity can only be important in the hydrodynamic field of a nominally
plane flame. Support for that conclusion comes from the derivation of the
basic equation (VIII.32) of slowly varving flames, which does not use momentum
balance (the only governing equation influenced by gravity, see Sec. 1.2).

9

The unit of acceleration is M3/ocx, which is typically 2x 10S cm./sec”,

p
The dimensionless gravity fcrce is them 5x 10“3 and we may reasonably con-
sider it 0(1/8). The momentum equation (VIII.34) now gains a term -9(9,0)

on its right-hand side, where g 1is positive for downward propagation, so

that terms

-p lgg and -p 285 (21)

are added to the pressures in front of and behind the flame, respectively.




The perturbations pi and pi in equation (9) are now the sums of terms

coming from equation (11), as before, and terms
-p.gF' = —ngA\exp(aT+ikn) -p,g F' = —p2 BA exp (at+ikn)
1 1 ’ 2 lo ’

so that the first of conditions (12) is replaced by

o[pla+(20—l)[k[]P1+(pla—clkl)Pz-(c~1)(Zcpla—pig)A = 0. (22)

Clearly there is no limiting effect on the diffusional-thermal mode but

there is on the hydrodynamic modes, the roots (14) becoming

pia = ol-1% fi+(o-1/0) (1-oje/olkD1]k|/(e+1) . (23)

Since g 1is negative for upward propagation, we immediately see that gravity
is destabilizing when the hot gas underlies the cold. When the reverse is

true, disturbances for which
2
le| < p78/o : (24)

are stable. For a downwardly propagating flame, modes of sufficiently long
wavelength are therefore stabilized.
That these conclusions do indeed hold is seen from the cubic (16) with

terms
(c-l)piglkl (pyo+ (x| +28)

added to account for gravity. 1In either of the limits k + 0 or 8 + =

the cublc becomes




(pla+28)[(o+1)pia24-20[klpla-0(o—l)k2+-(G-l)pig!k(] = 0 (25)

so that the diffusional-thermal mode is unaffected but the modifications
(23) of the hydrodynamic modes are obtained. For the latter, the stabilizing

effect is most clearly seen for long waves, when

a = tig, —(c;l)ﬁlk]llz--ci—l]k[+0(k3/2) . (26)

We conclude that for &£ > 1 gravity cannot completely stabilize even long
waves, since the relevant root (7) is a creature of purely one-dimensional
disturbances and these are unaffected by the hydrodynamics; but for X < 1
it can.

As k »> » the cubic reduces to
2 2 2
(pla+[kl)[(c+1)pla -0(30-1)k] = 0, 27)

which is independent of g: short waves are unaffected by gravity, as
expected. Note how instability persists in the limit: there is always a
positive root, though the other two are negative.

We now examine the effect of curvature, but only on the limit of the
diffusional-thermal mode. A full treatment is quite complicated, much more
so than for a plane flame, and in any event gravity stabilizes the other modes
(at least for long wavelengths). Attention will be confined to a plane source

or sink flow

u = c/r, v=0 (28)

where ©r 1s radial distance and u, v are polar components. The undisturbed

flame is then circular, with curvature
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K = -1/plc (29)

determined by the requirement that the mass flux is 1 at it.

Such a flame corresponds to the solution

v = 0 Moo= 1, V=0 (30)

of the basic equation (VIII.32), and perturbations of this steady state

satisfy

. 28
' _ ! - ] [) =
Mn Yl Ypl xV -+SI-MH 0. (31)

Here Y;l is due to the displacement of the flame in the source or sink

flow, distlfibances of which have been ignored. It is sufficient to consider

plane disturbances, for which the flame may be written

r = pplel+F' 0,0 (32)

in polar coordinates r, ¢. Then

Vo= FF, M' = F(F'/pjcho F') , V.-v'. = +F [o3c? | (33)
T n 1" 1t - -pl $6" "1

according as c¢ 1is positive or negative, and the behavior of modes

. F' = p,A exp(at+ing) (36)
is determined by |

2m2+2(6+1/n c)p a+(28-—n2/p c)/p.c = 0 35) ‘

f1 1900y QUM {
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as

A 2 2
pa = -(B+l/pjc) tv(B+l/p )" - (28-n"/p c)/ojc . (36)
Clearly the roots are always real.

To discuss the result we introduce the wavenumber

k = n/pllcl 37

and note that the formula (6) is recovered in the limit ‘c! + o with k
fixed. Since the smaller root was then found to be spurious, we shall
discard the corresponding root here. The larger root is negative if and only
if B8 > -llplc, so that curvature is a stabilizing influence for the source
flow but destabilizing for the sink flow. The conclusion must however be
considered tentative until incorporation of the hydrodynamics shews that we
are in fact dealing with the limit B8 » < or k + 0.

The requirement that ¢ be positive corresponds to a flame that is
concave towards the fresh miXture, as for a closed burner flame. Such
flames were found for &£ < 1 (Sec. IX.3) and our theory predicts stability
of the diffusional-thermal mode. On the other hand, the open flames found
for £ > 1 correspond to ¢ < O and instability is inferred. Extrapolations

of this kind are, however, little more than guesses.

4, Stability of Near-Equidiffusional Plane Flames.

The conclusion that modes of short wavelength will always be unstable
according to the theory of slowly varying flames, while not a valid one,

nevertheless stands in sharp contrast to experimental results. We therefore

- .
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turn to near-equidiffusional flames for clarification, and here compromise

is necessary. On the scale of the flame thickness slowly varying flames are

almost plane and almost steady; these characteristics allow the fluid

mechanics, in particular variable density, to be incorporated without difficulty.

By contrast, the continuity and momentum equations do not simplify when the

flame is near-equidiffusional, so that perturbations of even the plane flame

lead to non-constant coefficients. For that reason most discussion of near-
equidiffusional stability has relied on tﬁe constant~-density approximation,

a
as embodied in equations (VIII.62, 63), and with ;#éingle exception of Sec. 6

that is the framework adopted here.

For flames in & quiescent gas, the governing equations reduce to

3(T,h) /3t = 92(T,h#AT) 3 (38)

to these are added the jump conditions {(VIII.64). The steady plane wave cor-

responds to the solution

(39)

where

n = x+t , (40)

the flame sheet being located at x = -t [cf. equations (IX.29,30)]. Its

stability to small perturbatious is our first concern.

The class of disturbances is limited: 0(1) perturbations of T are

Tt
admitted provided they are balanced by 0(1l) perturbations of Y which il

keep the sum of order 6—1. It follows that a finding of stability (in
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contrast to instability) is not definitive. Nevertheless the conclusions
are very convincing and it seems unlikely that an analysis dealing with a
larger class of disturbances would alter the picture substantially.

Such perturbations satisfy

3(T',h") /3t = TE(T',h'HAT') (41)
on both sides of the disturbed flame sheet

n = F'(y,t) . (42)
The appropriate solution is

"W = 0 for n>0 (43)

behind the flame sheet. Continuity of T and h, plus the jump conditions

on their derivatives, yield

T' = -YlF' s [n'] = -AYlF' s

for n =

2 2
v = ' ' t = 1 - 4
9T'/on = -Y,F'+Y,h'/2T, , [3h"/3n] = XY h'/2T, - 22X F

(44)

where the right-hand sides of the last two equations are to be evaluated for
n = 0+, i.e. on the hot side of the flame sheet.
Variations in the z-direction may be ignored without loss in generality

of the conclusions. The solution corresponding to
F' = A exp (at+ iky) (45)

is

0

’
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(T',h") = (B,C+x(Ki—kz)Bn/(1-2x1))exp(at+1ky+xln) for n< 0,
(46)
h' = Dexp(at+iky+x2n) for n>0 , ]
where :
3
, .
€y o = 310% Nirbettk®] L o1 < arg(Hbarik) < 1 (47)
To be admissible the solution must vanish far ahead of the flame sheet and ;
be bounded far behind, i.e. Re Ky must be positive and Re Ko non-positive. .-

For Re a > 0 (i.e. the unstable modes of interest and their neutral limits)
these requirements are met automatically, so we need not concern ourselves
with them further. Equations (44) now yield a homogeneous svstem for 4, By« —ooson: oo

C, D which has a non-trivial solution only if

2. - 2 2. © o g2
(l—Kl)(l-le) 4-A[(1—K1) -k = 0, A= YlA/2T* , (48) .

a result first obtained by Sivashinsky (1977a).

This condition determines all those modes, i.e. values of o, correspond-
ing to any given X and k. For Re a > 0 we can be sure the mode is
admissible, the boundaries of regions of instability Re a > 0 being

curves Re a = 0. There are just three such curves, nameiy
the X-axis: k=0 |, 49)
the parabola P: ka = —(X+1) , (50)

the branch B of the curve (1+12k2)i2-6(1+8k2)i-

- 8(148k5)2 = 0 for which X > 16/3 . (51)

-&.g____________‘___ « . - i
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For the first two Ima = 0 also.
The regions of instability can now be determined from explicit results

for small k, namely

o = DK+ 3261k + 0k’ |, [R24i-840/XGo8) 1/32 + 0 (kD)

(52)

where both square roots are implied for O < A < 8. Clearly there is a mode

with Re a > 0 for
A<-1 or > 2(1+/3) (53)

respectively, but not otherwise, so that the stability regions are as marked
in Fig. 3. Note how misleading results would be ébtained by considering only
one~dimensional disturbances: for k = 0 the first of the values (52) vanishes
and no instability is predicted for X < -1. The resulting stability condition
A < 2(14/3) can be considered a refinement of X < 1 for slowly varying
disturbances [Sec. 2, cf. equation (7)].

For each value of k there is a band of Lewis numbers, always including
-1« X < 16/3 and hence X = 1, for which the flame is stable. The conclusion
is in accord with that for slowly varying disturbances, where instability is
found for all £ # 1 (Sec. 2) and, moreover, provides a possible explanation
of why stable flames are observed, a possibility that makes near-equidiffusional
flames of great practical importance. To be sure, in the limit 8 + « the
stability band in I is vanishingly small, but in practice 6 1is only
moderately large. Since Lewis numbers are invariably close to one, it is con-
ceivable that all flames adequately described by activation~energy asymptotics

may be considered near equi-diffusional.

T
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On the boundary B the neutral stability modes are oscillatory, i.e.
Im a # 0. The boundary is relevant to mixtures whose deficient component
is heavy and therefore has relatively small diffusivity (e.g. for lean
hydrocarbon or rich hydrogen flames in air), but it has received no attention

to date.

On the parabolic boundary and on the A-axis the neutral modes are non-

oscillatory, i.e. Ima = 0. (In fact, all modes inside the parabola are

non-oscillatory too.) For any X < -1 and wavenumber in the range
0 < k] < /~(o+1)/2 (54)

there is a mode that will grow. Moreover, since ReC vanishes at the ends

of the range there must be an intermediate value, namely

4155-93° + (4=61)/I=31,1/2

ky = 0 108X

s (55)

for which the growth is a maximum. Although the instability does not favor
one wavelength to the exclusion of all others, an arbitrary disturbance can
be expected to grow in such a way that the length 1/ki plays a significant
role. As we notedin Sec. 1 it is characteristic of cellular flames, which

are usually observed when the deficient-component is light (A negative), for

many modes to contribute to the structure, but nevertheless an average dimension

can be assigned to the cells.

That the stationary mode corresponding to the parabola has relevance to

cellular flames is supported by the behavior of the flame-temperature perturba-

L4

tion




i

ZTi(l-Kl)A exp iky = Tf(“1+4k - DA exp i(ky+n)(k = /-(X+1)/2)

(56)
corresponding to the displaccment
F' = A exp iky , (57)

with which it is exactly out of phase. Viewed from the burnt mixture, the
crests are colder than the troughs. We would therefcore expect the crests to
be the least luminous part, which is in fact a well-known characteristic

of cellular flames.

5. Cellular Flames

The linear analysis of the previous section predicts that infinitesimal
disturbances will grow without bound when X 1is less than -1, but there is

stryong evidence that the growth actually leads to cellular flames. In that

_case, nonlinearities must limit the growth; the nature of that interaction

will now be investigated. Attention will be focussed on the neighborhood

of X = -1 by setting
A= ¥ ith = 2 2/Y 8
= -\ Fe wit A, = MYy, (58)

where € > 0 1is vanishingly small. Only the top sign on ¢ 1is of interest
here, corresponding to the linearly unstable waves in that neighborhood

(i.e. the long ones), but the bottom sign will be used later. Such a focus
can be treated by a perturbation analysis in e. The stability boundary (50)
shov: that these waves have a wave-number k = O(el/z) at most, while the

result (52) shows that they grow no faster than a = 0(52). Accordingly the

slow variables
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n = %y, T = g7t (59)

are appropriate for their descriptioa.
For fixed ¢, an infinitesimal disturbance will grow according to the
linear analysis until its size makes some nonlinear term comparable to the
: linear terms. Its amplitude is then O0(ec) so that, following Sivashinsky

(1977b), we take the flame sheet as
x = -t+eF(n,t) . (60)
Nonlinearity has certainly intruded by then, as is seen from the resulting

flame speed

.2
W o= 1-53(FT+ Fn/2)+0(e6) , (61)
but it could conceivably intrude elsewhere for amplitude o(c); the consistency
of the analysis stemmiag from the assumption (60) shows that it does not.

If now the coordinate

n = x+t- eF(sl/zy,szt) (62)

is introduced in place of x, so that n = 0 1is the flame sheet, then derivatives

in equations (38) become

3 3 ? 3/2, 3, 1/2 3

——— = —_— —_— = - F s o

3
3y nan ' ©  an’ 3t

while the normal derivative in the jump conditiens is

1 2 3

an

3.2, 93
(l+2 £ FQ) sn " E Fn




- 22 -

(B )

Perturbation expansions are now introduced for T, h and F, for

-

example

T = T +«T +s:2’l‘ +€3T + ...
o 1

where the coefficients are functions of n, n, T. A sequence of problems

then results, whose solutions are subject to the requirements that

Tl = T2 = T3 = ... =0 for n > 0, that conditions as n + -» are undisturbed
and that exponential growth as n +.+» is disallowed (though algebraic growth
cannot be prevented). At the fourth problem, for T3 and h3, the nonlinear

equation (75) for Fo is obtained as a solvability condition.

The first problem is

'L(To) = <£(ho)-k082To/8n2 = 0 for all n ,-\\\\\g\\‘_—'
(64)

(r,] = [h 1 = 0, X [3T /3n] = [3h /én] = -A Y exp(h /2T)) at n

1

where

32/3n2— 3/3n (65)

L

As expected, its solution is the steady plane wave

n n
+
T,+Y.,e s XOYlne

T = h = for n<$ 0. (66)

no confusicn will result from the double use of Tl’ since we shall show

immediately that the expansion coefficient is identically zero. In fact the

gecond problem 1is easily seen to be

0 ,)Z




- 23 -

L(Tl) =0, I(hl)-J\OOZTl/BnZ = {’:chn for n$ 0
(o)

[Tll = [hll =0, [aTl/an] = —hl/ko , [ahllan] = -(hltYl) at n

when the Independence of T0 and ho from n, t 1is used; so that

ro , tYlnen
Tl = h, = for ng 0 (68) !
Lo - :

3

<ay

is obtained without using the jump conditic on Bhl/an, which is then

v

automatically satisfied. The information outained so far enables the third

problem to be written

\
_ n ~ 2 2 n <
L) = {YlFonne . Loy A 3T, /0" = {AoYlFonnne for n$0,
o o
¢ (69)
. (1,1 = [h,] =0, ([3T,/4n] = -hy/2  , [3h,/3n] = -h, at n =0 )
Again, the solution -
n 2...n
Y1Formne ’ )‘oYlFonn(wn e X
T, = L, = for n$0 (70) i
0 , X Y. F ;
o 1 onn ,

is determined without using the jump condition on th/an, which is then

satisfied automatically.

Finally we reach the fourth problem, which can now be written : !
|
{

2 n -‘~\\\
Yl(a3n +aAn+aS)e

Y. (a,n+a )en
Loy =) V120 L) - alr, /e’ = forn$ 0 .
3 0 3 o 3 XY
o lal
2 - 2,
[Ty] = [hy) = 0, [3T4/8n] = Y\F /2-hy/x , [3h/om] = ~hyRY F o 4 ¥ To

at n=20, (71)
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a = -F a = -F +F -FZ a = )X a
1 onnnn 2 ot Inn on ’ 3 ol
(72)
2 2
= _ - -F + + = =) + +F + 2F
a Ao(For Fonnnn Inn Fon) 2Fonn > 35 O(FOT Fonnnn on) on
The solution is determined without the last jump condition as
2 n 3 2 n
Yl(bln +b2n)e . Yl(b3n +b4n +b5n+b6)e
T3 = h3 = for n$0,
0 R Yl(b7n+b6)
3
where
bl = a1/2 » by, =a,-a;, by =1 a1/2 ,
64 = -(aa+koa2—2koal)/2 , b5 = aS-a4+-Ao(a2+a1) . : (74)
b, = -\ (F -F ____-F, +F>/2) , b, =-\a, .
6 o or onnnn 1nn “on ? 7 o1

Note that h3 must be allowed to increase algebraically. The jump condition

on 8h3/3n is not satisfied automatically but requires

2
+4 = F + T = .
FOT F0"11'171?1 orm/)‘o On/Z ¢ (73)

This result is due to Sivashinsky (1977b), who generalized it to
4 2 2
+ g 2 =
F * G F_ t9F/A 4 (TF )7/ 0 (76)

| S . ; . .
fo7var1at10ns in both the y- and z- direccions.
The equation has an interesting implication for the flame speed. While

the expression (61) is purely kinematical, its approximation
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3 +
= + A
W 1+¢ (t.Fonrlrm Fonn/ o) an

is a profound conscquence of the diffusional-thermal processes. Markstein
(1964), in an attempt to modify Landaud's conclusion that all flames are hydro-
dynamically unstable, assumed that the flame-speed perturbation is proportional
to curvature and so incorporated the term in Fonn but not the other.

The linearized form of equation (73) has solutions proportional to
/2

exp(ar/62+ikn/€1 )y if

a = akz/)\o--4k4 , (78)

which coincides with the first of approximations (52) in the neighborhood of
A= -Ao, k =0 . This result is graphed in Fig. 4. The maximum growth rate

occurs for

ki = VE/SXO s (79)

which is an approximation to the general formula (55). The connection of

this maximum with the characteristic cell size has already been noted.

Existing discussion of the nonlinear equation (753) is limited to numerical
computations GSivashinsky’E\Michelsonl 1977). 1Integration of the initial-

value problem with periodic boundary conditions (using a period large compared
to k;l) leads to results like those in Fig. 5 when the plus sign is taken

in the equation. (For the minus sign there is decay to zero, corresponding

to linear stability.) The nonlinearity prevents unlimited growth of the
disturbance and the resulting structure, being quasiperiodic with characteristic

dimension k;l, ls highly suggestive of cellular flames.
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6. Hydrodvnamic Effects

The analysis of Sec. 5, leading as it does to a balance of small effects,
provides a framework within which several generalizations can be discussed so
long as the additional effects are appropriately small. Here we shall con-
sider weak interaction of the flame with the hydrodynamic field. A rigorous
derivation of the governing equation replacing (75) requires analysis similar
to that in Sec. 5. A more transparent derivation can be made by plausible
arguments.

The constant-density model is studied because it is simple and yet
retains some of the key physical ingredients that govern flame behavior.
Nevertheless it is a rational asymptotic limit (¢ -~ 1), albeit one of limited
practical interest since aensity changes across flames are rarely small. When
o 1is close to 1, the hydrodynamic effects can be incorporated in a ratiocaal
fashion as perturbaticns just strong encugh to influence the flame behiavior
described in Sec. 5. Since we are only concerned with wavelengths 0(3-1/2),
the field outside the flame sheet has a dual structure similar to that of
slowly varying flames (Sec. VIII.3): hydrodynamic disturbances described cn

-1/2

the scale n = 0(e ) must be matched with those in the diffusion zone,

where n = 0(1).

The flame speed (61) is now augmented by

3/2

(wp - e 2E v 1+ 0(e)]

where ui, vi are the components of the velocity disturbance immediatelvy

ahead of the flame shect. If this is to bc:#nwturbation just comparahle to

C 3, . . .
the existing one, then ui must be 0(¢7): in which case vi (being of the

. . . 3 .
same order) makes a smaller contribution and W {is, to order ¢~, simply

i

angmented by u
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The problem now is to express ui in terms of Ef which involves

]
treating the flame sheet in the same way as the hydrodynamic discontinuity

was in Sec. 2. Indeed, the weakness of the velocity perturbation ensures
that Euler's equations are satisfied even in te diffusion zone, so that we

may read off the result

P, = (c-1)A/2 (80)

of solving the jump conditions (12) when k and o are appropriately small

and o 1is close to 1. Equation (80) relates ui and F, when they are

\

proportional to exp(at+iky) and hence the Fourier transforms of general ug

and F0 (since a is not involved). It follows that

uy(n,7) = ’(‘2‘;}1,‘)1‘5‘1 1 lkleik(y—y)!’o(ﬁ,r)dy dk
(81)
3/2 = (%,1)
where
s = 1+0(’% @2)

if ui is to be 0(e3).

So far we have been concerned with modifying the kinematical result (61)
for the flame speed; now we come to the result (77) of the diffusional-thermal
processes, which is found to be unchanged. Certainly it is plausible that

such weak density changes do not affect these processes. That being the case,

the generalization
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” o Fon(a,r)
+ +F " /2++ —_—di =
B HUF EE /A +F. /2 {i L——di = 0 (83)
of equation (75) follows, where
Yy = (c-l)/2n91a3/2 . (84)

The destabilizing effect of disturbances in the hydrodynamic field can
be seen from considering small Fo. Under linearization, i.e. on dropping

Fin/Z, there are solutions axp(oat+ikn) with

a = -ateiin_+aylk] ' (85)

and Fig. 6 shows graphs of these curves. As expected from the last section,
for y = 0 the lower sign gives stable modes only, but the upper sign involves
unstable modes. For vy > 0, i.e. when the hydrodynamic field is disturbed,
both signs give unstable modes. The possibility of stabilizing the modes

again by gravity can also be seen. Gravity changes the velocity by an amount
proportional to the displacement of the flame sheet (cf. Sec. 3), which cor-
responds to adding a constant to the righ~hand side of equation (855. If

the constant is negative (i.e. gravity points from burnt to unburnt gas) and
sufficiently large, then the curves in Fig. 6 are translated downwards into

the quadrant o < 0.

Sivashinsky & Michelson {1977) have treated the full equation (83) also,
in particular for the p&fkq sign when the hydrodvnamics is an extra destahiliz-
ing effect. Results similar to Fig. 5 are obtained, except that now the
large wrinkles themselves coutain several small wrinkles. %o shall consider

just two limits of the equation, both corresponding to significantly larger
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departures of A from —Ao than of o from 1, {i.e.

/2

§ = (-1 250 . | (86)

If changes remain on the scale of n and T then the hydrodynamic
term drops out and equation (75) is recovered in tﬁe limit. This tendency
was found by Michelson & Sivashinsky (1977b) in their numerical work.

If, however, changes occur on the slower scales &n and 621 then
the fourth derivative drops out and the equation reduces to

F n(ﬁ,'r)

2 o -
iFonn/ko+Fon/2+y_fm df = 0. (87)

F =<
ot n=-n

Interest now centers on the minus sign, i.e. the destabilizing effect of the
hydrodynamics when there is stability otherwisei%ichelson & Sivashinsky's

P4
computations show that from initial data of long period (but otherwise
arbitrary) there emerges at large times a steady progressive wave of the same
period. For such a wave FOT is replaced by a constant - V and, except
near points of relatively large curvature, Fonn may be neglected. The shape

is then described by the nonlinear integral equation
2 y, 1 1
+ — = ® =
F,/2 y{‘m G = )T, (4R 0 (88)

for the slope Fon' Here n 1is measured from a point where the slope

vanishes, so that

y, Fon(“\ -
v =y} - di (89)




- 30 -

The equation expresses constancy of the flame speed, as Landau assumed in
his stability analysis.
A continuous periodic solution for Fo, obtained numerically, is shown

(M vt L Viy<s 148,
in Fig. 7;WW(A solution for any other period can be obtained from it by

wrfanct elornitng Yoo
scaling ni) Fhe”discontinuities in Fon at *m are smoothed out by the

neglected Fonn-term, whose inclusion perturbs the flame speed. We are
therefore led to the suggestion th;t, under more general circumstances, the
de@stabilizing effect of hydrodynamics first discovered by Landay does not
result in chaotic structure but just a wrinkling of the nominal flame con-

figuration. Such fine wrinkles are sometimes observed on actual flames

(Markstein, 1964).

7. Curved Cellular Flames.

The cellular pattern in Fig. 1 is formed by a flame located in a large
(10 cm. diameter) vertical tube and, consistent with the results of Sec. 5,
is highly unsteady. By contrast, cellular flames stabilized on burners are
usually steady, which suggests a classical bifurcation phenomenon similar to
Taylor cells in cylindrical Couette flow. At a critical value of some para-
meter disturbances c¢f a single finite wavenumber become unstable, and beyond
that value there is an alternative (stalile) steadv state. Here we shall
establish curvature as such a parameter, leadinﬁto a steady cellular pattern.

As in Sec. 3, attention will be confined to the plane flow
v = c/fr, v = 0 (90)

with ¢ now positive only (source flow); r is measurcd on the scale of
the flame thickness. TIf disturbance of the hydrodynomic {icld is again

neglected then equations (38) govern provided the replacement
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‘is made. These possess a steady solution satisfying the jump conditions

(VI1I1.64) in which the flame sheet is located at

r = ¢ (91)

and

T= T1+Y1(r/c)C , h= AYl(rc/cc—l)Ln(c/r) for r<c ,
(92)
T=H,, h=0 for r>c.

Such is the undisturbed flame.

The result (91) implies that the dimensionless burning rate is 1, i.e.
the dimensional burning rate is the same as that of an adiabatic plane flame.
There is an apparent contradiction with previous sections, where we saw a
change in burning rate with curvature, which is resolved on recognizing
change in curvature as the determining factor. The essential process is
transverse diffusion, which is absent from the cylindrical flame because of
symmetry, and its presence is detected by changes in curvature. The simplified
treatment to be presented next will ensure that only disturbances in
curvature influence the burning velocity.

The objective is to admit curvature disturbances just strong enough to
modify equation (75). Since the an-term corresponds to curvature 0(e2),

we are therefore led to introduce

R = e (93)
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/2

as the O0(l) scaled radius of the undisturbed flame sheet. An 0(8-1 )

/2

change in y nearby they corresponds to a change 0(53 ) in the polar

angle ¢, so that we alsc introduce

€-3/2¢

w (94)
and take the disturbed position of the flame sheet to be
-2
r = & R+ef(w,T) (95)

in a polar representation. The corresponding displacement from the tangent

to the nominally circular flame sheet is then

F = %Rmz-&-f(m,'r) (96)

in the notation of earlier sections, where
w = n/R 97)

to sufficient accuracy.
The requirement that the existing curvature should not influence the

flame velocity suggests modifying the result (77) to read

14-63[4F

=
[

-1
onnan (Fonn-R YA,
(98)

+ R 25 /2]

Www ww' o

1+e3[4R"‘f

To sec that the nodification agrees with Sece. X.3 we note that for a flat

flame it reads

W o= 1;;3R'1/x0 = 14 (A+)‘o/>\o)3v/3y (99)
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where v 1s here the velocity in the y-direction. However, the radial
flow is locally just a weak simple strain superimposed on a uniform flow, 4
so that the result (99) is recovered by letting the strain rate become small
in Sec. X.3. It is no accident then that 1\ = —Xo plays a role both in
the effect of straining flows on a flame and in 1inéar stability analysis.

A modification of the kinematical result (61) arises because the flame
sheet moves in a non-uniform velocity field (without disturbing the field).

3/2

The accompanying changes (—e3F0/R, £7"“n/R) in fluid velocity at the sheet

lead to the new approximation

_ 3 2 -1
Wo= 1-¢[F  +F, [2+R(F -nF )]
(100)
= 1-e3(f +£2 2RI+ ER) L
T w
Comparing the results (98) and (100) establishes
£ +ar%F  +rv2%E o+ Yeer 2822 = o (101)
T W W [e] W

as the fundamental equation, governing the radial perturbation f in the

LTI e ws e o TE T O

position of the flame sheet. The term R-lf arises from the perturbation

in radial velocity at the flame, so that for nominally spherical flames

(where the velocity is proportional to r-z) the term is replaced by ZR-lf

(Sivashinsky, 1978). We shall pursue the stability of the cylindrical

flame; the spherical flame requires onlv minor changes, including generaliza-

tion of the w-derivatives (which is also needed here for variations in the
vz-direction).

For linear stability we set f proportional to exp(at+ivw) and neglect

the quadratic term to obtain
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a = iR_szlxo- w4t (102)

3/2

where, although it is strictly a discrete parameter (being ¢ times an
integer), v effectively takes all real values. (If variations in the

. . . . 2 ., '
z-direction are adwitted, with wave number k, then v is replaced by

v24-R2k2 and the conclusions are modified in an obvious way.) As R > w'u%fi

R‘lv = k ' (103)

held fixed the result (78) is recovered; and finite R clearly has a
stabilizing effect. For A > —Xo curvature only argments the existing
stability, but for A < -ko it can overcome the instability at sufficiently
small wavenumbers k (see Fig. 8). For all R the maximum growth rate is

attained for the value

2 .
kD = 18, (104)

cf. equation (79), and it is zero when R has the value
R, = 1622 (105)
c o °

for R < Rc there is stability, but for R > Rc there is a band of unstable
waves.

The stability rcgions in the plane of Jiik' and R/Xi are shown in
Fig. 9. As R 1increases through Rc a small band of unstable wavenumbers
appears, suggesting o classical bifurcation. The corresponding Landau

equation (cf. Matkowsky, 1570) is obtained in the usual way be setting

2 _ _ . 2 . _ %, 2
e” = (R Rc)/Rc , [ = e(f°+>,f1+-a f24 o) 5, T =1 [ , (106)
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with
f = €Acosv w for ™ = 0 . (107)
To leading order we find that

£, = AO(T*)cos(vcm) , A0 = A (108)

and then that secular terms appear in f2 unless

, 2,2 2
Al A (Q-A AD) 114417 (109)

It follows that the amplitude asymptotes to the constant value

Ao = t3/k° according as A s 0 . (110)

We conclude that the cylindrical flame sheet is stabtle for R < R. but
unstable for R > Rc; and that for small positive values of R-—Rc there
is a stable cellular configuration, with amplitide proportional to (R—Rc)l/z,
to which the originally cylindrical flame sheet tends after disturbance.

A characteristic feature of stationary cellular flames (including
polyhedral flames) is that the crests, i.e. the portions of the flame that

are convex towards the burnt gas, are sharper than the troughs. Here the

variations in curvature are given by

fwm - e{-32k3(Aocos(vcm)+eA1cos(vcw)+eB sin(ucw)]—(64X:/9)5A§cos(2vcw)}'+O(e3)

1

(111)

where Ao has its ultimate value (110) as do the integration functions

* * -
Al(T ) and Bl(r ) in fl' For Ao > 0 the crests lie at w Zmr/vc




] and the troughs at w = 2n+1)n/vc, where n 1is an integer. Clearly tae

} 0(e”) harmonic increases the magnitude of the curvature at the crests and

decreases it at the troughs, consistent with cbservations.
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