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Chapter IX

Burner Flames

1. Features of an Anchore~d Flare.

A common enough observation, both inside and outside the labcratcry, is

that a premixpd flame can be positioned stably at the mouth of a tube through

which the mixture passes. Such a flame is usually conical (though nt

necessarily so), in which case it is conveniently divided into three rarts:

the tip, the base (near the rim of the tube) and the bulk of the flame in

between. The latter gives it roughly the shape of a cone.

Elementary considerations of the flame speed and the nature of the

flow adequately explain the conical shape (see Fig. VIII.2 and the acccm-anying

discussion). Simple hydrodynamic considerations rrovide salient features of

the associated flow field, as we shall see in Sec. 2.

The nature of the combustion field in the vicinity of the rim is crucial

in questions of existence and stability of the flame. Cas steeds near the tube

wall are small, because of viscous effects, so that if the flame could renetrate

there it would be able to propagate against the flow, travelling down the tube

in a phenomenon known as flashback. in point of fact, the flame is quenched at

some distance from the wall, so as to prevent its reaching the low-sreed region,

the fundamental quenching mechanism (for a stationary flame) being heat loss by

conduction to the tube. Such quenching enables unburnt gas to escape betweeen

the flame and the wall through what is known as the dead space. A mathematical

description of this phenomenon is presented in Sec. 5.

The heat loss to the tube also plays an important role in the global

stability of the combustion field. If the flame is disturbed so that its
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speed increases it will move closer to the rim, threatening flashback. But

heat loss will then increase, causing a decrease in the temperature of the

flame and hence its speed, so that it will be swept away again. Similarly,

if there is a decrease in flame speed so that the flame is swept away from

the rim, threatening so-called blowoff, heat conduction to the wall decreases,

the speed increases and the flame moves back again. -hus heat loss acts as a

restoring force.

The third part of a burner flame, the tip, is similar in one respect to

the base in that here also the flame approaches a bo,=dary, albeit an adiabatic

one, namely the centerline. Experiment shows that the tip =ay be closed, the

flame cutting the centerline at right angles, or cten, the flame being

quenched (though not by heat loss) at a finite distance from the centerline so

as to leave a dead space or hole through which the mixture escapes unburnt

(Fig. 1). Which of these two possibilities occurs dezends on the compositicn

of the mixture and flow conditions. Flame tips are treated in Secs. 3 & 4.

2. Hydrodynamic Considerations.

Consider a weak plane flame, of speed cU (with 0 < E << 1), lying

stationary in an infinite uniform flow

(1) = (U,0).

The hydrodynamic jump conditions (VIII.l,2,3) are satisfied by the undisturbed

flow (1) ahead of the flame and

(2) V = (U, ±EU(PllP2 - 1))

behind, where the sign is opposite to that of the slope of the flame. There is
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simply a refraction of the streamlines, and we may expect that to be the

primary characteristic of the flow field in the neighborhood of any point on

the conical part of the burner flame. A more detailed description requires

a hydrodynamic analysis, which we shall pursue some distance assuming that the

flame speed is constant. Such an assumption is correct if the burner is

sufficiently large; in the context of slowly varying flame the voluminal stretch

in equation (VIII.43)-is then small so that the burning rate Mn = 1.

We shall first look for a plane flame tip in which the uniform flows (1)

and (2) hold far upstream; elsewhere it is necessary to solve Euler's equations

on each side of the constant-speed flame. A Poisseuille distribution would be

more realistic for the upstream flow ahead of the flame, but the analysis is

much easier for a uniform flow while still uncovering the essential characteristics.

Although we are not necessarily dealing with a slowly varying flame, the

notation , rT of Sec. VIII.3 will be used to emphasize that the distance unit

is large compared to the flame thickness. The -axis is now taken along the

symmetry line (Fig. 2); velocity components are u, v. Since the flame slopes

gently (in the main), we may write

(3) n= F(O) with a =E:

for its upper surface. In front u, p and a/In are 0(l) while v and

a/3& are O( e). The momentum equation therefore shows that p is a function

of a alone, to order E , from which

(4) u . f(a) + 0(E 2

follows on applying Bernoulli's equation; continuously then requires



(5) v =- cnf'(a) + o(2)

The condition for the flame to be at rest is

(6). fF -Uo + O(c2

when a is measured from the tip.

The appropriate coordinates in the burnt gas are a and

(7) -= .

At the flame we have

(8) u2 = f + 0(E2 ), = + +

according to the Jump conditions while, on the centerJine, symmetry requires

(9) v = 0 for a > 0.

Since the flow is a perturbation of the uniform one urstream, we may write

(10) u = U + Eu' + 0( 2 ), v = v' +

which immediately implies

(ii) f - U + 0(c) and hence F -a + C(e).

The flame is wedge shaped and the'boundary conditions (£) yield

(12) u 0, v2

if the flow upstream is to be unperturbed.
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Since the vorticity is constant on the undisturbed streamlines, the

flow downstream is the superposition of a potential motion, satisfying the

boundary conditions (9) and (12b), and a shear motion (with v' = C) induced

by the boundary conditions (12a). Thus

( U(P1/P2 - 1) U(C / - I)S(13 ) U ' Tr n( / r ), v ' =r IV

where r,4 are polar coordinates corresponding to a,v . The flow field is

sketched in Fig. 2. Note the singularity in u' for = 0, which pres,=ably

implies that the flow differs significantly from uniform there. The nature

of this wake has not been investigated, so that the description is incomplete

at the present time.

A similar treatment is possible for axisymmetric flames; only the changes

in the previous formulas need be mentioned. With n denoting distance from

the axis of symmetry, the corresponding velocity component is

(14) v = - e nf'(a) + 0( 2)

so that the flame is at rest if

12.
(15) fF' + -f'F = -U + 0(E2).

Nevertheless the results (11) still hold, as do the boundary conditions (9)

and (12). We now find

(16) u' 0, V' C U(0 /p2 - l)tan 012,

showing that the disturbance is o(E) everywhere except near the cone

0= v-c on which the flame lies. That is reflected in Fig. 3, where the

1



streamlines straighten out much faster than in Fig. 2; there is no wake.

Note that the deflection of the streamlines at the flame is the same in the

two cases, namely cU(pI/p 2 -

The streamline tracing of actual flames (Fig. 1) differ in two respects.

The flow ahead of the flame is not uniform but is essentially Poisseuille;

and finite values of E give rise to a pressure gradient which is a.ssociated

with the divergence of the streamlines there.

3. Slowly Varying Flame Tips.

The question that we examine here is whether the e;uation (41I.32)

governing slowly varying flames admits solutions ccrresoonding to the ti s

(Sivashinsky 1974, 1975). The difficulty of the hydrodynamic problem, even

when the burning rate is prescribed (Sec. 2), leads us to sever the coupling

with Euler's equations by setting

(17) l = U(l,O,O),

in accordance with the constant-density approximation (Sec. 1.5).

If $ is the inclination of the flame, then

(18) M = plU sin *, v - =Ucos

so that, in the plane case (Fig. 4),

(19) *1 " M = PlUCos 2s- d 'jLl -u sin cd s

and the governing equation becomes

(20) . =k sin 3  ni-)
ds sin a

s
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where

(21) k -2T.p1U/b and a = cosec-plU.

The implicit requirement Pl1U > 1 simply reflects the fact that a stationary

flame can only exist in a flow that moves faster than the adiabatic flame speed.

For comparison with the axially symmetric caseto follow, it is more con-enient

to use n as independent variable, in terms of which the equation becomes

(22) _ k sn 2  Zn sin- -).

dsin a

Apart from = a and - a , only three integral curves are shown in

Fig. 4a. The remainder can be found by horizontal translation. Thcse which

lead to shapes with ¢ a or 7 - a as - , as required, are shown in

Figs. 4b,c. In Fig. 4b the curves 1) and 5 represent a family fi!lino in the

wedge between the straight lines -2 and . In Fig. 4c, only these lines

are obtained.

For t> 1 (i.e. b < 0 and k > 0) a smooth tip is possible, namely

and presumably that should be chosen over the whole family of cusped tips which

are available. For i< 1 (i.e. b > 0 and k < 0), no smooth tip is tcssible;

only the wedge-shaped tip formed by (. and ' is offered by the theory.

Turning to the axisymmetric case, we find that equations (I8) and (19a)

still hold but that (19b) is replaced by

U d
(23) (ncos

because of the radial (n) divergence. Hence the governing equation now becomes

(24) _ sing cos = k sin 2 pn( snj),dn sin
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with k and a defined as before, where r ranges over positive values

only.

Because of the new term the integral curves, shown in Fig. 5a, no longer

have the translation property, though they have the sane shape as in the plane

case as n- . Only those asymptoting ¢ = - as '- are acceptable, which

leads to the open (including re-entrant) possibilities in 7ig. 4b, as well as

one closed, but only to the single open possibility in 7ig. 4c. Representative

curves are shouw, as marked; all open curves aprroach the centerline as

o± .

For J> 1 (i.e. b < 0 and k > 0) a closed tic is possible, namely /7 ,

and presumably that occurs rather than either a re-entrant cr open one. (Cf.
later remarks concerning flame temperatur. <r <l (i.e. b > C and k <

only one tip is available and that is open. in short, the theory of sowly

varying flames predicts closed tips for > 1 and oren tirs for _< 1. It is

noteworthy that open tips are found experimentally (--ewis &von7lbe 1rm

for both lean hydrogen and rich heavy hydrocarbon mixtures. In each case

the deficient component diffuses much more readily than the component in excess,

and indeed calculations based on values given by Kanury (1977, pp. 385 et seq.)

show that 0.23 and 0.81, respectively, for mixtures with air.

The flame temperature is readily deduced from the formula (VIII.30) as

(25) H1 +281 H kn M H + 26e1 F 2 zn(sinp/sina).11 n 1 1

In all cases the adiabatic flame temperature H is approached, of course,

as 0+ i-a at large distances. When f.>l, the temperature tends to a

maximum
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(26) H1 + 2e-i n2 cosec a

at the very tip, irrespective of whether the flame is plane or axisymmetric.

On the other hand, when .. < 1 the temperature does not change along a plane

tip but decreases like

(27) H1 + 2e-iH Ikn

for an axisymmetric tip, giving an unbounded perturbation. (The same result

holds for the open tips in Fig. 5b, so that the closed tip selected is the

only one without this singularity.) Such unboundedness means that the

temperature differs by more than o(e- ) from the adiabatic value; so the

asymptotic structure is not uniformly valid and a different kind of analysis

is required. While such an analysis has not yet been attempted, the drop

in temperature suggests that the flame is extinguished; so that the profile cf

Fig. hc should be truncated at some large value of , giving a flame more in

accord with experimentally observed open tips. For the plane tip, non-

uniformity manifests itself geometrically rather than through a singularity

in the flame temperature: the pointed tip violates the assumption of slow

variation on which the analysis is based.

The dramatic change in the nature of the solution as .2 passes through I,

together with the breakdown of the analysis of j- 1 = O(e ), suggests that

flame tips should be investigated when the diffusion of heat is almost the sane

as that of the reactant, i.e. under the near-equidiffusional assumption. That

has been done by Buckmaster (1979b), whose work is the subject of the next

section.

L . . .. .. .
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4. Near-Equidiffusional Flame Tips.

The general formulation of near-equidiffusional flames as elliptic free-

boundary problems is given in Sec. VIII.5. Moreover, if the constant-density

approximation is invoked to uncouple the fluid mechanics and the flame is

immersed in a uniform flow whose speed is much greater than the flame speed,

then these problems reduce to ones of Stefan type (as is shown in Sec. VIII.6).

To describe flame tips, take the x-axis along the centerline. For upstream

the flame is either wedge shaped or conical with half-angle 7/4, corresponding

to the adiabatic value 1 for the flame speed. Only y > 0 is considered,

because of symmetry in the plane case and by definition in the axially sy-metric.

Take

(28) y = F(X)

as the locus of the flame, choosing the origin of X sufficiently far upstream

for F(O) to be large. Near X = 0 the combustion field is that of a plane

flame, so that equations (111.13,14) hold with"-- = 1 + /e and x measured

vertically down, i.e. on X = 0 we have

(29) T = T1 + Y1
ey - F(O) h = XY1[F(O) - yle y- F(O) for 0 < y < F(O),

(30) T = T* = His h = 0 for y > F(O),

which will be taken as initial conditions. Stricly speaking, these conditions

are valid only in the limit F(O) - but, because the exponential can be made

arbitrarily small near y = 0, any desired accuracy can be obtained by taking

F(O) sufficiently large.



The equations to be solved are

(31) aT/3x = T (T),Dh/aX = IL (h + AT) for 0 < y < F(X),

(32) T = = Hit h/x = (h) for y > F(X)

(cf. Sec. III.6), where

(33) (L L -- A
yV ay

and v = 0 or 1 according as the flame is plane or axisyrmmetric. The

accompanying jump conditions are

2
(34) [ah/ay] = -X[3T/Dy] = XY1exp(h*/2T.) at y = F(X),

T and h being continuous there. To these we must add the symmetry conditions

(35) 3T/;y = ;h/3y = 0 at y 0

and, finally,

(36) h 0 as y -

consistent with the formula (30).

At first glance it seems questionable that the present formulation, based

as it is on the assumption that the gas speed is much greater than the flame

speed, could provide an adequate d~scription of flame tips. Indeed at a

smooth closed tip the two speeds are equal on the centerline. But there is

no such difficulty for open tips; if the flame speed is small in the far

field, we may expect it to remain small everywhere so that uniformly valid

results are obtained. Our analysis could therefore lead to open-tip solutions
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only, whatever the parameter values. In fact it also generates closed-

tip solutions, albeit ones that are not valid near the centerline. Since the

unit of length is the preheat thickness (at X= 0), the region of non-uniformity

is extremely small.

. The analysis is completed by numerical integration which for such parabolic

systems involves marching downstream, i.e. the direction of the time-like

variable X . Both plane and axisymmetric flames have been computed by

Buckmaster (1979), for T1 = 0.2, Y1 = 1.0 and several values of X. He also

computed the limit solution as X- -- in each case, to which we shall come

shortly.

Results for plane flames are shown in Fig. 6. Note that there is no

appreciable curvature until F has decreased to about 3, at least for X <10.

Then the cold fringe of the pre-heat zone reaches the centerline and inter-

action with the conditions (35) begins, the effect of the interaction depending

on X . For non-negative values the speed of the flame increases monotonically,

bending it around towards the centerline, which it intersects at right angles.

Apparently the tip is smooth with F proportional to (X0 -X)
1 /2 near the

intersection point X0 a conclusion that is supported by a similarity solution

there for X = 0 (Buckmaster 1979a). These values of A give _> 1, when smooth

closed tips were also found for slowly varying flames. Moreover, as X increases

above 10 the flame begins to curve at progressively larger values of F, as if

it were trying to get onto the scale of the slowly varying flame.

For small enough negative values of X the flame still closes smoothly

although its speed initially decreases, resulting in a somewhat extruded tip.

For larger negative values the flame speed decreases to zero at the point
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labelled Q where the curve has a horizontal tangent. The curve for

= -50 typifies this behavior, which is shown in extreme form for X=

The limiting curve as A- -- can be obtained as follows. Assure that h

is 0(X) for 0 < y < F(X) but remain 0(i) for y > F(X), as is suggested by

the initial conditions (29). Then the function

(37) h = h/A

is identically zero for y > F(X), i.e. outside the tip, and we need only

solve the simpler problem

(38) 3T = E (T), = L (h+T) for 0 < y < F(X)
DX v ax V

YlYF(C ^ Y-F(O

(39) T = TI + Y e h= YI[F(O)-y]e 0) at X = 0 for 0 < y < f(0)

(40) T = H, h= 0, D(T + h)/ay = 0 at y =F(X) ,

(41) aT/ay = ah/2y = 0 at y = 0

inside the tip.

The perturbation temperature h, tends to follow the changes in flame

speed. It has a finite negative value at Q, showing once more that curved

flames cannot necessarily be treated as locally plane (when h* would tend

to -w). The numerical integration can be continued downstream from Q

without difficulty, the profile first curving away from the centerline and

then back to it to form a closed tip. There is no experimental evidence

for such a bulbous tip and indeed having burnt mixture ahead of the flame, as

would be the case Just past Q, would certainly need justification. Our

first-order analysis of the flame sheet does not distinguish between the

II I I I I I m I I I, - , ... . -- , .. . .. . . . ... .. . . ..... ... ... ........ . . . . . . ..... ' '
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two sides: there are no convection terms in equations (1II.55). It is

conceivable that at the next order, which does take account of convection,

there is no acceptable structure. Such would be a sound mathematical reason

for rejecting the solution beyond X = X

Buckmaster proposes to terminate the solutions at XQ, so that Q is

thereby identified with quenching. :crnstream there is no chemical reaction,

the unburnt gas below Q simply mixing with the burnt gas above. That is,

the values of T and h on X = XQ are used as initial conditions for a

smooth solution of the parabolic equations (31), which now hold for all

values of y. Such a reacticnless solution is consistent in that

immediately drops below H1, the tenterature at which reaction occurs: while

the initial temperature for y > F(X) is equal to Hl, that for 0 < y < F(X

is less. Agreement with slowly varying flames for: < 1 can be obtained by

supposing that the wedge shape fc-und there is actually open at the vertex.

The axisymmetric results (Fig. 7j are qualitatively similar, but there

is one sharp quanititative difference. Azimuthal curvature affects the flame

speed (through the terms in y -1 / y) long before the pre-heat zone reaches

the centerline. As a consequence, the flame starts to curve much further from

the centerline (at about F = LO) than for the plane flame. (Figs. 6 & 7

should be compared.) Likewise the dead space between Q and the centerline

is more than five times larger. In short, open plane tips are much narrower

zhan their axisymmetric counterparts, a result also ,found for slowly varying

flames with f.< 1 if the wedge is supposed to be open on the present scale.

A similar comparison holds for-> 1, so that the present analysis provides a

smooth transition from the general characteristics of slowly varying flames

for t< 1 to those for t> 1.
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A word of caution is needed. The transition from a closed to an open tip

occurs for large negative values of X, between -20 and -50 for a plane flame

and -50 and -iCC for an axisymmetric one. Since X,/e is assumed small, the

result will probably be quantitatively meaningful only for large values of the

activation energy 6 , values so large as to be seldom (if ever) realized in

practice.

5. Quenching by a Cold Surface.

A crucial role in the existence and stability of a burner flame is played

by quenching near its base, as we have already remarked in Sec. 1. However,

the situation near the rim of a burner is complicatei, involving not only

heat transfer but also a multi-dimensional flow field with mixing between the

reactants and the cold ambient atmosphere. To throw some light on the

phenomenon of quenching by a cold wall, the present section will examine a

simple model (B-uc?=aster 1979a) which, admittedly, discards much that is

relevant to the combusion field near a burner r!=. Since heat transfer by

conduction plays the central role in the phenomenon, near-equidiffusional

flames provide an appropriate framework.

Consider a parallel flow of combustible gas moving over the plane y = C

with a velocity U . A linear shear flow is the simplest representative ofY

realistic flows near the surface, but any other could be handled lust as

easily (Buckmaster also considers a uniform flow.) Located in the flow is

a stationary premixed flame (Fig. 8), which is influenced by the presence

of the wall as a diffusion inhibitor and heat sink.

The flame locus is again described by equation (28) with the origin of

chosen to make F(O) large. Far upstream, where the flame is uninfluenced
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by the wall, it still propagates with unit velocity but now into a flow with

speed UF(X). Consequently it follows the parabola

(42) F = CF2(o) - 2X]l/ 2

though this fact does not change the initial conditions (29, 30) but is solely

a check on the subsequent computations.

In focussing on -the effect of heat loss we shall, for simplicity, take

= 0. In the limit U the equations with which we have to deal are

(43) y9(T,h)/aX = L0 (T,h) for 0 < y < F(×),

(44) T= T* = H1 , yah/x= L 0(h) for y > F(X),

these being the modifications of equations (31,32) which take account of the

shear flow. The accompanying 3ump conditions are

2
(45) [aT/By] = -Y1 exp(h*/2T*), [ah/ay] = 0 at y = F(X)

while T and h are continuous there. The condition (36) still holds, of

course.

Finally we come to conditions at the wall. The heat flux there is

assumed small in order to avoid excessive variations in the flame temperature

(cf. Sec. VIII.2); specifically

(46) T/y = k(T - T1 )/e at y= 0

to all orders, where k is a prescribed positive constant and TI  is, as

before, the temperature of the fresh mixture. Such a condition is appropriate

for a thin, poorly conducting wall whose other surface is maintained at the
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temperature TI . Otherwise it may be considered an assumption which avoids

coupling the temperature field in the wall with that in the flow without

compromising the essential physics. We shall also take the wall to be

chemically inactive, i.e.

(47) aY/y =O at y= 0

to all orders. The boundary conditions are therefore

(48) T/3y = 0, Dh/3y = k(T - T ) at y = 0.

The main simplification for I = 0 is that h can be removed from

the problem. Thus yah/aX = 0 (h) everywhere and h has no discontinuities

at the flame sheet, so that it can be written explicitly in terms of its

normal derivative at the wall and hence, according to the condition (48), the

surface temperature. At the flame sheet it becomes

3116 r(e/3) [ 1 F3x)]ds
h, k 2 - (s)/2- exp[- -9 _ Ids

Co (X-S) 9

which then determines the temperature gradient (45) on the cold side of the

flame in terms of the surface temperature up to that station. We are left

with a (numerical) problem for T and F alone.

Results are shown in Fig. 8 for various values of the heat-loss parameter k.

The flame sheet intersects the wall at right angles when k is small, F

being proportional to (X0 -x
1 3 near the intersection point X. (as

Buckmaster shows by a similarity solution there). Exactly what happens very

close to the wall cannot be revealed by our analysis, since the assumption of

a large flow speed (which reduces the elliptic problem to a parabolic one) is
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not valid when y is small. A reasonable conclusion from the failure of

the heat loss to generate a dead space on-the scale of the flame thickness

is that flashback occurs.

When k is large enough (> 7-.2/3 1/6r(/3) is sufficient) the flame

sheet becomes horizontal at some point Q, which is identified with quenching

as in Sec. 4. (Again the numerical solution can be continued beyond Q until

ultimately the flame sheet intersects the wall.) Failure to adopt such a

hypothesis in the present context would lead to the unexpected conclusion

that 0( - 1 ) heat loss is incapable of quenching a flame. We therefore

propose that the region between Q and the wall is a deadspace through :hich

unburnt mixture can pass downstream, the generation of such a gap being the

mechanism by which heat loss prevents flashback. The conclusion is in sharp

contrast with that for a plane flame (Sec. III.), for which extinction occurs

when the loss is sufficient to reduce the flame speed to e- 1/2

I'
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