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Foreward

This report is Chapter IX of the twelve in a forthcoming research
moncgraph on the mathematical theory of laminar combustion. Chapters I-IV
originally appeared as Technical Reports Nos. 77, 80, 82 & 85; these were
later éxtensively revised and then issued as Technic#l Summary Reports
No's 1803, 1818, 1819 & 1888 of the Mathematics Research Center, University

Wisconsin-Madison. References to I-IV mean the MRC reports.
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Chapter IX

Burner Flames

1. Featurec of an Anchored Flare.

A common enough observaticn, both inside and outside the latcratcry, is
that a premixed flame can be positioned stably at the mouth of a *ute ‘hrough
which the mixture passes. Such a flame is usually conical {though rc*
necessarily so), in which case it is conveniently divided into three rparts:
the tip, the base {near the rim of the tube) and the bulk cf the flarme in
tetween. The latter gives it roughly the shape of a ccre.

Elementary consideraticns of the flame speed arnd the nature of the
flow adequately explain the ccnical shape (see Fig. VIII.Z2 and the zcccomranving
discussion). Simple hydrodynaric considerations provide salient features cof
the associated flow field, as we shall see in Sec. 2.

The nature of the combustion field in the vicinity of the rim is crucial
in questions of existence and stabtility of the flame. fCas speeds near <he “ute
wall are small, because of viscous effects, so that if the flame coul?d ternetrate
there it would be able to propagate against the flow, travelling down the tube
in a phenomenon known as flashback. In point of fact, the flame is guenchedl at
some distance from the wall, so as to prevent its reaching the low-sresi rezion,
the fundamental quenching mechanism (for a stationary fiame) being heat loss by
conduction to the tube. Such quenching enables unburnt gas to escare tetweeen
the flame and the wall through what is known as the dead space. A mathematical
description of this phenomenon is presented in Sec. 5.

The heat loss to the tube also plays an important role in the glotal

stability of the combustion field. If the flame is disturbed so that its
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speed increases it will move closer to the rim, threaterning flashback. But
heat loss will then increase, causing a decrease in the temperature of the
flame and hence its speed, so that it will be swept away again. Similarly,

if there is a decrease in flame speed so that the flare is swept away from
the rim, threatening so-called blowoff, heat conductica to the wull decreases,
the speed increases and the flame moves back again. Thus heat loss acts as a
restoring force.

The third part of a burner flame, the tip, is sizilar in one respect tc
the base in that here also the flame approaches = bcundary, albeit an adiabatic
one, namely the centerline, Experiment shows that the tip ray be closed, the
flame cutting the centerline at right angles, or cpen, the flame being
quenched (though not by heat loss) at a finite 2istznce Srom the centerlire sc
as to leave a dead space or hole through which the mixture escapes unburnt
(Fig. 1). VWhich of these two possibilities occurs derends on the compesiticn

of the mixture and flow conditions. Flame tips are treated in Secs. 3 & 4.

2. Hydrodynamic Considerations.

Consider a weak plane flame, of speed U (with 0 < e << 1), lying

stationary in an infinite uniform flow
(1) v = (U,0).

The hydrodynamic jump conditions (VIII.1,2,3) are satisfied by the undisturbted

flow (1) ahead of the flame and
(2) v = (U, :f»:U(pl/a2 - 1))

behind, where the sign is opposite to that of the slope of the flame. There is
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simply a refraction of the streamlines, and we may expect that to be the
primary characteristic of the flow field in the neighborhood of any point on
the conical part of the burner flame. A more detailed description requires
a hydrodynamic analysis, which we shall pursue some distance assuming that the
flame speed is constant. Such an assumption is correct if the burner is
sufficiently large; in the context of slowly varying flaﬁe the voluminal stretch
in equaticn (VIII.42) .is then small so that the burning rate Mn = 1.

We shall first look for a plane flame tip in which the uniform flows (1)
and (2) hold far upstream; elsewhere it is necessary to solve Euler's egquations
on each side of the constant-speed flame. A Poisseuille distribution would te

more realistic for the upstream flow ahead of the flame, but the analysis is

much easier for a uniform flow while still uncovering the essential characteristics.

Although we are not necessarily dealing with a slowly varying flame, the
notation £&,n of Sec. VIII.3 will be used to emphasize that the distance unit
is large compared to the flame thickness. Thet -axis is now taken along the
symmetry line (Fig. 2); velocity components are u, v. Since the flame slopes

gently (in the main), we may write
(3) n=7Fo) with g =€¢

for its upper surface. In front u, p and 3/3n are 0(1) while v and
3/9f are 0( €). The momentum equation therefore shows that p 1is a function

of o alone, to order €, from which
2
(&) u= f(o) + 0le™)

follows on applying Bernoulli's equation; continuously then requires

T =

L

i
;
i
;
1q
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2
(5) v == enf'(0) + o(e").
The condition fbr the flame to be at rest is
2
(6) fF = <Ug + 0(¢&%)

when ¢ 1is measured from the tip.

The appropriate coordirates in the burnt gas are ¢ and
(n vV = €n.
At the flare we have
(8) w, = £+ 0(%), v, = clp,U/p, + £5') + o(c?)

2 2 177r2

according to the Jump conditions'wﬁile, on the centerline, symmetry requires
(9) v=0 for g > 0.
Since the flow is a perturbation of the uniform one urstrear, we ma& write
(10) u=U+ e +0(e?), v= e + oled),
which immediately implies
(11) £f=U+0(e) and hence F = -g+ 0e).
The flame is wedge shaped and the boundary conditions (8) yield

(12) uy =0, vy = U(ol/o2 -1)

if the flow upstream is to be unperturbed.

ey s
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Since the vorticity is constant on the undisturbed streamlines, the
flow downstream is the superposition of a potential motion, satisfying the
boundary conditions (9) and (12b), and a shear motion (with v' = C) induced

by the boundary conditions (12a). Thus

Ulp /o, - 1) Uloy/0, - 1)
(13) u' = ————— gn(v/er), v' = —

where r,¢ are polar coordinates corresponding to o,v . The flow field is
sketched in Fig. 2. Note the singularity in u' for ¢ = 0, which presumably
implies that the flow differs significantly from uniform there. The rature
of this wake has not been investigated, so that the description is incomplete
at the present time.

A similar treatmert is possible for axisymmetric flames; only the changes
in the previous formulas need be mentioned. With n dencting distence from

the axis of symmetry, the corresponding velocity component is

(14) v == % ent' (o) + 0(),

X

so that the flame is at rest if

(15) fF' + %:—f'F = -U + 0(e?).

Nevertheless the results (11) still hold, as do the boundary conditions (9) '
and (12). We now find

(16) ' =0, v' =3¢ Ulp /o, - 1tan /2,

[
S e

showing that the disturbance is ofe) everywhere except near the cone

[RPv SSEPYPRY >

¢ = m-¢ on which the flame lies. That is reflected in Fig. 3, where the
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streamlines straighten out much faster than in Fig. 2; there is no wake.
Note that the deflection of the streamlines at the flame is the same in the
two cases, namely eU(pl/p2 - 1).

The streamline tracing of actual flames (Fig. 1) 3iffer in two respects.
The flow ahead of the flame is not uniform but is essentially Poisseuille;
and finite values of g give rise to a pressure gradient which is associated

with the divergence of the streamlines there.

3. Slowly Varying Flame Tips.

The question that we examine here is whether the eguzation (VIIT.22)
governing slowly varying flames admits solutions ccrresrzonding to the tiis
(Sivashinsky 1$7L4, 1975). The difficulty cf the hydrcdyramic problem, evern
when the burning rate is prescribed (Sec. 2), leads us %o sever the coupling

with Euler's equations by setting

(17) v, = U(1,0,0),

in accordance with the constant-density approximaticn (Sec. I.S).

If ¢ 1is the inclination of the flame, then
(18) M =p,Usiny, v, = Ucosy
so that, in the plane case (Fig. L),
24d y
. = . = U i 2%
(19) V1 UM plU2COS WE%’ YL.:LI U siny
and the governing equation becomes

dv _ . 3 sin y
(20) 3o = k sin wnn(sin a)’

b e S S ik e 2 Pl S A i e s ot S

N




where i

(21) k = —ETipiU/b and o = cosec_lp u.

The implicit requirement plU > 1 simply reflects the fact that a statiocnary

flame can only exist in a flow that moves faster than the adiabatic flame speed.

For comparison with the axially symmetric case to follow, it is more ccnvenient

]
.

to use n as independent variable, in terms of which the equation tecorme

dy _ . 2, sin ¥
(22) an k sin wln(gz;r?;).

Apart from y = ¢ and w - @ , only three integral curves are shown in
Fig. Ya. The remainder can be found by horizontal translation. Thesze which
lead to shapes with ¢y » ¢ or @7 - a as § - -» , as required, are shown in
Figs. 4b,c. 1In Fig. 4b the curves (i) and (5) represent a family fiiling in the

wedge tetween the straigh® lines (é) and (E) . In Fig. ke, only these lines

are obtained.
For > 1 (i.e. b < 0 and k > O) a smooth tip is possible, namely (E) .
and presumably that should be chosen over the whole family of cusped tips which i

are available. For & <1 (i.e. b > 0 and k < 0), no smooth tip is ucssible;

only the wedge-shaped tip formed by {2 and (L' is offered by the theory. i
¥y e Y Y \< N Yy

Turning to the axisymmetric case, we find that equations (18) ané (15z2)

.

still hold but that {19b) is replaced by

poidy

S

(23) vy s %%g (ncos y)

because of the radial (n) divergence. Hence the governing equation now becomes e

(24) Qb _ siny cosy _ k sin2w2n(§iﬂy) :

dn n sina’’ 4
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with k and a defined as before, where n ranges over positive values
only. .

Because of the new tcerm the integral curves, shown in Fig. 5a, no longer
have the translation property, thcough they have the same shape as in the plane
case as n»» . Cnly those asymptoting ¢ = 7 - ¢ 85 n-w are acceptable, whict

n Tig. LUb, as well as

oo

leads to the open (including re-entrant) possibilities
one closed, tut only to the single open possitility in Fig. bc. PRepresentative
curves are shown, as marked; all open curves aprroach the centerline as

E > & oo,

For /> 1 (i.e. b < 0 and k > 0) a clecsed tir is possible, namely /2.
and presumably that occurs rather than either a re-entrzant cr open one. (Cf.
later remarks concerning flame temperaturs.). For <<l {i.e. b > 0 and % < )
only one tir is available and that is open. 1In short, <he theory of slowly
varying flames predicts closed tips for . > 1 and cren tips for J< 1. It is
noteworthy that open tips are found experimenially
for both lean hydrogen and rich heavy hydrccarben =ix:ures. In each case
the deficient component diffuses much more readily *han the component in excess,
and indeed calculations based on values given by Xanury (1977, pp. 385 et segz.)
p

show that .= 0.23 and 0.81, respectively, fcr mixtures with air.

The flame temperature is readily deduced from the formula (VIII.Z20) as

(25) B + 20"

-12 . .
1 (4R M = H o+ 26 Hlln(51“w/51na).

1

In all cases the adiabatic flame temperature Hl is approached, of course,

as > m-a at large distances. When [ >1, the temperature tends to a

maximum

N ) .-"‘”!*'Bﬂnmnmm.n.u..iii
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(26) H o+ 29-1H22n cosec «
1
at the very tip, irrespective of whether the flame is plane or axisymmetric.

On the other hand, when [ < 1 the temperature does not change along a plane

tip but decreases like

(2T) H o+ 287y

12
3
1 1V

for an axisymmetric tip, giving an unbounded perturtation. (The same result
holds for the open tips in Fig. St, so thét the closed tip selected is the
only one without this singularity.) Such unboundedness means that the
temperature differs by more than o(e™t) from the adiatatic value; so the

asymptotic structure is not uniformly valid and a different kind of analysis

e

is required. While such an analysis has not yet been attempted, the arc
in temperature suggests that the flame is extinguished; so that the profile cf
Fig. bc should be truncated at some large value of £ , giving a flame mcre in
accord with experimentally obtserved open tips. For the plane tip, non-
uniformity manifests itself geometrically rather than through a singulari*y

in the flame temperature: the pointed tip violetes the assumption of slow
variation on which the analysis is based.

The dramatic change in the nature of the solution as Qf passes through 1,
together with the treakdown of the analysis of J- 1 = 0(6-1), suggests that
flame tips should be investigated when the diffusion of heat is almcst the sarme
as that of the reactant, i.e. under the near-equidiffusional assumption. That

has been done by Buckmaster (1979b), whose work is the subject of the next

gection.

TR
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4. Near-Equidiffusional Flame Tips.

The general formulation of near-equidiffusional flames as elliptic free-
bouhdary problems is given in Sec. VIII.5. Moreover, if the constant-density
approximation is invoked to uncouple the fluid mechanics and the flame is
immersed in a uniform flow whose speed is nuch greater than the flame speed,
then these problems reduce to ones of Stefan type (as is shown in Jec. VIII.6).

To describe flame tips, take the y-axis along the centerline. For upstreanm
the flame is either wedge shaped.or conical with half-angle n/L, ccrresponding
to the adiabatic value 1 for the flame speed. Only y > O 1is considered,
because of symmetry in the plane case and by definition in the axially symmetric.

Take
(28) y = Flx)

as the locus ¢f the flame, choosing the crigin of yx sufficiently far upstream
for F(0) to be large. Near y = O the combustion field is that cf a plane
flame, so that equations (IIT.13,14) hold with®. =1 + A/p and x measured

vertically down, i.e. on x = O we have

(29) T ey-F(O) £

y-F(O{ or 0 <y < F(0),

T, + Yle

-— 4 -
1 h = AYl[F\O) v]

(30) T=Ty=H,h=0 for y> F(0),

which will be taken as initial conditions. Stricly speaking, these conditions
are valid only in the limit F(0) + = but, because the exponential can be made
‘arbitrarily small near y = O, any desired accuracy can be obtained by taking

F(0) sufficiently large.




The equations to be solved are

(31)  at/ax= Lv(T),ah/Sx Lv(h + AT) for 0 <y < F(x),

1l

(32) T=1, =H, 30/

mv(h) for y > F(y)
(cf. Sec. III.6), where

=L a3 v3
(33) L,z ¥ 3y

<

and v = 0 or 1 according as the flame is plane or axisymmetriec. The

accompanying Jurp conditions are

(34)  (an/ay] = -A[oT/2y] = Avjexp(by/2T5) at y = F(x),

T and h Dbeing continucus there. To these we Qust add the symmetry conditions
(35) 3T/3y = 3h/3y = 0 at y =0

and, finally,

(36) h>0 as y + o,

consistent with the formula (30).

At first glance it seems questionable that the present formulation, based
as it is on the assumption that the gas speed is much greater than the flame
speed, could provide an adequate d&scription of flame tips. Indeed at a
smooth closed tip the two speeds are equal on the centerline. But there is
no such difficulty for open tips; if the flame speed is small in the far
field, we may expect it to remain small everywhere so that uniformly valid

results are obtained. Our analysis could therefore lead to open-tip solutions

i ok Sl 2. A i it it
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only, whatever the parameter values. }n fact it also generates closed-

tip solutions, albeit ones that are not valid near the centerline. Since the
unit of length is the preheat thickness {(at x= 0), the region of non-uniformity
is extremely small.

The analysis is completed by numerical integration which for such rarabolic
systems involves marching downstream, i.e. the direction of the time-like
variable X - Both plane and axisymmetric flames have beén computed by
Buckmaster (1979), for Tl = 0.2, Yl = 1.0 and several values of ). Ee also
computed the limit solution as A+ - in each case, to which we shall come
shortly.

Results for plane flames are shown in Fig. 6. Note that there is no
appreciable curvature until F has decreased to about 3, at least for A <10.
Then the cold fringe of the pre-heat zone reaches the centerline and inter-
action with the conditions (35) begins, the effect of the interaction depending
on A . For non-negative values the speed of the flame increases monotonically,
bending it around towards the centerline, which it intersects at right angles.
Apparently the tip is smooth with F proportional to (xo ~x)l/2 near the
intersection point Xg» & conclusion that is supported by a similarity solution
there for A = 0 (Buckmaster l§79a). These values of A give 2> 1, when smooth
closed tips were also found for slowly varying flames. Moreover, as X increases
above 10 the flame begins to curveat progressively larger values of F, as if
it were trying to get ontoc the scale of the slowly varying flame.

For small enough negative values of A the flame still closes smoothly

although its speed initially decreases, resulting in a somewhat extruded tip.

For larger negative values the flame speed decreases to zero at the point

G T TR . ‘ . ) ) , v -iiiii I
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labelled Q where the curve has a horizontal tangent. The curve for

A = -50 typifies this behavior, which is shown in cxtreme form for X= -e.

i

The limiting curve as A+ -= can be obtained as follows. Assume that h
is 0(A) for O <y < F(x) but remain 0(1) for y > F(y), as is suggested bty

the initial conditions (29). Then the function
(37) h = h/A

is identically zero for y > F(X), i.e. outside the tip, and we reed only

solve the simpler problem

3T 3h -
— = (T —_— = L
] (38) % ELV(-), o Lv(h'h) for 0 <y < F(y),
(39) T=T 4 Yley'F(o), h = Yl[F(O)-y]ey-F(o) at x = 0 for 0 <7y < #(0),
(40) T=H,h=0, 3(T+h)/ay =0 at y=F(y),
-~ ‘ ~
(k1) 37/3y = 3h/3y = 0 at y =0

inside the tip.

The perturbation temperature h, tends to follow the changes in flare
speed. It has a finite negative value at Q, showing once more that curved
flames cannot necessarily be treated as locally plane (when h, would tend
to -w). The numerical integration can be continued downstream frcm §
without difficglty, the profile first curving away from the centerline and
then back to it to form a closed tip. There is no experimental evidence
for such a bulbous tip and indeed having burnt mixture ahead of the flame, as
would be the case Just past @, would certainly need Justification. Our

first-order analysis of the flame sheet does not distinguish between the
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two sides: there are no convecticn terms in equations (VIII.SS). It is
conceivable that at +the next order, which does take account of convection,
there is no acceptafle structure. Suchk would be a sound mathematical reascn
for rejecting the solution beyond x = XQ'
Buckmaster proposes to termirate the solutions at XQ’ so that @ is
thereby identified with quenching. Zcwnstream there is no chemical reactiorn,
the unburnt gas btelow § simply nixing with the turnt gas abeve. That is,
the values of T and h on x = XQ are used as initial corditions for a
smooth solution of the parabtolic eguations (31), which now hold for all

values of y. Such a reacticnless solution is consistent in that 7

immediately drops below Hl, the tezrerature at which reaction occurs: whkile

the initial temperature for y > ?(XQ) is equal to E,, that for 0 <y < F(XQ}

is less. Agreement with slowly varyirg flames for YY< 1 can be obtained by
supposing that the wedge shape Jcund there is actually open at the wveriex.
The axisymmetric results (Fig. 7) are qualitatively sirilar, tut there
is oﬁe sharp quanititative difference. Azimuthal curvature affecis *he flaze
speed (through the terms in y §/23y) long before the pre-heat zcne resches
the centerline. As a consequence, the flame starts to curve much further frozm
the centerline (at about F = L0} tken for the plane flame. (Figs. 6 & T
should be compared.) Likewise the dead space between Q and the centerline
is more than five times larger. In short, open plane tips are nmuch narrower
than their axisymmetric counterparts, a result alsosfound for slowly varyin
flames with f< 1 if the wedge is supposed to be open on the present scale.
A similar comparison holds for o> 1, so that the present analysis provides a

smooth transition from the general characteristics of slowly varying flames

for f< 1 to those for JI> 1.
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A word of caution is needed. The transition from a closed to an open tip
occurs for large negative values of A, betweern -20 and -5C for a plane flame
and -50 and -1CC for an axisymmetric one. Since /0 is assumed small, the
result will probably be quantitatively meaningful only for large values of the

activatior energy 6 , values so large as to be seldom (if ever) realized in

practice.

5. Quenching dy a Cold Surface.

A crucial role in the existence and statility of a bdburner flame is rlayed
by quenching near its base, as we have already rermarked in Sec. 1. However,
the situatior near the rim of a burner is complicated, invclving not only
heat transier btut also a multi-dimensional flow fiell with mixing between ihe

wlad

reactants and *he cold ambient atmosphere. Toc “hrew some light on the

phenomenocn <¢f guenching by a cold wall, the present sectiorn will exzmine a
simple model (Zuckmaster 197%9a) which, admittedly, discards much that is
relevant to the combusion field near a burner rim. Since heat transfer by

conduction plays the central role in the phenormencn, near-eguidiffusional
flames prcvide zn appropriate framework.

Consider a parallel flow of combustible ges mcving over the plane y = C
with a velocity U&. A linear shear flow is the simplest representative c¢f
realistic flows near the surface, but any other could te handled just as
easily {(Buckmaster also considers a uniform flow.) ZLocated in the flow is
a stationary premixed flame (Fig. 8), which is influenced by the presence
of the wall as a diffusion inhibitor and heat sink.

The flame locus is again described by equation (28) with the origin of

F(0) 1large. Far upstream, where the flame is uninfluenced

chosen to make

OV ceiaicattianchh ot ool s i
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by the wall, it still propagates with unit velocity but now into a flow with

speed UF(X). Consequently it follows the parabols

(42) F = [F(0) - 2x]l/2,

though this fact does not change the initial conditions (29, 30) but is solely
a check on the subsequent computations.
In focussing on -the effect of heat loss we shall, for simplicity, take

A = 0. In the limit U » = the equations with which we have to deal are
(43) ya(T,h)/3y = LO(T,h) for 0 <y < Fly),
(L4) T =T, = H, ysh/dx = Lo(h) for y > Fly),

these being the modifications of equations (31,32) which take acccunt of the

shear flow. The accompenying Jump conditions are
il
(Ls5) [a1/0y] = -¥ exp(n,/2T4), [3h/8y] = 0 at y = Fly)

while T and h are continuous there. The condition (36) still holds, of
course.

Finally we come to conditions at the wall. The heat flux there is
assumed small in order to avoid excessive variations in the flame temperature

(ef. Sec. VIII.2); specifically

(46) aT/ay = k(T - Tl)/e at y=0

to all orders, where k 1is a prescribed positive constant and T1 is, as
before, the temperature of the fresh mixture. Such a condition is appropriate

for a thin, poorly conducting wall whose other surface is maintained at the
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temperature Tl. Otherwise it may be considered an assumption which avoids
coupling the temperature field in the wall with that in the flow without ;
compromising the essential physics. We chall also take the wall ta be

chemically inactive, i.e.
(47) 3Y/3y = 0 at y =0 ;

to all orders. The boundary conditions are therefore

(48) 3T/3y = 0, 3h/dy = k(T - Tl) at y = 0.

The main simplification for A= 0 1is that h can te removed from
the problem. Thus y3h/dy = Lo(h) everywhere and h has no discontinuities

4

at the flame sheet, so that it can be written explicitly in terms of its
normal derivative at the wall and hence, according to the condition (4€), the

surface temperature. At the flame sheet it becomes

1/6 (T,~T(s,0)] 3
3°°r(1/3) 1 ’ 1 F(x)
e 2n !i (x-5)3"2 =el- 5 X= slae,

which then determines the temperature gradiegt (45) on the cold side of the
flame in terms of the surface temperature up to that station. We are left
with a (numerical) problem for T and F alcne.

Results are shown in Fig. 8 fér vario;s values of the heat-loss parameter x.

The flame sheet intersects the wall at right angles when k is small, F
1
y1/3

being proportional to (XO -x near the intersection point yg (as

Buckmaster shows by a similarity solution there). FExactly what happens very

close to the wall cannot be revealed by our analysis, since the assumption of _ 1#

a large flow speed (which reduces the elliptic problem to a parabolic one) is
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not valid when y 1is small. A reasonable conclusion from the failure of
the heat loss to generate ; dead space on-the scale of the flame thickness
is that flashback occurs. ]
When k 1is large enough (j_7-2"/31/6r(l/3) is sufficient) the flame
sheet becomes horizontal at some point Q, which is identified with quencﬂing
as in Sec. 4. (Again the numerical solution can be continued beyondé § until
ultimately the flame sheet intersects the wall.) Failure to adopt such a
g&pothesis in the present context would iead té the unexpected conclusion
that 0(6_1) heat loss is incapable of quenching & flame. We therefore
propose that the region between Q and the wall is a deadspace through which
unburnt mixture can pass downstream, the generation of such a gar being the
mechanism by which heat loss prevents flashback. The conclusion is in sharp
contrast with that for a plane flame (Sec. III.4), for which extinction occurs

when the loss is sufficient to reduce the flame speed to e—l/z.
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