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This report is Chapter VII of the twelve in a forthcoming research

monograph on the mathematical theory of laminar combustion. Chapter I-IV

originally appeared as Technical Reports Nos. 77, 80, 82 & 85; these were

later extensively revised and then issued as Technical Summary Reports

No's 1803, 1818, 1819 & 1888 of the Mathematics Research Center, University

of Wisconsin-Madison. References to I-IV mean the 1RC reports
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Chapter VII

Cylindrical and Spherical Premixed Fleames

1. Cylindrical Flames

Although it has not been studied to the same extent as the plane premixed

flame, the cylindrical flame is in principle almost as easy to produce. The

reacting mixture is supplied through the surface of a circular cylinder and is

induced to flow radially by means of sufficiently close end plates. The flame

then forms a coaxial cylinder and can be observed through the end plates, which

should be transparent and good thermal insulators.

Analytically the cylindrical flame stands between the plane and spherical

flames. The structure of its reaction zone is the same as that of the plane

flame, with temperature constant beyond; so that there is no curvature effect

N
as for the spherical flame. On the other hand, like the spherical flame it

does not exhibit the cold-boundary difficulty: the mixture must be introduced

at a finite radius, which can however be so small that a line source is

effectively formed. Ironically enough, in their attempt to treat curved

flames Spalding & Jain (1959) use plane-flame analysis on the spherical flaie,

where it is never valid, and neglect the cylindrical flame, where it ib always

valid. F.&ae y[he results are qualitatively correct, however

(Ludford, 1976).

The object of Secs. 2 & 3 is to show how cylindrical geometry modifies

a premixed flame (Ludford 1980). For simplicity we shall consider a single

reactant (monopropellant) undergoing a first-order reaction and take .= 1.

Spherical premixed flames, which have many similarities to spherical diffusion

flames, will be treated in Secs. 4-6.

-1-
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2. Planar Character

We shall only consider the basic features of cylindrical flames; the

discussion can easily be extended to other questions treated for plane flames

in Chs. II & III. When making comparisons with the latter bear in mind that tha

- inon-dimensionalization is here based on the radius, a, of the supply cylinder.

If v is the radial velocity, the equation of continuity admits rpv being

t ' constant. When M is the mass flux at the supply cylinder we may therefore

write

! $I 1)rjov =M or pv = 1Ir,

the latter giving the mass flux at every other radius r. Once the temperature

T has been determined, the density p = l/T and v = V1/r follow iihmediately,

while the small variations in pressure about its constant level can be calculated

j from the momentum equation of the mixture. There remain then the energy and

-. reactant species equations

(2) 4.(Y) -4(T) DY exp(-e/T),

h where

(3) ' ld d MA J-r~ - -
r r dr r dr

in the cylindrical geometry.

First note that the Shvab-Zeldovich variable Y = Y + T satisfies

S(() f(Y=o for 1 < r <.

Since the only solutions which remain bounded at infinity are constants, we

F" have
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for a reaction that goes to completion, where s denotes conditions at the

supply r = 1. The fact that the Y, T-relation is identical %@at that for

plane flames (Sec. 11.2) is responsible for the structures of the reaction zones

being the dame.

SThe asymptotic analysis of the equations (2) proceeds as for a plane flame.
The- temperature beyond the flame sheet must be constant, i.e.

"i 6)Y 0 , T =T. for r > r,

while up to the flame sheet the reaction is frozen, i.e. e(Y) = .(T) ' = O,

so that

Y Y+L(l-r)TT +L(r -) for 1 < r'< r*.

Here L = M-IT, with T' the temperature gradient at the supply, is the heat~S

conducted back into the supply per unit mass of mixture. These two pairs of

formulas (6), (7) give the saxe values at

K/M
(8) r 1 + (T. -Ts)/L]l/M

as expected, the stand-off distance for a plane fbpe is recovered as the radius

a of the supply cylinder tends to infinity when due attention is paid to a

mass-flux unit proportional to 1/a. Consistency requires r, > 1, i.e.

(9) L > O,

which means the supply must be a conductive heat sink.

As before the interior of the flame sheet is investigated vrith the expansions

(10) Y= 6y() + o(6), T =T + 6t() + o(6)
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where

(11) (r r*)/S and 6 T-/O.

The structure is thereby found to satisfy the equation

2t 2
(12) d/d =-D ye , where y + t =O,

and the boundary conditions
; j

-(13) t =k t/s~r* + oft) as - ,t =o(i) as +00,

which come from matching with the expressions (6) and (7) outside. Here

(14) D6 2e 'D while J Y -YI/M

is the reactant flux fraction Y - rY'/M at the supply (usually 1). Exactly

the same problem is obtained for a plane flame except that the coefficient

VJs/r, in the condition (13a) is replaced by 1i,,J* (which equals Ws there).

Noting that here J, = Js/r* (because the total reactant flux 27rrfJ is

conserved for frozen chemistry) shows that the cylindrical reaction zone is

locally plane. For spherical. flames the y,t-relation (12b), which derives

from the Y,T-relation (5) is changed; so that the reaction zone is quite

different from its plane counterpart.

i From the solution (11.21) of the corresponding plane-flame problem we deduce

(15) D /r*) M-f/2

so that

(16) D (220 e /2T ,

which is the required M,D-ralation. (The presence of r* in this formula means

that it depends on all supply parameters, unlike the plane flame.) For fixed
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ML, i.e. heat conducted back to the supply, it has the general shape of the

parabola (11.22) obtained for the plane flame, because the factor

2 -/I 1 (17) l/r= [1 + (T.o- Ts )L -2/M

varies only between exp[-2(T - T s)/L] and 1 as M increases from 0 to o.

The parabola is useful for determining the speed (i.e. M ) with which a plane flame

§ Ipropagates into fresh mixture at given pressure (i.e. D), but there is no
equivalent use here. On the other hand, for the set-up envisaged in the opening

paragraph both M and D are prescribed (along with T and J s) , and the

formula determines the final temperature T (note L J + Ts T
5

3. Near-Surface and Surface Flames. Remote Flames.

For the above solution to be valid the parameter values must be such that
r*, its given by the formula (8,lies between 1 and .As for the plane flame

,(See. 11.5) three limiting cases arise, two of whiqh are essentially the same

as there. The third leads to an interesting new phenomenon.

When M and D become large, with all other parameters held fixed, the

flame approaches the surface. An intense convective-diffusive zone of thickness

ONM forms near the surface, bounded by a reaction zone whose thickness is
O(o e-4M-).

By contrast a true surface flame can be produced for any M by adjusting

the pressure so as to make T T5. Similarly remote flames can be prcduced

by making T + J + T (i.e. L + 0). At both extremes the preceding analysis

becomes invalid: either the boundary intrudes into the reaction zone and there

is no frozen region between them or the isothermal limit of (7) is not uniformly

"I valid in the unbounded frozen region. In either case the asymptotics must be

reworked.



The analysis of the surface flame is identical tk that for the plane case

SIl provided x is changed to r-l. We conclude that D will

change from J /2, the value (15) when r, = 1, to ' as the temperature

difference T -T , measured on the 6-scale, decreases from - to 0.

By contrast, the remote flame cannot be treated as in the plane case since

the asymptotic analysis breaks down earlier, in fact as soon as L becomes 0().

The difference lies in the reactant flux ! J/r, at the flame, which now tends

1/14to zero like 6 as r* ->; the condition (13a) loses its effectiveness

A. ,' unless a different scale is used for the structure. Setting

,**C1 (18) r :r. +6 l/M

gives the new condition

(19) t = Ms(1/ s) r+ o(1) as --
sT s

where L = 6k; the corr-- -,nding change

~2(1-/M)-ITf

must also be nade to keep the structure equation balanced.

We therefore end with the same problem, except that r* is replaced by

( /P'/ so that D is given by the formula (15) with the same replacement and

S(21) D = 2(l-ll4) e2(l-1/M) eOIT2II 2%(I-Il).
SS J21-.M 2(1M 2/M C4I_!IM )  /

Thus D varies from 0 to c on the scale e as z increases

from 0 to w the upper end of the range corresponding to 0 on the previous

2 C
scale 0 e

The most interesting feature is the spreading of the zone in which there is

chemical activity, as DI decreases. The transformation (18) implies that its

law . .....



-7-

thickness is O01/- ), so that for M < 1 it is no longer a sheet; indeed

for M < 1 it has infinite extent [renember r, 0 (0 l / M) is larger still].

Such a phenomenon should beeasily observable.

We have ssen that, except when remote, the cylindrical flame is locally

plane, unlike the spherical flame. These results stem from the diffusion-

convection operator

"- (22i L a- ! - M
r a r r ~

governing the reactionless field behind the flame. Here a = 0 (plane, when

r = x), 1 (cylindrical) or 2 (spherical) and

(23) (T) 0

has the general solution

Mr M,

(24) T= A + B e' (a 0), A + B r (a= 1), A + B e - r ( 2)

9 in the three cases. Boundedness of T makes B = 0 in the first two cases

but not in the third, where T becomes an assignable parameter in addition

to any others. It is this difference between the convection-diffusion process

in plane and cylindrical geometries on the one hand and spherical geometry on the

other which accounts for the similarities and differences of the corresponding

- flames.

4. Spherical Flames. Dan.k1hler-Nu.ber As_ntotics.

I If general values of v, and V 2 had been retained in Ch. V1, most of

the remaining results in the present chapter could now be oltc.ined by setting

V 0, V 2  i.e. a1 = 0, a2 = -1 (cf. Normandia & Ludfor 1980). The

L exceptions concern strong burning with M H w. However, the analysis need only be
1A



sketched, omitted details being similar to those in Chi. VI.

,A We shall suppose that

(25) T and 1 T'L

J are prescribed at the supply and that

(26) j~ Y -MY/f=

there (so that it is purely a source of reactant). Prescribing T and

requiring

(2T) Y

then places five boundary conditions on-the fourth-order system (VI. 2,3)

for T and Y, so that we may expect 14 to be determined by D.

Consider steady states and take 1. Mhen the mixture velocity is gven

by equation CVI.6) and the sin~A Shvab.-Zeldovich is

(28) a.T+Y T+ T TM e

where

:(29) T a =T I+l1

is the adiabatic flame temperature. The problem again reduces to one for T

alone, namely

(30) (i T) -DYe Of for 1 < r <w with T , L. and T. prescribed.

Its comprehensive treatment is due to Ludford, Yannitel. & TBucknaister (1l976a,b);
A

the most important features wtere simultaneously found by Lifii-, (1975).
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We first turn to the limits D + 0, ', which had already been considered

by Fendell (1969). Frozen combustion is described by the same formulas as for

the diffusion flame, provided the new definititn

-e/T"

(31) = De A

is made; in particular the burning rate (VI.ll) holds. Equilibrium limits

(32) Y. 0

Outside the reaction zone, a state that cannot hold next to the source:

the zone must therefore lie on the surface of the source. There are two

possibilities, according as M is finite or not; the former is the counterpart

of the surface diffusion flame and the latter corresponds to the Burke-Schumann

flame, as we shall now see.

If general stoichiometric coefficients had beenjretained, the formulas
MV. 14, 15) would have had -ZC2a2  in place of Z . Then M e c and

e

r, + 1 as a 0: the Burke-Schumann solution tends to a surface flame with

indefinitely large burning rate as the oxidant becomes inactive. The limit

behavior cannot be deduced from generalizations of the expansions (VI. 17,18,19)

but must be determined ab initio.

For that purpose, note that the Shvab-Zeldovich relation (28) gives

(33) T =T for r > 1
a -

with an adjustment to T at distances O(M). The temperature must therefore

vary to leading order in the reaction zone; as also follows from the boundary

condition M 1 T' = L, which in addition points to
(s

(3)x =~ -1
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as the appropriate coordinate there. We conclude that the reaction zone 44:

governed by

(22 dT -2
(35) ( x- dldx)- M Yex(-O/T), Y + T Ta

(36) T T, dT/dx =L for x= 0 and T 4T as x +c,

i.e. the plane problem for a vaporizing liquid considered in Sec. II.3. It

follows that

(37) DM-2 K

where A is the eigenvalue introduced there, determines how M tends to

infinity with 
D.

The asymaptotic form (11.22) of A as 0 o was the goal of Sec. II., its

determination for finite 8 being a numerical question on which a great deal,

of effort has been spent in the past. For the diffusion flame the Burke-

Schumann solution can be written in simple analytical terms for any 0 , but here

N we end with the corresponding plane problem. Even the asymptotic behavior of

M, the counterpart of the formula (VI.!4), is a numerical question . One

simple feature does remain, however: the plane solution only exists for

(38) L < 1

[a limiting form of the condition (VI.20)], as was shown in See. II.

We turn now to the equilibrium limit wuhich is the counterpart of the surface

diffusion flame; for convenience we shall refer to it as the Buckmaster limit

also. M remains finite, the temperature is constant to lea ing order in

• , the reaction zone and the Shvab-Zeldovich relation (28) givesV(39) M M s n(l+(TW T
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in place of the result (VI.21). The expansions (VI.22,23) are replaced by

M M + D1121(-L) + o(D1/2)]

D7/2 +-e1)I+o(D- I/2)

if the new definition

i -elfT

(42) D= De

is made. The changes amount to 2 being replaced by 1 to account for the

different (non-dimensional) heat release at the flame. Restrictions on the

parameters come from M , which must be positive if the (small) mass fraction

of reactant is to be positive:

(43) T > T according as L 1.

The conditions for the existence of the three limits determine three regions

in the parameter plane (Fig. 1) in each of which two of the limits hold. In the

fourth region there is no solution for any values of D and 0: the Shvab-Zeldovich

relation (28) would require Y to be negative there.s

5. Ignition and Extinction.

We turn now to activation-energy asymptotics, starting with the nearly

adiabatic flame for f 1, i.e. the analog of See. VI.3. Again, different

values of k in the defining condition (VI,!i will be generated by varying

T keeping T and L fixed with

(44) L<l1.

-P '
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The frozen and infinite-M limits then exist.

Slow variations are governed by the analog

2
(45) M(TCH .) r3Y - (T/ Dr + 7'Y/ DO)*

of the result (Vi.45), where now

(46) e() r* 2 a
( r 7,[P(Y-H*YIdr.

To use this formula the combustion field must be determined to appropriate

accuracy. Noting that, as before, it is frozen ahead of the flame and in

equilibrium behind we find

+(-1r - e (l/r,*-l/r)
IT - L + LeM+l/r) , e i+ o(I) for 1 < r < r.,

.T + {-:C(l-eM/r)+ o(e-), o (to all orders) for r* < r <

where

(48) r= M/(M+ n L),

as replacements for the results (VI.47,48,19,51). Substitution in the basic

equation (45) yields the same results (VI.52), vhere now

kn(i/L) (LeZ _Lek d

S4(49) b PJ-s d
0 T _L+LeL d k

As before, a second relation between C and M comes from the structure,

the analysis of which is very similar to that of the diffusion flame in

Sec. VI.3. We find

2 P2 / 4
(50) O(l-e -  ) T Ln(O' e 12DX r T );

so that elimination of C yields the basic equation

14 Fi Rk- - -
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1 ~~-M/r, ... /T .,"*' 1 2 N2e2 4
(51) bMd/dT k- (l-e F T.gn( e T)

where r*(M) is the function (48). The steady-state response for k = 0I has a simple algebraic form in which D is proportional to (M + 2n L)4/.2,

a result essentially found by Fendell (1972). Otherwise the above analysis

has not been published before.

Steady-state responses are showm in Fig. 2. They differ from those for the

diffuision flame (Fig. Vi.4) because of the factor Z there, which vanishes

, at the Burke-Schumann value (VI.64); here M tends to infinity (like D1/2)

on all curves. For large values of k the turning points are

(52) M £nCl/L) + T-Ik, D ( 2( n L)k

a4/k D d1/)T 7(nL2

F, (53) Md t £n(k/LT ) + tn kn(k/LT2) - n 2,

2 OT .4 12 2
(54) D (02 e /2ZT.) (4 + 4 £n L M + 6 Zn2L).

,€

Conditions for instability, predicted by the full equation (51) are the same

as for the fuel drop: for < 1 the middle branch of an S-response is i
4unstable; forY > 1 the other two branches, as well as the whole of a monotonic

curve, are unstable.

These results and those in the previous section suggest that an S-response

/ will be obtained in the triangular region

(55) T <T <T

of the parameter plane (Fig. 1). The first inequality ensures that a weak-

burning limit exists, while the second comes from the existence of such

near-adiabatic responses for k sufficiently large. As for the diffusion

-%
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flame, the lower branch (including the ignition point) will be obtained for

values M within 0( -1) of its frozen value. A similar analysis cannot

be made of the upper branch, however, because the Burke-Schumann limit is

now infinite. The treatment required has been given by Kapila, Ludford &

Buckmaster (1975).

Take I= 1 again. At any point on the lower branch the temperature

is still given by the formulas (vi.66,67). Moreover, at infinity the equation

(VI.70) and boundary conditions (VI.7!) still hold, provided only that

,, /T
(56) Dw =D e wI
now. The lower branch is threfore given by Fig. VI.6 again, which may be used

to read off the ignition point.

Although M goes to infinity in the equilibrium limit the combustion field

for strong burning, i.e. 1M large but finite, has the same structure (35,36).

In the limit 0 -6 it shows a flame sheet located within O(bl) of the

surface, with equlibrium beyond. (Since the decomposition zone has thick!.ess

0(0 - 1) on the x-scale, it stands clear of the surface however large M 3-.)

We therefore have the plane problem of Sec. II.4 except that the temperature

is not constant behind the flame but varies according to equation (28) with

Y = 0. As a consequence the flame temperature is perturbed away from T

" e-M

(57) T, T a (Te - Ta )e /L.

The result (11.22), with J 1 and T replaced by this T*, gives the

i response curve

(58) M2 exp(ie - M)

to leading order, where

. . . . , ..I
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4-2 2(59) = f2T-2 (exp-e/T)ID and (= Ta-T )/LTa]e.
a ~a a

The response has a turning point at M M e) where
e

M a

(60) ee (/2)1e,

i.e.

I+ (61) M = n/2) + enkn(6/2) + oCl).

I [Note that this result only makes sense if e + , i.e. for T < T , as
a

supposed. ] Near the turning point we write,

I (62) M M U + m with m = 0(i)

to obtain

-" (63) D= + 214 (m + e - ) + 0(i)..e e

The function m + e is graphed in Fig. 3. The results (61) and (63), with

N -~m 0 0, are explicit asymptotic formulas for the location of the extinction

6. Other Aspects of F.esnonses.

We shall now briefly describe the middle branch of the S-response, the

two types of monotonic response (depending on the nature of the equilibrium

limit) and the C-response. A detailed treatment of all these has been given

by Ludford, Yannitell & Buckraster (1976a,b), in particular for the C-response

where there is no analogous discussion of spherical diffusion flames (Sec. vI.6).

The flame temperature on the middle branch, which ranges from T to Ta

is always the maximum temperature in the combustion field, so that the reaction

is frozen on either side of the flame sheet. While there could still be
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equilibrium to leading order beyond the flame, we shall first suppose that is :

not the case. As in See. VI.5 we shall consider M to be specified and

anticipate the equal conduction of heat to the two sides of the flame. The

temperature profiles (VI.89) still hold and lead to the results (VI.90,91)

with the 2 deleted. The structure equation (VI.92) still governs, provided the

new definition

(64) D = oY~e - e /T*"

is used. As for the diffusion flame, details of the determination of D are
m

not needed to draw the conclusion (VI.95).

The bound (Vi.96) shows that the solution holds for

(65)o < Ta - 1/2

now; there are clearly no paramter values for which it covers the whole range

of M, since that is infinite here. Over the rest 6f the middle branch, i.e.

the whole of it when the inequality (65) is not satisfied, Y. is zero ani

the complete-burning structure of the monotonic response is needed. Examples

of computed S-responses are shown in Fig. 4.

We turn now to the monotonic responses, for which the inequality (VI.99) holds

and the temperature increases beyond the flame sheet. The formulas (VI.100,

101, 102) are still valid, provided the 2 is deleted from the last two, so that

dT,/dM is again negative and D is again an increasing function of M to leading

order. Once more the monotonicity of the response is established without

i I discussing the flam,:.csheet structure. The latter is of course needed to

construct the curves themselves (Fig. 5).

- .i
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As M increases from its frozen value, r, decreases from ' to 1 and

there are two possibilities. If L is less than 1, so that the limit (39)

does not exist, then M increases without bound with T* approaching T as I
a

the flame sheet approaches the surface. The frozen limit is joined to the

Burke-Schumann limit of infinitely rapid burning. If L is greater than 1, so

that the limit (39) does exist, then T. approaches Ts as the flame sheet

settles do-n on the supply sphere. The frozen limit is joined to the Buckmaster

} i limit, the approach to which is similar to that for diffusion flames (See. ir.6).

Finally we come to supplies that are hotter than the ambient atmosphere,

*i i .e. inequality (VI. 106). The frozen limit does not exist but both equilibrium

limits do. The response takes the shape of a C whose upper part always corresponds

to complete burning but whose lower part may correspond to incomplete burning.

The division (if it occurs) lies below the leftmost point of the C, which

corresponds to both ignition and extinction conditions, so that these conditions

are determined by the formulas (61,63). An example of such a response is shown

in Fig. 6.

The application of the results in this chapter to the burning of mono-

propellant drops follows the same lines as Sec. V1.7. While we have restricted

our attention to inert atmospheres, the problem of the ambient being an oxidizing

atmosphere for the product of the decomposition should also be investigated. There

is now a diffusion flame in addition to the premixed one, so that features from

Ch. VI will also arise. The Damk~hler-nvmber asymptotics have already been

considered by 'endell (1969) and, more completely, by Buckm-aster, Kapila &

Ludford (1978), bi:L much remains to be done.

iI
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