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This report is Chapter VII of the twelve in a forthcoming research

monograph on the mathematical theory of laminar combustion. Chapter I-IV
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- originally appeared as Technical Reports Nos. 77, 80, 82 & 85; these were

e e

later extensively revised and then issued as Technical Summary Reports
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of Wisconsin-Madison. References to I-IV mean the MRC reports
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Chapter VII

Cylindrical and Svherical Premixed Flemes

1. Cylindrical Flames

Althougp it has not been studied to the same extent as the plane premixed
flame, the cylindrical flame is in principle almost as easy to produce. The
reacting mixture is supplied through the surface of a circular cylinder and is
ind;ced to flow radially by means of sufficiently clcse end plates. The flame

then forms a coaxial cylinder and can be observed through the end plates, which

should be transparent and good thermal insulators.

Analytically the cylindrical flame stands between the plane and sphericeal
flames., The structure of its reaction zone is the same as that of the plane
flame, with temperature constant beyond; so that'there is no curvature effect
as for the spherical flame. On the other hand, like the spherical fiame it
does not exnibit the cold-boundary difficulty: the nmixture must be introduced
at & finite radius, which can however be so small that a line source is
effectively formed. Ironically enough, in their attempt to treat curved
flames Spalding & Jain (1959) use plane-flame analysis on the spherical flame,
vhere it is never valid, and neglect the cylindrical flame, where it is slways
valid. Exnnéee&&y:eaeushy'fhe results are qualitetively correct, however
(Ludford, 1976). ‘

The object of Secs. 2 & 3 is to show how cylindricel geometry modifies

8 premixed flame (Ludford 1980). For simplicity we shall consider a single

-
AALRHED

M,
S

reactent (monopropellant) undergoing o first-crder reaction and take =1,

35

Spherical premixed flames, which have meny similarities %o spherical diffusion

flames, will be treated in Secs. L-6.
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We shall only consider the tasic features of cylindrical flames; the

discussion can easily be extended to other questions treated for plane flames

in Chs., II & III. Uhen meking comparisons with the latter bear in mind that ths:

non-dimensionalization is here based on the radius, a, of the supply cylinder.
If v 1is the radial velocity, the equation of continuity edmits rpv being

constant, When M is the mass flux at the supply cylinder we may therefeore

write
(1) rov =¥ or pv=MNr,

the latter giving the mass flux at every other redius r. Once the temperature

T has been determined, the density p = 1/T and v = MI/r follow immediately,

while the small variations in pressure about its constant level can ve calculated

from the momentum equation of the mixture. There remain then the energy and

reoctant species equations

(2) L) = L) = DY exp(-8/T),
where

=14, 48, M4
(3) JC “r dr(r dr) T rdr

in the cylindrical geometry.

First note that the Shvab-Zeldovich variable i =Y+ T satisfies
(4) jC(Y) =0 for l<r < o,

Since the only solutions which remain bounded at infinity are constants, we

have
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(5) Y+T=0, =Y, +T

for a reaction that goes to completion, where s denotes conditions at the
supply r = 1. The fact that the Y, T-relation is identical ggE; that for
plane flames (Sec. II.2) is responsible for the structures of the reaction zones
being the same.

The asymptotic analysis of the equétions (2) proceeds as for a plane flame.

The: temperature beyond the flame sheet must be constant, i.e.

(6) Y=0,T=T_ for r>r,,

while up to the flame sheet the reaction is frozen, i.e. L(Y) = L(7)= o0,

so that
M M .
(7) Y=Y +L(1-r), =T +L{ - 1) for 1<r<r,.
Here L = M—lTé, with Té the temperature gradient at the supply, is the heat

conducted back into the supply per unit mass of mixture. These two pairs of

formules (6), (7) give the sare values at
(8) re = [0+ (2, - 2 ) /)M

as expected, the stand-off distance for a plane féﬁhe is recovered as the radius
a of the supply cylinder tends to infinity when due attention is paid to a

mass-flux unit proportional to 1/a. Consistency requires r, > 1, i.e.

(9) L Fd 0;

-

vhich means the supply must te a ccnductive heat sink.

As before the interior of the flame sheet is investigaied with the expansions

(10) Y= gy(g) + o(8), T=7T_+ st(g) + o(s)
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where

(11) E=(r-r,)/s and &= Ti/ﬁ.

The structure is thereby found to satisfv the equation

(12) d2t/d§2 = -D y et, where y +t = 0,

and the boundary conditions

(13) t = M E/ry + o(l) as £+ -, t= o{1) as g + +e,

which come from matching with the expressions (6) and (7) outside. Here

(14) D=6 ™D while J =Y - Y'/M
S s S

is the reactant flux fraction Y - rY¥'/K at the supply (usually 1). Exactly
the éame problem is obtained for a plane flame except that the coefficient
MJs/r* in the condition (13a) is replaced by IJ,+ (which equals M there).
Noting that here Jy = Js/r* (because the total reactant fiux errMy is
conserved for frozen chemistry) shows that the cylindrical reaction zone is
locally plane. For spherical flames the y,t-relation (12b), which derives
from the Y,T-relation (5) is changed; so that the reaction zone is quite
different from its plane counterpart.

From the solution (II.21) of the corresponding plane-flame problem we deduce

(15) D = (J_/r,) 24 /2
so that
6/T
(16) D= (Jieee “/2Tir§)m?,

which is the required M,D-rz2lation. (The presence of r, in this formula means

that it depends on all supply perameters, unlike the plane flame.) For fixed
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ML, i.e. heat conducted back to the supply, it has the general shape of the

parabola (II.22) obtained for the plane flame, because the factor

(17) 1/r§ =1+ (T, - Ts)/L]'a/M

. ' I T
5 , . v ik oy e kel b k]
e T80 ot o, o o e llpd e § ot st e o ke

Y

varies only between exp[—Z(T°° - Ts)/ML] and 1 as M increases from 0O to o

The parabola is useful for determining the speed (i.e. M ) with which a plane flanme

propagates into fresh mixture at given pressure (i.e. D), but there is no

equivalent use here.

2 ot i S vt 1 8

On the other hand, for the set-up envisaged in the opening

5

v L !
4 Lt N LT Y
R s e b i 0 i o i i Ve e b e e faih 2o
i K

paragraph both M and D are prescribed (along with Ts and Js), and the

formula determines the final temperature T (note L = Js + Ts -T).

3. Near-Surface snd Surface Flames. Remote Flames.

For the above solution to be velid the parameter values must be such that

Ty, &s given by the formula (8), lies between 1 and » . As for the plane flame

See. II.5) three limiting cases arise, two of which are essentially the same

as there.

The third leads to an interesting new phencmenon.

When M and D become large, with all other parameters held fixed, the

flame approaches the surface. An intense convective-diffusive zone of thickness

O(M-l) forms near the surface, bounded by a reaction zone whose thickness is
o(e™hiY).

By contrast a true surface flame can be produced for any M by adjusting

the pressure so as to nake T, - Ts’ Similarly remote flames can be prcduced

by'making T, Js + Ts (i.e. L + 0). At both extremes the preceding analysis

beconmes invalid:

LR b bl gy et e bk, o bl
i et b 2K 0 P s oK g S ol e R W

ol gl e b ke 0 o !

either the boundary intrudes into the reaction zone and there

is no frozen region between them or the isothermal limit of (7) is not uniformly

valid in the unbounded frozen region.

In either case the asymptotics must be
reworked. ’
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The analysis of the surface flame is identicel tdst that for the plane case
provided x is changed to r-1. We conclude that 5 wiil
change from JiM?/E, the value (15) wvhen ry, = 1, to = as the temperature
difference Tw~Ts, measured on the 6;scalé, decreases frém o to O,

By contrast, the remote flame cannot be treated as in the plane case since
the asymptotic analysis breaks down earlier, in fact as soon as I becomes O0(§).
The difference lies in the reactant flux ¥ Js/r* at the flame, whiceh now tends

/¥

to zero like 61 as r, - =; the condition (13a) loses its effectiveness

unless a different scale is used for vhe structure. Setting

(18) r=or,+ 51’1/M£

' gives the new condition

' /M
(19) t =M (2/3)7 g+ o(1) es g > ~o.
where L = §¢; the corr-- -nding change

Wy -6/T
(20) D = 82(1-1/14) e ooD

must also be nade to keep the structure equetion balanced.
Ve therefore end with the same problem, excert that r, is replaced by

?

(JS/Z)I/M' so that D is given by the formula (15) with the same replacement and

. 8/
_ J2(1-1/14) e2(1—1/M) . mZQ/M/QTi(l-l/M).

(21) D= Jg

9/1
=1/¥ ©
9,2(1 l/d) e

Thus D wvaries from 0O to o on the scale as ¢ increases

from 0 to «» , the upper end of the range corresponding to 0 on the previous
e/T
scale ¢ e .

The most interesting feature is the spreading of the zone in which there is

chemical activity, as M decreases. The transformation (18) implies that its
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thickness is O(Gl/M;I), so that for M <1 it is no longer a sheet; indeed

for M <1 it has infinite extent [remember r, = O(Bl/M) is lerger stilil.
Such a phenomencn should beeasily observable.

We have ssen that, except when remote, the cylindrical flame is locelly
plane, unlike the spherical flame. These results stem from the diffusion-

convection operator
. —
(22) L= 10t

governing the reactionless field behind the flame. Here ¢ = O (plane, when

r = x), 1 (cylindrical) or 2 (spherical) and
(23) L) =0

hes the general solution

(2k) P= A+ B el (e = 0), b+ B (o = 1), A+Be’M/r (¢ = 2)

in the three cases. Boundedness of T mekes B = 0 in the first two cases

but not in the third, where T, becomes an assignable perameter in eddition

to any others. It is this difference between the convection-diffusion, process

in plane and cylindricel geometries on the one hand and sphericel geometry on the

other which accounts for the similarities and differences of the corresponding

flames.

L, Sphericel Flames. Damkohler-Nurber Asymptotics.

If general values of 21 and Vs had been retained in Ch. VI, most of
the remaining results in the present chapter could now bte ottczined by setting
v, =0, v, =1 i.e.

R - * %

exceptions concern strong burning with M > o, However, the analysis need only be

=0, a,=-1 (ef. Kormandia & ILumdferd 1980). The
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sketched, omitted details being similar to those in Ch. VI.

We shall suppose that
(25) T and MOT! =1
s s
are prescribed at the supply and that
(26) gz Y -Mlyyy
s” s s

there (so that it is purely a source of reactant). Prescribing T°° and

requiring

n
(=]

(271) Y

then places five houndary conditions on the fourth-order system (VI. 2,3)
for T and Y, so that we may expect M to be determined by D. .
Consider steady states and take & = 1. Then the mixture velocity is given

Traialle
by equation (VI.6) and the sings Shveb-Zeldovich is

(28) HsT+Y="1T + (Ta - Tw)(l - e“"/r),
where
: (29) Ta='I's-L+l

is the adiabatic flame temperature. The problem again reduces to one fer <

alone, namely
(30) L (1) = -pYe” /T for 1 <1 <m with 7> Land T preseribed.

Its comprehensive treatment is due to Ludford, Yannitell & Buckmaster (197€a,b);

).

1

the most important features were simultancously found by Lifidu {227

e SO T - - - _ - _ S e - ..




We first turn to the limits D <+ 0, «, which had elready been considered

by Fendell (1969). Frozen combustion is described by the seme formulas as for
the diffusion flame, provided the new definitiun

-0/T_
(31) € = De

is made; in particular the burning rate (VI.1ll) holds. Eguilibrium limits

(D » ») require

(32) Y=0

outside the reaction zone, a state that cannot hold next to the source:

the zone must therefore lie on the surfuce of the source. There are two

possibilities, according as M is finite or not; the former is the counterpart

of the surface diffusion flame and the latter corresponds to the Burke-Schumann

il Bt o LaPR Y R N

fleme, as we shall now see.

If general stoichiometric coefficients had been retained, the formulas
(Vi. 1k, 15) would have had ~Z /20, in place of 2, Then M+ o and
ry >l eas Gy > 0: the Burke-Schumann solution tends to a surface flame with
indefinitely large burning rete as the oxidant becomes inactive. The limit
behavior cannot be deduced from generalizetions of the expansions (VI. 17,18,19)
but must be determined adb initio.

For that purpose, note that the Shvab-Zeldovich relation (28) gives
(33) T=T for r>1

with an edjustment to T = at distances O(M). The temperature must therefore
vary to leading order in the reaction zone; as also follows from the boundary

condition M-lT; = I, which in addition points to

b o
SR B G R

(34) x = M(r-1)
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as the appropriate coordinate there, We conclude that the reaction zone 44

governed by

(35) (da/dxa - d/ax)T = DM'EYexp(-e/T), Y+ T=T,

(36) T= T, dT/dx =L for x=0 and T -+ Ta 8s X - w,

i.e. the plane problem for a vaeporizing liquid considered in Sec. II,3. It

follows that
-2
(37) DM “ = A(TS,L,G),

where A 1is the eigenvalue introduced there, determines how M tends to
infinity with D.

The asymptotic form (II.22) of A as 6 - « was the goal of Sec. II.h, its
deternmination for finite 6 Dbeing a numericel questiocn on which a great deal
of effort has been spent in the past. For the diffusion flame the Burke-
Schumann solution can be written in simple analytical terms for any § , but here
we end with the corresponding plane problem. Even the asymptotic behavior of
M, the counterpart of the formula (VI.14), is a numerical question . One

simple feature does remain, however: +the plene solution only exists for
(38) L<1

[a limiting form of the condition (VI.20)], as was shown in Sec. II.L.

We turn now to the equilibrium limit which is the counterpart of the surface
diffusion flame; for convenience we shall refer to it as the Buckmaster limit
also. M remains finlte, the tempera%ure is constant tc leading order in

the reaction zone and the Shvab-Zeldovich relation (28) gives

(39) M=M anfl + (T - Ts)/(L—l)]

LT e,
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in place of the result (VI.21). The expansions (VI.22,23) are replaced by

(k0) M= M1+ D;lle/(l-L) + o(D;llz)]
and
(h1) T=T 4 D;I/QMs[l - e84 (1-1)g] + o(D;l/Q)

if the new definition
~6/T
(42) D, = De

is made. The changes amount to 2 being replaced by 1 to account for the

different (non-dimensional) heat release at the flame. Restrictions on the

parameters come from Ms’ which must be positive if the (small) mass fraction

of reactant is to be positive: ,
> i >
(h3) T, 2 Ts according es L 7 1.

The conditions for the existence of the three limits determine three regions
in the parameter plane (Fig. 1) in each of which two of the limits hold. In the

fourth region there is nc solution for eny values of D and 6: the Shvab-Zeldovich

relation (28) would require Y. to be negative there.

5., Ignition and Extinction.

We turn now to activation-energy asymptotics, starting with the nearly
ediabaetic flame for Zi# 1, i.e. the analog of Sec. VI.3. Again, different
values of k in the defining condition (VI.!® will ve generated by varying

Ts keeping T and L fixed with

(bk) L < 1.
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The frozen and infinite-M limits then exist.

Slow variations are governed by the analog
(k5) u(r -1, =3 (1) - rilar/oe + Lhov/ o),

of the result (VI.45), where now

o fgf
(46) odx) = [ 2% p(v-n,)lar.
1 5

Ao

e

To use this formula the combustion field must be determined to appropriate

accuracy. Noting that, as before, it is frozen ahead of the flame and in

R R

equilibrium behind we find

+ 1M-1/r) 1 . SM(1/re-1/r)

T, - L + o(1), + o(1) for 1 <r < ry,
Y

T+ e-lC(l—e-M/?)+ o(e-l), ~0 (to all orders) for ry <r < «,

(47) P

where
(48) ry = 4/(M+ tn 1),

as replacements for the results (VI.LT,48,49,51), Substitution in the basic

equation (45) yields the same results (VI.52), where now

n(1/n) (o odk o s )
(49) b = e ) -le d o las.
g TS-L+Le2 EDRPIRY

'As before, a second relation between € and M comes from the siructure,
the analysis of vhich is very similar to that of the diffusion flame in
Sec. VI.3. Ve find

(3]
(50) f1-e )= £o2

/T !
an(M o e o‘)/QDIri Tc: )

so that elimination of C yields the basic equation

TR T 15, SO Y I L L




dydid .
u-'.L'.d“:)} N

-_.&.._.4;,

£

~M/r

6/
*. o .
(51) bMaM/dt = k - (1 - e )~ Ti (e e

T?’ené‘.’ ri Ti)
where r (M) is the function (48). The steady-state response for k = 0
has a simple algebraic form in which D is proportional to (M + gn L)h/MQ,
a result essentially found by Fendell (1972). Otherwise the above analysis
has not been'published before.
Steady-state responses are shown in-Fig. 2. They differ from tpose for the
diffdsion fleme (Fig. VI.4) because of the factor Z, there, which vanishes
at the Burke-Schumann velue (VI.64); here M tends to infinity (like Dl/e)

on all curves. For large values of k +the turning points are

/T
(52) M~ (/L) + hTi/k, D~ (h/e)hwieee F2(en L)aafkh
and
(53) M o~ zn(k/LTi) + %n zn(k/LTi) - fn 2, '
o T, o 2
(5h4) D~ (6" e /2,),*'1‘“) (M + 4 anL M+ 6 n°L).

Conditions for instability, predicted by the full equation (51) are the seme
as for the fuel drop: for af < 1 the middle branch of an S-response is

unstable; for;Z > 1 the other two branches, ss well as the whole of a monotonic

- eurve, are unstable.

These results and those in the vrevious section suggest that an S-response

will be obtained in the triangular regicn

(55) T ¢<T <P

of the parameter plane (Fig. 1). The first ineguality ensures that a weak-
burning limit exists, while the second comes from the existence of such

near-adiabatic responses for k  sufficiently large. As for the diffusion
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flame, the lower branch (including the ignition point) will be obtained for
values M within 0(9-1) of its frozen value. A similar analysis cannot
be made of the upper branch, however, because the Eurke~-Schumann limit is
now infinite. The treatment required has been given by Kapila, Iudford &
. Buckmaster (1975).
Take J:= 1 again. At any point on the lower branch the temperature
is still given by the formulas (VI.66,67). Moreover, at infinity the equation
(VI.70) and boundary conditions (VI.T1) still hold, provided only that

p =8/,

(56) D, = D" e

now. The lower branck is threfore given by Fig. VI.6 again, which mey be used
to read off the ignition point.
A}though M goes to infinity in the equilibrium limit the combusfion field
for strong burning, i.e. M large but finite, has the same structure (35,3%).
. In the limit 6 > o it shows a flame sheet located within O(Mul) of the
surface, with equlibrium beyond. (Since the decoryposition zone has thickress

0(6"1) on the x-scale, it stands clear of the surface however large M i-.

~—

We therefore have the plane problem of Sec. II.U except that the temperature
is not constant behind the flame but varies according to equation (28) with

Y = 0. As a consequence the flame temperature is perturbed away Zrom Taz
, = P - - .
(57) Ty = T+ (T -7 )e /L

The result (II.22), with J, =1 and T  replaced by this Ty, gives the

response curve

2

(58) b= 1f exp(fe™

to leading order, where

A A IS

5

30
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d x‘vf% (AR
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(59) D= [2T29‘2exp(-e/Ta)]D and 6 = [(Ta—Tm)/LTi]e.

The response has a turning point at M = Me(é) where

M
(60) e = (8/2)u,,
i.e.
(61) M = n(8/2) + gnpn(§/2) + o(1).

[Note that this result only makes sense if § - +w, i.,e. for T°° < Ta’ as

supposed.] Near the turning point we write

(62) M=M +m with m= o(1)
to obtain
(63) D= HZ + 2Me(m + e ™ 4+ o(1).

.

The function m + e © is graphed in Fig. 3. The results (61) and (63), with
m = 0, are explicit asymptotic formulas for the location of the extinctioun

point,

6. Other Aspects of Responses.

We shall now briefly describe the middle branch of the S-response, the
two types of monotonic response (depending on the nature of the equilibrium
limit) and the C-response. A detailed treatment of all these has teen given
by Ludford, Yannitell & Buckmaster (1976a,b), in varticular for the C-response
where there is no analogous discussion of spherical diffusion flames (Sec. VI.6).

The flame temperature on the middle branch, vhich ranges from T o Ta,

is always the maximunm temperature in the combustion field, so that the reaction

is frozen on either side of the flame sheet. While there could still be
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equilibrium to leading order beyond the flame, we shall first suppose that is

not the case. As in Sec. VI.5 we shall consider M to be specified and
anticipate the equal conduction of heat to the two sides of the flame. The

X

Al

temperature profiles (VI.89) still hold and lead to the results (VI.90,91)

with the 2 deleted. The structure equation (VI.92) still governs, provided the

ERPE

oy

nevw definition

-8/T,

(64) D =D Y,

is used. As for the diffusion flame, details of the determination of Dm ere

not needed to draw the conclusion (VI.95%5).

The bound (VI.96) shows that the solution holds for

(65) T < T& -1/2

G Pt eyt

now; there are clearly no paramber values for which it covers the whole range

of M, since that is infinite here. Over the rest o6f the middle branch, i.e,

the vhole of it when the inequality (65) is not satisfied, ¥, is zero and

s tv*ﬂ_*gg;;‘ .y

S

the complete-burning structure of the monotonic response is needed.  Examples

of computed S-responses are shown in Fig. b.

e

o

RS RS
by

We turn now to the monotonic responses, for which the inequality (VI.99) holds

and the temperature increases beyond the flame sheet. The formulas (VI.100,

7

101, 102) are still valid, provided the 2 is deleted from the last two, so that

again an increasing function of M 1o leading

Ay

A

PSR L,

dT,/dM is again negative and D is

order. Once more the monotonicity of the response ic established without
discussing the flamc-wsheet structure. The latter is of course needed to

construct the curves themselves (Fig. 5).
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As M increases from its frozen value, r, decreases from <« to

'm»"“‘léf:'} b Y

there are two possibilities. If L is less than 1, so that the limit

pr1

does not exist, then M increases without bound with T, approaching Ta as

o e s b0 0
¥,
&

Side ‘ﬁ‘; ;:’4

R

Sk

the flame sheet approaches the surfacce. The frozen limit is joined to. the

"

Burke~Schumann limit of infinitely rapid burning. If L 1is greater than 1, so

e

2

&3

that the limit (39) does exist, then T, approaches T as the fleme sheet

‘1434'& N

settles down on the supply sphere. The frozen limit is joined to the Buckmaster

-

limit, the approach to which is similar to that for daiffusion flames (Sec. Vi.6).

LSRN LA SR AT

Finally we core to supplies that are hotter than the ambient atmosphere,

e

i .e. inequality (VI. 106). fThe frozen limit does not exist but both equilibrium

limits do. The response takes the shape of a C whose upper part always corresponds

to complete burning dbut whose lower part may correspond to incomplete burning.
The division (if it occurs) lies below the leftmost point of the C, which
corresponds to both ignition and extincticn conditions, so that these conditions

are determined by the formulas (61,63). An example of such a response is shown .

emirr ot s e £ R T AR S S

in Fig. 6.
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The application of the results in this chapter to the burning of mono-
propellant drops follows the same lines as Sec. VI.T7. While we have restricted

our attention to inert atmospheres, the problem of the ambient being an oxidizing

atmosphere for the product of the decomposition should also be investigated. There

3
g
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=
=

s

2
s
b
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is now a diffusion flame in addition to the premixed one, so that features from

Ch. VI will also uarise. The Damkohler-number asymplotics have already been

asy

considered by Fendell (1969) and, more completely, by Buckmaster, Kapila &

Ludford (1978), bui much remains to be done. ;
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