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I. INTRODUCTION
This report documents a Fortran subroutine called CHEMEQ designed

to solve sets of ordinary differential equations of the form:

=Q, - L.n, (1)

Here Qi is the formation rate, Lini is the loss rate, and ni is the
density of the ith species. Often the time constants l/Li for the
various species differ by many orders of magnitude and strong coupling
between species may be present. If this is the case, the set of equa-
tions (1) is considered "stiff" and does not lend itself readily to
numerical solution by classical methods.

Subroutine CHEMEQ was developed to apply a specialized numerical
technique "The Selected Asymptotic Integration Method”(SAIM) to this
class of equations. The method has a very low computational overhead
associated with it and is particularly useful when combined with a
transport algorithm such as the “Flux Corrected Transport"2 module to
form reactive flow models. In such applications computer memory is at
a premium because copies of the chemical species variables are required
at every grid point. Since CHEMEQ is a single-step algorithm, multiple
copies of the data from several successive timesteps need not be saved.
Further, since CHEMEQ is cimple- and single-step, no start-up penalty
such as evaluating a large Jacobian matrix is exacted at the beginning
of an integration stcp. This is also very important because a reactive

flow application rcquires millions of chemistry integration start-ups.

Note: Manuscript submitted August 14, 1979,
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Whenever the hydrodynamic processes in the problem change the vari-
ables, the chemistry calculations must be reinitialized.

The efficiency of CHEMEQ is achieved by limiting the actual inte-
gration to second-order accuracy to minimize auxiliary storage and
start-up expense. In reactive flow applications, however, the reaction
rates are seldom known to better than 10% and the hydrodynamics calcu-
lations are seldom accurate to better than 1%. Thus integration of
the chemistry to better than 1 part in 103 or 10" is an expensive folly.
In this regime CHEMEQ seems to beat the classical methods by about a
factor of 50-100 in speed on test problems where start-up is not a
consideration. When a coupled hydro application on many grid points
is attempted using a parallel processor, up to three orders of magni-
tude improvement seems possible.

The SAIM method has been applied successfully to such reactive
flow problems as high altitude nuclear burst phenomena,3'“ the solar-
induced ionosphere,5 laser-generated plasma interactions,® and the
chemical kinetics associated with combustion’ problems. It has also
been used successfully for chemical model development, particle
deposition in the ionosphere,8 and other physical problems where stiff
ordinary differential equations arise.

The subroutine CHEMEQ is written in simple standard Fortran but
makes extensive use of the pipeline architecture of the NRL Texas
Instruments, Advanced Scientific Computer (ASC). The subroutine is
easily adapted to other machines without loss of efficiency.

A new subroutine is being prepared called VSAIM (Vectorized Selec-

ted Asymptotic Integration Method). This subroutine applies the
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asymptotic method used in CHEMEQ to several independent sets of

equations (i.e., grid points) simultaneously, and thereby it takes

full advantage of the parallel processing capability of the ASC. This
-~ .- subroutine is particularly useful for solving the chemical kinetics
associated with hydrodynamic applications on computers that have
parallel processing capabilities. VSAIM will be documented in a
subsequent report.

Sections II and III describe the algorithm and its implementation.
Appendix A describes the application of CHEMEQ to various problems.
Appendix B gives the fortran listing of the subroutine together with
tables of internal and argument list variable definitions. Appendix C
gives the results of a sample atmospheric test problem using CHEMEQ
together with program listings which ilJustrate the application of
CHEMEQ.

II. ALGORITHM

CHEMEQ integrates a set of coupled ordinary differential equations
{which may include "stiff" terms) of the form (1) by a one-step algo-
rithm. The method has very low overhead since all that is required to
start a new integration step are the current values of the variables
and the derivatives. A second order predictor-corrector method, which
takes special notice of those equations determined at the beginning of
the step to be stiff is employed to continue the integration process.

The asymptotic integration method applied to the stiff equations
best treats the situation where the solution is slowly changing or

nearly asymptotic yet the time constants are prohibitively small.




This occurs when the formation rates and loss rates arc large, nearly
equal, and there is strong coupling between the equations. Thus the
stiff equations are treated with a very stable method which damps out
the small oscillations caused by the very small time constants. If,
however, the formation rates and loss rates are small compared to the
function size, the simple classical methods can be utilized for these
equations to give the combined method.

The predictor-corrector algorithm provides enough information to
choose the subsequent timestep size once convergence has been achieved.
For efficiency an initial timestep is chosen which approximates the
timestep that will be determined after convergence of the predictor-
corrector scheme. This initial trial timestep is chosen independently
of the stiffness criterion and is determined such that none of the
variables will change by more than a prescribed amount. If the forma-
tion rate is much larger than the loss rate, it is reasonable to assume
that Qi and Li will remain relatively constant for large changes in n, .
Often the initial change in ni may be large enocugh to equilibrate the
formation and loss rates. Thus the initial trial timestep is chosen

in two ways as follows;

St = ¢ min[n./n., or (i . >>L.n.)1/L. ]

t = € min[ l/ i (if Q; lnl) / id (2)
Here € is a scale factor, the same value as the convergence criterion

described in Eq. (6). The minimum is taken over the whole set of

equations. The timestep chosen by Eq. (2) may be larger than some or

RO s s

ppyme




all of the equilibration times, in which case the corresponding equa-
tions would be classified as stiff. Nevertheless, when solved by the
asymptotic method, this timestep ensures that accuracy can be main-
tained. When a stiff equation is close to equilibrium, the changes in
the functional values over the timestep will be small even though the
adjustment rate toward equilibrium can be very much shorter than the
timestep. When the stiff equation is far from a dynamic equilibrium,
the timestep should be scaled down proportionally to the equilibration
time to ensure that the transition to equilibrium will be followed
accurately. This readjustment, because of the very fast rate, gener-
ally takes place very rapidly after which much longer timesteps may be
taken.

After a timestep has been chosen, all of the equations are sepa-

rated into two classes, stiff and normal, according to the criterion.

LiT <1 Normal
or (3)

LiT 21 Stiff

where the value of 1 is problem-dependent and is chosen by the user to
invoke asymptotic treatment as necessary. In addition, the user may
force asymptotic treatment on any percentage of the set. Equation (3)
is applied first. Then, beginning with the equations with the shortest
characteristic time (l/Li) not alrrady chosen by application of

equation (3), additional equations are selected with increasing time
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constants until the percentage of the set specified is satisfied. If
the equation is considered stiff at the start of the integration step,
it is treated as stiff until the step has been completed. The two
types of equations are then integrated by separate predictor-corrector
schemes but using a simple asymptotic formula to replace the usual
second-order corrector equation for all those equations which were
determined to be stiff.

The predictor part of the step is performed as follows:

n, (1) = n,(0) + StF. (0) (Normal)
i i i

and (4)
§tF, (0)

1l

n, (1) n, (0) + (Stiff)
i i

-1
l+6tLi(0)
where F. (0) = Fi[t(O), n (0) ]. Here we start at t = t(0) and wish to
find ni[t(O) + 8t] = n, (1).

If we let the integer in the parentheses denote the iteration
number then ni(k) is the kth iterated value of ni, Oor an approximation
to ni[t(O) + 8t]. The zeroth iteration, ni(O), is the initial value
at t(0) and ni(l) is the result of the predictor step. Also note that
F (k) = Fi[t(0)+§t, ni(k)] for the derivatives. The corrector formulas

for the two types of equations are:

n; (k+l) = ni(o) + %f [Fi(O) + Fi(k)] (Normal)

and (5)
26t [Q. (k)-L_ (Q)n, (0)+F_ (0) ]
1 1 h 1

4 + 8t[L, (k)+L, (0) ]
1 1

n, (k+1) = n_(0) + (Stiff)
i i
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By comparing ni(k+l) with ni(k) on successive iterations using
the relative error criterion € to satisfy the following equation,

In, (k+1) - n_ (k)|
1 1l

1 20 = max ni(k+l)6 ’ (6)

the convergence of each of the individual equations can be determined.
As applied in CHEMEQ, € is typically ~ 1073 and if the formation and
loss rates are nearly equal ¢ will be scaled down slightly. This
allows quicker convergence for equations that are nearly in equilibrium.
In practice n, is constrained by a minimum value when ni is decay-
ing exponentially toward zero. This lower bound is chosen by the user
and must be carefully selected to insure that its value in no way
affects the physics but yet decouples the eguation from accurate inte-
gration. Decoupling is accomplished by skipping the application of
equation (6) to all equations that have decayed to values correspon-
ding to their lower bounds. Convergence for these equations is then
trivial and the function no longer affects the size of the timestep.
For equations that are decaying exponentially to zero with time
constants that are small enough to control the timestep,it is important
for efficiency reasons to decouple these equations at the largest lower
bound possible. However, it must be remembered that spurious results
may occur in other equations sensitive to the limited eqguations if
their lower bounds are too large. This results because the value of
the function after decoupling is frozen at the lower bound for the dura-

tion of the integration process or until the total rate becomes posi-

tive. 1If there is any question, it is better to be on the conservative
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side by choosing the minimum values smaller than necessary. This may

result in a little loss of efficiency but will reduce the possibility
of erroneous results.

We have found that maximum speed is realized by keeping the
allowed number of iterations on the corrector small. We typically use
one or two. If satisfactory convergence of all equations has not been
obtained before or during the last iteration, the step is started over
with a smaller timestep. By keeping the maximum number of iterations
small, a minimum amount of time is wasted on an unstable or nonconver-
gent step only to find out that the iteration procedure did not con-
verge. By the same token, we have found it best to reduce the time-
step sharply (a factor of 2 or 3) when nonconvergence is encountered
rather than to reduce it slowly. Less time is wasted this way getting
down to a sufficiently small step for convergence if the initial esti-
mated step size is found to be too large. On the other hand, when
increasing the timestep, as for example when convergence is achieved
on the first or second iteration, we have found it best to only in-
crease by 5-10% each step. During the integration of several succes-
sive steps, we use the appropriately modified timestep from one con-
verged integration cycle as the trial timestep for the next integra-
tion cycle rather than using Eg. 2. The timestep modification is per-

formed as follows

4 .005] (7)




Using ¢ as the starting value, the /o is estimated with three
iterations of Newton's method. This gives the desired asymmetrical
property in that 8t decreases faster than &t would increase for the
inverse value of 0. 1In addition, 6t is modified very little when 0 is
near 1.

Once convergence of all the equations is achieved, the new values
of the ni(st) are set equal to the values of nk(k+l). One can obtain
convergence and completion of an integration step after only two deri-
vative-function evaluations even when some or all of the equations are
stiff,

III. HOW TO USE CHEMEQ

The Selected Asymptotic Integration Algorithm, as described in
Section II, has been coded in Fortran which may be implemented on any
digital computer of moderate size. It is intended as a very fast but
moderately accurate integrator which can be used at each grid point of
a large hydro-~ or magnetohydrodynamic calculation. Single point calcu-
lations are easily and efficiently accomplished by CHEMEQ as well.

CHEMEQ has four entries which are available to perform the vari-
ous aspects of the integration. The main entry is used for normal
operation. The others provide flexibility and optional controls. The
variables in the argument lists and internal variables are documented
in detail in Appendix B.

1. CHEMEQ (DTCHEM, DFE, N, F, FMIN) advances the equations the

specified interval DTCHEM.
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2. CHEMSP (EPSMN, EPSMX, DTMN, TNOT, PASS, TASS, PRT) resets

the specified control parameters if the default values are not
satisfactory.

3. CHEMCT (TMK) is for information purposes. This entry prints
information which indicates how efficiently the integration pro-
cess has been since either the last call to CHEMSP or the last
call to CHEMCT.

4. CHEMPR is for diagnostic purposes. This entry may be called
whenever an error occurs which can be attributed to the results of
CHEMEQ. A partial set of the internal variables is printed as a

diagnostic.

CHEMEQ is the main entry and is called to advance the equations
as required. The initial values are passed in as arguments. After
being advanced by the integration they are passed back in the same
place. One of the arguments of CHEMEQ is the name of the derivative
function subroutine DFE, utilizing a useful feature of Fortran which
gives the user the option of specifying various configurations for the
derivative functions within the confines of the same problem.

CHEMSP is called whenever any or all the default values of the
control parameters in the argument list are not satisfactory. Vari-
ables such as the initial value of the independent variable, the
absolute minimum timestep allowed, control parameters for convergence
of the predictor-corrector combination, and the control parameters

whiclh affect the use of asymptotics may be reset herc.

CHEMCT is called for diagunostic purposes. It displays information




on the numbers of derivative function evaluator calls and the number
of times asymptotics were employed. It also gives the number of times
the integration step had to be restarted with a smaller timestep due
to lack of convergence of the predictor-corrector scheme since the
last call to CHEMCT, CHEMSP, or since the beginning. This information
can be very helpful in determining the relative efficiency of the
integration process.

CHEMPR is called for diagnostic purposes. If an error in the
integration process is suspected, the user may call this entry to
print out some of the internal variables. The current values of the
production rates [C{(I)], loss rates [D(I)], functions [F(I)], inverse
time constants [RTAU(I) ], total rates CMD], estimated timestep re-
guired, from the previous step the total rates [DFS(I)], the functional
values [FS(I) j, the initial functional values [FO(I) ; and the minimum
values [FMIN(I) ] are printed for diagnostic purposes.

Two subroutines are referenced from CHEMEQ.

l. DFE(F, C, D, T) The Derivative Function Evaluator which cal~

culates the derivatives {ﬁi} as required.

2. CHEMER 1in the subroutine that is called whenever CHEMEQ deter-

mines that an error has occurred.

DFE, the derivative function cvaluator, must be supplied by the
user to provide on request by the integrator, the current derivatives
{ﬁi}. It is important to note that nearly all of the computer time
spent in the integration process for most problems is spent in this

user-supplied routine. It is therefore oxtromelc valuable to put the
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extra effort into optimizing this routine, especially, when it will
be incorporated into a large hydrodynamic code. Here are some sugges-
tions for coding which may help produce efficient operation.

1. Avoid all unnecessary repetitive calculations. Quantities

which can be calculated once should be stored for subsequent use.

In particular, divisions and mathematical functions should be

avoided since these are costly operations on most machines.

2. Replace all complicated functions with table look~ups when-

ever possible. This can be a very important economy measure.

3. Arrange the code in a fashion which takes advantage of your

computer's optimization features. For example, the use of

register to register or parallel processing capabilities.

4. The user may often take advantage of the structure of the

problem he is working with.
For example, in a large atmospheric reactive-flow hydrodynamic code,
the density values may vary drastically from the bottom of the grid
to the top. Often at the top a much simpler reaction scheme will be
sufficient to describe the chemistry than in the middle or lower por-
tions of the mesh. Here the user may specify various configurations
of the reaction scheme appropriate to the grid region and save a sig-
nificant amount of computation. There are other ways to improve elfi-
ciency but they may not be as obvious as these listed. Often with a
little imagination and persistence combined with a thorough knowledge
of the problem area, significant improvements in computational

efficiency can be realized.




CHEMER is called whenever CHEMEQ determines that a severe error
has occurred. Currently the only error which can be identified by
CHEMEQ is when the timestep becomes too small. CHEMEQ at this point
provides output that may be useful and then calls CHEMER. The default
version of CHEMER does nothing but print a message indicating that
CHEMER has been called and then stops execution. However, the user may
supply his own version of CHEMER which could provide printout of «
much more complete set of diagnostics than CHEMEQ does or manipulate
the data in such a fashion that the integration process might proceed.

The actual arguments and internal variables used in CHEMEQ, its
entries and the associated subroutines will be described in detail in
the appendix sections of this report.

V. SUMMARY

CHEMEQ is intended to be a general purpose integrator {for a
specific type of equations. It employs a very low-overhead, moder-
ately accurate, low-order technigque. To obtain results for most
physical models with an acceptable degree of accuracy, CHEMEQ can be
extremely efficient. In many areas where problems arc so computation-
ally expensive they seem impossible to do by other methods, CHEMEQ
gives accurate results in a reasonable amount of time. CHEMEQ can
also be employed in the development of chemical or mathematical models
when efficiency is not so important, but the user should not expect
eight figures of accuracy. Two or three figures over a long integra-
tion is a more realistic estimate. CHEMEQ's forte lies in the solu-

tion of the stiff ordinary differential cquations associated with
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chemically reactive flow problems. Here the reaction rates are split
off from the hydrodynamic part of the equations and solved separately
for each hydrodynamic timestep and at each grid point. The moderate
accuracy of the methods used to solve the hydrodynamic equations
suggest that the application of a more sophisticated tcechnique, rather
than a low-order, low-overhead method like CHEMEQ, would waste valu-
able coimputer time and could possibly render the problem so computa-
tionally inefficient that it would be impractical to pursue.

A potential user must be aware that CHEMEQ is not user-proof,
problem-independent and can not always be used as a black box. The
method is not identially conservative for arbitrarily large timesteps
when asymptotics are employed and the minimum values should be chosen
with some thought since they can become sources of spurious errors if
not chosen small enough initially.

All methods, such as the selected asymptotic integration method.
which do not conserve particle density or charge balance automati-
cally may be forced to do so by at least two techniques. In one tech-
nique, conservation can be restored by adding the various concentrations
to find the errors and then by distributing these errors throughout the
densities in a number-conserving manner. The major fault with this is
that a portion of the errors is incorporated into concentrations from
which the errors may not have arisen. The second and better method is
to reduce the frequency of the asymptotic treatment or decrease the
timestep size to the point where errors due to nonconservation are

within tolerable limits. Significant improvement in computational
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efficiency still results.

CHEMEQ is written in standard Fortran and should be easily adapt-
able to any computer that accepts Fortran. Although the present ver-
sion is written in a fashion that promotes vectorization by the ASC,
no special features of the ASC Fortran were incorporated into the code.

The storage requirements of CHEMEQ are proportional to the maxi-
mum number of equations for which storage has been reserved. For a
maximum of 25 equations CHEMEQ requires about 2000 words of memory
on the ASC.

Since CHEMEQ uses a converdence-dependent algorithm and an adap-
tive timestep, the overall timing will ke strictly problem-dependent.
It will depend on such things as the coupling between and relaxation
times of the equations. As mentioned before, most of the integration
time will be spent in the derivative function evaluations of which
there are at least two required per CHEMEQ call. At least 50 psec of
ASC CPU time are required as integrator overhead per integration step
per equation. This does not count the time required to evaluate the
derivatives.

If CHEMEQ is applied as intended, the subroutine can solve large
systems of stiff ordinary differential equations more efficiently than
methods currently available., 1In some cases, its efficiency is un-

rivaled.
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APPENDIX A

Table Al. Logical Sequence of Calls for Chemical Kinetics

Without Transport
Calculate initial conditions, control parameters, etc.

,F—)St\[t loop over timesteps:

CHEMSP Call only :o change default values
of control parameters.

CALL CHEMEQ Advance rate equations one timestep.

Print diagnostics as needed.

A4
%—-End loop on timesteps.

E&when loop over timesteps is complete.

18




Table A2. Logical Sequence of Calls for Chemical Kinetics and

Transport Combined

Calculate initial conditions, grid, control parameters, etc.

ﬁt%t loop over hydro timesteps:

IMke transport algorithm

K)Start loop over grid points:

|

CHEMSP Call only to change default values
of control parameters.
C

CHEMEQ Advance rate equations at each grid
point one hydro timestep.

L
@1100;) on grid points.

Print diagnostics as needed.

|

F—End loop on hydro timesteps.

E$when loop over hydro timesteps is complete.

19
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APPENDIX B
LISTING OF CHEMEQ

SUBROUTINE CHEFEQ(DTCHEM, DFE, M, F, FMIN)

A A A A A A AR R AR AR AR A RN AR A AR R A AR R AN KRR
CHEMEG (DTCHEM, DFE, N, F¢ FVMIMN)
ORIGINATORS: T,R, YBUNG AND J.P, BORIS NRL 1971

CESCRIPTIONY (CMWEMEQ IS A SUBROUTINE wkICH SOLVES A CLASS OF
GROINARY DIFFERENTIAL EQUATIONS TERMED STIFF, TRESE EQUATIONS
CANNCET BE READILY SOLVED BY THE STANCARD CLASSICAL METHSBLS THUS
THE SELECTED ASYMPTOTIC INTEGRATION METHOD IS EMPLOYED BY CHEMEG,
THE EGUATIONS ARE DIVICEC INTO TWO CATAGORIES BASED ON
EGUILIBRATION TIMES AND ARE INTEGRATED 8Y EITKER A LOW ORCER
CLASSICAL METHOC FOR THE EQUATIONS WHICKH HAVE LONG EGUILIERATIOM
TIMES OR A VERY STABLE STEP=CENTERED METHOL WNICH HELPS

PRESERVE THE ASYMPTOTIC MNATURE OF THE SOLUTIONS WHEN
EQUILIBRATION TIMES ARE VERY 3FORT, AN ADAPTIVE STEPSIZE IS
CHOSEN TO GIVE ACCURATE RESULYS FOR THE FASTEST CHANGING GUANTITY,
THE FOUTINE ASSUMES TWAT ALL OF THE INTEGRATEL GUANTITES ANC THE
TIME STEP ARE POSITIVE,

ARGUNMENY LIST CEFINITIONS

CTCHEY REAL® Y THE INTERVAL OF INTEGRATION OR THE 1
RANGE OF ThE INCEPENDENT VARIABLE,
0.0 < T ¢» DTCHENM,

CFE REALs4 THE NAME OF THE DERIVITIVE FUMCTION 1
EVALUATOR SUBROUTINE,
N INTEGER THE NUMBER OF EGUATIONS YO0 BE 1
INTEGRATED, AN ERROR EXISIS IF N IS
GREATER THAN NC SET BY THE PARAMETER 3
STATEMENT, K
F(N) REALwd THE INITIAL VALUES AT CALL TIME 1/0 E
ANC THE FINAL VALUES AT RETURM TIME,
FMIN(N) REAL»4 MINIMUM VALUES FOR EACH FUNCTION, I
LANGLAGE AND LIMITATIONS: ALTHOUGK THIS SUBROUTINE IS WRITTEN 1IN b

A FASWION WHICF PROMOTES VECTORIZATION BY THE ASC COMPILER, THE
FORTRAN I8 NEARLY STANCARD ANC SHOULD WORK WITH MINQR MOCIFICATw
IANS BN ANY MACKINE,

ENTRY POINTS; FOUR ENTRY POINTS ARE PROVIDED FOR FLEXIBILITY AMNC
ePTINMUM CONTROL,

CMEMEQ: ACVANCES THE EGQULATIONS THE GIVEN INCREMENT 'DTICHENMY,
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(St

S

co CHENCTT INFCRMATIVE, PRINTS THE VALLES OF THE INDICATIVE

co COUNTERS LISTED BELOW)
. ce 1. THE NUMBER OF TIMES ASYMPTOTICS WERE USED,
co 2. THE NUMBER OF DERIVATIVE FUNCTIOM EVALLATIONS,
co 3. THE NUMBER TIMES TKHE INTEGRATION STEP wWAS RESTARTEC
ce DLE T0 NONCONVERGENCE NF THE PRECICTOR«CARRECTOR
co SCHEME,
co
co CHEVSP3; PROVICES THE LSER WITF THE OPTION TO RESET TkE FMEST
co IMPCRTANY CONTROL PARAMETERS,
co
ch CHEVMPR: INFCRMATIVE, PRINTS OLT INTERNAL VARIABLES FMR CTAGNOSTIC
ce PURFOSES,
co
co SUBROUTINES REFERENCED:
cC
co CFEy WHOSE ACTUAL NAME AND CEFIMITION ARE SUPPLIED BY THRE USER
co 1S CALLED YO 0BTAIN THE DERIVITIVE FUNCTIONS,
ct

co CALL DFE(F, C, C, T)
co ARGUMENT LIST T8 CFES

ce FEN) REALaU CURREMY YALLES OF THE DEPENDENT 1
co VARIARLE,
ce CeN) RE&L =4 CALCULATEC FORMATION RATES, ¢
! ¢o LN REAL#Z CALCULATED LOSS RATES, f
cC T REALaG CURRENT YALLE OF THE INDEPENCENT 1 E
co VARTABLE, 4
co .
co CHEMYERY IS CALLED WHENEVER AN ERROR 1S DETECTED, CURRENTLY THE ]
co ONLY EFRGR RECOGNIZEC 1S A TIME STEP THAY IS TOO SMALL, [
cC
co CALL CKEMER
co ARGLVENT LIST 16 CHEMERS  NO ARGUMENTS,
co
CD!nil’aniﬂt!ii‘t!tltiittlititllailai
o
PARANETER NC ® 150
c 7
REAL#8 TS, TN 141
o 3
REAL F(N/ND/Z)s FMINEINZAL/), CIND), D(ND), RTYAUS(NE)
REAL FS(ND), DFS(NC), FC(ND), SCRA(ND), SCRE(ND), RTAL(MC)
REAL ASY(ND), COR(AND)
o
INTEGER FCOUNT, ACOLNT, RCOUNT, TFCANT, TACANT, TRCNT
c

CATA FCOUNT, ACOLNT, RCOUNT, TFCAT, TACNT, TRCNT/&#0/ ' 4




OO0 o

[a X 2]

OO0OOOOO0O000
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CATS PASYI/0,00/, TCRASY/100,0/, NCC/ND/, EPSCL/100,0/

CAT: TFC/Z41100008/, DTMIN/1,0E=15/, SQREPS/0,50/
CATh EPSMAX/10.0/, LO8/€/, EPSVMIN/1,0E=02/, C/KD40,0/

TEMPERARY FIXs SEE DO LOOP 13C § § 1§
CATA SJGNM/280000000/

CHECK INPUT PARAMETERS,
IF(M JLE,. NCD)GO TO 110
RRITECLS, 1002) N, NCD
FORMAT(S(/),' FROM «-CHEMEQs 't N8O, OF EQ,S REQUESTEC I8 voOe:,
' LARGE'/' REQUESTED (',15S,'), MAX, ALLOWED (',15,")%)
SToP

INITIALIZE TrE CONTROL PARAMETERS,
TN = 0,0C+C0
CTTARG ®» DYCHENM

STORE AND LINMIT TO 'FMIN' THE JNITIAL VALUES,

(FCI), FFMINCD))

EVALLATE THE CERIVITIVES OF THE INITIAL VALLES,
CALL DFE(F, C, O, SNGL(TN 4 TSTART):
FCOUNT s FCOUNT ¢ 1

ESTIVMATE THE IMITIAL STEPSIZE,

STRONGLY INCREASING FUNCTIONS(C »»> C ASSUMEC HERE) USE A STEPe
SIZE ESTIMATE PROPORTIGNAL TO THE STEP NEECED FOR THE FUNCTION TO
REACF EGQUILIERIUM WHERE AS FUNCTIONS CECREASING OR IN EQLILIBRILM
WSE A STEPSIZE ESTIMATE CIRECTLY PROPORTIONAL 7O THE CHARACTERw
ISTIC STEPSIZE OF THE FUNCTION, CONVERGENCE OF THE INTEGRATION
SCHEVE IS LIKELY SINCE THE SMALLEST ESTIMATE IS CHOSEN FOR THE
INITIAL STEPSIZE,

SCRTCH s §,0E=40

coe 1S I & i, N

SCRA(I) 3 1xEPSMINRABS(C(])) = C(])
SCRB(Y) 3 SIGN(1,0/F(I), SCRA(]))
SCRA(CI) & SCRB(I)«C(I)

SCRB(I) » =ABS(ABS(C(1)) = C(I))*SCRB(])
SCRA(1) 3 AMAXL(SCRA(I), SCRB(I))

SCRTCH = AMAX1(SCRAC(I), SCRTCH)
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Ut » SGREPS/SCRYCH
IF(CT LY. TCRASY)CY = SGRT(DT4TCRASY)
IF(DT .67, DTCHEM)CTY = DYCFEM

THE STARTING VALUES ARE STORED,
100 18 s TA

ASSIGN ASYMPTOTIC OR NORMAL TREATMENT FOR EACK EGQUATION AY THE
BEGINING OF EACKH STEP,
MASY B ACOLMNT

EQUATIONS WITH 700 SHORT A CHARACTERISTIC STEPSIZE ARE SELECTED
FOR ASYMPTOYIC TREATMEMT,
Co 130 1 = 1,N
RYAUCI) & CCI)/ZF (D)
FS(I) & F(I)
CFS(I) s C(I) « D(I)
SCRA(I) . RTAU(I) = TCRASY

THE FOLLOWING TWO CARDS REPLACE THE THIRD wkICH COES NOT COMPILE
PROPERLY ON AX « 5,027,139,
SCRB(I) 3 AND(SIGNNV, SCRA(I))
ASY(]) ® LS ¢+ OR(.5, SCRB(1))
C ASY(I) = .5 ¢ SIGN(.S5, SCRA(I))
CORCI) = DFS(1) « CLIX#ASY(])
RTAUSCI) ® RTAU(I)#ASY(])
130 ACOUNT = ACOUNT ¢ ASY(])
NASY ® PASYIaN = ACOUNT ¢ MASY
IF(NASY .LT. 1)66 10 101

COMPLETE THE SELECTION OF EQUATIONS FOR ASYMPTOTIC TREATMENT LP TO
YHE PERCENTAGE 'PASYI', EGUATIONS WITH THE SHORTEST CHARACTERISTIC
STEPSIZES ARE CKOSEN FIRST,
CO 20 I & 1.,NASY
RTvX s «],0E¢70
Ce 35 J & 1,N
IF(ASY(I) .6T. 0.1)60 T8 35
IF(RTMX ,GT, RTALCJ))GE TO 35
RTVX » RTALCJ)
Js$ ® J
3% CONTINUE
ASY(JS) 8 1.0
RTAUS(JS) 8 RTAU(JS)
CORCJS) 3 COR(JS) = CCJS)
20 ACOUNT = ACOUNT ¢+

C
c FINC THE PRECICTOR TERMS,

[z XX o] [a X aX ) [gXsX ! [z ¥ 2]

OO0
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THL FIRST SRCER PRENICTIGN FCR ThHE ASYMPTATIC FLACTISNS RECLLES T*
EVLER'S I'ETHEL FSR THE NEHASYMFYRTIC FLACTICLS IF "RTAL" 2 .7,
SCRR(I) 3 CFS(I)/(1,¢ ¢ DTaRTALS(I))
S CONTINLF

[aNaNe]

o0

LIMIT CFCPEASING FUKCTINNS TO THEIR MINItUY VALLELS,
e 108 1 = 1,N
SCRP(I) = FS(Y) ¢ CTaSCREB(I)
105 FC1) = AMAXI(SCREB(I), FMIN(I))
TN = 75 + CY

(gl e

EVALLATE THE CERIVITIVLS F&R THE C3RRECTER,
CALL DFE(F, C, Py, SHGL(TH ¢ TSTART))
FCAlUT 3 FCRUNT + 1
EPS = |,CFe1y
e 41 s 1,N

STEP CENTEREC CARRECTOR FOR THE ASYMPTSTIC FLACTIANS PEDLCES T4
THE MOCIFIEC ELLER METEOC FAR TE LOKAYSMPTATIC FLHCTIZNS,
SCRE(I) = ASY(I)*D(I)
RTAU(I) = SERB(II/F(I)
4 SCER(T) = (COR(I) + C(I) + (SCRA(I) = (I
/ (2,0 ¢ ,SaCTA(RTAL(I) + FTAUSCI

(gl aNel

M)
) \ . M
CALCLLATC NEW F, CHECK FOR CANVERGENCE, ANC LIMIT DFCRCASING
: FUNCTIANS, THE ®RDER “F THE GPFERATISNS I ThIS LMOP IS IMPERTANT,
- LA 6 1 = 1,n

SCRP(I) s AMAXI(FS(I) « CTaSCRECI), 3.0)

SCRA(I) = ABS(SCRR(I) = F(I))

F(I) 3 AMAXI(SCRE(I), FMI'(I))

SCFA(I) = SCRA(II/F(I)

[aNaXe]

(g a]

SCALE FELATIVE ERROR PeRuwh wkEh C & N ARF MLARLY CSUAL,
SCRR(I) 5 APSCC(I) = C(IN)/(CCI) ¢ O(I) ¢+ t1.0F=3)
SCFR(I) = AYINI(SCRB(I), SCRA(I))

SCRA(I) & SCPA(I) + SCRB(T)

REMAVE FCLATIVE ERRGR CANTRIQUTION IF FL.CTIAN VALJF IS LESS Tran
TRE FINTUl vALLE,
SCHRP(TI) = ,25+(FS(I) ¢ F(I1)) = FMIN(D)
SCRP(I) 3 ,25 + SIGN(.25, SCPRR(I))
SCRA(I) 2 SCNE(I)aSCKA(L)
¢ EPS = AMAX](SCRA(I), EPS)
EPS = EPS=LPSCL

[aEaX el
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c PRINT OUT CIANCSTICS IF STEPSIZ2E BECOMES T00 SMALL,
IF(DT .67, CTMIN + 1,0E=162TN)GO TC 40
RRITECLO, 1003) DT, TN, CTNMIN
Co 25 L s 1,N
CFC = CCLY = D(L)
CTC » EPSMINAF(L)/(ABS(CMD) + 1,0E~30)
as RRITECLO, 1004) CCL), DCL), F(L), RTAU(L), C¥C, CYC, CFS(L),
. FSCL), FOCLY, FMIN(L)
1003 FORMAT('} CHEVEG ERRORy STEPSIZE 700 SMALL | | 'y /o

1 ' DY = ', {PE10.3, ' TN 3 ', D25.15,

2 ' CTMIMN B ',E10,3, 7/, 14X, 'CY, 9%, 'C', 99X, 'F!, &X, 'RTAL',

3 £x, 'C « D DTC CFS', 8%, 'F8+, 8%, 'FO FMIN®)
1004 FORMAT(SX, 1P12E10,3)

CT = OTQFEK = T8
CY = AMINMI(DTMIN, ABS(CT))

C
c CALL ERRGR DJAGMNOSTIC ROLTINE
CALL CHEMER
C
c CHMECK FOR COMVERGENCE,
40 IFCEPS .G, EPSMAX)GE TO 30
c
c END CMECK.
CTTARG = DICHEM = TNaTFD
IF(DTTARG .GT, 0,0)G8 T8 1¢
RETURN
c
¢ PERFORM STEPSIZE MODIFICATIONS,
30 FCOUNT = RCOUNT 4+ 1
IN 8 TS
c
c ESTIVMATE SQRT(EPS) BY NEWTON ITERATION,
10 FTEPS B ,S#(EPS + 1.0)
Ce S0 J 3 {,2
50 RTEPS & ,S5+(RTEPS ¢+ EPS/RTEPS)
CT s DT»(3,0/RTEPS ¢ ,005)
CYT a AMINI(CT, SNGLC(TFCa(DTCHENM » TN)))
c
c BEGIN NEw STEP IF PREVIOLS STEP COMVERGED,
IF(EPS .GT, EPSMAX)GO 108 1¢1t
CALL DFE(F, C, Dy SNGL(TN ¢ TS8TART))
FCOUNT » FCOUNT ¢+ |
GO0 Y0 to¢
c
c
ENTRY CMEMCT (TMK)
c
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co CHEMCT (TMK)
co WRITE OUT THE VALUES OF THE VARIOUS INCICATIVE COUNTERS THAT THE
co PROGRAN¥ KEEPRS,

co

co ARGLMENT LIST CEFINITIONG

co T™K REAL»4 A FLOATING POINT NUMBER PRINTED !
Cg TO IDENTIFY THE CALL,

C

co SUTPLT VARIABLE DEFINITIONS

co TK REALAA FLOATING POINTY IDENTIFIER,

co FCOUNTY INTEGER NUMBER OF DERIVATIVE SUBROUTINE CALLS
co SINCE THE LAST CALL.

co ACOUMT INTEGER NUVBER OF TIMES THE ASYMPTOTIC TREAT-
co MEMNT WAS USEC SINCE THE LAST CALL,

co RCOUNTY INTEGER NUMBER OF TIMES STEPSIZE WAS REDUCEC
co SINCE LASY CALL,

o} TFCMT INTEGER TOTAL OF FCOUNT TO THIS CALL,

co TACMT INTEGER TOYAL OF ACOUNT TO THIS CALL,

co TRCMT INTEGEFR TOTAL OF RCOUNT TO YHIS CALL,

co

COR & A % A & & X 4 A & & % % 2 & A A K & A A A A A N & N AR AR AR
c

TFCNT & TFONT ¢ FCOUNT

TACNT & TACNT ¢ ACOUNY

TRCNT 3 TRCAT + RCOUNT

c
c PRINT OUT INCICATIVE COUNTERS,
RRITECLG, 1000) TMKk, FCOUNT, ACOUNT, RCOUNT, TFCNT, TACNT,
. TRCNTY
1000 FORMAT(' CFEMEQ INCICESs TMK = ', {PE10.3,
o ' FCOUNT, ACOUNT, RCOUMNT = *, 317, ' TOTALSSY ', 3IT)
c
c RESET COUNTERS,
FCOUNT 8 ©
ACOUNT = 0
RCOUNT = 0
RETURN
C
c
ENTRY CHEMSP(EPSMN, EPSMX, DTMN, TNOT, PASY, TASY, PRT)
c

COm n 2 2 2 2 &4 % 2 2 A % A & A & & 4 %A & A A A A & % & K A A K A & A A

co CHEMSP(EPSMM, EPSMX, DTMN, TNOT, PASY, TASY, PRT)
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ce RESET ANY LOCAL CONTROL PARAMETERS IF THEIR RESPECTIVE INPUTY
co VALUES ARE GREATER Tran ZERE, CEFAULT VALUES ARE USEC IF THE
co INPUT VALUES ARE 2ERO0 uR LESS REPECTIVELY,

co

co ARGUPENT LIST CEFINITIONG

co EPSKA REALsY THE MAXIMUM RELATIVE ERROR ALLOWED 1
co FAOR CONVERGENCE OF ThE CORRECTOR STEP,
co CEFAULT vALLEDT 1,0Ee02

co ERPINMX REAL#4 THIS NUMBER PRQVICES THE BASIS FQR 1
ch DECIDING WEATHER COAVERGENCE CAN BE

co ACFIEVED W TH OUT ADDED STEPSILE

co RECUCTION, IF EPS/EPSMIMN 1S GREATER

co THAN EPSKX FURTHER REDUCTION IS

co APFLIEC.

co CEFAULT VALUE § 10,0

co DYMN REALwY THE SMALLESY STEPSI2E ALLOWEC, I
co CEFAULT VvALUETL 1,0E«1S

co INOT REALw4 THE INITIAL VALUE OF THE INCEPENDENT 1
co VARTABLE T,

co DEFAULT vALUEY 0,0

€0 PASY REAL®4 THE PERCENTAGE OF THE EQUATIONS FOR I
co WRICK ASYMPTOTICS WILL ALwAYS BE

co APPLIED. EGUATIONS WITH THWE SVALLESY
cb CHARACTERISTIC STEPSIZ2E ARE ChOSEN

€D FIRST,

co TASY REALNY ASYMPTRTICS ARE APPLIED IF THE CHARe [
co ACTERISTIC SYEPSIZE OF AN EQUATION 18
co LESS TrAN TaSY,

co REFAULT VALUET 1,0E-02,

co PRY REAL«d CONTROLS THWE ALTPLT OF CHEMSR, ANY I
co NON ZERO VALUE SUPPRESSES ALL PRINT

o SUTPUT FROM THIS ENTRY,

co

COMA & & % 2 4 A % & 4 A & & &8 A A & 2 & & R & & & & % A & & & % A & 22
C

EPSMIN 2 1,0E=02

IFCEPSMN ,GT, 0,0)EPSMIN a EPSMN

1F (EPSMN .GT, 0,0)SQREPS = §,0#SGRTCEPSFIN)
EPSCL & 1.C/EPSMIN

EPS¥AX » 19,0

, IFCEPSMX .GT, 0,0)EPSMAX & EPSMHX

- CIMIN & 1,CE=1S

IF(CTMN ,GT, 0,0)DTMIN = DTN

TSTART 2 ThOT

PASYI ® 0.¢

IF(PASY .GT, 0,0)PASYI = C1a(PASY + ,5)
TCRASY = 100,0
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IF(TASY .GT. 0,0)TCRASY = 1,0/TASY

o PRINMT NEW VALUES OF CONTROL PARAMETERS,
IF(PRT ,EG, 0.0)
. WRITE(LOG, 1001) EPSMN, EPSMX, CTKN, TNOT, PASY, TASY
1001 FORMAT(' INITALIZE "CHEMEG™ VIA "CHEMSP"', /,
. ' EPSMN, EPSHMX, CTMN, TNOT, PASY, TASY = ', {P6G10,3)

RETURN
ENTRY CHEMPR
C
COR a2 &2 2 & &4 % 2 2 % %2 2 4 & & & A & A & & A K K & & & 2 A & A AR R
co

co CHEMPR MAY 9. CALLED WrREN EVER AN ERROR QCCLRS ThAT CAN BE
co ATTRIBLTED TC THE RESULTS OF CHEMEG, 4 PARTIAL SET OF THE INTERMAL
Cg VARIABLES IS PRINTED AS A CIAGNOSTIC,
c
COM A A 2 A 2 & & 2 A R A 2 &4 2 & & 4 & 2 & & & 2 % & A & A A A X & 0 #
c
MRITECLOS, 1003) DT, TN, CTTESTY
Co 45 L & ,N
CrC s C(L) = D(L)
ETC = EPSMINAF(L)/(ABS(CMD)} ¢ 1.0E=-30)
4s MRITE(LO, 1004) CCL), C(L)y FCL), RYAU(L), CMC, DTC, CFS(L),
. FSCL), FOCLY, FMIN(L)

RETURN
END
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LISTING OF CHEMER

SUBRCUTINE CHEVMER

3 c
] c CIAGNGSTIC ROUTINE FOR STIFF 0,C,E. SOLVER <CHEMEQe
¢
FRINT l0Ct
1001 FORMAT(S(/), * LIBRARY VERSION OF =CHEMERe CALLEC,', /,
o * (SERS ¥AY SUPPLY THEIR OmM VERSION FOR CIAGNOSTICS,', /»
o ' N0 ARGLMENTS ARE REQLIREC,.,', 7/,
. ' PROGRANM hILL CONTIMUE RESETTING THE STEP SIZE 1@ MINe', /,
o TIMUMS IF 4 NORMAL RETLRN 1S MADE,', 7/,
. t (STOP €9) EXECUTED FROM LIBRARY VERSION OF «CHEMERe!)
C
STOP 69
3 END

-

- —~—~——
v
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These subroutines may be punched onto cards directly from

the program listing. On computers other than the TI ASC the PARAMETER
statement sould be removed and occurrences of ND in the declarations
should be replaced by a fixed point number at least as large as the
largest set of equations to be integrated. This subroutine should be
complied on the K level optimization on the ASC unless the number of
equations exvected is small. Then the J level compilation will give
the most efficient code. No other compilation options are required

on the ASC.
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Table Bl. Mnemonic Correspondence of Mathematical Variables and

Fortran Notation in CHEMEQ

Variable Type Specification

D -~ DOUBLE PRECISION (Floating Point)

‘ I -~ INTEGER (Standard length) :
L -~ LOGICAL (Standard length) :
R ~ SINGLE PRECISION (Floating Point) :

Variable Origin
A - Argument

C - Cormon

L - Local

Subscripts indicate the variable is an array.

Entries and Arguments Purpose
CHEMEQ (DTCHEM, DFE,N,F,FMIN) Advance the rate equations the

specified interval.
CHEMCT (T) Print out indicative counters.

i CHEMSP (EPSMN, EPSMX, DTMN, TNOT,PASS, Change default values of control

TASS,PRT) parameters as required.
CHEMPR Print partial set of internal
variables.
Subroutines Referenced and Purpose
Arguments
DFE(F, C, D, T) Derivative Functions Evaluator
CHEMER This routine is called when the

timestep becomes too small. Default
version should be replaced by the
users version to provide diagnostics
if error is persistent.
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Fortran Mathematical
variable Type/Origin Variable
ACOUNT 1/L Index
ASY (1) R/L Logical
c(1) R/L Qi
CMD R/L Q.-L n,
i i
COR(I) R/L Multiple Usage
D(I) R/L L.n
i1
DFS(I) R/L Q.-L.n
i il
DT R/L St
DTC R/L St
DTCHEM R/A Ost= tchem
DTMIN R/L St
min
DTMN R/A st .
min
DTTARG R/L st -
chem
DTTEST R/L st .,
min
EPS R/L Max(oi)
EPSCL R/L /¢ .
min

32

Comments

Counter; records the number
times asymptotics were
employed.

Records the location of the
equations selected for asymp-
totic treatment.

Current formation rates.

Current total rate (inter-
mediate variable for printing).

Temporary storage array.
Current loss rates.

Total rate saved from the
beginning of the step.

Current timestep.

Timestep suitable for stabi-
lity estimate (intermediate
variable for printing)

Range of the independent
variable t.

Minimum timestep allowed
Default value; 1.0E-15)

Minimum timestep. Replaces
DTMIN if DTMN > 0.

Intermediate variable used
for end check.

Intermediate variable used to
check DT for minimum value.

The maximum value of the rela-
tive error. Used to check
for convergence.

Intermediate variable used to
avoid repeated divisions.

NI s i3 e mingins g
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Fortran Mathematical

Variable Type/Origin Variable

EPSMAX R/L € VAN
max’ min
EPSMIN R/L & .
min
EPSMN R/A S
min
EPSMX R/A e VAR
max il
F{I R/A .
(I /S nl
FO(I) R/L ni(O)
FCOUNT /L Index
FMIN (1) R/A n,, .
i{min)
FS(1) R/L ni(O)
1 I/L Index
J I/L Index
Js 1/L Index
L /L Index
LO /0
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Comments

If EPS is larger than this
value the step is restarted.
(Default value; 10.)

The convergence criterion.
DT for following step will be

scaled proportional to EPSMIN/

EPS. (Default value; .01)

The convergence criterion.
Replaces EPSMIN if EPSMN > O.

Step restart criterion.
Replaces EPSMAX if EPSMX > 0.

The current values of the
solution to the set of equa-
tions being integrated.

Initial values at to'

Counter, records the number
derivative function calls.

Minimum values for each
equation.

The values of the solution
saved from the beginning of
the current step.

Subscript counter.

20 loop subscript.

Save location for specific J.
DO loop subscript.

Numerical value for the

logical unit for the printed
output.




Fortran Mathematical
Variable Type/Origin Variable
N I/A
NASY I/L
ND I/L Constant
NDD I/L
PASY R/A O<PASY <100
PASYI R/L %
PRT R/A
RCOUNT 1/L Index
RTAU(I) R/L Li
RTAUS(I) R/L Li
RTEPS R/L "Max(o,)/€ .

1 min
RTMX R/L L,

. i max

SCRA(I) R/L Multiple usage
SCRB(1) R/L Multiple usage
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Comments

The number of equations to be
advanced.

Intermediate used in the asymp-
totic selection process.

Array size specification set
by the PARAMETER Statement.
This is an ASC Fortran feature.

Storage location for ND.
is ASC specific Fortran.

This

Percentage of equations to be
treated by asymptotics. Re-
place PASYI if PASY > O.

The percentage value of the
set of equations that will
always be selected for asymp-
totics. (Default value; 0.)

Print control parameter. If
non-zero printer output from
entry CHEMSP sill be suppres-
sed.

Counter, records the number
of times integration process
had to be restarted due to
non-~-convergence.

The reciprocals of the charac-
teristic times.

The reciprocals of the charac-
teristic times saved from the
beginning of the current step.

Used to estimate new time-
steps.

Intermediate variable used to
store the maximum value from
RTAUS.

Temporary storade array.

Temporary storage array.




Fortran
Variable

Type/Origin

Mathematical
Variable Comments

SCREPS

SCRTCH

TACNT

TASY

TCRASY

TFCNT

TN

TNOT

TRCNT

R/L

R/L

/L

R/A

R/L

/L

R/L

D/L

R/A

1/L

Ve . Square Root of EPSMIN.
min
Intermediate variable used to
estimate the initial timestep.

Index Counter total. Records the
total each time ACOUNT is set
to zero.

PTG

T Asymptotic treatment selection
criterion. Replaces TCRASY
if TASY > 0.

T Asymptotic treatment selection
criterion. This parameter is
problem-dependent and the value
should be proportional to the
overall characteristic time-
step of the system of equations
being solved. (Default value;
0.1. This value is often suit-
able for high altitude atmo-
spherical and many combustion
problems.) Often it is useful
to vary this parameter as the
solution progresses.

Index Counter total. Records the
total each time FCOUNT is set
to zero.

Round~off parameter. Should
have a 5 in the last signifi-
cant figure for single preci-
sion floating point words.

t Current value of the indepen-
dent variable t.

t Initial value of the indepen-
dent variable t. Replaces
TSTART if TNOT > 0.

Counter total. Records the
total each time RCOUNT is set
to zero.
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Fortran Mathematical
Variable Type/Origin Variable Comments

TS D/L t The value of the independent
variable t saved from the
beginning of the current step.

TSTART R/L t Initial value of the indepen-—
© dent variable t. (Default
value; 0)
TMK R/A Floating point number (typically

the value of Time) printed to
identify the call to CHEMCT.
APPENDIX C
This example involves the integration of seven rate equations
which describe the time evolution of an atmospheric chemical relaxa-

tion test problem with cesium and cesium ions. This particular set of

rate equations which was originally suggested by D. Edelson of Bell
Laboratories is considered stiff and not well suited for numerical
integration by classical methods.

The sample program listed in this section is designed to deter-

mine the efficiency of various stiff ordinary differential equation

solvers on this test problem. In this example CHEMEQ is used. Effi-

ciency is determined by comparing the results at the end of the inte-
gration interval with known values and the computer time required to

obtain these results or various values of the convergence parameter

EPS.
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Table Cl. A List of the Seven Species Together with Their
Initial and Accepted Final Concentrations for the

Test Problem

Number Densities

- Initial Final
i Species yi, cm”™ yi, cm”™
1 e~ 1.0 x 102 4.9657897283 x 10%
2 0y 5.2 x 102 2.5913949444 x 10"
3 cst 6.2 x 102 7.5571846728 x 10"
4 Cs 1.0 x 1012 1.5319405460 x 103
5  CsOy 0 1.000 x 10%?
6 Ny 1.4 x10'5  1.400 x 10!°
7 0y 3.6 x 10'*  3.500 x 10!%

Table C2. A List of the Seven Reactions and Reaction Rates
Through which the Seven Species of the Test

Problem Interact

Rate constant or

. No. Reaction frequency

1 05" + Cst > Cs + 0y 5 x 1079 cm3,s'1

) 2 Ccst + e~ > Cs + hv 1 x 10712 cm? g1
3 Cs + hv > Cs*t + e~ 3.24 x 10-3 g-!
4 05~ + hv > Oy + e~ 4 x 101! g-1
5a O, + Cs + M » CsOy + M 1 x 1073 cmb® 57!
6 Oy + e~ + 0y » 03~ + 03 1.24 x 10-30 cmb g-!
7 O, + e + N, + 0,7 + N, 1 x 10731 cn® s-1

a - - - - - -
M= [Cs]+ umon+ WZJ+ m2$

In the following listing TACSR is the main program which provides

the logic and overall control. 1Initialization and output of results

takes place here. CSDFE is the derivative function ecvaluator for the

text problem. Results for nine values of the convergence parameter

EPS are printed at the end of the section.

37




[g) [ BN o ] (2] OO0

c
1000

OO OONOMNOON

1001

1002
1003

1004
1005

1006
1007

PROGRAF TACSF

THIS 1§ THE EXECUTIVE PROGRAN THAT PROVIDES THE LOGIC NESSICARY

T€ ACVANCE A REACTIVE SEVEM SPECIES TEST PROBLEM FOR AN EVALUATION
OF THE INTEGRATION METHOC FOR VARIOUS VALUES OF THE CONVERGENCE
PARAMETER, IN THIS EXAMPLE "CHEMEQG® WILL BE EMPLOYEC,

PROGRANF SPECIFICATIONS,

REAL»28 CSEC

REAL Y(10), YF(10), YMINCIO), YI(10), EPSILC10), EPS(1S)

INTEGER SF8YM(10)

EXTERNAL CSCFE

CATA YFIN/10n} ,0E=04/, MXCASE/S/

CATA SPSYM/102e', LS+, 'CS', 'C802', '02', 'N2', 'NEY/

CATA EPS/.1, .05, .01, .005, ,00)}, ,0005, ,0001, ,00Q0S5,
«C0001/

FORMAT('ICASE NO, ', 15, ! PARAMETERS)', /,

' CONVERGENCE PARAMETER EPS = ', 1PEL0,3, /,

' INNER LOGP LENGTK}', IS)

FORMAT(/, ! SPECIE Y = INITAL Y = FINAL Y,

' Y » SELLTION REL ERR')

FORMAT(SX, Ad, I1P3E1S.6, E10,.3)

FORMAT(/, ' T « INITIAL 8 (', 1PE10,3, ') T « FINAL = (',
Elﬂ.lc 'J')

FORMAT(/' INTEGRATION STATISTICS)')

FORMAT(!' CPU TIME LSED FOR INTEGRATION', 1PE10.3,

' SEC,, CFU TIME NORMALIZEC}', £10.3)

FORMAT (i SLM OF THE RELATIVE ERRORS SOUARED) ', 1PE1C,.3)
FORMAT(/)

INITIALIZE CONTROL PARAMETERS,

"TSCALE" I3 4 NORMILIZATION FACTOR USED 76 COMPARE EFFICIENCY OF
INTEGRATION COCES FROM DIFFERENT COMPUTER INSTALATIONS, “TSCALE"
FMAY BPE CETERMINED BY TIMING A TEST CODE ON ALL INSTALATICMNS
INVOLVED,

TSCALE » 1,0

SETY INhER LOCP LENGTKH, SEE COMMENTS BELOW FOBR DEFINITION,
INLP & |
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[aXaN ol g) o0 oOn

o0

SET THE TOTAL AUMBER OF SPECIES "NS"™ ANMD THE NUMBER T6 BE
INTEGRATED “AA",

NS 8 7

NA 8 S

"TI"™ - INITIAL TINE, "TF™ = FINAL TIME,
11 = 0,0
TF s 100¢,¢C
CELTAT » (T1F =« TI)/INLP

STORE INITIALCTI ® 0,0) AND FINALCTF = 3000,0) VALUES,
G2e

Sec00E+0E
€eS9139492061D404

- €
N -
Ll ol
-
W W
[}

CS¢
8 6.c00E¢0¢2
7.557184603000404

€ -
W -
- re
"
Sl Wt
L]

cs _

& 1.,000E+412
1,531940517220403

- €
viee
[a X Y
W L
t
]

cse2
YI(4)
YI(a)
YF(4)

1.000E=30
1.,000E+04
§.9999992351¢60+¢1 ¢

02 _
8 3,600E+34
2.59000000051D+14

-
N e
lal el
(VX7 1
e G
]

N2
YI(6) 8 J,4C0E+1S
YF(6) ® 1,40000000000D415

NE
YI(7) & $.000E+02
YF(7) ® 4,9657896823650+04

LBOP OVER THE TESY CASES,
CO 30 JCASE 3 1,MXCASE
PRINT 1000, JCASE, EPS(ICASE), IMLP
CALL CHENMSP(EPS(ICASE), 0ay 04y TI, 0., 10.0, 0,)
CPLT = 0,0
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35

10

2s

15

30

RESET "Y" T8 IMITIAL VALLES "YI",
L6 35 I s 1,NS
Y1) = YI(])

SET TIMER,
CALL SECENC(1, DSEC)

INNER LOOP TC CETERMINE OVERMEAC OR RELATIVE STARTING EFFECIENCY
OF ITEGRATION SCHEME BEING TESTED,
Co S ISTEP & 1,INLP

CALL INTEGRATGOR,
CALL CHEFEG(DELYAT, CSCFE, NA, Y, YMIN)
CONTINUE

CALCLLAYE CPL TIME USEC IN THE INTEGRATION PROCESS,
CALL SECONC (O, DSEC)
CPLY s CPUT + DSEC
INCAM 3 CPLT/TSCALE

RESEY ELECTREN CENSITY,
Y(7) = ¥(2) = Y(1)

CALCLLATE RELATIVE ERROR,
Ce 10 18 §,NS
EPSILCI) ® ABS(Y(I) « YF(I))I/ZAMINI(Y(I) o YF(I))
Sur 8 0,0
Cé 25 I & 1,NS
SUM 8 SUF 4 EPSIL(I)n#2

PRINT RESULTS.
PRINT $0¢3, T1, TF
PRINT 1001
o 1S 1 .8 J,N8
PRINT 1062, SPSYM(I), YI(1), YF(I), Y(I), EPSIL(ID)
PRINT 1004
PRINT 3006, SUM
PRINT 100S, CPUT, TNORM
PRINT $0¢?
CALL CHEFCTI(TF)
CONTINUE
$T0P 69

END
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SUBRGUTINE CSCFE(CY, C4 Dy, T)

CC % 2 & 2 & & & & & 2 % & & & % A A4 & & & & % X & & & 2 & & A 4 R ¥ F g

CSOFEc¢Y, C, L, T

CESCRIPTIONG

CERIVATIVE FUNCTION EVALUATOR(CFE) FOR Ah ATMOSPHERIC CHEMICAL
RELAXATION TESY PROBLEM INVOLVING CESILM AND CESILM JONS, FORMATa
JON ANC LOSS RATES ARE CALCULATED FOR TRIS SEY OF "STIFF GROINARY
CIFFERENTIAL EGUATIONS® THAT WAS SUGGESTED BY BY P, EDELSON OF
BELL LABORATCRIES,

ARGUVMENT LIST CEFINITIONSS

Y1) Rad CURRENT VALUES OF THE FUNCTIONS PLUS TkE 1s8
EXTRA CATA AT THE END OF THE ARRAY THAT MAY BE
PASSED BACK ANC FORTh BETWEEN "CSOFE™ AND THE
MAIN PROGRAM, LOCATIONS IN Y(1) WHICH REPRESEANT
THE FUNCTIONS BEING ADVANCEC SHOULD NOT BE
TAFPERED WITH HERE,

ctl) Rad TOTAL FORMATION RATES, 1
ced Red TOTAL LOSS RATES, 1
1 Ral THE YALUE 6F THE INDEPENDENT VARJABLE, 1

CO % & 2 2 &4 2 % 2 24 & & R & & * £ 4 & & & ¥ & & &2 & A & 2 A & & % & & 2

LOCAL SPECIFICATIONS,

L A 2RI A 2 s AR d)

REAL NE, N2
REAL Y(1), C(1), O(1)
UTILI2E LOCAL STORAGE FOR VARIBLES.
ger ® Y(1)
CSP s Y(2)
s = Y(Y)
C802 = v (4)
ee ’Y(S)
LY B Y(6)

CALCLLATE ELECTRON DENSITY FOR LOCAL USE ANC TRANSMISSION BACK YO
THE MAIN PROGRAM VIA Y(7), HOWEVER IN THIS CASE THIS VALLE SHOULC
NOT EE TRUSTED SINCE “CHEMGE™ WILL NOT CALL THE "DFE"™ WITk THE
LATEST FUNCTION VALUES AFTER THE FINAL STEP HAS CONVERGEC, Y(T)
WILL BE ONE ITERATION BEFIND IN THIS CASE, Y(?7) AND Y(&) ARE
EXAMPLES THS, OF HOW DATA MAY BE TRANSFEREC BETWEEN THE "CFE" AND
TNE MAIN PROGRAM,

NE & AMAXI(CSP « B2M, 0,0)
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Y(7) = NE

¢ c CALCLLATE REACTION RATES,
CR1 ® S5,00E«082a02MaCSP
CR2 1,C0E=124CSPsNE
CR3 3.64E=032CS
CR4 4,00E«08202M
CRS 1,00E=31a024C82(CS ¢ C502 + N2 + 02)
CRE 8 1,.EUE=305024024aNE
CR? 1.,COE=31a022aN2ANE

CALCLLAYE TOTAL FORMATION RATES (C(I)) AND TOTAL LOSS RATES (D(I))
FOR EACK SPECIES,

gev

o000

) & CR6 ¢+ CR?
) = CR1 ¢ CR4

o0

CSe
) » CR3
) » CR1 ¢+ CR2

o0
22 2}
~ .
VR V]

cs
s CR1 ¢ CR2
CR3 ¢ CRS

/
o0
~
Led Ll
—
a

cs02
Cety4) = CRS

[gN o] [aX o]

02

C(5) s CR1
L(S) = CRS

RETURN

CRY
CR6 ¢ CR?

> &
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