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ANALYSIS OF THE SINGLE-SERVER QUEUE WITH UNIFORMLY LIMITED
ACTUAL WAITING TIMES BY THE USE OF REGENERATIVE PROCESSES
AND ANALYTICAL METHODS.

Do Le Minh,
Department of Mathematical Sciences,
Clemson University,

Clemson, SC 29631, U.S.A.

ABSTRACT:

This paper studies the single-server queueing system in which no
customer has to wait for a duration longer than a constant XK. Using
analytical method together with the property that the gqueueing
process 'starts anew'’ probabilistically whenever an arriving
customer initiates a busy period, we obtain various transient and

stationary solutions for the system.
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SHORT TITLE: QUEUE WITH LIMITED ACTUAL WAITING TIMES.




1. Introduction.

In the single-server queueing model studied here, no customer
has to wait for a duration longer than a constant K. If this time
exceeds K, the service time of the previous customer will be
so much shortened as to make it equal to K.

Cohen [8] has obtained several results for this model in which
the inter-arrival times and service times have rational Laplace-
Stieljes transforms. In this paper, we shall make no specific
distributional assumptions for the random variables underlying
the model. Stationary results for a slightly different model
in which the customers leave impatiently have been obtained by
Daley (11] (See also [1], [2], (31, (41, [51, (61, (131, [14],
(lel, ([20]).

The key to our analysis of the system is that many of its

processes are regenerative; that is, they restart probabilistically

whenever a customer initiates a busy period. Regenerative processes
in this sense were introduced by Smith [22,23] and have been used

by many authors to study the stationary behaviour of many queueing
systems (See, for example, [7), [9], [l0], [17]1, (21), (24]). By
using regenerative processes along with analytical methods in this
paper, we shall show that not only the stationary behaviour of the
system can be studied but its transient characteristics can also

be obtained. These methods also give us insight into the probabilis-

tic structure of the system (See also [18].) 1In Section 3, the

mathematical description of the transient behaviour of the system
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is obtained from its behaviour within a busy cycle. In Section 4,

the mathematical description of its stationary behaviour is also

obtained from its behaviour within a busy cycle. The behaviour

of the system within a busy cycle and the stochastic laws for the

o busy cycle are then studied in Section 5. In Section 6, due to
the special structure of the M/G/l gueue, we shall obtain explicit

results for the stochastic laws for the busy cycle in this system.

f
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2. The formal model and notation.

We are given
(D.1) a real, positive number K ;
(D.2) an integer-valued, non-negative randcm variable Ty efgo}<”;
(D.3) a real, non-negative random variable w,, Piw. <K } = 1;
{(D.4) Two independent seguences of independent and identically
distributed, real, positive random variables {gf,.k> 1} and
:§k’ k> 1. We assume that each of s, and £, has a fipnite first
moment.

By 1s the number of customers in the system at time t=0-

and w, is the virtual waiting time at time t=0-. Let customers
(my*l), (my+2), ..., Kk ,.... arrive at the time epochs Imo+ 1’
=0

Im + 27 ++*r I+ -+ where 0 = 7. 1 S Imoag S I < oee
=0 -0 -0

- -z = £ 1 kem,.
Let Ikl Ik &, + for ali k My

th

Let the assigned service time of the k customer be §k.This

th ___ . . . . ‘
13 customer will owtain fyll service if the (k+l)th customer arrives

at the moment at which the work still to be handled by the server

is less than K; 1f it exceeds K, then we have %to cut short the

service time of the kth customer to make the waiting time of the
(k*l)th customer eqgual to K. The decision to shorten the service time
of the kthcustomer is taken at the moment of arrival of the (k+l)th
customer.

Ne write
(5.31 +'zy = giexp(-28;)’ for Re(z) > 0:
(D.6) iz) = E:eXP"ZEl)} for Re(z) > 0.

The customers are served in order of their arrivals

limiz <n =he size <f the walting room.

RSO
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(D.7)

(D.8)

(D.9)

(D.10)
(D.1L)
(D.12)
(D.13)
{ (b.14)
(D.15)
(D.16)

‘D.17)

(D-19)

{D.20)

I-ﬁ--uun=========a:-lIl-------..-.ih_-..r .

Besides g’ we want to study the following random variables:

w, = the actual waiting time of the k5? customer (k>go),

= mi w5, -t 17, B
min(lw 1 *Sg 171! © K

[
(]
z
[

R +

[}

where [x]+ = max(x,0);

1%
]

- limit in distribution of W when k=, 1f this exists;

ik = the lost service time of the kth customer (k>m7),
i.e. '_2._k = max(gk+§k-1:_k,£<) - K
= K - K - ;
max (W +Sy o B+E) % '
4, = limit in distribution of &k when k-», if this exists;

B, < the duration of the initial busy period:

o
2, = the duration of the v busy period, v 2;
gl = the duration of the first idle pericd;

i, = the duration of the v“h idle period, vz 2:

(]

€, =By * i, = the duration of the initial busy cvcl
th

.
’

¢, =2, * i, = the duration of the v busv cvcle, vz 2;

2, = the number of customers served during the initial busy
period, including the m, customers in the system at
time t=0-;

n, = the number of customers served during the T busy pericd,
v 2;

v(t) = the virtual walting time at time t, t2 J,

i.e. v(t) = 1, + min(w+s, KL ) - ¢ for T, <t<I. .y

7(») = limit in distribution of (&) when %-w, i1I this

-(t) = the total number of customers arrivving during

interval [0,t], including the m. customers 1n

system 3t time ==0-;




(D.22) a(t) = the time difference between t and the time of the first

The results will be expressed in the following forms:

We shall

transforms:

arrival during the interval (&,=).

e - T® .k - " - = % = b
w(Eeso2) = lk=m+l‘ £{exp( £y zyk)lgo-m,io W )

for 0<|xi{<l, Re(5)30, 'z{<=, m30, w20;
(x,5,2) = o g {exp (=57, 22, ) | m.=m, W =w)

rS k=m+1 bl & =X =k I~_0 !__0 5
for 0<|x|<l, Re(Z)20, Re(z)20, m20, w20;

(t)

w'Xr6r2,8) = f exp (-5t)E{x= exp(-zv(t)=-sa(t)),
0

my=
for 0<|x|<l,Re(g)20,Re(z)20,Re(s)20, m20, w30;

21
w (¥r8,-2) = E{x Texp(~fc +zi)) m =m, W =w;

for 0<|x|g<l, Re(£)20, Re(z)g0, m20, w30;

glexp(-2w )’ for |z <» ;

]

Elexp(-24 ) for Re(z)20 ;

]

Elexp(-zv (=)} for Rel(z)>0

need the following intermediate Laplace-Stieles
n

f~=1 <

X,3,2) = B4 x"exp (=57, ~2W. M=, W.=W "
r502) =1 -k=m+l P(=3 72w, ) ByTmH, .

for 0< xigl, Re(3)z0, =z2'<»=, m>0, w20;

5 x
) Texp (=%, =2).) WM.=m,W
lg=m+l X SXP (=33 Zx’ e

B o

(x'i-,lz) = E{

for O0< xigl, Re(2);0, Re(2)20, m20, w>Q;

. c .
- =1 (¢t - ; ' 3
w(x';,z,s) = By x4( )exp(-;t—:z(t)—sgﬁz)}at Wy=M, W =W L%

-

for 0< x'gl, Re!(Z)»0,Re(z2)20,2e(s):0, a0, w>0;



(\.'

o
. == o mat v =
(D.33) Pm'w(x, ,8) = E.xX “exp/( 23 sil) My=M, =W -
for 0< x.¢l, Re(:z):0, Rels) >0, m>0, w3x0.

It is important to point out here that there are two tvpes
of busy periods which Cohen [ 8 ,p.284] calls strong and weak busy

periods. While two consecutive strong busy periods are separated

SOYNCTRY

with probability one by an idle period of non-zero duration; a weak

RN

busy period may be followed by an idle period of zero duration.

th . .
)‘- customer arrives at the instant

In other words, if the (k+1
the kth customer departs, the strong busy period continues while

the weak busy period terminates and a new weak busy period starts. :

We consider both types of busy periods in this paper. If the
result is applicable for both, no notational distinctions are 2
made. If a result is applicable to the strong busy pericd only,

then a superscript "s" is added to the notaticn. 1If a result is

applicable to the weak busy period only, then the superscript "w"
is added. !
|
Remarks: zi
t
{R.1; From (D.30) and (D.31l), we have '
P
’2_1) E“il‘%=m'zo=‘d" = wm’w(l'o’o)-'-m = Lm,w(;y0,0)ﬂn ; *‘
N . i
2 = = 4 2,0, :
(2.2} E.2, WO’O(I,O,O) 0,0 2,0 :




3. Regenerative raesults for the tiransient behaviour.

In this section, we shall show that the study of the actual
waiting time o0f each customer, the lost service time of each
customer and the virtual waiting time at each epoch can be
reduced to the study of the lost servive times within one busy

cycle alone; that is, for 0<|x|<l, Re(f)> Re(s)z0, m20, w20,

Wy (%0820 (lz]<=) 0 (x,8,2) (Re(z)20) and V_ _(x,E,2,s) (Re(z)30)
can be obtained from L (x,2,2) (Re(z} 20) and C_n (x,2,0).

m,w W
The arguments are based mainly on the regenerative property

that the continuations of many processes in this system beyond
the end of a busy cycle are the probabilistic replicas of these

processes commencing at the beginning of that busy cycle.

THEOREM 1 For 0<|x|<l, Re(:)20, !zj<= , m>0, w>0,
ll ky r - rA jod M- r : :
(3.1) NO’O(X,,,Z) NOIO(X,Q,Z) / 1 CO,O(X’”’O)
Y z = T z r T -
(3.2) Nm,w(x’”’Z) Nm’w(x,ﬁ,z) + Cm,w(x,ﬁ,O)NOIO(X,a,Z) -
ZROOF : We have , from (D.23) and (D.30), £for m20, w30, e
(3-3) Wm’w(xl::lz) = W’m’w(xl%rz) * :

-0 El+k i )
¥ E{)-k=1X exP(_ilnl+k—zﬂnl+k) IMyTMWGEW

Jow since the gueueing process starts again probabilistically

when the (Ql+l)th customer initiates the second busy pericd at

] = and independent cf «w . fer all
time Lgl+l €, r ¢y and n, are indep 131+&
k1. Also, for all k:1, W, o4y 2re independent of Ty and e

~1
Thus we can write




A

(3.4) Wm’w(x,i,z) Wm'w(x,i,z)

+ C (x,8,0)g Zw xkexp(-gr -2w !m =0,w =01
m,w T/ R bk=1 —k TTpatk =0 T'=0 T

Furthermore, if m,=0 and W,y=0,then 331+k will have the
same distribution as Wy Thus (3.2) is proved. As (3.2)
is also applicable when m,=0, w.=0, (3.1) follows.(C

-0
THEOREM 2: For 0<|x|<l, Re(Z)20, Re(z)z0, m>9, w>0,

(3.5) Ly o(x,5,2) = Ly o(x,8,2) / [lecg (x,2,0)] :

2 -

«

]
o>

(3.6) L (x,5,2)

X,3,2) + C
m,w m,w( r5.2) m

w(x,S,O)LOIO(x,S,Z) .

’

PROQF: The proof is omitted because it is analogous to that of

Thecrem 1.7

m Y - r
Theorems 1 and 2 relate Nm,w(x,%,z) and Lm,w(x,ﬁ,z) to

~

z : C X,5,0). We shall now show
mow X2zl Lo (x,5,2) and C (%, 3,0) no

~
W

that v_ .
m,w

14

(x,2,2,8) can be obtained from wm . ({x,2,2) and

W

L_n w(x,-:,z). This 13 an important relation which is of interest
iy

by itself because it enablesus to find the mathematical descripticn

of the behaviour of a gueue in continuous time if we know its

behaviour at a certian set of discrete-time epcchs.

LEMMA 1: For 0 x'<1, Re(1):0,Re(z)30, Rel(s)30, m>0, w>0,

- - _ w\' - T - 7 - =
(3.7 A (x,2,2,8) = JO,O(K"’“'S) y [} LO'O(X,<,OD

(3.8) Y (x,2,2,8) = V‘ x,7,z,s)

-~

i
Fl
R
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_9_
to that 9% Theorem l. Here, we use the property that if §0=O
zhen for all £20, 2(trcy) , wlt+c,) and aft+c,) D1ave tle
same distributicns as 3(t)+gl , v(t, and af(z) raspectively 3
LEMMA 2: For O0<'xisl, Re(Z)y Re(s)z 0,Re(2)20, mz0, w24,
3.9 z+s=-3)V X,5,2,S
( y ) m,w( 1&12,S)
m m - -
= -xaxp (~2zw) - 2zx exp((s=%)w)/(s-3)
- PN
1 - -
+ 1-x¥(z)3(s) W (x,3,2)/%x
E- ) ( )_' m,w r-r )/
r g1 q(s)
+ zil=x¥(3=-s)0(s) W (x,3,5-s)/x(s=3)
e Jm,w
r. ~ ) ﬂ(
+ exu(-zK)Q(z+s)!Lm,w(x';’z)'Lm,w("”’”’
+ zexp((s-;)K)u(;}i?m’w(x,g,g-S)-Ln’w(x,g,u[_ (z=%)
; + (z+s=%)C (%,3,9)/(s=5) .
] - \ - Iw
4 2RCOF: For u< x <1, Re{3)30, Re(3)29,Re(z)20, Jdum<in.,~2., w2J,

(3.10) 7 w(x,i,z,s) =

l, Py -3 - —. + 1 - :; v )—t)- v-'Q =~ '. =~"
E[-k=m+l X7 exp(-it-z (I +min(w, +s, X+, s(Z, M, N =W

~

gl B (~St-z (1 +w_ + £) -5 £))de | ) 4
X exp(~Zt-z (1 W s -t)-s(t - =m,W.=W
g B z Pi=st=2 iy, "Eh, T8n —n.,+1 ]EO =0 ! !
: ~ ~n, LS R 5 21 , ,
N, S, :
- - - ! - - VY = G =T
-zl T oexploinesiiy L mR0ER IyTRAL T
=1 =1 .
N . o = . mae (e - T Sar keony, Efelel '
=S By = Iy 7 PRRIL TS KR T T =
- = - - w +s8 , 3.1 Ceccmes
=% -n, ~n, =-n

ihhrJJEEEZT—’**'
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(3.11) vm’w(x,a,z,s) =

z+s—' {Zk-m-#l e A SR

. ‘ SR 1
- exp(-£1, -z (min(w, +s, (K+E, )) -sgk)‘J. ]go-m,vio-wj

1 23
+ 77s=F E{x [exp(-igl—sil)

(
- exp(=£€1 -z(w_+s_)-st_ )i |m.=m,w.=w}
23] 2; ™y El_JI—O 0 )

1 21
$ — E{x [exp(-igl)- exp(-fp,-si,

s=¢%

2 ¥ < L= ) ~K-E, ]
Now observe that for ks<m,, ! = max(w,+s, K+t )-K-L,, and hence

(3.12) exp(-£1, -z (min(w. WSy Kl ) ) -sty)

x
= -£7, -2 (w, +s. ) ~st, xp (=51, -zK-(s+2)t
exp (-£T, -2 (W, +s; ) -st, ) + exp(-3I, ~2zK-(s+2z)%)

- o w, K+t, )) - )
exp ( Ik z (max (v Wy S,/ K L)) -sgy

= eXP(‘ZEk)eXp(-sgk)exp(-—* -2w, )

- exp(-zR)exv(-(z+s) Ek)LGXP (=SZ 28 ) -exp (=120,

Thus (3.11) can now be written as

-~

- __m - .S -
(3.13) Vm,w(x,,,z,s)— X exp(-zw)/(z+s5-23)

~ = oA
+ _l—x‘?(z)ﬁ(s)_jwm'w(x.i,z) / x(z+s-3)
+ exp( zK)4(2+s)l: w(x,,,z) - Ln'd(x,,,ﬂl_ (z=g=1)
+ Pm, (x,2,8) / (2+s-%)
T Cp (X500 =P (x,T,8) (5=

for 0-ix'¢l, Re(Z)20 Re(z)»0, Re(s)»0, Ogmyi'n,-1 , w:d.
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£ is easy to prove that {3.13) is also applicable

~

when n, = m+l. Now since Vm'w(x,s,z,s),P W Xs5,s) and

m,

c_ .. {x,£,0) are analytic for 0<|xigl, Re(Z) 3

0w > Re(s)z20, Re(z)20,
Ay

letting z=£-s in (3.13) yields

(3.14) B (x,5,8) = Mexp( (5-£)w)

- E—‘X?(E‘S)Q(s)-‘%m W(XIE,,E-S)/X

- ew(mnna@ | L sty 050 ]

—

If we substitute this eguation back inte (3.13), we obtain (3.9 ).

THEOREM 3: For 0<|x|<l, Re(£):Re(s)30,Re(z)30m30, w30,
- m m - 7 -
(3.18)  (z+s=£)V_  (x,§,z,8) = =X exp(-zw) = 2X exp( (s=5)w)."(5-3,
4
+ [}-x?(z)Q(s{]Wm'w(x,E,Z)/x

—_
+ z{}-x?(a-s)n(sljw (x,Z,2~s)/x(s=%)

m,w

———

—
+ exp(-2K)Q(z+s) L&n'w(x,E,Z)-Lm'w(x,S,O)}

i

w(xri—)ro) /(S":.)

+ zexl_:ﬂ((s—i‘,)K)Q(S)Ea,,1 W(X,E,IE-S)'L_n
i, aly

PROOF: The proof is straightforward from Theorems 1,2 and

Lermmas 1,2._

I+ remains to show that Wm w(x,i,z) can be obtained ZIrcm

- -
A-lm, (:{I’IZ) ~ix]d C.' (}{171 z)'

THEOREM 4: 7F0Or 0<ixlgl, Re(Z)2Re(z)20,m20, w20,

-~

(3.16) [l—x?(z)l(i-z)]wm'w(X,i,Z)

m+1 -
= X exp(-2w) - xC_ (x,7,=-z2)




>
5

b
r

o -
~12-
m Since vm'w(xl";lzls)l lew(XIC—,IO) and Pmlw(x,i,S)
are analytic for O0<ix'gl, Re(5)2Re(z)>0, m»0, w>0, (3.16)
is obtained by putting s = 3I=-z in (3.13) [j
Remarks:
(R.2) (3.1) and (3.7) are the generalizations of (3.3) and
(4.6) in [ 9,pps. 6,13] respectively.
{R.3) When K+« , then Theorem 3 becomes Theorem 2 in [26].
While Takacs derived the latter directly, the former is obtained
via Lemma 2, which will also be useful in the derivation of
Theorem 6 later.
(R.4) If we let x~1 , z~0, s+0 in (3.14) and (3.16) and then
use l'Hospital's Rule to obtain the limit when -0, we shall
obtain the following Generalized Wald's Lemma:
—-n ]
=ln % = fog 1 fm bemim Slefa. ~ —p. Tt e
(3.17) E'gy Efwgs * By mEimgJETS) T TE Liaperik)]
(3.18) Efgl} = [Efg_l}-E{go}]E{gl}
e TR R — i 1evwmmmmui‘




4. Regenerative results for the stationary behaviour.

For the gqueueing system studied in this paper, it has been
provel that each of the processes
twp kemp b, {2, ,k>mg} and {v(t),t30} has a unique stationary
distribution which is independent of the initial conditions
(81. In this section, we shall show that the study of the
stationary behaviour of the system can also be reduced tc the
study of the lost service times within one busy cycle alone; that

is, the expressions. for W_(z) (lzj<=), L_(2) (Re(2)20) and

x

-

V_{(z) (Re(z)20) can be obtained from £0,o(l,0,z). Here, we shall
use a general theorem in the literature stating that the stationary
distribution of a regenerative process, if it exists, is the

'time average' or 'customer average' of the process over a regene-
rative cycle. (See [ 9])

This allows us to state the following thecorem without oproci:

THEQOREM 5:

(4.1) W _(z) = wolo(l,o,z)/gigz} for 'z <= :
(4.2) L_(z) = Lolo(l,o,z)/E{gz} for Re(z)30
Together with (3.16), (2.2)., the assertion for W _{(z! and L 'z}

is now true. The next theorem will allow us to £ind the listrinut:icon

r,

function of the stationary wvirtual waiting time 1in Zerms 2I the

distribution functions of the stationary actual waiting time and

the stationary lost service time.




R TENEE AV

%

|{(

THEOREM 6: For Re(z):0,

(4.3) Vv _(2) =1 - gup,i/elc, + {l=¥(2):W_(2)/2e{t))

+ exp(-zK)u(z) (L _(2)-11/zg ¢t

A

PROOF: This is because V_(z) = VO 0(1,0,2,0)/5{92} . Upon
’

applying l'Hospital rule to (3.13), we prove the theorem. []
Remarks:

(R.5) When K-», then (4.3) becomes a well-known result due to

/
Takacs [25]for the classical GI/G/l gqueue.
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¥
E 5. _The stochastic laws for the busy cycles.
Let
] , (D.34) M, = the set of all those functions of z which are analytic
b~ in the domain Re(z)>0 and continuous, free from zeros,
uniformly bounded in Re(z)>0;

{D.35) N, = the set of all those functions of z which are analytic

k in the domain Re(z)<0 and continuous, free from zeros,
uniformly bounded for Re(z)<0;

(D.36) R, = the set of all those functions ¢(z) which are defined
for Re(z)=0 on the complex plane and can be revresented
in the form

(5.1) ®(z) = Eg{zexp(-zn)} ’
where 7 is a complex (or real) random variable with
E{lg] i< and n is a real random variable.

Let us define the following transformations on Rz:

F (D.37) T,l¢l2)} = E{gexp(-zpf)} ;

! (D.38) T} = bi2) -7 (5(2))

¥

; (D.39) u,{e(z)} = Eg{z8(n»0)exp(-zn)} ;

E. (D.40) u;{é(z)} = 9(z) - Uz{b(z)} = E{z8(n<0)exp(-2n)};

- (D.41) v,(2(2)} =  gl{zs3(n>0)exp(-zn)}t

; (D.42) viia(z) = 9(z) -y {e(z2)} = Eiz8(n<0)exp(-22); ,
where S(A) 1is the indicator function of any event A; that is,

i s$(A)=1 1if A occurs and (A)=0 if A does not occur.

]
.
.




-

: -io-

k Clearly, TZ{@(Z)}: uz{é(z)} and szé(z)} belong to

: ’ M, ang T;{¢(zf}, u;{¢(z)} and v;{é(z) belong to N,. Also, it

. - is easy to show that

i (3.2) u,le(z)} = T,{¢(2)} + lim +_m[T*{¢(Z)}] ;

L (5.3) U;{Q(Z)} = T;{Q(z)} - lim z+-m[T*{°(2)}] ;

(5-4) v le()} = T (e(2)} - lim_ (T {0(2)}]

| (5:3) vxle(z)} = Tale(2)} + lim_ [T {2(2)}]

E (5.6) Tz{é(z)} = Uz{¢(z)} + lim ., u*{@(z .

i (5.7) Tz{ﬁ(z)} = vz{¢(z)} + lim z__otv*{cb(z)}W

f This means that the closed form expressions for these
‘ transformations can be obtained if that for Tz{é(z)j is known.
. The following lemma, which 13 due to Takacs (273, will

o2PCCE See Thecrem
o thiz zacerx,

=ne Lrins.ant and

LnoTarm o IIotoa2 st

enakle us to cbtain Tz{é(z)}

2 in [27:.

explicitly:

wnere the path of integration L_ (=

axis Zrom z==-iw» to 2z=-i: and again from z=

>Q) consists

LIIMA 3: If i(z)eRz , then for Re(z)>0, we have
{5
(5.3) T3 = we00) + Lim ) o2 HSl_as
- = J -~ !

it

the imaginaryw

i=,

iz to

&)

= of

- o Ta



In <his section, arnalyvtic methods are given Zfor f£inding the

integral =sguacions that would thecretically allcw us to obtaina

resulcs for the lost service times within a busy cycle L_n w?x,g,z;
. ’

znd the stochastic laws of the busy cvcle Cn (x,£,-2) simultanecously.

W
These eguations will be expressed in terms of the transiormaticns
definedé in (D.37)~:D.42).

Basically, this method simply involves the re-arrangement 2%

{2.1.6; into identities whose left hand sicdes belong to M, and

r13ht hand sides belong to Ny Bv Liouvillie's Theorem, =ney 3ire

th

unctions indevendent of z. The integral equations will be cbvicus
when these functions are Known.

First, for the sake of simplicity, let us write

tD. X,3,2) = <,z -1 : (&
13) Qm’w( Y ) [Lm'w(a{ralz) um'w(xrslo)] (g)
for 0<'x gl, Re(3)20, Re(z2)30, m20, w20.
Trcm {3.16), we nave
) - - m+1 . o

2.2 L %,5,0) =W X,: = {x -xC (x,2,0) |, {Z=x"7"21

) :“',”( ’ ’ ) ’m'w( I,IO) [ \vm'w [ J
This means tchat 4 (x,7,2) will be xnown 2 ‘Kx,T,2, anc

T, N > M, W~
2 (X,1,=2) are xacwn.
mn,w
For J<.x (l,re(Z)>Re{z)>0 , we ncw issert that

il--i2).(Z=2y, zan be Zfac*korized into =he fcrm

z . r . - . - P ~ . - v
2.2 fi=xr2, l-z,, 0= T x, T, T ax,I.20
- - = T -~ \

- . ~ . -
vners:a =2 L,:,2 & M inc 3 e 1= (=Y i,
T e~ = Ay - . ., e = oao - [
ZAZn IZ3CTCrLI3ZTIIn 3.WAT3 2R13T3 325 we &N NTL22
< v- - - - - A, - - - -~ R—_—
D AT - o ' = T - - - - -
= - ..— - - - L. a= - - ~ -
PR P e 2 = =T - -= =

VYRR T ey

NSRS i p e
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In fact, g+(x,£,z) and g (x,£,z) are determined up to a multiplicative

function of x and §. For if we also have [1-x¥(2)Q(f-2): =

n"(x,5,2)/h7(x,3,2) where ' (x,8,2) <M, and h7(x,2,2) = y,

+ + . - . - -
then by Liouville's Theorem g (x,3,z)/h (x,5,2) =g (x,%,2)/h (x,3,2)

= F(x,3). If ¥(z) or Q(z) is a rational function of z, then the

- Y
more useful expressions‘ofg+(x,§,z) and g-(x,g,z) have been
obtained in ([26] (equations 43, 44, 50 and 51).

(316 ) can now be re-arranged as

(5.13) g+(x,E,z)Wm W (Xr8,2) - xm+sz{g—(x,£,z)eXp(—zw)}

+ xTZ{g_(x,g,z)exp(-zK) ém w(x,g,z)}

xWFL T;{g-(xfi,z)exp(—zw)}

- xT;{g—(x,a,z)exp(—zKﬁ%’w(X,Z,z)}

- xg—(x,E,Z)Cm'w(x,i,-z)

for 0<.x! =1, Re(%Z)zRe(z)20, m20, w20. As the left hand side of
this equation belongs to M., and its right hand side belongs +o 1

My apolications of Liouville's Theorem and analytic continuation

vields

N + _ ‘ 1
(5.14) g+(x,£,z)wm w(x,._f,,z) - %" lTZb'(x,i,z)exp(—zw); .

’

|

~ to

+ xTz{ g (x,5,2)exp(-2zK) O, ,(X/T,2) = R(x,: ;.
f

for 0<ix:¢l, Re(3)20, Re(z)30 , m30, w30 ; and

A

m+1 ~ - . - .
(5.15) X T;{q (X,5,2)exp(-zw) : ~ x-r;{g (x,g,z)exp(—zK)Qm'w(x,g,z) 3
- xq-(x,i,z)cn w(x,i,-z) = R(x,Z
Ay
for 9 x .1, Re(Z):0, Re(z)gx0 , m30, w20.




I we re—-arrange (3.l1l6) differently and then apply Liouviile's

Theorem and analytic continuation, we shall alsc obtain

~

i )y |
me'w(x,;,z) n+1 exp (z {(K-w)) !

(5.16) - X T_%
g+(X:E:Z) z g+(X:5r2) J

—_——

4o \ X,5,~2
exp (zK Cm,w( 1§ ,=2)

g+(xr€rz)

e

for 0<ix|sl, Re(3)20, Re(z)20 , m20, w20: and

SR——

exp(zK)Wm (x,3,2) exp(z (K-w))

P +1 !
(5.17) - = = + x™ T\ % . :
g (%,5,2) g (x,5,2) 1

(

Zsr 0« x <1, Re(Z)20, Re(z)<0, mz0, w=20.

The axprassions of R(x%,3) and S(x,3), which ars Zepencent

on the “vpe of busy cvcle we ars interssted in, will 2naZle us
_— E LA - 5 - 4 M - ! o D < -
22 Siad the axprassions of :m,w\x,,,z) and ‘m,w""’ z as i
cne following theorems:
~TOREM 7 ;O (x,,-2) and 2%  (x,I,z2) sat:is3v she Zollowing
m,w - W

simulzanecus intagyral eguaticns:

- - . E . B 2T i o

$.13) g (x,;,z}Cn J(x,;,-zt = X3 R, T,I0 2T V!

T, z

AEVRRO NS

.‘ J?




-20<
s - I .
) N T - XM+ Cp L %,8,0)
(5.19) T = T
g (x,%,2) g (x,3,0)
f ) { s - )
m raxp (2 (K-w)) ! lexp (zK)C (x,5,=-2) | :
+ x0T L= T4 L | ‘
zi _+ _ . z + [
g (X,3,2) : g (x,3,2) ;
‘ J L J
( 0<|x|gl, Re(£)20, Re(z)20, mx0, w30)
PROOF : Ne have p{£3=0} = 0 for all vzl. Hence
lim___C2 (x,3,-z) = 0. Thus, if we let z~-= in (5.15), we shall obtain E
-~ A - m+1l, . - - t
r5.200 RS%(x,I) = «x leZ*_w[T;{g (X,8,z)exp(~2zw) }] ;
- xlimZ*_m[T;{g‘(x,s,z)exp(-zK)Q;'w(x,i,z)}]

Unon supstituting this back into (5.15), on behalf of (5.3), we

b

obtain (53.18). Also, we have limz»og'(x,i,z) # 0, and from

\D. 43 lir o) X, %, = 0. h 1 £ ~0 ir 6
(D.43), Im 0%y, (% 5e2) 0. Thus, if we let 2~0 in (5.1s),

T_<%(z): = 1lim »(z), we have

remembering that lim
F4 z=0

z—~0

{5.21) S(x,3) =

“oon substituting this back into (5.16), we obtain (5.19).

THEOREM 8: C¥ w!Xr5,-2) and Q¥ (x,z,z) satisfy the following
Ll AN m,w

ity

simultaneous integral equations:

w

(5.22) g'(x,i.z)cm (x,5,-2) = xmv;{g—(x,i,z)exp(-zw)}

- VAigT(x,5,2)exp(~2K)QY L (x,5,2))

( O<|x|gl, Re(Z)>0, Re(z)g0, m>0, w>0)




(5.23) g~ (x,8,2)Cq o (x,%,-2) =

-2]1-

q-(X:&:,Z) - limz_mq+ (x,%,2)

- - Aw .
viig (x,;,z)exp(-zK>Q0'0(x,;,z)}

(0<|x|gl,

~

\
(XIE)IZ)
(5.24) °m,w =

+
g (x,8,2)

Re(§) 20, Re(z)g0)

Re ()20, Re(z)20, m30, w20)

w— —
PROOF : We have p{yk—o} = 0 for 0<m,<k<n,. Hence

. "W
lim W X,£,2) = x3§ whe
Z— m,w( 1502) m,0 r

Thus, for m>3, w>0, letting z-»w

(5.25) RY(x,Z) = - x™ “1lim__ [T

z >0

+ x1lim

z-»-oo

Upon substituting this back into

1 2 = =
obtain ;?.~2). When EO 30 0, we
W

e 3, ; is the Kronecker delta.

’
in (5.14), we obtain

zfg_(x,i,Z)exp(—zw)}]

[Tzig—(x,i,z)exp(-zK>Q;'w(x,5,2)?]

(5.15), on behalf of (53.3), we

first modify (5.14) to have the

term ENO O(X,E,Z)-%] included then derive (3.23) bt the same

method as that for (5.22). For

that for (5.19). D

{5.24), the proof is similar to




Remarks:

(R.5)
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6. The strong M/G/l gueue.

In this section, we shall concentrate on the gueueing system

in which the arrival process is a Poisson process; that is,

p(Elgt} = l-exp(=it) for t>0. We shall obtain explicit expression
for ¢S {(R,5,-2). The argument is based on the prcoperty that

m,w
in this system, the idle periods are exponential distributed and

independent of the busy periods.

THEOREM 9:

x{<l, Re(%)20, Re(z)<0, m>0, w>0,

(a) For 0O«<

(6.1)  Co (x,5,=2) = AP> (%,5,0)/(\+5-2) 4

r m,w

(b) For 0<|x|{gl, Re(£)20, m20, w20,

S - -
(6.2) Pm,w(x'”'O)
< - ’ _
N { 1 1 exp(s(K-w)) ds
m+l - T - + | ‘ :
T )+ ™ gu (9) g (%, 8, 80 |———— - lim__,
[2 (A+E=Ax) T 2mi)L_ [Atgms~ixY(s)ls j
- ) - |
- |
sk . r_ 1 1 exp (zK) ds K
Lo+ ixe TN3¥(a) g (x.2,3) ) - lim__ —| !
P2 (A+2) (A+E~ix) - 271 L [a+E-s] (A+I-s-ix¥ (3) s v
— - ‘
where %j
(D.44) 3 2 2(x,%) 1is the root of the equation I
(6.3) \i-z=Ax¥Y(2) = 0 :

in the domain Re(z)>0 and

(6.4) g (x,z,2) = [\+f-z-axv(z)]/[3-2] . y

1
!
|
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PROOF : If p{tyst; = l-exp(-rt) for t20, then for all v:1l,
iv is independent of both By and n, and E{exP('ZEV)} = 2/ ( vz}

for Re(z)20. Thus we obtain (€.1). (3.16) can now be written as

g . )
(6.5) wm w(x,v,Z) =

’

m,w

A+E-zZ=Ax¥ (z)

for 0«<{xlgl, Re(Z)20, Re(z)>0, mz0,w>0. Now, since W; w(x,g,z) is
analytic in the domian Re(z)>0, letting 2z=3 as defined in (D.44)
yields:
s uya) ~
(6.6) P (x,5,0) M7y (3) - xe ’Kwa)Qi,wx,s,e).
for 0<|x!<1l, Re(%)20, m>0, w>0. Also, from (5.19), we can write )
~ 1 3
QS (x,£,2) - X" !exp(z(K—w)) ‘ !
m,w m i :
(6.7) —HF————— = —————— + X" 7 _{ f
. _ . 4 + -
g (x,%,2) g (x,3,0) L g (x,5,2) }

< - 1 . exp(zK)
+ AP (x,6,0) -7 !
mew gt (x.2,0) (A+D) 2l g% ix, 1, 2) (+i-2)

PESENERI SS NN

for 0<!x|gl, Re(£)20, Re(z)20, m>0, w>0. As g (x,,z) takes the

form of (6.4), we let z—+9 1in (6.7) and then eliminate Q; w(x,;,?)
from the resulting equation and (6.6) to prove (6.2).

Remarks:

(R.7) If we let K+ , (6.2) and ( 6.6) will become (25) in [1l2},

a well-known result for the residual busy period of the M/G/1 gqueue.
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