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ABSTRACT:

This 2aper studies the single-server queueing system in which no

customer has to wait for a duration longer than a constant K. Using

analytical method together with the property that the queueing

process 'starts anew' probabilistically whenever an arriving

customer initiates a busy period, we obtain various transient and

stationary solutions for the system.
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1. Introduction.

In the single-server qiteueing model studied here, no customer

has to wait for a duration longer than a constant K. If this time

exceeds K, the service time of the previous customer will be

so much shortened as to make it equal to K.

Cohen [8] has obtained several results for this model in which

the inter-arrival times and service times have rational Laplace-

Stieljes transforms. In this paper, we shall make no specific

distributional assumptions for the random variables underlying

the model. Stationary results for a sliqhtly different model

in which the customers leave impatiently have been obtained by

Daley [111 (See also [1], [2], [3], [4], [5], [6], [13], [14],

[16], [20]).

The key to our analysis of the system is that many of its

processes are regenerative; that is, they restart probabilistically

whenever a customer initiates a busy period. Regenerative processes

in this sense were introduced by Smith [22,23] and have been used

by many authors to study the stationary behaviour of many queueing

systems (See, for example, [7], [9], [10], [17], [21], [24]). By

using regenerative processes along with analytical methods in this

paper, we shall show that not only the stationary behaviour of the

system can be studied but its transient characteristics can also

be obtained. These methods also give us insight into the probabilis-

tic structure of the system (See also [18].) In Section 3, the

mathematical description of the transient behaviour of the system

_________________________________________
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is obtained from its behaviour within a busy cycle. In Section 4,

the mathematical description of its stationary behaviour is also

obtained from its behaviour within a busy cycle. The behaviour

of the system within a busy cycle and the stochastic laws for the

busy cycle are then studied in Section 5. In Section 6, due to

the special structure of the M/G/l queue, we shall obtain explicit

results for the stochastic laws for the busy cycle in this system.

4
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2. The formal model and notation.

We are given

(D.l) a real, positive number K

(D.2) an integer-valued, non-negative random variable m0 , Efm0} ;

(D.3) a real, non-negative random variable w0, P{'w0 <,K I = 1;

(D.4) Two independent sequences of independent and identically

distributed, real, positive random variables ftktk>, 11 and

k , I . We assume that each of s and t has a finite first

moment.

.no is the number of customers in the system at time t=0-

and w0 is the virtual waiting time at time t=0-. Let customers

(m041), (m0+2), .... k ..... arrive at the time epochs -

... where
.. +'k' -m+l -m+2 " -k

Let- - k 'for all k>.

Let the assianed service time of the kth customer be s. This

kth customer will oLbtain full service if the (k+l)th customer arrives

at the moment at which the work still to be handled by the server

is less than K; if it exceeds K, then we have to cut short the

thservice time of the k customer to make the waiting time of the

customer equal to K. The decision to shorten the service time

of the kth customer is taken at the moment of arrival of the (k~l) th

customer.

We write

(D.5; z) = Elexp(-zs )V for Re(z) 0 :

(D.6) "z) = E.exp(-zt) for Re(z) 0.

The customers are served in order of their arrivals and there la no

iimit- on tne size of the waiting room.

L..
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Besides we want to study the following random variables:

(D.7) wk the actual waiting time of the k th customer (k>m0),

++i.e. wk
=  in([WklSkftkl K)

= (min (k_l+k_l, K+tkl) -tk-l]+

where [x) +  max(x,O);

(D.8) w, = limit in distribution of _k when k-, if this exists;

(D.9) Z = the lost service time of the kth customer (k>m

i.e. zk =  max (Wfk+ k-Lk, K) - K

= max(wsk+2,K+tk) - K - L,

(D.10) . limit in distribution of £ when k-, if this exists;

(0.11) 21 = the duration of the initial busy period;

(0.12) 27 = the duration of the v n busy period, v>, 2;

(D.13) i = the duration of the first idle period;

(D.14) i = the duration of the v' idle period, v, 2;

.15) = + i = the duration of the initial busy cycle;

(D.16) c = o + i = the duration of the vt h busy cycle, v 2;D. -)Cv -v -v

nD.17) the number of customers served during the initial busy

period, including the m 0 customers in the system at

time t=0-;
th

(D.13) n = the number of customers served during the v busy pericd,

v> 2;

(0.19) v (t) = the virtual waiting time at time t, t>,

i.e. v(t) - + min(wk+Sk'K+tk) - t for k <t<-k+l

(0.20) v(-) = limit in distribution of vt) when t--, if this exist:3

2.2-1 (t) = the total number of customers arrv-inQ durinz the tIme

interval [0,t] , including the m0 customers in the

system at time t=O-;
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(D.22) a(t) =the time difference between t and the timne of the first

arrival during the interval (t,-).

The results will be exp)ressed in the following forms:

k _-(0.23) WmwCX .*Z) xkml E~exp(-j:k zw 1,,n

for O<lxl,<l, Re(.:)>O, zj- m>AO, w>.o;

(D.24) L w(x,j,z) = kO-M+lxk E~expC- .k-zZ,) !In -m,w L=w'

for 0<Ixl<l, Re(Z)>-0, Re(z)>,0, mn,0, w -0;

(D.25) V mf (x,z,z,s) x ( ;")~w ~e p - v~ ) sa t )',n=m,i~ow;dt

for O<x<,(-,,R~),es,, maO, w>,0;

(D.26) C (x,rl,-z) =E~x 
1 exp(-ic +4zi) --U, w =w

M'w 1 1 0

for 0<lxl, Re( ,)>., Re(z)(0O, m>,0, w>,0;

(D.27) W~()=Eep-~ for Z'<-

(D.2) L.(z) Eex(Z)fo ?ezV0I

tD.29) V.(z) E~exP(-zv(-) ~ or Re(z)>0

WRe shall need the following intermediate Laclace-Stiel':es

transf orms:

'D.30) Wm (,z xep >-zw ) m tflC40wmfw~x''z) -- ,n+lX LCK 0 -OW

for 0<.x!:l, Re(' ),,0, z<, : m>Q, w'0O,
I

(D.31)L (x~rz) E x-z"' )n -rnM'wO~"
(D31 m'w (x~z {k=m+l -:-k --k -O

for O< X~l, Re(,-)2)0, Re(z)>O, -m O, w>O;

for 0< :x'41, Re(,:",.O ,Re(z)O es:--, n-O, -,>,);
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(D.33) P (x,=,s) E.x exi(-t) -si )  -m, =w-

for 0< :.il, Re() 0, Re(s) 0, -n>0, w;0.

it is important to point out here that there are two types

of busy periods which Cohen [8 ,p.28 4 ] calls strong and weak busy

periods. While two consecutive strong busy periods are separated

with probability one by an idle period of non-zero duration; a weak

busy period may be followed by an idle period of zero duration.

thIn other words, if the (k+i) customer arrives at the instant

the k customer departs, the strong busy period continues while

the weak busy period terminates and a new weak busy period starts.

We consider both types of busy periods in this paper. If the

result is applicable for both, no notational distinctions are

made. If a result is applicable to the strong busy period only,

then a superscript "s" is added to the notation. If a result is

applicable to the weak busy period only, then the superscript "w"

is added.

Remarks:

R.i) From (D.30) and (D.31), we have

E..) E n1 =m,0 =w = W (l,0,0)m = Lw (,0,0)-m

2 2  (1 0,0) = 0  0,0)(2.2 0,0

N4
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3. Regenerative rasults for the tr:ansient behaviour.

In this section, we shall show that the study of the actual

waiting time of each customer, the lost service time of each

customer and the virtual waiting time at each epoch can be

reduced to the study of the lost servive times within one buasy

cycle alone; that is, for 0<Ixll, Re(.r)>. Re(s) 0, m O, w2!0,

W (x, ., z) (I z I<-) ,L (X,E,z) (-Ze(z)zG) and V (x,E,z,s) (Re(z)>,O)
m ,w m,wM,

can be obtained from L (x,,--,z) (Re(z) >-0) and C (xjO
m,w rn,w

The arguments are based mainly on the regenerative property

that the continuations of many processes in this system beyond

the end of a busy cycle are the probabilistic replicas of these

processes commencing at the beginning of that busy cycle.

THEOREM 1 For 0<Ixll, Re(,:),0, z;<- , m>O, w>0,

(3.1) W0 ,0 (X, ,Z) W = (x,r',z) / l-C 0 0 (x,~,0V)

(3.2) Wx, ,z =mw(X, r,z) + Cm CX, r,0)Wo (X,':,z).

PROOF: W~e have ,from (D.23) and (D.30), for m>O, w';,O,

(3.3) W (x,'rz) =W (x ,:Z)m,w m ,w

n +k -n+) k

'low since the aueueing process starts again probabilistically

thwhen the (n 1 l) customer initiates the second busy. ceriocd at

time r n =c and n, are independent of w n k for all

k'11. Also, for all kA, w are independent of and 0

Thus we can write



(3.4) W (x,",Z) =W (x,j Z)m w m w

+ C m'(,:,)fk1xep-:,-wn+iOO±=

Furthermore, if !20=0 and w 0O,then w .1+k will have the

samne distribution as HWk. Thus (3.2) is proved. As (3.2)

is also applicable when a00 HOO (3.1) follows.E1

THEOREM4 2: For 0<Ixl<l, Re(.Z)>0, Re(z)?,0, m>'J, w>0,

(3.5) L 0 (x,;,z) = L(X. ,.(x ,)/F- 0  (x,0)

(3.6) L '(x, ':Iz) = L M' (X, ',Z) + C M'(x,:,',)L 00 (xPI'z)

PROOF: The proof is omitted because it is analogous to that of

Theorem 1.7

Theorems 1 and 2 relate W (x,,7,z) and L (x,--,z) tom w n, w

W (x,:-,z) , L (x,--,z) and C (x,,7,0) . We shall now showrn'w :n'w M'w

that V (x,:,,z,s) can be obtained from W (x,-2,z) andM'W m ,w

L (x,:,,z). This is an imoortant relation which is of interestM'w

by itself because it enables us to find the mathematical descripticr,

of the behaviour of a aueue in continuous time if .,e know its

behaviour at a certian set of discrete-time epochs.

~LMMA 1: For 0 x' -1, Re K)0, Re (z) '0, Re (s) :;0, m>0, w>0,

(3.7) V0 0 (x<,-,s) = 7 0 0 (x,2,fz's) " FI-C 0 0 (x E0)1

(3.8) "j V (X,EIz,s) = V Z,'~s)

~C 'x ,E0) V(x,,z, S)mn,-4 0,'0

PRQCF: The c.rocf of this lemnma is omitted bCecause L't is mnalcu3



to that : Theoremn H.Bere, w.e use thproperty that ~ =

--hen for all t>-0, (t-c,) , :+c~ and a~t-c.) 'nav e z- e

same disributions as u(t) +n I v (t and a(ls) fasuectle

LEZ4MA 2: For O<! x: <-, Re(7.)> Re( s)~ >, DRe(z) >0, mzo, w 0,

- ~ 7'xp(-=W) -zxmCxp((5 W/(

4- ~ ~ ~ (Z () x'Z)/

+ z l-XT 74 )(S) (x ,jjS)/x (s -)

+ zexpD(-zK) (~s lL w (x,.'(5- ,

-(z~-s-,1)C mw( x ,j, s -

PROCF: For 'j< x (I, Re(Z>O, Re (s) 0, Re (z) >, 0<(-.

,,3.10) V. ,*'w (x' j 'S

I+ o~ xp - tz + mi (w -t)s -t) -s dt nm=m Www
_ m l --:- -::k -

- 7 -n I n- _n _ +

As -'.' ~ Y' - ,K+t,)

W ++

.Z.-n -



(3.11) V nw(x, ,Z,S)

1 E a~l k Fx
z+s-;* tj-m+1 ex(-7-r+l-zwk+l)

-expl(- Tk-z(rin (k4.k,K+tL) )HOtk)_

+ I xl exp(-rp -sL1)
Z+S-7 E I-

- exp(- ,T -z(w +s )-st)
-1 -1-211 -11 .jJ ln-W0 =

+ I + l ep-c exp(-a 1 -si)

Now observe that for k= max(w andhenc

(3.12) exp(---k-z (min (Hk+sak,K+t k) ) -sk))

- exp(- :, -z(w. +s. )-st. ) + exm(-;,:k-zK-(s~z)tk

-exp(-7, -z (max (w, +is. ,K+:t, )-st.

- exp(-zsk)ex=(-stk) exp(-:- -zw.)

Thus (3.11) can now be written as

(3.13) V (x,Z,z,s)=-x exp (-zw)/(z+s-i).n, w

-- 7n

+ exTD(-zK)2&(zIs)! rn,w (x,,z - :,

+~ p M,(X,'rs)/

1 C x, ,) -t ,, 7 wE

for 0'<xl.$1, ReKE)> O Re(z)'A, Re(sV-lO, Or~,



It is easy to prove that (34;3) is also applicable

wh-en =m+l. Now since V C, X,Z,z,S), , Cx,Z,s) and

Crn (x,Z,O) are analytic for O<Ixil, Re(') > es~,R()O

letting z= -s in (3.13) yields

(3.14) P M,(xl:s) x m exp((s.i)w)

- ^M,

-exp((s-; O() I (X- Zs)-L (XPE;1O)I
^, M,w -

If we substitute this equation back into (3.13) , we obtain (3.9

TH~EOREM 3: For 0O<I xI <1, Re 3R s .,ez>,-,O w;O,

(3.15) Cz+s-rI)V (X,. ,Z,S) = x xmexp(-zw) -zx mexp( (-))'~i
m w

+ Y(i-)~(s W (X, s)/x~s

+ expD(-zK)QIz+s) L'm X )-Tw(c I

PROOF: The oroof is straightforward from Theorems 1,2 and

Lemmas 1.2.:

7t remains to show that W (x,.,z) can be obtained 'rcm

L (x,:,z) and C (x,:,-z).

TEHEOREM* 4:- or 3<,xjI:c:, Re(;I)>,Re(z)?,O,.-n>O, w:,O,

in, w

= xnlXp(-zw) - MC x,-)

.n, W

- ~ ~ ~ ~ ~ x x -- K _____4_______(x__________,___________)_______-_______ L___
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PROOF: Since V (x,,z,s) m,w(X,Z,0) and Pm,w(X,:,s)

are analytic for O<jxKl, Re(j),>Re(z)>O, m>O, w>O, (3.16)

is obtained by putting s = 7-z in (3.13)

Remarks:

(R.2) (3.1) and (3.7) are the generalizations of (3.3) and

(4.6) in [9,pps. 6,13] respectively.

%R.3) When K-- , then Theorem 3 becomes Theorem 2 in [261.

While Takacs derived the latter directly, the former is obtained

via Lemma 2, which will also be useful in the derivation of

Theorem 6 later.

(R.4) If we let x-l , z-0, s-0 in (3.14) and (3.16) and then

use l'Hospital's Rule to obtain the limit when :-0, we shall

obtain the following Generalized Wald's Lemma:

(3.17) EP = Er1oE + [Enl-EEm 0 E E'.=

(3.18) E c t } =[ll- E m E t



-13-

4. Regenerative results for the stationary behaviour.

For the queueing system studied in this paper, it has been

proved that each of the processes
_Hk,k>2}, f)k k>m0I and fv(t),t>.O} has a unique stationary

distribution which is independent of the initial conditions

(8]. In this section, we shall show that the study of the

stationary behaviour of the system can also be reduced to the

study of the lost service times within one busy cycle alone; that

is, the expressions. for W (z) (!zl<-), L(z) (Re(z)>O) and

V (z) (Re(z)>O) can be obtained from L0 0 (1,0,z). Here, we shall

use a general theorem in the literature stating that the stationary

distribution of a regenerative process, if it exists, is the

'time average' or 'customer average' of the process over a regene-

rative cycle. (See [ 9])

This allows us to state the following theorem without proof:

THEOREM 5:

(4.1) WJ (z) = 0 (,,z)/E'n 2 } for z <,

(4.2) L,(z) = L0 ,0 (,0,z)/En 2:. for Re(z)>O

Together with (3.16), (2.2)., the assertion for W (z) and L z)

is now true. The next theorem will allow us to find the i:szrizuticn

function of the stationary virtual waiting time in terms Df t"e

distribution functions of the stationary actual waitina z:me and

the stationary lost service time.
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THEOREM 6: For Rp.(z) O,

(4.3) V,(z) E=0 1 -. + {l-4'(z);W.cz)/zEitl;

+ exp(-zK)Y(z)[L(z)-1]/zEt 1

PROOF: This is because V.CZ) = V0 ,0C1,OzO)E11.92 . Upon

applying l'Hospital rule to (3.13) , we prove the theorem.Q

Remarks:

(R.5) When K--, then (4.3) becomes a well-known result due to

Takacs [251for the classical GI/G/l queue.
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5. The stochastic laws for the busy cycles.

Let

(D.34) mz= the set of all those functions of z which are analytic

in the domain Re(zV>O and continuous, free from zeros,

uniformly bounded in Re(z)).O;

(D.35) NZ = the set of all those functions of z which are analytic

in the domain Rez)'<O and continuous, free from zeros,

uniformly bounded for Re(z),<O;

(D.36) Rz= the set of all those functions liz) which are defined

for Re(z)=O on the complex plane and can be represented

in the form

(5.1) ((z) =E(1,exp(-zn,)}

where is a complex (or real) random variable with

E(J <- and n is a real random variable.

Let us define the following transformations on R.

(D.37) T~z) E( exPC-zn

(D.38) T*{Diz)l $ (z) - {z '(Z)i

(D.39) U z fiz)} = E(;6(n:O)exp(-zn)}

(D.40) U*f'(z)I = $(z) - U HDz)} Ef-6(fl<O)exp(-z-):;z

(D.41) Vz (Z)} = Ef{-.(7>O)exp(-zn))t

(D.42) V*O~,z)}J = -Diz) - V 2{liz)} E I(l.<O)exp(-z-)'f
z -

where 5(A) is the indicator function of any event A; that is,

'(A)=l if A occurs and (A)O if A does not occur.
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Clearly, Tz{ (z)}, Uz('(z)} and Vz 1(z)} belong to

M ana T*{(z'}, U*{(z)} and V*{D(z) belong to Nz. Also, it
zz z z

is easy to show that

(3.2) Uz (z)} Tz{(Z)I + limz-_-[Tz

(5.3) Uz{0(z)} = T*{'(z)} - limz [Tz{ (z)} ;
54 z ( = TT{ (z)} _ {(z) }]

55 vz'{ z) }  = TD(z)} + li {CTZ ()}j C

(5.6) Tz{I (z) } = Uz{' (z) I + limz_0o[U{ (z) } ;

(5.7) Tz{%(z)} = Uz{,D (z)} + lir Iv*{, (Z)

This means that the closed form expressions for these

transformations can be obtained if that for Tz .-:(z)} is known.

The following lenua, which is due to Takacs -27-, will

enable us to obtain Tz{5(z)} explicitly:

L2!YA 3: if t(z)Rz , then for Re(z)>0, we have

z s
( ).3 T,.(z) = -(0) +- l- 2-i Js(z-s

L

wh.ere the path of integration L (:>O) consists of the imaginarv

axis from z=-i- to z=-iJ and again from z=i£ to z=i-.

PRCCF: See Theorem 2 in :27:.-

:azer, we nave shown :n - s 4

.. a-nar zea urs of -- e " 3n e -

------ -:7, - ----- mes-----h--n -,hessv:"



7n -his section, analytic methods are giv;en for finding the

ntearal ez;uations that would :'hecretiCal_'z allow USr_ to ootan

results for the lost service times within a busy cycle L I;Zm' W I

and the stochastic laws of the busy cvcl'e C (x,:,,-z) simultaneously.
:n, w

71iese ecuations will be expressed in terms of the t-ransformations

oerned in (D. 37) - D42)

3asically, this method simply involves the re-arranaement of

'3. 16) into identities whose left hand sides belong to Mzand

ri;ht hand sides belong to ;,. By Liouville's Theorem, t:hey are

-r;nctions indecendent of z. The integral equations will1 be obvious

when these functions are known.

First, for the sake of simplicity, I let us write

D.43) Q- (X, I:, z) [ L (xj') L (x, :"'O) 2)

m' w mwM'w

.or O<':cx4, Re(r)3,O, Re(z)>,O, n>,O, w? O.

.r (3.16), we have

L-~ (xfj,O) X'70 1 (x,;) -x"-~

m'Wm, w m, w

T 1-:s means zha: I x,r,z) will be kenown i- Z;A~~ a.'

x,:,-z) are :*z.ncwn.

For 2~x ',Re )Re~z) >O , .,re -cw assert tn-at

* z) Ez< can be factor-zed into :he ":crm-

I -xt X, Z'X-

.v he r - x, ,) ci m and (E, N;z -fa -- r iz i a s -2: .3 -,3 ---s s~er -



In fact, g (x,.r,z) and g-(x, ,z) are determined up to a multiplicative

function of x and ~.For if we also have [Ll-xT(z)2( -z)-

h (X',,z)/h (x,j",z) where h (x,j,z) = and h (,,)~N

then by Liouville's Theorem g~ (x,:,,z)/h'(x,. ,z) g g(x, ,z)/h (x, ,,z)

=F(X,:*). If (z) or 2(z) is a rational function of z, then the

more useful expressions ofg +Cx,. ,z) and g (x,lr,z) have been

obtained in C262 (equations 43, 44, 50 and 51).

(3.16 )can now be re-arranged as

(5.13) g (X, ,Z)W (,z)-x Tjg- (x, ,z)exp(-zw))

+ xT ig (x,,Z) exp?(- zK) Qm w (X~,z)}

z

-xT*{g (x, z) exP(-zK>Q~ (x , Z)}

- xy (x, ,z)c '(x, ,-z)

for 0<.x--l, Re(I")2Re(z) 0O, m2:0, w2:0. As the left hand side of

this equation belongs to Mzand its right hand side belongs to

1,aculications of Liouville's Theorem and anal,7tic continuation

yi1el1ds

+ XT f g-(x, , z) exp (-zK) On,w (x, z) R~xE

for 0 <xK , Re( )>0, Re (z) '0 ,m; 0, w 0 and

m+1 
*(5-.5) x T*(9{ (x,.r,z)exp(-z) 3- x (x, ,z) exp(-zK) Q (X, ,Z) 3

-xg (x,,-z)C (x,-z) R R(xE

f or J<x1, 'Re(7) :0, Re (z) 0 , ), W .'0.



Uwe re-arrange (3.16) differently and then apply liouville's

Theorem and analytic continuation, we shall also Obtain

(5.16) QM, w (x ,z m+1 T exz(-)

exp(zK)C (x,,-z 1

+_________ x= S (x ,

g(x,i,z)

for o0jxI 51, .j0, Re(z)zO ,0~., w.0; and

e=- z K)Wm, rnx ) Mi eax=(z(K-w))
(51)-g (x,Z,z) g(,Z

T exp (zK) C (X, ,-Z)~=

-Oo < x 1, Re(-) :o, Re(z)_ 0', nz0, wa0.

The exmrassions of R~~)and S(-%,'') , whi_-zh aze ieoendent

on the tyine of- busy7 cycle we are interested in, -il nabl-_e us

tcf. n d t- e expressions of WXjZ n z a

t:.e ZOj7OW~nq hoes

THj:ZCREM 7 : 5  (X,:,-::) and (,,)3tf7the llwn
MI -

s_.rnul-:anecus i4nte,,ral'A aquaticns:

'3.3) g (,:C., X C :,,
- W5

- ~Q Qw(x,- Z)}

I':~., Re o, Re z',n;~w
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Q5 (x,j Z) x mrn+ C s (x, 0O)

(3.19), " ) ( ,w0

m x~zKWI exp(zK)C M (x,i,-z)

z* Z +g xz)g(xj)

PROOF: WJe have p ' V= O' = 0 for all v).l. Hence

1~C~ x,~,z) =0. Thus,. if we let z--- in (5.15), we shall obtain

z--,O[~l z x zep-w1

- im- [OT*g (x, ,z)exp(-zK)Qs (X, ,Z)1I

Upon substituting this back into (5.15) , on behalf of (5.3) , we

Dbtain (5.13). Al~so, we have lin 0g 9(X,j,z) # 0, and from

D.43), lim 0 Q -nw(X,:E,z) =0. Thus, if we let z-0 in (5.16),

remembering that lim n 0  TZ '-(Z)} limz- Cz), we have

(5.21) S(X,':) -xml= M'w X:.O

THEOREM 8: C W (x,,-,-z) and Qw (x..j,z) satisfy the followingt

rw m m

(5.22) q (x, ",z)C (X,. ,-z) = xm~g(':"~x(Z)

Vf (x,, ) g(,-zK)exQ(zw

- ~ Z -1{g (xwzex(z)Q,(x,,Z)}

0<jxk1l, Re( )>0, Re(zX).0, m>0, w>0) -
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(5.23) g (x, ,z)Cw 0  (x,-,,-z) g (x,1Zz) - im .g +(x, ~Z)

w (x,,,Z)
(5.24 Qx,(xexpz)) m0

(52)+ +
g Cjz)g (X,;,"O)

+ XTZ ~ + K-W)) lexp(zK)C mw (x, , ,Z)

Cx (,.jZ) +(x____________

PROOF: we have p~w k=O01 = 0 for 0<aO<k,<a1 . Hence

lrn W' (XV 7Z) X6 x where 5. is the Kronecker delta.

Zm-l M-- MOw

(5.25) Rw (x, ) = - x limz .0 [TZ g -(x, ,z) exp (- zw)H

+ xlim IT ;g (x,j27,z)exD(-ZK)Q w (X, ",ZV]Z-00 z -n,w

upon subst-Itutinq this back into (5.15), on behalf of (5.5), we

obtain (5.22). When ao=0=, we first modify (5.14) to have the
r-^ w 7

term L~~(x' ;,z)x included then derive (3.23) b-7 the same

method as that for (5.22). For (5.24), the proof is similar to

that for (5.19).D
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?emarks:

, R-6) When K-- (5.13) becomes

~3.25 -Z) z ~ x C: (-zw) :7 x

-AnJich is acuati on 198) 4 [28]1 . (1.16) now can be wr--:-=an as

(3.26) W'i- (xCz) x ( x,E ,Z)ex(-zw) ./a (x,,)

Th~.s ecuaz-on, :cgether wi:::' 3.1; , 22), (3.8), -5.25 ve1 s

3:z 27' c ,)=xn. -.1 Z):~ ,z (-W) :/ x, Z,
n, W z

a. re-Zw esut~1 due t-- PcUlaczek (19] , K-4-inan [15] an -a.",-cs

[26J.
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6. The strong M/G/l aueue.

In this section, we shall concentrate on the queueing system

in which the arrival process is a Poisson process; that is,

pftlpt} = l-exp(-x't) for t O. We shall obtain explicit expression

for C5s (x,lr,-z) . The argument is based on the property thatm , w

in this system, the idle periods are exponential distributed and

independent of the busy periods.

THEOREM 9:

(a) For O<jx{,<l, Re(Ir)VO, Re(z).<O, m?'O, w>O,

(6.1) Cmw (x,1Z,-z) AP s (X, ,O)/,'+ -Z) i

(b) For O<Ixll, Re( ))O, m>,O, w>,O,

(6.2) w (x,;-,O) -

rn+1 -ew rn-i- -eK + x((~d)i
X e '(8) + X 9Y331)g (x,.c,,C -iirn 0

+ 7 1 1 exp (ZK) is
'k -~ xe '('3)g Mx,3 Lr

2(C\+;1) (+ - -x) 2-ri L t +-1[+ -- x s) ',S

where

(D.44) 3 i~ 4 is the root of the equation

(6.3) -z~~()=0

in the domain Re(z)?0 and

(6.4) g +(XEi'z)= +--\()lj-z
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PROOF: If Ptl-tt = l-exp(-Xt) for t.0, then for all v>l,

i is independent of both and v E~exp(-zi -+-v vn adEep-i)v = / z

for Re(z).>O. Thus we obtain (6.1). (3.16) can now be written as

(6.5) W s  (x,5,z) =
m,w

m+l -zw..SwX _-zK'_s
x (X+ -z)e - xxP (,XO) - x(X+ -z)e Qms (x''z)

m ,w m ,w

X+.-z-XxT (z)

for 0'cx-,<l, Re(r)9O, Re(z)>'O, m>0,w>O. Now, since Ws  (x,-,z) ism,w

analytic in the domian Re(z)>O, letting z=e as defined in (D.44)

yields:

(6.6) P5  (x, O) xm+l e-w -K QS xm,w '  ,w

for 0< x!.l, Re( )>0, m>O, w>O. Also, from (5.19), we can write

5 m I
Qs (x,<,z) _ xm lepzKw)

Qm,w(+_ xm *exp(z(K-w))
(6.7) + + .+ X.. +

g (x,: z) g (x,;,O(0

, < gg(x,,,zz)

g+(Xo ,O) .+ I g (x,<,z) (",+:-z),

for 0<lxj.<l, Re(i)>.O, Re(z)>O, m 0, w>O. As g (xJz) takes the

form of (6.4), we let z-' in (6.7) and then eliminate QS (xE,:)m, w

from the resulting equation and (6.6) to prove (6.2).
4

Remarks:

(R.7) If we let K-- , (6.2) and ( 6.6) will become (25) in [12],

a well-known result for the residual busy period of the M/G/l queue.
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