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Estimation of Non-Centrality Parameter of a Chi-Square Distribution

XK. M. Lal Saxena & Xhursheed Alanm*

University of Nebraska § Clemson University

Abstract

The non-central chi-square distribution arises in various statis-
tical analyscs. The cstimation of the non-centrality parameter of
the distribution is of 1mportance in somc problems. In this paper
it is shown that the maximum likelihood estimutor is inadmissible
with respect to the squared error loss {unction. It is trivially
minimax since all estimators have unbounded maximum risk. A class
of estimators is given which are admissible and minimax for a modi-

o

fied i1oss function.
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, 1. Introduction. The non-central chi-square distribucion arises

: in various statistical analyses, such as, the analysis of variance
and Pearson's chi-square test for goodness of fit. A discussion of
various applicaticns of the distribution is given in Johnson § Xotz
({3), §28.9). Tor an example in electrical engineering, Spruill
(1979) has shown that the mecasurement of electrical power in a circuit

is related to the estimation of the non-centrality parameter of a

chi-square distribution.

Let X be distributed according to the non-central chi-square distribu;

[Np—

tion with p degrees of freedom and non-centrality paramcter equai
toc A . It is known that X-p is a uniformly minimum variance unbiased ;
cestimator (UMVUE) of X Perlman and Rasmussen (19735) have shown that

a class of estimators, given by

~
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Pz5,0<«<b< 4(p-1)

has uniformly smaller mcan squared error (MSE) than the UMVUE. Neff

and Strawderman (1976) have extended the class to the familv of estima-

ct

tors, given by

. - D
(1.2) SIX) = X-pe— 0 < a < %
A 3
and
. - .. ) b c
(1.3) X)) = Xeptgmr s p>>5
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where b and ¢ are positive numbers.
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It is interesting to observe that the UMVUE has smaller MS

than

the estimator X+p which is a Baves estimator with respect to an improper

.
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On the other hand, the UMVUE is itself inadmissible, as it is dominated

by (X-p) , the positive part of X-p, given by

o+ fo ’ Y ip
(1.4) (X-p)" =4
L X-p o, X > p.

Here and throughout the following, admissibility is tacitiy defined
with respect to the squared error (SE) loss function. Let ¢ - 0.

+ . . - .
We shall show that (X-c) 1is inadmissible for ¢ < p and that there

arc no two values of c > p for which onc estimator dominates the other.

)

Comparing the MSE of the estimators given by (1.2) and (1.3) with

. + . . . . N .
that of (X-p) near the origin, it is seen that nonc of them dominates
+ . . . . N
(X-p) . It is not known whcther any of these estimators is admissible.
On the other hand, we shall show that all estimators have unbounded

maximum risk (MSE). Therefore, all estimators are trivially minimax

rt
7]

with respect to the squared error loss. However, if the loss function

is changed to (SEY/{i+g) = L_, sav, where ¢ is a positive number,

-
o=

then there exists 3 class of estimators with bounded maximum risk.

we have derived a ciass of proper Baves estimatcers which are shown

to be mimimax with respect to L, and also admissible.

with respect to L. Aiso, we consider the derivation of the MLE in

-

the general case when the sample size is larger than 1.

14

The guestion of admissibility of the estimator (X-p) is of specia:

s
S

significance. Wg¢ have not been able to establish its admissibility
hY

{inadmissibility). However, we coniecture that the estimator is admissi-

ble.
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Admissible

minimax estimators. The following results pertain

to the non-central gamma distribution whose density function is givern
(=4 £ >

oAoX (X (p-1)/2

A

Ip_1 (2/3X), x> 0

where Ip(x) denotes the modified Bessel function with parameter p.

Let X be distributed according to the distribution (2.1) then 2X

is distributed according to the chi-square distribution with 2p degrees
of freedom and non-centrality parameter 2X.

We consider an a'priori distribution for X which 1s a mixture
of gamma distributions witn v degrees of freedom and scale factor

beta distribution,

(&]
-
[

o

ad & = (1+c) ! being distributed according to

given by the density function
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denote the confluent hypergeometric function, and let

a+r)T (b+r) xF

F(a,bjc,d;x) = Ec+r)f‘(d+r) T!

r

0t~ R

I
T
0 -
denote the generalized hypergeometric function. The posterior mean
of X 1is given by

1

N 1
(2.3) A= (v{ &(l-e)vﬁ(v+1,p;Sx)h(G)de)/(g (1-3) "% (v,p33x)h(3
/0 0

(4 F)
[—
[aR
XD
~

F(v+l,atl;p,a+23+uv+1;X) / F(v,a;p,a+f+v;X).

The posterior mean given by (2.3) is a Bayes estimator of X with respect

to the squared crror loss and the given prior distribution. The Bayes

estimator is admissible since the prior distribution assigns positive

bt

probubility measure to every open interval.
From (2.3) and the formula for the asymptotic expansion 0f the

encralized hypergeometric function (see e.g., Wright [8j) the value

(1]

~
~

of v for iarge X is given by

~ e M2 -2
(2.4) vo= X 11—{— + 07 .

From (2.1) it is secen that the distribution of X is stochastically

~~

increasing in A, and its moments arc given by EXsp+A, var{:x)=p+2.

ey b T (p-r) -\, .
E(X ") = £(prr) Ay {p-1,p5%)
F(p)

- 1 R e 3 -r-I " . - ol

=x +0Q ) for large values of A,
Thereiore,

0 2 L -1/2

(2.3) MSEX = p+dd ®+2) +0(% 1/'}.
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Consider a gamma prior for A , given by the density function (2.2
with ¢ being a fixed positive number. The posterior mean with respect

te this distribution is given by

- vl ,pX/(1+2))
T (+c)e(v,piX/ (1))

~

(=4

[
[0

o .

- B X for v =p
(1+c)”

From (2.6) we have

h g : ' -4 - 2 - 2
(2.7) MSE §, = (1+c) “{p+2:+{2+c) " (p-cr)7]
and
» 0
, l onn s I S sl N2
(2.8) i (MSEZ g (2)dxr = (1+c) [p+R + pf2+c)?]

Since ¢_ 1s a Baves estimator and p(c) - = as ¢ ~ 0, it {ocliows that

mators hnave unbounded maximum risk, and are therefore triviaily
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minimax with respect to the squarcd
minimax and admissible.

As shown above, all estimators have unbounded maximum risX with
respect ©o the squared error loss. Thevefore, we consider the 1ass

function L_ and s new prior distribution for 1

-

given by the density
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The inequality in (2.9) shows that (X-¢) is inadmisible for ¢ < p.

1
From (2.10) it is seen that MC(R) is negative for ¢ < p and that it
tends to 0 as ¢ + «. The quantity inside the square bracket on the
right hand side of (2.:1) is negative for i 1 and 1is increasiag in

2
¢ (by lemma A2 of the Appendix), tending to (X-1)/%7 as ¢ =+ =.

1
Therefore MC(A) is concave in ¢ for 2 < 1 and for 2 > 1 it is first

concave then convex as ¢ varies from 0 to=. It follows that for

each & there is a unique value of for which M_(:
- * r {\-

~

is winimized (given by V {3)=0) ari ; 8 to =, whert
4 < 1. Moreover, for ea a value
equal to RC, say, such t Ne 1 Mé(O) <0
Thus there exists X MC{RC} =
min

GET

< From the preceding results we have that the

inequality MC . M. holds f A< 1 and that M_ i
-

b

I3
Y £

summarize
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The above reclation shows that A - 0 and NLIIN R%l as x » p + 0.

X-p
Then from (3.7) we have that %% - R%l » @S X =+ p+0. Let Xg denote
- o}
the smallest value of x > p for which %% = 0. Then d § < 0 for
’ dx” ;2
X=X, On the other hand, from (3.8) it is seen that é—% > 0
dx”

4t X = Xq. Therefore, %% > 0 for all x > p. Hence, from (3.7)

*
we have that A < xX-p+1.
Let xo denote the smallest value of x > p for which %% = 1.From

(3.9) the value of x = xU is given by

(3.9) X =\ (e -1)

or

(3.10)  2A = 1-p + ((2x-p)° - 2p+1)? .
Therefore

(3.11) 1-2(A-x+p) = 2x-p - ((Zx-p)2 - 2p+l)%

>0 forp > 1.
dy _ -

Putting g2 = 1 in (3.8) and using (3.8) we get, after simplification
2 '\12} '
(3.12)  x(A-x+#p)°~ 5 = (3-x+p)(1-2X1+2x-2p)
dx”

v

0 by (3.3) and (3.11) .
, 12y 0
Since %% - p+l >1 as x » p+0, it follows that L—% 0 = )

dX dx
5.12). Therefore i< 1 for all x > p. Hence,

contrary to
* + o, . . . :
A - (x-p) 1is increcasing in x. From this result it follows that

*

A is inadmissible, as shown below.

Let p > i. We have

+

+* *
EGy -(x-p) ) +(x-p) -2

-, * + * +
E(r -(x-n) ) E(v +(x-0) -24)

*
(3.13) MSE ) - MSE (x-p)

I

0

v

i

ARSI




The first inequality ir (3.12) follows from the fact that each
of the quantities k* - (x-p)+ and A* + (x—p)+ - 2\ 1s increasing
in x. Te second inequality follows from (3.3) and from

E(A +(x-p}*-20) > 2E(x-p-A) = 0.

Thus, the MLE is inadmissible, being dominated by the estimator

(x-p)+.

From the asymptotic expansion of the Bessel function we can

show that for large X

s

1
3

=X-p ¢+ +o(:l{)-

Hence, for large values of )

*
MSE A = 2x + 0(1).

o it b

*
) Therefore, A 1is minimax with respect to L_ for sufficiently large

i
.
o, s i,

values of = We summarize the preceding results ia the following

e

B " W,

Theoren.,

~

Theorem 3.1. The maximum likclihood estimator \ .s uniquely

determined by (3.1) for x > p and is equal to 0 fer x < p. Moreover,
“«
X-p < v < X-p+1l. The MLE is inadmissible, being dominated by
. + . - . .
(X-p) , aend is minimax with respect to Ls for sufficiently large

values of o,
Theorem 3.1 pertains to the MLE for a sample of size n=1.
We consider now the case n > 1. Let Xyoeee Xy be the sample values,

K3

and let Ay denote the MLE. The likelihood equation for the MLE

is given by




A Wi e, 1

(123

n X,
(3.14)  n =] —— (1{2/X) / T _; (2/3%;))
i=1 /AX; P : p :

Each term of the summation on the right hand side of (3.14) is
monotone decreasing in A by Lemma A 2 and the maximum value of
the sum corresponding to XA = 0 is equal to nX/p, where

1

— n *
X = = Y Xy denotes the sample mean. Therefore, A = 0 for
1=1

- - -~ * » ~ 13 0
X « p and for x > p the value of An is uniquely given as a solution
. of (3.14).

From (3.14) and Lemma A 1 we have

[N
7~
=1
R e Joo
g

1
n/x = § X1 (2YER)/1. 0, (2/3X)
<1 i ’p i’ p- i
1=
n 1 +1(2¢Ax.) -1
=1 R (2= 2 )
i=t ¢ f,\.\-i I (273X
i i
2 o — n th o e = - -1
> () VX)) (22 4+ § VX T, (2R /1 (2VXx;)) .
=1 b A I=1 l P
by Jensen's inequality
n , n _ i
(] ADTER e ) KT TR/ R T
1.‘_'1 V/:\ l=1 p !_1
by Lemma A 3




Theretore,
* 112
(3.16) AL > (H )} /E:) - p.
H i

The inequalities (3.15) giving the upper and lower bounds on

™~

*
values of An are uscful for the computation of the MLF.
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Appendix

Let QD(x) = 1 (x)/ID_#x) denote the ratio of two Bessel functions.

o0 i e e 08

Lemma A 1. Q (x) <1 for p>1and x > 0

T 'O

Proof: TFrom the series expansion of the modified Bessel function,

the inequality Qp(x) < 1 reduces to

() R N O
r=0 riT(p+r) =2 =0 rir(ptr+l
Denoting the left hand side of (1) by Z a_, where 2 denotes
r=1

the (r+1)th term of the series, we have

[+
o 1 1 1
10 a, =735 * 3 (a0+a1) * 3 (al+a2)
r:’:
1 o
) réo (ap*ayyq)
%
= rzo(a ar+1)-
2r+l H

x .2
- Z [ (x°/4) ]

0 T:(r+l)!v(p+r)T(p+r+l)

x & (/"
> = ? ——-—fr—-——————-— >1.
= 2 L, TiD{p*r=l) forp 21
r=0 -
Lemma A\ 2. xQn(x) is increasing in x and Qp(x}/x is decreasing
i

in X.

Proof: We have

« 2 T o ?
- x“, = (x"/4) roo (xX°/4T
xQ {x) = [(5 —a ] / ) = N

]
[
2]

Faun
[
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where J denotes a dJdiscrete rancom variable whose distribution is given
by

CSION (x2/pm

S 1
T!T (p+T) (mZO miT(p+r)

P{J=1} y &, r=0,1,...,

Since the distribution of J has monotone likelihood ratio property in
X, it follows that E(J)is increasing in x. That Qp(x)/x is decreasing

in x follows from the preceding relation and the recurrence relation

N2
I, (0 - Ipe (9 = 21,

i

; 1 >
Lemma A 3. Qp(x) > Qp+1(x) for all p and x 0.
Proof: We have

(2) [P/ TP ) = g () /x

The derivative with respect to x of the quantity on the left hand side

of (2) is negative, since Qp(x)/x is decrcasing in x by Lemma A 2

Thercfore
-p d . -p+l (Y s - PFL 9P N
X Ip(x) dx(k Ip-l(k))' X Ip_l(x; dx(k Ip(x)J.
e
¢ ¢ 3
Ip(k)lp(x) > Ip_l(x)1p+1(x,
by Formula 9.6.28 of Abramowitz and Stegun [1]. Hence

Q,(x) > Qup ()
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