
- c3LEYEL'

DEPARTMENT

MATH EMATIC AL

CLEMSON UNIVERSITY
Clemson, South Carolina

COD

DISTRIBUTIONSTATEMIENT A%DTICApproved for public roleasr;Aft ELEC EDistribution Unlimiled

R 2 8 1980 
04206



FSTIATIO OFTHE NON;CENTIPALITY
PARMEEROF A- HI-S QUARE

K .Lal1 S axena

Clemson University O T IO
APR 28 1980~

Technical Repb-rt #330 S LE T
J nu. i-8 0

Research SupTported in part by

'(IApproved for public release;

distribution unlimited. /



Esti-mation of Non-Centrality Parameter of: a Chi-Square Distribution
K. M. Lal Saxena Khursheed Alaii-,i*

University of Nebraska Clemson University

A'bstract

The non-central chi-squaro distribution arises in various statis-

tical analyses. The estimation o[f the non-centrality parameter ofL

the distribution is of importance in some probiems. In this paper

-it is shown that the maximum likelihood estim.a.tor is inadmissible

with respect to the squared error loss function. It is trivially

minimax since all estimators have unbounded maximum-i risk. A class

o estiimators is given which are admissible and ii max tor a mod; -

fied ioss function.

The author's work wssupported by the COEfice of Naval Research

in d-r Contract N00014- 7S-c-041f5

ANI1S 1970) Sub- oct Cla-ss if icat ion 62C15.

;,CV h.olrs an11d nhraSes Chi-square Distribution, Non-Centrality

Pa ramc t c - Max imum Likelihood, AdmissiDle and Mini,,ax Esti-mators. I
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itroduction. The non-centi-al chi-s~quare distribution -arises

in various statistical analyses, such as, the analysis of variance

and Pearson's chi-square test for goodness of fit. A discussion oi

various applications of the distribution is given in Johnson & Kotz

([31, §28.9). For an example in electrical engineering, Spruill

(1979) has shown that the measurement of electrical power- in a circuit

is related to the estimat-ion of the non-centrality parameter of a

chi-square distribution.

Let bedistibued according to the non-central chi-square distrib

tion with p) degrees of freedomn and non-centrality Darameter equal

to x.It is known that X-p is a uniformly minimum-i variance unbiased

es timator (UJMVUE) of A. Perlman and Rasmnussen (1975 have shown that

a class of est-imators, given by

(1.) ~ X) 5, 0 < b < 4(p-r)

has uniformly smaller moan souared error (NISE) than the UNMVUE. Neff_
and Stra-Ac ran (1976) have extended the class to the amil of eta-

tors givren bv

'1 <

and

X+c C W

wher b nd- c a re positive numbers.

I t is 11 t 0re stin . t o ob seCrve that the IJMVUE has sriall1e r NISE t hin

t he estimiator X+p w.hich is a iBavcs estilmator with resnpect to an iunDroper

rio, r: is tri buti-on i e e dec'a z( 1 ~)4)) and Per iu mn a n RaSmius s on ~'7)

A
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On rnothr and to MVUE is itself idisieas it is dominatedInteohrhnteU
byv (X-p), the positive part -of 'X-p, given by

I _ - ~~(1.4) (~) = ~
V

Here and throughout the following, admissibility is tacitly defined

with respect to the squared error (SE) loss function. Let c 0.

We shall show that (X-c) is inadmissible for c <P and that there

are no tw.o values of c > p for which one esti-mator domaiinates the other. -

Coprigthe "ISE of the estimators given b'(1.2) and (1.3) with

that of (X-p)+ near the origin, it is seen that none of them~ dominates

('(i) ~ t is not known whcther any of these estimators is admissible.

On the other hand, we shall show that all estimators have unbounded

maxium risk (NISE) . Therefore, 4,ll estimators -:;-o tIal :nnia

wi th sqe ro.respect to the sqaredero loss. However, if the loss f un ctio n

s canedto(S)/(-*~)= ,,say, where r is positive number, -E

then there- existsa class of esti';ators ..i-th bounded maximu- rIsk.

We lhave Jtcrivv-d a c of, 17rop er Bayes e s t ia t crs wh c,, ar -2S Iow-

to 0 in~m'fl t rospecct to 1 , ad aliso "~iss ib:

M\er(1967) ha osideered the maximum likelihood esti mator LE

orp = eshow that the MILE is inadmiSSibl fo D 1ut iimax

With reCspect to L. Also,0,!we consider the derivation of the NILE inL

thegeerl ~ewhn hesapl SZO i lrger than 1. 1A

The ciuestion of admiSsibility of the estiinaor (X-p) Is of specia I
Signi i Cn ce We have not been able to establish its admissibility

o-.%miss il v e Ii~ve c - e oconjc tu rc th at thIne e stimaT-o r is admlii ss-
nai m c. l -
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2. dmissible minLnmax estimators. The following results pertain

to the non-ccntr l gYamma distribution whose density function is given,

by

r=O

.(p- 1 )!2
IA p- (2/ JI), x >0

w.here I (x) denotes the modified Bessel function with parameter p.

Lot X be distributed according to the distribution (2.1) then 2X

isditributed according to the chi-sqiuare distribution with 2p degrees

of freedom and non-centrality parameter 2*1

We consider an a'priori distribution for X which is a mixture

of gamma distributions with v degrees of free-dom and scale factor

cand =(l+c) -lbeing distributed according to a beta distribution,

given by the densitv function

V V

Giv-n c, the condi4tional densit- f-unction of is given by

v 'j-1 cX
1-.i ~) A 0

Let

x a aa-I) x

~(.ib~x)= I+ x - bb+1)~T.

9IA
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denote the confluent hypergeometric function, and let

F(a,b;c,d;x) I i(r)b+r x
M-r= 7c +rL(r) r:

denote the generalized hypergeometric function. The posterior mean

of X is given by

(2.3) (4 le)(vlpxhed)/ (l)Vpxhed)
/0 )

F(v+l,a+l;p,cc+I'3%.+l;X) /F(v,a;p,a+r^i-v;X).

The posterior mean given by (2.3) is a Bayes estimator of Xwith resDect

to the squared error loss and the given prior distribution. The Bayes

estimator is admissible since the prior distribution assigns positive

probability measure to every open interval.

From (2.3) and the formula for the asymptotic expansion of the

generalized hypergeomnetric function (see e.g. , Wri ght [8j) the value

of for 'large X is given by

(2.4) - vI r~ 0(x2 )

iro., (2.1) it isseen that the distribution of X is stochastically

ji :creas i g 4in Aand tsmoments are given by EX=pi vr:) p2

F(r L L ) KRp

- ~ --r-l for large values of.=

There fore, -

(2.) SEAk p+43 *+2-N +O(A~2



1Consider a gammna prior ihfor Agiven by the density function (2.2)

with c being a fixed positive number. The Posterior mean with respect

to this distribution is given by_

( .6) 0 _ _ _ _ _ _ _ _ _

P_+ Xfor v =p

From (2.6) we have

(.7) MSE 'S (l+c) r 2;4.('+C)(fP-CA)

and

-t I S A

~0

o o(c) , say

SiLnce is a Baves estimzator and p(c) -~as c -0, it flosta
p

lil estimators have unbounded maximum riSk, and are therefore trivia'iV,

:nimay with 'respect to the squared ;2rror. loss. He nce, a nd are

n in iniax a nd a dis ib.

As shown above, all estimators have unbounded maximum risk with

resocct to tic soluared error loss. Theczorc, we consider thei lossU

.u nc t ion 1, a nd a new prior (Iistribution for \,given by the density

functi!on k(+) X, here k i norminzin g fac-tor, equal t

,+C Clearlyv given by (2.6), is Bayes with reSDOCt toj L

-nd the new prior distribution, with respect 1-o which the averag-2

loss is ec;ual to S'c)(~ ) Sice



-asc-

P+C 0

we conclude that anv estimator whose maxi:num riskl- is bounded above

by 2 is mninmnx with respect to L_. From (2.3) it is -Seen that

-he maxcimumi risk of is~ bounded above bx for sufficienly large

aues of ~.Therefore, Xis minimax with respect to L.for sufl-

fCiciently large values of Z. We summarize the preceding results

in the following theorem.

Theorem 2.1. The esti.ao A =e1 y(.) samsil

and ininimax .with respe)-ct to L_. for sufficientlyv larze values of s

'We consider now. the class of estimators (x-c)l ,c 0. let

A~ denote the subclass for which c > n. KWe fin d, a s sh own below,

han Ix-~ is inadr.missible Cor c p idt:t\ -:u

in the sense that there are2 no two valuies ol. c I o r which one esti-mator

dominates the other. 'Let M. (1i) denote the mnean squared error of

c'I, zandCA let nrime denote its5 derivative- wit;h re snect to c.

ile nave

~~2A ' I( - .(cP) )f xd

0 .Ii'or c < p

J C

I Ij
) = 2(/ ~~- (2vT))T
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The inequality in (2.9) snows that (X-c) is Jinadmisible for c < D.

Frm(2.10) i1t is seen th~at M ()is negaitive for c D and that It
C Z

tends to 0 as c The quantity inside the square bracket on the

right hand side of (2.11) i;:s negative for <~ 1 and is increasing in

c (by ltrn:na A2 of the Appendix), tending to (Xl/7ascFTherefore NI (X) is concave in c for ;~< 1 and for X > 1 it is first

concave then convex as c varies from 0 to=~. It follows that for

each there is a unique value of c c c(p), say, for which Mr)

Ts_ ilje d (give by Nc (A)=O) as c varies from n to a, whert.

A ~or A< 1.Moreover, for each c > p there exists a value[f N 1, equal to Nc say, such that Mcif,)"A 0 , s inLc e Mc (0) < 0

Uaid M ( ?= (c-p) 0. Thus there exists a Asuch that M~( X
c c c1 'Let c >c>D. From thie preceding, results -..e ha-.e- that the

inequait '~~ holds for iand that MLc<M 0 iA)I er,_ lore neit-her of -he estimatorst Xc) I Z1 -c dL!fLi~a

Le t h(\, T :c~~ c() ti asy to snow- that h ctmF and h, T!) i herI-fo rCe- t :een tnc es t -i t or s AXc n X-D
neither J~I. nates t he -.--her foI n c>n

F" o:n 2.9) i t is seen that the mnaximumn risk of fX-c)# with

respect :-L iS bocu nd ed ab o ve b v 2 for s u fcien tly large values

Thorefore (X -c) is -- inimax -. i-th rosnect to L . We s umma r;:

the~reedi ~zresltsin the following theoroen.

Theorem 2.2 The e2stimator X-c is :LS i~a for c > 0 1
with resnect to L for Su~ficient~v ir-e vzlues of £.it is inaeaai U

sio b c or C -D~. (ICci ~ est-itors A is :rreaucible. 4



~. Maximum likcelihood estimator. Some pronertiles of tne

Bessel f'Unction are gvnin the Appendix. The given result will

-- be used below to show the inadmissibility and the mimimax prop~erty

of the MLE. Equating to 0 the derivative with respect to 7' of

the density furnction given by (2.1), we a--t

Let X doenote the %IL E. The ouantity on the ri4ght handI side of:

(31 smonotone decreasiLng in X yLmaA fAppendix, anda

tends to x/p as X 0. Therfo ore , 7 U for x < p, and for x > p

i t is uniquely given as a solution of 3.)

From (3.1), 1e hve

p pl

p 7-
AXA

/p
y~X

The above --oua 11Y follos fromi Lemmna .3 rm*

t- olowst'atx, an-' -Im h

I ast cuuit- -v it fol lows that X x-o. in-is we hn-ve theine st

Xn peuI e -0- )

-,A



Let 7- ;7'.\X) and write X~ -for .Then

(34) &.d

nd from(31

p

or

S(Z-1/4 )r =

r r (p+r)r! = !?prI

Differentl.iating both sides of (3.5) with respect to x, we ge,-t after

(3.6) d. ___

Hence from (3.)I Jnd f(3.6) wegt

dx 'AX+~)

D- rc:-rent i atin ('3.) with res-pect to x we get

23.) = -(2

Cn sIU e r t mc h c 1.ior -f as a "unctioni of x. F romn thei secondl

equa ± t. in (3.) -we have

p



The above relation shows that X\ 0 andP- asx p 0x-p

Then from (3.7) we have that - ~ as X - p+0. Let xdenote

the smallest value of x > p for which d\-0. Then - <.~ 0 for

A 0 ' On the other hand, from (3.8) it is seen that - >0

0 dx-

we have that X~ < xy-p+l.

Let denote the smallest value of x > p for wh ich 1. ro

(3. 9) the value of x x xis given by

s_ M*

or

(3.10) 2X =1-p +((2x-p) - Zp+l)2

The ref ore

(3.11) 1-(X-x+p) =2x-p -((2x-p)' 2 Zp+l)l

Putting- 1 in (3.8) and using (3.8) we get, aftr sipiicto

(3.12) Y(X-X+p) C~xp(-X2-p
dx W

>0 by (3.3) and (3.11)

___

clx A1
contrary to (3.12). Therezore > 1 for all x > p). H,-,n-e,

A (x -p) 4  is increasing inx. From this result j- followvs thatA

Ais; inadmissible, as shown bel 1ow.

Let p > LWe have

'3.13) MSE~, MSE (x-p)) =E,-(x-p) +( +(x-p))-k

> 0



i
A__ Thc first inequality in (3.12) follows from the fact that each

* + * +
of the quantities ,\ - (x-p) and X + (x-p) - 2,\ is increasing

in x. Te second inequality follows from (3.3) and from

E(X *(x-p)+-2X) > 2E(x-p-X) = 0.1 Thus, the MLE is inadmissible, being dominated by the estimator
" (x'P)+

From the asymptotic expansion of the Bessel function we can

show that for large xI
P +x- +

Hence, for large values of X

MSE X = 2X + 0(l)

" Therefore, X is minimax with respect to L for sufficiently large

values of We summarize the preceding results ia the following

) Theo rem.

Theorem 3.1. The maximum likelihood estimator \ is uniquely

determined by (3.1) for x > p and is equal to 0 for x < p. Moreover,

X-p < \ X-p+l. The NILE is inadmissible, being dominated by

('-D) , and is minimax with respect to L for sufficiently large

SauCs of.

Theorem 3.1 pertains to the NILE for a sample of size n=.

We consider now the case n > 1. Let xl,...,xn be the sample values,
*n

aj -and let ' denote the NILE. The likelihood equation for the NILE

____ is given by

: 0

° §
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n x,
(3.14) n = 2 (2x) / I (2V--.7)

/7 =

Each term of the summation on the right hand side of (3.14) is ]

monotone decreasing in X by Lemma A 2 and the maximum value of

the sum corresponding to X 0 is equal to nR-/p, where
=1 ' n  *
n x. denotes the sample mean. Therefore, Xn 0 for

x _ p and for x > p the value of X is uniquely given as a solution

of (3.14).

From (3.14) and Lemma A 1 we have

n

Therefore

n(.1) 1
; i=l

For a lower bound on the value of An, we have from (3.14)

nn

ni7= 'x. 1 , (2/TT.)/I (2/W-

n I (Z7) -1N-T ,-- 1 D+I~

n . n

> -iT) (! + Y_ v'.- I (V¢77.,.)1I (2/.) -i1

CI /j Ip+1(2vz- lp V-1-

ili v i=I ll"

by Jensen's inequality

n n /X) ( + = ' ,,'-. i p1)I V2 != ,;7, =! p P-I

by Lemma A 3

li
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nI

TherefLore,

(3.16) > 2

n C-n /T) -p

The inequalities (3.15) giving the upper and lower bounds on the

values of Xn are useful for the computation of the 'ILP.

nI
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Appendix

ZLet Q (x) =I (x)/T .(x) denote the ratio of two Bessel functions.

Lemma A 1. QP (x) < I for p > 1 and x > 0

Proof: From the series expansion of the modified Bessel function,

jthe inequality Q(x) < 1 reduces to

(1)-x/4) r (~ -(/4)rliii - r=0 rrppr) -2 r

Denoting the left hand side of (1) by r, wh r eoe
r1 r

the (r+l)th term of the series, wer have

r0 2-

rr=0

> (a a )

r r 4) rl

>. (a /4 a

2r2

>0 f!~ ~ - )or P > 1. 4

Lemma A 2. XQ0 (x) is increasing in x and Q (x) /x is decreasing
p p

in x. S
Proof: We have

xQ(x -K+) (x /4). (x-/4)'
p Forl) r= r

Zr=O
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where J denotes a discrete rancom vaibewoeditiuini rivenI by
P{J~} =(x /4 )T (x /4) -1 =~,

r t(p+r) MOM P

Since the distribution of J has monotone like-lihood ratio property in

x, it follows that E(J)is increasing in x. That Q (x)/x is decreasing
p.

in x follows from t-he p~receding relation and the recurrence relation

S (X) I~ (X) W ()
D- + 1 x P

Lemma A 3. Q (X) > Q +(x) for all p and x > 0.
p p~

Proof: We have

(2) [(x I (x)/(x lp-(x,)) =Qp(x)/x.

p

The derivative with respect to x of the quantity on the left hand side

-of (2) is negative, since Q (x)/x is decreasing in x by Lemma A 2
p

TherefLore

-Id -P~l CL P

xI(x) -(x - I (x) > X-~ 1p_(x),LxPl~)

p pp-

by Fonimula 9.6.28 of Abramowitz and Stegun [1]. Hence

Q W p+l(
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