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ESTIMATION OF MULTINOMIAL PROBABILTIES

Khursheed Alam*

Clemson University

ABSTRACT

This paper deals with the estimation of the parameters
(cell probabilities) of a multinomial distribution. The maximum
likelihood estimator (MLE) is known to be minimax and admissible
with respect to a guadratic loss function. It is shown that the
MLE is inadmissible with respect to a non-quadratic loss function.
For the parameters of m multinomial distributions being esti-
mated simultaneously and the loss being quadratic, an estimator
is given which is shown to have smaller risk than the MLE for

all but a small subset of the parameter space, when m is large.
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1. Introduction and main results. Let x = (xl,...,xk)

be distributed according to a multinomial distribution M(x,p,n)

with k cells, where p = (pl,...,pk)', 0 < p; < l1 (i =1,...,k),

vk

k . . -
. li=1 Py = 1 and Zi=l X, = n. For estimating p we consider

1 <

below two loss functions, given by

_ vk < 2
(1.1) L(ér?) = n)‘i=l ('3i pl)
< ck . 2
(1.2) L*(3,p) = n)i.; (3;-p;) " /py
F
f where §, = di(x) and § = (61,...,dk) denotes an estimator of p.
& - < =
! Let 3° = x/n denote the maximum likelihood estimator (MLE) whose
risk is given by
(1.3) R(§°,P) =E L(§°,P)
.
~ ! _ ck 2
}F = lmliar Py
(1.4) R(§°,p) =& L*(5°,g)
=k -1
First we consider the loss (1.2). The covariance matrix
. . -~ = - = - . o+ .
of X 1s given by (“ij)’ where Oij np;p., 1 # 3 and
i 51 < npi(l-pi). Clearly, : is a singular matrix. A genera-

lized inverse of . is given by a diagonal matrix _

whose ith diagonal element is equal to (npi)_l, as it can

o

be verified that ;, ; , = ;. Hence, the loss function (1.

sty SR




(2)

represents the Mahalanobis distance function n(é—g)‘z (;-g). It

is also seen that Pearson's chi-square test statistic used for

testing goodness of fit, represents the loss due to the MLE.
Olkin and Sobel (1978) have shown that the maximum likelihood

estimator :° is admissible for estimating o with reswect to the

¢

loss function (1.2), among all estimators 2 for which

(1.5) TR 3, = 1.

Since the risk of §° is constant, as given by (l1.4), the MLE is
also minimax among those estimators. If the condition (1.5) is
removed then §° 1s inadmissible. This is shown, as follows, by
finding an estimator :* which dominates ie.

The Dirichlet distribution is a conjugate prior distribution
for the parameter of a multinomial distributicn. Suppcse that ?
is distributed a' priori according to the Dirichlet distribution

D(p,.), given by the density function

(1.6) £, = “E o e TH 0L
h (T ’
A Bayes =stimator of p with respect to (1.6) and the loss func-

tion (1.2 is :*, given by

’ S > 1




By direct computation we obtain the risk of :*, given by

She Al TaoE Lo T

1-(1-p) "
. _ -2 2 <k Pj _
(1.8) R*(3*,p) = n{n+kv-1) [(v=1) Li=1 + 2nk(,-1)
- - Py
-1 . vk n
+ n(n+k-1)] - 2n(n+kv-1) [(v-1) Li:l(l—(l—pi) ) + nl
+ n.
For v = 1, (1.8) reduces to
. _ n(k-1)
R¥(5%/0) = mpoT
< R*($5°,p)
For v <« 1 we have from (1.8)
: - 2 -2, 2 -
(1.9) R*(g*,p) <n (n+kv-=1) [(k{v=1) + 2k {(,=1) + (n+k-1)]
- 20n2(n+kv—l)-l + n
= n? (n+kv-1) "2 (kv2+n-1) - 2.n° (n+ko-1) "% + n. ;

The gquantity on the right hand side of the equality in (1.9) is

egual to %é%;%L for v = 1. Therefore, R*(:*,p) « R*(§°,p) for ;
A
1 -- 7. 1, where 7 is a positive number depending on the values

s M,

of n and k. Thus 3* dominates 4° for certain values of v. XNote .
that :* does not satisfy the condition (1.5). ©Note also that :* ¥

is admissible, being a Bayes estimator. j




Next, we consider the quadratic loss given by (l1.1). Johnson

(1971) and Alam (1978) have shown that the maximum likelihood

A At

estimator is admissible with respect to the guadratic loss.

Steinhaus (1957) and Trybula (1958) have obtained minimax estima-

tors for the more general loss function of the form 5?:1 ci(si—pi)z,

§=l Si = 1. It should be observed that

and estimator § which does not satisfy the condition (1.5) is

where ¢, are constants and }

inadmissible with respect to the loss function given by (1.1),

since the projection of 3 on the hyperplane Z§=1 X; = 1l gives an

estimator satisfying (1.5) for which the loss is smaller.
We consider below the problem of estimating simultaneously

the parameters of m > 2 multinomial populations. Let TyreeeaT

m

denote the m populations, and let (pil""’pik) denote the vector

of cell probabilities associated with 7., where z§=l Py

sample of n observations is taken from each population. Let x;

denote the sample frequency associated with the jth cell of =

m ck . 2
i=1 Ly=1 (9357P34)

The loss is given by nz equal to n times the

denotes an estimate of o

sum of squared errors, where 61 Piyr

J
depending on the entire set of observations, even though the set
of observations from Ty alone seems to be relevant. A sort of 3

empirical Bayes estimator for the given problem is obtained, as

follows.

Without confusing with the notation used above, we shall
denote below the MLE and a Bayes estimator for the problem of g

simultaneous estimation by 3° and 3*, respectively, and let
Tm '\'k 2 ck 2 ; i
.'..j )

= (Pyyre~esPpy)- Lety = 10 0 I Xis0 93 = L 7 Ly Pys




= xij/n and its risk is

and q = Z?=l q;- The MLE is given by 5§j

given by

{1.10) R(5§°,p) = qg.
A Bayes estimator with respect to the Dirichlet prior (1.6) is

given by

(1.11) «5;3. = (xij+\))/(n+kv)

and by direct computation its risk is given by

(1.12) R(3%,p) = n(n+kv) 2 [(n-v2k?)q + vZmk (k=1)].

A value of v minimizing (1.12) is given by

(1.13) 5 = q(m(k~1)-kq) "+
for which
j
R(3*,p) = 25 < R(3°,p). |
T n+kv T i
+
Since  is unknown, the above ineguality suggests that we might use
But an esti-

for ~. But v is also unknown, since g is unknown.

. 2 . . .
given by (mn“-y)/n(n-1) since its expected value 1is

(1.13) we get

-

3

mate of g is

Substituting the estimate for g in

T e —

equal to g.

after simplification

2
4
oo mn“-v

(1.14) o= ky—mn(n4§-l)

J--.;‘----n--"""""""""------....r-




(6)

Since the value of * given by (l.14) is negative for certain :

values of y, we make a.minor modification and finally come up

with a value of v = ), say, given by
2
(1.15) A= 95—215
ky~-mn

The empirical Bayes estimator is obtained from 3* by substi-
tuting A for v in (1.11). We shall denote it by J**,

It is shown below in Section 2 that R(é**,g) < R(§°,p)

for all values of p for which

(1.16) g > 2nt/m-1)%°, mo>n

! where 0 < 3 < é .  That 1is, §** has smaller risk than §° for
sufficiently large values of m, except for a set of values of
p approaching the null set as m ~ =. Johnson (1971) has shown
that there is no "Stein effect", that is, there is nc estima-
tor which dominates the MLE for a given value of m. This is
essentially for the reason, as Johnson points out, that the

risk of the MLE is small near the boundary of the parameter

space, given by g = 0. A numerical comparison of the risk of

s** and 3° is given in Section 3.
The above results are summarized in the following "y

thecrems. N




Thecrem 1.l. The MLE is admissible with respect to (1.2)

among all estimators satisfying the condition (1.3) but inadnmis-
sible among all estimatcrs and is dominated by :*, ¢given by

(L.7).

Theorem 1.2. R(3** ,p) < R(3°,p) for all values of p for

-~ ~ ~

which (1.16) holds, where 3$** is given by (1.11) with the value

of ., given by ({1.15).

2. Proof of Theorem 1.2. First we give a preliminary result

which will be used in the sequel. Let

(2.1) z = (L+kn) "t
, 2
Xv-mn .
= (x-1)mn°
We have
= - _ (a-1 3 q
E{z)y =1 (T) (k—i-) m
Note that % < i%i . As
-k 2 ~R 2 .2 ~% 2,2
. y o= D - = ) )
var <—]=l X 5 “(~]=l le) (zZ Sj=1 ¥ j)
9 .y 2 ~X 2 .2
< n” E(;f=, xi_) - Z XL




we have

(2.2)

(2.3) n

given after simplification Ly

{A

(8)

- (Ell)(_ﬁ_)z .

n k-1

y

m Tk L kk 2
Eli=y 31 G157Pyy)
. 2 Ly —2 -m ~k
E{y+2mni+mkA”) (n+kx) - 24i=l Zj=l pijxlq
_l N B -
(n+ki) - 2mXi(n+ki) + m - g
2 -2 -m -k =
E(y+2mnA+mkl 7) (n+ki) - 2(;_i=l Ly=1 ~1j“!l]

E(n+k)\)_l - 2m E A (n+k))

\ -

-7
E[ (y+2mui+mks ) (n+ki ) 2 = 2n(m-q) (n+k:)

1

-2mi(n+ki) T+ m - gl

Ely-mk1?) (n+k1) "2

2 2
z _ z

-1 ) YT

2nz -
l+{(n-1)z

+ (g-m(Ehy) ¢

~ 2n{m=-g) (n+k") L, m o~ 3]

ey s gy




IR &

k=1 n 2 n
+m(T)(l+ (———T) ) - 1(l+rT:f
el
T k- : P d:
2mn (25 (Sh) | EELHAx
JO (1+{n-1)x)
fl
n  2,k-1 k-1 _ g, ! PFi{x)dx _ «
+ m((ﬁrf) ( k )+ 2n{ i o) 1+(n-1)x n-1
0
where F deno:tes the cummulative distribution function of z. The
ineguality in (2.3) 1is derived from the fact that
"'{Tk - ok 2 5 . . . ~k 2 . 3
Eriyay fijxijfbj=l i3 is nondecreasing in Ly=1 Xij' This 1is

shown by »roving it for k

2 bv direct computation of the expectad

value, and recursively for k > 2.

derived through integraticn by parts.

The last step in {2.3) is
From (1.10) and (2.3} we
rl
(3%%,p) - R(3°,p)) < 2 (2o (Ahy | XEdex
N - T ’ Jo (I+(n=1)x)
(1
k- < - 3 g, 1 1
s B f B vandE - g EEr o Hn .
! ; T, (-nm T T N
.'l
n k-1 n 2 k-1 PO 0 R | | F(x¢)dx
a1 () T ) )+ 2n(=— m)] - 3
“O o+ = ' N
-3k,
m(n * n-l)




(10)
_ n k-1, 2n-1 a 1.2, k g, _ 1/,n- k g
= nigmy) () [0 (1 (=) ) B S5 (=) 7
i1
} F(x)dx - - %(% + —%T)
o (1+(n=1)x) maon
.. 1
Let 0 < = < Y We have
ri E(z)-¢ (E(2) rl
(2.5) { F(x)dx s = +o + F(x)dx S
Jo (1+(n-1)x) Jo JE(z) - JE(Z) (1+(n-1)x)

The first integral on the right hand side of (2.5) is majorized

by Chebychev's inequality

) =D T by 2.

. +(n- —)"2 - = n-1,2 k ,9 _ (a-1, ,-2
(2.7) (L+(n-1) (BE{(2)~-2) = n2 (1 3 ) (k-l)m 3 ) 2)
The third integral is majorized by

i
N _ -2 _ 1-E(2)
(2.3) i (1 (n-1)x) “dx TS (a1 E(2)
)E(z)
_ g (n- K _ (n-l.2, k .g,-1
= = (—H—)(E:T)(l (—5—) (k—l)m\




. 1
since & < I and (

Using

(mn)

(2.5)

through (2.8) in (2.4) we get

m = n
(Epg -2l L 22k
(1- 224 2 (Eo g ™h

By kel (22oh 2oy (2 miz v 2

K
-107

3

< 1.

Let Q denote the quantity inside the square bracket on the

right side of the second inequality in

(2.10)

where

N

(2.9). Suppose that
9y oap?
m —
3-1
1 . - 2 ,
and 0 s Putting £ = m in Q we get
-1
2 n-1, . k .2 ,~(n-1) 2n-1 ot
n m
2n-1 _ . ,n-1 X ,2,7(n-1) 2n-1
( n"l ‘( n ) (k—l) ( n3 n"l ))

0 for n 2 2.




-y %
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Therefore

R{(§**,p) - R(3°,p) < O

for all values of p, satisfying the inequality (1.16).

o

3. Numerical comparison of the risk of 3** and <°. By Theorem

2.2 if m is large then R(§*’E) < R(§°,g) for all but a small
subset of the values of p near the boundary of the parameter
space, given by g = 0. In many practical situations requiring
simultaneous estimation of the parameters of several multinomial
populations the value of g is a priori bounded away from zero so

that the inequality holds for moderately large values of m.

Therefore, §** should be ordinarily preferred to 3°. Let

R(3°,p) = R{i*,p)
S(3°,38% = - = - - e
v'(w ,9 ) R(EO’B)
denote the relative saving in the risk of 3**. The following

table gives for illustration 8 sets of values of ¢(:°,3*), com-
puted by Monte Carlo method for m = 10, n = 10, 20 and k = 2,3,4

with the values of p being chosen randomly. It is seen frcm the

~

table that there is considerable saving in the risk due to 3i**,




e

TABLE I - vValues of p(3°,3%%)

n = 10
.193 .128 .193 .170 .045 .166
.257 .187 .243 .236 .176 .390

.686 .008

.203 .271
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