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ESTIMATION OF MULTINOMIAL PROBABILTIES

Khursheed Alam*

Clemson University

ABSTRACT

This paper deals with the estimation of the parameters

(cell probabilities) of a multinomial distribution. The maximum

likelihood estimator (MLE) is known to be minimax and admissible

with respect to a quadratic loss function. It is shcwn that the

MLE is inadmissible with respect to a non-quadratic loss function.

For the parameters of m multinomial distributions being esti-

mated simultaneously and the loss being cuadratic, an estimator

is given which is shown to have smaller risk than the MLE for

all but a small subset of the parameter space, when m is large.

Key words: Multinomial Distribution; Maximum Likelihood;

Admissible Minimax Estimators.
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1. Introduction and main results. Let x (Xl,...,xk)

be distributed according to a multinomial distribution M(x,p,n)

with k cells, where p = (I''Pk )'' 0 < pi < 1 (i =

=1 and x. = n. For estimating p we consider

below two loss functions, given by

(.) L(5,p) = n 1
k  2~'~i=l 1 i-Pi °

(1.2) L*(p) = / 2pi

where 6= i(x) and 6 = (61,...,k) denotes an estimator of p.

Let 30 = x/n denote the maximum likelihood estimator (MLE) whose

risk is given by

(1.3) R(60 ,p) = E L(60 ,p)

7 k 2

Ki1 - Pi

(1.4) R(50 ,p) E L*(O,p)

= k - 1.

First we consider the loss (1.2) . The covariance matrix

of x is given by = (.ij), where ij =-npipj, i = j and

-ii 
= npi(l-p.). Clearly, is a singular matrix. A genera-

lized inverse of T is given by a diagonal matrix
-l

whose ith diagonal element is equal to (npi) , as it can

be verified that ./ Hence, the loss function (1.2)
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(2)

represents the Mahalanobis distance function n(£-p)', ('-p). It

is also seen that Pearson's chi-square test statistic used for

testing goodness of fit, represents the loss due to the MLE.

Olkin and Sobel (1978) have shown that the maximum likelihood

estimator £1' is admissible for estimating p with respect to the

loss function (1.2), among all estimators for which

(1.5) ,k i "

Since the risk of £0 is constant, as given by (1.4), the MLE is

also minimax among those estimators. If the condition (1.5) is

removed then 5° is inadmissible. This is shown, as follows, by

finding an estimator S* which dominates *o

The Dirichlet distribution is a conjugate prior distribution

for the parameter of a multinomial distributicn. Suppcse that p

is distributed a' priori according to the Dirichlet distribution

D(p,) , given by the density function

(1 6 f p •A k) k (Pl ..... 'Pk )  -i

A Bayes estimator of p with respect to (1.6) and the loss func-

tion (1.2) is *, given by

n+k -i

(1.7) K.* =

0 , x.=01
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By direct computation we obtain the risk of i*, given by

-2 2 7k 1-(l-p i )n(1.8) R*(H*,p) = n(n+k.-i) [(")-1) Li=l + 2nk(,)-l)

+ n(n+k-l)] - 2n(n+k)-l[) 1 )k=(1-(l-pi) n + nI

+ n.

For v 1, (1.8) reduces to

R*(S*,p) = n(k-1)

-- n+k-1

< R*(3°,p) .

For v < 1 we have from (1.8)

(1.9) R* (5*,p) < n2 (n+kv-l)-2 [k(- ) 2 + 2k(--l) + (n+k-1)]

- 2n 2(n+k.,-1) - I + n

n 2 (n+kv-l) 2 (k 2 +n-l) - 2 n2 (n+k)-1) 1 + n.

The quantity on the right hand side of the equality in (1.9) is

equal to n(k-l) for , = 1. Therefore, R*(§*,p) : R*(. O,) forn+k-i ''

O- 1, where is a positive number depending on the values

of n and k. Thus S dominates 60 for certain values of j. Note

that -* does not satisfy the condition (1.5) . Note also that *

is admissible, being a Bayes estimator.
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Next, we consider the quadratic loss given by (1.1). Johnson

(1971) and Alam (1978) have shown that the maximum likelihood

estimator is admissible with respect to the quadratic loss.

Steinhaus (1957) and Trybula (1958) have obtained minimax estima-

ktors for the more general loss function of the form i=l ci( -pi ) 2

where ci are constants and k=l = 1. It should be observed that
1 i 1

and estimator 6 which does not satisfy the condition (1.5) is

inadmissible with respect to the loss function given by (1.1),
-k

since the projection of 5 on the hyperplane xi = 1 gives an

estimator satisfying (1.5) for which the loss is smaller.

We consider below the problem of estimating simultaneously

the parameters of m > 2 multinomial populations. Let -i' ...... m

denote the m populations, and let (Pil,..'Pik) denote the vector

of cell probabilities associated with 7 where p.k

sample of n observations is taken from each population. Let x

denote the sample frequency associated with the jth cell of i

The loss is given by n i 1  kt1  eat s

sum of squared errors, where 6ij denotes an estimate of

depending on the entire set of observations, even though the set

of observations from 7. alone seems to be relevant. A sort of

empirical Bayes estimator for the given problem is obtained, as

follows.

Without confusing with the notation used above, we shall

denote below the MLE and a Bayes estimator for the problem of

simultaneous estimation by 50 and 5*, respectively, and let
(p m k 2 k 2(l'... mk " Ley= -i1 Ljl xij' qi = 1 - Ljl Pi
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and q = I qi" The MLE is given by 6 = x. /n and its risk is

given by

(1.10) R(6 ,p) = q.

A Bayes estimator with respect to the Dirichlet prior (1.6) is

given by

(1.11) (x. +)/(n+k v

and by direct computation its risk is given by

(1.12) R(S*,p) n(n+k') - [(n-2k 2)q + 2 mk(k-1)].

A value of , minimizing (1.12) is given by

(1.13) ' =  q (me(k-) -kq)-

for which

R * < R(30 ,p).

Since is unknown, the above inequality suggests that we might use

for ,. But is also unknown, since q is unknown. But an esti-

mate of q is given by (mn2 -y)/n(n-l) since its expected value is

equal to q. Substituting the estimate for q in (1.13) we get

after simplification

mn -y1.14) -=ky-mn(n+k-l)
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Since the value of given by (1.14) is negative for certain

values of y, we make a~minor modification and finally come up

with a value of v = say, given by

2
(1.15) IM -y 2

ky-mn

The empirical Baves estimator is obtained from 3* by substi-

tuting X for v in (1.11). We shall denote it by **.

It is shown below in Section 2 that R(5**,p) < R(;°,p)

for all values of p for which

4 2 2/(1-3)(1.16) q > 2n4 /(n-1) 2/,1->)

where 0 < That is, 6** has smaller risk than for

sufficiently large values of m, except for a set of values of

p approaching the null set as m . Johnson (1971) has shown

that there is no "Stein effect", that is, there is no estima-

tor which dominates the tILE for a given value of m. This is

essentially for the reason, as Johnson points out, that the

risk of the MLE is small near the boundary of the parameter

space, given by q = 0. A numerical comparison of the risk of

-** and :o is given in Section 3.

The above results are summarized in the following

theorems.
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Theorem 1.1. The MLE is admissible with respect to (1.2)

among all estimators satisfying the condition (1.5) but inadis-

sible among all estimators and is dominated by i*, given by

(1.7).

Theorem 1.2. R( **,p) < R(6 0 ,p) for all values of -p for

which (1.16) holds, where ** is given by (1.11) with the value

of , given by (1.15).

2. Proof of Theorem 1.2. First we give a preliminary result

which will be used in the sequel. Let

(2.1) z (l+kX)-
2

= (k-!)mn
2

We have

E(z) = 1- l ) k q
n~ k- m m i

Note that AS Ak

Var (k 2) =Ek 2 2 -k 2

n -k 2 - X -

<n- E

'n-1 z;~q
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we have

(2.2) Var (z) n-)(
n ~k-1' q2

mm

(2.3) n' R(**,p) E mi= lkl

2 -2 mi '
E[y+2nX+mkX ) (n+k'.) -21. k

(n+kX) -2m.X(n+kK,) + mn q]

2 -2 -n -k
(y + 2mn-4ik, ) (n + k,) 2(, IC

zLi=i -j=i j j

E(n+kX)- - 2m E (n+kX,)- + m - q

=E [(y + 2nN+k 2 )(n+k>,) -2 2n(rn-q) (n+k:)

2 -2 -1
= E[y-ink\ )(n+k\,) -2n(r-q)(n+k'.) + Mn

E E~n-) (k) ( 1) - z
n-I k .i+(n-1)z, (i-+in-l)z)2

+ (q-m('-L))( -1)

=n ~Ein~)(k-i) z 2 k-i1 '

(i±n-1zWk n-1'(1-t- n-1)4
+ 2~~-)q

k 1+(n-l3
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k-I + - l +n-

rl

k-I I  xF (x) dx
n-i k 0 (l+(n-l)x)

1
n 2 k-I k- q F(x) dx

+ m((- - + 2n (- - -)
n kk m ) i+(n-i)x n-lJ0

where F denotes the cummulative distribution function of z. The

inequality in (2.3) is derived from the fact that
7'kJ 2rk-

E~%i i X1jxj ij; is nondecreasina in Lk  215! = p j ' i - j=l ij " This i

shown by proving it for k = 2 by direct computation of the expected

value, and recursively for k > 2. The last step in (2.3) is

derived through integration by parts. From (1.10) and (2.3) we

get

-i n k-i xF(x)dx

!2.4) (ran) (R(5**,p) -m(i 0 ,p)) < 2 (n--t) e--
0 (i+ (n-1) x)

2k -k-i q F(x)dx
n-i k k M z

'-0

~ k-i nn k- - F(x)dx2(n_- ) + ( ) ( )+ 2 n~k-
-- ,< o {i+jn-:' xW

qi +

mm I
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n -l .2n-! k- l(n-1) (kg 1~q
n, ) ( x) d _ (-n-i 2 ) q

n-i k n-1 n - nm

-1
F(x)dx q 1 1

0 (i+(n-I)x) 
2  m n -'

Let 0 < <- We have
-n

[i E(z)-E rE(z) r

r F(x)dx I + F(x)dx

(2.5) 2 1 n- 2
0 (i+ (n-l)x) 2 )_J (z)- IE(z) (1+(n-1),<)

The first integral on the right hand side of (2.5) is majorized

by

Vat (z)
(2.6) F(E(z)-E ) r by Chebychev's inequality

n 1 2 q by (2.2).i (.-- --- , l 2 2
me

The second integral is majorized by

(2.7) (1+(n-1) (E(z)- )-2 = 2 (1 _ n--)2 k ) - (n-l))-,
2 n k-lm n

n

The third integral is majorized by

if -o -E(z)

(2.3) 1 (1 - (n-l)x) dx ( )

JE(Z)+ (n-l)Ekz)
JE(z)

q nl (1 2 k - -

mn n k-I i ( m

,j



Using (2.5) through (2.8) in (2.4) we get

-i n k-i 2n-i
(2.9) (,n) (R( 5*p) - R(60 ,p)) n(-) (-) [(

n-i k q)m) + - ( -i 2S(q-)( q 1 q- -i k) Ik- 2 i--)
n k-i m 22n 2 n

k n-1 ) -2)_ (nn-1 2(k)2( )2

m n n k-i Im

(n-i, 2( k q -i
n k-i m

n k- 2n-i( n-i k 2 q + 
m

S - (-7-- [ -( ) 2 (kq22

k

since E <_ and (k )- < i.-n k-lTm-

Let Q denote the quantity inside the square bracket on the

right side of the second inequality in (2.9). Suppose that

a> m-S
(2.10) -

2n 4 02
where 2 - 2 and 0 < k Putting = m in Q we get

(n-i)2

2n-i 2 n-i k 2 -(n-1) 2n-i q
n 3- -n n

-i

-2 2n-i n-i k 2 "(n-1) 2n-li
n= i (n-i- 3 n-i

n

0 for n ? 2.
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Therefore

R(3**,p) - R(3 0 ,p) < 0

for all values of p, satisfying the inequality (1.16).

3. Numerical comparison of the risk of 5** and 4. By Theorem

2.2 if m is large then R(6*,p) < R(30 ,p) for all but a small

subset of the values of p near the boundary of the parameter

space, given by q = 0. In many practical situations requiring

simultaneous estimation of the parameters of several multinomial

populations the value of q is A priori bounded away from zero so

that the inequality holds for moderately large values of m.

Therefore, 5** should be ordinarily preferred to SO. Let

R(5 0 ,p) - R(-*,p)

-R(3
0 ,p)

denote the relative saving in the risk of 3**. The following

table gives for illustration 8 sets of values of c( °,S*) , com-

puted by Monte Carlo method for m = 10, n = 10, 20 and k = 2,3,4

with the values of p being chosen randomly. It is seen frcm the

table that there is considerable saving in the risk due to *
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TABLE I -Values ofpLQ*)

n = 10

k =2 .193 .128 .193 .170 .045 .166 .686 .008

3 .257 .187 .243 .236 .176 .390 .203 .271

4 .298 .210 .251 .211 .119 .168 .481 .313

n = 20

2 .000 .099 .232 .042 -.017 .083 -.041 -.002

3 .132 .024 .031 .144 .056 .263 .013 .114

4 .165 .215 .180 .118 .069 .203 .372 .212
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