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ABSTRACT

In a previous paper a new bivariate failure model was

introduced and its properties investigated. In this paper

we consider estimation of the parameters of this model in

a special case, for both complete and incomplete samp'es.j
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1. Introduction. Many biv riate exponential distributions

have been suggested in the literature. These distributions

differ in the various properties that describe them. One of

the properties that it is natural to demand of such a distri-

bution is that it possess exponential marginals, and many of

the proposed distributions have this property including those

suggested by Gumbel [6], Downton [4], Hawkes [7], and Marshall

and 01kmn [8].

Another highly desirable property is the lack of memory

property. In the univariate case this property is

j Pr{S>s+t} Pr{S>s} Pr{T>t}

for all s, t > 0 and is enjoyed only by the exponential dis-

tribution. The natural extension of this property to two

dimensions is that

Pr{S>s +tl T>s +t I r{S>sl, T>s 2 } Pl{S>tl, T>t2 }

for all sI , tI  2 t2 > 0. However, this definition is too

restrictive to be useful. Marshall and Olkin [8] have shown

that the joint distribution of two independent exponential

distributions is the only distribution that has this property.

Consequently, they define the bivariate lack of memory pro-

perty (LMP) as Pr{S>A+s, T>A+t}

=Pr{S>A,T>A} Pr {S>s, T>t} for all s, t, A > u. Unfortunately,

this definition does not yield a unique distribution. In

addition to Marshall and Olkin [8], distributions that have

this property include those of Freund [5] and Block and Basu [1].

:I
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The model proposed by Marshall and Olkin [8] has both i

exponential marginals and the LMP and is the most widely re-

ferenced bivariate failure model. Their survival distribution is

Pr{S>s, T>t} = exp(-)lS-X2 t12 (s,t)) for 

s,t > 0 and fixed parameters XlX 2,1XI2 > 0. They show that this

distribution is the only one with both of the properties. Note

--° J that in this model Pr{S=T} = X1 2 /(Xl+, 2+i,12 )>0,so that there

is a singular component in the distribution. Computationaly

this poses some difficulties, but these can be overcome. I
Furthermore, this model can handle the simultaneous failure of

Iboth components. Also, in this model,

Pr{S>s+AIS>s, T>s} = Pr{S>s+AIS>s, T<s}

which implies that conditioned on the fact that one component

if functioning at time s, the distribution of its residual

lifetime is independent of whether or not the other component

has failed. Freund [5] has derived a bivariate failure dis- j

- Itribution using the assumption that at the failure of one com-

ponent the distribution of the residual lifetime of the other

component is changed. The marginal distributions in Freund's

model are not exponential but are mixtures of exponentials.

In a previous paper [9] Freund's model was generalized and some

of the properties of the new bivariate failure model were in-

vestigated. Here we consider a special case of the new model

with special reference to estimating its parameters. The

model is defined in section 2 and the first two moments are
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calculated. In section 3, the survival distribution and the

LMP are discussed.

Maximum likelihood estimation is taken up in section 4.

Explicit expressions for the estimators are given. Properties

of these estimators are derived in section 5 including their

joint asymptotic distribution. Finally, in section 6, maximum

likelihood estimation is discussed for an incomplete sample.

2. Model Definition and Moments. Let A and B be two components

of a system with lifetimes S and T respectively. For given ran-

dom variables X, Y, U, V we write

X fX< Y X V if X <Y
S= , (2.1)

Y +U if X > Y Y if X < Y

Here we take X, Y, U, V to be mutually independent with X dis-

tributed as exponential with parameter a, Y distributed as

exponential with parameter B. Let

-- a ft -a ft-
Pr{U>t} = qe and Pr{V>t} = qe

where a,Oa',B'>O and O<q<l. Freund's model corresponds to the case

when q = 1. The parameter q allows for simultaneous failure

of the components, since Pr{S = T} = l-q = p.

Tosch and Holmes [9] have discussed this model without

distribution assumptions and have derived (among other things)

the Laplace-Stieltjes (L-S) transform of the joint distribution

of S and T. We now state a result from that paper that will beL used in the present context.

oI



5

Lemma 1:

If X -exp (a) and Y exp( ),then.

i) f*(a,b) 1b [1AfV(b) + fU(a)], where f (a,b)

is the transform of the joint distribution.

ii) E3(S) ~T l~3U)
1 9

iii) Var(S) - -- [1+ 2Var (U) + a E(U)]2
(a+ )

iv) Cov(S,T) 2 1 1-c E (U) E(V).

In this specific case fU (a) =p+ fVtq * +

E(U) = ,E(U 2 2q and Var(U) q By substituting I
these quantities into Lemma 1 we see that

-=Theorem 2: For the given model

i) f (ab) - ~~ab [p(ac+S) +q b+$'+aa

ii E1(S) = ____

C, (Ct+ )

iii) Var(S) (cc q1 [(a'r +

1 2
iv) Cov(S,T) [a -D Ia -q A ).I Cc~ (a+ )2

The moments of T follow similarly. As in Freund's model

i
the correlation, p(S,T), is seen to vary between -~and 1.

3. Survival Distribution and the Lack of Memory Property.

To arrive at the survival distribution we again c:-il upon a

result for the general case.
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jLemma 3:Of

x(t)Fy(t) +f~ t t~~xdx i~f S<t

F(s,t) F X ( s)FiY(s) if s=tl ~(5r~5)+ fs PFj(s-y)FX(Y)dFy(y) if s>t
x S y S

Thus for s>t we have

Y~set = + )s + fs qectS-~~ dyA
F(qge eeod

-=6) cc the (3.1)becoes

=~~t e + + e e sti ~t (3.2)

FrThe leainequatonh aei ilb assumed that c+-(+0 faBa

f when (3.t, seomhts

OLI:

Theorem 4:

e + -e ~ ' 3 if ct

F~s6t ~ (L~s if S=t,

S((X+ s~ : -("+-EI~)t e-(cL+Qj-ccI)s 3 ifsH

The marainals are given by v

MI



Corolary 5

CC+ Ip

i) ~(s)e + e"

ii T(t) + __ t ~ e'

We see that the marginals are mixtures of exponentials.

Thoe':Tesria istribution given in Theorem 4

has the LMIP.

Proof: We must show that F(s'-, t+A) =F(s,t)F,) for

fall s, t,A > 0.
If s=t then s+A = t+A and e(+,sA

e e~+)e s Fs s)(a,.4

If s<t then s+L < t+A so that

* F(S+A,t+A) =eic+)tL + e_____ c+-' sA

-~ -e

= (a+WbAe (a+B)t + qae~ tA ( L+ s $ 'A (.-'t t L
e-e[ee e+ e]

~t
e-C a C+B-.JL + qc~e e-a+ 61s- (O+1

= ~AAV~st). The result follows sim-iarly for s>t. QED

4. Maximum Likelihood Estimation. The measure determined bv

the survival function is not absolutely continuous with respect

to iiLebesgue measure on R9  Therefore, there does not

exist a probability density function (pdf) for (S,T) with



respect to .2 " Bhattacharrya and Johnson [21, when dealing

- -: with estimation in the Marshall-Olkin model, overcame this

problem by considering the following measure on R2, where
+ 

A-_ R2  {(x,y)[ x>O, y>O}

Let

(A) ) + ) l({xI x>O, (x,x)cA}), (4.1)

where p is Lebesgue measure on RI. This measure will suffice _-

for our purpose here also. The measure 11 is c-finite on R+ and

the measure determined by the survival function is absolutely ME

continuous with respect to j. It can be shown that

Theorem 7: The pdf of (ST) with respect to i is given by

qeif s<t, '

f(st) = p(cc+)e (c+)s if s=t,

B u'qe if s>t. H

We are now in a position to write down the likelihood function

with respect to j- Consider a sample of N observations

{(sltl) (s7t),) ,(sN,tN)} The likelihood function is

N
L = r f(silti). The following notation will simplify the

e- i = o1|
-- expreas ion. |

-_ I
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Let

Ni #{(si,ti)isi=t}

N = Z s.

S = S.,

Ss i 'i2 Si>t 1

1 1

SIi

T ti, where 5A is the number of
T? = si>t"

items in the set A. In this notation I

N NI+NpN N- N,
Lh = (a') (l-p) 2P(CC+S) 3(aB') ?exp[-(a+S)(SI+R+T2)-Ct'(S,-T) I

-B' I(T1-Sl. (4.2)

Let Z = £nL be the log likelihood function. Then

Nln(a) + N9n(s') + (Nl+N)qn (I -p) + N£n(p) + No

+ N2 £(3) + N2  .n(' )(a+ )(S+R+T 2  - S,-T2)- ' (T-1 - 1 ')  (4.3 ME

Let 0 = (0 1 , 2 ,8 3 ,0 4 , 5 ) = (c, ,c',' ,p) to be the vector of-

unknown parameters. The likelihood equations are then

1w A
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Na + N3 (a+B)-(SI+R+T,) = 0,

N2/+ N3/(a+ )-(SI+R+T,) = 0,

a (S, -T) = G, (4.4)

N N IB'-(T ls )  0,

-(NI+N;/(I-p) + N/p = 0.

By solving these equations we can obtain the maximum likelihood

estimates.

Theorem 8:

i) If N. =N : 0 (so that N- N), theni I and

a, , B' cannot be estimated

ii) If NI  = 0, but Nb'0, +hen 6 N; S," - -'

= N2/(S 2 -T2)I and B' cannot be estimated.

iii) If N +0, but N = 0, then 6 N N3N, B 0, 5 -

B' N1/(TI-S 1 ), and a' cannot be estimated.

iv) If N 1  0 and N, 0, hen

N N

SI+R+T N +N

.N N

8= SI+R+T2 ( N] :'
N 2 ?

N 1

;'= T1--- I2

N?

N.

T S-"



Proof of iv): The parameter space is 2 {

a>0,a>0,ct'>0,'>0, O<p<l}. On the boundary of R, L 0.

All of the partial derivatives of L exist and are continuous

on the interior of Q. Finally L >0 on the interior of a given

that N!f0, N2:0. Therefore since (&,6,&',6', ) is the unique

point where the gradient vanishes, L must attain its maximum

at that point. Q.E.D.

5.Properties of the Maximum Likelihood Estimates

Theorem 9:

i) E(&) = (N/(N-I))a,

~~~~ii) E(6) = (/Nl)6

iii) E(P) = p.

Proof: First the following two observations are made:

(N1 ,N2 ,N3) has a trinomial distribution with parameters

:= qc q pD,( IW (N, a+ ' T+6

(N1IN 3 has a binomial distribution with parametersI3
(N-N 5 , -%.) (5.2)

NI  NI N

i) E(N 1 ~ E(E( IN E 1N +NN3)) E(E(N---l IN z )) E(N (NIIN 3 ))"

1 -1 2

SE(3 (N )-) by (5.2)

- a+

Ii
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N
Now S +R+T can be written as E min(si,t.), but1 2 i=

min(si ti ) has the same distribution as min(X,Y) ~exp(a+ ),

so that SI+R+T has an Erlang distribution of order N and

parameter c+g. Therefore

E(s N = °  N N-i -(+)x (NI+R+T2~ f x (N-i)! e dx = (N-I ( +B).

Nf
Finally S1 +R+T2  is independent of N )Nb so that

E(&) =E[SI+ +T2 ]  E(SI+NT )( 1- =)byneennc

ii) E(6) follows similarly,

N NN

iii) E() E(V b- 1

[~ ~ I N )a y 51

iQ) EE D.

ii N N

In like fashion it can be shown that

M Theorem 10:

i) E('N) N 2  if 2 >1,
2 2  2

NN1i ii) E( 'N1) : (N-- 1)B if NI1>I.

Using a Lehmann, Scheff6 partioning operaticn (c.f. Zacks [10],

p. 50) it can be shown that

Theorem 11: The vector (NJ, N2, SI +R+T2 S2 -T 2 T1 -S I ) is a

minimal sufficient statistic of the sample {sl,t9),...,(SN,tN)}.1 N| N
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From this we see that the vector of maximum likAihood estimates

is also a minimal sufficient statistic.

To investigate the asymptotic properties of the maximum

likelihood estimate, we will use the conditions presented by

Chanda [3, p. 56]. Of the three conditions, the first two are a

the usual Cramer-Rao regularity conditions. To establish these

results, we need to choose a 5-dimensional interval Q*, which

contains the true values of the parameter.

Let

Q* {0I0<6<0i <M< i 1 •,2,3,4,51

for some pre-chosen constants ci,M i i = 1, 2, 4, S.
For instance, i I =I9ad I  010,

Here M5 <. if 1 0 and M1 = 101 we restrict

the mean of X to (10-0  109) From physical considerations,

we can certainly arrive at the necessary bounds. In *, it is

straightforward to obtain the necessary dominating functions.

The third condition requires the positive definiteness of the

information matrix. We begin by finding the Hessian matrix Q.
2

Let Q = (qij), where qi Z , is the log likelihood

function (4.3) and e (c,6,c',$', p). By direct calculation 1 4

I4
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N N N-

+ 
0 0 0(+ 2

2
cc (cc+~

0 0 00 (S.3)
(1')2

N0 0 0 2, 0

0 N +N 2  N

( 2 2

Note that in £2*, O<p<l. The information matrix Z -1 = E(-N-I)

can now be evaluated. Since E(N) = ( )N,E(N 2 ) = (_9M and

NN

E(N we have

Liu
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Ia+___p 0 02 2
c -+ op)

1 = 0 0 0 pc

a) (c+t )

0 0 0 0 1
i (B'p (1+-

This is easily seen to be positive definite. Thus all of the con-

ditions are met and we have

!.
i
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Theorem 12:

N 0 as N-). with probability one.

Theorem 13:
Theoe 1-3) is asymptotically distributed as multi-

varitate normal with mean 0 and convariance matrix E.

6. Estimation with an Incomplete Sample. Suppose that we have

an incomplete sample, that is, some of the components do not

fail in the alotted time. Again let N be the total number of

samples taken and let N1 , N N S R, TI , T be as
'2' V3 1' S2 , 2  bea

before. Let si be the time when component A failed or the time

-ththat the i- experiment was stopped, if A did not fail. Similarly

for ti , Let

#{(si,t i)JA failed by B did not},

I #{(si'ti)IA did not fail but B did},

I A3  # (si,ti)lneither A nor B failed},

SI  sum of s.'s when A failed but B did not,

~I
S su ofs I when A did not fail but B did, if_

T = sum of t Is when A failed but B did not,
1 !=

T2  = sum of t.'s when A did not fail but B did,

R' = sum of si's when neither A nor B failed. j
We want to obtain the likelihood elements for these incomplete

samples. The following is derived directly from the survival
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function.

Lemma 14.

i) for s<t, Pr{S=s, T>t} lf(st qae d

ii) for s t, Pr{S>S, r>til e (+

iii) for s>t, Pr{S>s, tt' = ~ t

The likelihood function, L, an now be obtained. 2 (

1 1 1 +N2  1+ 2 N3  N3  22
L (61) G-P)p (a+a) 6 W

t I
*expH-(a+0() 1++ 2+ 1 +K 2J..c(S 2 2+S2 2)-a'(T1

if we let Z tnL be the log likelihood function, the likelihood

equations are given by -0, i =1,2,3,4,5. Again the

likelihood function is zero on the boundary and positive onI

the interior of the parameter space. Therefore the unique

solution to the likelihood equations is the maximum likelihood

estimate. Excluding the cases where some of the parameters

are not estimable, we have

Theorem 15: The maximum likelihood estimates in the incomplete

sample are given by:

N +M 1+N +M +%.I ______

S +R+T +1+R' +Tl N1 +M~ + N + M1

N 1 N+M 1+N 2 +'-M2 +N"3  N N2+ 2
- S+R+T +Si+R'+TT 'N +M +N +M,

_ =N 3! (N 1+ 2+M1+M2+ 3).
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7. Discussion. The model presented differs from Freund's

model in the addition of another parameter to include the

Inossibility of simultaneous failure of both components. In

biological applications, this could be the simultaneous loss

of paired organs by some catastrophe or disease.

In Marshall and Olkin's model, the residual lifetime of

one component is independent of whether or not the other com-

ponent has failed. This is not true of the proposed model.

In many applications, the failure of one component puts more

(possibly less) strain on the remaining one, i.e., when one

kidney fails. Lastly, Marshall and Olkin's model allows only I

for positive correlation in the component lifetimes, while I

the proposed model allows for some negative correlation as

well.

I M

LWIW II
iN
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