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ABSTRACT

In a previous paper a new bivariate failure model was

introduced and its properties investigated. In this paper

we consider estimation of the parameters of this model in

a special case, for both complete and incomplete samples.
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1. Introduction. Many biv riate exponential distributions

have been suggested in the literature. These distributions

differ in the various properties that describe them. One of

the properties that it is natural to demand of such a distri-

bution is that it possess exponential marginals, and many of

I

the proposed distributions have this property including those

Gl

I

suggested by Gumbel [6], Downton [4], Hawkes [7], and Marshall
and Olkin [8].
Another highly desirable property is the lack of memory

property. In the univariate case this property is

Pr{S»>s+t} = Pr{S>s} Pr{T>t}

for all s, t > 0 and is enjoyed only by the exponential dis-

f il il | "
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tribution. The natural extension of this property to two

f |‘
i

L]

dimensions is that

¢‘
WS

P.{S>s +t ), T>s +t2} "r{s>s;, T>s,} Pr{s>t;, T>t,}

1 "1 2

for all S19 tl, 52,t2 > 0. However, this definition is too

restrictive to be useful. Marshall and Olkin [8] have shown

]

that the joint distribution of two independent exponential

distributions is the only distribution that has this property.
Consequently, they define the bivariate lack of memory pro-

. perty (LMP) as Pr{S>a+s, T>A+t}

[ T |
A e

=Pr{$>4,T>A} Pr {S>s, T>t} for all s, t, 4 > v. Unfortunately,
= this definition does not yield a unique distribution. In
addition to Marshall and Olkin [8], distributions that have

this property include those of Freund [5] and Block and Basu [1].
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The model proposed by Marshall and Olkin [8] has both

exponential marginals and the LMP and is the most widely re-

ferenced bivariate failure model. Their survival distributicn is

Pr{S>s, T>t} = exp(-xls-xzt-xlz max (s,t)) for

s,t > 0 and fixed pavrameters Xl,xz,klz > 0, They show that this

distribution is the only one with both of the properties. Note
that in this model Pr{S=T} = Alz/(xl+az+x12)>0,so that there

is a singular component in the distribution. Computationaly
this poses some difficulties, but these can be overcome.

Furthermore, this model can handle the simultaneous failure of

both components. Also, in this model,
Pr{S>s+a|S>s, T>s} = Pr{S>s+a|S>s, T<s}

which implies that conditioned on the fact that one component
if functioning at time s, the distribution of its residual
lifetime is independent of whether or not the other component
has failed. Freund [5] has derived a bivariate failure dis-
tribution using the assumption that at the failure of one com-

ponent the distribution of the residual lifetime of the other

component is changed. The marginal distributions in Freund's

model are not exponential but are mixtures of exponentials.

In a previous paper [9] Freund's model was generalized and some

of the properties of the new bivariate failure model were in-

Here we consider a special case of the new model
The

vestigated.

with special reference to estimating its parameters.

is defined in secticon 2 and the first two moments are

modcel
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calculated. In section 3, the survival distribution and the
LMP are discussed.

Maximum likelihood estimation is taken up in section 4.
Explicit expressions for the estimators are given. Properties
of these estimators are derived in section 5 including their
joint asymptotic distribution. Finally, in section 6, maximum

likelihood estimation is discussed for an incomplecte sample.

2. Model Definition and Moments. Let A and B be two components

of a system with lifetimes S and T respectively. For given ran-

dom variables X, Y, U, V we write

X if X <Y X +V if X <Y

Y+ U if X > Y Y if X <Y

lHere we take X, Y, U, V to be mutually independent with X dis-
tributed as exponential with parameter a, Y distributed as

exponential with parameter B. Let

lt _Slt

b

Pr{U>t} = qe'a and Pyr{V>t} = qe

where a,B,a’'.8'>0 and 0<q<l. Freund's model corresponds to the case
when q = 1. The parameter q allows for simultaneous failure
of the components, since Pr{S = T} = 1-q = p.

Tosch and Holmes [9] have discussed this model without
distribution assumptions and have derived (among other things)
the Laplace-Stieltjes (L-S) transform of the joint distribution
of S and T. We now state a result from that paper that will be

used in the present context.
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Lemma 1:

If X ~ exp (a) and Y ~ exp(B8), then,

. . * x *
i) £*(a,b) = ETB%EIE“ lafy(b) + BE;(a)], where £ (a,b)

1s the transform of the joint distribution.
ii) E(S) = E%E [1+8E(U)].
iii) Var(s) = —L— [1+8%var(U) +aBE(UY)],
(a+B™)
iv) Cov(S,T) = —i— [1-aBE(U)E(V)].
(a+B)”

In this specific case £ (a) = p+ a’q f*(b) -p+ 84
u ara ’ TV P bvp,

E(U) = %T , E(Uz) = Ezﬂ;7 and Var(U) =(~—?7 . By substituting
o a')”

these quantities into Lemma 1 we see that

Theorem 2: For the given model

* 1 Ot
i) f (a:b) = E"_B}'—a%— [p(a+5) + q (bci_38|+ afgv )],
- o' +Bq
i) ES) = 584
ii1) Var(s) = —— [(@)? + q8(2-a8+20)],
(a') " (a+B)
iv) Cov(s,T) = —T—Tl————f [a'ﬁ'-qzas].
a'B' (a+B)

The moments of T follow similarly. As in Freund's model

the correlation, p(S,T), is seen to vary between -% and 1.

5. Survival Distribution and the Lack of Memory Property.

To arrive at the survival distribution we again c:~il upon a

result for the general casc.
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Lemma 3:
= — t = = .
Fx(t)FY(t) + fS Fv(t-x)PY(x)dFX(x) if s<t
F(s,t) = 5 ?X(s)?y(s) if s=t

?X(S)FY(S) + fi ?U(s-y)?x(y)dFY(y) if s>t

\

Thus for s>t we have

F(s,t) = e (**B)s o qe @ (57Y) 0¥ B4y
= e-(a+8)s + qee-u's fi e-(a+8-a')ydy
- -a's . o _ o
= o (0*B)s, %%%:a' [e (a+B-a')t_ -(o+B-a )s] (3.1)

The last equation assumes that a+8-a'f 0. If a+B-a' = 0

then (3.1) becocmes

|72}
[\
Q)

F(s,t) = o (a*B)s qf%e-m‘S (s-t), if s>t. (

For the remainder of the paper, it will be assumed that

a+B-a's0 and also that a+B-8'40. The calculations are similar

when s<t, so that

Theorem 4:
3 "S‘t [} - F» t
e-(u+8)t qae [e~(a+8-8 )s_o-(a+B-8 )t]

+ if s<t,
F(s,t) = f o (@*B)s . if s=t,
o (o+B)s | qBe’® 7 -(arB-at)t - (arB-a')Sy g oy
. a+B-a :

The marginals are given by

e e L e e
ozl i ‘ (L bt et bk " bl ol b
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Corollary 5:

4‘ ‘
[

Y OF o+pB-a’ -(a*+B)s , _ 98 -a's
i) F.(s) = g © * gvEear © s

a+Bpa-8' -(a+B)t qu -8't
arg-g ¢ * &g’ ¢ ’

ii) FT(t)

bbb

We see that the marginals are mixtures of exponentials.

Theorem 6: The survival distribution given in Theorem 4

has the LMP.

Proof: We must show that F(s+a, t+A) = F(s,t)F(a,a) for

all s, t,5>0.

L B

If s=t then s+A = t+A and F(s+A, s+4) = o (a¥8) (s+4)

il
IR

= o (a*B)s - (a*B)D _ Fig 5 )F(a,a).

If s<t then s+A < t+A so that

o (a¥p) (t+a) qge ' (t*2) (o (a¥8-8") (s+4)

= F(s+p,t+p) = e

%% _e-{a+£-8')(t+a)]

__‘ - _ . -;?_.'(t-l-é) - 2_2 T A Cfn+2_21 1,
= - e (a+8b)A[e (a+tB)t qaf _ (e (a+p-,')se8 L_e (a+3-3 )tes Y1
= at+8-8

=4 -g't .

=" - o-(a*B)a, -(a+B)t _ qae -{a+B-B')s _-(a+3-8')t

= = € [e * GiB-8" (e -€ )]

?% = F(a,8)F(s,t). The result follows similarly for s>t. QED

4. Maximum Likelihood Estimation. The measure determined by

the survival function is not absolutely continuous with respect

to My Lebesgue measure on R,. Therefore, there does not

exist a probability density function (pdf) for (S,T) with




respect to PR Bhattacharrya and Johnson [2], when dezling

with estimation in the Marshall-Olkin model, overcame this

p . . . +
problem by considering the following measure on RZ, where

Ry = {(x,7)| x>0, y>0) .

Let

u(A) = u,(A) + ul({xl x>0, (x,x)eA}l), (4.1)

where My is Lebesgue measure on R This measure will suffice

1
. .. +
for our purpose here also. The measure u is ¢-finite on R, and

TARAATIRIN

the measure determined by the survival function is absolutely

Sy
Ui

continuous with respect to u. It can be shown that

i
it

-

Theorem 7: The pdf of (S,T) with respect to u is given by

,

.

aB'qe_(a+ )s-Blt if  s<t,
f(s,t) = <p(a+3)e_(a+b)s if s=t,
i Ba’qe-(a+8-&')t_a's if s>t

We are now in a position to write down the likelihood function

with respect to u. Consider a sample of N observations

{(sl,ﬁl),(sztz),...,(sx,tN)}. The likelihood function is

N
L =7 f(s.,t
i

i=1

i) The following notation will simplify the

expressior.




AL A

N, = ?{(si,ti)lsi>tié,
N3 = §{(si,ti)]si = ti},
S, = L S.
1 Si<t1 i,
S, = L S.,
2 i
Si>t1
_ r
R = 5. =¢, 51
i i
T, = Lo
1 sl<ti 1
.= . A ‘
T2 = S'>ti t., where #A is the number of
items in the set A. In this noctation
N1 N1+N7 Ng ¥5 N, )
L = (aB') "(1-p) “p “(a+8) “(aB') 'exp[-(a+s)(sl+R+T2)-a‘(Sz-Tz)
- - 1 2
8'(T,-5)1. (4.2)

Let ¢ = ZnL be the log likelihood function. Then

2= Nyt e) + N 2 (BT) + (Np#N,) R (1-p) + Nsan(p) + Njan(a*s)
+ No2 (3) + Nytn(a')-(a*B) (S;+R+T,-a' (S,-T,)-8" (T -S;) (4.3

Let 9 =(61,82,83,64,65) = (a,8,04',8',p) to be the vector of-

unknown parameters. The likelihood equations are then




Nl/u-+¥3/(a+5)~(SI+R+T2} =0,

N,/B + No/(a+8)-(S)+R+T,) = 0,

Ny/a'-(8,-T,) = G, (4.4)

SI/B‘_(TI-SIB 01

+

-(N)+N,)/(1-p) + N/p = 0.

By solving these equations we can obtain the maximum likelihood

estimates.

Theorem §:

i) If Nl = Nz = 0 (so that NS = N), then § = 1 and
o, 8, a', 8' cannot be est

[
[

imat

i1) 1If Nl = 0, but xzéo, then F = N3§§,§ =0, 8 = g;?g:T? , :
@' = N,/(S,-T,); and 8' cannot be estimated E
.. ) . e e . N
iii) If NI%O, but N, = 0, then § = N§fs, 8 =10, &2 = STIRET., E
i z

g! = &1/(T1—Sl), and a' cannot be estimated.

iv) If N $# 0 and X,

o

0, then 3

& = N ( N )
S*RT, ‘N AN,

“
»
A ittt
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Proof of iv): The parameter space is & = {(o,B,a',B8',p)|
a>0,8>0,0'>0,B8'>0, 0<p<l}. On the boundary of @, L = 0.

All of the partial derivatives of L exist and are continuous
on the interior of Q. Finally L >0 on the interior of Q given
that N1+0, N2+0. Therefore since (a,é,agé',a) is the unique
point where the gradient vanishes, L must attain its maximum

at that point. Q.E.D.

5.Properties of the Maximum Likelihood Estimates

Theorem 9:

i) E(8) = (N/(N-1))a,

(N/(N-1))8,

ii) E(é)

iii) E(P) = p.
Proof: First the following two observations are made:

(Nl’NZ’NS) has a trinomial distribution with parameters

o, g3, 28, Py (5.1)

(NllN3 has a binomial distribution with parameters

(N-Ny, a%g) . (5.2)

Nl Nl Nl
i) E(NI:N;)= E(E(NITRE‘NS)) = E(E(NTNE|N3))

- 1
= E(N:NEE(NllNS))-

1 o
E(NTNE(N-NS)ETE) bX ,(5-2)

%
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N
can be written as I min(si,ti), but
i=1
min(si,ti) has the same distribution as min(X,Y) “exp(a+B),

Now Sl+R+T2

so that Sl+R+T2 has an Erlang distribution of order N and

parameter a+B. Therefore

N N 1

N oL (a+8)’ - (a+B)x _ N .
EGs +R+T ) =Ny % T © dx = (g=7) (a+8).
N
Finally Sl+R+T2 is independent of K;Tﬁ; so that
N N

N

= 1 - N
E(q) = E[Sl+R+T2(N1+N2)] - E(S]_+

: 1 . o
R+T2)E(N1+N2) by independence

- N o _
= N?T(a+3)ajg = (NTT)G

ii) E(8) follows similarly,

N

iii) E(D) = %L by (5.1)

|

= p. Q.E.D.

In like fashion it can be shown that

Theorem 10:
N,
i) E(&'INZ) = (NF)G.' if N2>1,
~ N
ii) E(B'lNl) = (V 1)8' if N1>1

Using a Lehmann, Scheffé partioning operaticn (c.f. Zacks [10],

p. 50) it can be shown that

Theorem 11: The vector (Vl, N +R+T S,-T,T,-8,) is a

20 51 2> P27'2'17%1

minimal sufficient statistic of the sample {s ., (S

1080 N AR
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From this we see that the vector of maximum likclihood cstimates

is also a minimal sufficient statistic.
To investigate the asymptotic properties of the maximum
likelihood estimate, we will use the conditions presented by

Chanda [3, p. 56]. Of the three conditions, the first two are

the usual Cramer-Rao regularity conditions. To establish these

results, we need to choose a 5-dimensional interval 9%, which

contains the true values of the parameter.

Let
% = M.<o, 1 =
Q {§|0<€i<8i<di< , 1 1,2,3,4,5}

=1, 2,3, 4, 5.
10

for some pre-chosen constants ai,Mi, i
Here Mg<l. For instance, if ¢ = 1077 and M; = 10

the mean of X to (10_10, 109). From physical considerations,

we can certainly arrive at the necessary bounds. In Q%*, it is

straightforward to obtain the necessary dominating functions.
The third condition requires the positive definiteness of the
information matrix. We begin by finding the Hessian matrix Q.

2

= . = a2 . . -
Let Q = (qij)’ where qij &@iue- , 2 is the log likelihood

function (4.3) and 6 = («,8,a",8', p). By direct calculation

, we restrict
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o (a+8)2 ?&+8)'

3 Ny, Ny 0 0 0

—_— ot - e

(oc+8)7 8 (oc+8)2

f..—
~
—
1
=
St
[}
el
™
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Note that in Q% 0<p<l. The information matrix 5 + = E(-N-IQ)

¢
can now be evaluated. i B = & YN RN =
v uated Since L(Nl) (Q+B)N,L(N2) = (éy%)N, and

E(N3) = pN, we have

i

i

A

"
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s ¥

o+B-pB
a(a+8)2

P

(a+B)

0

This is easily seen to be positive definite.

P

(0+B)

a+B-pa

B(a+*B)

0

ditions are met and we have

(1-p)B

(a')z(a+8)

0

_(-pla
(8') % (a+8)

0

Thus all of the

1
p(I-p)

con-

AT

il
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Theorem 12:

eN + 6 as N+~ with probability one.

Theorem 13:

NI/Z(GN-B) is asymptotically distributed as multi-

varitate normal with mean 0 and convariance matrix Z.

-~

6. Estimation with an Incomplete Sample. Suppose that we have

an incomplete sample, that is, some of the components do not
fail in the alotted time. Again let N be the total number of

samples taken and let Nl’ NZ’ N3, Sl’ S R, T,, T, be as

2’ 12 72
before. Let S5 be the time when component A failed or the time

that the iEh experiment was stopped, if A did not fail. Similarly

for ts, Let

#{(si,ti)lA failed by B did not},

#{(si,ti)|A did not fail but B did},

# (si,ti)lneither A nor B failed},

sum of si's when A failed but B did not,
of si's when A did not fail but B did,

when A failed but B did not,

of ti when A did not fail but B did,
of éi's when neither A nor B failed.

We want to obtain the likelihood elements for these incomplete

samples. The following is derived directly from the survival
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LLemma 14:

i) for s<t, Pr{S=s, T>t} = - 32%2431 = que Bt (0¥B-BT)syq

ii) for s = t, Pr{S>s, T>t} = ¢ (@¥B)s

iii) for s>t, Pr{S>s, t=t} = de-a's-(a+B-a')tdt.
The likelihood function, L, can now be obtained. :
. aN1+M1(3')N1(1-p)Nl+NZ+M +M pNS(a+e)N38N2+M2(a')N2 %
cexp[- (oa+B) (S +R+T,+S +R'+T ) ~a' (S, T, +S,-T,) -8 (T, -5, +T,-5.)]. (6.1;

|

If we let 2 = an be the log likelihood functicen, the likelihood
equations are given by 5%? =0,1 =1,2,3,4,5. Again the

likelihood function is zero on the boundary and positive on
the interior of the parameter space. Therefore the unique

solution to the likelihood equations is the maximum likelihood

estimate. Excluding the cases where some of the parameters

are not estimable, we have 4
4
i

Theorem 15: The maximum likelihood estimates in the incomplete

sample are given by:

- Ny +M N +M N r M, +M, |
o S FRFT,*ST#RT+TS N #M #N 1,

Ny +My +N, M, +N NZ+“I

r
! LN _ 4N ]
Sl+R+T2+Sl+R'+Té 31 A1+V2+M2],

o

w >
n

>

o = Np/(85-Tp*8p7 o)
' '
g' = Nl/(Tlhsl‘FTl_Sl)’
p = N3/(N1+N2+1\’11+1\12+N3).

..




=

7. Discussion. The model presented differs from Freund's
model in the addition of another parameter to include the
nossibility of simultaneous failure of both components. In
biological applications, this could be the simultaneous loss
of paired organs by some catastrophe or disease.

In Marshall and Olkin's model, the residual lifetime of
one component is independent of whether or not the other com-
ponent has failed. This is not true of the proposed model.
In many applications, the failure of one component puts more

(possibly less) strain on the remaining one, i.e., when one

kidney fails. Lastly, Marshall and Olkin's model allows only

for positive correlation in the component lifetimes, while

the proposed model allows for some negative correlation as

well.
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