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Preface

This report contains the results of my efforts to

develop a model for time'-dependent x-ray transport in air.

I have tried to present a complete description of the

derivation of the equations, the assumptions made, and

the complexities involved in trying to devise a set of

numerical difference equations to solve the model

efficiently.

4There are several people to whom I am indebted and

owe thanks. First, I would like to thank my advisor,

Major George H. Nickel, for without his help, guidance,

*and encouragement I would not have completed the study.

I would also like to thank Doctor Charles J. Bridgman and

Captain David D. Hardin to whom I frequently went for

advice. Lastly, I thank my wife, Yuao-Ching, for her

patience, love, and understanding throughout the period
0

of this work.

Robert P. Dickey

(This thesis was typed by Sharon A. Gabriel)
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Notation

W Relative kinetic energy of the
electrons

e Electron charge

b Impact parameter

b 0  Impact parameter for single0 interaction, 90 degree deflection

Cross section for short-rangec encounter

Id Debye shielding distance

k Boltzmann constant

T Kinetic temperature

n e Electron number density

n. Ion number density
1

d  Cross section for long-rangeencounter

W* Actual energy of scattered particle

A Debye shielding distance divided by
the impact parameter for a single
interaction, 90 degree deflection

v e average electron velocity
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Notation (Cont'd)

v v i  Average ion velocity

Absorption mean free path of air at
burnout temperature

t ee Mean collision time between
electron-electron scatters

t i Mean collision time between
electron-ion scatters

t Equilibrium time for thermal photons
. p

Y Source strength

Parameter for source growth

8 Parameter for source decay
14

t o 0Parameter for the time when the maximum
x-ray energy is emitted from the source

Z Normalization constant for source

* time dependence

f(t) Source time dependence function

E s(R,t) Streaming radiation density at position
R, time t

F s(R,t) Streaming radiation flux at position R,
time t

Et(R,t) Thermal radiation density at position
R, time t
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Notation (Cont'd)

Ft(R,t) Thermal radiation flux at
position R, time t

E (R,t) Material energy density of air
m at position R, time t

T(R,t) Kinetic air temperature at
position R, time t

C Speed of light

K Mean opacity of air at the burnout-. temperature for streaming x-rays

K t  Mean opacity of air at the burnout

temperature for thermal x-rays

TB Burnout temperature of air

P Density of air

0 Stefan-Boltzmann constant

S Path length from R' to R
equal to IR'-RI

a Radiation constant

Teff Effective thermal radiation temperature

C v  Air heat capacity

III Direction cosines for Gaussian quadrature

£ Weights associated with direction
cosines P.
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Abstract

An x-ray transport model is developed which gives the

streaming radiation flux, thermal radiation flux, and

material energy of air, as a function of both position and

time, following the release of a large amount of x-ray

* energy in the atmosphere. The model is intended as a

compromise between the simple diffusion theory models and

the accurate transport theory models. It applies to theI
radiative growth which takes place at early times before

hydrodynamic motion begins. The model assumes that air is

heated by photoelectric absorptions to a burnout temperature,
I

the kinetic temperature at which the air molecules are

completely ionized. The opacity of air is assumed very

large at temperatures below the burnout temperature and

very small at temperatures above the burnout temperature.

Peierls' integral equation is used to calculate the flux

of thermal radiation which builds up in the burned-out

sphere of air. The integral equation considers both the

nonlocal and retarded time-dependent characteristics of

the thermal radiation field. An efficient numerical solution

to the model is greatly complicated due to the inverse cubic

temperature dependence of the opacity and the retarded time

dependence of the thermal radiation field. A numerical

algorithm is presented for solving the model.

viii



DEVELOPMENT OF

AN X-RAY TRANSPORT MODEL

BASED ON PEIERLSt INTEGRAL EQUATION

I. Introduction

The point source release of a large amount of x-ray

energy in the atmosphere initiates an extremely complex

series of physical processes in which the x-ray energy

liberated by the source heats the air, and the air then

radiates to cool itself. The competition between the

various modes of energy transport and the complexities of

the radiation properties of air make a direct analytic

attack infeasible (Ref 1:2). The usual approach is to use

transport theory and obtain numerical solutions to the

equation of transfer, also called the transport equation.

The transport equation is an integro-differential

equation which is a mathematical statement of the gains

and losses of photons. Even for one-dimensional systems

with spherical symmetry, the transport equation expresses

the specific intensity of radiation as a function of four

independent variables: position, frequency, direction, and

time. A typical x-ray transport problem might involve up

to 50 or more radial zones and perhaps 10 frequency groups

and 10 directions. In the numerical solution to this

.p1
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problem, each combination of position, frequency, and

photon direction requires a separate mesh point. The

calculation is entirely nonlocal in that photons emitted

at any one mesh point at a specific time can contribute to

the number of photons at any other mesh point at a later

time. Clearly, to solve this problem numerically would

require extensive computer time and storage capability.

, An alternative approach to solving the x-ray transport

. problem would be to use diffusion theory. Diffusion theory

assumes that the radiative flux is proportional _o the

gradient of the thermal radiation energy density. Although

this assumption is very crude, it is a widely used approxi-

mation in radiation transport calculations because of its

simplicity (Ref 2:51). Unlike transport theory, diffusion

theory is strictly local in the sense that the number of

photons at any one mesh point can only be influenced by the

closest neighboring mesh points. If the photon mean free

path is small compared to the dimensions of the system,

then diffusion theory may be applicable. However, for

most optically thin spherical systems this is not the case

and diffusion theory does not apply.

A different approach to the x-ray transport problem

would be to solve an integral form of the transport equation

often referred to as "Peierls' Equation" (Ref 2:31). Peierls'

equation solves for the all-angle thermal radiation flux in

a system which scatters photons isotropically, and therefore

2
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it contains two less independent variables which describe

direction in the full equation of transfer. The actual

thermal radiation flux may or may not be isotropic. A form

of the integral equation can be derived for time-dependent

radiative transfer which accounts for the nonlocal effect

of the radiation field. An efficient numerical solution of

Peierls' equation should improve upon the accuracy and

" simplicity of diffusion theory models without using as

* much computer time and storage capability as the full

atransport theory models.

PURPOSE

The purpose of this thesis was to develop a model that

would describe the radiative transport process which takes

place following the release of a large amount of x-ray

energy in the atmosphere. The intention was to develop a

model that would improve upon the accuracy of diffusion

theory models while reducing the computer time needed by

full transport theory models. A model based on Peierls'

integral equation will be developed and analyzed to see if

it satisfies the above criteria.

SCOPE

This model describes one-dimensional, time-dependent

x-ray transport, in spherical geometry, for the point source

release of a large amount of x-ray energy in the atmosphere.

3
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The model applies at very early times before shock formation

and hydrodynamic expansion takes place. Rather than treat

the photon frequency as a continuous variable, all photons

will be grouped together and average properties assigned.

ASSUMPTIONS

The following assumptions have been made to clarify

and simplify the x-ray transport model:

' 1. The source emits x-rays isotropically.

2. The scattering of x-rays is isotropic.

3. The density of air is uniform at its ambient

value because of the absence of hydrodynamic

motion during early time periods.

4. The opacity of air has an inverse cubic

temperature dependence.

OVERVIEW

This report contains five sections and one appendix.

Section II gives a theoretical background description of

the physical processes taking place during x-ray transport.

Based on the underlying physics, the equations needed to

solve the model are developed in Section III. In Section IV,

the resulting model is discussed and compared to an existing

diffusion theory model. Finally, the conclusions and

recommendations are presented in Section V. Appendix A

describes a numerical algorithm which could be used to

solve the model.

4



II. Background

This section presents a background description of

what physically takes place when a large amount of x-ray

energy is released in the air. A discussion of the under-

lying physics of x-ray transport in air will help to account

for assumptions and equations presented later in the

development of the model. Much of the discussion comes

from the work of Glasstone (Ref 3), and Pomraning (Ref 4),

who dealt with x-ray transport as it pertains to nuclear

weapon effects. The ionization of the air will be discussed

first, followed by an estimation of the time required to

form a Maxwell-Boltzmann distribut..on of electrons and

ions.

IONIZATION OF AIR

Initially, an intense point source emits x-rays with

several KEVs of energy into the atmosphere. Close to the

source, the x-rays which arrive first will strip off

electrons from the air molecules due to photoelectric

absorptions. As more electrons are stripped from the air

molecules, the air begins to heat up until it reaches what

is called the burnout temperature. The burnout temperature

is the kinetic temperature ascribed to the system of

completely ionized air molecules whose velocity distribution

.'
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is Maxwellian. Photoelectric absorption is no longer

possible in the completely ionized air and thus an upper

limit exists on the amount of x-ray energy which can be

deposited in a given volume of air. The air opacity is

assumed to be very large for temperatures below the burnout

temperature and very small for temperatures above the

burnout temperature (Ref 4:220). As the source continues

to emit x-rays, the spherical region of completely ionized

air around the source expands and grows.

* Inside the burned-out sphere, the heated air begins to

radiate and cool down. Electrons that were stripped from

air molecules emit bremsstrahlung radiation. Photons and

moving electrons interact by compton and inverse coih, ton

scattering. As the kinetic air temperature cools below the

burnout temperature, the opacity of air increases, and more

source x-rays are then absorbed maintaining the air at the

- burnout temperature. The net result of these various

* interactions is the buildup of a thermal radiation field in

the burned-out sphere. For systems whose dimensions are

on the order of the mean free path for absorption of photons,

the actual thermal radiation from the medium will be of the

order of the blackbody value (Ref 5:28). Normally,

"temperature" implies thermodynamic equilibrium, which

means both kinetic and blackbody radiation equilibrium

(Ref 5:28). The term "kinetic temperature" has been used

here because the effective thermal radiation temperature

6



will initially be much lower than the kinetic temperature

of the air particles, resulting in a two-temperature

problem.

Growth of the burned-out sphere due to source x-rays

will continue until the source strength is insufficient to

both continue ionizing new layers of air and maintain the

cooling air at the burnout temperature. This is the end

of the burnout phase and further growth takes place through

a diffusion process (Ref 4:220). At this time the ionized

air is at a fairly uniform temperature, although temperature

gradients do exist, particularly near the advancing

radiation front (Ref 3:65). The thermal radiation field

continues building up in the burned-out volume of air.

The absorption of the thermal radiation in the surrounding

cold air causes the diffusive growth. The source is no

longer capable of keeping the air hot, and as the air

temperature decreases, the photon mean free path decreases

and growth of the ionized sphere becomes less rapid.

Eventually, the effective thermal radiation temperature

and the material kinetic temperature of the air will

approach each other as the radiation and material tend

toward equilibrium (Ref 4:225).

FORMATION OF A MAXWELL-BOLTZMANN DISTRIBUTION

An estimate of the time required for the electrons

and ions to reach a Maxwellian distribution is needed to

7
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justify using a Maxwell-Boltzmann equilibrium expression

for the material energy density of the air. Glasstone and

Lovberg define a collision as a coulomb force interaction

which results in a deflection of more than 90 degrees

(Ref 5:83). This collision can be a single interaction

between a pair of charged particles (a short-range encounter)

or a combined net effect due to multiple interactions

between a single particle and many other particles (a

long-range encounter) (Ref 5:83).

To determine the cross section for a short-range

encounter, Glasstone defines the impact parameter for a

90 degree scatter, b0  , as the distance of closest

approach between two particles in the absence of any

electrostatic forces (Figure 1). From Coulomb's Law, it

is found that the particles are a distance 2b0 apart at

the point of closest approach for a 90 degree scatter, and

" that at this distance the mutual coulomb energy is equal to

the center-of-mass (or relative) kinetic energy of the

interacting particles (Ref 5:88). For the case of two

charged particles carrying the unit electron charge e

(Ref 5:88):

e2  e2

W = - or b0 = cm (2.1)

8
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Figure 1. Short-Range Coulomb Interaction

for 90 Degree Deflection (Ref 5:88)
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where

W relative kinetic energy of the particles

in ergs

e = electron charge in statcoulombs.

The cross section for the short-range encounter, 0c can

be estimated as the area of a disc of radius b0  (Ref 5:88),

a nbo 2  = re 4  (2.2)C 0 4W 2

In analyzing the scattering collision, on a microscopic

scale, due to long-range encounters, every charged particle

may be regarded as being surrounded by an atmosphere having

a net charge of the opposite sign (Ref 5:84). By postulating

that the charged particles have a Boltzmann distribution,

-. and assuming the gradient of the electric potential can be

* expressed by Poisson's equation based on Coulomb's Law, the

effective radius of the oppositely charged atmosphere

surrounding a positive ion can be shown to be (Ref 5:85):

T = 2.35 x 104 T(Kev) cm (2.3)
e2  ne (#/cm3 )

where

Xd = Debye shielding (or screening) distance

k Boltzmann constant

10



T kinetic temperature of both electrons

and positive ions assuming a Maxwell-

Boltzmann distribution

n e electron number density.

The cross section for a long-range encounter is

estimated by determining the momentum change that results

from the coulomb force at the distance of the impact

parameter b , operating over a path length 2b , for

a time 2b/v , where v is the velocity of the scattered

particle (Ref 5:91). The particle is assumed to have been

scattered through a large angle, about 90 degrees, when the

average of the square of the total momentum change,

(AP)2 , has increased to the point that it is roughly

equal to the square of the initial momentum of the

scattered particle, p2  (Ref 5:92). The distance traveled

by the particle is equivalent to a mean free path for the

scattering process, and it is possible to define a cross

section for the long-range encounter, 0d , as (Ref 5:93)

o d  lnA (2.4)W*2

where
x d (Debye shielding distance)

F- (Impact parameter for a 90' scatter,
0 for a short-range encounter)

11



W*= actual energy of the scattered particle taken

to be 3/2 kT if energy distribution is Maxwellian.

Substituting Eq (2.1) and (2.3) for b0 and xd

respectively, gives

-2.35 x 104+(T(kev)

1d: . n - (2.5)LW*2 e2

Assuming the ionized atmosphere consists of electrons and

nitrogen ions, with

e 4.8 x 10-10 esu

T .4 key (the burnout temperature of air)

ne 3.76 x 1020 electrons/cm
3

• W 1.9 x 10 ergs

W* 9.6 x 10"10 ergs

gives

ad 3.4 x 10 -  cm

The mean collision time between electron-electron

scatters, t , can now be estimated as (Ref 5:95)

12
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tee - n = 5.4 x 10 " 13 sec (2.6)tee fleOdVe.se 2)

where ve = 1.45 x 109 cm/sec (average electron velocity).

Similarly, the mean collision time between ion-ion scatters,

tii , can be estimated as (Ref 5:97)

t.. = n 1 v - 6.0 x 10-1 0 sec (2.7)11 niodVi

where

ni : 5.37 x 1019 ions/cm
3

v. : 9.1 x 106 cm/sec (average ion velocity).
1

Finally, the mean collision time between electron-ion

scatters, tei , can be estimated as (Ref 5:97)

tei = niadve 3.8 x 10-1 2 sec (2.8)

The time required for several collisions between electrons

and ions is so short compared to the time dependence for

source emission of x-rays, which is typically on the order

of shakes (10-8 sec), that essentially a Maxwell-Bolt:mann

distribution forms instantaneously.

An interesting comparison can be made by estimating

the equilibration time, t , for thermal photons to be
p

13
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t (2.9)p c

where

absorption mean free path of air at burnout

temperature

c speed of light

* For X 50 meters (Ref 4:225)

t 1.67 x 10 7 sectpse

While the air particles reach a Maxwell-Boltzmann distribution

on the order of 10 "10 seconds, the thermal photons reach

equilibrium on the order of 10- 7 seconds, giving a two-

temperature problem with the thermal radiation field

initially not in equilibrium with the particles.

14
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III. Development of X-Ray Transport Model

This section derives in spherical geometry the equations

needed to describe the transport of a large amount of x-ray

energy released in the air. Three questions are developed,

one each for the streaming radiation flux, thermal radiation

flux, and material energy of air. The three variables

* depend not only on time, but also on radial position. The

equation for the streaming radiation flux describes a point

source that has been exponentially attenuated and spherically

diverged. A form of Peierls' integral equation will be

derived to calculate the thermal radiation flux, and the

material energy of air will be determined by writing a rate

equation which accounts for the gains and losses of material

energy.

The source time dependence and its properties will be

described first, followed by the derivations of the streaming

radiation flux, thermal radiation flux, and material energy

of air, respectively. The end of this section will show

how energy is conserved in the model.

SOURCE TIME DEPENDENCE

Assume a point source of radiation of source strength

Y , and a time dependence, f(t) , given by Pomraning

k as (Ref 6:3)

15
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f (t) 1 (a+a)e (t - 0 ) (3.1)f~t) : - (a+8)(t -t J 31
8+a e 0

where

a = parameter for source growth

8 = parameter for source decay

to = parameter for the time when the maximum

x-ray energy is emitted from the source

Z normalization constant such that the

f f(t) dt = 1
0

It is assumed that the source emits a Planck blackbody

spectrum of x-rays into an infinite sea of uniform-density

air. The time dependence for source emission of x-rays

has the following properties (Ref 6:3):

(a) Rises like eat for small t

(b) Falls like e- at  for large t

(c) Has a single maximum at t = to
1

(d) f(t) = 1

STREAMING RADIATION FLUX

The streaming radiation at position R , time t

includes only those virgin x-rays which were emitted by the

source at an earlier time and arrived untouched at position

R at time t . An energy balance is performed for the

16



streaming radiation density in ar about position R

and in at about time t (Ref 6:6).

41fR
2E (Rt) c at 4irR 2E5 (R,t) c at = 4fR23r d[Es(R,t)]

r r+ar t (3.2)

Streaming Radiation Streaming Radiation FStreaming Radiation
In Out Absorbed

* Here c is the speed of light and Es (R,t) is the streaming

radiation density at position R , time t . Eq (3.2) gives

the result that (Ref 6:7)

ar [4.R 2 Es(Rt)c] = 4nR 2 - [Es(R,t)] (3.3)

The streaming radiation emitted by the source at

time t can only decrease due to absorption by the air

as it streams away from the source. Recall the opacity of

air was assumed very large at temperatures below the

burnout temperature and very small at temperatures above

the burnout temperature. It is now assumed that the

specific temperature dependence of the opacity is given

by (Ref 6:15)

K (R,t) = B T(R~t) (3.4)

17
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where

K(R,t) the opacity of air at position R

time t , which depends on the air

temperature at position R , time t

K the opacity of air at the burnout

temperature (a constant).

T = burnout temperature of air

T(R,t) the kinetic air temperature at

position R , time t

The time rate of change of E (R,t) can therefore bes

expressed as

a-t [Es(Rt)] = -PK s [ TTF.7 IEs(Rt)c (3.5)

where p is the density of air, assumed constant, and

K s  is the mean opacity of air at the burnout temperature

for streaming x-rays being emitted by a Planckian source.

The right side of Eq (3.5) is simply the rate at which

streaming radiation density is absorbed by the air.

Equation (3.3) can now be written with the right side

of Eq (3.5) substituted in for the time rate of change of

the streaming radiation energy density, giving

Tb3
a L [4,R 2E (Rt)c] = -4nR 2pKs T E(R,t)c (3.6)

18



and solved with an integrating factor to give

R TB3
PK T:~IC4 BRELL dr

4 rR2 E s(R,t)c = D e LT(r,t - c (3.7)

The constant of integration, D , can be determined from

the boundary condition for an arbitrarily small sphere

surrounding the source (Ref 6:7)

S47rR 2 E (R,t)c- - Yf(t) (3.8)
S R- -O

giving the result that

B"I
PK B R-r dr

Es (R,t)c =Yft-R/c) e c (3.9)
41rR 2

- Notice that Eqs (3.7) and (3.9) include the necessary

. time retardation which accounts for the finite speed of

light and the dependence of the air temperature on the

path-length variable r , in the exponential attenuation

term. A final reduction can be made to Eq (3.9) by

recognizing that

Es (R,t)c = R s(R,t) (3.10)

where F (R,t) is the streaming radiation flix at position

19
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R , time t . The equation for the streaming radiation

flux can now be written in final form as

-f PK s [ B dr

(R,t) Yf(t-R/c)e 0 T(r,t----)J . (3.11)
4wR 2

The streaming radiation flux at position R , at time t

* is simply the source strength emitted at an earlier time,

exponentially attenuated and spherically diverged to

arrive at position R , at time t

THERMAL RADIATION FLUX

The thermal radiation flux which builds up in the

optically thin, heated air will now be considered. This

consideration must include both the nonlocal and retarded

time dependent characteristics of the thermal radiation

* field. The development of the equation for the thermal

radiation flux follows an analogous development by Weinberg

and Wigner for an integral equation for the transport of

monoenergetic neutrons (Ref 7:182).

First, a differential volume element in the shape of

a flat disc is positioned at R , with its axis in the

direction from R' to R (Figure 2). The thermal

radiation being emitted at position R , at time t ,

can be expressed as

20
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Figure 2. Geometry Associated with Thermal Radiation Flux

-PK

t I T(R',t) caT(Rt)4 (3.12)

where "a" is the radiation constant and Kt  is the

mean opacity of air at the burnout temperature foT thermal

x-rays. In order to arrive at position R , at time t ,

photons had to be emitted in the solid angle d(area)/4nS 2

at an earlier time, t - S/c , where S is the path

length from R' to R , and d(area) is the differential

area of the base of the disc (Figure 2). The probability

21



that photons arrive at the disc without undergoing further

attenuation is

0 T (R ,t - S 7c S

e 03(3.13)

Since the height of the disc is equal to dh , the sum of

the path lengths of the photons in the disc at time t

due to photons emitted earlier at position RA is

PK t[ TB ]3 d(area)dh e 0 t T(RA,t-S'/c
TR,-/y aTRt 41rS 2

(3.14)

Equation (3.14), divided by the volume of the disc,

d(area)dh , is the contribution to the thermal radiation

flux at position R , at time t , due to radiation emitted

earlier from position R- . The total, all-angle thermal

- radiation flux, at position R , at time t , Ft(R,t)

* will be the integral of Eq (3.14) over the entire volume,

namely

Ft (R,t) = fdVOL pKt T'R],t-S/c) caT(R ,t-S/c)4

4jrS 2

x e_ TR,-'7 (3.1S)

22
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Equation (3.15), integral in character, describes

time dependent radiative transfer in a system which isotropi-

cally scatters photons. The actual flux itself will not be

isotropic, especially near the boundaries. The equation is

of a form commonly referred to as Peierls' equation (Ref 2:31).

The fact that the opacity depends on one of the dependent

variables, the kinetic air temperature, greatly complicates

the solution to Eq (3.15). It will be useful to define an

* effective temperature for the thermal radiation field,

Teff , from the relationship

oTeff (Rt) 4 = Ft (R,t) (3.16)

where a is the Stefan-Boltzmann constant.

MATERIAL ENERGY DENSITY

* The material energy density of air is simply the

kinetic energy of the ions and electrons. In a given

molecular system, the exchange of energy between colliding

ions and electrons causes the presence of a Maxwell-

Boltzmann distribution of energies. Earlier, it was shown

that a Maxwell-Boltzmann distribution of electrons and ions

forms almost instantaneously following the release of a

large amount of x-ray energy in the air. Therefore, based

on the assumption that the molecular air is in equilibrium

with a Maxwell-Boltzmann distribution of energies, the
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material energy density of air at any position R , and

time t , can be expressed by the relationship

E (R,t) = C T(R,t) (3.17)

where E m(R,t) is the material energy density of air, and

C v  is the heat capacity of air, assumed constant (Ref 4:223).

The real unknown is the kinetic air temperature, since the

* material energy density is known if the temperature is known.

Three processes are taking place which affect the

temperature of air. The temperature of air is increased

when either streaming radiation or thermal radiation is

absorbed, and is decreased when the air radiates to cool

itself. An equation is written for the time rate of change

of the material energy density due to these gains and losses.

T

t [Em(R't)] = = -[T(Rt)] = Os Rt Fs(Rt)

+ PKt [rT;17 Ft (R,t)

K Kt[_'Rt] caT(R,t) 4

(3.18)

An iterative process will be required to numerically solve

for the unknown air temperature in Eq (3.18).
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CONSERVATION OF ENERGY

This x-ray transport model was developed from the basic

principle of energy conservation. At any time t , the

total streaming radiation energy, thermal radiation energy,

and material energy, contained in the volume of air, must

equal the total energy emitted by the source up to time t

When streaming radiation or thermal radiation is attenuated

by absorption, the material energy of air must increase.

Likewise, when the air radiates to cool itself, thermal

radiation energy must increase while material energy must

decrease.

On inspecting the equations for the streaming radiation

flux, thermal radiation flux, and material energy density

of air, it is not obvious that energy is conserved. In

order to show that energy is conserved, the equations for

the streaming radiation and the thermal radiation are

expressed as energy densities instead of fluxes. The three

energy density equations are now

R T B 13
-- dr

E sCR,) = Yf(t-R/c) e 0 T(rt )J (3.19)
4 vrR 2c

4 T BVOL 1- ca('t c 4

Et (R,t) = Z- fdVOL P t[T(R-,t-S/c)] caT(Rlt-S/c)

4 iS2

xe PKL(R B S,7 c dS ~ (3.20)
"t ° t ( ' - c)

x e
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E(R,t) E Em (R,t-l) + AtpK sF s(R,t)

/1

[ T 3

pK t T-( ] caT (Rt)4 (3.21)

where the time rate of change of the material energy density

was replaced by a backward difference equation and Et(Rt)

which is the thermal radiation density at position R and

time, defined from the relationship

c. Et(Rt) = Ft(R,t) (3.22)

Conservation of energy is now determined by integrating

the three equations over the entire volume and adding them

up. Integrating and adding up the left-hand sides of

Eqs (3.19), (3.20), and (3.21) gives the total streaming

radiation energy, thermal radiation energy, and material

energy in the volume at time t . On integrating and adding

up the right-hand sides of Eqs (3.19), (3.20), and (3.21),
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it is found that the exponential attenuation portion of

Eq (3.19), integrated over the volume, is cancelled by the

material energy gains due to streaming radiation absorption,

terms 69 and ( Eq (3.21). Similarly, the emission and

exponential attenuation portions from the thermal radiation

energy, term t Eq (3.20), are cancelled by terms

and Q , in Eq (3.21) when integrated over the entire

volume. What remains after adding up all terms is only

the source strength emitted up to time t in term (D of
Eq (3.19). Energy is conserved since the total streaming

radiation energy, thermal radiation energy, and material

energy is equal to the source strength emitted up to

time t

I .27

-- 

--. .

°

L= 

= .....



IV. Results and Discussion

In this section the x-ray transport model developed

from Peierls' integral equation will be analyzed. Recall,

the intention was to develop a model that would improve

upon the accuracy of diffusion theory models while reducing

the computer time required of full transport theory models.

Based on that criterion, the model developed in this study

will be compared to an existing diffusion theory model by

Pomraning (Ref 6). A qualitative measure of the accuracy

will be made by comparing the basic theory and assumptions

on which each model is based. The model developed in this

study will then be numerically analyzed to see if the

model lends itself to an efficient numerical solution.

COMPARISON TO POMRANING'S DIFFUSION THEORY MODEL

Pomraning develops a relatively straightforward model

for the release of a large amount of x-ray energy in the

atmosphere by assuming two distinct phases for the growth

of the ionized sphere of air (Ref 4:220). The initial

phase, or burnout phase, consists of the complete ioniza-

tion and burnout of the air, followed by a diffusive growth

phase which begins when the source of x-rays can no longer

maintain the air at the burnout temperature. The final

conditions that exist at the end of the burnout phase become
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the initial conditions for the start of the diffusive

growth phase. In reality there are not two distinct phases,

but a smooth blending from one phase to the next. The

model developed in this study does not separate the two

phases, but allows them to blend smoothly together.

In Pomraning's burnout phase, he assumes the sphere to

be optically thin and therefore he ignores spatial gradients

* and writes rate equations for the volume as a whole (Ref 4:221).

* He advances a radiation front with an associated burnout

radius. Inside, the burnout radius is completely ionized air

at the burnout temperature, while outside the burnout radius

is ambient air. The model developed in this study also

assumes an optically thin sphere, but spatial gradients are

not ignored. The thermal radiation flux, streaming radiation

flux, and kinetic air temperature are all determined as a

function of both position and time. According to Glasstone

(Ref 3:65), temperature gradients do exist, particularly

near the advancing radiation front. If temperature gradients

exist, then thermal radiation gradients would also exist, and

a numerical solution to this model would give a good indication

of the magnitude of these gradients. Since the kinetic air

temperature is determined as a function of position and time,

it is no longer necessary to advance a radiation front with

an associated burnout radius. The spatial dependence of

the air temperature will indicate the volume of air that is

completely ionized, as well as the regions that are only

partially ionized.
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After completion of the burnout phase, Pomraning uses

diffusion theory to model further growth of the ionized

sphere of air. To obtain diffusion theory, he assumes the

radiative flux is proportional to the gradient of the

thermal radiation energy density (Ref 4:223). Diffusion

theory is most accurate when the dimensions of the system

are large compared to the photon mean free path. For a

spherical system of ionized air with a radius in the tens

* of meters, all points in the system are within a few mean

free paths. Pomraning also assumes that the kinetic air

temperature, the thermal radiation density, and the streaming

radiation density are all space independent within the sphere

of ionized air, and zero elsewhere (Ref 4:224). Instead of

the diffusion equation, this model was developed around

Peirels' integral equation. Peirels' equation gives spatial

dependence while accounting for the time retardation and

nonlocal characteristics of the radiation field. The

accuracy of Peierls' equation is not dependent on the photon

mean free path or the nearness of a calculation to a

boundary.

NUMERICAL ANALYSIS

Before proceeding directly into the numerical analysis,

some introductory comments will be made on the numerical

approach to solving this model. The initial idea for using

an integral equation of Peierls' form came from the
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similarity of Peierls' integral equation to the integral

from of the neutron transport equation. Eugene Skluzacek,

in his doctoral dissertation (Ref 8), presented a very

efficient numerical scheme for solving the integral form

of the neutron transport equation. His efficient numerical

solution relied on an "interpolation coefficient" developed

by his advisor, George H. Nickel. This "interpolation

coefficient" (Ref 8:53) was used in the integration over

* S to express the flux as a function of S rather than

R (see Figure 2, page 21). The initial plan was to apply

this same numerical scheme to the integration over S in

Peierls' integral equation for the thermal radiation flux.

Two very important differences exist between Peierls'

integral equation and the integral form of the neutron

transport equation. These two differences greatly complicate

using the same numerical scheme. The first difference is

in the cross sections. The neutron cross section is

uniform between radial mesh boundaries, while the photon

opacity is non-uniform. Not only is the photon opacity

non-uniform, but it also depends on one of the dependent

variables, namely the kinetic air temperature. The

second difference comes in the time dependence of the

neutron transport problem compared to the x-ray transport

problem. In the case of neutron transport, the time

dependent problem can be transformed into a stationary

problem by assuming an exponential growth rate and solving
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the resulting eigenvalue problem. For the x-ray transport

model developed in this study, the time dependence --

more specifically, the retarded time dependence -- must be

numerically dealt with t'o obtain an accurate solution to

the model.

The equation for the thermal radiation flux,

f TB 34

F(R,t) f dVOL PKt[- caT (R',t -S/c)4

4nS 2

- P C dS' (4.1)

- x e

is now re-examined to determine the effect of the retarded

time dependence, and the opacity temperature dependence, on

a numerical solution. To avoid a discontinuity which

arises when R- = R , S is chosen as the variable of

integration. The differential volume element becomes

dVOL = S2sin e de do dS (4.2)

* where e is the angle between R and S. Since the

problem is symmetric in the azimuthal angle, the 0
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integration can be evaluated to give

dVOL = 2S 2 sin e de dS (4.3)

The integration over e can easily be handled if a trans-

formation is made to an integration over v = cos e

since

•* +1
I sin e def(e) = f dpf(p) (4.4)
0 -l

Integrals of this type are accurately approximated by

Gaussian quadrature, giving

+1 L
-I dp£) it fd(45
-1

where

w I quadrature weights

=£ direction cosines.

The volume integral has now been reduced by azimuthal

symmetry and Gaussian quadrature to a weighted sum of L

one-dimensional integrals over S , giving
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SL max
F t(Rt) = 1KtcaT B IWk f dST(R',t-S/c)

00

, -e PIt[TR.t.-C dS" (4.6)
x e

In the neutron transport model, the exponential growth can

be incorporated into the exponential attenuation term by

defining a new cross section (Ref 8:17). Since the neutron

cross section is uniform between radial shells, it is

possible to incorporate the "interpolation coefficient" for

the flux, and then, by a change of variables, get an

, integral of the form

b
SZ -eZ dZ (4.7)

a

This integral is just the partial gamma function which has

an analytic solution.

In Equation (4.6) for the thermal radiation flux, the

opacity depends on the temperature. Since the temperature

depends on position and time, the exponential integral

cannot be solved analytically in its present form. If the

kinetic air temperature was defined on the shell boundaries

34



r*

and varied linearly with R between shell boundaries,

then the integration over S would require interpolation

in both position and time for the air temperature. The

crossing of shell boundaries at retarded times during an

integration over S is not likely to coincide to times

when the kinetic air temperature has previously been

determined. The "interpolation coefficients" require

modifications to account for the dependence of the air

temperature, and hence the opacity, on position and time.

The original difference scheme which worked very efficiently

for the transport of neutrons was found to be too difficult

to apply efficiently to solving this x-ray transport

equation. For this reason, a numerical solution to this

model was not reached. The equations defining the streaming

radiation flux and material temperature of air both lend

themselves to more efficient numerical solutions and do

not introduce any 7pecific numerical complications.
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V. Conclusions and Recommendations

A theoretical x-ray transport model has been developed

to describe the radiative transport process which takes

place following the release of a large amount of x-ray

energy in the atmosphere. The model, based on a form of

Peierls' integral equation, was intended to be a compromise

between simple diffusion theory models and accurate transport

theory models. The conclusions, drawn from the analysis in

Section IV, will be presented first, followed by the

recommendations.

CONCLUSIONS

Radiative transport, as described with a form of

Peierls' integral equation, accurately models the physical

processes which take place when a large amount of x-ray

energy is released in the atmosphere. The integral approach

to solving for the thermal radiation flux accurately takes

into account the nonlocal and retarded time dependent

characteristics of the radiation field. Since diffusion

theory is limited in its ability to treat the streaming

radiation flux, two distinct phases are required to model

the radiative transfer based on diffusion theory. The

model developed in this study provides a smooth transition

from growth of the ionized sphere due to streaming radiation
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to growth due to thermal radiation. Unlike diffusion

theory models, the accuracy of a solution to this model is

not affected by the nearness of a boundary or the size of

the system in comparison to the photon mean free path.

Instead of ignoring spatial gradients, this model calculates

the spatial gradients, giving more detail and resolution

to the resulting values of the streaming radiation flux,

* thermal radiation flux, and material temperature o: air.

* From a theoretical standpoint, this model should be

considerably more accurate than diffusion theory models.

A numerical solution to this x-ray transport model is

greatly complicated due to time retardation and the

temperature dependence of the opacity. A numerical

difference scheme that had worked very efficiently for the

integral form of the neutron transport equation was found

to require too many approximations to account for the

opacities temperature dependence and time retardation.

These approximations served to increase the complexity of

the numerical solution, while decreasing its efficiency.

The final conclusion was that an efficient numerical

solution to this model could not be obtained with the

originally planned numerical difference scheme. There

was not enough time to devise an alternative difference

scheme that would solve the model efficiently, without

making simplifying assumptions and reducing the model's

accuracy. Given more time, it is possible that an
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efficient numerical solution to the model might be worked

out.

RECOMMENDATIONS

The following recommendations present the author's

view concerning extensions of this research and possible

applications for this x-ray transport model.

q

1. Appendix A presents an algorithm for solving a

simplified version of the model, where the kinetic air

temperature at any time t , is defined between shell

boundaries and assumed uniform between shell boundaries.

Continued work is needed to devise an algorithm and a set

of difference equations for the more difficult problem

where the kinetic air temperature is defined on the shell

boundaries and assumed to vary linearly between shell

boundaries. From the set of difference equations, a
0

numerical solution can be obtained and a measure of the

model's accuracy and efficiency determined by comparison

to other x-ray transport benchmark calculations.

2. Throughout this model, it was assumed that the

opacity of air had an inverse cubic temperature dependence.

This assumption, taken from Pomraning's model (Ref 4:223),

turned out to be a critical assumption, as it caused most

, * of the numerical complications. It is recognized that the

photoelectric cross section is inversely proportional to
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the cube of the incoming photon energy, but the fact that

the opacity has an inverse temperature dependence is not

obvious. Although there is no reason to doubt Pomraning's

assumption, the question has been raised as to justification

of the assumption. Continued work on the numerical solution

to this model should include justifying this assumption

and/or investigating other alternative approaches to

* determining the opacity of air.
I

3. If an efficient numerical solution can be
. developed for this model, then consideration should be

given to using the output from this model as the input

to a hydrodynamic model which develops and propagates

the shock wave.
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Appendix A

Numerical Algorithm for Solving the Model

This appendix presents an algorithm for a numerical

solution to this x-ray transport model. The algorithm is

not intended to be a step-by-step computer implementation

of a set of difference equations, but merely serves as an

outline to indicate the logic and direction of flow for a

computer program to follow. The algorithm will be preceded

by a general description of a typical radial mesh, to

include the radial dependence of the various quantities

being solved for.

TYPICAL RADIAL MESH

A typical radial mesh would consist of a series of

concentric, spherical shells whose boundaries can be

* defined by the relationship (Figure A-l),

r i+l = ri + Ar (A.1)

Both the streaming radiation flux and the thermal radiation

flux would be defined on the shell boundaries. It is

assumed that between specific radii the streaming and thermal

radiation fluxes vary linearly with r . The algorithm is

much more difficult, and has not been worked out for the
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case when the kinetic air temperature is defined on the

shell boundaries, and is assumed linear with r between

shell boundaries. This algorithm will treat the simpler

case of the kinetic air temperature being determined between

shell boundaries, and assumed uniform between shell boundaries.

Figure A-i depicts a radial mesh along with several of the

Gaussian quadrature rays that will be needed for the volume

integration to determine the thermal radiation flux.

A typical x-ray transport problem might require 50

* radial shells, each shell being 1.5 meters apart. To trace

the radiative growth from time t = 0 to t = 1.0 x 10-6 sec

would require at least 200 time steps. Usually, the time

steps are no longer than the time it takes a photon to travel

the width of a radial shell. The volume integral for the

thermal radiation flux would require approximately ten

(L = 10) Gaussian quadrature rays to get acceptable convergence

of the 8 integration. For 50 radial shells and 200 time

steps, a minimum of 30,000 memory locations would be required

for the three dependent variables.

NUMERICAL ALGORITHM

The following algorithm lists in order the steps to be

taken in solving this x-ray transport model. The algorithm

is for the case when the time increments, At , are exactly

equal to Ar/c
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STEP 1 Read in all the applicable constants and parameters.

This includes Y , c , 6 to c , k , TB Ks  Kt

p , a, a , and C .

STEP 2 Normalize the time dependence and determine a

value for Z based on a , B , and to . An

efficient two-point quadrature rule is presented

by Pomraning for this normalization (Ref 6:23).

STEP 3 Read in the initial conditions. The air temperature,

4 for all mesh regions and times can be initially set

to standard atmospheric temperature. The thermal

radiation flux, for all radii and times, can

initially be set to zero. The streaming radiation

flux can be set equal to zero for all radii (except

r = 0) and times. Select a value for Ar , At ,

and calculate the mesh radii and times from

r I = 0 ri+1 r i + Ar

-=0 t tn + At (A.2)

STEP 4 Increment the time index, n

STEP 5 Set the radial index, i , equal to the time

index, n

STEP 6 Calculate Fs n from Eq (3.11).
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STEP 7 Calculate Tn  from Eq (3.18).
1

STEP 8 Calculate F n from Eq (3.15).ti

STEP 9 Repeat STEPS 6, 7, and 8, keeping the time index,

n , constant while reducing the radial index, i

by one each time until Fs  , T ,and Ft have

been calculated for all radii i , less than or

equal to n . Then, go back to STEP 4 and increment

the time index, and start the set of calculations

over. The calculation continues until the final

value of the time is reached.

ADDITIONAL COMENTS

At late times, the calculation for the streaming

radiation flux can be omitted when the source strength,

Yf(t) , is negligibly small.

The time rate of change of the air temperature in

Eq (3.18) can be replaced by a backward difference equation.

The unknown air temperature will have to be solved with an

iterative procedure. One approach is to use a Bolzano search

which halves the interval of uncertainty each iteration.

While integrating on one of the Gaussian quadrature

rays from S = 0 to Smax , in the calculation of the thermal

radiation flux, the air temperature will change when either

a new mesh region is entered or a retarded time is reached
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for which a different air temperature applies. A test

should be made which terminates the integration when either

the contributions are negligibly small or a retarded time is

reached that is negative.

46.,

46



/
/

Vita

Robert Paige Dickey was born on 29 November 1950 in

Boston, Massachusetts. He is the son of Hume C. and

Myrtle A. Dickey. He graduated from Whitman-Hansen Regional

High School, Whitman, Massachusetts, in June 1968. In

June 1972 he graduated from Lowell University, Lowell,

Massachusetts with the degree of Bachelor of Science in

Nuclear Engineering. Captain Dickey entered the Air Force

in June 1972, having received his commission through the

Reserve Officer Training Corps program. He then attended

Undergraduate Navigator Training at Mather Air Force Base,

California, receiving his navigator wings in April 1973.

After navigator training, he completed transition training

for the C-SA aircraft and was assigned to the 22nd Military

Airlift Squadron, Travis Air Force Base, California. At

-Travis AFB he performed as a C-SA navigator, instructor

navigator, flight examiner navigator, and command post

senior controller until entering the School of Engineering,

Air Force Institute of Technology, in August 1978.

Permanent Address: 223 Winter Street
Whitman, Massachusetts

02382

47



4.

I NC[ASSTFM T R
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

DOCUMENTATION PAGE READ INSTRUCTIONS
REPORT DBEFORE COMPLETING FORM

I. REPORT NUMBER GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

AFIT/GNE/PI/8 QI-I ,t- . 9-/oU35f _-__

4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVEREO

DEVELOIPMEN7 OF AN X-RAY TRANSPORT MODEL MS Thesis
BASED ON PEIERLS' INTEGRAL EQJATION

S. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(a) S. CONTRACT OR GRANT NUMBER(a)

ROBERT P. DICKEY
CAPT USAF

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

Air Force Institute of Technology (AFIT-EN) AREA & WORK UNIT NUMBERS

Wright-Patterson AFB OH 45433

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

March 1980
I3. NUMBER OF PAGES

56
14. MONITORING AGENCY NAME & ADDRESS(Il different from Controlling Office) IS. SECURITY CLASS. (of this report)

UNCLASSIFIED
ISa. DECLASSIFICATION DOWNGRADING

SCHEDULE

I. DISTRIBUTION STATEMENT (of this Report)

Approved for Public Release; Distribution Unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

IS. SUPPLEMENTARY NOTES Approved for Public Release; IAW AFR 190-17

Jo . HJPS Major, USAF
Director of 'Pubjic Affairs

IS. KEY WORDS (Continue on reverse side if necessary nd identify by block number)

X-Ray Transport Model

Peierls' Integral Equation

: ABSTRACT (Continue on reverse side If nec'ssay and identify by block number)

An x-ray transport model is developed which gives the streaming radiation flux,
thermal radiation flux, and material energy of air, as a function of position
and time, following the release of a large amount of x-ray energy in the

,,.. atmosphere. The model is intended as a compromise between the simple diffusion
theory models and the accurate transport theory models. It applies to the
radiative growth which takes place at early times before hydrod)namic motion
begins. The model assumes that air is heated by photoelectric absorptions to a

(Continued on Reverse)
FORM

DD I JAN 73 1473 EDITION OF I NOV 65 IS OSSOLETE UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

. .. -. . . . . . . . r . . . .. J i l



N

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

BLOCK 20: ABSTRACT (Cont'd)

out temperature, the kinetic temperature at which the air molecules are
completely ionized. The opacity of air is assumed very large at temperatures
below the burnout temperature and very small at temperatures above the burnout
temperature. Peierls' integral equation is used to calculate the flux of
thermal radiation which builds up in the burned-out air. The integral equation
considers both the nonlocal and retarded time-dependent characteristics of the
radiation field. An efficient numerical solution to the model is greatly
complicated due to the inverse cubic temperature dependence of the opacity and
the retarded time dependence of the thermal radiation field. A numerical
algorithm is presented for solving the model.

Ig

0

C

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

VW


