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Abstract

This report presents the theoretical development and
numerical implementation of a procedure for approximating
continuous probability density functions on a bounded inter-
val. The work is applicable to Bayesian decision models in
that available information is used to update or obtain the
prior distributicn. The procedure is based on the solution
of a constrained entropy maximization problem and requires
information in the form of expected values of "information
furctions." The approach involves three steps: estimation
of expected (or average) values of "potential" information
functiorns, selection of the "active" subset of functions to
define the approximation family, and simultaneous solution
of the constraints vo select the specific approximating den-
sity for a given set of data.

A useful set of potential information functions is
developed, and three numerical methods for active set selec-
tion are demonstrated. Numerical techniques for expected
value computation are discussed, and a scheme for solution
of the constraints is developed and implemented. Theoreti-
cal development includes theorems on form and unigueness.
Approximation accuracy is related to potential set defini-
tion and data accuiracy. The procedure is applied to
several known distributions to demonstrate applicability.
Applications to computer simulation and interval arithmetic

models are demonstrated with specific examples.
xii
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CONTINUOUS DENSITY APPROXIMATION ON A BOUNDED

INTERVAL USING INFORMATION THEORETIC CONCEPTS

Chapter I. Introduction

This dissertation concerns the representation or
approximation of unknown probability distributions. The
proposed approximation method is based on the concept of
maximum entropy and uses known or calculable information
about the unknown distributions. The work was motivated by
Bayesian decision models, as discussed by Tribus (Ref 82),
in that available information is used to update a prior
estimate of the unknown distribution. The prior estimate
is assumed to be tne uniform distribution or is represented
by a random sample from the unknown distribution. The
initial estimate is updated via information in the form of
expected values of certain "information functions."” Selec-
tion of the information functions determines the form and
accuracy of the approximating distribution.

The word "characterize" carries special meaning, for
purposes of this dissertation, in describing the accuracy of
approximation. Our use of the word is here defined to pre-
clude later misinterpretation, and because our use is dif-
ferent from the usual statistical meaning. Assume that the
unknown distribution is generated by the analytic density
function f(x), and let p(x) symbolize the approximating

1
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density. When p(x) is reducible to the exact form of f (x)
to include the correct parameter values, then we say that
p(x) characterizes f(x}). If p(x) is of a different form
than f(x), chen p(x) approximates f{(x). Thus "characterize"
is used to indicate an exact representation of the unknown
analytic density. Given this definition, we wish to char-
acterize or accurately approximate the unknown distribution.

An initial concern of the research was to provide
a methcd to represent the output distribution of a computer
simulation in the interest of error propagation studies.
Although the resulting method has direct benefit to simula-
tion, the method can be applied to more general characteri-
za ..On or approximation problems. The following chapters
present the proposed method in detail, discuss computer ~
implementation of the method to include efficient numerical
techniques, and investigate potential applications.

Crapter II provides a background summary of the
information thenretic concepts which form the foundation of
the proposed method. Concepts such as information variation
and maximum entropy are discussed as well as recent applica-
tions of these concepts. Chapters III through VIII discuss
the proposed characterization method and numerical tech-
rrigues for implementation. The method is applied to com-
puter simulation in Chapter IX followed by discussion of
methiod sensitivity an Chapter X. Additional applications
are presented in Cnapter X1. The paper concludes with a

- C o Lo o teture rosaciareh an Chapter XTI,
?
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Chapter II. Background

Distribution Approximation
with Maximum Uncertainty

The problem of interest concerns the characteriza-
tion of an unknown distribution based on information that
is provided, or information that one may obtain, concerning
the distributicon. We assume that the unknown distribution
of random variable X is generated by an unknown probability
density function, f(x), where X may be a vector and thus
f(x) may be a multivariate distribution. We concentrate
on providing an algebraic characterization or approximation,
p(x}), for the unknown density. We define "information" as
anything that is known or assumed about the random variable
or the distribution of the random variable. C(Clearly, the
amount and nature of available or assumed information will
greatly influence the resulting approximation, p({x). For

example one may assume (or know) that the unknown density

is normal, ¥ (u,c?), and obtain further information in terms
of a random sample, Xi0 i=1,2,...N. From the sample, one
calculates
X = I x./N and s? = T (x,-x)?/(N-1)
. i . i
i=1 i=1

to approximate the mean and variance and, thus, determines
the appropriate estimation of the unknown distribution,

3
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sy =

*

i.e.,

p(x) = (2Trsz)-!'j exp[-(x-x) ¥ (2s2)]

If the form of the distribution is known, as in our example,
then the problem reduces to one of parameter estimation.
However, in many engineering or statistical problems, suffi-
cient information to determine the form of an unknown dis-
tribution is nct available.

Assuming a particular density form without evidence
to support such a form will unnecessarily bias the distribu-
tion approximation and produce potential bias or error in
the ultimate solution of the problem. Consequently, the
method of distribution characterization that is proposed in
this paper derives a density form that utilizes only the
available information while maintaining "maximum uncer-
tainty" with respect to other, unspecified information. As
discussed in later sections, the method assumes that the
specified information can be provided in terms of average
values of certain functions of the random variable X. The
method is based on a specific measure of uncertainty for a

distribution, the distribution entropy.

ntrerye and Informatien Variation

The entropy function, S, was defined by Claude
Shannen (Refe 71; 72; 82) ir 1948 as a measure of the uncer-
tainty of & aiven answer to a well defined guestion.
Shanron'e wovv contered on commurications theory, but

4




provided a basis for E. T. Jaynes' extensién of entropy in
statistical mechanics (Refs 42; 43; 44). Myron Tribus (Ref
82) consolidates the work of Shannon and Jaynes and provides
a thorough discussion of the concept of maximum entropy.
Tribus (Ref 82:111-117) presents a derivation of the entropy
measure and several examples of entropy as a measure of
uncertainty. We consider a simplified example for illus-
tration and definition. For a complete discussion of the
development of the entropy measure, see E. T. Jaynes' 1979
article (Ref 45:15-118).

Consider & set of N possible events with the proba-
bility of occurrence of each event known. The probabili-
ties Pi’ i=1,2,...M are known, but no furtlier information
is available concerning which event will occur. Then

S(plpz..,pN), defined by Shannon as S(pl,pz...pN)=

N
- I p; 1n p, 1s a measure of how much "choice" is involved
i=1

in the selection of a single event or how "uncertain" one
is of the outcome of event selection. As an indication of
this uncertainty measure, consider N equally likely events,
that is p1=p2=...=pN=l/N. One's uncertainty as to which
event will occur increases as N increases, i.e., as the
number of possible events increases. In a similar manner,

the value of the uncertainty measure or system entropy,

N
s(pl’pz""PN) = _.lei 1n ?; = ln N, increases as N
1=

increases. Consequently, to paraphrase Shannon/Jaynes/




Tribus, if one wishes to construct a minimally prejudiced
probability distribution (a distribution which maximizes
uncertainty) based on information about that distribution,
one must maximize the entropy subject to constraints which
are specified by the given information.

Before proceeding with the maximum entropy charac-
terization method, we must extend the entropy measure to
include continuous probability density functions. Several
of the references discuss the continuous case (Refs 14; 17;
32; 89; 90), but Silviu Guiasu (Ref 33) provides the most
satisfactery treatment. Shannon's work tells us that the

entropy

N
S(pl,p2.>.pN)= - i p; 1n p; (2.1)

provides a measure of uncertainty for the finite, N dimen-

. Ca s .t
sional probability space where pP; = probability of the i h
N
event; pi -0, i=1,2,...N; and = pi = 1. Guiasu considers
i=1

entropy, in a comparable fashion, as the "amount of infor-
mation" conveyed by the given distribution. We now consider
a continuous probability density, p(x), on a bounded
interval {a,b] such that p(x)>0 and .Qf p(x) dx = 1. One
might erroneously assume that eguation (2.1) is logically

extended, in the limit, to the integrable case in the form

S(p(x)) = ~ f;‘p(x) 1n p(x) dx {2.2)




Equation (2.2), in fact, represents the Boltzman H-function
from classical thermodynamics which was defined as early as
1896. The H-function measures the disorder of a physical
system (Ref 33:14) and inspired Shannon to study, by analogy,
the discrete entropy S(pl,pz...pN). However, eguation (2.2)
is not the limiting case of equation (2.1). Consider the
uniform probability density on [a,b]:

1/(b~a) a<x<b

P(x) = 0 otherwise (2.3)

Then S(p(x)) = -~ /P 1/(b-a) 1n (1/(b-a)] dx = In(b-a).
However, S(pl’pZ"'pN) = 1ln N as previously stated for
P1=Po=...py = 1/N, i.e., the discrete uniform equivalent.
Clearly, limit S(pl,pz...pN) # S{pfx)). Thus the guestion
remains ofN;:w to relate "continuous entropy" to a measure
of uncertainty while forcing consistency between the dis-
crete and continuous cases. S. Kullback and R. A. Leibler
(Ref 50) provided insight with a measure of information
variation.

The Kullback-~Leibler information discrimination
measure provides a means of comparing or measuring the
information that is lost or gained when one probability
measure replaces a second probability measure. Kullback
(Ref 51) and Guiasu (Ref 33) both offer excellent develop-
ment of the information discrimination measure which is

based on the well known Radon-Nikodym theorem (Ref 35).

The development will not be repeated here, but we consider

7




only definition and relationship to entropy. Consider

sample space X and the sigma algebra, L, of measurable sets
of elements of X. We define probability measures Ul' v,

on L to denote probability spaces (X, L, Ui), i=l,2. Proba-
bility measures U, and U, are assumed to be absolutely con-
tinuous with respect to each other; that is, for every set
E in . if Ul(E)=O then UZ(E)=O or if UZ(E)=O then Ul(E)=O.
Then the "variation of information" when we pass from ini-
tial probability measure U1 to the new probability measure

U2, absolutely continuous with respect to Ul' is the inte-

gral
I(Uz,Ul) = IX d(x) In ¢ (x) dUl(x)
= Jy 1n ¢(x) au, (2.4)
where ¢ (x) = dU2(x)/dUl(x) is the Radon-Nikodym derivative.

1f we now associate cumulative distribution functions

?l(x) and Pz(x) with measures Ul(x) and Uz(x) (Ref 66:261)
where pl(x) and pz(x) represent respective density func-
tions, we may reduce (2.4) to a measure of information vari-

ation between two continuous probability density functions:
I(pz(x),pl(x)) = J'pz(x) i1n [Pz(x)/pl(x)] dx (2.5)

The variation of information function, I(Uz,Ul), appears
freguently in the literature (Refs 18; 26; 29; 73; 77; 79).
Both Gulasu and Kullback ofter thorough presentations of the

properties oJf I(UZ,U1).

e




‘ - Following the thrust of Guiasu's development, we

may now relate entropy to a variation of information. We

use equation (2.5), let X=[a,b], and let the initial dis-
tribution, pl(x), be the uniform distribution on [a,bl.
The uniform density is given in equation (2.3). Then equa-

tion (2.5) reduces to

(P, (x),py(x)) = /2 p,(x) [ 1np, (x) +1n (b-a)] dx

tn(b-a) f2p,(x) dax+f Pp,(x) In p,(x) ax

I(p,(x),py(x)) = ln(b-a) - S(p,(x))

Therefore, as Guiasu states, the continuous entropy S{p(»))

@ may be interpreted (up to an additive constant) as the vari-
ation of information in passing from the uniform probabil-
ity distribution con {[a,b] to the new probability measure
defined by p(x) on [a,b]. A similar development follows

- for Shannon entropy in the discrete case. Given pizo,

* N

. i=l,2,...N and < p.=1, then S(pl,pz...pN) = lnN-—I(pl,
i=1 -

p2"'pN'ql'q2"'qN) where qi=l/N, i=l,2,...N. Thus both
Boltzman's continuous entropy and Shanncn's discrete
entropy serve as a measure of the variation of information
when we pass from the initial uniform distribution to the
: corresponding probability density of interest. With this
confirmation, we proceed to investigate the maximum

entropy concept.

>y
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Maximum Entropy Formalism

Tribus {(Ref B2) formalizes the maximum entropy con-
cept for practical application. The goal is to approximate
the unknown distribution of random variable X with a "mini-
mally prejudiced" probability density function, p(x), based
on known or calculable information about the unknown dis-
tribution. The basic underlying principle, as originally
put forward by E. T. Jaynes, is here repeated; "The mini-
mally prejudiced probability distribution is that which
rmaximizes the entropy subject to constraints supplied by
the civen information” (Ref 82:120). An adaptation of the
Jaynes/Tribus formalism is presented in the following steps:

1. Define the density structure, i.e., discrete or
continuous. If a discrete density is invclved then this
step includes definition of possible outcomes; the entropy
fermalism assumes that the possible outcomes are known and
that we desire an approximation to the probability of each
outcome. For a continuous density, we require definition
of the set ¥ of possible outcomes, i.e., the interval of
integration {a,b) in equation (2.2). Notice that [a,b]
may be infinite. 1In practical application, the interval
may be determined (or approximated) via random sampie from
the unknown distribution where xi, i=1,2,...N, is the random
sample and [a,bl=[min X, max xi]. Notice also that the

random variable X mav be vector valued or multivariate.
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2. Constrain the density approximation, p(x), to
satisfy the given information. We here consider continuous
densities although a parallel development holds for the dis-
crete case. The given information is assumed to consist
of expected values (or average value approximations) of
functions gj(x), j=1,2,...K, of the random variable X. 1In
the work that follows, we call these functions "information
functions"” to indicate their significance in providing
information about the unknown distribution. The formalism
assumes that the irnformation functions, gj(x), and the
expected values, <gj(x)>, are known or specified. Thus,

constraints on p{(x) take the following form:
<g.(x)> = fbg.(x)p(x) dx, j=1,2 K
j- a j ! [ A

The selection of specific gj(x) and calculation of <gj(x)>,
j=1,2,...K, in fact determine the form of the resulting
approximation, p(x). Consequently, much of our effort per-
tains to an intelligent selection of information functions.
We notice that the formalism (or an adaptation of the for-
malism) may still be applied if the available information
takes a form other than expected (average) values of sre-
cified functions. One such example is discussed in the
applications chapter, Chapter XI.

3. Finally, maximize the entropy subject to the

given constraints.
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Application of the above formalism, for the bounde?l,

integrable case, produces a constrained maximization prob-

lem:
max S{p(x)) = max (- f;)p(x)lxmp(x) ax)
subject to;  /Pp(x) ax =1, (2.6)
Py () plx) & = ca.(x)>, 3$=1,2,...K
s gj %)t o4 (x) >, 3=1,2,. . .K ‘

with p(x) unknown, the value of <g.{x)> and the form of
go(xt, 3=1,2,...K, given. Tribus solves this proklem in

tno discrcte case using the Lagrance rethoc of undetermined

ctefficients. The Lagrance method alsc epplies tc the

irtegrable case (Refs 27; 5€¢). The analytical form of the

sclution 1c L
p{x) = ex [-%0~\lgl(x)—... LKgK(x)] (2.7}
whero }j’ i=1,2,...K, are the Lagrange multipliers. Egua-
~ion (2.7) represents the form of the minimally prejudicecd,
maximun. entropy distribution. We show in Chapter IV,
Trecrem 4.1, that eguation (2.7) is the cor ... form for )
the entropy density. In a similar sense, eguation (2.7)
crvetents oa family of dlstributions where the specific .
Lodrutan ol Irtore ot s selected throojzh appropriate
wlostior of the Lazra. ;o multiplier vecter N = {lo,\l,
- 5T . e Ca ) :
R T Lagirange noltapliers ale unknown at this
C,ohat e oo o0 0w dnfoimacion function, gj(x),
.~
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is predefined by the analyst. The gj(x), j=1,2,...K, may
take any form such that the expected values are known or
calculable.

Entropy Applications in
the Literature

Several authors have discussed application of the

maximum entropy formalism as indicated in the list of refer-
ences. Applications to spectral and time series analysis,
economic problems, drcision theory and pattern recognition
problems, and physics and thermodynamics problems are
examples of the available literature (Refs 7; 9; 12; 58; 74;
84). D. V. Gokhale (Ref 31) provides excellent supportive
discussion for entropy characterization based on known
expected values of certain functions of a random variable.
However, most of the available literature concentrates on
application in the discrete density case. The discrete
entropy maximizaticn problem (the continuous casec is repre-
sented in equations (2.6)) represents a set of simultaneous
linear equations. Sclution of the k+l1 constraint equations
for the appropriate A is thus somewhat simpler in the dis-
crete case as compared to the nonlinear continuous problem.
Agmon (Ref 3) presents an algorithm for computer solution of
the discrete problem. Gokhale (Ref 30) presents a second
approach to the discrete case and the list of references
provides several applications to specific discrete problems

(Refs 22; 52; 83; 86; 87).
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Application of the entropy method to continuous
density approximation results in a system of nonlinear con-
straint equations, equations (2.6), that must be solved
simultaneously to find A. Although sclution of the con-
straint eguations is, 1in general, quite difficult, a few
specific continuous distributions are well known. For
example, 1f all that is nnown about the distribution of
random variable X on (-=,%) is the values of <x> and <x°>,
then the resulting maximum entropy distribution is the nor-
ral distributieon. To see this, considéer the wnowr ferm of

“he eatropy density:

p(x) = exp{-‘o-klx-xzxii
The normal density function f{x) with mearn 1+ and variance ﬂ
¢’ follows:
£G0) = (27¢7) enpl- (x=1) T/ (270

1

(2-:’)'% exp [(~(20%) x4+ (/7% yx = (p?/20))

expl{C-(u7/22%)) + (u/cr)x-—(ZCz)‘lx:]

i

where C = 1n (1/ v27-2). Thus

g = (/207 -C, A o= - u/ot, Ay = 1/2¢? .

wl!l produce a norrmal aistribution with mean u and vari-
ance n°. Theoretical development by Guiasu and Tribus
{Refs 33:299: 82-131) point to the above results; experi-

Tamtoticn, with & rethcs of approximation that is detailed

14




in this dissertation, substantiates the expected results.
Other examples include the uniform distribution if no infor-
mation (except [a,b)) is known, and the exponential distribu-
tion if only <x> (on [0,=)) is known. Much of the litera-
ture on continuous entropy centers on application of these
known entropy forms. For example, Dudewicz ané van der
Meulen (Ref 24) utilize known entropy forms to develop the
concept of "entropy-distinguishability" and@ entropy-based
tests of hypothesis. Other examples may be found in the

list of references.

Two separate approaches to continuous density
approximation based on entropy concepts are found in the
literature. The primary difference between the approaches
is the choice of what we have called "information func-
tions," i.e., gj(x), j=1,2,...K. B. R. Crain (Refs 15; 16;
17) selects the Legendre polynomials as information func-
tions and restricts p(x) to be an element of L?[-1,1],

i.e., sguare integrable functions over {-1,1]. The Legendre
polynomials form a complete orthonormal basis of L?[-1,1]
which leads to thecretically sound convergence properties
for selected apprcximation densities. Wilson and Wragg

{Ref 89) and Wragg and Dowson (Ref 90) provide good theo-
retical development for a similar apprcach on [0,«) where
the information functions are taken as moments. Practical
application of either method is restricted by the need to

answer the following questions:
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l. How does one determine the number of moments
or Legendre polynomials that are needed for a particular
approximation?

2. How does one find the necessary Lagrange multi=-
plier vector A?

3. How useful is the resulting algebraic/analytic
expression for p(x), i.e., as the number of required infor-
mation functions increases, does p(x) become computationally
and conceptually cumbersome?

Collins and Wragg (Ref 14) took a logical step
*owird reducing the computational 2ifficulty of an approxi-
mation based on moments. They reduced the continuous prob-

~.obler by resorting to

lem to a discrete, and thus linear,
fregquency histograms. The histoaram method is computa-
tionally appealing but dces not provide an algebraic repre-
sentation of p{x). Young and Coraluppi (Ref 91) present
an interesting approach to a reduced problem. They present
an algorithm for the approximation of a probability density
functicn by a mixture of normal density functions with
unknrown means and variances. Their approach is also based
on minimizing an information criterion.

The following chapters present a practical method
Lo approximating an unknown probability density function
tbased on i1nformation in the form of average or expected
values of information functions, gj(x), j=it,2,...K. The

hesrt of the method 1s antelligent selection of the

lé6




- information functions from a large set of potential infor-

mation functions. The method builds on the maximum entropy

formalism as outlined in this chapter. The theoretical
development includes theorems on the form and uniqueness
of the approximating density for a given set of informa-

' tion (Ref Chapter IV). The resulting method is computa-

tionally feasible and efficient, and numerical techniques

for implementation are demonstrated.
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Chapter III. Entropy Approximation

Introduction

The distribution approximation problem, as intro-
duced in Chapter 11, is refined in the first section of this
chapter. The second section presents the general approxi-
mation procedure which results from application of maximum
entropy concepts. Subsequent chapters explore the detailed

steps of the general procedure and specific applications.

Problem Refinement

The problem of interest concerns approximation of
the unknown distribution of random variable X based on
information that is provided, or information that one may
obtain, concerning the unknown distribution. We are par-
ticularly interested in approximating the output distribu-
tions of computer simulations. The goal of this research is
to produce an approximation method that is theoretically
sound, suitable for practical application, and specifically
adaptable to computer implementation. With the goal in
mind, we may apply the entropy formalism of Chapter II.

Our previous adaptation of the entropy formalism
includes three steps: define the density structure, con-
strain the density to given information, and select the spe-
cific density that maximizes the entropy. First we define
the density structure. This paper will restrict

18




investigation to continuous densities on the bounded inter-
val [a,b]. The investigation centers on characterization
of univariate distributions where we assume that the dis-
tribution is generated by an underlying, urknown density.
We seek a representation or approximation for the unknown
density. While we concentrate on univariate distributions,
notice that nothing in our conceptual or theoretical devel-
opment precludes extension of the method to multivariate
distributions, i.e., where random variable X is vector
valued. The density structure defined, we now proceed with

“he entropy formalism.

Approximation Procedure

As previously discussed, the unknown density func-
tion for random variable X will be approximated by a maxi-

mum entropy function of the form
p(x) = exp [—XO-Algl(x)—...XKgx(x;] {3.1)

where the gi(x), i=1,2,...K are "informaticn functions,"
and the Xi, i=0,1,2,...K are Lagrange multipliers. The key
to providing an accurate representation of an unknown den-
sity, thus the key tg our approximation procedure, rests

in the ability to select the proper information functions
and the appronriate Lagrange multipliers. The approxima-
tion procedure is thus composed of three basic steps:

select the appropriate information functions; calculate the

19




expected or average values, <gi(x)>, i=1,2,...K; and solve
the entropy maximization problem for the Lagrange multi-

pliers. We now consider the steps in more detail.

Information Function Selection. The form of the

provided or calculated information, i.e., the forms of the
information functions, and the amount of information, i.e.,
the number of information functions, determine the form of
the resulting entropy density as shown in equation 3.1.
Clearly, specifying the wrong information functions or too
little information may lead to an unacceptable approxima-
tion. Moments (Ref 90) and orthogonal polynomials (Ref 15)
are examples of possible information functions. Our pro-
cedure allows great flexibility in definition of informa-
tion functions.

A two-phased approach is used in specifying the
information functions that best approximate a particular
continuous, univariate density on [a,b]. The first phase
includes specifying a large, general class of "potential"
information functions that have particular conceptual or
theoretic value. For example, all moments of a random vari-
able provide an extensive 2mount of information and would
comprise a feasible potential set. For reasons indicated
in Chapter II and expanded in Chapter V, moments do not pro-
vide a practical set of functions. A more useful potential

set is discussed in Chapter V. The potential set should
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be large to allow consideration of a wide range of useful
functions. Use of the entire potential set to specify the
entropy density, eguatiocn 3.1, would lead to a numerically
intractable problem in solving for the Lagrange multiplier
(just as using all moments) and a conceptually dissatisfy-
ing form for the approximation, p(x). In fact, much of the
informaticn may be redundant or unneeded when approximating
a particular density. Thus, in phase two, we seek the
minimum subset of the large potential set that will accept-
ably 3avpproximate the density of interest. The minimum sub-
szt will be called the "active set" of infcrmation func-
tions. Thus, phase one is definition of a large class of
potential functions that will serve in a wide variety of {
characterization or approximation problems, while phase two
is selection of the active set ¢f information functions that
pertain to a specific approximation or characterization
problem.

A point of clarification is needed. We will fre-

quently interchange the terms characterization and approxi- -

maticn when referring to the entropy procedure. As we will
see in Chapter V and subseguent chapters, the entropy pro-
cedure will axactly characterize the unknown density (given
computational acturacy) if the potential information func-
tion set contains the correct functions. Chapter II pro-
vided such an exarple for the normal distribution with func-

tions x 2rd w7, 1f the covrect functions are not present,

2
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then the procedure provides an approximation to the unknown
distribution. Thus, assuming a broad potential set, inter-

change of the two words is permissible.

Generation of Expected or Average Values. Our

entropy approximation procedure requires that the informa-
tion be given in terms of expected values of the informa-
tion functions, <gi(x)>, i=1,2,...K, or average value
approximations to the expected values. The method used to
obtain the <gi(x)>, i=1,2,...K, is transparent to the char-
acterization procedure; in fact, alternate methods exist.
For example, the analyst may possess information about the
unknown distribution which was accumulated through years

of experience or repeated trials. If this information is
available ir the form of average values, then the entropy
method may be applied directly. For a more standard
approach, we assume that a random sample of size N is avail-
able for random variable X, i.e., xj, i=1,2,...N, The
expected values are then approximated by average values:

<gi(x)> = gi(xj)/N, i=1,2,...K (3.2)

I~

j=1

The accuracy of the approximation in equation 3.2 is depen-
dent on the sample size N. A third method which is heavily

used in this researci is numerical gquadrature.
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Numerical quadrature, or numerical integration,
provides an effective means of computer integration. Quadra-~
ture plays a key role in application of our characterization
procedure to computer simulation, is a required tool for the
numerical scheme which we employ to find the Lagrange multi-
pliers, and can be used to calculate expected values. A
detailed discussion of one guadrature form, Gauss~Legendre
guadrature, may be found in Appendix A. The general gquadra-

ture form follows:

b ~ b-a
r T2 e
‘5 gl(x) éx 5

0oeag

Woqlx) (3.3)

=1

where a<x,<X.<...<%x_<b and the W. and x. are defined in
=12 - m ] J

Appendix A. Now consider the expected value eguation:

<g;(x)> = [ Pq, (x) £(x) ax (3.4)

where f(x) represents the unknown density that we wish to
approximate. If the values of the unknown density can be

approximated at the points xj, j=1,2,...m, then

cg. (x)> T 222 T W g. (x.) £(x.)
i 2 1 37173 3
J...
Tho values fix.), j=1,2,...m, might be reasonably approxi-

mated by a freguency table or even numerical differentia-

ticn of a sample cumulative distribution.

23
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A very important application of our characteriza-
tion method is to computer simulation. The key role of
quadrature in this application is introduced at this point
for consistency and is expanded in Chapter IX. Consider

the simplified simulation model:

h(y) on {abl—=' Fly) |- £f(x) on [c,d]

where h(y) is the known probability density function of
input random variable Y on [ab], Fly) is a mathematical
transformation representing the simulation, and f(x) is the
unknown probability density function for random variable X
that we wish to approximate. We apply basic transformation
of variables techniques (Ref 39:127) to equation 3.4 to

obtain the following:
g x)> = f8g.(x) £1x) ax = SP g (F(y)) hiy) dy;
93 c 9i a 9iVFW Y dy:
and applying equation (3.3)

<q; (x)> = 252

3

L =]

W.g. . . 3.
L P59 F ) hiyy) (3.5)

i=1,2,...K.

Thus we may calculate the expected values of information

functions for a computer simulation by sampling from the
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simulation at m predefined points. The benefits of this

result are pursued in Chapter IX.

Lagrange Multipliers. Once the active set of infor- 3

mation functions has been selected and the expected values

have been calculated or approximated, the constraint equa-

tions must be solved to find the K+1 Lagrange multipliers,

.o, i=0,1,...K, where K is the number of functions in the .

—

active set. The simultaneous solution of K+1 nonlinear

0}

cquations is a difficult task analytically and numerically.

} Actorn, Fox, Luenberger, and Saaty and Br=m (Refs 2; 27;

; €7) describe various numerical approaches. The method

of choice in this paper 1s the Newton method. A computer

rrogram to solve for the K+1 lambdas, given K expected values £
and the forms of the information functions, using the

Newton method has been implemented. See reference 3 for a

cimilar approach to the discrete density problem. Exist-

ence 2nd uniqueness properties, and a numerical scheme for

ceneral sclution of the constraints are discussed in the

next chapter. -

Resulting Density Function. The form of the maxi-

mum entropy approximation is known: p(x) = exp[~xo-klglix)

‘KqK(x)]. The specific entropy density, p(x), that
will approximate or characterize the unknown density, f(x),
15 selected throush anplication of the above procedural

steps. We summarize the procedure. The active information
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function set is selected to include the form and number of
information functions. Average or expected values of the
information functions are generated. Finally, the Lagrange
multipliers are calculated via the Newton method, and p(x)
is completely defined.

Application of this method has produced excellent
approximations in numerous test cases. The specifics of
the above procedure, to include test examples and applica-

tions, are discussed in the following chapters.

26
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Chapter IV. Solution of the Constraint Egquations

Introduction

The theoretical backbone of our entropy characterization
method is presented in the first section of this chapter.
The entropy approach is based on the solution of a con-
strained optimization problem. We present the problep and
derive Theorem 4.1 which defines the form of the solution

density,

p(x} = exp[—)o,xlgl(x)~...Akgk(x)] (4.1)

We then addres< solution of the constraint equations for

the lambda vector, A=(XO,A1...Xk)T, which egquates to selec-
tion of a particular density €from the family represented in
egquation 4.1. Two theorems pertaining to unigueness of
solution are presented. Theorem 4.2 shows that; gi?en
existence, there is only one solution vector that méximizes
the entropy. However, iterative solution of the constraints
may lead to a local optimum as shown in Theorem 4.3. The
first section concludes with Theorem 4.4 which shows that
the average values of our information functions are complete
sufficient statistics for selection of a specific p(x).

The second section of the chapter presents a numerical
scheme to apply the theory. Performance of the scheme and

numerical sensitivities are discussed.
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Theoretical Development

Form of the Solution. We assume that the forms

and number of "active" information functions are known, and
that expected values are given; thus, gj(x) and <gj(x)>,

3=1,2,...k, are known. We wish to find the continuous den-

sity, pl(x), on [a,b] that will satisfy the given informa-

tion, i.e., produce the given expected values, while main-
taining maximum uncertainty with respect to other,
unspecified information. The mathematical statement of

this problem is repeated from equations 2.6:

max S{p(x)) = max (-f:)p(x) In p(x) dx)

sutject to

gjp(x) dx = 1 ,
. b .
s o (x) plx) dx = <g.(x)>, j=1,2,...%k (4.2)
a ] ]
We assume that the g,.(x), j=1,2,...k, are continuous and
bounded on [a,b]. 1In terms of a probability space, we con-

sider probability space (X, L[, U) where X is the interval
la,bl, I is the sigma algebra of Lebesgue m=asurable sets

on X, and the probability measure U on I is defined by the

probability density function
p{xy>0, aix<b, I;)p(x) dx =1 (4.3)

We arply the Lagrange method of undetermined coefficients
Py ]

~n equations 4.2 4o find the density in 4.3. The

28
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Lagrangian, L(p(x),A), follows:

k
Lipx).N) = S(px)) - Xo(fp(x) dx-1) - I Aj(fgj (x)px) dx-<gj (x)>)
j=1
k k
= fp(x)[ln(l/p(x))—ko— jﬁlkjgj(x)] & + AO + jilxj<gj(x)>
k k

Jpx) {In [ (1/p(x)) exp (A= I 0

J_lkjgj(x))]}dx4-x

+ I h.<qg.(x)>
j=1 J 7]

We apply the knowledge that for all x>0

In (%) < x-1 if x#1 and
ln (x) = x-1 if x=1 to get
k

Lip(x) N </px) [(1/p(x)) exp (—XO- z ljgj(x)) - l]dm-+xo + I

A <g.(x)>

Since we want to maximize L(p(x),A), we seek equality in

our last expression which occurs if and only if p(x) =
exp[-)\o -.El\j gj(x)]. The preceding result is well known
and is mégtioned in several references without proof for the
continuous case (Ref 42; 82; 89). This derivation is given
to enhance clarity. The derivation is a generalization of
work presented by Guiasu (Ref 33:298-301) and attributed to
Kampé de Fériet (Ref 48) and Ingarden and Kossakowski

(Ref 41). The Guiasu presentation was concerned with the

normal and Poisson distributions. We summarize with a

theorem.
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Theorem 4.1. Given probability space (X, L, U)

where X is the interval [a,b], L is a sigma algebra of
Lebesgue measurable sets, and U is defined in terms of p(x)
as in eguation 4.3, then the density function, p(x), which
maximizes the entropy subject to constraints as represented

in equations 4.2 is of the form

X = —/\ -‘) —._'—7‘ n‘

p (%) expl o lql(x) k-x(X)]

. wher« the gj(x) are continuous, bounded functions on X,

4

r Theorem 4.1 provides the form of the entropy char-~

acterization density. Given a specific set of expected
values, <gj(x)>, j=1,2,...k, we solve the k+l constraints
for I = (lo,kl,...lk)T to completely determine p(x). We
now relate concepts from Tribus (Ref 82), Guiasu (Ref 33),
and Kullback (Ref 51) with the special properties of our

- problem to discuss exlstence and uniqueness properties,

Existence. The existence of a solution to the con-
straints is not guaranteed. We may clearly specify a set
of expected values which form an inconsistent set of con-

staints and for which no density exists. For example, con-

sider k=2, g, (x)=x, gz(x)=x2, <g, (x)>=10, and <g,(x)>=99.
As discussed in Chapter II of this paper, the maximum
entrcpy density given only <x> and <x?> is the normal den-

sity. Consider the variance of the density we have speci-

Fimd:

[ -




vVar = <(x-<x>)2>=<x2> - <x>? = 99 ~ 100

or Var = -1.0

This example thus asks for a normal density with negative
variance which is not possible. Collins and Wragg (Ref 14)
state that, in the general case, the precise conditions on
the expected values of moments for which a A vector will

. exist, where the A vector satisfies the constraints, do
not seem to be known. Only for information functions

g, (x)=x (k=1) and g, (x)=x, g2(x)=x2

(k=2) are conditions
known in any completeness. Wragg and Dowson (Ref 90},
Widder (Ref 88), and Ahiezer and Krein (Ref 4) provide
extended discussion of conditions for valid moment seguen-
ces.

We are, however, concerned with practical applica-~
tion and our problem is somewhat restricted. Our problem
centers on approximating an "existing," though unknown,
density. Samples from the urkinown density are used to
approximate the expected values via quadrature or sample

: averages. Thus, we have a consistent set of constraints
provided that the expected value approximations are accu-

rate. Inconsistencies that result from sampling or compu-

tational errors may be alleviated by increasing sample

size, or increasing the number of guadrature points, and
1 including computational checks to produce more accurate

expected value approximations. We thus assume a consistent
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set of constraints, i.e., the unknown density, f(x), satis-
fies the constraints. Assuming an intelligent choice of
information functions, as discussed in later chapters, we
will produce a p(x), Theorem 4.1, that acceptably approxi-
mates f(x). In this manner, the existence problem is con-
ceptually translated to a problem of specifying the correct
information functions. For purposes of this paper, we
assume existence of a solution vector, A = (XO,Al,...Xk)T,

for a given expected (or average) value vector, <G> =

(1,<ql(X)>,<gz(X)>,-- '<gk(x)>)T'

Unigueness. We wish to discuss unigueness in two
respects. First we show that if there exists a second den-
sity on fa,b), p(x), where p(x) may take any form such that
p(x) 0 and p(x)~0 almost everywhere (a.e.) on [a,b], p(x)
satisfies the constraints, and p({x) maximizes the entropy,
then p(x)=p(x) a.e. Secondly, we show that the solution,

*, which maximizes the entropy is a global solution, i.e.,

if there exists a B = (EO,E

-1,...Bk)such that

pix) = expl-8,-8; g, (x) =...By g, (x)]

where p(x) satisfies the constraints and maximizes the
eniropy, then A=/, We will combine these results in one
thecrem, The apptoach is to assume a second solution,
nix), of any form such that p(x)>C for all x in [a,b] and

piay -0 a.e. on (a,bh]. Wz then consider the entropies of

32
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our two solutions, F=S(p(x))-S(p(x)), and show F>0 a.e. and
F=0 if and only if p(x)=p(x) a.e. We then assume the exist-
ence of a B vector and obtain our second result. The
theorem and proof are motivated in a proof by Tribus of a dis-
crete maximum (Ref 82:123) and a theorem on information
discrimination by Kullback (Ref 51:14).

Prior to a statement of our theorem, we discuss the
Kullback theorem. The Kullback-Leibler information dis-
crimination measure was introduced in the background chap- %
ter of this report (equation 2.4). 1In keeping with Kull-
back, we use the probability spaces of Chapter II, (X, L,

Ui), i=1,2, and define a third probability measure, U. Let

U be absolutely continuous with respect to (w.r.t.) Uy and
Ui be absolutely continuous w.r.t. U, i=1,2; for example,

U may be Uy, or U or (U1+U2)/2. The Radon-Nikodym

27
derivatives are now defined in terms of U as ¢i(x)=dUi(x)/
dU (x) where ¢i(x), i=1,2, are functions, unique up to sets
of measure (probability) zero in U, 0<¢i(x)<co such that
Ui(E)=IE®i(x)dU(x), i=1,2, E an element of L. Using this
nomenclature, we revrite the discrimination measure of
Chapter II, I(UZ'Ul)' to an equivalent form:

¢2(x) ®2(x)
I(UZ'UI) = [1n W dUZ(X) = f¢2(x) 1ln ¢—l(—x)- au (x)

(4.4)
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Kullbacek Theorem. I(Uz,Ul) is almcst positive
definite; that is,I(UTUl)zO, with equality if and only if
¢1(x)=¢2(x) a.e. w.r.t. U. See Kullback (Ref 51:14) or

Guiasu (Ref 33:22) for proof of this theorem.

Armed with the Kullback Theorem, we turn to the
question of uniqueness of p{x) and uniqueness of the
Lagrange multiplier vector, A. We have p(x) as shown in

egquation 4.1 and k+1 constraints:

b
fa gj(x) p(x) dx = <gj(x)>, j=0,1,...k

where go(x)zl. For a specified set of expected values,
<G>0=(1,<gl(x)>,...<gk(x)>)ﬁy we solve the constraints
for AO=(AO,X1...XK)3)to completely determine p(x). From
Theorem 4.1 we know that p(x) maximizes the entropy,
S(p(x)). Now assume that there exists density p(x) that
satisfies the constraints where p(x) may take "any form"
subject to two conditions: P(x)>0, x in [a,b] and p(x)>0
a.e. on [a,b]. The second condition is needed to insure
that the probability measures associated with p(x) and
p{x) are absolutely continuous w.r.t. each other. We wish
tn determine if p{x) is also of maximum entropy. We may
represent our state of knowledge with two sets of equa-

tions.
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s = ~/2p(x) Inpx) ax, § = -fabf:(x) 1n B (x) dx
with with
P (x) plx) ax = <g. (x) > 1P g %) Bix) ax = <q. (x)>
a J J 4 a J j ’
j=0,1,...k j=0,1,...k
and and
K
p(x) = expl~ I g.(x)),) p(x)>0, xela,b],
j=0 J ] p{x)>0, a.e. on [a,b].

All integrals in the following derivation are over the
interval [a,b] although the limits of integration will not

be shown. Consider,
F=28-8= fp(x) Inp(x) dx - fp(x) Inp(x) ax
Now add and subtract fp(x) 1ln p(x) dx,
F = /p(x) 1In (P(x)p(x)) dx + J(P(x)=-p(x)) 1lnp(x) dx

We substitute for the known form of p(x) in the last

integral:
k
F = /p(x) 1n (P(x)/p(x)) dx + f(ﬁ(x)—p(x)).zoxjgj(x) dax
j:
k
= [Pp(x) 1n (P(x)/pi(x)) a&x + T Aj{fgj(x)ﬁ(x) dx -
j=0

fgj(x) p(x) dx}

Clearly, the last (k+l) terms cancel due to the require-

ment of constraint satisfaction and thus,
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F=5-5= /p(x)1ln (B(x)/p(x)) dx (4.5)

Since p(x) and p(x) are probability density functions on

[a,b), we may define,

P(x) = prob (X<x) = f;(p(y)dyand
P(x) = prob (X<x) = faxﬁ(y) dy, with
P(x) = ﬁ(x) = 0 if x<a, and
P(x) = P(x) = 1 if x>b,
as probability measures on [a,bl. We know p(x) and p(x)>0

for all x in [a,b], except for a set of measure zero, and

by definition p(x)=p(x)=0 for all X not in {a,b). Thus

P(x) is absolutely continuous w.r.t. P (x) and vice versa.
We are now in a position to apply the Kullback

Theorem. With the Kullback nomenclature, we let

Up(x) = U(x) = P(x); Uy(x) = P(x);
¢ (x) = dP(x) /dP(x); 9,(x) = dp (x) /AP (x) ;
I(U2,U1) = f¢2(x) 1n (¢2(x)/¢l(x))dU(x)
= [(dP(x) /dP(x)) 1n (dP (x) /4P (x))dP (x)
(U, U} = [5(x) In (F(x)/p(x}) dx, (4.6)

We equate equations 4.5 and 4.6 to obtain

¥ =S5~ 8§ = 1(U,,U)).
4.
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Thus S-S>0 with S-S=0 if and only if ¢l(x)=¢2(x) a.e. w.r.t.
U, or aP(x)/dP(x)=dP(x)/dP(x) a.e. w.r.t. P(x) which implies
that p(x)=p(x) a.e. w.r.t. P(x). Thus we obtain the impor-
tant result that either p(x) is the only form of solution
that maximizes the entropy or any other solution, p(x),
must satisfy p(x)=p(x) a.e.

We take this development one step further by assum-
ing the existence of a Lagrange multiplier vector B#Ao such

k

that p(x)=exp[- L Bj gj(x)], p(x) satisfies the constraints,
3=0

and p({x) has maximum entropy. Thus S-S=0 and p(x)=p(x)

a.e. which implies

lnp(x) = Inp(x) a.e., and
k k
~ I A, g.x)=- L B.g.(x)a.e., or
j=0 7 3 5=0 3 7
k
L (B.-A.)g.(x) =20 a.e.
j=0 3 3773

If the gj(x) are linearly independent functions, then the
only linear combination of gj(x) that equals zero a.e. is
if (Bj-lj)=0 for all j. Thus Bj=kj for 3=0,1,...k. We

summarize the above developments in a theorem.

o . _ T
Theorem 4.2. Let there exist Ao—(ko,kl,...xk) 0
k+1 k
with Ay an element of R such that p(x)=exp[- L xjgj(x)],
3=0
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qo(x)zl, and p(x) satisfies the constraints f:)gj(x)p(x) dx

=<gj(x)>, j=0,1,...k, with S(p(x))=-f;>p(x)111p(x) dx. 1If
there exists a function p(x) such that p(x)>0 for all x in
[a,b] and p(x)>0 a.e. on [a,b]l, then S(p(x))>S(p(x)) and
S{p(x))=S(p(x)) if and only if p(x)=p(x) a.e. on [a.b.]

If there exists a B in Rk+l such that ﬁ(x)=exp[i§ ngj(x)],
with linearly independent gj(x), and p(x) satisgzgs the
constraints, then S({p(x))=S(p(x)) if and only if Xj=8j,

3=0,1,...k.

We have established the form and unigqueness of
solution for ocur optimization problem given that a solution
exists. We now directl oxplore the constrain* eguations
and the possibility of "local" optimum solutions. Only
one A=A0 exists for which p({x) satisfies the constraints
and S(p(x}) is maximum; however, there may exist a /=8
with corresponding p(x) which satisfies the constraints,
and where S(p(x})<S(p(x)). If there exists a neighborhood
of p(x), where p(x) is not an element of the neighborhood,
such that S(p(x)})>S(g(x)) for all g(x) in the neighborhood
then p(x) is a local optimum. Local optimums are of con-
~ern because the k+l nonlinear constraint eguations must
ne solved with iterative numerical techniques, and such
technigues may converge to local optimums.

Given that A0 is a solution vector for the non-

iinear system of equations F(A)=<G> where
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F(A) = r}go(X) p(x) dx = r;o(A) = r-<go(x)> = <G>,
Lfgk(X) p (%) dxd __fk(A)_ L<gk(x)>—

P(x) = expl-} g, (x)-A gy (x)-... X g, (x)], g (x)E1, and all

integrals are over the interval [a,b), then the following

theorem addresses solution unigqueness.

Theorem 4.3. Let go(x), gl(x),...gk(x), finite k,
be continuous functions in L2[a,b] and gi(x) gj(x)be in
L’ [a,b] for i,3=1,...k, go(x)El. If A0 is a solution of
F(A)=<G> for a specific <G>0, and 1f the gj(x), j=0,1,...k,
are linearly independent functions, then there exists a
neighborhood, ¥, of AO where AO is the unigue solution

of F(A)=<G>

0"
Proef. Consider F(A) to be a function from some
subset of Rk+1 to Rk+l. By the fundamental Inverse Func-~

tion Theorem (Ref 78:354), if F(A) is continuously differ-
entiable in some neighborhood of AO and if the linear trans-
formation F'(Ao) is invertible (nonsingular), then there
exists neighborhoods W and V of Ao and F(AO), respectively,
such that F: W+V is a one-to-one, onto mapping. Thus,

given solution vector A for all Bew, F(B)=<G>o if and

0'
only if BEAO, or AO is the unique solution vector in
neighborhood ¥W. We will show that F is continuously

differentiable in some neighborhood of AO and that F’(Ao)
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is nonsingular in that neighborhood, and the proof will be
complete.

1. Continuous differentiability. Continuous first
partial derivatives are necessary and sufficient for con-

tinucus differentiability. Thus we consider

. -

r.
J = E“fo”‘””‘o' 3EG (MY /3%y, L. R (R) /0%y
|
\
1

FEO(A)Y /B

4 SE, (M) /52y, ... SE (M) /3)
Lk K | 1 x oM

Ol

where ?fi(i)/?‘j = fgj(x)qi(x)p(x)dx; i,4=0,1,...k.
“learly p{x}) is a composite of the continuous gj(x) and is
continuous. Integration is a continuous operation and the

products of continuous functions are continuous. Thus,

cach element of J is continuous and F (%) is continuously

N

Aifforentiable.

2. Nonsingularity of F (A)=J. J is nonsingular
2t ty G the determinant of J,|J|, at hy is not zero. We
claim that !2}#0 if and only if the gj(x), j=0,1,...k are

linearly independent. We prove the contrapositive of this

claim, i.e., 1J'=0 if and only if the gj(x) are linearly

derendant.

{(~) Assume the qj(x), i=0,1,...k are linearly
fopns ot 2nl show 'JI=0. Based on this assumption, there
»xizt - constants, @;, not all zero, such that .éoajgj(x)=0
Sor o3 % oin o ta,bhl. We may write one g (x) asJa linear

3

40

s




combination of thne others and rearrange the indexing such
that
k-1 k-1

gk(x) = - F (uj/ak) gj(x) =-1

B. g.(x)
j:o ]:O J J

Now consider the mth row of J, i.e.,

[-fgm(x)go(x)p(x)dx,...,‘fgm(x)gk(x)p(x)dx].

We substitute for the kth element of this mth row (i.r

o

the kth column entry):

k-1
'fgm(X) gk(x) p(x) dx = -Igm(X)(giijgj(X))p(X) dx

|
=j£08jfgm(x) gj(x) p{x) dx

The last summation equates to & linear combination of the

other (k-1) columns. This procedure holds for all rows.

Thus, the kth column is written as a linear combination of

the first (k-1) columns and |J|=0.

(b) Assume |J|=0 and show that the gj(x) must
be linearly dependent. Since |J]=0, then the columns (or
rows) of J are linearly dependent. Thus we have constants,
a., not all zero, such that - £ a./g_(x)g.p(x) dx=0. It

3 K j=0 3 M
follows that -fgm(x)( L ajgfx)) p(x)dx =0 for all m (i.e.,

j=0
for all .ows) and hence




s e

k 3
-z amfgm(x) ( ‘ioa.gj(x)) p(x) dx

= 0, or
m=0 3 3
k k
- T « I a.qg. ;=
i mqm(x))(j=0 Jg](x)) p (x) dx 0 and
kK
-JU T a_ g (x)) plx) dx = 0.
50 373

“@ krow that p(x)=exp[-’ - - =) 3
We krow that p(x)=exp| 09 (%) 197 (¥)-. .. )kgk())] and

thus pix) 0 for all x in {a,b] where a*-=. Thus

kK
( 7 t.g.(x)) =0 a.e. for the last eguation to hold or
j:(‘»jj
K
= qicj(X):O a.c¢. which is a statement ¢f linear dependence
g
nf the cj(x). We remember that two functions in L7 [(a,b]

arc ceonsidered equivalent if they are equel a.e. (Ref
£6:112). Thus, iJ!=O implies linear dependence of the
cﬂ(x).

We have shown that J is nonsingular and the condi-

tione for anmplication of the Inverse Function Theorem are

satisfied. The proof of Theorem 4.3 is complete.

Sufficient Statistics. Our final theorem concerns

the concepts of complete, sufficient statistics for solu-
tzon or the . vector. The theorem shows us that the
average values of our information functions (which approxi-
mate expected values in our work) contain all the infor-

mation ot the random sample which was used to generate the




values, i.e., information is not lost. Further, the
average values contain sufficient information ior esti-
mating vector A. The theorem is a special case of a
theorem presented in Hogg and Craig (Ref 39:232) for the
"regular exponential class" of probability densities. We
restate the Hogg and Craig results, in our terminology for
our special case, as Theorem 4.4.

Theorem 4.4. Let the entropy density be of the form
k
p(x)=expl[- T Xi gi(x)] for x in [a,b] and p(x)=0 for all
i=0
other x with go(x)=1 and linearly independent gi(x),

i=0,1,...k. Given a random sample (xl,xz,...xN) with

N>k, then the functions

e

gi(xj)/N, i=0,1,...k,

j=1

are complete sufficient joint statistics for detcrmining

the vector A=() r )T,

o’xl"" X

Section Summary. In this section we have derived

the form of the density family which maximizes the entropy
while satisfying given constraints. We have shown that
only one density will maximize the entropy, if a solution
density exists, although numerical solution of the con-
straints may lead to a local maximum. We related existence
to the correct selection of information functions.

Finally, we have shown that the average values of the

43




information functions provide all the information needed
to select the one entropy density. That is, the average
values comprise all available information that can be pro-
duced by a random sample (xl’XZ""xN) of the unknown den-
sity. We now direct our attention to application of the
above theory in terms cf numerical solution of the con-

straints.

Numerical Solution Schene

Koy tc a ceneral implementation of the entropy

onroniration procoedurs s the ability to £ind the correct
gy k) for a giwven set of expected values, i.e.,
~oluticon of the constraints. We restate the problem:
3 ~ Yoo 3 E T cu.oh ¥
4 Cyr l"'"’k’ cuch that
£,0°) = [p(x) ax -1.0 =0
£ 'A - [~ ~\ ’ -l > —
11( ) . ﬁl(y‘ plx) dx ql(x) 0
’ = f 1 < - < > o=
fk(<d .qk(x) p{x) dx gk(x) 0 (4.8)

where p(x)=exp([~Xi_ -3 (x)=-...

0 "1%
the form of gj(x) known for i=1,2,...k. The (k+1l) con-~

-quk(x)] with <gi(x)> and

ctraints are nonlinear and, except for a few restricted
cases, cannot be solved directly for the A vector. As

previously mentioned, several authors discuss iterative
nuner.cil schemes for simultaneous solution of a system

of nonlinear equations (Refs 2; 27; 56; 67). For our
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approach, we write equations 4.8, in vector notation, as
a fixed point problem, F(A)=0 where F(A)=[f0(A),f1(A),...
fk(A)]T. We have implemented a computer program which suc-
cessfully applies the Newton-Raphson successive approxima-
tion procedure to the above fixed point problem.

The Newton method is based on iterative solution of

the following equation:

J # (An-An+1) = F(An) (4.9)

where An is the Lagrange multiplier vector, A, for the nth

iteration and J is the Jacobian matrix for F(An). An
initial guess, AO' is selected and equation 4.9 is solved
for Al' The scheme repeats for A2'A3""An’An+l’ until
the difference (An—An+l) is less than a predefined value,
i.e., until convergence occurs. The actual convergence
criteria for our program requires that the final wvalue
of each element of the (An-An+l) vector be less than a
predefined epsilon. When convergence is obtained, An con-~
tains the solution values of Aj' j=0,1,...k. The program
is written as a subroutine, subroutine ENTROP, which
requires the user to specify the following items: the num-
ber of active information functions, k; the approximation
bounds, [a,b]l; a vector to identify the active information
functions; and a vector which contains the average or

expected values of the active functions. The potential set

of information functions is provided as a set of numbered
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external functions, i.e., Fl,F2,...FM. The potential set
is thus easily modified without access to the subroutine.
The user identifies the active set for a particular problem
b, specifying the respective function numbers. The pro-
gram is currently implemented with twelve potential func-
tions and a maximum of six active functions (plus go(x)=l).
Larger sets ~—an be accommodated with simple program
changes. Subroutine ENTROP solves equations 4.9 for vector

{A using matrix decomposition and two programs from

nwin+l)
the International Mathematical and Statistical Libraries
(IMEL) . All integrations for production cof the Jacobian
and E(Ln) values are accomplished using a 32 point Gauss-
Legendre quadrature program from a local library. Once
convergence 1s reached, the / vector is returned. Sub-
routine ENTROP has been extensively tested with very posi-
tive results.

Convergence and rate of convergence of the Newton
method are dependent on the initial guess, Ao. Theorems
exist which address convergence of iterative schemes in
general (Refs 13; 47) and the Newton method explicitly
(Ref 67). The theorems usually specify a neighborhood
about the solution wherein the scheme will converc= if the
initial guess is within that neighborhood. Acton (Ref 2],
Collatz (Ref 13), and others present examples of diver-
gence due to poor initial guesses. As expected, subroutine

ENTROP is sensitive to the initial guess AO' and a poor
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initial gquess will cause divergence or numerous iterations

for convergence. For example, we consider the data pre-
sented in Table IV.I. The data pertains to the output of

a computer simulation which will be discussed in Chapter IX.
We wish to find the A vector for the four information func-
tions, Fl, F2, F5, F8, wvhere the average values and bounds,
[a,b)], are computed from the data. Previous application of
subroutine ENTROP for other combinations of information
functions, using the same data, indicated that AA was a
feasible starting value for the Newton method. However,

the large value of AA0=374.114 produced a terminal numeri-
cal error in ENTROP. A second attempt with initial guess
AB' where AB0=O.O and other elements of AB were equal to

A failed to converge in 35 iterations, although a terminal

A’
error did not result. A final attempt with AC=(0,0,...0)
converged in 20 iterations. Several schemes for intelli-
gent selection of the initial vector, AO' were evaluated
throughout the research. The one scheme that converged
for every test on {a,b], where a solution existed, was the
initial vector of all zeroes. Conceptually, this tells us
that the first iteration of the Newton method produces a
Ao A1=-J(AO)-1F(A0), where A, is an element of a conver-
gent neighborhood of the solution; other initial guesses
run the risk of missing that neighborhood. (It is not

known why this occurs.)
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TABLE 1V.I

SIMULATION DATA AND CONVERGENCE COMPARISON

Find A = (}‘Ol>‘11>‘2'>‘51>‘8) for

= . - Y -
p{x)=expl XO XlFl X2F2 F5 XBFB] on

5

fa,b) = [5104.12, 8262.58]).

. Symbol Function Expected Value

. F1 (x-x) /s .00457

; F2 (x=-x) */s? 1.0

r
F3 In {b-x) 7.4647

L ‘ F8 (x-x) " /s" 3.0168
X sample mean 6492.26
s’ variance 72050.87
Test Comparisons
- Initial guess: AA=(374.114, 0.0, -.348, 35.707, .0153)

Fesult: Terminal numerical error

Initial guess: AB=(O.O, 0.0, ~.348, 35.707, .0153)

Result: Failed to converge in 35 iterations

Initial guess: AC=(0., 0., 0., 0., 0.)

Result: Convergence in 20 iterations
.= (-24.336, .636, .540, 4.125, .002)




_ Subroutine ENTROP is implemented for a maximum of

six active information functions plus the normalizing func-

tion go(x)=1. The number of active functions is restricted

for two reasons. First, the Newton method becomes compu-

tationally cumbersome as the number of constraints, i.e.,

the number of active information functions, increases.

The primary numerical difficulty centers on the symmetric
. Jacobian matrix, J, which was discussed in the proof of

Theorem 4.3:

] J = lafj(/\)/ﬂi] j,i=0,1,...k.

capo

We demonstrate the potential numerical difficulty by

relating the initial research which considered moments

about zero as information functions, i.e., gi(x)=xl. The
H Jacobian in this case follows:
-Ip(x) ax ~Ixp (x) dx ce. =IxF p(x) ax
. J = |-Sxp(x) dx -/x?p(x) ax cen -ka+1p(x) dax
—kap(x) dx -ka+1p(x) dx ... -fx2kp(x) ax

As k increases, or as the interval of integration, [a,b],

th column (or row) will be

increases, the elements in the k
L much larger than elements in the first column (or row).
\ Couple this structure with numerical error and limited

machine precision, and we have created a matrix which the
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computer interprets to be "singular." Such ill-conditioning
is not restricted to moments. The example of Table IV.I
with large initial value for AO’ A0=374.114, produced the
came difficulty. Hornbeck (Ref 40) discusses ill-
conditioning and suggests means of circumventing the

effects of an ill-conditioned matrix. Scaling and the use
of double precision computation will delay the impact of an
ill-cornditioned matrix. Ill-conditioning is controlled in
the entropy procedure by restricting the number of active

information functions and normalizing functions when neces-

zary. For example, furctions gi(x)=((x-u)/0)i or
ci(x)=(x—u)i are used in place of moments about zero,
ai(x)rxi, wiere U is the mean and 0 is the standard devi-
ation.

A second reason for limiting the number of active
information functions is the desire to produce a meaning-
ful and usable closed form for p(x), the approximation
density. If the number of functions used in a specific
representation of p(x) is large, i.e., greater than six,
then the practicality of the entropy method is reduced.
If six functions are not enough, then we should consider
whither we have included the correct potential functions.
Sel-:ir ion of potential and active information function
sets is the subject of the following four chapters. The
potent ial set defined in Chapter V has produced excellent

re-uTts for a variety of sample distributions and has
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always required five or fewer active functions. An upper
bound of six active functions is conceptually reasonable,
and experimentation confirms this limit.

Although the Newton method as implemented in ENTROP
has succeeded in all tests on [a,b] with initial gquess
A0=(O,O,...0)T, convergence is not guaranteed. Other
numerical schemes exist which can be applied when neces-
sary. An effective though slower method for solving the
constraint equations is a method which Acton (Ref 2) has
named the "curve crawler.” This approach, for three con-
straints, is initiated by solving the first constraint,
i.e., fo(A)=0 of equations 4.8, for vector A. Small steps
are then taken along the surface of fo(A)=0, in the nega-
tive gradient direction, while seeking the zero of the
second constraint, i.e., ffA)=0. The method proceeds by
staying close to the fo(A)=0 and fl(A)=0 curve and seeking
the A which zeroes fz(A)=0. The method was implemented by
Orr (Ref 63) in work on the [0,») interval and is explained
in detail by Acton. Our success with ENTROP and the Newton
method made the development of a backup method unnecessary.
The "curve crawler,” a gradient descent approach, is sug-

gested as an alternative should the Newton method fail.

Chapter Summary

In this chapter, we have presented the theoretical

development of the entropy method to include existence and

51




- P L. TN

unigqueness discussions. Solution of the constraints (equa-
tions 4.8) was discussed in both theoretical and applica-
tions settings. An effective subroutine to solve the con-
straints has been developed, tested, and briefly discussed.
Using the information function set of Chapter V, the sub-
routine has been tested against sample densities of the
following forms on interval [a,bl: normal, beta, gamma,
expeonantial, uniform, Weibull, mixtures of the pre-

c2ding densities, and unknown samples. The routine pro-
duced exact results, where results were known ahead of
*ip2, and statistically accevptable results for unknown
distributions. The routine converged fcr ~very test with
zn initial acuess of l0=(0,...0). T™.1s subroutine is the

key element to machine implementation of the entropy char-

9]

Tterization method. However, the accuracy of the charac-

o

SYiza

ion methed in rerresenting unknown distributions
r

lad

centers on s=lection of the correct information functions.
The next four chapters address information function selec-

tion.
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Chapter V. Potential Information Functions

Information Functions

Given random variable X, we wish to approximate
the distribution of X based on available (or computable)
information. The information will be collected in terms
of average or expected values of certain functions of X;
we call these functions "information functions." By speci-
fying the expected values of k information functions,
gi(x), i=1,2,...k, and applying the maximum entropy pro-
cedure of previous chapters, we obtain p(x) an approxima-
tion to the unknown density of X, where f({x) is the unknown

density and
p(x) = exp[-xo-llgl(x)-...lkgk(x)] (5.1)

Clearly, the number and forms of information functions will
impact the accuracy of approximation.

To demonstrate the importance of proper informa-
tion function selection, we use the moments about zero as
information functions. Consider the beta distribution on

[0,11):
£(x) = cxP1 (1-x) Q1 (5.2)

where C=I'(P+Q) /(T (P)T(Q)), and P and Q are the beta param-

eters. We first use equation 5.1 with k=1:; that is, our
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total available information consists of the average vulues

of go(x) and gl(x) where go(x)=1 and gl(x)=x. As previously

discussed, the function go(x) corresponds to the constraint
that p(x) be a density, i.e., fp(x) dx=1. The resulting
2ntropy approximation, given <gl(x)>, is denoted pl(x) where
pl(x)=exp[—XO—Xl(x)] on [0,1). Figure 5.1 displays f(x)
{P=4, Q=2) and pl(x) to illustrate the error of approxima-
tzon. Now consider collecting additional information in

Z .

toyms of «gz(x)>=<x to find our second aprroximation,

p?(x)=exp[-ko-Alx—12x:]. Notice that Ai represents the

wh

M Lacrange nmultiplier in each entropy characterization;
however, the Lagrance multipliers in one representation are
et related to (and neel not equal) the multipliers in subse~
cuer+ characterizations. Figure 5.2 demonstrates that the
increased information, i.e., the second momert, has improved
cur approximation. Additional information, in terms of
additicnal moments, continues to improve the approximation
{(Ficures 5.3, 5.4 and Table V.I}). It can ke shown (Ref 90)
that pk(x)*f(x) as k»x, Table V.I shows that at k=6 we
are approaching an acceptable numeric approximation.
However, the moment approach presents two signifi-
cant rvroblems. First, as k increases or as the interval
«f interest, {a,bl, becomes large, solution of the con-
straints for the Lagrange multipliers becomes numerically
.ntra2ctable (see Chanter IV). Some authors feel that
“

"most

well-behaved distributions are "amply" described by
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the first four moments (Ref 49). Pearson's "method of
moments" classifies distributions based only on the first
four moments (Ref 65). However, Wragg and Dowson (Ref 90)
indicate, and our example with the beta distribution implies,
that a general characterization scheme would require a
larger number of moments. Given that a usable value of k
can be distinguished and that the moments can be scaled to
allow numerical solution of the constraints, we face a
zecond problem. The second problem is that the algebraic
ferm of p(x), with moments as information functions, tells
the analyst very little about the unknown dencsity, and p(x)
may be computationally difficult to handle even with four
m2.aents. For example, consider the beta distribution of

»auation 5.2 once more. Let gl(x)=ln(x) and gz(x)=ln(l-x)

and we obtain p(x)=exp[-)0-kl ln(x)-l2 1n (1-x)). Applica-
tion of our numerical scheme produces k0=-2.9957323,
Xl=—3.0, and 22=-l.0. We now consider the form of p(x):
plx) = exp[—xo] exp [—ll 1n (x)] exp [—Az lIn (1-x}]), or
“A =5
pix) = exp[-kol X (1-%) , and
p(x) = 20.0 x3'0 (1-x)

Thus pi{x) exactly eguals f(x), and we have only used ®wo
information functions. Further, the algebraic form of the
entrepy density tells us that we are working with a beta
distribution. Our selected functions are clearly superior
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to moments in this example. The above examples illustrate
the importance of selecting the correct information func-
tions and indicate the numerical and conceptual deficiencies
of relying solely on moments. Orthogonal families of func~
tions (Ref 15) present the same conceptual and numeric prob-
lems as observed with moments.

The procedure defined in Chapter III presents a
viable alternative for approximation of unknown densities
on a bounded interval, [a,b). The information function
selection step of the procedure includes two phases. In
the first phase, we specify a large set of potential infor-
mation functions; that is, linearly independent functions
that may prove useful in representing distributions on
[a,b]. A potential set that has proved extremely useful
for a variety of unknown densities is defined in the next
section of this chapter. The procedure is designed to
allow flexikility in definition of the potential set, and
this flexibility is also discussed. In the second phase,
we select an "active set" of information functions from the
potential set. A large number of active functions leads to
more accuracy in the approximation. However, a large num-
ber of functions also leads to numerical difficulties and a
loss of conceptual significance in the form of p(x)}. Selec-
tion of the active set is thus a compromise; we want the

active set to be as small as possible within our accuracy
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restrictions. Three different methods for selection are

discussed in subsequent chapters.

A Potential Information
Function Set

Cur initial approach to specifying a potential set
for use in a general approximation problem centers on an
investigation of named distributions (Refs 37; 47; 55; 60).
We consider the algebraic form of various well-known dis-
tributions and determine what information functions, if
any, will produce an equivalent entropy density, p(x). In
tne example cf equation 5.2 we saw that information func-
tions In(x) and 1ln(l-x) produced a beta distribution on
(79,1); that is, if we provide <ln(x)>, <ln{(l-x)>, and apply
~“he entropy procedure, then the resulting entropy density
w1ll be a beta. 1If we specify no information functions,
i.e., only qo(x)=l on [a,b], then the resulting entropy
density, p(x)=exp(-lo), ejJuates to the uniform density.

A list of the more well-known distributions and the result-
irg information functions is shown at Table V.II. We
reason that many continuous distributions on [a,b}l will be
cicsely approximated by the listed distributions or some
combination of these distributions. Using Table V.II, we
~elect the most versatile distributions and eliminate
radundant functions to produce the potential set shown in
Table Y.IITI. Notice that Table V.III includes the first

four moments which we also represent as normalized central
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TABLE V.III

A STARTING POTENTIAL SET

Symbol Function Symboel Function
F1 X or (x-u)/o F6 [1n(x~a)]?
F2 x> or [(x-p)/ol? F7 x? or [(x-u)/o)?
F3 1n(x) F8 x" or | (x-p)/o}"
F4 1n (x-a) F9 1n{x?+1) -
r> In(b=x)
moments, i.e., gy (¥) = (x-y¢)%/c” where u is the calculated

mean and ¢ is the standard deviation. Normalization was
needed to pbrovide numerical stability for a specific simula-
tion application on [5104.0, 8262.0}. Normalization is
effectlive on large intervals, [a,b]l, but may produce the

opposite result if b-a<l. On small intervals normalized

- moments involve small values divided by small values which
will lead to numerical instability. Thus, origin or central
moments are more effective on small intervals.

The functions in Table V.III are not intended as
the ultimate potential set but will serve as an excellent
s+artina point for any characterization. Functions can
414 should be added to this set (or deleted) based on data

analyzie for a particular problem. As an example, we con-

4 ‘ . . . . . . .
i ' sid:r a distribution that was first investigated by Chanda
< Falp (Ref 1), The data consists of 2000 samples,
h 3
64
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late the data from [-.4894, .5028] to [.0106, 1.003] to

i=1,2,...2000, from an unknown distribution. We trans-

preclude difficulty with the natural logarithms in Table
V.III. We compute average values from the sample as
explained in Chapter IV. Using the potential set of Table
V.III, we select the active set with method three of

Chapter VIII1. The resulting "best" fit required six active

. functions and is shown in Figure 5.5. The sample density

is also shown and was created by sorting the 2000 deviates,
creating the cumulative at each sample point, CUMi=i/2000,
i=1,2,...2000, and numerically differentiating. The initial
approximation missed the peaked structure of the sample
which indicates that we failed to specify sufficient infor-
mation. The peaked sample suggests the shape of a double
exponential density, and we thus add information functions
Ix-.5] (the .5 accounts for translation of the data) to the
potential set. Application of method three resulted in
four active information functions with the excellent char-
acterization in Figure 5.6. Thus the nature of the data
suggested the addition of a function to the potential set,
and that function was subseguently selected as active.

This example again illustrates the importance of
proper information function selection but also highlights
the flexibility of the procedure. The characterization
procedure was designed as a tool for the analyst. Conse-

quently, data analysis and an analyst's insight can be used
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to enhance the procedure, particularly in the information
function selection phases. The potential set of Table
V.III has been tested on a variety of unknown densities
and produced excellent results. If the potential set con-
+*21ns a sufficient mixture of functions, then subsequent
rrocedural steps will eliminate unnecessary functions and

choouse the useful functions, i.e., the active set.

ive Information Function Set

Selection of the active information functions from
e votential set is the subiect of the next three chapters.
@ active set was previously defined as that subset which
15 used in the entrepy avproximation for & specific set of
data. The goal cof the sclection precedure is to pick the
aontmum subset whach conveys erough information to provide
an acceptakble approximation to the unknown density, f£(x).
Jelection of tre active cet depends on how one defines
"accenteble apvroximation" and how one measures "closeness"
nf aprroximation. Three different approaches to the prob-
lom resulted in threc viable methods, each with different
gqualities. The methods were tested by generating data from
known Jdistributions and eviluating the resulting anproxi-
it lons. If the potrentinl set includes the correct infor-
itior functions for a sample density, then the selection
vooted re should select those functions and produce an

4ot fabk.  For examcle, if the data is frcem a normal
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density then the selection method should select x and x?2.
For the beta distribution on [0,1], we expect 1ln(x) and
In(l-x) to be selected. If the correct information func-
tions are not in the potential set, then we wish to select
the best subset to approximate f(x). The three selection
methods produce excellent approximations as will be demon-
strated. The choice of method for a particular approxima-
tion preoblem will depend on the available information,
accuracy of tie information, and, in some cases, the

analyst's preference.
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Chapter VI. Active Set Selection--

Method One (Regression)

Introduction

The concepts of potential and active information
function sets were discussed in Chapters III and V. One of
three general methods to select the active set for a spe-
cific density approximation is presented in this chapter.
The approach is based on linear regression and requires a
random sample of the unknown distribution, X0 i=1,2,...N.
We first present the procedural steps for method one and
follow with detailed discussion of a few of these steps.
Sample applications are then presented to demonstrate
method strengths end sensitivities. The excellent results
of method one led to alternate methods as presented in sub-

seguent chapters.

Method One Procedure

Method one includes five procedural steps:

1. The first step is generation of the sample
cumulative distribution. The sample, X0 i=1l,2,...N, is
sorted and the cumulative distribution is approximated at
these N points; CUMi=i/N, i=1,2,...N. Clearly, as N
increases, the approximation becomes more accurate. The

cumulative data is grouped, for large N, to produce better
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results in subsequent steps; for example, with N=500 we
use every tenth X4 to reduce the data from 500 points to
51 points with CUMj=(j-l)10/N, j=1,2,...51.

2. Step two produces a numerical estimate for
£(x), the unknown density. We numerically differentiate
the sample cumulative to produce a numerical density at M
reints, DEN., i=1,2,...M, M<N. Numerical differentiation
1s an 1ill-posed problem (Refs 36; 53) and requires care in
application. Our work with differentiation techniques
croducsd interesting resuvlts which are presented later in
~1:s chapter. The initial approach to numerical differen-

tiation was central difference;

ot

-x. .1, 1=2,4,...(M-1).

3. The third step pnroduces the natural logarithm
of the numerical density; ln(DENi), i=1,2,...M. The pur-
rose of this step 1s to establish a linear relationship
Letwenn the numerical density and the entropy density. We
seeh the minimum set of information functions, gj(x),

i=1,2,...k, which are essential for accurate approximation

cf f(x}. Let the entropy density include all the poten-

il fancticors, 1.e.,

px) = cxp{—\o—klgl(x‘-...Xn‘gm(x)]
“here o nooie ibe number of functions in the potential set,
om. We o establish the linear relationship as follows:
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ln £(x) = lnpi{x}) = -AO-Algl(x)—.. .Nngm(x) (6.1)

We now have a form which allows linear regression, and we
have M data points (ln(DENi)) to approximate ln(f(x)).

4. The fourth step is to apply linear regression
to identify several possible sets of active information
functions. This regression step reduces the number of com-
binations of potential functions, i.e., subsets of the
potential set, that will be considered in selection of the
active set. We consider sets of five or fewer functions
for reasons presented in previous chapters.

5. The final steyp is selection of the active set
from the sets defined in step 4. A measure of "goodness of
fit" is specified and the active set is the set whose cor-
responding entropy characterization provides the "best"”
fit to the data.

The above procedure has produced excellent results
as will be shown. Currently, the procedure is implemented
in two separate packages to allow maximum analyst involve-
ment. The first package accomplishes steps 1 thru 4 and
returns 10 candidate sets of functions. The analyst may
use some or all of the 10 sets, or other combinations of
functions, as input to the second program which accomplishes
step 5. In our examples we will use only 5 of the 10 candi-~
date sets. Steps 2, 4, and 5 are discussed in more detail

in the following sections.
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Numerical Differentiation

Method one is a straightforward application of well
known numerical and statistical techniques; however, ini-
tial testing indicated a sensitivity to numerical and
sampling errors. The ill-posed nature of numerical differ-
entiation can result in exaggerated numerical error, thus
various differentiation scliemes were investigated to reduce
this risk. The investigation resulted in a previously
uroublished scheme, the “median” method, which generally
outperformed other schemes for our application. A summary

of the investigation follows.

Polynomial and Spline Approximations. Inter-

national Mathematical and Statistical Libraries (IMSL) cub-
routines were used to fit a polynomial to the sample cumula-
tive and, subsequently, to differentiate the polynomial.
Polynomials of up to sixth degree were tested but prcduced
poor results. Polynomial "wiggle" (Ref 40) caused negative
density values. Spline approximation and spline interpola-
tion (Ref 5} were attempted with existing IMSL software in
an effort to reduce the polynomial "wiggle." Differentia-~
tion of the spline also produced negative density values

al a few points and proved unsatisfactory.

Sliding Polynomial. A program was written which

makes & lecst squares fit to five data points using a second

dearee polynomial. Beginning with the firest five data
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points (xi and CUM,, i=1,2,3,4,5), the program produces

a second degree polynomial £it to the cumulative data and
uses the polynomial coefficients to calculate the deriva-
tive at the middle point, i.e., at X3. The program then
advances the operative window by one data point and repeats
the procedure for i=2,3,4,5,6 to find the derivative at

Xy The procedure continues in this fashion to produce
DENi, i=3,4,...(N-2). Forward and backward difference
formulas are used for the first two and last two data
points. A second program was written to accomplish the
identical procedure but using seven data points instead of
five. The intent of using seven points is to provide more
of a smoothing effect 2.4 the data. The seven-point formula
did produce a more accurate derivative than the five-point
formula, and both schemes generally outperformed the central

difference approach.

Sliding Median. The median method is based upon a

nonparametric regression parameter estimator which was
first suggested by Theil (Ref 79). The distribution of
this estimator was investigated by Sen (Ref 69) and Chanda
and Kulp (Ref 11). To our knowledge, this scheme has not
been previously used for numerical differentiation. As in
the polynomial apprmach, we define an operating window
about the first seven data sets, xi and CUMi, i=1,2,...7.

We then consider all combinations of these seven distinct

74




data sets, taking two sets at a time, and calculate the

value [CUMk-CUMj]/[xk—xj] for each combiration. This value l
equates to the central difference at the point midway
between xj and Xy - The values for the 21 combinations are

then sorted, and DEN4, the density at point x is assigned

4[
1 the median value. The operating window is advanced one

data point, and the procedure repeats to find D3iN We

5
. iterate for i=4,5,...(N-3). Forward difference is used to

find the density at Xy central difference for points Xy

X3yr Xy_p¢ ¥y_y+ and backward difference for point x A

N

+

T similar program was created for an operating window of only
. 5 data points. As in the polynomial case, the 7 point

; fucrmula performed better than *“khe 5 point formula. The

g~

simplicity of the median method resulted in faster computa-
tion than the polynomial approach.
The listed methods were tested against sample
> cumulatives from known distributions and known densities,
. £(x). The sum of errors squared, SE = _? (f(xi)-DENi)z,
and mean squared error, SE/M, were calcézéted for compari-
son. Three example distributions are provided in Table
VI.I. Each sample set in Table VI.I is composed of 500
deviates from the stated distribution. The sample dis-
tributions are further described in Table VI.II. The 500
deviates were grouped to M data points before differen-

tiating. The first three comparisons demonstrate the

effect of grouping data from a given sample set. The last
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- TABLE VI.I
NUMERICAL DIFFERENTIATION SCHEMES
Sample Time
Set No. Distribution M Scheme {sec) (sE)? (SE)2/M
1 n(l10,2) 500 Central Dif. .035 230.13 .460
1 1 n(10,2) 500 Poly. 5 .506 49.9 .0998
1 n(10,2) 500 Poly. 7 .572 12.02 .0240
1 n(10,2) 500 Median 5 .211 20.51 .0410
1 n(l0,2) 500 Median 7 .528 8.80 .0176
1 n(10,2) 101 Central Dif. .002 .637 .00630
1 n(10,2) 101 Poly. 5 .098 .322 .00319
1 n(10,2) 101 Poly. 7 .113 .180 .00178
1 n{10,2) 101 Median 5 .041 .227 .00225
1 n(10,2) 101 Median 7 .096 .164 .00162
1 n(16,2) 51 Central Dif. .0001 .1210  .00237
1 n(10,2) 51 Poly. 5 .046 .0664 .00130
1 n(l0,2) 51 Poly. 7 .052 .0472  .000925
1 n(10,2) 51 Median 5 .022 .0560  .001098
1 n{lg,2) 51 Median 7 A .0410  .000804
2 n(10,2) 51 Central Dif. ,028 L1021 .00201
2 n(10,2) 51 Poly. 5 .048 .0457  .000895
2 n{10,2) 51 Poly. 7 .055 .0255  ,000500
2 n(10,2) 51 Median 5 .023 .039%  .000776
2 n(10,2) 51 Median 7 .039 .0245  .000481
3 beta P=4, Q=2 51 Central Dif. .03 6.767 .1327
3 beta P=4, Q=2 51 Poly. 5 .049 3.579 .0702
3 beta P=4, Q=2 51 Poly. 7 .056 2.127 .0417
3 beta P=4, Q=2 51 Median 5 .019 3.581 .0702
3 beta P=4, Q=2 51 Median 7 .041 2.375 .0466
NOTE: Each sample set includes 500 data points which
were grouped to M points before differentiation.
M
(SE)?= [ (Actual-Approx) 2.
i=1
} u
;
\ Yoooos ~
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two comparisons are representative examples from other
samples. The point of significance is that the median
method generally produced closer approximations to the
known densities than either the polynomial or central dif-
ference methods. The median approach limits extreme values
caused by numerical and sampling error, thus producing a
closer fit to the true analytic density. The method does
not eliminate differentiation "noise” but does control the
magnitude of this noise. Figure 6.1 and Figure 6.2 provide
examples of the densities produced by the median method

for a normal distribution (mean 10 and variance 2) and a
beta distribution (on [0,1] with P=4, Q=2). The sliding
median method with 7 data points was used for all subsequert

numerical differentiation in the research.

Regression

We use linear regression in step 4 to reduce the

number of candidate active sets. Linear regression is a
well known and well defined analytical tool. Drapper and
Smith (Ref 23) and others (Refs 28; 37; 38) provide
detailed explanation of regression procedures, regression
statistics, and stopping criteria. Both "stepwise regres-
sion" and "regression by leaps and bounds" were researched
to include available software for implementation; Statis-
tical Package for the Social Sciences (SPSS) and IMSL sub-

routine libraries contain regression packages. The IMSL
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leaps and bounds package, RLEAP, was selected for our
application with the adjusted R® statistic (Ref 38). We
created a program which uses RLEAP to return ten candidate
active sets with corresponding adjusted R’ statistics;
i.e., the two best sets with one active variable, through
the two best sets with five active variables. "Best set"
is defined as the set with the largest adjusted R® sta-
tistic.

An examination of our regression procedure will
identify a significant benefit of our entrcpy approxima-
tion method. We use regression to identify ten possible
active sets. However, we could use the same regression
packages to select the single active set that produces thn
pest regression fit to the data by choosing the one set
with the larcgest adjusted R?. Regression will also pro-
duce the rearescion coefficients, Ai' 1=0,1,...k, for our
selected set to completely specify p(x) as in eguation
(6.1) . Thus, why not stop at the regression step? The
reason for ster 5 centers on the purpose of linear regres-
sion. Regression seeks a fit to the sample data and the
r (%) produced in regression is not required to satisfy
averace value or density constraints (see Chapter IV).
Thus, the rearession p{x) need not be a density function
at all and will be a maximum entropy densicy only by coinci-
Aenc-~. The scle intent of the regression procedure, as we

have defined it, is to identify information functions that
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play a key role in describing the sample cumulative. Once
regression has defined several candidate sets of functions,
we return to the entropy approach to select the density
(i.e., select Ai' i=0,1,...%) which satisfies average
value constraints. This entropy approach is thus a com-
promise between a fit to the sample fata and constraint
satisfaction. One may view constraint satisfaction as an
attribute of the underlying analytic distribution versus a
function of the sample distribution. Consequently, our
approach provides a compromise between the unknown analytic
distribution and the provided sample. The examples of the

next section will demonstrate this quality.

Experimental Results

The strengths and sensitivities of method one are
best demcnstrated with examples. We consider the first
four steps of method one in this section and subseqguently
discuss sten five. Our goal is to select the minimum set
of functions (active set) which produces an acceptable,
closed form, entropy approximation, p{x}, to the unknown
density, f({x). To test method one, we generate random
samples of size 500 from known distributions, i.e., normal,
beta, and gamma. Thus the analytic cumulative and density
functions are available for comparison to sample and entropy
distributions. We will consider the three sample data sets

of Table VI.II for purposes of illustration. The normal
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samples were produced by the Box-Muller method (Ref 8)
applied to uniform deviates. The beta deviates were pro-
duced via an IMSL subroutine.

We first discuss the sensitivity of method one to
sampling and numerical differentiation errors. Experi-
mentation with normal, beta, and gamma distributions has
shown that if the actual analytic density is used in place
of the numerical differentiation step (i.e., sampling and
differentiation variations are not permitted), then the
regression step will select the "correct"” information func-
tions with an exact fit to the data (i.e., adjusted R?
equal to 100}. The "correct"” functions for a distribution
are the information functions presented in TableV.I1I, i.e.,
x and x° for normal, ln(x) and 1ln(l-x) for beta, etc.
However, when the complete procedure is applied, i.e., a
sample cumulative is generated and differentiated, the
regression step does not necessarily select the expected
information functions. In fact, the randomness of sample
data may cause selection of different function sets when
multiple regression is applied to different samples from the
same distribution. The interesting point is that which-
ever set of functions is selected, excellent approximations
are obtained. Thus, method one demonstrates data depen-
dence.

Samples one and two of Table VI.II for the normal

distribution provide an example of data dependence. We
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use the potential information functions of Table VI.III,
where v, 0%, and [a,b] are 10, 2, [x;,%y] respectively,

and apply method one. Table VI.IV lists five candidate
active sets that result for each sample, EI, I=1,2,...5,
where I represents the number of active functions. Notice
we have included only five candidate sets; the analyst may
choose to consider a larger number of sets for other appli-
cations. For our potential set, F2=((x-.)/c)? is the infor-
mation function that will exactly characterize the normal
distribution, and F2 is dominant for both data sets. If

we next solve the constraint equations, given accurate
expected values for the information functions, we will pro-
duce a» exact fit to the analytic distribution for any set
which contains F2. Figure 6.3 provides a comparison of
sample and entropy cumulatives to the known analytic cumula-
tive for active set El. Entropy and analytic cumulative
values were computed by numerical integration of respective
densities. Differences in cumulatives, i.e., sample-
analytic and entropy-analytic, are shown to facilitate
comparison and because the distributions are very close.
The entropy-analytic curve is identically zero because the
entropy approximation provides a near perfect fit to the
analytic distribution. Graphs were also produced for sets
E2, E3, E4 from data set one and El1 through E5 for data

set two. The graphs were nearly identical to Figure 6.3

because F2 (the correct information function) was part of
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TABLE VI.III

POTENTIAL INFORMATION FUNCTION SET

b o sl i . e s 51\ s i 4 e et = o e«

Fl = (x-u) /o F4 = ln(x-a) F7 = ((x-u)/o)?
F2 = ((x-p)/o)? F5 = 1ln(b-x) F8 = ((x-u)/o)"
F3 = 1n(x) F6 = (ln(x-a))? F9 = 1ln(x2+1)
: NOTE: ¢ = mean; ¢ = standard deviation; [a,b] =
. bounds.
{
TABLE VI.IV
REGRESSION RESULTS FOR NORMAL SAMPLES
Candidate Functions for Adjusted Functions for Adjusted
Set Data Set #1 R? Data Set #2 R®
< El F2 91.76 F2 89.70
* E? F2,F6 95.75 F2,F8 95.70
E3 F2,F6,F8 96.97 F2,F6,F8 96.19
E4 F2,F4,F5,F6 97.07 F2,F3,F4,F5 97.37
ES F1,F5,F6,F7,F9 97.12 F2,F4,F5,F8,F9 98.66
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the entropy representation, and additional functions pro-
vided little usable information. Set E5 of data set one
does not include F2 and yet provides an excellent regres-
sion fit to the data, i.e., R’=97.12. The resulting
entropy approximation also produces an excellent fit to

the analytic and thus the sample as shown in Figqures 6.4
and 6.5. Table VI.V provides further insight with a
numerical interpretation of the entropy approximations pro-
duced by El1 throuch E5 for data set one.

The beta distribution on [0,1] provides a more
revealing example. Because we are on the [0,1] interval,
the normalized moments in our potential set (Table VI.III)
are .cplaced with moments about 7gro. Table VI.VI repre-
sents the results of applying method one to data set three.
The desired functions for a perfect fit to the analytic
distribution are F3 and F5. Notice from Table VI.VI that
only E4 includes F3 and F5. Figures 6.6 through 6.14 pre-
sent & comparison of analytic, sample, and entropy densi-
ties and cumulatives. Notice again that for set E4 method
one provides an exact fit to the analytic distribution
(Figure 6.9 and 6.13). Sets E5 and E3 perform gquite well
even without the desired information functions. Table
Vi.VI1 urovides a numerical evaluation of the entropy

approximatiors.
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A review of Tables VI.V and VI.VII and previous

figures will consolidate four significant points concerning
method one:

1. The method is sensitive to sample data and may
suggest candidate active sets that ¢ not include the ana-
lytically correct functions. The reason is that the method
rrovides a compromise between sample and analytic distribu-
tions and may require "other" functions to accomplish that
compromise,

2. An acceptable approximation to the unknown dis-
tribution may be obtained even if the "correct" functions
are not part of the active set. Set ES5 for the beta
example and set E5 for th: normal demonstrate this qualicy.

3. Given accurate expected values, inclusgion of
the analytically correct functions in the active set will
rroduce an exact fit.

4. Finally, the information functions from one
sample will provide excellent approximations for subse-
quent samples. The two normal data sets exemplify this
guality. Since our technique, in general, approximates
the unknown analytic distribution, and the sample is an
tpproximation to the analytic distribution, then one would
wNxpect an excellent tit to subsequent samples.

Before proceeding to final selection of the active

~t, we demonstrate the sensitivity of method one to errors

1t the calculation ot expected values of information
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functions. This subject is further pursued in Chapter X.
These expected valiues determine the constraint equations
and thus determine the final form of our approximation,
p(x). Expected values may also be involved as parameters
in the potential set such as u and o2 in Table VI.III.

The above examples used accurate expected values which were
approximated by a 32 point quadrature formula. We might
also approximate these values with averages from the random
sample:

500
T

e

<gj(x)> L
i=

gj(xi)/SOO.
Table VI.VIII lists the average and quadrature values for
our three sample data sets.

As one would expect, use of averages in lieu of
the more accurate gquadrature values will produce a subse-
guent change in the entropy approximation. We demonstrate
an interesting result by using the average values for the
normal sample, data set one, to include mean and variance
values in the information functions. The entropy procedure
produced a less accurate fit to the analytic, as expected,
but a more accurate approximation to the sample data. This
is demonstrated in Figures 6.15 and 6.16 which graph sample,
analytic, and entropy comparisons. Notice that the "entropy
minus analytic" curve follows the trend of the "sample minus

analytic" —values. Comparison to Figures 6.3 and 6.4
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(quadrature values) exemplifies this stronger correspon-

dence to sample and weaker relationship to analytic.

Similar results were obtained with beta, gamma, and simula-
tion sample densities.

A word of caution is needed in reference to the
figures. The figures were designed to accentuate the dif-
ference in distributions and not the closeness of approxi-
mation. Careful attention to the actual values of differ-

. ences between distributions or review of Tables VI.V and
VII will indicate that the entropy approximations are quite

r close to the sample and analytic distributions. 1In fact,
the candidate sets provide such excellent approximations

1 that the choice of the single best active set is difficult.

- Goodness of fit statistics are used in this final step of

the procedure.

Coodness of Fit

Experimental results, in addition to the above

s

examples, indicate that the regression procedure will pro-
duce adeguate fits to the sample data and accurate, if not
exact, fits to the underlying analytic distribution even
when the selected information functions are not those
expected. The question remains as to how one selects the
best set of information functions from the several candi-
date sets. Since an accurate fit to the sample cumulative

is desired, the active set will be the candidate set that
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produces the smallest error between sample and entropy
cumulatives. Again, the sample cumulative is available at
N sample points, and the entropy cumulative may be calcu-
lated by integrating the entropy density.

Selection of a measure of error between sample and
entropy cumulatives will impact selection of the active
set. If we are only concerned with absolute error between
the distributions, then we might use the errors squared
measure of previous examples (Tables VI.V and VII). However,
we would like to know more. Besides producing the "best"
fit, we would like to know "how good" that fit is in a sta-
tistical sense. A goodness of fit statistic will provide
tr ‘s information. Step five of method one may now be
stated explicitly:

5. Identify a goodness of fit statistic, SK, which
is a function of sample and entropy distributions; calcu-
late SK for each candidate set; select the set with minimum
SK as the active set; and finally, specify the level of sig-
nificance for the selected SK. We thus select the informa-
tion function set that provides the best fit in the sense
of our chosen statistic.

Several goodness of fit statistics are discussed
in Arpencdix B. Each statistic has strengths and weaknesses
as indicated in the appendix and references. Different sta-
“Tarits may result in different active sets. Two examples

are presented ir Table VI.IX for Anderson-Darling, A?,
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Kolmogorov-Smirnov, D, and Cramér von Mises, W?, statistics
and the mean error squared, M?. Consider the normal example
of Table VI.IX. Since El through E4 produce identical
results, our choice of active set is a decision between El
and E5. Regardless of the analyst's choice of statistic,
the statistical values for the two sets are very close.

The 2nalyst would probably select the smaller set, El, in
this case. Notice that use of the A’ or W statistics
result in acceptance cof the hypothesis of egual distribu-
ticns at a critical value of a>.15. The D statistic results
in oa-.1%.

The beta example of Table VI.IX better demonstrates
the flexibili*; of method one and the importance of the
choice of statistic. We see that E4 produces the smallest
value of M, D, and W’. This result is pleasing in that
£4 contains the =xpected information functions F3=1ln(x)
and F5=1n(l-x). However, a concern for a fit to the tails
of the unknown distribution may force the analyst to use
the A’ statistic (see Appendix B). Use of A? will result
in selection of set E5. Notice that both E4 and E5 provide

excellent approximations for all the listed measures.

Method one uses linear regression and "goodness of
f11" principles to select the best active set for all pos-

sicle -combinot:ions of the potential information functions.
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The method involves five steps:
1. Generate the sample cumulative;

2. Obtain the sample density, £(x), via numerical

differentiation;
m
3. Equate Iln(f(x))= I Xigi(x) where m is the num-
i=Q

ber of functions in the potential set;
4. Regress on the equation of step three to pro-
duce several candidate active sets;

5. Use statistical measures to select the best set.

Methcd one has been tested against various distributions

in the normal, beta, and gamma families and against the
simulation models of Chapter IX. An acceptable approxima-
tion resulted in every case uU-ing the potential set of
Table VI.IXI. The method is based on proven analytic and
statistical technigues, provides ample opportunity for
analyst input and modification, and produces a compromise
between the sample and the unknown analytic distributions.
The excellent results of method one prompted further inves-
tigation of active set selection procedures. The next two

chapters discuss alternate methods.
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Chapter VII. Active Set Selection--

Method Two (Divergence)

Introduction

The linear regression approach of method one
(Chapter VI) produces excellent results in selecting the
"active” set of information functions, for a particular
approximat.on, from the predefined "potential" set. Method
. one demonstrates strong sample dependence, sensitivity to
numerical errors, and sensitivity to choice of goodness of
fit statistic. The selected active set produces a distribu-
tion which adequately fits the sample and underlying ana-
lytic distributions but is generally a compromise between
the two. Moreover, the active set need not include the
desired analytic information functions. While a method
which provides such an accurate approximation is certainly
. a useful tool, if the method can also identify the correct

functions for the underlying analytic distribution then use-
. fulness is increased. Additionally, our entropy approxima-
tion procedure is based on information theoretic concepts.

A desire to improve method one while adhering to our infor-

mation theoretic theme led to the information divergence

measure and the development of method two. We discuss

divergence and present method two with results.

v
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Divergence

Experimentation with the regression method shows
that different goodness of fit measures may result in dif-
ferent active sets. The goodness of fit measures test our
fit to the sample data, i.e., to the sample cumulative or
density. Although our goal is an accurate approximation
to the sample, we¢ now shift our concern to accurately
approximating the "information content" of the data. Thus,
we are changing our measure of fit to the data.

The XKullback-Leibler measure of information varia-
tion (kefs 50; 51) measures the information exchange when
one rrcbability measure is replaced by a second prcbability
measure.,  As defined in Chapters II arnd IV, the information
var.sticn, i1.e., the loss or gain c¢f information, which

occurs when density £(x) is replaced by density p(x) is

jon

deiine

I(p(x),€()) = fp(x) In [p(x) /f(x)] dx

Fullback, Guiasu, Jeffreys (Refs 51; 33; 46) and others
discuss information variation and its properties.
Information variation seems like the perfect con-
centual measure. We would like to minimize the information
lea: wnen the sample density, f(x), is replaced by the

encropy density, pfx): thus we select the entropy density

whiis™ —inimizes I(p(x},f(x)}). Unfortunately, information

Jarittien 1s not commutative, i.e., I(p(x),f(x))#I(f(x),p(x)),
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and I(p(x),f(x})) may be negative. We know from Guiasu or

Kullback (Ref Chapter 1IV) that

o p(x) dax
£ ] (7.1)

Iplx), £(x)) > Jop(x) dx 1n [TEf(x) ax

where E is the interval of comparison. If E is a subset
of the interval of definition for p(x) then IE;p(x) dx may
be less than one. Thus, the right-hand side of eguation
(7.1) may be negative, and I(p(x),f(x)) may be negative.
Our interval of comparison will be dictated by the random
sample, i.e., E=[xl,xN], and may force negative values for
I({p(x),f(x})). Kullback and Jeffreys extend I(p(x),f(x))
to a more usabl. .easure, divergence, which retains the
conceptual strength of information variation.

Kullback defines divergence, J(p(x),f(x)}, as a
measure of the difficulty of discriminating between two

densities where

J(p(x),f(x))

I(p(x),f(x)) + I(f£(x),p(x))

flp(x)-f(x)] 1In [p(x)/f(x)] dx

SIEX)-p(x)]) In [f(x)/p(x)] dx

J(f(x),pix))

As Kullback points out, J(p{x),f(x))>0 with equality if and
only if p(x)=f(x) almost everywhere (a.e.). A simple

application of equation (7.1) will show that J{(p(x},f(x))>0
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regardless of our interval of comparison. Thus, divergence

offers a viable means of comparing information loss when

using an entropy approximation in place cf a sample. The
sample density is available at M points, Xi4 i=1,2,...M,
and we can approximate f(x) at point y by using linear
interpolation between f(xj) and f(xj+l) where xjiyng+l.
The entropy approximation is available in algebraic form
and, thus, J(p(x),f(x)) can be calculated via numerical
gquadrature. We ssek the minimum set of information func-
tions which defines the density p(x) with minimum diver-
gence from f(x). This set will be the active set for the

given data.

Selection Procedure l

The active set selection procedure of method two
is analocous to multiple nonlinear regression but uses the
divergence moasure. The procedure includes two phases, a
function addition phase (analogous to forward regression)
and a function deletion phase (akin to backward regression).
The procedural steps follow: .

1. Generate the sample cumulative distribution at
M points as in method one.

2. Produce the sample density, f(x), at the M
voints by numericzl differentiation as in method one.

3. Produce expected values of all information func-

ticny ln the peotential set via guadrature or average values

£

114

D Jﬁ




M

’

as in method one. Steps 1, 2 and 3 concern data prepara-
tion while steps 4 through 6 describe the iterative pro-
cedure.

4. Use expected values in the appropriate con-
straint equations to find the Lagrange multipliers, i.e.,

the A vector, for the m entropy densities

pj(x) = exp [-Xo-Xj gj(x)], j=1,2,...m,

where m is the number of functions in the potential set.
Each pj(x) thus contains one information function.

5. Find the value of j such that J(pj(x),f(x)) is

a minimum and let this value equal h. Function gh(x) is
now considered a member of the active set which defines the
final entropy approximation, pi(x). If J(p(x),f(x))<EPS
where EPS is a predefined stopping criteria, then the
"function addition" phase of method two is complete. If
J(p(x),£(x))>EPS then function gh(x) is retained in the
active set, and we iterate to find the next best function
to add to the active set. Steps 4 and 5 are reaccomplished

for the m-1 entropy densities pj(x) where

Py (x) = exp [-XO-thh(x)-ngj(x)], j=1l,2,...m,

j#h. This procedure continues until a maximum of K func-

tions (we use K=6) are active, until J(p(x),f(x))<EPS, or
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until the addition of a function increases J(p(x),f(x)).
We thus select the active set with minimum J(p(x),£(x)).
6. The final procedural step, the "function
deletion® phase, checks for redundant information. Let k
be the number of active information funciions, i.e., the
functions defining p(x), and consider the possibility that
we have selected too many functions. Let g(x) be p(x) with
one of the active functions removed. If J(p(x),q(x)) is
close to zero, where "close" is defined by the user, then
w2 lose very little information in dropping the subject
function. For small divergence, we replace p(x) with g(x)
and iterate to test each function for deletion. This
remcoval step was luplemented as a separate subroutine
(THROUT) because it is used in method three and may be
appl.ed to method one for better results. THROUT con-
tributed appreciably to the excellent results obtained with

method two.

Pesults

Method two uses an approach which is conceptually
similar to method one but with a different measure of fit,
i.e., divergence. Divergence is an accepted information
searure which evenly weights the data points and follows
the information theoretic thrust of the dissertation. One
% netice, however, that the selected active set 1s not

saoanteed te be the sincle best set in the divergence
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~— sense. This is not of great concern because the selected

set must produce an acceptably small divergence and thus pro-
duce an acceptable fit to the sample. Method two may reach
a "small" divergence before considering the single best set
of functions. Method one has a slight advantage in this
respect because method one uses "leaps and bounds" linear
regression which considers more possible combinations of

. functions. With either method, the only way to ensure that
the single best set is selected is to check all possible
combinations of potential functions. Such a procedure is
not practical, and results with both methods indicate that
such a procedure is not necessary.

Table VII.I compares the results 1or methods one
and two when applied to two sample densities from Chapter
VI (normal and beta) and a third sample from a gamma dis-~
tribution. The function symbols are defined in Table

; VI.III of the last chapter. Method two selected the cor-~

+

; . rect analytic functions for the normal and gamma samples.
An excellent approximation was produced for the beta
although the desired analytic functions were not selected.
Method one results were statistic dependent but were
generally more oriented to the sample distribution. Addi-
tional samples from the same distribution families were
tested with similar, although not exact, results. 1In all
tests, if either method chose functions other than the ana-

lytic functions, the resulting approximations were still
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exceptionally close to sample and analytic distributions.
Of course when the analytic functions were selected, the
fit to the analytic was exact. A fourth instructive com-
parison of the methods is made in Chapter IX for a simula-
tion application.

Method two requires specification of the expected
values for the potential information functions and defini-
tion of the approximation bounds, i.e., the interval over
which the entropy approximation will apply. For the given
examples, expected values were calculated via quadrature.
The bounds are specified by the analyst and may be based on
knowledge of the unknown distribution, gquadrature results,
simulation results, or the random sample. Th:z analyst
usually acquires such bounds in generation of the expected
values. The interval [xl,xN] from the sample will suffice
if the expected (or average) values are calculated on this
interval.

The iterations of method two for the normal sample
are shown in Table VII.II. The first three iterations of
Table VII.II represent the function addition phase which
selects F2,F6,F1. We stop at this point because the diver-
gence in adding Fl changes very little from the previous
iterations, and, in fact, increases slightly. The analyst
may have preferred to stop at F2,F6. Notice that in the
function additions phase we are comparing entropy to sample

densities. The entropy densities are calculated on the
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TABLE VII.II

DIVERGENCE METHOD APPLIED TO NORMAL SAMPLE

A. Function Addition on [xl,xN]

= [6.07, 13.35]

Iterztion Function Set Diveraence
’ 1 F2 J(p2 (x) ,£(x)) = .02237350
' 2 F2,F6 I(pye (x),E(x)) = .02252025
¢ 3 F2,F€,F1 T(pygy (), £0x)) = 02252026
B. Function Deletion on [u-4c, u+4c¢) = {4.34, 15.66)
1teration Divergence Action
4 JUpyey (%) vpey (X)) 8.01 Retain FZ
z J(p26l(x)rP21(X)) = 1 (-20) Delete Fa
R 5 TEpey (%) Py (X)) =2 (-7) Delete Fl
[ ]
C. Active Set = F2

NOTE: Function symbols defined in
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interval {u-40,p+40) whereas the sample is defined on the

subset [xl,xN]; the divergence comparison is thus made on
the smaller bound. We return to [u-40,u+4c] for function
deletion (subroutine THROUT) which compares entropy densi-
ties. The final active set is F2 as desired.

Experimentation, as exemplified in Table VII.I,
indicates that the divergence approach is more likely to
correctly identify the analytic functions and is less
sample sensitive than method one. Howe'er, method two is
still sample sensitive as seen with the beta approximation,
Method two selected functions F2,F5,F9 to produce a diver-
gence J(f(x),p(x))=.0223359. The correct analytic func-
tions are F3 and F5. We calculated the divergence between
the analytic density, g(x), and the sample, f£{x) to find
J(E£(x),g(x))=.0249148, Thus method two chose functions
that provides a closer fit to the data, in the divergence
sense, than i1f the correct analytic functions had been
chosen. Table VII.III provides actual values of the
respective densities at 17 of the 32 gquadrature points used
in the beta example. Sampling error and numerical differen-
tiation account for the discrepancy between sample and ana-
lytic values.

Methods one and two are quite similar in structure
and results. The nonlinear regression approach of method
two appears to be less sample sensitive than method one,

i.e., method two is more likely to identify the underlying
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TABLE VII.III

SAMPLE, ENTROPY, AND ANALYTIC COMPARISON FOR BETA SAMPLE

Sample Method 2 Entrcpy Analytic
I X (1) Density Density Density
1 .17069 .26205 .10144 .08248
2 .18411 .26672 .11593 .10183
3 .21237 .27656 .15229 .1506¢
4 .25442 .30384 .22379 .24558
] : 5 30570 .36929 .25396 .40672
' 6 .27318 51643 .57543 65151
? - 44545 .97566 .91564 L9EG34
_ 8 .52284 1.30034 1.3€148 1.363%4
; a 60244 1.80312 1.82053 1.73851 i
it L6813 1.61865 2.132328 2.01572 )
11 L7564 G 2.43046 2.16621 2.10842
12 .82519 1.94359 1.21065 1.96454
. i .88464 1.62170 1.47946 1.59560
l 14 .93323 .75704 1.01420 1.08535
15 .96885 44177 .€0802 .57145
16 .9894¢9 .38228 .30344 .20361
17 .99430 .36861 .20920 .11200
14
o |
122
1
. o ) ) ;




sp o

analytic distribution. Method two is less cumbersome to
use. However, method one may be preferred when a test of
hypotheses, or a confidence bound, about the accuracy of
the entropy approximation is desired. Method one offers
flexibility in choice of statistic and is a more tradi-
tional approach. The key peoint is that both methods will
produce excellent approximations, given a workable poten-
tial set. The choice of method is at the analyst's discre-
tion.

The methods produce excellent results but share a
common disadvantage. Both methods require a random sample
of the unknown distribution and both involve numerical dif-
ferentiation. Sampling and differentiation errors are two
reasons for failing to explicitly identify the underlying
analytic distribution. Method three provides a viable

alternative which avoids these error sources.
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Chapter VIII. Active Set Selection--

Method Three (Expected Values)

Introduction

This chapter presents a third method for selecting
the best active set of information functions from a pre-
defined potential set. Methods one and two, though effec-
tive, are subject to sampling and numerical differentiation
errors. Method one (linear regression) produces an approxi-
mation, p(x), that compromises between sample and analytic
distributions with a tendency to match the sample. Method
two (divergence) approximations produce similar compromises
but with a strong tendency toward the underlying analytic.
Method three (expected values) concentrates on the under-
lying analytic distribution from which the sample is
generated. Method three, like methods cne and two, requires
the expected values of all information functions in the
potential set and definition of the interval of approxima-
tion, l[a,b). However, method three does not use a sample
cumulative or density and consequently, is faster and less
complicated than previous methods.

The expected values method is based on the premise
that the expected values of the potential information func-
tions communicate sufficient information to accurately

approximate the unknown distribution. Let f(x) represent
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the unknown underlying, analytic density, and let <G>m be
the vector of expected values for the m potential functions
where <G>m=[<gl>,<gz>,...<gm>]Tand<gj>=f:)gj(x)f(x)dx.
Our information, the <G>m vector, is generated by the
unknown analytic distribution, i.e., via gquadrature, simu-
lation or averages since f£(x) is unknown. An accurate
entrony approximation to f (X) must generate an accurate
approximation to <G»m. For example, if the entire poten-

tial set ig included in p(x), i.e.,
o(x) = exp [-\O-‘lol(x)—...—‘mc“(x)],

than p(x) will generate <G»m exactly. Now assume that

f(x;, is = .aormal distribution. We know that

p(x) = exp [—1O~)lgl(x)-k292(x)] = exp [—AO—>lx—A2x‘]

is the unigue entropy characterization of the normal, and
p{x) will generate the same <G> vector as f(x). 1In this
normal example, gy through 9> represent redundant
information. Jaynes states (Ref 45) and experimentation
confirms that redundant information is eliminated from the
entropy densitv, i.e., solution of the m constraint ecua-
tions in our normal example will result in l3=%4=...lm=0.
ouch A result is predicted by our uniqueness theorems of
Chaveer IV,

We trus define the active set of information func-

Lyins %o be the rmirimur set of potential functions that
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acceptably reproduces <G>m. This approach again empha-
sizes the importance of defining a large, flexible poten-
tial set, as discussed in Chapter V, so that sufficient
information about the unknown density is communicated.

Due to numerical difficulties, we cannot in general solve
the m nonlinear constraints, for a large m, to find the
unique Xj's, j=0,1,...m. Consequently, method three builds
an active set by progressively fitting the <G>m vector and
then checking for redundant functions. The approach is

similar to the rearession tactics of previous chapters.

Selection Procedure

Method three is an iterative procedure which we
decompose into the following steps:

1. Specify {a,b] and calculate the expected value
vector, <G>m, for the m dimensional potential set. The
<G>m vector is part of the assumed or "given" data. As in
previous methods, we include data collection as a pro-
cedural step.

2. Use the expected values in the appropriate

constraint equations to find the m entropy densities
pj(x) = exp [-Xo-Ajgj(x)], j=1,2,...m,

where m is the number of functions in the potential set.
Thus, each pj(x) contains one information function on the

first iteration.
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3. Use each density in step two to produce <G>m,

an ectimate to <G>m, and measure estimation error. For

each entropy density we use quadrature to generate <C>m

- - -~ T - b
=[< > =T
where <C>m [€91>/<95>r .. .<g 1° and <g, >=/

We then calculate the error of estimation, M.z, where -

sz is the sum of errors squared; 1
m L]
) M. = T (<gi>-<§i>)2, j=1,2,...m.
, ) i=1
; 4. Select the information function which induces
<+

+he best approximation to <G>m, i.e., pick the minimum
M.%. This informaticn function becomes part of the active
set and thus part of the final approximation, pi(x). -
5. Check stopping criteria. If MziEPS, where EPS

is a predefined stopping value, then we
¢ ffective active set and may proceed to step six. If

. M “EPS then we iterate to find the next best function to
add to the active set. For the second iteration, steps

3, 4, and 5 are repeated for m-1 entropy densities where

S
2

h is the active information function. This procedure con-

*.nuc~ for m-2 densities, m-3 densities,

;ctive set grows until M°<EPS or until K functions are

\ aTtive (we use K=6).

“f wo euceed ¥ functions without producing a suf- q

-

Ticieatly small Y then we have reached an error condition.
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a gk(x)pj(x) dx.

etc.; that is, the J




'y

We must assume an insufficient potential set and consider
additional potential functions. Collection of a random
sample to produ~e a frequency histosram or a numerical
approximation to the unknown density may provide insight at
this point. An example of an insufficient potential set
was given in Chapter V for a distribution that resembled
the double exponential. Again, the potential set of

Chapter V should provide sufficient information for many

characterizations on [a,b] as the results section of this
chapter will show. Once we obtain a sufficiently small M2,
we consider the elimination of unnecessary functions.

6. Eliminate redundant information functicns,
i.e., apply subroutine THROUT of Chapter VII. THROUT
eliminates functions from the active set, one function at
a time, and evaluates the divergence between p(x) with the
active set and p(x) with one less function. If the diver-
gence is near zero ("near" is defined by the analyst) then
the subject function may be deleted from the active set.
This function removal step is repeated until one complete
pass through the active set is accomplished without a func-

tion deletion. Active set selection is then complete.

Results
Method three was tested by generating <G>m vectors
for known distributions, producing the entropy approxima-

tion, and comparing the two densities. Method three
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consistently identified the desired analytic functions,

when such functions were elements of the potential set, and

cxactly characterized the analytic densities. The poten-

tial set of Chapters V, VI, and VII was used for our test-

ing and is repeated in Table VIII.I for convenience.

Table VIII.II presents representative test results. Tne

rormal, beta (skewed right) and gamma (skewed left) dis-~

tributions of previous chapters are shown as well as six

z2citional distraibutions. A tenth example is given in

Chapter IX for a simulation output distribution. Graphs

are not shown for most of the Table VIII.II distributions

bezcausc the approximation errors are very small, i.e.,

sup'p(x)=-£(x) [<10™“. We discusc the examples tu demonstrate _

L;Q ctrength of rethod three. t.
TABLE VIII.I

POTENTIAL INFORMATION FUNCTIONS

Information Information Information
Cemioel Function Syrbcl Runction Symbol Functicon
Fl (x-u) /c F4 1n (x-a) F7 ((x-w) /o) }
F2 ((x=2) /7)* F5 1n (b-x) F8 ((x=u) /o) *
F3 1nx F6 (1n(x-a))? F9 1n(x%41)

NOTE: L = mean; 0 = standard deviation; and [a,b] =
rounds. :
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The beta distribution provides an interesting

example. The beta density has the following two parameter

form:

1 P+Q-1

£ (x) = [C/(b-a) ](x-a)P-l(b—x)Q-l, a<x<b

where C = T(P+Q) /(T(P)T{(QV)} and T(:) is the gamma function.
Substitution cf P=4.0, Q=2.0, and [a,b]={0,1] in fb(x)
produces fb(x) = 20.0 x ¥l-x). Table VIIT.III displays

the iterations of method three in selecting the active

set F3,F5, i.e., In{x) and 1In(l-x). Notice that func-
tiors ¥8 and F2 were introduced and ultimately eliminated.

The final entropy density from Table VIII.III is

-~

pi{x) = exp [-AO-XB ln(x)-—%.5 In(x-b)]

exp [2.9957 + 3 1In(..} + In{x-1)]

]

exp [2.9957] x*(x-1)

19.999999 x*(x-1)
which we round to
pi(x) = 20.0 x3(x-1) = £, (x) exactly.

The normal and gamma examples produce similar

results. The gamma density with shape factor G and scale

parameter B is

falx) = CxG’lexp[—x/Bl, x,G,B~0
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TABLE VIII.III
METHOD THREE RESULTS FOR BETA EXAMPLE
A. Function Addition
Iteration Function Set M?
1 F8 .024418
2 F8,F2 .016227
3 F8,F2,F5 .005436
4 F8,F2,F5,F3 1.1 (-26)

Ao =-2.99573,

A2=—5.5(-13), X3=-3.0, A5=~l.0, A8=1.7(-15)

B. Function Deletion (THROUT)
Iteration Divergence Action
5 J(p8253(x),p253(x))=2. (-28) Delete F8
6 J(pgo53 (%) /Py {x))=8. (-25) Delete F2
7 J(P8253(x),p3 (x))=1. (+19) Retain F5
8 J(p8253(x).p5 (x))=22.805 Retain F3

A

C. Active Set = F5,F3

0=-2.99573, A3=-3.0, A5=—l.0
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where C = 1.0/(7(G) (8%)]. With G=1.5 and B=2.0, we get

fg(x) = .398940 x °exp(-.5x)

which is skewed left with mean 3.0 and variance 6.0. We

chose bounds, [0,17.0], based on the random sample which

was used in methods one and two. Table VIII.IV shows the

~amma progression. We notice that our gquadrature sub-

routine produced =2.9864995 and c?=5,8142277 on the [0,17.0]
rt>vval, Clearly, more accurate values for » and c? would

be zhtained on larger intervals. However, the given values

wre accurate for [0,17.] and the entropy approximation is
concerned with this interval. The peint is that expected valuc
estimates should be computed over the interval of interest !
as we have done in our examples. Method three chose Fl

and F3, or x-./. and 1ln(x), for the active set. From

Tawvle VIIILIV,

p(x) = expl[-2 -2, (x-p)/c-2;1n (x)]

0 3
3

= exn{-} +} u/0] exp [ (=3, /7)x] x~

.398942 exp[-.49999998x]x"°

whi~h again provider a rather accurate apprcximation to
£ {x). The key to the extreme accuracy in all the examples
i the fact that the data, i.e., the <G>m vector, is accu-

»a%~. Tha tire and money invested by the analyst to
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TABLE VIII.IV
METHOD THREE RESULTS FOR GAMMA EXAMPLE
A. Function Addition
Iteration Function Set M?
. 1 F5 1.50377
) 2 F5,F8 .171532
; 3 F5,F8,F3 .001014
r 4 F5,F8,F3,F1 1.7 (-25)
[ k0=2.412188, Al=l.205646, A3=-.5, A5=5.9(-11), A8=1.1(-l3)
] -
[ B. Function Deletion (THROUT)
F Iteration Divergence Action
- 5 J(p583l(x),p83l(x))=2.4 (-20) Delete F5
. 6 J(p583l(x),p31 (x))=2.4 (-20) Delete F8
7 J(p583l(x),pl (x))=.3155 Retain F3
8 J(p583l(x).p3 (x))=15.10 Retain F1
C. Active Set = F1l,F3
L X0=2.412188, Xl=1.205646, A3=-.5

T T e
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produce accurate averade values is well rewarded with
method three.

Distribution number seven of Table VIII.II, which
we call the hyperbolic, was investigated because it is

similar in appearance t0 an exponential distribution on

a bounded interval. Our intent was to see if method three

would distinguish between similar distributions. The

%

density for our hyperbolic is ;
fp ) = 1/702x1n (a)], 1/acxgca E

!

or £, (0 = expl=-lnx+ 1n(.")] §

Thus In(x), F3, 1s the desired analvtic information func-
tion, and mcthod three must produce 10=—1n(a2) and E
Xl=l.0 for an exact fit. Calculation will show for fh(x)

that <x>=(."-1)/(2a-1lna). For the exponential,
f (x) = Sexp [-8%], O<x-

e

with -x>=-1/Z. We wished to test hyperbolic and exponen-

tial distributions with the same means. We thus selected
the a parameter for the hyperbolic, calculated <x>, and
used <x- to find the exponential parameter. The result was
“weo sinilar distributions with the same means, though the
exponential is epplied over a larger interval. Method

three distinguished between the two distributions based on
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respec;ive <G>m vectors, as shown in Table VIII.II, and pro-
duced accurate representations once more,

The uniform and bimodal distributions were intro-
duced as extreme cases. The maximum entropy density for an
unknown distribution given only the interval [a,b] and no
further information is the uniform distribution. Method
three, when given a <G>m vector from a uniform distribu-
tion, should thus select only the constant parameter, ko.
The method performed perfectly.

The bimodal distribution was taken from reference
14 which discussed a discrete entropy approach to develop
density histograms. The bimodal density is composed of

two "tent" functions,

fix) = 2x D<x<1/2
= 2(1-x) 1/2<x<1
= 2(x-1) 1<x<3/2
= 4-2x 3/2<x22
=0 otherwise.

Our continuous entropy approximation procedure was devel-
oped for unimodal distributions as evidenced by our poten-
tial function set (Ref Chapter V). Thus our potential set
does not contain the correct information functions to pro-
vide an exact fit to f(x), but a reasonable approximation
results. Figure 8.1 graphs the analytic and entropy densi-

ties. Our continuous entropy approach provides a density
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that has the same general shape as the histogram approxi-
mation but also provides an analytic form for the approxi-
mation density, p(x). (Reference 14 contains graphs of the

histogram approximation.)

Measure Sensitivity

The average values procedure of method three is
based on a fit to the <G>m vector. The method progressively
selects the information functions that contribute to accom-
plishing this fit. Such a procedure is sensitive to the
measure of fit, i.e., M?. We selected a least squares

m
measure, M= Z(<gi>—<§i>)2, after experimentation with

various for;;lof this measure. For successful application,
M? must measure the "relative" contribution of an informa-
tion function regardless of the size of a particular
expected value. For example, if gs(x)=x“ and gl(x)=x
on interval [50,100] then <98> will be much larger than
<gy>. Thus the contribution of (<gg>-<gg>) to M? will have
more importance than(<gl>-<§l>), and we would expect the
procedure to first select the function that produces the
smallest (<98>-<§8>).

Various forms of ratio tests were investigated in
an effort to evenly weight the information functions, but
such measures proved cumbersome. The most straightforward

approach is tco equalize the influence of information func-

tions prior to testing, i.e., scale gi(x), 1=1,2,...m such
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that the <g;> are roughly equivalent in value. Normaliza-
tion of <G> is not sufficient because the size bias is
maintained. Thus, we independently scale potential informa-
tion functions if such functions promise to produce large
average values on the interval of approximation. For
example, we may replace moments, xk, with normalized central
moments, (x—u)k/ck. Moments were the only information
functions, in the potential set of Chapter V, that reguired
scaliny for our applications. The analyst should be aware

of the possible need for function scaling for large approxi-

mation bounds, [a,b].

Sumnary

The goal of our entropy approximaticn procedure is
to acceptably approximate an unknown distribution based on
obtainable information. Method three has shown that we can
provide an extremely accurate characterizetion, given the
interval of approximation and the expected values of certain
information functions. The accuracy of approximation
depends on the accuracy of <G>m and the flexibility of the
potential set. The potential set of Chapter V is extremely
prodactive for unimodal distributions on a bounded interval.

Method three has been implemented as a FORTRAN
computer subroutine, METH3. The program uses previously
discussed subroutines THROUT, which performs the function

deletion step, and ENTRCP, which solves the constraint
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equations for the entropy density parameters. METH3 was
used in all the above examples. The interval bounds [a,b)
and vector <G>m are required subroutine inputs, and the
active set and p(x) are returned. The analyst can modify
the potential function set by changing function cards
which do not involve the principle subroutines. The pro-
gram is constructed to handle 12 information functions in
the potential set although the 9 functions of Chapter V
(repeated in Table VIII.I) have proved sufficient in
experimentation.

The excellent performance of the expected values
method is complemented by its simplicity and the lack of
a need for a large rando. sample from “he unknown distribu-
tion. However, the analyst may prefer to produce a sample
to make density and cumulative comparisons as in methods
one and two. Such comparisons confirm the accuracy of
approximation and indicate if modifications to the poten-
tial set are needed.

As a final comment, we review the purpose of the
selection procedures. The purpose is to select the active
set of functions for a specific approximation. If the
analyst has already identified the active set, i.e., he
knows the family of the unknown distribution, then he may
circumvent selection procedures and simply solve the con-
straints to completely specify p(x). If the analyst can

only generate expected values (or averages) for certain
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functions, then those functions may compose the potential
set, and method three may be used to select the active set.
I1f a random sample is available then the analyst may prefer
methods one or two. Finally, the analyst may prefer a
combination of the above techniques or application of all
three methods.

We have demonstrated that the methods work. The
selection of a particular method depends on the specific
problem, available data, and data accuracy. Our approach
has been to first apply method three because it is the
casiest to use. However, inaccurate expected values may

ause unsatisfactory results with method three as demon-

¢}

strated in the "interval arithme+«ic" applicatic. of Chapter

XI. Methods one or two may then be preferred.
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Chapter IX. Application to Simula:ion

Introduction

Previous chapters have described an effective pro-
cedure for approximating an unknown distribution and pro-
viding a closed form for the approximating density, p(x).
The procedure has broad application in mathematical and
stochastic analysis. This chapter discusses the use of
our procedure to approximate the output distribution of a
computer simulation, an application which motivated the
development of our method. The method was designed to sup-
port simulation studies at the Air Force Flight Dynamics
Laboratory (AFFDL). Vehicle Synthesis Branch.

The strength and importance of the entropy approxi-
mation procedure as applied to simulation will be demon-~
strated by considering an AFFDL example problem. The
general simulation problem and usual output characteriza-
tion approaches are considered, followed by discussion of

the entropy approach with example.

Simulation Model

A computer simulation may be viewed as a "black
box" model which provides a distribution of output values
based on user specified input distributions. We consider

a simplified "black box" model:
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f(x) on [a,b}l——e F(X) p——ef(y) on [c,d]

where f(x) is the density function of input random variable
X, F{x) is the mathematical transformation which repre-
sents the simulation, and f£(y) is the output random vari-
able density function. Notice that random variables X and
Y may be vector valued although we consider univariate
input and output for now. The transformation F(x) is known
to the user or is available as a computer subroutine.

This model highlichts two significant points about
simulation. First, the input distributior must be com-
pletely specified by the simulation user. Input specifica-
tion may taxe several forms (e.g., a set of discrete values
for X, a density function for X, or a curve representing
possible values, etc.), but the input is specified and thus
known. Second, the usual purpose of the simulation is
evaluation of the output. The user may reguire a sample
output distribution, ar average value of the output vari-
able, or an indication of output sensitivity to input
variations. The simulation, in general, becomes more use-
ful to the user as his degree of knowledge about the output
distribution increases. However, simulation output is a
set of discrete values, To best serve the user, this set
of values must be manipulated to describe the stochastic
nature of the output in terms of a distribution or density

function. Thus, the input is known, and the transformation
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is known (or available as a subroutine). We seek an approxi-

mation or characterizatior. of the output distribution.

Qutput Characterization

How might an analyst characterize the output dis-
tribution given the known information in the previous model?
The answer to this guestion depends on the nature of the
mathematical transformation, F(x). If F(x) is known and
linear or mathematically "nice," then an analytical solu-
tion may be feasiblie. For example, the analyst may be able
to propagate the input density, f(x), through the model
using transformation of variable technigues to analytically
derive f(y) without computer simulation. One might con-
sider decomposition of F(x) inté a series of less complex
transformations for this purpose. For nonlinear transforma-
tions, linear approximation is a popular technique and has
been successfully applied to very complex modeling problems.

Research conducted by Orr (Ref 63) provides an
example of such an application to an extensive antiaircraft
artillery simulation. While linear approximation was
acceptably accurate for several nonlinear portions of the
simulation, simplified nonlinear models were needed for a
few submodels. Clearly, the analytical approach is the pre-
ferred method when possible. However, detailed modeling
of real world processes seldom results in transformations

which are analytically manageable., The most frequent
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approach when difficult transformations are involved is

Monte Carlo simulation.

Monte Carlo simulation, while a potentially accu-
rate and reliable means to model real world systems, pos-
sesses two notable disadvantages. First, a large number
of simulation trials are needed to provide adequate infor-
mation about the output distribution. Thus, computational

. expense may restrict Monte Carlo analysis, particularly in

terms of cutput sensitivity to input variations. Secondly,

% . the output of a Monte Carlo simulation is a random sample.
H

T A su.table method of distribution approximation must be

1 . applied to this sample to derive meaningful stochastic

information. The entropy procedure provides a distribu-

r(v“-‘

tion approximation and can reduce the number cof trials or
simulation calls required for approximation and for subse-

guent sensitivity analysis.

Entropy Approximation

The entropy approximation procedure, when applied
to computer simulation, provides a usable and minimally
prejudiced density function, effectively uses available or
computable information, and provides analytical ins<;
that is not afforded by Monte Carlo simulation. We discuss

> this application and potential computational benefits for

\ sersitivity studies.
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The entropy procedure was presented in Chapter III
and expanded in subsequent chapters. The simulation output
density, fly), is approximated by an entropy density of

the form
ply) = exp [-XO -kl gl(y) -...Ak gk(x)]

where gi(y), i=1,2,...k are information functions. We
highlight the benefits of the entropy application to simula-

tion by reviewing the procedural steps.

Select the Active Set. Three methods were

described for selecting the active set of k functions from
a predefined potential set of m functions (Chapters VI,
VII, and VIII). Methods one (regression) and two {diver-
gence) each require a Monte Carlo sample of the simulation
output to select the active set. Since a Monte Carlo sample
can provide a numerical approximation of the output dis-
tribution, one may question the benefit of proceeding with
the entropy application. However, the entropy procedure
provides at least two advantages. First, an analytical
representation of the output density is provided for ease
in subsequent analysis. As previously discussed, the spe~
cific information functions that are selected for this
representation may provide further insight, i.e., if y and
y? are selected then the output distribution is approxi-

mately normal. Secondly, the entropy procedure produces a
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distribution that compromises between the sample and true
underlying distributions. Thus, the entropy method pro-
vides a closer fit to the underlying unknown density than
a single Monte Carlo run can provide. Method three
(expected values) does not require a Monte Carlo sample,
unless such a sample is needed to compute the expected
values, and thus provides the added benefit of reduced
simulation calls. (However, we recommend an initial
lonte Carlo run when using method three to ensure that l
the potential set includes a sufficient number of functions
(Chapter VIII).)

Given the initial Monte Carlo sample, subsequent
Monte Carlo runs are needed only when the forms or bounds
of the input distributions are changed, i.e., from one “
distributioi to another such as from normal to beta.
Variations in input distributions, such as changes in mean,
variance or distribution parameters, are permissible without
reselecting the active set. Thus, once the active set is
defined, sensitivity analysis may be accomplished by simply
generating expected values for the active set and solving
for the specific p(y). A substantial change of inputs
(e.g., a change of bounds or distribution families) may -
drastically affect the form of the output distribution,
and active set selection should be reaccomplished to ensure

accurate avproximations. The entropy procedure thus offers

2 significant tcol for output analysis and potential
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savings in computer time via a reduced need for simulation

access.

Generate Expected Values. Appendix A and Chapter

III introduce numerical quadrature for generation of
expected values. Consider, once more, our simplified simu-

lation model:

f(x) on [a,b]——ol F(x) p———=f(y) on (c,d]

From eguation (3.5) we have

M

cgyly)> 3252 TG (FO)) x5, im1,2,000k,
J=

where wj and xj, j=1,...M represent quadrature weights and
points, and f(xj) is the value of the input density at

xj. A study of this approximation for <gi(y)> surfaces two
significant benefits:

1. Only M function evaluations (or simulation
calls) are needed to calculate all k expected values
<gi(y)>, i=1,2,...k. That is, the same values of F(xj) are
used in all k expected values. This fact alone provides a
significant improvement to Monte Carlo simulation.

2. The M simulation calls (F(xj), j=1,2,...M) may

be stored and the simulation input, f(x), modified (the

interval [a,b] must remain fixed) for subsequent sensitivity

analysis without further access to the simulation. This
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benefit provides a notable analytical tool for sensitivity
analysis. *
The listed benefits are particularly significant
for expensive simulations. However, one must note that
the benefits of quadrature are somewhat reduced when multi-
dimensional integrals are involved, i.e., when the input
distribution is multivariate. Quadrature is an approxima-
ticn to analytic integration and the accuracy of approxi-
mation depends on the number of quadrature pocints, M.

Wrnile M may be small for cne dimensional integration (16 to

32 pointes cffer excellent accuracy in most cases), the
actual number of simulaticn calls for n dim=nsional integra-
tion is M". ~unseguently, the number of simulation calls
for large n can ravidly approach the number of calls for a ~
Monte Carlo simulation. Appendix A discusses multidimen-
sional quadrature and provides references As a rule of
thumb, quadrature 1is effective when the number of input
variables, n, 1s less than or equal to four.
E final point pertains to specification of the
interval for output approximation, [c,d]. These bounds must
be known prior to application of the entropy procedure. If
the analyst knows reasonable limits for the simulation out- .
pat, then such limits should be used. However, both quadra-
ture and Monte Carlo methods of estimating the expected
values supply 2 means to estimate [c,d]. For the Monte

arlo appreach, the bounds are simply the minimum and
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maximum values of the sample distribution. The same logic

aprlies to quadrature, i.e., [c,d] = [minP(xi),maxF(xi)]
i i

where F(xi) is simulation output at quadrature point X

Solve the Constraint Equations. This step is

thoroughly discussed in Chapter IV to include a computer
subroutine for implementation. The constraint equations
are repeatedly solved in each of the active function selec-
tion procedures. Once the active set is known, then subse-
guent output approximations for the same input family may
be accomplished by generating new expected values and

solving the constraints.

Numerical Usefulness

The entropy procedure provides a minimally preju-
diced, stochastic representation of the simulation output.
The approach is not dependent on a specific simulation but
is geared'to "black box" models. The numerical usefulness
is discussed in previous sections and summarized here.

The entropy procedure provides an analytic form for
the simulation output distribution based on expected values
of functions. Expected values may be calculated from the
known input distributions with limited use of the simula-
tion. Simulation calls may be stored for subsequent analy-
sis of output sensitivity to input changes. When a Monte
Carlo sample is needed to identify the active set, the Monte

Carlo work does not have to be reaccomplished when input
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parameters are modified (given fixed input bounds). Addi-

tionally, the approach offers an analytic form for the out-
put density which is not provided with straight Monte Carlo
simulation. The entropy approach thus provides potential
reduction in simulation calls and stochastic output repre-

sentation.

Fxarple Application

An example application of the entropy procedure to
simulation 1s given for the AFFDL problem of Figure 9.1,
The problem is described in the first secticn and followed
Ly a detailed discussion of éntropy recults using active

set sclection method one (linear regression). Methods two

and three are then considered and show very similar results.

$
.
#11 three methods provide accurate approximations to the
dateo.
DESIGN PERFORMANCE
PARAMETERS MEASURES
Weight ———| Design
Thrust Equations.""“"'TakeOff Distance
Lift Coeff. —_ !
Weight N .
Lift/Drag | Design
: ___——_’,Equationsf“”“*’Fllght Range

Spec. Fuel
Consumption

Fiq. 9.1. AFFDL Simulation Model
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Simulation Model. AFFDL contracted for a study of

aircraft performance measures for several different aircraft
with different engines (Ref 59). Managers were concerned
with the stochastic nature of performance measures as
related to the stochastic behavior of several design param-
eters. The problem of interest is graphically displayed
in Figure 9.1. Our example involves the two performance
measures in Figure 9.1 (takeoff distance and flight range)
and the indicated design parameters for one engine (TF2--
Ref 59). Variability in the aircraft production process,
as reflected in the stochastic nature of design parameters,
means that no two aircraft will have the same values for
performance measures. The contract goal was to predict
performance measure distributions based on estimated
design parameter distributions. The approach was Monte
Carlo simulation. Aircraft production was simulated via
traditional design equations with the design parameters
as simulation inputs. Various distributions were assumed
for the input parameters, and a sample cumulative was pro-
duced for each performance measure. Constants in the
design equations and input distributions were altered to
represent different type aircraft or engines and compara-
tive sample cumulatives were produced.

To demonstrate the entropy method, we used the
contractor's design equations (Table IX.I) and input distri-

butions, but we developed our own simulation models (one
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TABLE IX.I

PERFORMANCE MODEL

Takeoff

- 1.16
distance = 8.656*[—“——-——] + 425.2

W =

o)
|

neSeCeT
ety

wempty ! wfuel * wpayload

density ratio

S = Wing surface area
= Maximum cocfficient of 1lift
T = Thrust
Range
(L (y_) (L)
range = < D) e In )
t
Wl = wempty * wpayload + Wreserve
V = Cruise speed
Ce = Specific fuel consumption
L/ D = Lift/drag ratio
*™NOTE: Constant 8.656 later corrected by contractor

to 10.81. We

retained 8.656 in our examples.




for each performance measure). The models were developed

to provide experimental control but also proved useful in
identifying a minor contractor error in one design equation
(see Table IX.I). We use the eguations as indicated in
Table IX.I without correction. For a specific example we
consider the input distributions of Table IX.I1I, i.e.,
normal distributions with bounds [u-405, u+40) where u is

the mean and o is the standard deviation. Random samples

of 500 takeoff distances and 500 range values were generated
and stored. We now apply the entropy procedure to approxi-

mate the performance measure distributions.

Expected Values and Integration Bounds. The entropy

approach requires estimates of expected values of informa-
tion functions in the simulation output space. The esti-
mates may be provided via average values (Monte Carlo) or
numerical quadrature. Each simulation in Figﬁre 9.1
involves three independent inputs and a univariate output,
thus suggesting quadrature for expected values (Ref Appendix
A and Chapter III). We use a 16 point quadrature formula
for the triple integration in our example. Multidimen~
sional gquadrature is discussed in Appendix A. Table IX.III
provides a comparison of quadrature and average values for
simulation output means and variances with various samples
and sample sizes. Average values were computed as fol-
lows: <g(t)> = ? g(ti)/N where N is the sample size and

i=1
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TABLE IX.II

EXAMPLE INPUT DISTRIBUTIONS AND CONSTANTS

Input Distribution* Mean= u Variance=c?
. wempty Normal .7427 (+6) .702944 (+9)
! T Normal L3017 (+6) .149810 (+7)
. C Normal .2920(+1) .324863(-2)
4
r CcL/CD Normal .2030 (+2) .102478
. Ct Normal .63 .332522(-5)
f Constant Value
wfue1 498,000 1lbs.
W ] 390,000 1lbs.
payload
p .944
* s 11,270 ft
L
\Y 460 kns
W 40,600 1lbs.
reserve
*NOTE: All distributions bounded on {u-40, u+4c].

,A‘—v,




-

-

o* -

3

TABLE IX.III

COMPARISON OF QUADRATURE AND AVERAGE VALUES

Sample Minimum Maximum
Measure Size Mean Variance Value Value
Quadrature:
Takeoff le6 6492.26 72050.87 5104.12 8262.58
Range 16 4880.56 14962.69 4185.34 5701.30
Averages:
Takeoff 1000 6506.04 70559.08 5605.12 7462.57
Takeoff 500 6496.71 70648.83 5830.01 7473.79
Takeoff 500 6491.58 71019.91 5745.75 7240.77
Takeoff 500 6539.59 70677.82 5603.24 7242.84
Takeoff 100 6520.41 81384.04 5629.48 *
Takeoff 100 6543.82 83514.99 5742.07 *
Takeoff 100 6570.19 91038.30 5750.68 *
Averages:
Range 1000 4880.91 14290.92 4492.83 5304.45
Range 500 4887.31 14965.55 4484.93 5230.29
Range 500 4901.04 14915.77 4536.23 5418.93
Range 500 4900.85 13364.17 4585.49 5347.85
Range 100 4865.78 14127.65 4563.52 *
Range 100 4947.65 15569.14 4661.69 *
Range 100 4998.05 15611.30 4623.67 *

*NOTE: Upper bounds not retained on this run.
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ti is the output sample value. As expected, a sizeable
fluctuation is noted with sample size. The average value
appears to approach the guadrature value as N increases.
Haber (Ref 34) provides more insight to quadrature accu-
racy.

Table IX.III also compares sample and quadrature
output bounds. These bounds must be specified for con-
straint solution. For consistency, the bounding method
should agree with the method of estimating expected values,
i.e., sample bounds if averages are used. Notice that all
sample bounds are subsets of the guadrature interval. Our

examples use guadrature bounds.

Method One (Linear Regression). The entropy pro-

cedure reguires selection of the active set of information
functions from a predefined potential set. As in previous
examples, we use the Chapter V potential set (repeated in
Table IX.IV for reader convenience) with quadrature values

for v, o, and [c,d]. Selection method one (Chapter VI)

TABLE IX.IV

POTENTIAL INFORMATION FUNCTION SET

vl = (x-u) /o F4 = 1n(x~c) F7 = ((x-u)/0)?
Fo o= ((x-u)/o)° F5 = 1In(d~x) F8 = ((x-uw)/c)"
F3 = 1n (x) F6 = (In(x-c)) > F9 = In(x?+1)

NOTE: u = mean; o = standard deviation; [c,d] =
bounds.
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was applied to our random samples of size 500 for takeoff
distance and range simulation outputs. The regression
results and statistical measures are listed in Tables IX.V
and IX.VI for nine candidate sets. The function sets were
chosen based on largest and second largest adjusted R? for
a given set size. We allowed up to six active functions
per set. Notice from the tables that different statistics
imply different active sets. Chapter VI and Appendix B
provide guidance in choice of statistic for final active
set selection. We choose the Anderson-Darling, Az, sta-
tistic because we seek accuracy in the distribution tails.
Thus, E4=(F2,F4,F7,F8) is the active set for takeoff dis-
tance characterization and E2=(F2,F8) is active for flight
range. The best value for each statistic is underlined
in the tables.

Let us consider the approximation accuracy for the
takeoff distance example of Table IX.V. The value of A?
is .3193. Stephens (Ref 76) provides a table of critical
values up to the 15% significance level. Our null hypo-
thesis is:

HO: The sample distribution comes from a popula-

tion with distribution function that is

described by our entropy approximation, p(x).
Stephens' table gives a critical value of A?=1,610 at the
15% level and A?=1.933 at 10% significance. Thus we reject

HO if our calculated value of A? exceeds the critical value

at our chosen significance level. Our extremely small

158




£0100°=8¢ ‘9610 -=Ly ‘99z-=Y\ ‘o5 =%y ‘g5 p=Cy _yd 104
9¢40° yyze® £620° z8°L6 6'8'S'v't .sd
6¢v0" €61t £620° 09°¥6 8L'v'e .va
2850° 8ETY" £920" 89°¥6 89°'¢ €4
veLO® Lvy: 08Z0" £0°L8 L'z B4t
SEVo- zeze” v6z0° 6L°L6 g'L's‘v'e’‘e 93
9£y0° pbze: £620° 78°L6 8G'v'e’e e
Zsvo- ree” S620° 19°v6 8's’'y‘e ba
S850° €vey” 9920° 89° V6 8'v’C €3
£Y50° STy’ $820° 07" v6 8’2 za

 M=SOSTW uoa ~<nmcﬂﬁumo a = aouItTws 4 suot3joung 313S
Iowerd -uosaspuy —aoaobowtoy poasunlpy uoT3jPeWIOJUL o3epIpued

SLINSIY NOISSHYOIY HINVLSIA JJOFHVL

ATXI d19VL

159

ks




F ZELo” 9699 " 5920" LY S6 8'L's'v’e .64
1€L0° 869¥" 990" 60°56 g‘L'9’e . pd
K 2060° 08€G" $820° €L V6 8'v’e €4
m gLen” 989L" LTEO" vr-98 L'z .24
| £ELO" zoLy® $920° SV L6 BL'S‘V'T'T 93
62L0" zL9v” y9zo- £6°56 8's'v'e'1 ca m
1€L0° 869V " 9920° 60°56 g'L'v'e vd
zLen” 8L9L" 81£0° L6°V6 8L’ €4
9yL0" zevv” £€920° £8°V6 8'C rdc
 M=SOSTH uoA ~<um:ﬂ 1xeq g=aouItug A suotioungd 398
Igure1d -UOS I9pUyY -aocxobowioy poisnlpy uUoT3RWIOF UL a3epIpuUER)
SII0STY NOISSAUOAM FONWY LHOITd
IAXI 376VL
[
. ) .
w S A S - -
il gimiimbiini Sttt gt k., " )




values of A’ for both takeoff distance and flight range

indicate an accurate fit at significance levels much higher
than 15%. Thus, we have produced accurate approximation
to the output data for both simulations.

Figure 9.2 presents an entropy and sample density
comparison for takeoff distance to demonstrate the accu-
racy. We eliminate numerical differentiation noise by com-
paring sample and entropy cumulative distributions in
Figure 9.3. Differences between sample and entropy cumula-
tives are plotted versus the actual cumulatives because the
entropy fit is very accurate. Figures 9.4 and 9.5 provide
the same information for the flight range distribution with
active set E2. The four figures show an accurate fit to
the sample and thus imply an accurate representation of the
unknown distributions.

Active set selection method one uses linear regres-
sion and is thus sample dependent. As demonstrated, the
method provides an accurate fit to a given sample. However,
application of the method to a second sample from the same
distribution may result in selection of different active
functions. We wish to show that the active set (and thus
the entropy density) for a given sample will produce an -
acceptable fit to subsequent samples. If a given sample is
a good approximation to the true underlying analytic dis-
tribution, then the entropy distribution which approximates

this sample must also approximate the analytic distribution.
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~ In fact, as indicated in Chapter VI, the entropy distribu-

tion is a compromise between the sample and analytic dis-

tributions. Thus, subsequent sample distributions should
be well approximated by the entropy fit.

We demonstrate this prediction by generating addi-
tional samples and comparing the samples to our original
entropy cumulative. Figures 9.6 and 9.7 provide cumulative
comparisons for a second and third sample (again 500
deviates each) from the unknown takeoff distance distribu-
tion. Figure 9.8 and 9.9 provide equivalent comparisons

3
f for the flight range. We notice that subsequent samples,

particularly for the takeoff example, fit one side or the

other of the entropy approximation indicating that our

original approximation is indeed a compromise. To further

test our accuracy with the original entropy approximation,

we generate a fourth and larger random sample (1000 deviates).
- Figures 9.10 through 9.13 graph results for the cumulatives.
As sample size increases, the sample distribution approaches
the entropy distribution (particularly in the tails) again
indicating that the entropy distribution is a good approxi-

mation to the unknown, underlying analytic distribution.

Method Two (Divergence). We apply method two to

the original takeoff distance sample data for comparison
with method one. Method two uses the divergence measure

and is described in Chapter VII. This method also produces
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A

a compromise distribution, but experimentation with known
distributions has shown that the divergence measure favors
a fit to the analytic distribution whereas method one
favers the sample. Method two includes a function elimina-
tion step which is not currently part of method one. The
elimination step (subroutine THROUT from Chapter V1I) con-
siders the entropy’ approximation and eliminates "redundant
information" functions in an "information theoretic" sense.
The results of method two when applied to the sample
takeoff distance data are shown in Table IX.VII. Notice
that method two stops adding functions at set F2,F7,F4
because the addition of a fourth function increases diver-
gence. The function deletion phase, iteration 6 of
Table IX.VII, indicates that little information is communi-
cated via function F7, and the analyst may consider elimin-
ating F7. The small value of A7 also indicates a less impor-
tant function. We chose to retain all three functions in
our active set. Before comparing methods one and two, we

consider method three.

Method Three (Expected Values). Method three (Ref

Chapter VIII) does not use the sample distribution to pro-
duce the entropy approximation, but concentrates on a fit
to the expected values of the potential set. Table IX.VIII
presents the results of method three for the takeoff dis-
tance example. This table highlights two interesting

toints.,  Tteration four shows that adding either functions
175
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TABLE IX.VII

DIVERGENCE METHOD APPLIED TO TAKEOFF DISTANCE SAMPLE

A. Function Addition on [x(1),x(N)] =

[5830., 7473.8]

Iteration Function Set Divergence
1 2 J(p2 (x),f(x)) = .044093
2 2.7 J(p27 (x),£(x)) = .042295
3 2,7,4 J(p274 (x),f(x)) = .038427
4 ‘-v7l"’l6 J(p2746(x)lf(x)) = ,038841
where f (x) 1s sample density
B. Function Deletion on Quadrature Bounds =
[5104.1, 8262.6)
Iteration Divergence Action
5 J(p(xX) ,po, (%)) = 652.8 Retain Function 2
6 J(p(x).p24(x)) = ,00532 Retain Function 7
7 J(p (1) 1pyq (%)) = 10.05 Retain function 4
where pi{x) = p274(x)
C. Active Set = F2,P4,F7
\0=4.648, X2=.5086, x4=.2572, 7=-.0188
176
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TABLE IX.VIII

METHOD THREE APPLIED TO TAKEOFF DISTANCE EXAMPLE

A. Function Addition

Iteration Function Set M
: 1 2 .015916
b .
. 2 2,7 003607
H 3 2,7,5 .00043%
E r 4 2,7,5,8 2.1 (-10)
2,7,5,4 9.9 (-~ 7)

B. Function Deletion (THRQUT)

Tteration Divercence Action

5 J(p(x),p~58(x)) = 107.9 Retain functicn 2
. 6 J(p(x),p~58(x)) = .0054¢0 Retain functiocn 7
’ 7 J(p(x),p§78(x)) = 2.326 Retain function 5

8 J(p(x),p275(x)) = ,000082 Retain function 8

\O=9.045, \2=.494O, \5 =-,3386, X7=—.0192, x8=.ooos4

C. Active Set F2,F5,F7,F8 or F2,F5,F7

!
v i‘f
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F8 or F4 will produce an acceptably small M?. Thus, more

than one combination of functions can produce an acceptable

approximation. We chose F8. Notice in iteration eight that
deletion of F8 produces very little information loss, and
the analyst may prefer to use active set F2,F5,F7, i.e.,
set A8=0.0. These points again indicate the need for
analyst involvement in the selection procedure. All three
selection methods are designed as analyst tools and not
as stand-alone computer programs.

A summary of results for the three methods is pro-
; vided in Table IX.IX. The three methods produce such
' close results that graphs of the distributions are inade-
guate for distinction. Thus, Table IX.X is included to
provide a comparison of cumulative distribution values at

18 data points.

TABLE IX.IX

~ COMPARISCN OF THREE ENTROPY METHODS FOR
TAKEOFF DISTANCE DISTRIBUTION

Method Approximation Interval Active Set
Regression 5830.0, 7473.8 2,4,7,8
Divergence 5104.1, 8262.6 2,4,7

Expected Values 5104.1, 8262.6 2,5,7,8 (2,5,7)
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Summary

This chapter has discussed the application of our
entropyv procedure to computer simulation. The three active
set selection methods were used on a specific example and
produced consistently similar results. The choice of method
is left to the analyst; previous chapters provide guidance.
The entropy method provides an excellent tool for distribu-
tion characterization and a viable tool for sensitivity
analysis,

The simulation application was presented in detail
because such a general procedure may be applied to numerous
stochastic modeling problems. The method treats the simula-
tion iike a "black box." Thus, if the analyst can formulate
his problem as a svecial case of the "black box" model then
he may apply the entropy procedure.

As a final note, the simulation input distributions
were provided in our examples and must be known to imple-
ment a simulation. However, the entropy characterization
procedure is also useful in defining input distributions.
Chan (Ref 10) suggests such an application for a special
case of our general model. Other entropy applications are

discussed in Chapter XI.
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Chapter X. Sensitivity i

Introduction

The following sections address several aspects of 1
sensitivity analysis. We summarize sensitivity issues from
previous chapters on simulation and active set selection. |
The central concern of this chapter is sensitivity of the
entropy approximation, p(x)=exp[-k0-xlgl(x)-...ngk(x)],
to errors in the expected value vector, <G>=(<ggy>r<g>s. ..
<gk>)T where there are k functions in the active set.

(For notational convenience only, we do not include vari-
able X in our evpected value symbols, i.e., we let
<gi(x)>=<gi>.) We present theoretical developments from

the literature as well as two numerical procedures for

studying approximation sensitivity.

’ Simulation Sensitivity

o As R. E. Shannon states,

Sensitivity analysis is one of the most important
N concepts in simulation modeling. By this we mean deter-
mining the sensitivity of our final answers to the
values of the parameters used [Ref 70:32].

Simulation is designed to facilitate sensitivity analysis

because the analyst has complete control over the param-

eters (or inputs) and can vary them one at a time (or

} jointly) to observe the effect on simulation output. 1In

fact, the AFFDL problem of Chapter IX was solved via
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simulation to answer a sensitivity question, i.e., how do
design measures vary as input design parameters change?
QOur entropy procedure provides -an effective tool
for output comparisons by producing an accurate description
of the output distribution. The inputs may then be
altered and a second entropy approximation generated for
density or cumulative comparisons. Frequently, graphs of
the resulting output distributions will answer the ana-
lyst's sensitivity questions. While the entropy procedure
provides graphs, it provides additional insight to simula-
tion sensitivity. Notice that the entropy approximation,
p(x}), is based on the expected value vector <G> and changes
in the inputs cause subsequent changes in <G>. Given a
<G> vector for the output of a simulation with specified
inputs, we may study the sensitivity of p(x) to variations
in this <G> vector, and this study is accomplished without
using the simulation. Once we have established acceptable
bounds for the output <G> vector, we may return to the simu-
lation to investigate the effect on <G> of varying simula-
tion inputs. Procedures for evaluating the sensitivity of

p({x) to vector <G> will be presented.

Active Set Selection

Chapters VI, VII, and VIII discuss three methods
for selecting the active set of information functions from

31 predefined potential set. Methods cne (linear regression)
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and two (divergence) use random samples of the unknown dis-
tribution to develop the active set and demonstrate sample
dependence. While sample sensitive, the methods produce
approximations that compromise between the sample and true
underlying distributions. The point of significance is
that this compromising quality insures an adequate fit to
subsequent samples with the active set from a previous
sample. Previous chapters provide conceptual and experi-
mental justification. Method three (expected values)
selects the active set based on expected value information
and is sensitive to error in this data. The three methods
thus demonstrate data sensitivity. This data sensitivity
is a desired property and enables accurate approximations.
The importance of specifying a broad potential set
was presented in Chapter V and represents another form of
sensitivity. If the potential set contains the correct
functions, we can exactly recreate the unknown analytic
distribution as previously demonstrated. The accuracy of
approximation depends heavily on specifying enough infor-
mation via the potential set. The potential set of
Chapter V provides an excellent starting point and proved

quite accurate in experimentation.

Approximation Sensitivity

The term "approximation sensitivity" is used here

to describe the sensitivity of the approximation density,

183




p(x), to errors in the expected values vector <G>. We

assume that the active set has been selected and the infor-

mation functions are specified and fixed. Our concern
centers on how changes in the expected values of the active
set produce changes in p(x). We restate the problem in the
Lagrange formulation, discuss theoretic implications, and

then present two methods for studying this sensitivity.

R The Problem. The maximum entropy procedure approxi-

mates the unknown density, f(x), by a density of the form
= ., -~ -2 - by "
p(x) exp [=)gy=}, gy (x)=... Yy gy (X)]

where the gi(x), 1=0,1,...k, represent our active set of

L)

information functions with qo(x)El. The lambda vector,
A=(}O,A1,...Xk)T, identifies the specific p(x) and is deter-

mined by solving a system of nonlinear constraint equations: !

i
fo(ﬂ;} fgo(x) exp[-iioligi(x)]dx <94
. = <G>
F(h) =
. . K
L:fk(/\.) -{gk(x) exp[-iiokigi(x)]dﬁ_ _fgWi_(lo'l)

where the <G vector is provided via quadrature, average

value approximation, or other means.

The only unknown is

Thus our approximation problem is transformed to a

nroblem of selecting a A vector, based on a given <G,

such that the resulting p(x)

18

4

satisfies the constraints.




Assuming a "wise" choice of information functions, p(x)
will provide an adequate representation of £ (x).
Sensitivity analysis is defined as an evaluation of
the change in system output effected by a systematic vari-
ation of system inputs. Our system is described by equa-
tions (10.1) with input <G> and output A or p(x). We thus
consider sensitivity at two levels; the sensitivity of A

to <G>, and the sensitivity of p(x) to <G>.

Theoretical Support. The A vector defines the

explicit p{x) for a particular set of constraint values,
<G>. The Lagrange multiplier formulation of our problem
provides some immediate information on A sensitivity to

<G>. As discussed by Tribus, Jaynes, Crain (Refs B82; 42;

15), and others, we may consider AO as a function of Ai'
i=1,2,...k. Following Tribus' work with discrete entropy,

we consider the first constraint, f(i)=<g0>=l, to produce

k
exp{ko] = fexp[- L Aigi(x)]dx (10.2)
i=1
or
k
\O(Xl,...kk) = ln[fexp[-iilli.gi(x)] dx].

Differentiation of (10.2) produces

axo/axm = -<g > (10.3)
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Equation (10.3) states a linear relationship between AO

and Am which is weighted by <9y This tells us that
xo(xl,...xk), called the "potential function" by Jaynes and
Tribus, is most strongly effected by variations in the
larger elements of <G>. We would thus expect that gm(x)
with large )<gm>| would strongly effect p(x). While pro-
viding conceptual insight, equation (10.3) provides little
practical sensitivity information for our procedure. We
gcale the information functions in our application to
reduce the values of !<qi>|, i=1,2,...k. The scaling is

a numerical convenience but also enhances the performance

of the three active set selection methods. Let us pursue

the thecretical relationship betwzen A and <G>.
Given an :=(§0,51,...gk)T variation in <G> with
. . : s T
EO—O (go(x):l), we want to find 6-(co,61,...6k) where &
is the variation produced in A. We again extend the dis-
crete example of Tribus (Ref 82). Consider the p(x) which

produces maximum entropy S (p(x)). Then

maXx

Smax(p(x)) -p(x) 1In (p(x)) dx

k
Smax(p(x)) = f')‘, )\igi(x) p(x) dx, or
i=0
k T
smax(/‘) = i£0>.1<gi> = ". <G> (10.4)

As expected, the entropy is a function of the [/ and <G>

vectors. If we consider the <g;> to be the independent
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variables in equation (10.4), we find 8Smax(<G>)/8<gj>=Aj,
j=0,1,...k or, subsequently, BAj/3<gk>=3Ak/8<gj>. These
equations highlight- the ifterdependence of the elements of
A and <G>, i.e., a perturbation such as €=(0,..0,€m,0,..0),
£n70, may result in a 6 with all nonzero elements. The
theory provides insight, but fails to provide a viable
means of examining the sensitivity of A to <G> and subse-

quently of p(x) to <G>.

Sensitivity of A to <G>. We are given a nominal
<G> vector, <G>g, and solve equations (10.1) for AO such
that F(L0)=<G>O. From Theorem 4.3, if Ao exists then it
is locally unique, F(.) is one to one in some neighborhood
of AO’ and F ! exists with F-J(<G>0)=ﬂ0.

tion £, we wish to find vector & such that F(lo+?)=<G>O+5.

Given perturba-

The usual approach to such a problem (Refs i4; 19;
70; 8J; 63) is to vary a single element of <G‘O and calculate
§. Then reset <G*O, vary a second element of <G>0, compute
the respective ¢, and continue to iterate. The result of
this brute force linear approximation is an apprcximation
to the partial derivatives
A 2A 3\ 3

Al - 0 1 'k
€937 \®<9i79 ' 9937 ' 77

, i=1,2,...k.

These partials can provide an indication of the strength

of a specific information function. A large value of
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azj/a<gi>0 for one or more values of j indicates that a
small error in <gi>0 may cause a large change in /& and thus
p(x). This suggests additional effort to insure accuracy
for the subject <gi>0.

The linear approximation provides useful information
about A sensitivity and is easily accomplished with the
computer programs of Chapter IV. However, the linear
approach has a recognized weakness (Refs 19; 20; 68; 80)
in that constraint coupling has not been fully considered.
we must include simultaneous variations of all <qi>,
i=1,2, ...k, go(x)El, and cobserve the eifect on 4. Wwe externd
the linear investigation.

Define a k dimensional rectangle, Ra(<G>o)’ about
vector <G-g (k dimensions versus k+! because <goﬁzl). This
rectangle is a function of parameter o where each side of
the rectangle 1is an interval, [<gi>0-1<gi>0, <gi>0+a<gi>o],
i=1,2,...k. Thus, o denotes a confidence in our estimation
of the expected values. By sampling from Ra(<G>0) and com-
putingﬁ=(i0+f), we may investigate the shape of the k+1l
dimensional rectangle that is generated about Ao. For
exarple, we may record the maximum deviation for each ele-
nent of A (i.e., the maximum value of éi for each i) that

0

results from the allowable perturbations of <G> "Large"

0
values of 51 may suggest a reduction in a. This approach
has potential use for placing a bounds on <G*0 when the

maximum allowable 6i' i=0,1,...k, are known or hypothesized.
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The scheme provides a starting point for a practical attack
on our central concern; how do errors in <G>o affect the

entropy approximation, p(x)?

Sensitivity of p(x} to <G>. The previous sections

relate sensitivity concepts from the literature and our
research. They provide conceptual and theoretic insights.
This section directly attacks the sensitivity question and
describes a practical procedure for investigating the vari-
ation in p(x) due to erxors or changes in <G>O.

As in the previous section, we are given <G>O from
which we find AO and thus p(x). We select a to define
RQ(<G*0) and sample from R0(<G>0) to produce <@>=(1.,<§l>,
...<c}k>)T where <§.> is in [<g.>0—&<q.>0, <g.>0+a<g.>0].

i i i i i
Thus, <G> is composed of k independent, uniformly distri-
buted random variables, <§i>, i=1,2,...k, and a constant,
<§o>=l. Generation of the <é>samples is accomplished by
sampling from k uniform distributions with the stated o
bounds. Each <G> vector results in a A which defines a
P(x), i.e., a perturbation of p(x).

The sample space, Ra(<G>0), is specified as a func-
tion of a and the expected value vector <G>O. Our pro-
cedure is designed to place confidence bounds about p(x)
based on predefinition of the sample space. We generate

N samples of <G> and produce the corresponding N densities,

p(x). Each p(x) is a continuous density from the same
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entropy family as p(x) and on the same approximation inter-
val. To bound p(x), we specify M points on the interval
of approximaticn and consider the maximum deviations,
above and below p(x), achieved by the sample densities.
This approach specifies an upper and lower bound on the
nominal density, p(x), as a function of u for a given <G>0.
Figures 10.1, 10.2, and 10.3 present the results
of this prccedure when applied to the betae distribution of
rrevious chapters (M=50, N=500). As expected, the bounds
on p{x) grcw as o increases. Similar resuits are shown
irn Figures 10.4 through 10.8 for the ncrmal distribution;
Plxy=exp (-2 =1 x-1)2/2%) ), +=10., 2°=2. TFor the normal

. 2 2 . :
examplie we allowed <(x~-u)"/c”> to vary. This approach is

b4

cffective for cdetermining a reasonable o bound on the <G>

0
vecter, i.e., for specifying an accuracy beound on the data.
For the beta example we conclude that an a c¢reater than
.0% preoduces unsatisfactory approximation error. Other
analysts may be more or less tolerant. The normal example
demeonstrates less sensitivity. We must insure that suffi-
cient emphasis 1s placed on data collectiorn and calculation
of <G\O to accomplish the desired level of data accuracy.
The above sensitivity model offers a practical
means of evaluating the sensitivity of p(x). The results
w1ll depend on the form cf p(x), i.e., the information func-

t.ions in p(x), ard the values of <G>O and a. Thus, we

cannot  state usereral sensitivity results that pertain to
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all approximations or to all problems. Instead, we pro-

vide a procedure which the analyst may use on his specific
problem. Sensitivity conclusions derived from this pro-
cedure will be subjective. The procedure is easy to imple-
ment and, once <G>O is specified, does not require addi-
tional access to the unknown distribution. The entropy
approach has thus provided sensitivity insight that other

characterization procedures lack.

Various modifications of our sensitivity model are
feasible. For example, the analyst may consider maximum
approximation error, i.e., maxlp(x)-ﬁ(x)|. He may then
select a bounds that insure max|p(x)-p(x)| less than some
epsilon. Secondly, the effeci of a single expected value
<G>, may be evaluated by using the same approach but with
other elements of <G>y fixed. A third variation results if
additional information exists about the accuracy of <G>O.
For example, we have assumed a uniform error for each ele-
ment of <Gg- The analyst may know that the error is better
approximated by another distribution. The above procedure
may still be used but with <> vectors produced from the
known error distribution. Finally, the analyst may prefer
to compare entropy cumulative distributions, P(x) and P (x),
versus densities. The same sensitivity model may be used

but with bounds now produced for P(x). We consider a second

model for sensitivity investigations in the next section.
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Entropy Approximation for
Sensitivity Measures

A procedure to investigate the sensitivity of p(x)
to error in <G>0 has been presented. We use this sensitiv-
ity model, information theory concepts, and our entropy
approximation procedure to develop a second sensitivity
model. The second model demonstrates another application of
our entropy approximation procedure.

In previous sections we defined the given data,
<G>O, which produces entropy approximation p(x). A pertur-
bation of <G‘0 produces vector <G> which results in a
second density, Dp(x). How may we "measure" the variation

in p(x) due to the perturbation in <G>y?  We have

k
p(x) = exp [- T ligi(x)] and
i=0
k
D v = Yy - Y 3 -
D(x) exp |( R Eigi(x)]
i=0
y L = 4 - =< > £ 1= . P = -
where Ei 5ty and <qi gi>0+’i' 1=0,1,...k; >0 0. A use

ful measure of variation between densities is divergence,

J(p(x),p(x)) (Chapters II and VII). Thus,

"

J(p(x),p(x)) Slp(x)-p(x)] 1n [p(x)/p(x)]) dx

-”'[P(X)—EB(X)][-E)\i gl (x) + ZEl gl(x)] dx

F N




E(Bi-xi)<gi>0 - X(Bi-xi)<gi>

LB <g47g = <9;2)

z (ki+6 i-xi) (<gi>0-< gi>0-£i)

J(p(x),p(x))

Y
L8,)(-5,) = —07¢ (10.5)

where all summations are for i=0 to k. Eguation 10.5
allows rapid computation of divergence and thus a measure
of information loss when p(x) is replaced by p(x).

Combining the divergence measure with the concepts
of sensitivity model one, we create a second sensitivity
model in the form of a simulation:

< -~
G m— H(<G>)
I

f——aJ (p (x) ,P(X)) =¥y

Vector <G> is an independent, multivariate, uniformly dis-
tributed input random vector (thit depends on a}, and
J(p(x),p(x)) is the univariate simulation output.

Chapter IX discussed the use of our entropy approximation
procedure for simulations of this form. Given & which
defines our input distribution, we wish to determine the
sensitivity of pi(x) in terms of the measure J(p(x),p(x)).
Application of our entropy procedure to the output of

model two provides a complete representation of the density
of Jlp(x),p(x)), pJ(y), for the given a. Knowledge of p;]y)
enables the development of confidence bounds and statistical

statements about the divergence, i.e., the probability that
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divergence is less than Q for the given a is f;sz(y)dy.

Since divergence measures variation in p{(x), then diver-
gence is a viable sensitivity measure. Thus, the simula-
tion approach has provided a means to numerically quantify
the sensitivity guestion.

As an example, the model was used for the beta dis-
tribution or previous sections with a=.1. We generated 500
sample input vectors, <é>, and calculated the correspond-
ing divergence values. Method three (Chapter VIII) was
applied for the entropy characterizaticon of pJ(y). Figure
10.8 shows the entropy and sample divergence densities.

The sample density was computed by numerical differentia-
tion of the sample cumulative. With pJ(y) known, w2 con-
sider the impact of errors in <G>O: i.e., given that <G>0
produces p(x) and <G> produces p(x), the probability that
the divergence between p({x) and p(x) is less than .05 for
all <G> in R,(<G7y) is /;°°

Prob (J<.05)=.608 and Prob(J<.5)=.983 where Prob{(J<=)=l.

pJ(y) dy. For our example,

Experimentation has shown that a divergence of .05 produces
an "acceptable" fit between p(x) and p(x). For our example,
however, we have a 40% chance of exceeding a .05 diver-
gence with ® of .1. As with the first sensitivity model,
we‘Eonclude that a=.1 is too large.

The sensitivity model was described in terms of the
divergence measure. Divergence provides an excellent rela-

tive measure, and we know that divergence "near" zero
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indicates "small" information exchange. We may readily
determine which elements of <G>0 are most influential by
systematically varying a single element and calculating
divergence. The element which produces the largest diver-
gence is the most influential. We may also compare diver-
gence densities or probability statements for different
values of a. For example, we may reguire Prob (J<.05)>.90
and experiment to find the appropriate a. The weakness in
war model is tha*t we cannot define a statistical meaning
for a given value of divergence, i.e., is J(p(x),p(x))=.1
an acceptable error? However, the sensitivity mcdel was
designed for flexibility and provides an alternative.
Divergence may be replaced with mcre popular mea-
sures in the sensitivity model. The coodnes: of fit mea-
sures of Chapter VI and Appendix B (Kclmogorov-Smirnov,
etc.) are examrles of measures that provide hetter csta-
tistical guartification cof sensitivity infeormation. We
consider the Kolmogorov-Smirnov statistic as an example,

D:supTCN(x)-P(x)é where C.(x) represents the sample cumula-

N
X
tive of size N for the unknown distribution. The D sta-
tistic may be used tc test the hypothesis that CN(x) was

taken from distributicn P(x) where P(x) is the entropy

cumulative. Thus, we are given <G and sample CN(x) from

an unknown distributior.. Vector <G> produces the approxi-

Tation density p(x) and subsequently P(x). We define

T'l”G>0) as before and select <G> from R11<G>0).
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Vector <G> produces p(x), and we may calculate D(Cn(x),ﬁ(x))

and D(Cn(xLP(x)). Our sensitivity model is as follows:
<€;>—-——l H(<G>) [—=D(C,(x),P(x)) =y

We may again apply the entropy approximation procedure to
produce the density pD(y). Thus, for a given sample, Cn(x),
and a given &, we are able to make significant probability
statements, i.e., Prob(DjQ)=fé)pD(y) dy. If Q represents the
critical value of the D statistic for a given significance
level, then we have calculated the probability of not
exceeding Q for all <G> which are elements of Ra(<G>0).

We may thus relate Lie error in <G>O, determined by &, to

a probability of accepting the hypothesis that a sample from
the unknown distribution is a sample from our approximation
distribution. While the D and other statistics are more

difficult to calculate than divergence, the statistical

meaning that results may be worth the effort.

Summary

wWe have touched on several aspects of sensitivity
while concentrating on sensitivity of the approximation
density, p(x), to errors in the expected value vector,
<G>y. Two general sensitivity models were explored with

examples. One model resulted in an upper and lower bound

on p(x) as a function of an a error bound on <G>0. The
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second model was cast in a "black box" simulation mold for

use with variocus measures of error between distributions.

Both models provide viable procedures for evaluation of

system sensitivity.




I.

Chapter Other Applications

Introduction

The entropy procedure, as presented in Chapter III,
is a flexible tool for characterizing or approximating
unknown distributions. Application of this procedure to

computer simulation has been discussed. However, the
generality and flexibility of the method enables wide appli-
cation. Three examples are presented in this chapter to |
demonstrate potential use and with the intent of stimu-

lating thought for other applications.

Curulative Lata Versus
Expected Values

The entropy procedure provides an approximation of
an unknown distribution based on information about that
distribution. The entropy approximation is "minimally
prejudiced” 1n that only the available information is used
and "maximum uncertainty” is maintained with respect to
other information.

Our development used information in

the form of expected values of certain information func-

tions.
the available information

the analyst may encounter

tive probability function

a finite number of points

However, the entropy prccedure may be applied when

takes other forms. As an example,
distributions where the cumula-
is known or can be estimated at

and expected values cannot be
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estimated. We show that, using only the cumulative infor-

{ mation, the resulting "minimally prejudiced" distribution

is a piecewise uniform distribution,.

Our total information consists of values of the
cumulative distribution, Ci, at n points, X i=1,2,...n,
where afx,<x,<. . .<x <b and {a,b] is the approximation
inverval. Following the development of Chapter IV, we

state the characterization problem:

. max S(p(x)) = max Lngap(x) 1n (p(x)) dx]
} «ubject to:
. ff)p(x) dx = 1
3 a
i
3] (x \,':rrb"“ N =
-a11~(3‘-)d-~ 7 a sl(x)p(..)dx C1
(Knpx) dx =P (x) p(x) dx = C
‘a p i "a n'’’ ) n

[l

where V. (X)

1, a<x<x,.
L] l ___l

0, otherwise.

The Lagrangian becomes

L(p(x),4)

b ix - - : T
fa—p(x) 1n p(x) Xop(x) Zkiyi(x)p(x) dx +T iCi

b , . -
fa p(x)[ln(l/p(x))-.\0 - EliLi(XJ] dx + _)iCi

]

fP ) It (/p )y expl- =T L ()] )ax 4D €
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whereA,=(x0,xl...Xn)T and all summations are from i=l to n.

We recall that 1ln(w)<w-1l for all w and ln(w)=w-1 if and

only if w=l. Thus,

n
L(p(x),A)if;)p(x){(l/p(x)) exp [—AO—ZXiwi(x)] -1} dx'+.2 Aici

i=1

Since we wish to maximize L(p(x),A), we seek equality which

occurs if and only if

px) = exp[-Ay- liwi(x)] almost everywhere. (11.1)

hra3
—

1

Thus, p(x) 1s a uniform distribution between each of the
known Xy i=l,...n; that is,
(11.2)

pi{x) = exp[-xo- livi(x)J, a <x<x

k
s
- k

i=1

and p(x) is & piecewise uniform distribution.

The Lagrange multipliers are easily calculated as
we show with a numerical example for n=3. Table XI.I and
Figure 11.1 present the data and the interval of action
for each gi(x) function. From the constraints we have

X Xy X b

b _ 1 . 3 P
fa p(x) dx = fa p(x) dx +)’x1 p (X) dx+fx2 p(x) dx +.x3p(x) dx

Working backward from point b we find;
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w—— T wr T T
TABLE XI.I
SAMPLE CUMULATIVE VALUES
Symbol Value Cumulative
a 1.0 0
X, 1.25 .1 j
X, 1.50 .3
X3 1.75 .6
b 2.0 1.0
{
[ AN
|
< 1 0fF === =---=-=-=-=-=-- \
! )
) |
| v | .
3
C3 6 }— ___________ ' :
| .
l ‘ wz ', 1 |
C2 .3 }' -------- | : i
IL i——‘“"l _'_’ ! | !
_____ ) !
| ' 1

1.0 1.25 1.5 1.25 2.0

a Xl )(2 X3

Fig. 11.1. Sample Cunulative Data !
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e oSSR — . : g : N -
. . ' 29

I b

- xsexP[-)‘O] dx =1 - Cy or

AO = - 1n[(l-C3)/(b-x3)] = -.47004,

fxx3ex [-A.-2,]dx=C, - C, or
2 SXPI7A 5745 3 2

A3 = —ko- 1n [(C3-C2)/(x3-x2)] = .287682,

I
Xy exp[—xo—xz-x3] dx = C2 - Cl' or
Ay = -k0->§ln [(C2~Cl)/(x2-xl)] = ,405465,
and
. %
a exp[—AO-Al—Az-A3] dx = Cl to find

Xl = -XO-Xz-l3-ln [Cl/(xl-a)] = .693147.

Thus, from egquation 11.2:

p(x) = exp[-.916290) 1.0<x<1.25,
exp(-.223144]) 1.25<x<1.5,
expl.182322]) 1.5<x<1.75,
exp(.470004] 1.75<x<2.0,

0 otherwise.

This simple example illustrates the concept. The
entropy density reproduces the known information, i.e., the
cumulative values, but does not bias our approximation in

any other sense. By providing more information, such as
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expected values, we increase the accuracy of approxima-

tion.

Hierarchical Models

Our entropy characterization procedure may prove
guite useful in the analysis of hierarchical models.
"Hierarchical model" implies a group of submodels of dif-
ferent degrees of detail (perhaps computer simulations)
where the outputs of the more detailed submodels provide
input to "higher level"” submodels. As a typical example,
one might envision a large scale air war game where the
first modeling echelon is divided into models for the vari-
ous theaters of operation. The second echelon supports
the first level with models for air engagements, inter-
diction, or air defense. Subsequent levels provide detailed
models of munitions supply, aircraft maintenance, tanker
s.oport, targeting, etc.

The entropy procedure provides a means to evaluate
a hierarchical model at the submodel level. 1In fact, the
procedure enables characterization of the output distribu-
tion of a submodel. Potential benefits include evaluation
of the "degree of influence" of a specific submodel and sub-
model dependencies. If the models are computer simulations.

then the procedure may also save sthstantial computer time.
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Interval Arithmetic

As a third example, we consider application of the
entropy procedure to interval arithmetic. Moore discusses
interval arithmetic and potential uses in his article
"Bounding Sets in Function Spaces with Applications to
Nonlinear Operator Eguations" (Ref 62). As the name
implies, interval arithmetic is the application of arith-
metic operations to intervals of the real line. The pur-
pose is to specify a bound on the result of an operation.

Interval operations are defined as follows:

addition, [a,b] + [c,d) [a+c,b+d]);

subtractien, fa,b] - [c,d] [a=-d,b-c];

multiplication, [a,b] * [c,d)

[min(ac,ad,bc,bd),
max (ac,ad,bc,bd) ];

and division, fa,b)l/[c,d]) = [a,b) * [(1/8),(1/c)].

Moore mentions several areas for application of interval

arithmetic techniques: search procedures, safe starting

regions and stopping criteria for iterative schemes (Ref 61),

and error bounds for machine computation. The basic assump-
tions are that each operand is a bounded interval (as
[a,b]), and that the value of the operand can fall any-
where within the stated bound. Interval arithmetic provides
an absolute bound for an operation but provides no informa-
tion about the distribution of the result. When working

with the resulting interval, one must assume a uniform
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distribution or, if an explicit value is needed, assume

the middle or mean value.

Clearly, the usefulness of interval arithmetic is
enhanced if the distribution of the result is known in
addition to the absolute bound. 1In fact, knowledge of the
resulting distribution may enable reduction in size of the
resulting interval, with a selected degree of confidence,
or selection of a more accurate mean value. Our entropy
procedure can provide the desired distribution approxima-

tion. We demonstrate with the model of Figure 11.2.

4

+ A2+BC

* %D A’
L
—

C et BC

A is U[-1,1), B is U[0,1}, C is U[2,3] where
Ula,b] means uniformly distributed on interval
[a,b].

Fig. 11.2. Hierarchical Model of A?+BC

Figure 11.2 provides a hierarchical scheme for the
interval equation A’+BC where variables A, B, and C are
uniformly distributed as indicated. (This example also
demonstrates the use of entropy to evaluate submodels of a

simplified hierarchical model.) Applying Moore's
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operations on the given intervals we find the following:

A*x is U[-1,1], B*C is U[0,3), and AA+BC is U[-1,4]. We

can improve these bounds by refining rules for the squaring
operation, i.e., A*A=A? must be nonnegative. Our improved
bounds follow: A? is U[0,1], BC is U[0,3], and AZ%+BC is
U(0,4). 1In reality, the three variables (AZ, BC, and

A?+BC) are not uniformly distributed. Using transformation
of variables techniques (Ref 37), the analytic distributions
of these variables may be derived. For example, the density
of A® given that A is U[-1,1]) is £(A?)=1n(1.5)/ &, 0<A?<l.
However, analytic derivation becomes increasingly difficult
as operand distributions become more complex. The entropy
approach oiffers a viable alterna‘’.lve.

Application of the entropy procedure to the problem
of Figure 11.2 produces an interesting demonstration of
procedure flexibllity. We first generate 500 samples each
for A, B, and C from independent uniform distributions
and generate subsequent sample distributions for a?, BC,
and (A°+BC). For each output distribution, we then calcu-
late average value estimates, i.e., <gi(x)>=; gi(xj)/SOO,
for the expected values of our potential information func-
tions. Avplication of method three (expected value method
of Chapter VIII) produces the results listed in Table XI.II.
¥ethod three provides an excellent approximation for A?,
but notice the large errors in Table XI.II for BC and

(A?+BC). Method three does not produce an acceptable fit
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TABLE XI.II

RESULTS OF METHOD 3 FOR INTERVAL ARITHMETIC

Variable hActive Set Scuared Error
A’ F2,F3,F7,F8 .001077
BC F3 3.25683
(A7 +BC) F5 4.53455

9 - -
where Sguared Error = © (gi(x)-gi(x))‘ and information

i=]

furcrtions are defined in Table V.III.

t¢ the average value vectors for these two variables and,
thus, does not provide acceptable distributicn approxima-
tions. The large errors indicate two poscible problems;
either the potential set of information functions 1s inade-
gua+te (Ref Chapter V), or our data, i.e., the average value
vector, 13 too inaccurate. Examination of the sample dis-
tributions (graphs are presented in Figures 11.3 throucgh
11.8) does not indicate extreme behavior, i.e., bimodal or
peaked distriputions, thus our potential set seems appropri-
ate. We investigate the expected value approximations by
anclytically computing a few expected values for the A? and
BC distributions. Table XI.III presents a comparison which
highlights the error between average and true expected

values. As the takle shows, we have tried to approximate
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TABLE XI.IIIX

AVERAGE VALUES VERSUS ANALYTIC EXPECTED VALUES

Variable Function Average Value Analytic Value
A’=x <x> .339319 .333333
A?=x < (x=-p)*>> .090752 .088889
al= <(x-w) /o> .7 (-12) .0
a’=x <ln(x)> -1.99329 -2.0
Af=x <x-u) /o> .613545 .638877
Al=x <(x-u) /0> 2.10257 2.14286
AT=x < (ln(x-a))?> 7.9370 8.0
BC=x x> 1.23544 1.25
BC=5 < (x=u)*> .556546 .548611
BC=x < (x=u)/c> .1 (-11) .0
BC=x <ln(x)> -.129399 -.090458
BC=x <(x-u) /o> .168989 .128175
BC=x <(x-u)“/ch> 2.02580 1.97674
where ’u mean and 0 = standard deviation
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TABLE XI,IV

RESULTS OF METHOD 2 FOR INTERVAL ARITHMETIC

Variable Active Set Divergence
A F5 J(pg (x),£(x))=.023823
BC F7,¥9 J(p79 (x) ,£{x))=.000116
(A2+BC) F3,F4,F9 J(P34q (%), £(x))=.001512

where f(x) 1s the sample density and information functions
are defined in Table V.III.

Summary

we have touched on three potential applications
of the entropy procedure in addition to computer simula-
tion. The procedure uses available or computable informa-
tion, and the accuracy of approximation, of course, depends
on the amount and accuracy of the information. Thus, the
analyst must weilgh information collection costs against
the benefit of accurate density approximations. The pos-
sible applications for such a procedure are numerous. Our

examples only represent a starting point.
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Chapter XII. Summary and Future Research

Summary

We have used the concept of "maximum entropy" to
develop a procedure for characterizing (or approximating)
an unknown distribution based on information about that
distribution. The procedure uses available information

N but maintains "maximum uncertainty" with respect to unspe-
cified information and provides a "minimally prejudiced"
representation of the unknown density. Our development
requires information in the form of expected values of

. "information functions," but the procedure can be applied
to other forms of information. The work is based on a con-
strained optimization problem and includes three procedural
steps: specification of a potential set of information
functions, selection of the active set ifor a particular

’ approximation, and solution of the constraint equations

. to completely define the approximation density.

We have shown that if a solution exists to the
optimization problem, then it is unigue. Further, the

solution density will take the following form:
p(x) = exp[-AO-Al gl(x) BERRIY gk(x)}

where the gi(x) are information functions and the Ai are

associated Lagrange multipliers. A numerical scheme for
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solution of the constraints was presented. The numerical
scheme may converge to a local optimum solution versus the
global solution. However, under extensive testing against
known distributions, the scheme has always produced the
correct result.

Three separate methods were presented for selection
of the active set of information functions. Methods one
and two reguire expected value estimates and a random
sample of the unknown distribution. Method three regqguires
only expected values. Selection of a specific method is
problem and data dependent. In experimentation with known
analytic distributions, the methods either characterized
the analytic or provided a compromicc between sample and
analytic distributions. Accuracy of approximation with
all methods is a function of potential set specification
and data accuracy.

Sensitivity aspects were addressed to include two
approaches to a study of system sensitivity. Finally,
several examples and example applications of the entropy
approximation procedure were presented. The entire approxi-
mation procedure, to include the three information func-
tion selection methods and sensitivity studies, has been

programmed for computer use.
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Future Research

Our research surfaced several areas for continued
investigétion. These areas are highlighted in the follow-
ing paragraphs.

The entropy procedure was applied to interval [a,b],
assuming that the unknown density was "relatively" well
behaved. 1In at least two examples, the bimodal distribu-
tion of Figure 8.1 and the interval arithmetic examples for
BC and (A°+BC) of Figures1l.5 through 11.8, we apgroxi-
mated distributions that were not entirely well behaved.
For these examples we briefly investigated a piecewise
application of the entropy procedure, i.e., a division of
interval [a,b] into subintervals [a,b]=[a,c1, [cl,c2]...
[cn,b} with application of the entropy proc~dure to each
subinterval. This concept holds potential for more diffi-
cult distributions.

Expansion of our work to distributions on the semi-
infinite and infinite intervals is feasible. Such an expan-
sion centers on an investigation of numerical quadrature
schemes and numerical procedures for solving the constraint
equations. Orr (Ref 63) has accomplished some preliminary
work in this area.

The research centered on characterizing univariate
distributions, yet the theoretical development supports
multivariate characterization. Such development may follow

from the work presented in this paper.
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We have discussed three methods for selection of
the active set of information functions. Two of the methods
involve a fit to the sample density where the sample density
is produced by numerical differentiation. The methods are
successful because they partially compensate for the numeri-
cal differentiation error. The development of a scheme
which uses the sample cumulative, thus avoiding one level
of numerical error, may prove beneficial. Such a scheme
could follow the structure of method two, given a means to
"efficiently" compute errors between cumulatives.

Use of the entropy procedure €fcr hypothesis testing
is a viable research area. Consider method three which pro-
duces the entropy density by forcing an approximatior %o the
expected values of the potential information functions b
(Chapter VIII). BAs shown in Table VIII.II, when the expected
values are accurate and the potential set includes the
correct analvtic functions, method three will accurately
characterize the unknown density. For example, if the
unknown density f({x) is normal and the potential set
includes functions x and x°?, then these functions are
selected for the entropy approximation, p(x), such that
p(x)=f(x). Such results suggest the use of this procedure ’
to test if the unknown distribution is normal, or beta,
etc. Again, the key factor in success of such an approach

is accurate estimation of expected values. The suggested
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research ties to recent work by Dudewicz and van der Meulen
(Ref 24).

Finally, our procedure provides an effective means
of approximating urnknown distributions, and we have sug-
gested several applications. Potential applications are
numerous and a viable research area. Applications to risk
analysis, game theory, and pattern recognition, akin to the
discrete entropy applications, are examples for continued

investigation.

230




Control, 21: 329-338 (November 1972).

Bibliography

Abramowitz, M. and I. A. Stegun (Editors). Handbook of
Mathematical Functions With Formulas and Graphs and
Mathematical Tables. Washington: U.S. Gov. Printing
office, 1965.

Acton, F. S. Numerical Methods that Work. New York:
Harper and Row, 1970.

Agmon, N., Y., Alhassid and R. D. Levine. "An Algorithm
for Determining the Lagrange Parameters in the Maximal
Entropy Formalism," The Maximum Entropy Formalism,
edited by R. D. Levine and M. Tribus. Cambridge: MIT
Press, 1979.

Ahiezer, N. I. and M. G. Krein. Some Questions in

the Theory of Moments. R.I.: American Math. Society,
1962.

Ahlberg, J., E. Nilson and J. Walsh. The Theory of
Splines and Their Applications. New York: Academic
Press, 1967.

Anderson, T. W. and D. A. Darling. "A Test of Goodness
of Fit," Journal of American Statistical Association,
49: 765-769 (December 1954).

Barnard, T. E. The Maximum Entropy Spectrum and the
Burg Technique. Technical Report TR-75-01. Arlington,
Virginia: Office of Naval Research, June 1975.

(AD AQ026 626).

Box, G. E. P. and M. Muller. "A Note on the Generation
of Random Normal Deviates," Annals of Mathematical Sta-
tistics, 29: 610-611 (June 1958).

Campbell, L. L. "Characterization of Entropy of Proba-
bility Distributions on the Real Line," Information and

Chan, M. M. W. "System Simulation and Maximum Entropy,"
Operations Research, 19: 1751-1753 (November 1971).

Chanda, K. C. and R. W. Kulp. "On Some Nonparametric
Estimators for the Linear Markov Scheme," Communica-
tions in Statistics--Theor. Meth., A7: 427-439 (1978).

231




12.

13.

14.

16.

17.

18.

20.

21.

22.

23.

Chen, C. H. "On Information and Distance Measures,
Error Bounds, and Feature Selection," Information
Sciences, 10: 159-173 (September 1976).

Collatz, L. Functional Analysis and Numerical Mathe-
matics. Translated by H. Oser. New York: Academic
Press, 1966.

Collins, R. and A. Wragg. "Maximum Entropy Histograms,"
Journal of Physics A Mathematical and General, 10:
1441-1464 (September 1977).

Crain, B. R. "Estimation of Distributions Using Ortho-
gonal Expansions," Annals of Statistics, 2: 454-463
(May 1974).

————— . "More on Estimation of Distributions Using
Orthogonal Expansions," Journal of American Statisti-
cal Association, 71: 741-745 (September 197€).

————— . "An Information Theoretic Approach to Approxi-
mating a Probability Distribution," SIAM Journal of
Applied Mathematics, 32: 339-346 (March 1977).

Csiszar, I. "I-Divergence Geometry of Probability
Distributions and Minimization Problems," Annals of
Probability, 3: 146-158 (February 1975).

Cukier, R. I., et al. "Study of the Sensitivity of
Coupled Reaction Systems to Uncertainties in Rate
Coefficients. I. Theory," Journal of Chemical Physics,
59: 3873-3878 (October 1973).

----- . "Study of the Sensitivity of Coupled Reaction
Systems to Uncertainties in Rate Coefficients. III.
Analysis of the Approximations," Journal of Chemical
Phvsics, 63: 1140-1149 (August 1975).

Parling, D. A. "The Kolmogorov-Smirnov, Cramér-von
Mises Tests," Annals of Mathematical Statistics, 28:
823-838 (December 1957).

Dhar, D. "Entropy and Phase Transitions in Partially
Ordered Sets,"” Journal of Mathematical Physics, 19:
1711-1713 (August 1978).

Draper, N. R. and H. Smith, Applied Regressiocn Analy-
sis. New York: John Wiley and Sons, 1966.

232




¢

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Dudewicz, E. J. and E. C. van der Meulen. Entropy-
Based Statistical Inference, I: Testing Hypotheses on
Continuous Probability Densities, with Svecial Refer-
ence to Uniformity. Report No. 120. Leuven, Belgium:
Department of Mathematics, Katholieke Universiteit
Leuven, June 19789.

Dyer, A. R. ‘"Hypothesis Testing Procedures for
Separate Families of Hypothesis," Journal of American
Statistical Association, 69: 140-145 (March 1974).

Fano, R. M. Transmission of Information. New York:
Wiley, 1961.

Fox, R. L. Optimization Methods for Engineering
Design. Massachusetts: Addison-Wesley Pub. Co., 1971.

Furnival, G. M. and R. W. Wilson, Jr. "Regression by
Leaps and Bounds," Technometrics, 16: 499-511 (November
1974).

Goguen, J. A. and L. A. Carlson. "Axioms for Dis-
crimination Information," IEEE Transactions on Informa-
tion Thecryv, IT-21: 572-574 (September 1975).

Gokhale, D. V. "Approximating Discrete Distributions,
with Applications," Journal of American Statistical
Association, 68: 1009-1011 (December 1973).

————— . "Maximum Entropy Characterizations of Same
Distributions," A Modern Course on Statistical Dis-
tributions in Scientific Work: Proceedings of the
NATO Advanced Study Institute Held at the University
of Calgary., Alberta, Canada, July 29~-Aug 10, 1974.
Volume 1, edited by C. P. Patil, S. Kotz, and J. K.

Ord. Bostcocn: Reidel Pub. Co., 1975.

Golomb, S. W. "The Information Generating Function of
a Probability Distribution," IEEE Transactions on
Information Theory, IT-11: 75-77 (January 1966).

Guiasu, S. Information Theory with Applications. New
York: McGraw-Hill, Inc., 1977.

Haber, S. "Numerical Evaluation of Multiple Integrals,"
SIAM Review, 12: 481-526 (October 1970).

Halmos, P. R. and L. J. Savage. "Application of the
Radon-Nikodym Theorem to the Theory of Sufficient Sta-
tistics," Annal., of Mathematical Statistics, 20: 225-
241 (June 1949).

233




36.

37.

38.

39.

40.

41.

44.

45.

46.

48.

Hildebrand, F. B. Introduction to Numerical Analysis
(second edition). New York: McGraw-Hill, 1974.

Hines, W. W. and D. C. Montgomery. Probability and
Statistics in Engineering and Management Science.
New York: Ronald Press Co., 1972.

Hocking, R. R. "Criteria for Selection of a Subset
Regression: Which One Should be Used?," Technometrics,
14: 967-970 (November 1972).

Hogg, R. V. and A. T. Craig. Introduction to Mathe-
matical Statistics (third edition). New York: Mac-
millan Co., 1970.

Hornbeck, R. W. Numerical Methods. New York: Quantum
Pub., 1975.

Ingarden, R. S. and A. Kossakowski. "Poisson Proba-
bility Distribution and Information Thermodynamics,”
Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom.
Phys., 19: 83-86 (1971).

Jaynes, E. T. "Information Theory and Statistical
Mechanics," Physical Review, 106: 620-630 (May 1957).

————— . "Information Theory and Statistical Mechanics.
I1," Physical Review, 108: 171-191 (October 1957).

————— . "Prior Probabilities," IEEE Transactions on
Systems Science and Cybernetics, SSC-4: 227 (September
1968).

————— . "Where Do We Stand on Maximum Entropy?", The
Maximum Entropy Formalism. Edited by R. D. Levine and
M. Tribus. Cambridge Mass.: MIT Press, 19789.

Jeffreys, H. Theory of Probability. Oxford: Clarendon
Press, 1948.

Johnson, N. and S. Kotz. Continuous Univariate Dis-
tributions. Two volumes. Boston: Houghton Mifflin
Co., 1970.

Kampé de Fériet, J. Théorie de 1'Information. Prin-
cipe du Maximum de 1' Entrgple et ses Applications

3 la Statistique et 3 la Mecanigque. Lille: Publica-
tions du Laborataire de Calcul de la Faculté des
Sciences de l'université de Lille, 1963.

234

,-




49,

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

Kaskey, G., et al. Statistical Techniques in Transis-
tor Evaluation--Transformations to Normality. Tech-
nical Report No. 1, Contract Nobs-72660. Washington:
Department of the Navy, Bureau of Ships, January 1961.

Kullback, S. and R. A. Leibler. "On Information and
Sufficiency," Annals of Mathematical Statistics, 22:
79-86 (March 1951).

Kullback, S. Information Theory and Statistics. New
York: John Wiley and Sons, Inc., 1959.

————— . "Approximating Discrete Probability Distribu-
tions,"” IEEE Transactions on Information Theory, IT-15:
444-447 (July 1969).

Lee, D. A., et al. Some Practical Aspects of the
Treatment of Ill-posed Problems by Regularization.
Technical Report No. ARL 75-0022, Wright-Patterson
AFB, Ohio: RAerospace Research Laboratories, February
1975.

Lewis, P. A. W. "Distribution of the Anderson-Darling
Statistic," Annals of Mathematical Statistics, 32:
1118-1124 {December 1961} .

Lindgren, B. W. Statistical Theory. New York: Mac-
millan Co., 1962.

Luenberger, D. G. Optimization by Vector Space
Methods. New York: Wiley, 1969.

----- . Introduction to Linear and Nonlinear Program-
ming. Reading, Mass.: Addison-Wesley Pub. Co., 1973.

Marschak, J. "Entropy, Economics, Physics." Los
Angeles: Western Management Science Institute, Uni-
versity of California, 1975. (ADA 001 069).

McDonald-~Douglas Corporation. New Strategic Airlift
Concepts. Vol. III, Risk Analysis. Technical Report
No. AFFDL-TR-79-3062. Long Beach, California:
McDonald~Douglas, June 1979.

Melick, H. C. Analysis of Inlet Flow Distortion and
Turbulence Effects on Compressor Stability. Technical
Report No. NASA-CR-114577, Moffett Field, California:
Ames Research Center, NASA, March 1973.

Moore, R. E. and S. T. Jones. "Safe Starting Regions
for Iterative Methods," SIAM Journal on Numerical
Analysis, 14: 1051-1064 (December 1977).

235




63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

----- . "Bounding Sets in Function Spaces with Applica-
tions tc Nonlinear Operator Equations," SIAM Review,
20: 492-498 (July 1978).

Orr, G. E. Modeling Techniques for Weapon System
Simulation. Unpublished report, Wright-Patterson AFB,
Ohio: Department of Mathematics, Air Force Institute
of Technology, 1979.

Parr, W. C. and W. R. Schucany. Minimum Distance and
Robust Estimation. Paper presented at 4lst Annual
Meeting of Institute of Mathematical Statistics in
San Diego, August 1978.

Rietz, H. L. Mathematical Statistics. Mathematical
Association of America, Ill.: Open Court Pub. Co.,
1927.

Royden, H. L. Real Analysis (second edition). New
York: Macmillan Pub. Co., 1968.

Saaty, T. L. and J. Bram. Nonlinear Mathematics.
New York: McGraw-Hill, Inc., 1964.

Schaibl:, J. H. and K. E. Shuler. "Study of the Sensi-
tivity of Coupled Reaction Systems to Uncertainties in
Rate Coefficients. 1II. Applications,” Journal of
Chemical Physics, 59: 3879-3888 (October 1973).

Sen, P. K. "Estimates of the Regression Coefficient
Based on Kendall's Tau," Journal of American Statisti-
cal Association, 63: 1379-1389 (December 1968).

Shannon, R. E. Systems Simulation. Englewood Cliffs,
New Jersey: Prentice-Hall, Inc., 1975.

Shannon, C. E. and W. Weaver. Mathematical Theory of
Communications. Urbana: University of Illinois Press,
1949,

————— . "A Mathematical Theory of Communication,"
Bell System Technical Journal, 27: 379-423 (1948).

Sharma, B. D. and I. J. Taneja. "On Axiomatic Charac-
terization of Information-Theoretic Measures," Journal
of Statistical Physics, 10: 337-346 (1974).

Smith, S. A. "A Derivation of Entropy and the Maximum
Entropy Criterion in Context of Decision Problems,"
IEEE Transactions on Systems, Man and Cybernetics,
SMC-4: 152-163 (March 1974).

236

i




Stephens, M. A. "EDF Statistics for Goodness o .it
and Some Comparisons," Journal of American Statistical
Association, §9: 730-737 (September 1974).

----- . "Use of Kolmogorov-Smirnov, Cramér-Von Mises
and Related Statistics Without Extensive Tables,"
Royal Statistical Society Journal B Methodological,
32: 155-122 (May 1970).

Taneja, I. J. "A Joint Characterization of Directed
Divergence, Inaccuracy, and Their Generalizations,"”
Journal of Statistical Physics, 11: 169-176 (April
1974) .

Taylor, A. E. and W. R. Mann. Advanced Calculus
(second edition)., Mass.: Xerox College Pub., 1972.

Theil, H. "A Rank-Invariant Method of Linear and
Polynomial Regression Analysis," I, I1I, and III,
Nederl. Akad. Wetensch. Proc., 53: 386-392, 521-525,
1397-1412 (1950).

Tomovic, R. Sensitivity Analysis of Dynamic Systems.
New York: McGraw-Hill, Inc., 1963.

Toussaint, G. T. "Sharper Lower Bounds for Discrimina-
tion Information in Terms of Variation," IEEE Trans-
actions on Information Theory, IT-21: 99-100 (Janu-

ary 19735).

Tribus, M. Rational Descriptions, Decisions, and
Designs. New York: Pergamon Press, 1969,

————— . "The Widget Problem Revisited," IEEE Trans-
actions on Systems Science and Cybernetics, SCC-4:
241-245 (1968).

Ulych, T. J. and T. N. Bishop. "Maximum Entropy
Spectral Analysis and Autoregressive Decomposition,”
Reviews of Geophysics and Space Physics, 13: 183-200
(February 1975).

Watson, G. S. "On Chi-Square Goodness-of-Fit Tests
for Continuous Distributions," Royal Statistical
Society Journal, B20: 44-61 (January 1958).

Weidemann, H. L. and E. B, Stear. "Entropy Analysis
of Estimating Systems," IEEE Transactions on Informa-
tion Theory, IT-16: 264-270 (May 1970).

white, D. J. "Entropy and Decisions," Operations
Research Quarterly, 26: 15-23 (March 1975).

237




89.

90.

91.

Widder, D. V. The Laplace Transform. Princeton:
Princeton University Press, 1941.

Wilson, G. A. and A. Wragg. "“"Numerical Methods for
Approximating Continuous Probability Density Functions,
Over [0,«), Using Moments," Institute of Mathematics

and Its Applications Journal, 12: 165-173 (October
1973).

Wragg, A. and D. C. Dowson. "Fitting Continuous
Density Functions Over [0,®) Using Information Theory
Ideas," IEEE Transactions on Information Theory, IT~16:
226-230 (March 1970).

Young, T. Y. and G. Coraluppi. "Stochastic Estimation iy
of a Mixture of Normal Density Functions Using an

Information Criterion," IEEE Transactions on Informa-

tion Theory, IT-16: 258-263 (May 1970).

¥

238




- R — wvvw—*‘j
L&l ’ “ .

Appendix A. Numerical Quadrature

The primary purpose of numerical integration (also
called quadrature) is evaluation of integrals which
are either impossible or else very difficult to evalu-
ate analytically [Ref 40:144].

Quadrature also offers an effective means of machine inte-
gration, and a variety of numerical integration methods are
available (Ref 1). One such method which is particularly
adaptable to machine computation is Gauss guadrature. We
consider the general guadrature approach and then Gauss
quadrature specifically.

Given the function f{(x) and the values of f(x) at

N points, X i=}1,2,...N, we wish to calculate the inte-

gral Iéaf(x} dx. The general gquadrature rule to approximate

this integral follows:

W~

1P ax ®

. W, f(xi) (A.1)

1
where the weights, Wi’ are determined by requiring that
equation A.l be exactly true when f(x) is replaced by
1, x, x%,...x%" 1. Thus we have N equations of the form

of equation A.l with the N unknown wi, i=1,2,...N. Select-
ing the weights by solving these N equations will guarantee

that the guadrature rule will exactly integrate any poly-

nomial of degree N-1 or less.
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Gauss quadrature improves the accuracy of the

integral by using orthogonal polynomials and selecting the

points X i=1,2,...N, to be zerces of the orthogonal poly-
nomials. Gauss quadrature thus assumes that one can obtain
the values of f(x) at the unevenly spaced quadrature points

X i=1,2,...N. Abramowitz and Stegun (Ref 1) and Hornbeck

il
(Ref 40) provide detailed explanation and examples of

Gauss forms for various sets of orthogonal polynomials.

Abramowitz and Stegun provide tables for weights and quadra-
ture points. From this reference we find the following

formula for Legendre polynomials:

N
.
SO f(x)é&x= I W, fi(x.,) +
K T 0
or
N
b _ b-a .
fa fix) dx= = = Wif(yi)+ Ry
i=1
where
_ (b-a b+a
Yy = ( 3 ) U ( 2 >
and .
2N+1 4
RN _ (b-a) (N1) 22N+1f2N(€)

(2N+1) ((2-N) 13

The Gauss-Legendre formula will produce exact results for a
polynomial of degree 2N~-1 or less. Thus if f(x) is closely
approximated by a polynomial of degree 2N-1, then the error

of approximation, RN, will be emall. The integrals that
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are involved in the characterization method of this paper
generally concern continuous, well-behaved functions. i
Quadrature is thus an effective and accurate tool for our
application. Hornbeck (Ref 40) discusses practical methods
of testing quadrature accuracy and potential quadrature pit-
falls.

The quadrature formulae discussed above are easily

extended to multiple integrals:

b b b,-a N
=1 2 ~ 2 "2 b
ay faz f(x,y) dx dy ~< 5 >J’a l._Z' W, fx,y;) dx
1 i=1
c(Pr1)Pam) T Vow ey
2 I A T R R
j=1 i=1

The accuracy of approximation is now reduced and more func-
tion evaluations are necessary. Specifically, we required
N function evaluations for one-dimensional quadrature.
Two-dimensional quadrature requires N? function evaluations
or quadrature points. In a similar fashion, K-dimensional
guadrature requires NK guadrature points or functional
evaluations. The decreased accuracy and increased number
of functional evaluations are discussed in detail by Haber
(Ref 34). Haber suggests that multidimensional quadrature
is effective up to dimension three or four. He advises the

use of other methods, such as Monte Carlo gquadrature, for
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integrals of dimension five or greater. Multidimensional

guadrature is of particular use in application of the

entropy characterization procedure to computer simulation;

see Chapter IX.
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Appendix B. Goodness of Fit Statistics

Statistical Tests

Selection of the active set of information func-
tions in the regression method, Chapter VI, involves the
use of "goodness of fit" statistics. That is, a random
sample of the unknown distribution is available, and we
wish to test the hypothesis that the given sample is from
one of the entropy distributions. We choose, as active,
the entropy distribution that provides the highest level
of confidence in the truth of our hypothesis, i.e., the dis-
tributicn with the smallest value for the selected statis-
tic. This appendix discusses a few popular statistics for
hypothesis testing to include Chi-squared (x?) and Empirical
Distribution Function (EDF) statistics.

Several references (Refs 6; 21; 25; 54; 55; 64)
define goodness of fit statistics which are appropriate for
testing the hypothesis, HO, that a given sample is from a
specified distribution. M. A. Stephens (Refs 75; 76) pre-
sents an excellent summary of the more well known statis-
tics to include advantages and disadvantages. As Stephens
mentions, the classical test for goodness of fit is the x?
test.

The x? test can be applied in our case, given that

the entropy densities are completely defined prior to the

243




e e " » '!—PKWVT'!""' T

test and defined without recourse to the sample data, i.e.,
solution for the A vector in each p(x) may not depend on
the test sample x(I), I=1l,...N. This restriction is neces-
sary because the x? test, when estimated parameters are
involved, requires a maximum likelihood parameter estima-
tion to insure a x? distribution for tlie test statistic
(Ref 85). The requirement for complete specification of
the entropy densities prior to goodness of fit testing will
alsc apply to the EDF statistics. Solution for the entropy
density parameters, the A vector, depends on the expected
value vector <G> (Chapters IV and VI). We produce <G> by
numerical quadrature in our tests of method one and do not
rely on the random sample. Thus the entropy densities are
specified before goodness of fit testing and without using
the sample.

The analyst should notice that the above restric-
tion on parameter estimation does not preclude the use of

N
average value estimates of <G>, i.e., <gj(x)> = I gj(xi)/N.
i=1

Method one may still be applied with average values and will,

as demonstrated in Chapter VI, provide an excellent approxi-
mation to the unknown density. However, if the sample is
used to generate <G> and thus to find p(x), then the analyst
can not place the usual statistical significance on the
values of calculated statistics. The statistics will still
offer a measure for selecting the best entropy distribution,

but we may not use the statistic in conjunction with
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existing statistical tables to state a confidence in our
test of hypothesis Ho. A true statistical test of hypo-
thesis, under these circumstances, will require a second
independent sample of the unknown distribution. The refer-
ences provide more detail on this restriction and effective
use of statistics.

Stephens (Ref 75) states that when the hypothesized
distribution (the entropy distribution) is completely spe-
cified and continuous then, ". . . in general, EDF statis-
tics give more powerful tests of HO than x®." The EDF
statistics of interest are summarized below. Statistic
selection is at the user's discretion. Method one can be
used with v° and any of the EDF statistics, or other suit-
able statistical tests. The user must determine which
aspect of the approximation is of greatest importance to
him. For example, the Anderson-Darling statistic emphasizes
a fit to the tails of the unknown distribution while the
Kolmogorov-Smirnov statistic measures maximum error in the
approximation. Several statistics and their benefits are

now considered.

EDF Statistics

x(I)

Let EN(I) = fa

p(x) dx where p(x) is the entropy
density for a given information function set, and x(I),

I=1,...N is the sorted random sample from the unknown
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distribution. The sample cumulative at each of the I points

is CUM(I) = I/N.

Kolmogorov Statistics.

bt = max [(I/N) - EN(I)];
I

D~ = max [EN(I) - (I-1)/N}; ang
I

D = max [(D7,D7].

The statistic of interest is D (usually called Kolmogorov-
Smirnev statistic) which tests the maximum deviation of the

sample cunmulative from the entropy cumulative.

Cramér-von Mises Statistic, EE

W 4= n PP (0)-F(x)1? GIF(x)] dF (x), where F(x)

is the hypothesis distribution, Fn(x) is the sample, and
G[F(x)] is a weight function. We use the Smirnocv weight

function, G°1, and integrate to obtain a computational form

of the statistic:

W=
I

(EN(I) - (2I-1)/2N)° + [1/12N)
1

Wz

This form of the Cramér-von Mises statistic is akin to the

sum of errors sguared and weights each data point evenly.
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Anderson-Darling Statistic, A’. 1If we use the

Cramér-von Mises an statistic and define G[F(x)] to be
1/{F(x) [1-F(x)]}, then the result is the Anderson-Darling
statistic. References 6, 54 and 75 reduce A? to a computa-
tional form:
N
A? = —{151(21-1) [ln(EN(I)) + ln(1-EN(N+1-I))]}/N - N
This statistic emphasizes a fit to the tails of the dis-

tribution.

Kuiper Statistic, V.

V=D +D

Watson Statistic, UZ.

U? = W? - N(<EN> - 1/2)°?

N

where <EN> = EN(I)/N. U? adjusts for the hypothesized

mean. Stephei;lstates that both V and U? are useful in
identifying a change in scale (variance) of the sample while
D, W!, and A’ are more effective for a change in location
(mean). The references discuss the above statistics and
other variations of the above. Stephens presents a compari-

son that, for his purposes, favors the Az, W2 and U? sta-

tistics.
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Statistics for Method One

To select the "best" information function set from
the candidate regression sets of Chapter VI, we prefer the

’ or W’ EDF statistics. Again, the "best" set will be the

A
set of functions that results in the smallest value of A’
(or W¥). EDF statistics are preferred to x2 primarily

because the EDF statistics are distribution-free. Addi-
tionally, the ¥’ test requires an "unbiased" grouping of

. the data which detracts from a generalized approach.

Finally, our entropy functions satisfy the "continuity"

—-—p o

and "conpletely defined" requirements of the EDF tests.
Under these conditions, Stephens (Ref 75) states that the

EDF tests should prove more powerful than y?Z.
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