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Abstract

This report presents the theoretical development and

numerical implementation of a procedure for approximating

continuous probability density functions on a bounded inter-

val. The work is applicable to Bayesian decision models in

that available information is used to update or obtain the

prior distribution. The procedure is based on the solution

* of a constrained entropy maximization problem and requires

information in the form of expected values 6f "information

functions." The approach involves three steps: estimation

of expected (or average) values of "potential" information

functions, selection of the "active" subset of functions to

define the approximation family, and simultaneous solution

of the constraints co select the specific approximating den-

sity for a given set of data.

A useful set of potential information functions is

developed, and three numerical methods for active set selec-

tion are demonstrated. Numerical techniques for expected

value computation are discussed, and a scheme for solution

of the constraints is developed and implemented. Theoreti-

cal development includes theorems on form and uniqueness.

Approximation accuracy is related to potential set defini-

tion and data accuracy. The procedure is applied to

several known distributions to demonstrate applicability.

Applications to computer simulation and interval arithmetic

models are demonstrated with specific examples.

xii
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CONTINUOUS DENSITY APPROXIMATION ON A BOUNDED

INTERVAL USING INFORMATION THEORETIC CONCEPTS

Chapter I. Introduction

This dissertation concerns the representation or

approximation of unknown probability distributions. The

proposed approximation method is based on the concept of

* maximum entropy and uses known or calculable information

about the unknown distributions. The work was motivated by

rBayesian decision models, as discussed by Tribus (Ref 82),

in that available information is used to update a prior

estimate of the unknown distribution. The prior estimate

is assumed to be the uniform distribution or is represented

by a random sample from the unknown distrib-tion. The

expected values of certain "information functions." Selec-

tion of the information functions determines the form and

accuracy of the approximating distribution.

The word "characterize" carries special meaning, for

purposes of this dissertation, in describing the accuracy of

approximation. Out use of the word is here defined to pre-

clude later misinterpretation, and because our use is dif-

ferent from the usual statistical meaning. Assume that the

unknown distribution is generated by the analytic density

function f(x), and let p(x) symbolize the approximating

1i



density. When p(x) is reducible to the exact form of f(x)

to include the correct parameter values, then we say that

p(x) characterizes f(x). If p(x) is of a different form

than f(x), ;hen p(x) approximates f(x). Thus "characterize"

is used to indicate an exact representation of the unknown

analytic density. Given this definition, we wish to char-

acterize or accurately approximate the unknown distribution.

An initial concern of the research was to provide

a methcd to represent the output distribution of a computer

simulation in the interest of error propagation studies.

Although the resultina method has direct benefit to simula-

tion, the method can be applied to more general characteri-

za.-on or approximation problems. The following chapters

present the proposed method in detail, discuss computer

implementation of the method to include efficient numerical

techniques, and investigate potential applications.

Chapter II provides a background summary of the

information theoretic concepts which form the foundation of

the proposed method. Concepts such as information variation

and maximum entropy are discussed as well as recent applica-

tions of these concepts. Chapters III through VIII discuss

the pr ored characterization method and numerical tech-

n.ques fnr implementation. The method is applied to com-

puter simulation in Chapter IX followed by discussion of

meth.o3 sn.;itivity an Cnanter X. Additional applications

are presented -n Qnapter X1. The paper concludes with a

., r. iY~rc:n<: h In Chapter XII.
2



Chapter II. Background

Distribution Approximation
with Maximum Uncertainty

The problem of interest concerns the characteriza-

tion of an unknown distribution based on information that

is provided, or information that one may obtain, concerning

the distribution. We assume that the unknown distribution

of random variable X is generated by an unknown probability

density function, f(x), where X may be a vector and thus

f(x) may be a multivariate distribution. We concentrate

on providing an algebraic characterization or approximation,

p(x), for the unknown density. We define "information" as

anything that is known or assumed about the random variable

or the distributioi of the random variable. Clearly, the

amount and nature of available or assumed information will

greatly influence the resulting approximation, p(x). For

example one may assume (or know) that the unknown density

is normal, N(u,o 2 ), and obtain further information in terms

of a random sample, xi , i=l,2,...N. From the sample, one

calculates

N N
X = E xi/N and s2 = E (xi-x)2 /(N-l)

i=l i=l

to approximate the mean and variance and, thus, determines

the appropriate estimation of the unknown distribution,

3
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i.e.,

p(x) = (2Ts2)-  exp[(x-x) 2/(2s2)]

If the form of the distribution is known, as in our example,

then the problem reduces to one of parameter estimation.

However, in many engineering or statistical problems, suffi-

cient information to determine the form of an unknown dis-

tribution is net available.

Assuming a particular density form without evidence

to support such a form will unnecessarily bias the distribu-

tion approximation and produce potential bias or error in

the ultimate solution of the problem. Consequently, the

method of distribution characteri':Lion that is proposed in

this paper derives a density form that utilizes only the

available information while maintaining "maximum uncer-

tainty" with respect to other, unspecified information. As

discussed in later sections, the method assumes that the

specified information can be provided in terms of average

values of certain functions of the random variable X. The

method is based on a specific measure of uncertainty for a

distribution, the distribution entropy.

and Informatien Variation

Tho entropy function, S, was defined by Claude

'hann(,n (Refs 71; 72; 82) ir 1948 as a measure of the uncer-

tainty of a n4ven answer to a well defined question.

S. ,-'i w'k ocnrre on- conmunicaitions theory, but

4



provided a basis for E. T. Jaynes' extension of entropy in

statistical mechanics (Refs 42; 43; 44). Myron Tribus (Ref

82) consolidates the work of Shannon and Jaynes and provides

a thorough discussion of the concept of maximum entropy.

Tribus (Ref 82:111-117) presents a derivation of the entropy

measure and several examples of entropy as a measure of

uncertainty. We consider a simplified example for illus-

tration and definition. For a complete discussion of the

* development of the entropy measure, see E. T. Jaynes' 1979

article (Ref 45:15-118).

Consider a set of N possible events with the proba-

bility of occurrence of each event known. The probabili-

ties pi, i=l,2,...N are known, but no further information

is available concerning which event will occur. Then

S(PlP2...pN), defined by Shannon as S(PlP2...pN)=

N
- Z Pi ln pi, is a mLeasure of how much "choice" is involved
i=l'

in the selection of a single event or how "uncertain" one

is of the outcome of event selection. As an indication of

this uncertainty measure, consider N equally likely events,

that is pl=p2=...=PN=l/N. One's uncertainty as to which

event will occur increases as N increases, i.e., as the

number of possible events increases. In a similar manner,

the value of the uncertainty measure or system entropy,

N
S(p!'P2,....N) = - l .in p. = ln N, increases as N

i=l

increases. Consequently, to paraphrase Shannon/Jaynes/

5



Tribus, if one wishes to construct a minimally prejudiced

probability distribution (a distribution which maximizes

uncertainty) based on information about that distribution,

one must maximize the entropy subject to constraints which

are specified by the given information.

Before proceeding with the maximum entropy charac-

terization method, we must extend the entropy measure to

include continuous probability density functions. Several

of the references discuss the continuous case (Refs 14; 17;

32; R9; 90), but Silviu Guiasu (Ref 33) provides the most

satisfactcry treatment. Shannon's work tells us that the

entropy

N

S(pIpp2...pN)= -.Z pi in Pi (2.1)

provides a measure of uncertainty for the finite, N dimen-
th

soncl prbability space where pi = probability of the i

N
event; p. 0, i=i,2,...N; and Z Pi = 1. Guiasu considers

* i=l

entropy, in a comparable fashion, as the "amount of infor-

mation" conveyed by the given distribution. We now consider

a continuous probability density, p(x), on a bounded

interval ia,b] such that p(x)_O and Ib p(x) dx = 1. One

.iqht erroneously assume that equation (2.1) is logically

extended, in the limit, to the integrable case in the form

S(p(x)) - f - bp(x) np(x) (2.2)

6
dx(22

'S. . .



Equation (2.2), in fact, represents the Boltzman H-function

from classical thermodynamics which was defined as early as

1896. The H-function measures the disorder of a physical

system (Ref 33:14) and inspired Shannon to study, by analogy,

the discrete entropy S(PlP2...pN). However, equation (2.2)

is not the limiting case of equation (2.1). Consider the

uniform probability density on [a,b];

p(X) =i/(b-a) a<x<b (2.3)
0 otherwise

Then S(p(x)) = - f l/(b-a) in fl/(b-a)J dx = ln(b-a).
a

However, S(P1 ,P2. .pN) = in N as previously stated for

pl=P2=.pN = l/N, i.e., the discrete uniform equivalent.

Clearly, limit S(PlP2...pN) 0 S(p'x)). Thus the question

remains of how to relate "continuous entropy" to a measure

of uncertainty while forcing consistency between the dis-

crete and continuous cases. S. Kullback and R. A. Leibler

(Ref 50) provided insight with a measure of information

variation.

The Kullback-Leibler information discrimination

measure provides a means of comparing or measuring the

information that is lost or gained when one probability

measure replaces a second probability measure. Kullback

(Ref 51) and Guiasu (Ref 33) both offer excellent develop-

ment of the information discrimination measure which is

based on the well known Radon-Nikodym theorem (Ref 35).

The development will not be repeated here, but we consider

7



only definition and relationship to entropy. Consider

sample space X and the sigma algebra, L, of measurable sets

of elements of X. We define probability measures Ul, U2

on L to denote probability spaces (X, L, Ui), i=1,2. Proba-

bility measures U1 and U2 are assumed to be absolutely con-

tinuous with respect to each other; that is, for every set

E in L. if U1 (L)=Q then U2 (E)=O or if U2 (E)=O then U1 (E)=0.

Tnen the "variation of information" when we pass from ini-

tial probability measure U1 to the new probability measure

U2 , absolutely continuous with respect to Ul, is the inte-

gral

I(WU2' UI f x *(x) in ¢ (x) dUlI W

. in (x) dU2  (2.4) 4

where ¢(x) = dU2 (x)/dUl(X) is the Radon-Nikodym derivative.

If we now associate cumulative distribution functions

(x) and P2 (x) with measures Ul(X) and U2(x) (Ref 66:261)

where pl(x) and P2 (x) represent respective density func-

tions, we may reduce (2.4) to a measure of information vari-

ation between two continuous probability density functions:

I(P 2 (x) ,Pl(x)) = fP 2 (x) ln [p2 (x) /pl(X)1 dx (2.5)

'fh, variation of information function, I(U 2 ,U 1 ), appears

frequently in the literature (Refs 18; 26; 29; 73; 77; 79).

Both GCiiasu and Kullback offer thorough presentations of the

properties oT I(U 2 ,U).

. . . . ... lll .... . . i .... . . . . I I II8



Following the thrust of Guiasu's development, we

may now relate entropy to a variation of information. We

use equation (2.5), let X=[a,bl, and let the initial dis-

tribution, pl(x), be the uniform distribution on [a,b].

The uniform density is given in equation (2.3). Then equa-

tion (2.5) reduces to

I(p 2 (x),p l (x)) = fb b2 [ in W + in (b-a)I dx

= ln(b-a) I 2 (X) dx + ab 
2 (x) in P2 (x) dx

*I(P 2 (x) ,Pl(X)) = ln(b-a) - S(P 2 (X))

Therefore, as Guiasu states, the continuous entropy S(p(x))

may be interpreted (up to an additive constant) as the vari-

ation of information in passing from the uniform probabil-

ity distribution on [a,b] to the new probability measure

defined by p(x) on [a,b]. A similar development follows

for Shannon entropy in the discrete case. Given pil0,

N
i=l,2,...N and E p..=l, then S(PlP2...pN) = inN-I(pl ,

i=l

P2 ...pNql,q2...qN) where qi=l/N, i=1,2,...N. Thus both

Boltzman's continuous entropy and Shannon's discrete

entropy serve as a measure of the variation of information

when we pass from the initial uniform distribution to the

corresponding probability density of interest. With this

confirmation, we proceed to investigate the maximum

entropy concept.

9
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Maximum Entropy Formalism

Tribus (Ref 82) formalizes the maximum entropy con-

cept for practical application. The goal is to approximate

the unknown distribution of random variable X with a "mini-

mally prejudiced" probability density function, p(x), based

on known or calculable information about the unknown dis-

tribution. The basic underlying principle, as originally

put forward by E. T. Jaynes, is here repeated; "The mini-

* mally prejudiced probability distribution is that which

rnxiMrzes the entropy subject to constraints supplied by

h civen information" (Ref 82:120). An adaptation of the

2avnes/Tribus formalism is presented in the following steps:

1. Define the density structure, i.e., discrete or

continuous. If a discrete density is involved then this

step includes definition of possible outcomes; the entropy

formalism assumes that the possible outcomes are known and

* that we desire an approximation to the probability of each

outcome. For a continuous density, we require definition

of the set X of possible outcomes, i.e., the interval of

integration la,b] in equation (2.2) . Notice that [a,b]

may be infinite. In practical application, the interval

may b' deternined (or approximated) via random sampie from

the unkno,'n distribution where xi , i=l,2,...N, is the ranciz-

sample and fa,bl=[min xi , max xi1 . Notice also that the

random variable X may be vector valued or moltivariate.

1U-i0V
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2. Constrain the density approximation, p(x), to

satisfy the given information. We here consider continuous

densities although a parallel development holds for the dis-

crete case. The given information is assumed to consist

of expected values (or average value approximations) of

functions g.(x), j=l,2,...K, of the random variable X. In

the work that follows, we call these functions "information

functions" to indicate their significance in providing

information about the unknown distribution. The formalism

assumes that the information functions, g.(x) , and the

expected values, <gj(x)>, are known or specified. Thus,

constraints on p(x) take the following form:

<gjj~x) W f bgj(x)p(x) dx, j=1,2,...g

Th6 selection of specific gj(x) and calculation of <g (x)>,

j=1,2,... K, in fact determine the form of the resulting

approximation, p(x). Consequently, much of our effort per-

tains to an intelligent selection of information functions.

We notice that the formalism (or an adaptation of the for-

malism) may still be applied if the available information

takes a form other than expected (average) values of sre-

cified functions. One such example is discussed in the

applications chapter, Chapter XI.

3. Finally, maximize the entropy subject to the

given constraints.

%,11



Application of the above formalism, for thi bounde-1,

integrable case, produces a constrained maximization prob-

I em:

max S(p(x)) = max - Sb p(x) ln p(x) dx)
a

subject to; b
a p(x) dx = 1, (2.6)

b g (x) W(x) J = <aX)>, j,2 .... K
a] - -j

* with p(x) unknown, the value cf <g(x)> and the form of
-J

Y(xi, j=1,2 .... K, given. Tribus solves this problem in

th discrt-e case usinq the Lacrance mcthoc of uiLdcterrneno

...... i,£ents. The Lagrance method alsc LriZpIes to the

iTtegrable case (Refs 27; 5C). The analytical form of the

FolU ti On d -
z)X (%x)- .- 1,1C KgK(W)] (2.7)

, 2:...... , are the Lagrange multipliers. Equa-

l-ion (2.7) represents the form of the minimal2y prejudiced,

-r:<jiu entropy distribution. We show in C-apter IV,

Thqorcm 4.d, that equation (2.7) is the "ui form for

the entropy density. In a similar sense, equation (2.7)

7 -za farily *-f . -tributions whore the specific

. .rc selectee Uh a.]h appropriate

c t E t 3 :u, tiplier Vetor 0,1

I T. 2vcc- t lets ax, unkT-o n at this

L f on 9 . (x)

12



is predefined by the analyst. The g.(x) , j=l,2,...K, may

take any form such that the expected values are known or

calculable.

Entropy Applications in

the Literature

Several authors have discussed application of the

maximum entropy formalism as indicated in the list of refer-

ences. Applications to spectral and time series analysis,

* economic problems, decision theory and pattern recognition

problems, and physics and thermodynamics problems are

examples of the available literature (Refs 7; 9; 12; 58; 74;

84). D. V. Gokhale (Ref 31) provides excellent supportive

discussion for entropy characterization based on known

expected values of certain functions of a random variable.

However, most of the available literature concentrates on

application in the discrete density case. The discrete

entropy maximizaticn problem (the continuous case is repre-

* sented in equations (2.6)) represents a set of simultaneous

linear equations. Solution of the k+l constraint equations

for the appropriate A is thus somewhat simpler in the dis-

crete case as compared to the nonlinear continuous problem.

Agmon (Ref 3) presents an algorithm for computer solution of

the discrete problem. Gokhale (Ref 30) presents a second

approach to the discrete case and the list of references

provides several applications to specific discrete problems

(Refs 22; 52; 83; 86; 87).

13
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Application of the entropy method to continuous

density approximation results in a system of nonlinear con-

straint equations, equations (2.6), that must be solved

simultaneously to find A. Although solution of the con-

straint equations is, in general, quite difficult, a few

specific continuous distributions are well known. For

example, if all that is known about the distribution of

random variable X on (- , ) is the values of <x> and <x',

then the resulting maximum entropy distribution is the nor-

!rea di.-tribution. To see this, consid<r the known fcr. of

the eitropy density:

p(x) = exp[-0-k X- .x:
0 '12

The normal density fu!;ction f(x) with nean v and varianct:

follows:

f (x) (2-c )- (x-,) (2
- -

e(2- 2 exp [-(2o )-ix+ (/7 2 )x - (' 2 /2c 2 )]

=e:,pH{C-(' i/2c2 )) + (k /c')x- (2c 2)- 1 x : ]

where C = in (1/ 22). Thus

o0 =  W/2c')-C' ] =- U/°' )2= /<
'2

w~iI produce a normal aistribution with mean w and vari-

ance ) 0 Theorelical development by Guiasu and Tribus
f. 33:"91 82-31.) po.nt to the above results; experi-

. , b . .... - . 7 of approxirmatIon that is detailed

14



in this dissertation, substantiates the expected results.

Other examples include the uniform distribution if no infor-

mation (except [a,bJ) is known, and the exponential distribu-

tion if only <x> (on [0,w)) is known. Much of the litera-

ture on continuous entropy centers on application of these

known entropy forms. For example, Dudewicz and van der

Meulen (Ref 24) utilize known entropy forms to develop the

* concept of "entropy-distinguishability" and entropy-based

tests of hypothesis. Other examples may be found in the

list of references.

Two separate approaches to continuous density

approximation based on entropy concepts are found in the

literature. The primary difference between the approaches

is the choice of what we have called "information func-

tions," i.e., gj(x) , j=l,2,...K. B. R. Crain (Refs 15; 16;

17) selects the Legendre polynomials as information func-

tions and restricts p(x) to be an element of L 2-I,1],

i.e., square integrable functions over [-1,1]. The Legendre

polynomials form a complete orthonormal basis of L 2 [-,l]

which leads to theoretically sound convergence properties

for selected approximation densities. Wilson and Wragg

(Ref 89) and Wragg and Dowson (Ref 90) provide good theo-

retical development for a similar apprcach on [0,-) where

the information functions are taken as moments. Practical

application of either method is restricted by the need to

answer the following questions:

15



1. How does one determine the number of moments

or Legendre polynomials that are needed for a particular

approximation?

2. How does one find the necessary Lagrange multi-

plier vector A?

3. How useful is the resulting algebraic/analytic

expression for p(x), i.e., as the number of required infor-

nation functions increases, does p(x) become computationally

and conceptually cumbersome?

Collins and Wragg (Ref 14) took a looical step

'cow:rd reducing the computational difficulty of an approxi-

r1ition based on moments. They reduced the continuous prob-

lem to a discrete, and thus linear, - blem by resorting to

frequency histograms. The histoaram methoC Js computa-

tiznally appealing but does not provide an algebraic repre-

sentation of p(x) . Young and Coraluppi (Ref 91) present

an interesting approach to a reduced problem. They present

an algorithm for the approximation of a probability density

function by a mixture of normal density functions with

unknown means and variances. Their approach is also based

on minimizing an information criterion.

The tollowing chapters present a practical method

w: approximating an unknown probability density function

Lased on information in the form of average or expected

vaiue,; of information functions, g3(x), j=1,2,...K. The

-e it ot the method is intelligent selection of the

16



information functions from a large set of potential infor-

mation functions. The method builds on the maximum entropy

formalism as outlined in this chapter. The theoretical

development includes theorems on the form and uniqueness

of the approximating density for a given set of informa-

tion (Ref Chapter IV). The resulting method is computa-

tionally feasible and efficient, and numerical techniques

* for implementation are demonstrated.

17
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Chapter III. Entropy Approximation

Introduction

The distribution approximation problem, as intro-

duced in Chapter II, is refined in the first section of this

chapter. The second section presents the general approxi-

mation procedure which results from application of maximum

entropy concepts. Subsequent chapters explore the detailed

steps of the general procedure and specific applications.

Problem Refinement

The problem of interest concerns approximation of

the unknown distribution of random variable X based on

information that is provided, or information that one may

obtain, concerning the unknown distribution. We are par-

ticularly interested in approximating the output distribu-

tions of computer simulations. The goal of this research is

to produce an approximation method that is theoretically

sound, suitable for practical application, and specifically

adaptable to computer implementation. With the goal in

mind, we may apply the entropy formalism of Chapter II.

Our previous adaptation of the entropy formalism

includes three steps: define the density structure, con-

strain the density to given information, and select the spe-

cific density that maximizes the entropy. First we define

thz density structure. This paper will restrict

18



investigation to continuous densities on the bounded inter-

val [a,b]. The investigation centers on characterization

of univariate distributions where we assume that the dis-

tribution is generated by an underlying, unknown density.

We seek a representation or approximation for the unknown

density. While we concentrate on univariate distributions,

notice that nothing in our conceptual or theoretical devel-

opment precludes extension of the method to multivariate

fdistributions, i.e., where random variable X is vector

',.!iued. The density structure defined, we now proceed with

r *e entropy formalism.

Approximation Procedure

As previously discussed, the unknown density func-

tion for random variable X will be approximated by a maxi-

mum entropy function of the form

p(x) = exp [- 0 -X1 gl(x)-...XKgK(x ]  (3.1)

where the gi(x), i=1,2,...K are "informaticn functions,"

and the Xi, i=0,1,2,...K are Lagrange multipliers. The key

to providing an accurate representation of an unknown den-

sity, thus the key to our approximation procedure, rests

in the ability to select the proper information functions

and the appropriate Lagrange multipliers. The approxima-

tion procedure is thus composed of three basic steps:

3elect the appropriate information functions; calculate the

.. 1
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expected or average values, <gi(x)>, i=1,2,...K; and solve

the entropy maximization problem for the Lagrange multi-

pliers. We now consider the steps in more detail.

Information Function Selection. The form of the

provided or calculated information, i.e., the forms of the

information functions, and the amount of information, i.e.,

the number of information functions, determine the form of

the resulting entropy density as shown in equation 3.1.

Clearly, specifying the wrong information functions or too

little information may lead to an unacceptable approxima-

tion. Moments (Ref 90) and orthogonal polynomials (Ref 15)

are examples of possible information functions. Our pro-

cedure allows great flexibility in definition of informa-

tion functions.

A two-phased approach is used in specifying the

information functions that best approximate a particular

* continuous. uni.,ariate density on [a,b]. The first phase

includes specifying a large, general class of "potential"

information functions that have particular conceptual or

theoretic value. For example, all moments of a random vari-

able provide an extensive amount of information and would

comprise a feasible potential set. For reasons indicated

in Chapter II and expanded in Chapter V, moments do not pro-

vide a practical set of functions. A more useful potential

set is discussed in Chapter V. The potential set should

20
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be large to allow consideration of a wide range of useful

functions. Use of the entire potential set to specify the

entropy density, equation 3.1, would lead to a numerically

intractable problem in solving for the Lagrange multiplier

(just as using all moments) and a conceptually dissatisfy-

ing form for the approximation, p(x). In fact, much of the

information may be redundant or unneeded when approximating

a particular density. Thus, in phase two, we seek the

* minimum subset of the large potential set that will accept-

ably approximate the density of interest. The minimum sub-

set will be called the "active set" of information func-

tions. Thus, phase one is definition of a large class of

potential functions that will serve in a wide variety of (
characterization or approximation problems, while phase two

is selection of the active set of information functions that

pertain to a specific approximation or characterization

* problem.

A point of clarification is needed. We will fre-

quently interchange the terms characterization and approxi-

mation when referring to the entropy procedure. As we will

see in Chapter V and subsequent chapters, the entropy pro-

ceIurc will exactly characterize the unknown density (given

cor-utational ac-uracy) if the potential information func-

tion set contains the correct functions. Chapter II pro-

vidnd such an exa:nole for the normal Oistribution with func-

tions x ?rd . If the co-rect functions are not present,

21



then the procedure provides an approximation to the unknown

distribution. Thus, assuming a broad potential set, inter-

change of the two words is permissible.

Generation of Expected or Average Values. Our

entropy approximation procedure requires that the informa-

tion be given in terms of expected values of the informa-

tion functions, <gi(x)>, i=l,2,...K, or average value

approximations to the expected values. The method used to

obtain the <gi(x)>, i=1,2 .... K, is transparent to the char-

acterization procedure; in fact, alternate methods exist.

For example, the analyst may possess information about the

unknown distribution which was acci.imulated through years

of experience or repeated trials. If this information is

available in the form of average values, then the entropy

method may be applied directly. For a more standard

approach, we assume that a random sample of size N is avail-

able for random variable X, i.e., xj, j=l,2,...N. The

* expected values are then approximated by average values:

N
<gi(x) > gi (x.) IN, i=l,2,...K (3.2)

j=l

The accuracy of the approximation in equation 3.2 is depen-

dent on the sample size N. A third method which is heavily

used in this research is numerical quadrature.

22
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Numerical quadrature, or numerical integration,

provides an effective means of computer integration. Quadra-

ture plays a key role in application of our characterization

procedure to computer simulation, is a required tool for the

numerical scheme which we employ to find the Lagrange multi-

pliers, and can be used to calculate expected values. A

detailed discussion of one quadrature form, Gauss-Legendre

* quadrature, may be found in Appendix A. The general quadra-

ture form follows:

~m
r dx b-a ba q(x) dx 2 a Wq(x) (3.3)

where a<x<x2<.. .<x <b and the W. and x are defined in

Appendix A. Now consider the expected value equation:

<gi(x)q> b (x) f(x) dx (3.4)
i a

* where f(x) represents the unknown density that we wish to

approximate. If the values of the unknown density can be

approximated at the points x., j=l,2,...m, then

- b-a M
b- m 2 Wj gi(x ) f(x.)

Tho values f(x.), j=l,2 .... m, might be reasonably approxi-

mated by a frequency table or even numerical differentia-

tion of a sample curulative distribution.

23



A very important application of our characteriza-

tion method is to computer simulation. The key role of

quadrature in this application is introduced at this point

for consistency and is expanded in Chapter IX. Consider

the simplified simulation model:

h(y) on [a,bl-- F(y) f(x) on [c,d]

where h(y) is the known probability density function of

input random variable Y on [a,bJ, F(y) is a mathematical

transformation representing the simulation, and f(x) is the

unknown probability density function for random variable X

that we wish to approximate. We apply basic transformation

of variables techniques (Ref 39:127) to equation 3.4 to

obtain the following:

<gi x) d = igi(x) f(x) dx = fb a(F(y))h(y) dy;
a c aa -'1

and applying equation (3.3)

<gi(x) - W gi (F(yj)) h(yj) (3.5)

i=l,2,...K.

Thus we may calculate the expected values of information

functions for a computer simulation by sampling from the

24



simulation at m predefined points. The benefits of this

result are pursued in Chapter IX.

Lagrange Multipliers. Once the active set of infor-

mation functions has been selected and the expected values

have been calculated or approximated, the constraint equa-

tions must be solved to find the K+l Lagrange multipliers,

i .... K, where K is the number of functions in the

active set. The simultaneous solution of K+l nonlinear

_-<_muations is a difficult task analytically and numerically.

Awtor., Fox, Luenberger, and Saaty and Br-m (Refs 2; 27;

i; 67) describe various numerical approaches. The method

of choice in this paper is the Newton method. A computer

program to solve for the K+] lambdas, given K expected values

and the forms of the information functions, using the

Newton method has been implemented. See reference 3 for a

similar approach to the discrete density problem. Exist-

once and uniqueness properties, and a numerical scheme for

7eneral solution of the constraints are discussed in the

next chapter.

Resulting Density Function. The form of the maxi-

mum, entropy approximation is known: p(x) = exp[-X0 - 1 1 (x)

-. .. (T(x)]. The specific entropy density, p(x), that

will approximate or characterize the unknown density, f(x),

is sele-Tted throu;h anplication of the above procedural

.teps. We summarize the procedure. The active information

25



function set is selected to include the form and number of

information functions. Average or expected values of the

information functions are generated. Finally, the Lagrange

multipliers are calculated via the Newton method, and p(x)

is completely defined.

Application of this method has produced excellent

approximations in numerous test cases. The specifics of

the above procedure, to include test examples and applica-

tions, are discussed in the following chapters.
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Chapter IV. Solution of the Constraint Equations

Introduction

The theoretical backbone of our entropy characterization

method is presented in the first section of this chapter.

The entropy approach is based on the solution of a con-

strained optimization problem. We present the proble; and

* derive Theorem 4.1 which defines the form of the solution

density,

p(x) = exp[-10,11gl(x)-...Xkgk(x)3 (4.1)

We then addresc solution of the constraint equations for

the lambda vector, A=( 0 X1 -...Xk)T, which equates to selec-

tion of a particular density from the family represented in

equation 4.1. Two theorems pertaining to uniqueness *pf

solution are presented. Theorem 4.2 shows that, given

existence, there is only one solution vector that maximizes

the entropy. However, iterative solution of the constraints

may lead to a local optimum as shown in Theorem 4.3. The

first section concludes with Theorem 4.4 which shows that

the average values of our information functions are complete

sufficient statistics for selection of a specific p(x).

The second section of the chapter presents a numerical

scheme to apply the theory. Performance of the scheme and

numerical sensitivities are discussed.

27
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Theoretical Development

Form of the Solution. We assume that the forms

and number of "active" information functions are known, and

that expected values are given; thus, gj(x) and <gj(x)>,

j=l,2,... k, are known. We wish to find the continuous den-

sity, p(x), on La,b] that will satisfy the given informa-

tion, i.e., produce the given expected values, while main-

taining maximum uncertainty with respect to other,

unsri)ecified information. The mathematical statement of

this problem is repeated from equations 2.6:

max S(p(x)) = max -b p (x) lnp(x) dx)
a

subject to

.b S
"p(x) d-x 1,

a
a c. (x) p(x) dx = <gj(x)>, j=l,2....k (4.2)

We assume that the g,(x), j=l,2 ... k, are continuous and

bounded on [a,b]. In terms of a probability space, we con-

sider probability space (X, L, U) where X is the interval

[a,b], 1 is the sigma algebra of Lebesgue measurable sets

on X, and the probability measure U on L is defined by the

probability density function

0xV0, ax<b, fb p(x) dx=l (4.3)
_a

W, a,,ply t'if Lacrancie method of undetermined coefficients

to equation! 4.2 to find the density in 4.3. The
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Lagrangian, L(p(x),A), follows:

k
L(p(x),A) S(p(x)) - \ 0 (fP(x) dx-l) - E Xj(fg.(x)p(x) dx-<gj(x)>

k k
fp(x)[ln(l/p(x))-A O- Z Ajgj(x)Idx + X0 + Z Xj<gj(x)>

j j=l

k k
= fp(x){lrn[ (i/p(x)) exp (-X0 - E Xl-g.(x))]}dx+X0 + E X<g.(x)>

j=l 3 3

We apply the knowledge that for all x>0

kn (x) < x-1 if X34 and

In (x) = x-i if x=l to get

k k
L(p(x),A)<fp(x) [(i/p(x)) exp (-X0 - ZlXg (x)) - 1] dx+0+X + X.<g. (x)>

0 j~l gj 0 =l1 3

Since we want to maximize L(p(x),A), we seek equality in

our last expression which occurs if and only if p(x) -
k

* exp[-X 0  Z j g j(x)]. The preceding result is well known

and is mentioned in several references without proof for the

continuous case (Ref 42; 82; 89). This derivation is given

to enhance clarity. The derivation is a generalization of

work presented by Guiasu (Ref 33:298-301) and attributed to

Kamp6 de Fdriet (Ref 48) and Ingarden and Kossakowski

(Ref 41). The Guiasu presentation was concerned with the

normal and Poisson distributions. We summarize with a

theorem.

29
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Theorem 4.1. Given probability space (X, L, U)

where X is the interval [a,b], L is a sigma algebra of

Lebesgue measurable sets, and U is defined in terms of p(x)

as in equation 4.3, then the density function, p(x), which

maximizes the entropy subject to constraints as represented

in equations 4.2 is of the form

p(x) = exp[-2 o-l gl(x)- ' ' ' - k k(x)]

, ,'her,- the a (x) are continuous, bounded functions on X.

Theorem 4.1 provides the form of the entropy char-

acterization density. Given a specific set of expected

values, <q o(x)>:, j=l,2,...k, we solve the k+l constraints
T

for Co,XlI .... k) to completely determine p(x). We

now relate concepts from.- Tribus (Ref 82), Guiasu (Ref 33),

and Kullback (Ref 51) with the special properties of our

problem to discuss existence and uniqueness properties.

Existence. The existence of a solution to the con-

straints is not guaranteed. We may clearly specify a set

of expected values which form an inconsistent set of con-

staints and for which no density exists. For example, con-

si.2r k=2, g. (x)=x, g 2 (x)=x2 ' <g I(x)>=20, and <g 2 (x)>=99.

As discussed in Chapter II of this paper, the maximum

entrcpy, density given only <x> and <x2> is the normal den-

sity. Considcr the variance of the density we have speci-
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Var = <(x-<x>) 2>=<x2> _ <x> 2 = 99 - 100

or Var = -1.0

This example thus asks for a normal density with negative

variance which is not possible. Collins and Wragg (Ref 14)

state that, in the general case, the precise conditions on

the expected values of moments for which a A vector will

exist, where the A vector satisfies the constraints, do

not seem to be known. Only for information functions

gl(x)=x (k=l) and gl(x)=x, g2 (x)=x 2 (k=2) are conditions

known in any completeness. Wragg and Dowson (Ref 90),

Widder (Ref 88), and Ahiezer and Krein (Ref 4) provide

extended discussion of conditions for valid moment sequen-

ces.

We are, however, concerned with practical applica-

tion and our problem is somewhat restricted. Our problem

centers on approximating an "existing," though unknown,

* density. Samples from the unknown density are used to

approximate the expected values via quadrature or sample

averages. Thus, we have a consistent set of constraints

provided that the expected value approximations are accu-

rate. Inconsistencies that result from sampling or compu-

tational errors may be alleviated by increasing sample

size, or increasing the number of quadrature points, and

including computational checks to produce more accurate

expected value approximations. We thus assume a consistent
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set of constraints, i.e., the unknown density, f(x), satis-

fies the constraints. Assuming an intelligent choice of

information functions, as discussed in later chapters, we

will produce a p(x), Theorem 4.1, that acceptably approxi-

mates f(x). In this manner, the existence problem is con-

ceptually translated to a problem of specifying the correct

information functions. For purposes of this paper, we

assume existence of a solution vector, A = (0k)T

for a given expected (or average) value vector, <G>=

T. ' x > '<g2( ) .... <9 x

Uniqueness. We wish to discuss uniqueness in two

respects. First we show that if there exists a second den-

3ity on ra,bl, p(x), where i(x) may take any form such that *

p(xl:_0 and p(x)'0 almost everywhere (a.e.) on [a,b), p(x)

satisfies the constraints, and p(x) maximizes the entropy,

then p(x)=6(x) a.e. Secondly, we show that the solution,

* , which maximizes the entropy is a global solution, i.e.,

if there exists a P = ( 0Fl, .... Sk) such that

p(x) = exp[-B0- 1 (x) -... k gk(x) ]

where p(x) satisfies the constraints and maximizes the

[rq,., thR -.. We will combine these results in one

the~rnmn. The apptoach is to assume a second solution,

-(x) , of any form such that p(x) for all x in [a,b] and

:' U)0 n.e. cn I-. w then consider the entropies of
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our two solutions, F=S(p(x))-S(p(x)), and show F>O a.e. and

F=O if and only if p(x)=p(x) a.e. We then assume the exist-

ence of a B vector and obtain our second result. The

theorem and proof are motivated in a proof byTribus of a dis-

crete maximum (Ref 82:123) and a theorem on information

discrimination by Kullback (Ref 51:14).

Prior to a statement of our theorem, we discuss the

Kullback theorem. The Kullback-Leibler information dis-

crimination measure was introduced in the background chap-

ter of this report (equation 2.4). In keeping with Kull-

back, we use the probability spaces of Chapter II, (X, L,

Ui), i=1,2, and define a third probability measure, U. Let

U be absolutely continuous with respect to (w.r.t.) Ui and

Ui be absolutely continuous w.r.t. U, i=1,2; for example,

U may be U1 , or U2, or (U1 +U2) /2. The Radon-Nikodym

derivatives are now defined in terms of U as i(x)=dUi  /

dU(x) where W(x), i=1,2, are functions, unique up to sets

of measure (probability) zero in U, O<i(x)<- such that

U (E)=fEDi(x)dU(x), i=1,2, E an element of L. Using this

nomenclature, we rewrrite the discrimination measure of

Chapter II, I(U2 ,U1 ), to an equivalent form:

21fn 2 W 2 (x) dU(x)
I(U 2 ,U I ) = I (x) dU2 (x) f '#2 (x) in dU)

(4.4)
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KuZZback Theorem. I(U 2 ,U I ) is almost positive

definite; that is, I(U2,U1 ) O, with equality if and only if

4 1 (x)=¢2 (x) a.e. w.r.t. U. See Kullback (Ref 51:14) or

Guiasu (Ref 33:22) for proof of this theorem.

Armed with the Kullback Theorem, we turn to the

question of uniqueness of p(x) and uniqueness of the

Lagrange multiplier vector, A. We have p(x) as shown in

* equation 4.1 and k+l constraints:

a (x) p(x) dx = <gj(x)>, j=O,l,...k
a -j

where g0 (x)-. For a specified set of expected values,

T
<G>0= ("<gl(x)> ....<g(x)>) 0 , we solve the constraints

for 1A0=(X0I... )k00 to completely determine p(x). From

Theorem 4.1 we know that p(x) maximizes the entropy,

S(p(x)). Now assume that there exists density p(x) that

satisfies the constraints where (x) may take "any form"

subject to two conditions: P(x)>O, x in [ab] and p(x)>O

a.e. on (a,b]. The second condition is needed to insure

that the probability measures associated with p(x) and

1(x) are absolutely continuous w.r.t. each other. We wish

to deterTine if p(x) is also ofmaximum entropy. We may

represent our state of knowledge with two sets of equa-

tions.
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S = bp(x) lnp(x) dx, S b -a (x) inp(x) dxa a

with with

b gj(x) p(x) dx = <gj (x) >, f b j(x) (x) dx = <gj (x)a ja)

j=0,i,.. .k j=0,l,...k

and and
k

p(x) = exp[- Z g.(x).l W(x)>O, xc[a,b],
9=0 3p(x);O, a.e. on [a,b].

All integrals in the following derivation are over the

interval [a,b] although the limits of integration will not

be shown. Consider,

F = S - S = ff(x) In (x) dx- fp(x) in p(x) dx

Now add and subtract fp(x) lnp(x) dx,

F = f (x) in (P(x)/p(x)) dx+ f( (x)-p(x)) lnp(x) dx

We substitute for the known form of p(x) in the last

integral:

k
F = fp(x) in ( (x)/p(x)) dx+ f(p(x)-p(x)) E X.g.(x) dx

j=0 3 j

k
= f .(x) in ( (x)/p(x)) dx+ Z A {.gj (x) (x) dx-

j=0 j

fgj(x) p(x) dx)

Clearly, the last (k+l) terms cancel due to the require-

ment of constraint satisfaction and thus,

V.
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F S - S = fp(x) in (p(x) /p (x)) dx (4.5)

Since p(x) and p(x) are probability density functions on

[a,b], we may define,

P(x) = prob (X<x) = fx p(y) dyand

p(x) = prob (X<x) =ap(y) dy, with

" P(x) = P(x) = 0 if x<a, and
I

P(x) = P(x) = 1 if x>b,

&s probability measures on [a,b]. We know p(x) and p(x)>0

for all x in [a,b], except for a set of measure zero, and

by definition p(x)=p(x)=0 for all x not in (a,b]. Thus

P(x) is absolutely continuous w.r.t. P(x) and vice versa.

We are now in a position to apply the Kullback

Theorem. With the Kullback nomenclature, we let

U1 (x) = U(x) = P(x); U 2 (x) = P(x);

(x) = dP(x)/dP(x); P2 (x) = dP(x)/dP(x);

I(U2,UI) = f 2 (x) In (D2 (x)/%j1 (x))dU(x)

= f(dP(x) /dP(x)) ln (dP(x) /dP(x))dP(x)

I([62, U I  = !D(x) in (f(x) /p(x)) dx, (4.6)

We equate equations 4.5 and 4.6 to obtain

1F = 1I(U 2 ,U )."
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Thus S-S>0 with S-S=0 if and only if % (x)= 2 (x) a.e. w.r.t.

U, or dP(x)/dP(x)=P(x)/dP(x) a.e. w.r.t. P(x) which implies

that k(x)=p(x) a.e. w.r.t. P(x). Thus we obtain the impor-

tant result that either p(x) is the only form of solution

that maximizes the entropy or any other solution, P(x),

must satisfy p(x)=(x) a.e.

We take this development one step further by assum-

ing the existence of a Lagrange multiplier vector B#A0 such
k

* that p(x)=exp[- 'L B gj(x)] , p(x) satisfies the constraints,
. j=0

and p(x) has maximum entropy. Thus S-S=O and p(x)=p(x)

a.e. which implies

ln p(xl = lnp(x) a.e., and

k k
- X g. (x)=- E 5 g (x) a.e., or

j=0 -J 10 j J

k
E X (B- X) g.(x) = 0 a.e.

j=0 J J

If the g,(x) are linearly independent functions, then the

only linear combination of gj(x) that equals zero a.e. is

if (B j-)X)=0 for all j. Thus aj=X. for j=0,1,...k. We

summarize the above developments in a theorem.

Theorem 4.2. Let there exist A0=(X 0 .i Xk)T

k-U k
with A0 an element of R such that p(x)=exp[- E X g.(x)],

. . ,.0 - . .
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go(x)-l, and p(x) satisfies the constraints ga (x)p(x) dx

=<g.(x)>, j=0,1,...k, with S(p(x))--fb p(x) Inp(x) dx. If
j a

there exists a function p(x) such that p(x)>O for all x in

[a,b] and pIx)>0 a.e. on (a,b], then S(p(x)) S(p(x)) and

S(p(x))=S(W(x)) if and only if p(x)= (x) a.e. on [a.b.]

k4-l k
If there exists a in R such that k(x)=exp[-Eg W),suchthatp~x)exp[Z 8gj~x]

j=0 j

with linearly independent gj(x), and p(x) satisfies the

constraints, then S(px))=S(p(x)) if and only if Xj= j,

We have established the form and uniqueness of

solution for cur optimization problem given that a solution

exists. 4e now directl'y explore the constrain- equations

dnd the possibility of "local" optimum solutions. Only

one A=A exists for which p(x) satisfies the constraints0

and S(p(x)) is maximum; however, there may exist a I=

with corresponding p(x) which satisfies the constraints,

and where S( x)kS(p(x)) . If there exists a neighborhood

of W(x) , where p(x) is not an element of the neighborhood,

such that S(p(x))>S(q(x)) for all q(x) in the neighborhood

then (x) is a local optimum. Local optimums are of con-

cern because the k+l nonlinear constraint equations must

;e solved with iterative numerical techniques, and such

techniques may converge to local optimums.

Given that A0 is a solution vector for the non-

linear system of equations F(A)=<G > where
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F(A) = (x) p(x) dx f 0(A) <g 0 (x)> <G> ,

L rgk (x) p (x) dx_ f k(A) <gk (x) >

p(x) = exp[- 0g0(x)-Xlgl(x)-...Xkgk W) , g0 (x)-l, and all

integrals are over the interval [a,b], then the following

theorem addresses solution uniqueness.

Theorem 4.3. Let g0 (x), g 1 (x),...gk(x), finite k,

be continuous functions in L2 [a,b] and gi(x) gj(x) be in

L2 [a,b] for i,j=l,...k, g0 (x)_-l. If A0 is a solution of

F(A)=<G> for a specific <G>0 , and if the gj(x), j=0,l,...k,

are linearly independent functions, then there exists a

neighborhood, W, of A0 where A0 is the unique solution

of F(A)=<G> 0 .

Proof. Consider F(A) to be a function from some

subset of R to Rk . By the fundamental Inverse Func-

tion Theorem (Ref 78:354), if F(A) is continuously differ-

entiable in some neighborhood of A0 and if the linear trans-

formation F'(A 0 ) is invertible (nonsingular), then there

exists neighborhoods Wand V of A0 and F(A 0 ), respectively,

such that F: W-V is a one-to-one, onto mapping. Thus,

given solution vector A0, for all BcW, F(B)=<G>0 if and

only if a-A0 , or A0 is the unique solution vector in

neighborhood W. We will show that F is continuously

differentiable in some neighborhood of A0 and that F
t (A0)
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is nonsingular in that neighborhood, and the proof will be

complete.

1. Continuous differentiability. Continuous first

partial derivatives are necessary and sufficient for con-

tinuous differentiability. Thus we consider

F
J'' = f(f )/O ) 0  ,  af 0 (A )/ Dll . ... f 0 (A )/ DN k

(A)110 /;);f ( )/'

L k 0' k(k)/I .... k

* :~ere [ f. (.1)/Y J.r (x)c. (x)p(x)dx; i,=0,1 ... k.

<'iePri n(x) is a composite of the continuous gW(x) and is

continuous. Integration is a continuous operation and the

rroducts of continuous functions are continuous. Thus,

(-acn eler',nent of J is continuous and F(A) is continuously

:ff crent iable.

2. Nonsingularity of F'(A)=J. J is nonsingular

t if the, determinant of J,IJ I, at A0 is not zero. We

clai, that .7!JO if and only if the gj(x), j=0,1,...k are

linearly independent. We p:-ove the contrapositive of this

claim, i.e., .J'=0 if and only if the g.(x) are linearly

dependent.

V) Assume tho qx), j-r),],...k are linearly

i.4 <. nt cn; se'.,: J G. Based on this assumption, there
k

constants, ai, not all zero, such that T a g (x ) = 0

j=0 jg
[or 9 x -. ,b] . -,7v1 write one ( as a linear
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combination of the others and rearrange the indexing such

that

k-i k-i

gk(x) =-j (cj/a k) gj(x)= -j0 6 j gj(x)j=O

,th
Now consider the m row of J, i.e.,

[-gm (x) g0 (x)p(x) dx, .... -fgm(x) gk(x)p(x) dx].

We substitute for the k t h element of this m t h row (i.-.,

the kt h column entry)

k-1
-:gm(X) k(x) p(x) dx= -fgr (x)(-z ,jgj(x))p(x) dx

j=O

k-i
= Z Bj.IgmX) gjx) px) dx

j=o 
J

The last sim'ation equates to a linear combination of the

other (k-1) columns. This procedure holds for all rows.

Thus, the kt h column is written as a linear combination of

the first (k-i) columns and JIJ=O.

(b) Assume IJI=O and show that the gj(x) must

be linearly dependent. Since IJI=o, then the columns (or

rows) of J are linearly dependent. Thus we have constants,
k

C, not all zero, such that - Z a.fgm(x)gjp(x) dx=O. It
k j=O i

follows that -fgm(X) ( X qa(x)) p(x)dx=O for all m (i.e.,j=0O -

for all 7ows) and hence

41
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k k
-F a f g (X) (W Wg (x))p(x)dx = 0, or

k k
- C q (x))( F g.(x)) p(x) dx = 0 and
m0 m m j=0

k

-f( a Cjg(x)) 2 p(x) dx = 0.

We know that p(x)=exp[-)0g 0 (x-91gW (-. kk) 0 and

ir hu& ptx) 0 for all x in [a,b] where a - - ,. Thus
k

Y (x)i=0 a.e. for the last equation to hold or. j:n j g

k
I ' .(x)=O a.(2. which is a statement of linear dependence

of the C(x). We remember that two functionz, in L2 [a,b]

are co'sidered ecuivalent if they are equal a.e. (Ref

C6:112). Thus, J!1=0 implies linear dependence of the

We have shown that J is nonsingular and the condi-

tlors for a--)plication of the Inverse Function Theorem are

satisfied. The proof of Theorem 4.3 is complete.

Sufficient Statistics. Our final theorem concerns

the concepts of complete, sufficient statistics for solu-

taon of the " vector. The theorem shows us that the

aveage values of our information functions (which approxi-

late expected values in our work) contain all the infor-

mation ot the random sample which was used to generate the
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values, i.e., information is not lost. Further, the

average values contain sufficient information ior esti-

mating vector A. The theorem is a special case of a

theorem presented in Hogg and Craig (Ref 39:232) for the

"regular exponential class" of probability densities. We

restate the Hogg and Craig results, in our terminology for

our special case, as Theorem 4.4.

Tkoore7 4.4. Let the entropy density be of the form
k

* p(x)=exp[- X. igi(x)] for x in [a,b] and p(x)=O for all
i=O

other x with g0 (x)=l and linearly independent gi(x),

i=O,l .... k. Given a random sample (xl,x 2 1... xN) with

N-k, then the functions

N
Y. = V gi(x )/N, i=0,1,...k,

j=l J

are complete sufficient joint statistics for determining
T

the vector A=(X, k )

Section Summary. In this section we have derived

the form of the density family which maximizes the entropy

while satisfying given constraints. We have shown that

only one density will maximize the entropy, if a solution

density exists, although numerical solution of the con-

straints may lead to a local maximum. We related existence

to the correct selection of information functions.

Finally, we have shown that the average values of the
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information functions provide all the information needed

to select the one entropy density. That is, the average

values comprise all available information that can be pro-

duced by a random sample (xl,x2, ...xN) of the unknown den-

sity. We now direct our attention to application of the

above theory in terms of numerical solution of the con-

straints.

Numerical Solution Schemie

* i':v tc a cenersi irplementation of the entropy

c:..±:. tio procWcdro the ability to find the correct

for a givn set of expectoe values, i.e. ,

<Jlu-ion of thc cConstraints. Ve rest-- e t.e problem:

" 'i k, that

f 0
(  f p(x) dx -1.0 = 0

f -- (xI n(Y) dx -<a (X)> = 0

f k i  "qk(x) p(%) dx - <gk(x)V = 0 (4.8)

where p(x)=exp[-\0-),I1gk1x) ] with <gi(x)> and

the form of gi (x) known for i=l,2,...k. The (k+l) con-

straints are nonlinear and, except for a few restricted

caes, cannot be solved directly for the A vector. As

previously mentioned, several authors discuss iterative

nuer.-cl s'herme3 for simultaneous solution of a system

of nonlnear equations (Refs 2; 27; 56; 61). For our
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approach, we write equations 4.8, in vector notation, as

a fixed point problem, F(A)=O where F(A)=[f0(A),f1(A,...

fk(A)]T. We have implemented a computer program which suc-

cessfully applies the Newton-Raphson successive approxima-

tion procedure to the above fixed point problem.

The Newton method is based on iterative solution of

the following equation:

* J * (A n-An ) = F(A n ) (4.9)

where An is the Lagrange multiplier vector, A, for the n
th

iteration and J is the Jacobian matrix for F(An ) An

initial guess, A0, is selected and equation 4.9 is solved

for Al. The scheme repeats for A2, A 3 ... AnAn+l , until

the difference (A n-A n+1 ) is less than a predefined value,

i.e., until convergence occurs. The actual convergence

criteria for our program requires that the final value

of each element of the (An -A n+) vector be less than a

predefined epsilon. When convergence is obtained, An con-

tains the solution values of Aj, j=0,l,...k. The program

is written as a subroutine, subroutine ENTROP, which

requires the user to specify the following items: the num-

ber of active information functions, k; the approximation

bounds, [a,b]; a vector to identify the active information

functions; and a vector which contains the average or

expected values of the active functions. The potential set

of information functions is provided as a set of numbered
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external functions, i.e., FI,F2, ...FM. The potential set

is thus easily modified without access to the subroutine.

The user identifies the active set for a particular problem

by specifying the respective function numbers. The pro-

gram is currently implemented with twelve potential func-

tions and a maximum of six active functions (plus g0 (x)=l).

Larger sets can be accommodated with simple program

changes. Subroutine ENTROP solves equations 4.9 for vector

( n n+1 using matrix decomposition and two programs from

the International Mathematical and Statistical Libraries

(TM-3L). All integrations for production of the Jacobian

and F (. n) values are accomplished using a 32 point Gauss-

Legendre quadrature program from a local library. Once

convcrgence is reached, the A vector is returned. Sub-

routine ENTROP has been extensively tested with very posi-

tive results.

Convergence and rate of convergence of the Newton

* ethod are dependent on the initial guess, A0. Theorems

exist which address convergence of iterative schemes in

general (Refs 13; 47) and the Newton method explicitly

(Ref 67). The theorems usually specify a neighborhood

FiOout the solution wherein the scheme will converge if the

initial guess is within that neighborhood. Acton (Ref 2),

Collatz (Ref 13), and others present examples of diver-

qence due tn poor initial guesses. As expected, subroutine

ENTROP is sensitive to the initial guess A0, and a poor
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initial guess will cause divergence or numerous iterations

for convergence. For example, we consider the data pre-

sented in Table IV.I. The data pertains to the output of

a computer simulation which will be discussed in Chapter IX.

We wish to find the A vector for the four information func-

tions, Fl, F2, FS, F8, where the average values and bounds,

[a,b], are computed from the data. Previous application of

subroutine ENTROP for other combinations of information

* functions, using the same data, indicated that AA was a

feasible starting value for the Newton method. However,r
the large value of XAO= 374 .114 produced a terminal numeri-

cal error in ENTROP. A second attempt with initial guess

AB, where ABO 0.0 and other elements of AB were equal to

AA' failed to converge in 35 iterations, although a terminal

error did not result. A final attempt with AC=(0,0,...0)

converged in 20 iterations. Several schemes for intelli-

gent selection of the initial vector, A0, were evaluated

" throughout the research. The one scheme that converged

for every test on [a,b], where a solution existed, was the

initial vector of all zeroes. Conceptually, this tells us

that the first iteration of the Newton method produces a

A, A1=-J(A 0 )- F(A0), where A1 is an element of a conver-

gent neighborhood of the solution; other initial guesses

run the risk of missing that neighborhood. (It is not

known why this occurs.)

47

.I,



TABLE IV. I

SIMULATION DATA AND CONVERGENCE COMPARISON

Find A = ( A, 2,A51 8) for

p(x)=exp[-0- 1Fl- 2F2-) 5F5- 8F8 on

[a,b) = [5104.12, 8262.58].

Symb c, 1 Function Expected Value

. Fi (x-x) /s .00457

(x-x) 2/s 2  1.0

In (b-x) 7.4647

FS (x-x) is 4  3.0168

x sample mean 6492.26

s2 variance 72050.87

Test Comparisons

initial guess: 1AA=( 3 7 4 .114, 0.0, -. 348, 35.707, .0153)

* Result: Terminal numerical error

Initial guess: %,=(0.0, 0.0, -. 348, 35.707, .0153)

Result: Failed to converge in 35 iterations

IuItia! guess: Ac=(0., 0., 0., 0., 0.)

Result: Convergence in 20 iterations

= (-24.336, .636, .540, 4.125, .002)
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Subroutine ENTROP is implemented for a maximum of

six active information functions plus the normalizing func-

tion g0 (x)=l. The number of active functions is restricted

for two reasons. First, the Newton method becomes compu-

tationally cumbersome as the number of constraints, i.e.,

the number of active information functions, increases.

The primary numerical difficulty centers on the symmetric

Jacobian matrix, J, which was discussed in the proof of

Theorem 4.3:

J = [fJ(A)/ i  j,i=0,1,...k.

We demonstrate the potential numerical difficulty by

relating the initial research which considered moments

i
about zero as information functions, i.e., gi(x)=x The

Jacobian in this case follows:

k-fp(x) dx -fxp(x) dx ... -fx p(x) dx

_2xk+ip
* J = -fxp(x) dx -fx 2 p(x) dx ... fxlp(x) dx

-fxkp(x) dx -fxk+lp(x) dx ... -fx 2kp(x) dx

As k increases, or as the interval of integration, [a,bJ,

increases, the elements in the kth column (or row) will be

much larger than elements in the first column (or row).

Couple this structure with numerical error and limited

machine precision, and we have created a matrix which the
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computer interprets to be "singu'lar." Such ill-conditioning

is not restricted to moments. The example of Table IV.I

with large initial value for 0, X 0=374.114, produced the

same difficulty. Hornbeck (Ref 40) discusses ill-

conditioning and suggests means of circumventing the

effects of an ill-conditioned matrix. Scaling and the use

cof double precision computation will delay the impact of an

ill-conditioned matrix. Ill-conditioning is controlled in

the entropy procedure by restricting the number of active

information functions and normalizing functions when neces-

sary. For example, fLrctions gi(x)=( (x-)/O)i or
ia, (x)=(x-'J) are used in place of moments about zero,

i
(:. = , ,,.qere i is the mean and a is the standard devi-

a t i on.

A second reason for limiting the number of active

-nformation functions is the desire to produce a meaning-

ful and usable closed form for p(x), the approximation

density. If the number of functions used in a specific

represcntation of p(x) is large, i.e., greater than six,

then the practicality of the entropy method is reduced.

If six functions are not enough, then we should consider

vh,.:th~r wE have included the correct potential functions.

Son of potential and active information function

3et' is the subject of the following four chapters. The

Fp:te:i' *, st. defined in Chapter V has produced excellent

rc ,' ts for a variety of sample distributions and has

50



always required five or fewer active functions. An upper

bound of six active functions is conceptually reasonable,

and experimentation confirms this limit.

Although the Newton method as implemented in ENTROP

has succeeded in all tests on [a,b] with initial guess

A0=(0,0,...0)T, convergence is not guaranteed. Other

numerical schemes exist which can be applied when neces-

sary. An effective though slower method for solving the

constraint equations is a method which Acton (Ref 2) has

named the "curve crawler." This approach, for three con-

straints, is initiated by solving the first constraint,

i.e., f0 (A)=0 of equations 4.8, for vector A. Small steps

are then taken along the surface of f0 (A)=0, in the nega-

tive gradient direction, while seeking the zero of the

second constraint, i.e., fI(A)=0. The method proceeds by

staying close to the f0 (A)=0 and f1 (A)=0 curve and seeking

the A which zeroes f2 (A)=0. The method was implemented by

Orr (Ref 63) in work on the [0,-) interval and is explained

in detail by Acton. Our success with ENTROP and the Newton

method made the development of a backup method unnecessary.

The "curve crawler," a gradient descent approach, is sug-

gested as an alternative should the Newton method fail.

Chapter Summary

In this chapter, we have presented the theoretical

development of the entropy method to include existence and
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uniqueness discussions. Solution of the constraints (equa-

tions 4.8) was discussed in both theoretical and applica-

tions settings. An effective subroutine to solve the con-

straints has been developed, tested, and briefly discussed.

Usina the information function set of Chapter V, the sub-

routine has been tested against sample densities of the

following for-as on interval [a,b] : normal, beta, gamma,

exFonential, uniform, Weibull, mixtures of the pre-

. 2'eding densities, and unknown samples. The routine pro-

SucC-c exact results, where results were known ahead of

+ and statistically accentable results for unknow~n

t ..tributions. The routine converged for -ve-y test with

,n initial cu;ss of .'-=(0, ...0). 'his subroutine is the

kcv clement to machine implementation of the entropy char-

_: ztcrization method. However, the accuracy of the charac-

terization metho, in representing unknow-n distributions

* centers on selection of the correct information functions.

Thc i.ext four chapters address information function selec-

t , n.
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Chapter V. Potential Information Functions

Information Functions

Given random variable X, we wish to approximate

the distribution of X based on available (or computable)

information. The information will be collected in terms

of average or expected values of certain functions of X;

we call these functions "information functions." By speci-

° fying the expected values of k information functions,

gi(x), i=l,2,...k, and applying the maximum entropy pro-

cedure of previous chapters, we obtain p(x) an approxima-

tion to the unknown density of X, where f(x) is the unknown

density and

p(x) = exp[- 0- Igl(x)-...kgk(x)] (5.1)

Clearly, the number and forms of information functions will

impact the accuracy of approximation.

To demonstrate the importance of proper inforrna-

tion function selection, we use the moments about zero as

information function!-. Consider the beta distribution on

[0,1]:

f(x) = Cx p - (l-x) Q- (5.2)

where C=(P+Q)/(7(P)7(Q)), and P and Q are the beta param-

eters. We first use equation 5.1 with k=l; that is, our
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total available information consists of the average values

of g0 (x) and gl(x) where g0 (x)=l and gl(x)=x. As previously

discussed, the function g0 (x) corresponds to the constraint

that p(x) be a density, i.e., fp(x) dx=l. The resulting

cntropy approximation, given <gl(x)>, is denoted pl(x) where

p, (x)=exp[- 0- 1 (x)] on [0,1]. Figure 5.1 displays f(x)

(P=4, Q=2) and pl(x) to illustrate the error of approxima-

tion. Now consider collecting additional information in

•tcr.ms of a2(x) >=<x' > to find our second approximation,

T'P {x)=exp[- 0-Aix- .2x21. Notice that t, represents the

- Lacrange multiplier in each entropy characterization;

however, the Lagrange multipliers in one representation are

!.ct related to (and need not equal) the multipliers in subse-

r<uer-t characterizations. Figure 5.2 demonstrates that the

increased information, i.e., the second momert, has improved

cur approximation. Additional information, in terms of

additicnal moments, continues to improve the approximation

(Ficures 5.3, 5.4 and Table V.1). It can be shown (Ref 90)

that po(x)-f(x) as k--. Table V.I shows that at k=6 we

arp approaching an acceptable numeric approximation.

However, the moment approach presents two signifi-

,-ant rroblems. First, as k increases or as the interval

of interest, [a,b], becomes large, solution of the con-

:traants for the Lagranqc multipliers becomes numerically

Lntr-ctoble (see ChaDter IV). Some authors feel that

.ost" well-behaved distributions are "amply" described by
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the first four moments (Ref 49). Pearson's "method of

moments" classifies distributions based only on the first

four moments (Ref 65). However, Wragg and Dowson (Ref 90)

indicate, and our example with the beta distribution implies,

that a general characterization scheme would require a

larger number of moments. Given that a usable value of k

can be distinguished and that the moments can be scaled to

allow numerical solution of the constraints, we face a

* second problem. The second problem is that the algebraic

form of p(x), with moments as information fanctions, tells

r the analyst very little about the unknown density, and p(x)

may be computationally difficult to handle even with four

:r..ents. For example, consider the beta distribution of

equation 5.2 once more. Let gl(x) =in (x) and g2 (x)=ln(l-x)

and we obtain p(x)=exp[-) 0 ->,1 in (x)-i 2 in (1->)]. Applica-

tion of our numerical scheme produces X 0=-2.9957323,

S=-3.0, and 1, 2=- 1.0. We now consider the form of p(x):

p(x) = exp[-\ 01 exp [-IiIn (x)] exp [-X2 in (l-x)], or

-xi -x'

p(x) = exp[-X 0 ] x (l-x) , and

p(x) 20.0 x (l-x)

Thus p(x) exactly equals f(x), and we have only used *wo

information functions. Further, the algebraic form of the

,r, t rr-py density tells us that we are working with a beta

,3itribution. Our selected functions are clearly superior
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to moments in this example. The above examples illustrate

the importance of selecting the correct information func-

tions and indicate the numerical and conceptual deficiencies

of relying solely on moments. Orthogonal families of func-

tions (Ref 15) present the same conceptual and numeric prob-

lems as observed with moments.

The procedure defined in Chapter III presents a

viable alternative for approximation of unknown densities

* •on a bounded interval, [a,b]. The information function

selection step of the procedure includes two phases. In

the first phase, we specify a large set of potential infor-

mation functions; that is, linearly independent functions

that may prove useful in representing distributions on

[a,b]. A potential set that has proved extremely useful

for a variety of unknown densities is defined in the next

section of this chapter. The procedure is designed to

allow flexibility in definition of the potential set, and
"2

this flexibility is also discussed. In the second phase,

we select an "active set" of information functions from the

potential set. A large number of active functions leads to

more accuracy in the approximation. However, a large num-

ber of functions also leads to numerical difficulties and a

loss of conceptual significance in the form of p(x). Selec-

tion of the active set is thus a compromise; we want the

active set to be as small as possible within our accuracy
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restrictions. Three different methods for selection are

discussed in subsequent chapters.

A Potential Information

Function Set

Our initial approach to specifying a potential set

for use in a general approximation problem centers on an

investioation of named distributions (Refs 37; 47; 55; 60).

We consider the algebraic form of various well-known dis-

* Tributions and determine what information functions, if

any, will produce an equivalent entropy density, p(x). In

'he example of equation 5.2 we saw that information func-

tions ln(x) and ln(l-x) produced a beta distribution on

i9,l]; that is, if w2 provide <ln(x)h, <ln(l-x)V, and apply

the entropy procedure, then the resulting entropy density

will be a beta. If we specify no information functions,

i.e., only a0 (x)=l on [a,b], then the resulting entropy

density, p(x)=exp(-'-0 ), equates to the uniform density.

A list of the more well-known distributions and the result-

ir.g information functions is shown at Table V.II. We

reason that many continuous distributions on [a,b] will be

closely approximated by the listed distributions or some

combination of these distributions. Using Table V.II, we

>,elect the most versatile distributions and eliminate

rcdundant functions to produce the potential set shown in

Wable V.III. Notice that Table V.III includes the first

four moments which we also represent as normalized central
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TABLE V.III

A STARTING POTENTIAL SET

Symbol Function Symbol Function

Fl x or (x-)/o F6 [ln(x-a)] 2

F2 x2 or [(x-w)/c]2  F7 x 3 or [(x-w)/0] 3

F3 ln(x) F8 x or [ (x-p)/o] 4

F4 ln(x-a) F9 ln(x 2 +l)

F5 in (b-x)

z.;mer. .s, i.e.2, 2 (x) : (>)!2 where 's the calculated

mean and G is the standard deviation. Normalization was

needed to provide numerical stability for a specific simula-

tion application on [5104.0, 8262.0]. Normalization is

effective on large intervals, [a,b], but may produce the

opposite result if b-a~l. On small intervals normalized

moments involve small values divided by small values which

will lead to numerical instability. Thus, origin or central

moments are more effective on small intervals.

The functions in Table V.III are not intended as

the ultimate potential set but will serve as an excellent

tartin7 point for any characterization. Functions can

.n-i should be added to this set (or deleted) based on data

.-maiyzis for a particular problem. As an example, we con-

o[d:.- a distribution that was first investigated by Chanda

. .> (RM. II). The data consists of 2000 samples,
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xi, i=1,2,...2000, from an unknown distribution. We trans-

late the data from [-.4894, .50281 to [.0106, 1.003] to

preclude difficulty with the natural logarithms in Table

V.III. We compute average values from the sample as

explained in Chapter IV. Using the potential set of Table

V.III, we select the active set with method three of

Chapter VIII. The resulting "best" fit required six active

functions and is shown in Figure 5.5. The sample density

is also shown and was created by sorting the 2000 deviates,

creating the cumulative at each sample point, CUMi=i/2000,

i=1,2, ...2000, and numerically differentiating. The initial

approximation missed the peaked structure of the sample

which indicates thzt we failed to specify sufficient infor-

mation. The peaked sample suggests the shape of a double

exponential density, and we thus add information functions

Ix-.51 (the .5 accounts for translation of the data) to the

potential set. Application of method three resulted in

four active information functions with the excellent char-

acterization in Figure 5.6. Thus the nature of the data

suggested the addition of a function to the potential set,

and that function was subsequently selected as active.

This example again illustrates the importance of

proper information function selection but also highlights

the flexibility of the procedure. The characterization

procedure was designed as a tool for the analyst. Conse-

quently, data analysis and an analyst's insight can be used
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K
to enhance the procedure, particularly in the information

function selection phases. The potential set of Table

V.III has been tested on a variety of unknown densities

and produced excellent results. If the potential set con-

Stiins a sufficient mixture of functions, then subsequent

:-rocedural steps will eliminate unnecessary functions and

choose the useful functions, i.e., the active set.

Ie Information Function Set

Selection of the active information functions from

c, zotential sot is the subject of the next three chapters.

"ae ative set %;as -,reviously defined as that subset which

i uos-d in the entropy ap.,rcximation for a specific set of

:ota. The coal of the ,soection procedure is to pick the

_%:.1 subset whch ,neys enough information to provide

n aceeptabe ap roximation to the unknown density, f(x).

Selection of t.e ,ct've set depends on how one defines

' "cce,') tcble apntroximation" and how one measures "closeness"

f aptrc:.:ination. Three different approaches to the prob-

m resulted in three v-able methods, each with different

qualities. The methods were tested by generating data from

kncwn 11istributions and e-'luating the resulting approxi-

- - If Th, potent4jl set includes the correct infor-

*t i f'.nct iers for a saple density, then the selection

:-'o e. re should select those functions and produce an

fit. For exam ,'e, if the data is from a normal
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density then the selection method should select x and x2.

For the beta distribution on [0,i], we expect ln(x) and

ln(l-x) to be selected. If the correct information func-

tions are not in the potential set, then we wish to select

the best subset to approximate f(x). The three selection

methods produce excellent approximations as will be demon-

strated. The choice of method for a particular approxima-

tion problem will depend on the available information,

accuracy of the information, and, in some cases, the

analyst's preference.
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Chapter VI. Active Set Selection--

Method One (Regression)

Introduction

The concepts of potential and active information

function sets were discussed in Chapters III and V. One of

three general methods to select the active set for a spe-

cific density approximation is presented in this chapter.

The approach is based on linear regression and requires a

random sample of the unknown distribution, xi, i=l,2,...N.

We first present the procedural steps for method one and

follow with detailed discussion of a few of these steps.

Sample applications are then presented to demonstrate

method strengths and sensitivities. The excellent results

of method one led to alternate methods as presented in sub-

sequent chapters.

Method One Procedure

Method one includes five procedural steps:

1. The first step is generation of the sample

cumulative distribution. The sample, xi , i=l,2,...N, is

sorted and the cumulative distribution is approximated at

these N points; CUMi=i/N, i=I,2,...N. Clearly, as N

increases, the approximation becomes more accurate. The

cumulative data is grouped, for large N, to produce better
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results in subsequent steps; for example, with N=500 we

use every tenth xi to reduce the data from 500 points to

51 points with CUMj=(j-1)10/N, j=1,2,...51.

2. Step two produces a numerical estimate for

f(x), the unknown density. We numerically differentiate

the sample cumulative to produce a numerical density at M

rfeints, DEN i , i=1,2 .... M, M<N. Numerical differentiation

it an ill-posed problem (Refs 36; 53) and requires care in

,'-kication. Our work with differentiation techniques

=,r_,uc ., interestincg results which are presented later in

h chapter. The initial approach to numerical differen-

t:ation w[,:s central d3fference;

DE .L : I uv -C M i 24U.. m-)
i K i+l C i-l / i+l- l-]  i=2,4 ... (M-l).

3. Thie third step produces the natural logarithm
< f thc n'meyical dcnsity; ln(DENi), i=l,2,....M. The pur-

o , cF this 5tei is to establish a linear relationship

cwci, the r:umerical density and the entropy density. We

'eek the minimum set of information functions, gj (x),

j=1,2,...k, which are essential for accurate approximation

c f f (x) . L t the entropy density include all the poten-

P(x) = cxp[-\0- 1g (x'-... m g m ( x )

r:jr'ber of functions in the potential set,

W@ t:l:,ish th, 1near relationship as follows:
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In f(x) = in p(x) = -)0- 1g1 (x)-.. mgm(x) (6.1)

We now have a form which allows linear regression, and we

have M data points (ln(DENi)) to approximate ln(f(x)).

4. The fourth step is to apply linear regression

to identify several possible sets of active information

functions. This regression step reduces the number of com-

binations of potential functions, i.e., subsets of the

potential set, that will be considered in selection of the

active set. We consider sets of five or fewer functions

for reasons presented in previous chapters.

5. The final stei. is selection of the active set

from the sets defined in step 4. A measure of "goodness of

fit" is specified and the active set is the set whose cor-

responding entropy characterization provides the "best"

fit to the data.

The above procedure has produced excellent results

as will be shown. Currently, the procedure is implemented

in two separate packages to allow maximum analyst involve-

ment. The first package accomplishes steps 1 thru 4 and

returns 10 candidate sets of functions. The analyst may

use some or all of the 10 sets, or other combinations of

functions, as input to the second program which accomplishes

step 5. In our examples we will use only 5 of the 10 candi-

date sets. Steps 2, 4, and 5 are discussed in more detail

in the following sections.
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Numerical Differentiation

Method one is a straightforward application of well

known numerical and statistical techniques; however, ini-

tial testing indicated a sensitivity to numerical and

sampling errors. The ill-posed nature of numerical differ-

entiation can result in exaggerated numerical error, thus

various differentiation schemes were investigated to reduce

this risk. The investigation resulted in a previously

* unnublished scheme, the "median" method, which generally

4outperformed other schemes for our application. A summary

of the investigation follows.

Polynomial and Spline Approximations. Inter-

national Mathematical and Statistical Libraries (IMSL) Eub- (
routines were used to fit a polynomial to the sample cumula-

tive and, subsequently, to differentiate the polynomial.

=Polynomials of up to sixth degree were tested but produced

poor results. Polynomial "wiggle" (Ref 40) caused negative

density values. Spline approximation and spline interpola-

tion (Ref 5) were attempted with existing IMSL software in

an effort to reduce the polynomial "wiggle." Differentia-

tion of the spline also produced negative density values

aL a few points and proved unsatisfactory.

Sliding Polynomial. A program was written which

makes a leost squares fit to five data points using a second

decree pc©]ynomial . Beginning with the first five data
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points (xi and CUM., i=1,2,3,4,5), the program produces

a second degree polynomial fit to the cumulative data and

uses the polynomial coefficients to calculate the deriva-

tive at the middle point, i.e., at x3 . The program then

advances the operative window by one data point and repeats

the procedure for i=2,3,4,5,6 to find the derivative at

x . The procedure continues in this fashion to produce

DEN., i=3,4,... (N--2). Forward and backward difference

formulas are used for the first two and last two data

4points. A second program was written to accomplish the

identical procedure but using seven data points instead of

five. The intent of using seven points is to provide more

of a smoothing effect o.i the data. The seven-point formula

did produce a more accurate derivative than the five-point

formula, and both schemes generally outperformed the central

difference approach.

Sliding Median. The median method is based upon a

nonparametric regression parameter estimator which was

first suggested by Theil (Ref 79). The distribution of

this estimator was investigated by Sen (Ref 69) and Chanda

and Kulp (Ref 11). To our knowledge, this scheme has not

been previously used for numerical differentiation. As in

the polynomial approach, we define an operating window

about the first seven data sets, xi and CUM., i=1,2,...7.

We then consider all combinations 6f these seven distinct
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data sets, taking two sets at a time, and calculate the

value [CUMk-CUM i ]/[Xk-Xj] for each combination. This value

equates to the central difference at the point midway

between x. and xk. The values for the 21 combinations are

then sorted, and DEN 4, the density at point x4, is assigned

the median value. The operating window is advanced one

data point, and the procedure repeats to find D7N 5 . We

iterate for i=4,5 .... (N-3). Forward difference is used to

find the density at x! , central difference for points x2 ,

x3, XN2 'N-l' and backward difference for point x N  A

similar program was created for an operating window of only

5 data points. As in the polynomial case, the 7 point

orcmula performed better than 'he 5 point formula. The t
simplicity of the median method resulted in faster computa-

tion than the polynomial approach.

The listed methods were tested against sample

cumulatives from known distributions and known densities,
* M

f (x). The sum of errors squared, SE = Z (f(xi)-DENi)2,
i=l

and mean squared error, SE/M, were calculated for compari-

son. Three example distributions are provided in Table

VI.I. Each sample set in Table VI.I is composed of 500

deviates from the stated distribution. The sample dis- . -

tributions are further described in Table VI.II. The 500

deviates were grouped to M data points before differen-

tiatinq. The first three comparisons demonstrate the

effect of crouping data from a given sample set. The last
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TABLE VI.I

NUMERICAL DIFFERENTIATION SCHEMES

Sample Time
Set No. Distributio M Scheme (sec) (SE) 2  (SE) 2 /M

1 n(10,2) 500 Central Dif. .035 230.13 .460
1 n(10,2) 500 Poly. 5 .506 49.9 .0998
1 n(10,2) 500 Poly. 7 .572 12.02 .0240
1 n(10,2) 500 Median 5 .211 20.51 .0410
1 n(10,2) 500 Median 7 .528 8.80 .0176

* 1 n(10,2) 101 Central Dif. .002 .637 .00630
1 n(10,2) 101 Poly. 5 .098 .322 .00319
1 n(10,2) 101 Poly. 7 .113 .180 .00178
1 n(10,2) 101 tdian 5 .041 .227 .00225
1 n(10,2) 101 Median 7 .096 .164 .00162

1 n(10,2) 51 Central Dif. .0001 .1210 .00237
1 n(10,2) 51 Poly. 5 .046 .0664 .00130
1 n(10,2) 51 Poly. 7 .052 .0472 .300925
1 n(10,2) 51 Median 5 .022 .0560 .001098
1 n(lC,2) 51 Median 7 .'.:9 .0410 .000804

2 n(10,2) 51 Central Dif. .028 .1021 .00201
2 n(10,2) 51 Poly. 5 .048 .0457 .000895
2 n(10,2) 51 Poly. 7 .055 .0255 .000500
2 n(10,2) 51 Median 5 .023 .0396 .090776
2 n(10,2) 51 Mledian 7 .039 .0245 .000481

3 beta P=4, Q=2 51 Central Dif. .03 6.767 .1327
3 beta P=4, Q=2 51 Poly. 5 .049 3.579 .0702
3 beta P=-4, Q-2 51 Poly. 7 .056 2.127 .0417
3 beta P=4, Q-2 51 Median 5 .019 3.581 .0702
3 beta P=4, Q=2 51 Median 7 .041 2.375 .0466

NOTE: Each sample set includes 500 data points which
were grouped to M points before differentiation.

M
(SE)2= E (Actual-Approx)2.

i=l
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two comparisons are representative examples from other

samples. The point of significance is that the median

method generally produced closer approximations to the

known densities than either the polynomial or central dif-

ference methods. The median approach limits extreme values

caused by numerical and sampling error, thus producing a

closer fit to the true analytic density. The method does

not eliminate differentiation "noise" but does control the

magnitude of this noise. Figure 6.1 and Figure 6.2 provide

examples of the densities produced by the median method

for a normal distribution (mean 10 and variance 2) and a

beta distribution (on [0,11 with P=4, Q=2) . The sliding

median method with 7 data points was used for all subseque-t

numerical differentiation in the research.

Regression

We use linear regression in step 4 to reduce the

number of candidate active sets. Linear regression is a

well known and well defined analytical tool. Drapper and

Smith (Ref 23) and others (Refs 28; 37; 38) provide

detailed explanation of regression procedures, regression

statistics, and stopping criteria. Both "stepwise regres-

sion" and "regression by leaps and bounds" were researched

to include available software for implementation; Statis-

tical Package for the Social Sciences (SPSS) and IMSL sub-

routine libraries contain regression packages. The IMSL
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leaps and bounds package, RLEAP, was selected for our

application with the adjusted R2 statistic (Ref 38). We

created a program which uses RLEAP to return ten candidate

active sets with corresponding adjusted R2 statistics;

i.e., the two best sets with one active variable, through

the two best sets with five active variables. "Best set"

is defined as the set with the largest adjusted R2 sta-

tistic.

* An examination of our regression procedure will

identify a significant benefit of our entropy approx~ma-

tion method. We use regression to identify ten possible

acti-.e sets. However, we could use the same regression

packages to select the single active set that produces th-

best recression fit to the data by choosing the one set

with the laroest adjusted R2
. Regression will also pro-

duce the rearession coefficients, Ai, i=0,1,...k, for our

selected set to completely specify p(x) as in equation

(6.1). Thus, why not stop at the regression step? The

reason for ster 5 centers on the purpose of linear regres-

sion. Regression seeks a fit to the sample data and the

p(x) produced in regression is not required to satisfy

averace value or density constraints (see Chapter IV).

Thus, the rearession p(x) need not be a density function

at all and will bo a maximum entropy density only by coinci-

denc . The s,7e intent of the regression procedure, as we

hi,e defined! it, is to identify information functions that
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play a key role in describing the sample cumulative. Once

regression has defined several candidate sets of functions,

we return to the entropy approach to select the density

(i.e., select Ai. i=0,1,...k) which satisfies average

value constraints. This entropy approach is thus a com-

promise between a fit to the sample zata and constraint

satisfaction. One may view constraint satisfaction as an

attribute of the underlying analytic distribution versus a

function of the sample distribution. Consequently, our

approach provides a compromise between the unknown analytic

distribution and the provided sample. The examples of the

next section will demonstrate this quality.

Experimental Results

The strenaths and sensitivities of method one are

best demcnstrated with examples. We consider the first

four steps of method one in this section and subsequently

discuss ste five. Our goal is to select the minimum set

of functions (active set) which produces an acceptable,

closed form, entropy approximation, p(x), to the unknown

density, f(x). To test method one, we generate random

samples of size 500 from known distributions, i.e., normal,

beta, and gamma. Thus the analytic cumulative and density

functions are available for comparison to sample and entropy

distributions. We will consider the three sample data sets

of Table VI.II for purposes of illustration. The normal
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samples were produced by the Box-Muller method (Ref 8)

applied to uniform deviates. The beta deviates were pro-

duced via an IMSL subroutine.

We first discuss the sensitivity of method one to

sampling and numerical differentiation errors. Experi-

mentation with normal, beta, and gamma distributions has

shown that if the actual analytic density is used in place

of the numerical differentiation step (i.e., sampling and

differentiation variations are not permitted), then the

regression step will select the "correct" information func-

tions with an exact fit to the data (i.e., adjusted R2

equal to 100). The "correct" functions for a distribution

are the information functions presented in TableV.11, i.e.,

x and x 2 for normal, ln(x) and ln(l-x) for beta, etc.

However, when the complete procedure is applied, i.e., a

sample cumulative is generated and differentiated, the

regression step does not necessarily select the expected

information functions. In fact, the randomness of sample

data may cause selection of different function sets when

multiple regression is applied to different samples from the

same distribution. The interesting point is that which-

ever set of functions is selected, excellent approximations

are obtained. Thus, method one demonstrates data depen-

dence.

Samples one and two of Table VI.II for the normal

cIstribution provide an example of data dependence. We
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use the potential information functions of Table VI.III,

where P, a2, and [a,b] are 10, 2,(xlxN] respectively,

and apply method one. Table VI.IV lists five candidate

active sets that result for each sample, El, I=1,2, ...5,

where I represents the number of active functions. Notice

we have included only five candidate sets; the analyst may

choose to consider a larger number of sets for other appli-

cations. For our potential set, F2=((x-)/c) 2 is the infor-

mation function that will exactly characterize the normal

distribution, and F2 is dominant for both data sets. If

rwe next solve the constraint equations, given accurate

expected values for the information functions, we will pro-

duce a- exact fit to the analytic distribution for any set

which contains F2. Figure 6.3 provides a comparison of

sample and entropy cumulatives to the known analytic cumula-

tive for active set El. Entropy and analytic cumulative

values were computed by numerical integration of respective

densities. Differences in cumulatives, i.e., sample-

analytic and entropy-analytic, are shown to facilitate

comparison and because the distributions are very close.

The entropy-analytic curve is identically zero because the

entropy approximation provides a near perfect fit to the

analytic distribution. Graphs were also produced for sets

E2, E3, E4 from data set one and El through E5 for data

set two. The graphs were nearly identical to Figure 6.3

because F2 (the correct information function) was part of
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TABLE VI.III

POTENTIAL INFORMATION FUNCTION SET

Fl = (x-i) /C F4 = ln(x-a) F7 = ((x-) /o)

F2 = ((x-i)/c) 2  F5 = ln(b-x) F8 =

F3 = ln(x) F6 = (ln(x-a)) 2  F9 = ln(x 2 +l)

NOTE: u = mean; c = standard deviation; [a,b] =
bounds.

TABLE VI.IV 4

REGRESSION RESULTS FOR NORMIAL SAMPLES

Candidate Functions for Adjusted Functicns for Adjusted
Set Data Set #1 R2  Data Set #2 R2

El F2 91.76 F2 89.70

E2 F2,F6 95.75 F2,F8 95.70

E3 F2,F6,FS 96.97 F2,F6,F8 96.19

E4 F2,F4,F5,F6 97.07 F2,F3,F4,F5 97.37

E5 F1,F5,F6,F7,F9 97.12 F2,F4,F5,F8,F9 98.66
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the entropy representation, and additional functions pro-

vided little usable information. Set E5 of data set one

does not include F2 and yet provides an excellent regres-

sion fit to the data, i.e., R2 =97.12. The resulting

entropy approximation also produces an excellent fit to

the analytic and thus the sample as shown in Figures 6.4

and 6.5. Table VI.V provides further insight with a

numerical interpretation of the entropy approximations pro-

duced by El throuch E5 for data set one.

The beta distribution on [0,1] provides a more

revealina e:-ample. Because we are on the [0,1 interval,

the normalized moments in our potential set (Table VI.III)

are _.piaced with moments about 7:ro. Table VI.VI repre-

sents the results of applying method one to data set three. (

The desired functions for a perfect fit to the analytic

distribution are F3 and F5. Notice from Table VI.VI that

only E4 includes F3 and F5. Figures 6.6 through 6.14 pre-

sent a comparison of analytic, sample, and entropy densi-

ties and cumulatives. Notice again that for set E4 method

one provides an exact fit to the analytic distribution

(Figure 6.9 and 6.13). Sets E5 and E3 perform quite well

even without the desired information functions. Table

VI.VII rprovides a numerical evaluation of the entropy

approximations.
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A review of Tables VI.V and VI.VII and previous

figures will consolidate four significant points concerning

method one:

1. The method is sensitive to sample data and may

siuggest candidate active sets that do not include the ana-

lytically correct functions. The reason is that the method

provides a compromise between sample and analytic distribu-

tions and may require "other" functions to accomplish that

compromise.

2. An acceptable approximation to the unknown dis-

tribution may be obtained even if the "correct" functions

are not part of the active set. Set E5 for the beta

example and set E5 for th: normal demonstrate this qu=Iicy.

3. Given accurate expected values, inclusion of

the analytically correct functions in the active set will

-:roduce an exact fit.

4. Finally, the information functions from one

.ample will provide excellent approximations for subse-

quent samples. The two normal data sets exemplify this

quality. Since our technique, in general, approximates

the unknown analytic distribution, and the sample is an

_3nrolmation to the analytic distribution, then one would

,:xPect an excellent tit to subsequent samples.

Before proceeding to final selection of the active

,-t,we demncnstrate the sensitivity of method one to errors

j,_ thu calculation of expected values of information

1o



functions. This subject is further pursued in Chapter X.

These expected values determine the constraint equations

and thus determine the final form of our approximation,

p(x). Expected values may also be involved as parameters

in the potential set such as v and 02 in Table VI.III.

The above examples used accurate expected values which were

approximated by a 32 point quadrature formula. We might

also approximate these values with averages from the random

sample:

500<gj (x) > E gj (x i ) /500.
i=l

Table VI.VIII lists the average and quadrature values for

our three sample data sets.

As one would expect, use of averages in lieu of

the more accurate quadrature values will produce a subse-

quent change in the entropy approximation. We demonstrate

an interesting result by using the average values for the

normal sample, data set one, to include mean and variance

values in the information functions. The entropy procedure

produced a less accurate fit to the analytic, as expected,

but a more accurate approximation to the sample data. This

is demonstrated in Figures 6.15 and 6.16 which graph sample,

analytic, and entropy comparisons. Notice that the "entropy

minus analytic" curve follows the trend of the "sample minus

analytic" values. Comparison to Figures 6.3 and 6.4
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(quadrature values) exemplifies this stronger correspon-

dence to sample and weaker relationship to analytic.

Similar results were obtained with beta, gamma, and simula-

tion sample densities.

A word of caution is needed in reference to the

figures. The figures were designed to accentuate the dif-

ference in distributions and not the closeness of approxi-

mation. Careful attention to the actual values of differ-

* ences between distributions or review of Tables VI.V and

VII will indicate that the entropy approximations are quite

close to the sample and analytic distributions. In fact,

the candidate sets provide such excellent approximations

that the choice of the single best active set is difficult.

Goodness of fit statistics are used in this final step of

the procedure.

Goodness of Fit

Experimental results, in addition to the above
0

examples, indicate that the regression procedure will pro-

duce adequate fits to the sample data and accurate, if not

exact, fits to the underlying analytic distribution even

when the selected information functions are not those

expected. The question remains as to how one selects the

best set of information functions from the several candi-

date sets. Since an accurate fit to the sample cumulative

is desired, the active set will be the candidate set that
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produces the smallest error between sample and entropy

cumulatives. Again, the sample cumulative is available at

N sample points, and the entropy cumulative may be calcu-

lated by integrating the entropy density.

Selection of a measure of error between sample and

entropy cumulatives will impact selection of the active

set. If we are only concerned with absolute error between

* the distributions, then we might use the errors squared

measure of previous examples (Tables Vi.V and VII). However,

we would like to know more. Besides producing the "best"

fit, we would like to know "how good" that fit is in a sta-

tistical sense. A goodness of fit statistic will provide

tY%* information. Step five of method one may now be

stated explicitly:

5. Identify a goodness of fit statistic, SK, which

is a function of sample and entropy distributions; calcu-

late SY for each candidate set; select the set with minimum

SYK a., the active set; and finally, specify the level of sig-

nificance for the selected SK. We thus select the informa-

tion function set that provides the best fit in the sense

of our chosen statistic.

Several goodness of fit statistics are discussed

iri A-pendix B. Each statistic has strengths and weaknesses

as indicated in the appendix and references. Different sta-

s ay rEnault in different active sets. Two examples

arr presented ir. Table VI.IX for Anderson-Darling, A',
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Kolmogorov-Smirnov, D, and Cram~r von Mises, W 2 , statistics

and the mean error squared, M 2 . Consider the normal example

of Table VI.IX. Since El through E4 produce identical

results, our choice of active set is a decision between El

and E5. Regardless of the analyst's choice of statistic,

the statistical values for the two sets aze very close.

The analyst would probably select the smaller set, El, in

this case. Notice that use of the A 2 or W2 statistics

iesult in acceptance of the hypothesis of equal distribu-

t, ons at a critical value of a>.15. The D statistic results

-n 1-.15.

The beta example of Table VI.IX better demonstrates

the flexibili'y of metbod one and the importance of the i
,hoice of statistic. We see that E4 produces the smallest

value of M , D , and W 2 . This result is pleasing in that

E4 contains the cxpected information functions F3=ln(x)

and F5=!n(l-x). However, a concern for a fit to the tails

of the unknown distribution may force the analyst to use

the A' statistic (see Appendix B). Use of A2 will result

in selection of set E5. Notice that both E4 and E5 provide

excellent approximations for all the listed measures.

Meth~d one uses linear regression and "goodness of

f." principles to select the best active set for all pos-

be :omlina: ons of tre Potential information functions.
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The method involves five steps:

1. Generate the sample cumulative;

2. Obtain the sample density, f(x), via numerical

differentiation;
m

3. Equate ln(f(x))= Z X.g.(x) where m is the num-
i=O IgI

ber of functions in the potential set;

4. Regress on the equation of step three to pro-

duce several candidate active sets;

* 5. Use statistical measures to select the best set.

Method one has been tested against various distributions

in the normal, beta, and gamma families and against the

simulation models of Chapter IX. An acceptable approxima-

tion resulted in every case u.ing the potential set of

Table VI.III. The method is based on proven analytic and

statistical techniaues, provides ample opportunity for

analyst input and modification, and produces a compromise

between the sample and the unknown analytic distributions.

* The excellent results of method one prompted further inves-

tigation of active set selection procedures. The next two

chapters discuss alternate methods.
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Chapter VII. Active Set Selection--

Method Two (Divergence)

Introduction

The linear regression approach of method one

(Chapter VI) produces excellent results in selecting the

"active" set of information functions, for a particular

approximation, from the predefined "potential" set. Method

° one demonstrates strong sample dependence, sensitivity to

numerical errors, and sensitivity to choice of goodness of

fit statistic. The selected active set produces a distribu-

tion which adequately fits the sample and underlying ana-

lytic distributions but is generally a compromise between

the two. Moreover, the active set need not include the

desired analytic information functions. While a method

which provides such an accurate approximation is certainly

a useful tool, if the method can also identify the correct

functions for the underlying analytic distribution then use-

fulness is increased. Additionally, our entropy approxima-

tion procedure is based on information theoretic concepts.

A desire to improve method one while adhering to our infor-

mation theoretic theme led to the information divergence

measure and the development of method two. We discuss

divergence and present method two with results.

* Iii
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Divergence

Experimentation with the regression method shows

that different goodness of fit measures may result in dif-

ferent active sets. The goodness of fit measures test our

fit to the sample data, i.e., to the sample cumulative or

density. Although our goal is an accurate approximation

to the sample, we now shift our concern to accurately

approximating the "information content" of the data. Thus,

,?e are chan4in.m our measure of fit to the data.

The Kuliback-Leibler measure of information varia-

• r t12 (ik.>fs 50; 51) measures the information exchance when

one ,P-robabillt, measure is replaced by a second probability

:ra ie.As &~fined in Chapters II and IV, the information

var~&tlc:, i.e., the loss or gain of information, which

occ . -s rn c. density f(x) is replaced by density p(x) is

I (p(v) ,f(x)) = !p(x) ln [p(x) /f(x)] dx

Fullback, Guiasu, Jeffreys (Refs 51; 33; 46) and others

discuss information variation and its properties.

Information variation seems like the perfect con-

uentuai measure. We would like to minimize the information

<C,: wnen the sample density, f(x), is replaced by the

en;rgpy density, p(x); thus we select the entropy density

--i nimizes I(p(x) ,f(x)). Unfortunately, information

i t, ticn i!3 not conmutative, i.e. , I(p(x) ,f(x)) I (f(x) ,p(x) ),

1--
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and I(p(x),f(x)) may be negative. We know from Guiasu or

Xullback (Ref Chapter IV) that

I(p(x),f(x)) > fpW)dx In E f(x) dx (7.1)

where E is the interval of comparison. If E is a subset

of the interval of definition for p(x) then fE p(x) dx may

be less than one. Thus, the right-hand side of equation

(7.1) may be negative, and I(p(x),f(x)) may be negative.

Our interval of comparison will be dictated by the random

sample, i.e., E=[xl,xN], and may force negative values for

I(p(x),f(x)). Kuliback and Jeffreys extend I(p(x),f(x))

to a more usab] ,,easure, divergence, which retains the

conceptual strength of information variation.

Kullback defines divergence, J(p(x) ,f(x)), as a

measure of the difficulty of discriminating between two

densities where

J(p(x),f(x)) = I(p(x),f(x)) + I(f(x),p(x))

= f [p (x) -f (x) in [p(x)/f (x) dx

= f[f(x) -p (x)] in [f(x)/p(x)] dx

= J(f (x),p(x))

As Kullback points out, J(p(x),f(x))>O with equality if and

only if p(x)=f(x) almost everywhere (a.e.). A simple

application of equation (7.1) will show that J(p(x),f(x))>O

113
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regardless of our interval of comparison. Thus,divergence

offers a viable means of comparing information loss when

using an entropy approximation in place of a sample. The

sample density is available at M points, xi , i=l,2,...M,

and we can approximate f(x) at point y by using linear

interpolation between f(xj) and f(x j+I ) where x,.y<xj+I .

The entropy approximation is available in algebraic form

and, thus, J(p(x),f(x)) can be calculated via numerical

quadrature. We seek the minimum set of information func-

tions which defines the density p(x) with minimum diver-

yence from f (x). This set will be the active set for the

civen data.

Selection Procedure

The active set selection procedure of method two

is analocous to multiple nonlinear regression but uses the

divergence mneasure. The procedure includes two phases, a

function addition phau;e (analogous to forward rearession)

and a function deletion phase (akin to backward regression).

The procedural steps follow:

1. Generate the sample cumulative distribution at

M points as in method one.

2. Produce the sample density, f(x), at the M

uoints by numerical differentiation as in method one.

3. Produce expected values of al information func-

ti-.:: 1 n thc- pctEn-r2 ial set uia quadratuie or average values
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as in method one. Steps 1, 2 and 3 concern data prepara-

tion while steps 4 through 6 describe the iterative pro-

cedure.

4. Use expected values in the appropriate con-

straint equations to find the Lagrange multipliers, i.e.,

the A vector, for the m entropy densities

pj(x) = exp [-X0-Xj gj(x)], j=l,2 .... m,

where m is the number of functions in the potential set.

Each pj(x) thus contains one information function.

5. Find the value of j such that J(pj(x),f(x)) is

a minimum and let this value equal h. Function gh(x) is

now considered a member of the active set which defines the

final entropy approximation, p(x). If J(p(x),f(x))<EPS

where EPS is a predefined stopping criteria, then the

"function addition" phase of method two is complete. If

J(p(x),f(x))>EPS then function gh(x) is retained in the

active set, and we iterate to find the next best function

to add to the active set. Steps 4 and 5 are reaccomplished

for the m-l entropy densities pj(x) where

pj (x) = exp [-X 0- Xh gh W)- gj(x) ], j=l,2,...m,

j#h. This procedure continues until a maximum of K func-

tions (we use K=6) are active, until J(p(x),f(x))<EPS, or
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until the addition of a function increases J(p(x),f(x)).

We thus select the active set with minimum J(p(x),f(x)).

6. The final procedural step, the "function

deletion" phase, checks for redundant information. Let k

be the number of active information functions, i.e., the

functions defining p(x), and consider the possibility that

we have selected too many functions. Let q(x) be p(x) with

one of the active functions removed. If J(p(x),q(x)) is

* close to zero, where "close" is defined by the user, then

we lose very little information in dropping the subject

function. For small diverqence, we replace p(x) with q(x)

and iterate to test each function for deletion. This

removal step was itplemented as a seoarate subroutine

(THROUT) because it is used in method three and may be

applied to method one for better results. THROUT con-

tributed appreciably to the excellent results obtained with

moethod two.

Results

Method two uses an approach which is conceptually

similar to method one but with a different measure of fit,

i.e., divergence. Divergence is an accepted information

: .'irc uhicb evenly weights the data points and follows

the information theoretic thrust of the dissertation. One

n-tice, however, that the selected active set is not

1 :,-t-eed to be the sincle best set -in the divergence
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sense. This is not of great concern because the selected

set must produce an acceptably small divergence and thus pro-

duce an acceptable fit to the sample. Method two may reach

a "small" divergence before considering the single best set

of functions. Method one has a slight advantage in this

respect because method one uses "leaps and bounds" linear

regression which considers more possible combinations of

functions. With either method, the only way to ensure that

the single best set is selected is to check all possible

combinations of potential functions. Such a procedure is

not practical, and results with both methods indicate that

such a procedure is not necessary.

Table VII.I comparz the results ior methods one

and two when applied to two sample densities from Chapter

VI (normal and beta) and a third sample from a gamma dis-

tribution. The function symbols are defined in Table

VI.III of the last chapter. Method two selected the cor-

rect analytic functions for the normal and gamma samples.

An excellent aDproximation was produced for the beta

although the desired analytic functions were not selected.

Method one results were statistic dependent but were

generally more oriented to the sample distribution. Addi-

tional samples from the same distribution families were

tested with similar, although not exact, results. In all

tests, if either method chose functions other than the ana-

lytic functions, the resulting approximations were still

117
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exceptionally close to sample and analytic distributions.

Of course when the analytic functions were selected, the

fit to the analytic was exact. A fourth instructive com-

parison of the methods is made in Chapter IX for a simula-

tion application.

Method two requires specification of the expected

values for the potential information functions and defini-

tion of the approximation bounds, i.e., the interval over

* which the entropy approximation will apply. For the given

examples, expected values were calculated via quadrature.

The bounds are specified by the analyst and may be based on

knowledge of the unknown distribution, quadrature results,

simulation results, or the random sample. Ths analyst

usually acquires such bounds in generation of the expected

values. The interval [xl,x N ] from the sample will suffice

if the expected (or average) values are calculated on this

interval.

The iterations of method two for the normal sample

are shown in Table VII.II. The first three iterations of

Table VII.II represent the function addition phase which

selects F2,F6,Fl. We stop at this point because the diver-

gence in adding Fl changes very little from the previous

iterations, and, in fact, increases slightly. The analyst

may have preferred to stop at F2,F6. Notice that in the

function additions phase we are comparing entropy to sample

densities. The entropy densities are calculated on the
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TABLE VII.II

DIVERGENCE METHOD APPLIED TO NORMAL SAMPLE

A. Function Addition on [xl,XN] = [6.07, 13.35)

Iteration Function Set Diveraence

* 1 F2 J(P 2  (x) ,f(x)) = .02257350

2 F2,F6 J(P 2 6  (x) ,f(x)) = .02252025

3 F2,F(,F1 J(p2C!(x) f(x)) .02252026

B. Function Deletion on [,,-4c, u±4c] = [4.34, 15.66]

t on Divergence Actic>

4 J(P261(x) ,P6 1 (x)) = 8.01 Retain F2

J(P261(x)P21()) = 1 (-20) Delete F6

6 ' (F2 61(x) 'P 2  (x ) = 2 (-7 Delete F1

C. Active Set = F2

NOTE: Function symbols defined in Table VI.III.
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interval [p-4c,P+4c] whereas the sample is defined on the

subset [xl,xN]; the divergence comparison is thus made on

the smaller bound. We return to [li-4a,P+4a] for function

deletion (subroutine THROUT) which compares entropy densi-

ties. The final active set is F2 as desired.

Experimentation, as exemplified in Table VII.I,

indicates that the divergence approach is more likely to

correctly identify the analytic functions and is less

sample sensitive than method one. Howe-.er, method two is

still sample sensitive as seen with the beta approximation.

Method two selected functions F2,F5,F9 to produce a diver-

gence J(f(x),p(x))=.0223359. The correct analytic func-

tions are F3 and F5. We calculated the divergence between

the analytic density, q(x), and the sample, f(x) to find

J(f(x),q(x))=.0249148. Thus method two chose functions

that provides a closer fit to the data, in the divergence

sense, than if the correct analytic functions had been

chosen. Table VII.III provides actual values of the

respective densities at 17 of the 32 quadrature points used

in the beta example. Sampling error and numerical differen-

tiation account for the discrepancy between sample and ana-

lytic values.

Methods one and two are quite similar in structure

and results. The nonlinear regression approach of method

two appears to be less sample sensitive than method one,

i.e., method two is more likely to identify the underlying
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TABLE VII.III

SAMPLE, ENTROPY, AND ANALYTIC COMPARISON FOR BETA SAMPLE

Sample Method 2 Entrcpy Analytic
I X(I) Density Density Density

1 .17069 .26205 .10144 .08248

2 .18411 .26672 .11593 .10183

3 .21237 .27656 .15229 .15088

4 .25442 .30384 .22379 .24558

3 0 .30870 .36929 .35396 .40672

6 .-7318 .51643 .57543 6511

- .44545 .97566 .91564 .98334

8 .52284 1.30094 1.36148 1.36394

.60244 1.80312 1.82053 1.73851

.6813i 1.61865 2.13328 2 01.5 1

] 7564 9 2.43046 2.16621 2.10842

12 .82519 1.34359 1.91065 1.96454

.8S464 1.62170 1.47946 1.59560

14 .93323 .75704 1.01420 1.08535
0

15 .96885 .44177 .60802 .57145

16 .98949 .38228 .30344 .20361

17 .99430 .36861 .20920 .11200
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analytic distribution. Method two is less cumbersome to

use. However, method one may be preferred when a test of

hypotheses, or a confidence bound, about the accuracy of

the entropy approximation is desired. Method one offers

flexibility in choice of statistic and is a more tradi-

tional approach. The key point is that both methods will

produce excellent approximations, given a workable poten-

tial set. The choice of method is at the analyst's discre-

tion.

The methods produce excellent results but share a

common disadvantage. Both methods require a random sample

of the unknown distribution and both involve numerical dif-

ferentiation. Sampling and differentiation errors are two

reasons for failing to explicitly identify the underlying

analytic distribution. Method three provides a viable

alternative which avoids these error sources.
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Chapter VIII. Active Set Selection--

Method Three (Expected Values)

Introduction

This chapter presents a third method for selecting

the best active set of information functions from a pre-

defined potential set. Methods one and two, though effec-

tive, are subject to sampling and numerical differentiation

errors. Method one (linear regression) produces an approxi-

mation, p(x) , that compromises between sample and analytic

distributions with a tendency to match the sample. Method

two (divergence) approximations produce similar compromises

but with a strong tendency toward the underlying analytic.

Method three (expected values) concentrates on the under-

lying analytic distribution from which the sample is

generated. Method three, like methods one and two, requires

the expected values of all information functions in the

potential set and definition of the interval of approxima-

tion, ta,bJ. However, method three does not use a sample

cumulative or density and consequently, is faster and less

complicated than previous methods.

The expected values method is based on the premise

that the expected values of the potential information func-

tions communicate sufficient information to accurately

approximate the unknown distribution. Let f(x) represent
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the unknown underlying, analytic density, and let <G> be
m

the vector of expected values for the m potential functions
. ]Tb

where <G>m=[g>,<g 2 >,...<g >] and <c >=. c (x) f(x) dx.m a -J

Our information, the <G> vector, is generated by them

unknown analytic distribution, i.e., via quadrature, simu-

lation or averages since f(x) is unknown. An accurate

enuropy approximation to f (x) must generate an accurate

approximation to <G,. For example, if the entire poten-

* tiaL set is included in p(x) , i.e.,

t(x) = exp [-- (X)-..... I (x)]

t'.,n (x) will generate <G exactly. Now assume that

f (x, is iormal distribution. We know that

p(x) : e -D [_1-]g (x) - 2 (X)] exp) [- 0 x- X .

is the unique entropy characterization of the normal, and
p(xt will generate the same <G> vector as f(x). In this

m

normal example, -g3' throuTh <gm> represent redundant

infcrmation. Jaynes states (Ref 45) and experimentation

confirms that redund3nt information is eliminated from the

entropy density, i.e., solution of the m constraint ecua-

:).ons in our normal example will result in = )., =0.

,.;uh a result is predicted by our uniqueness theorems of

Lhi1uLer IV.

We thus define the active set of information func-

tj ::is to be the minimun set of potential functions that
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acceptably reproduces <G> . This approach again empha-m

sizes the importance of defining a large, flexible poten-

tial set, as discussed in Chapter V, so that sufficient

information about the unknown density is communicated.

Due to numerical difficulties, we cannot in general solve

the m nonlinear constraints, for a large m, to find the

unique X,'s, j=O,l,...m. Consequently, method three builds3

an active set by progressively fitting the <G> vector and
m

* then checking for redundant functions. The approach is

similar to the regression tactics of previous chapters.

Selection Procedure

Method three is an iterative procedure which we

decompose into the following steps:

1. Specify [a,b] and calculate the expected value

vector, <Gm, for the m dimensional potential set. The

<G> vector is part of the assumed or "given" data. As inm

* previous methods, we include data collection as a pro-

cedural step.

2. Use the expected values in the appropriate

constraint equations to find the m entropy densities

pj(x) = exp [-X 0-xjgjx)], 9=1,2....m,

where m is the number of functions in the potential set.

Thus, each pW(x) contains one information function on the

first iteration.
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3. Use each density in step two to produce <G>m'

an estimate to <G> , and measure estimation error. For

each entropy density we use quadrature to generate <G>mm

where <i <=> ] T and <gk>=b gk(x)pj W)dx.

we then calculate the error of estimation, M2 where

M 2 is the sum of errors squared;

m•~ < g > -(i_< i> ) 2M. , j=l,2 .... m.
,* i=l 1 1

4. Select the information function which induces

the best approximation to <G> i.e., pick the minimum

"' This information function becomes part of the active

set and thus part of the final approximation, p(x).

5. Check stopping criteria. If M2<EPS, where EPS

is a predefined stopping value, then we have defined an

'fective active set and may proceed to step six. If

Y EPS then we iterate to find the next best function to

Jdd to the active set. For the second iteration, steps

3, 4, and 5 are repeated for m-l entropy densities where

,(x) r exp -I '(x)], j=l,2,...m, j#h, where

h is the active information function. This procedure con-

* nuc- for m-2 densities, m-3 densities, etc.; that is, the

2ti-'e set arows until M7<EPS or until K functions are

:ttive (we use K=6)

-f w- ex:ccE W V functions without prc'tucinq a suf-

c~ant'y s l : then we have reached an error condition.
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We must assume an insufficient potential set and consider

additional potential functions. Collection of a random

sample to prodr-e a frequency histoiram or a numerical

approximation to the unknown density may provide insight at

this point. An example of an insufficient potential set

was given in Chapter V for a distribution that resembled

the double exponential. Again, the potential set of

Chapter V should provide sufficient information for many

characterizations on ta,b] as the results section of this

chapter will show. Once we obtain a sufficiently small M2 ,

we consider the elimination of unnecessary functions.

6. Eliminate redundant information functicns,

i.e., apply subroutine THROUT of Chdpter VII. THROUT

eliminates functions from the active set, one function at

a time, and evaluates the divergence between p(x) with the

active set and p(x) with one less function. If the diver-

gence is near zero ("near" is defined by the analyst) then

the subject function may be deleted from the active set.

This function removal step is repeated until one complete

pass through the active set is accomplished without a func-

tion deletion. Active set selection is then complete.

Results
Method three was tested by generating <G>m vectors

for known distributions, producing the entropy approxima-

tion, and comparing the two densities. Method three
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consistently identified the desired analytic functions,

when such functions were elements of the potential set, and

cxactly characterized the analytic densities. The poten-

tial set of Chapters V, VI, and VII was used for our test-

,ng and is repeated in Table VIII.I for convenience.

Table VIII.II presents reoresentative test results. Tne

normal, beta (skewed right) and gamma (skewed left) dis-

, tributions of previous chapters are shown as well as six

* udditional distributions. A tenth example is given in

4Chapter IX for a simulation output distribution. Graphs

,re not shown for most of the Table VIII.II distributions

because the approximation errors are very small, i.e.,

suip(x)-f(x) I<10- . We discusc the examples tu demonstrlee

the strength of Tethod three.

TABLE VIII.I

POTENTIAL INFORMATION FUNCTIONS

Informaticn Infornmtion Information
F- 'l ""Mction Syrrol Function Symbol Ftncticn

Fl (x-u)/, F4 ln(x-a) F7 ((x-1)/o)

F2 ((x-)/4) 2 F5 n.n(b-x) F8 ((x-u)/o)

F3 Inx F6 (ln(x-a)) 2  F9 in(x2+l)

NOTE: i = mean; o standard deviation; and (a,b] =
Loun's.
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The beta distribution provides an interesting

example. The beta density has the following two parameter

form:

fb(x) = [C/(b-a) P + Q- ] (x-a) P- 1 (b-x) Q-, a<x<b

where C = F(P+Q)/(F(P)F(Q) and F(.) is the gamma function.
Substitution cf P=4.0, Q=2.0, and [a,b]=[0,1 in f b(x)

* produces fb(x) = 20.0 x 3(l-x). Table VIII.III displays

the iterations of method three in selectina the active

set F3,F5, i.e., ln(x) and ln(l-x). Notice that func-

tiers F8 and F2 were introduced and ultimately eliminated.

The final entropy density from Table VIII.III is

p(x) = exp !-A0 -X 3 ln(x)-X 5 ln(x-b)1

= exp [2.9957 + 3 !n(..) + ln(x-l)]

= exp [2.9957] x (x-l)

= 19.999999 x 3 (x-l)

which we round to

p(x) = 20.0 x 3 (x-l) = fb(x) exactly.

The normal and gamma examples produce similar

rcesults. The gamma density with shape factor G and scale

parameter B is

f (x) = C x exp[-x/BI, x,G,B,0
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TABLE VIII.III

METHOD THREE RESULTS FOR BETA EXAMPLE

A. Function Addition

Iteration Function Set m

1 F8 .024418

*2 F8,F2 .016227

3 F8,F2,F5 .005436

4 F8,F2,F5,F3 1.1 (-26)

x 0 =2.99573, X 2=-5.5(-13) , X 3 3.0, A 5 1.01 X 8 =.7(-15)

B. Function Deletion (THROUT)

Iteration Divergence Action

5J(P 8 2 5 3 (x) ,P2 5 3 (x) )=2. (-28) Delete F8

6 Jp 2 (x p 3 (x))=8. (-25) Delete F2

* 7 J(P9 2 5 3 (x),P 3  (x))=l, (+19)ReanF

8 J(PB2 5 3(x) 'p5  (x))=22.805 Retain F3

C. Active Set = F5,F3

)=-2.99573, X3 3.0, >,5=l.0
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where C = 1.0/[r(G) (B ). With G=1.5 and B=2.0, we get

f (x) = .398940 x'5 exp(-.5x)g

which is skewed left with mean 3.0 and variance 6.0. We

chose bounds, [0,17.01, based on the random sample which

was used in methods one and two. Table VIII.IV shows the

camma progression. We notice that our quadrature sub-

routine produced iJ=2.9864995 and 2 =5.8143277 on the [0,17.0]

in i %...i.I. Clearly, more accurate values for ,, and c2 would

be ;Ltainad c-, larger intervals. Ho;xever, the given values

-re accurate for [0,17.] and the entropy approximation is

concerned with this interval. The point is that expected value-

estimates should be computed over the interval of interest

as we havu done in our examples. Mlethod three chose Fl

and F3, or x-,/. and ln(x), for the active set. From

Ta:_'e VIII.IV,

p(x) = exp[-\O- 1 (x-I)/c.-3 ln (x)]
03

= exp[- 0 +\ly/o] exp [(-,i)x) x

= .398942 Pxp[-.49999998x]x*5

whi:-h again provide- a rather accurate approximation to

f q(:: . The key to the extreme accuracy in all the examples

i7 the fact that the data, i.e., the <G m vector, is accu-
at-'. The ti.7e and money invested by the analyst to
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TABLE VIII.IV

METHOD THREE RESULTS FOR GAMZIA EXAMPLE

A. Function Addition

Iteration Function Set M2

1 F5 1.50377

2 F5,F8 .171532

3 F5,F8,F3 .001014

* 4 F5,F8,F3,F1 1.7 (-25)

x0=2.412188, X1=1.205646, A3=-.5, A5=5.9(-11), A 8=1.1(-13)

B. Function Deletion (THROUT)

Iteration Divergence Action

5 J(P 5 8 3 1 (x) ,P8 3 1 (x))=2.4 (-20) Delete F5

6 J(P5 8 3 1 (x)'P 3 1 (x))=2.4 (-20) Delete F8

7 J(P5 8 31 (x),p (x))=.3155 Retain F3

8 J(p 5 8 3 1 (x)'P 3  (x))=15.10 Retain Fl

C. Active Set = FI,F3

,0=2.412188, X1=1.205646, A 3=-.5
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produce accurate average values is well rewarded with

method three.

Distribution n~ber seven of Table VIII.II, which

we call the hyperbolic, was investigated because it is

similar in appearance to an exponential distribution on

a bounded interval. Our intent was to see if method three

would dibtinauish between similar distributions. The

density for our hyperbolic is

f h (x) = I/12x in (a) I , 1 <x_

or fh(x) = exp[-ln x + ln( )I

Thus ln(x), F3, is the desired analytic information func-

tion, and method three must produce . =-ln(a 2 ) and

=1.0 for an exact fit. Calculation will show for fh(x)

that -x-,=( -l) /(2t-ln r) . For the exponential,

f e(x) = Eexp [-Bx] , 0<x

with 'x=-2/l. We wished to test hyperbolic and exponen-

tial distributions with the same means. We thus selected

the a parameter for the hyperbolic, calculated <x>, and

used <x- to find the exponential parameter. The result was

tw: .:;.ilar distributions with the same means, though the

expnential is azplied over a larger interval. Method

hthroe distinauished between the two distributions based on
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respective <G> vectors, as shown in Table VIII.II, and pro-

duced accurate representations once more.

The uniform and bimodal distributions were intro-

duced as extreme cases. The maximum entropy density for an

unknown distribution given only the interval [a,b] and no

further information is the uniform distribution. Method

three, when given a <G>m vector from a uniform distribu-

tion, should thus select only the constant parameter, X0.

The method performed perfectly.

The bimodal distribution was taken from reference

14 which discussed a discrete entropy approach to develop

density histograms. The bimodal density is composed of

two "tent" functions,

f(x) = 2x O<x<1/2

= 2(l-x) i/2<x<l

= 2(x-l) 1<x<3/2

= 4-2x 3/2<x<2

" = 0 otherwise.

Our continuous entropy approximation procedure was devel-

oped for unimodal distributions as evidenced by our poten-

tial function set (Ref Chapter V). Thus our potential set

does not contain the correct information functions to pro-

vide an exact fit to f(x), but a reasonable approximation

results. Figure 8.1 graphs the analytic and entropy densi-

ties. Our continuous entropy approach provides a density
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that has the same general shape as the histogram approxi-

mation but also provides an analytic form for the approxi-

mation density, p(x). (Reference 14 contains graphs of the

histogram approximation.)

Measure Sensitivity

The average values procedure of method three is

based on a fit to the <G>m vector. The method progressively

selects the information functions that contribute to accom-

plishing this fit. Such a procedure is sensitive to the

measure of fit, i.e., M 2 . We selected a least squares~m
measureM 2 =  (<gi>-<gi >) ,
measure, 2  after experimentation with

i=l
various forms of this measure. For successful application,

M2 must measure the "relative" contribution of an informa-

tion function regardless of the size of a particular

expected value. For example, if gS(x)=x4 and gl(x)=x

on interval [50,100] then <g8> will be much larger than

<gl > . Thus the contribution of ('g 8>-g 8 >) to M
2 will have

more importance than (<gl>-<4l>), and we would expect the

procedure to first select the function that produces the

smallest (<g,-<§8>).

Various forms of ratio tests were investigated in

an effort to evenly weight the information functions, but

such measures proved cumbersome. The most straightforward

approach is to equalize the influence of information func-

tions prior to testing, i.e., scale gi(x), i=l,2,...m such
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that the <gi > are roughly equivalent in value. Normaliza-

tion of <G>m is not sufficient because the size bias is

maintained. Thus, we independently scale potential informa-

tion functions if such functions promise to produce large

average values on the interval of approximation. For

kexample, we may replace moments, x , with normalized central

k kmoments, (x-j) /C. Moments were the only information

functions, in the potential set of Chapter V, that required

scal.in-i for our applications. The analyst should be aware

of the possible need for function scaling for large approxi-

m.rtion bounds, [a,b].

The goal of our entropy approximation procedure is

to acceptably approximate an unknown distribution based on

obtainable information. Method three has shown that we can

provide an extremely accurate characterization, given the

interval of approximation and the expected values of certain

infornation functions. The accuracy of approximation

depends on the accuracy of <G>m and the flexibility of the

potential set. The potential set of Chapter V is extremely

prodactive for unimodal distributions on a bounded interval.

Method three has been implemented as a FORTRAN

computer subroutine, 1.ETH3. The program uses previously

discussed subroutines THROUT, which performs the function

oleton step, and ENTROP, which solves the constraint
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equations for the entropy density parameters. METH3 was

used in all the above examples. The interval bounds [a,b]

and vector <G>m are required subroutine inputs, and the

active set and p(x) are returned. The analyst can modify

the potential function set by changing function cards

which do not involve the principle subroutines. The pro-

gram is constructed to handle 12 information functions in

the potential set although the 9 functions of Chapter V

* (repeated in Table VIII.I) have proved sufficient in

experimentation.

The excellent performance of the expected values

method is complemented by its simplicity and the lack of

a need for a large rando., sample from the unknown distribu-

tion. However, the analyst may prefer to produce a sample

to make density and cumulative comparisons as in methods

one and two. Such comparisons confirm the accuracy of

approximation and indicate if modifications to the poten-

tial set are needed.

As a final comment, we review the purpose of the

selection procedures. The purpose is to select the active

set of functions for a specific approximation. If the

analyst has already identified the active set, i.e., he

knows the family of the unknown distribution, then he may

circumvent selection procedures and simply solve the con-

straints to completely specify p(x). If the analyst can

only generate expected values (or averages) for certain
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functions, then those functions may compose the potential

set, and method three may be used to select the active set.

If a random sample is available then the analyst may prefer

methods one or two. Finally, the analyst may prefer a

combination of the above techniques or application of all

three methods.

We have demonstrated that the methods work. The

selection of a particular method depends on the specific

problem, available data, and data accuracy. Our approach

has been to first apply method three because it is the

reasiest to use. However, inaccurate expected values may

cause unsatisfactory results with method three as demon-

strated in the "interval arithmetic" applicatic;, of Chapter

XTI. Methods one or two may then be preferred.
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Chapter IX. Application to Simulation

Introduction

Previous chapters have described an effective pro-

cedure for approximating an unknown distribution and pro-

viding a closed form for the approximating density, p(x).

The procedure has broad application in mathematical and

stochastic analysis. This chapter discusses the use of

our procedure to approximate the output distribution of a

computer simulation, an application which motivated the

development of our method. The method was designed to sup-

port simulation studies at the Air Force Flight Dynamics

Laboratory (AFFDL) . Vehicle Synthesis Branch.

The strength and importance of the entropy approxi-

mation procedure as applied to simulation will be demon-

strated by considering an AFFDL example problem. The

general simulation problem and usual output characteriza-

tion approaches are considered, followed by discussion of

the entropy approach with example.

Simulation Model

A computer simulation may be viewed as a "black

box" model which provides a distribution of output values

based on user specified input distributions. We consider

a siimplified "black box" model:
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f W) on [a,b]--Efx F- y on [c,d]

where f(x) is the density function of input random variable

X, F(x) is the mathematical transformation which repre-

sents the simulation, and f(y) is the output random vari-

able density function. Notice that random variables X and

Y may be vector valued although we consider univariate

input and output for now. The transformation F(x) is known

to the user or is available as a computer subroutine.

This model highlights two significant points about

simulation. First, the input distribation must be com-

pletely specified by the simulation user. Input specifica-

tion may take several forms (e.g., a set of discrete values

for X, a density function for X, or a curve representing

possible values, etc.), but the input is specified and thus

known. Second, the usual purpose of the simulation is

evaluation of the output. The user may require a sample

output distribution, ar. average value of the output vari-

able, or an indication of output sensitivity to input

variations. The simulation, in general, becomes more use-

ful to the user as his degree of knowledge about the output

distribution increases. However, simulation output is a

set of discrete values. To best serve the user, this set

of values must be manipulated to describe the stochastic

nature of the output in terms of a distribution or density

lunction. Thus, the input is known, and the transformation
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is known (or available as a subroutine). We seek an approxi-

mation or characterizatior. of the output distribution.

Output Characterization

How might an analyst characterize the output dis-

tribution given the known information in the previous model?

The answer to this question depends on the nature of the

mathematical transformation, F(x). If F(x) is known and

linear or mathematically "nice," then an analytical solu-

tion may be feasible. For example, the analyst may be able

to propagate the input density, f(x), through the model

using transformation of variable techniques to analytically

derive f(y) without computer simulation. One might con-

sider decomposition of F(x) into a series of less complex

transformations for this purpose. For nonlinear transforma-

tions, linear approximation is a popular technique and has

been successfully applied to very complex modeling problems.

Research conducted by Orr (Ref 63) provides an

example of such an application to an extensive antiaircraft

artillery simulation. While linear approximation was

acceptably accurate for several nonlinear portions of the

simulation, simplified nonlinear models were needed for a

few submodels. Clearly, the analytical approach is the pre-

ferred method when possible. However, detailed modeling

of real world processes seldom results in transformations

which are analytically manageable. The most frequent
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approach when difficult transformations are involved is

Monte Carlo simulation.

Monte Carlo simulation, while a potentially accu-

rate and reliable means to model real world systems, pos-

sesses two notable disadvantages. First, a large number

of simulation trials are needed to provide adequate infor-

mation about the output distribution. Thus, computational

expense may restrict Monte Carlo analysis, particularly in

terms of output sensitivity to input variations. Secondly,

the output of a Monte Carlo simulation is a random sample.

A suitable method of distribution approximation must be

applied to this sample to derive meaningful stochastic

information. The entropy procedure provides a distribu-

tion approximation and can reduce the number of trials or

simulation calls required for approximation and for subse-

quent sensitivity analysis.

* Entropy Approximation

The entropy approximation procedure, when applied

to computer simulation, provides a usable and minimally

prejudiced density function, effectively uses available or

computable information, and provides analytical in6i 5

that is not afforded by Monte Carlo simulation. We discuss

this application and potential computational benefits for

;ensitivity studies.
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The entropy procedure was presented in Chapter III

and expanded in subsequent chapters. The simulation output

density, f(y), is approximated by an entropy density of

the form

p(y) = exp - 0 - X 1 g 1 (y) - k gk W) I

where gi(y), i=l,2,...k are information functions. We

highlight the benefits of the entropy application to simula-

tion by reviewing the procedural steps.

Select the Active Set. Three methods were

described for selecting the active set of k functions from

a predefined potential set of m functions (Chapters VI,

VII, and VIII). Methods one (regression) and two (diver-

gence) each require a Monte Carlo sample of the simulation

output to select the active set. Since a Monte Carlo sample

can provide a numerical approximation of the output dis-

tribution, one may question the benefit of proceeding with

the entropy application. However, the entropy procedure

provides at least two advantages. First, an analytical

representation of the output density is provided for ease

in subsequent analysis. As previously discussed, the spe-

cific information functions that are selected for this

representation may provide further insight, i.e., if y and

y 2 are selected then the output distribution is approxi-

mately normal. Secondly, the entropy procedure produces a
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distribution that compromises between the sample and true

underlying distributions. Thus, the entropy method pro-

vides a closer fit to the underlying unknown density than

a single Monte Carlo run can provide. Method three

(expected values) does not require a Monte Carlo sample,

unless such a sample is needed to compute the expected

values, and thus provides the added benefit of reduced

simulation calls. (However, we recommend an initial

Monte Carlo run when using method three to ensure that

* the potential set includes a sufficient number of functions

(Chapter VIII).)

Given the initial Monte Carlo sample, subsequent

Monte Carlo runs are needed only when the forms or bounds

of the input distributions are changed, i.e., from one

distributioi. to another such as from normal to beta.

Variations in input distributions, such as changes in mean,

variance or distribution parameters, are permissible without

reselecting the active set. Thus, once the active set is

defined, sensitivity analysis may be accomplished by simply

generating expected values for the active set and solving

for the specific p(y). A substantial change of inputs

(e.g., a change of bounds or distribution families) may

drastically affect the form of the output distribution,

and active set selection should be reaccomplished to ensure

dccurate approximations. The entropy procedure thus offers

a significant tool for output analysis and potential
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savings in computer time via a reduced need for simulation

access.

Generate Expected Values. Appendix A and Chapter

III introduce numerical quadrature for generation of

expected values. Consider, once more, our simplified simu-

lation model:

* f(x) on [a,b]---. -- f(y) on [c,d]

From equation (3.5) we have

( b-a M
<gi 2 Z - W j g I (F (x f(x ) i=1,2 .... k,

where W3 and x., j=l .... M represent quadrature weights and

points, and f(xj) is the value of the input density at

x . A study of this approximation for <gi(y)> surfaces two

significant benefits:

1. Only M function evaluations (or simulation

calls) are needed to calculate all k expected values

<gi(y)>, i=1,2 .... k That is, the same values of F(xj) are

used in all k expected values. This fact alone provides a

significant improvement to Monte Carlo simulation.

2. The M simulation calls (F(xj), j=1,2,...M) may

be stored and the simulation input, f(x), modified (the

interval [a,b] must remain fixed) for subsequent sensitivity

analysis without further access to the simulation. This
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benefit provides a notable analytical tool for sensitivity

analysis.

The listed benefits are particularly significant

for expensive simulations. However, one must note that

the benefits of quadrature are somewhat reduced when multi-

dimensional intearals are involved, i.e., when the input

distribution is multivariate. Quadrature is an approxima-

tion to analytic integration and the accuracy of approxi-

mation depends on the number of quadrature points, M.

While M may be small for one dimensional integration (16 to

32 points offer excellent accuracy in most cases), the

actual number of simulation calls for n dimensional integra-

tion is Mn. Ciisequently, the number of simulation calls

for large n can rapidly approach the number of calls for a

Monte Carlo simulation. Appendix A discusses multidimen-

sional quadrature and provides references As a rule of

thumi, quadrature is effective when the number of input

variables, n, is less than or equal to four.

A final point pertains to specification of the

interval for output approximation, [c,d]. These bounds must

be known prior to application of the entropy procedure. If

the analyst knows reasonable limits for the simulation out-

put, then such limits should be used. However, both quadra-

ture and Monte Carlo methods of estimating the expected

values supply a means to estimate [c,d]. For the Monte

:irlo approach, the bounds are simply the minimum and
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maximum values of the sample distribution. The same logic

applies to quadrature, i.e., [c,d] [minF(xi), maxF(xi) ]i i
where F(x i) is simulation output at quadrature point x..

Solve the Constraint Equations. This step is

thoroughly discussed in Chapter IV to include a computer

subroutine for implementation. The constraint equations

are repeatedly solved in each of the active function selec-

tion procedures. Once the active set is known, then subse-

* quent output approximations for the same input family may

be accomplished by generatina new expected values and

solving the constraints.

Numerical Usefulness

The entropy procedure provides a minimally preju-

diced, stochastic representation of the simulation output.

The approach is not dependent on a specific simulation but

is geared to "black box" models. The numerical usefulness

is discussed in previous sections and summarized here.

The entropy procedure provides an analytic form for

the simulation output distribution based on expected values

of functions. Expected values may be calculated from the

known input distributions with limited use of the simula-

tion. Simulation calls may be stored for subsequent analy-

sis of output sensitivity to input changes. When a Monte

Carlo sample is needed to identify the active set, the Monte

Carlo work does not have to be reaccomplished when input
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parameters are modified (given fixed input bounds). Addi-

tionally, the approach offers an analytic form for the out-

put density which is not provided with straight Monte Carlo

simulation. The entropy approach thus provides potential

reduction in simulation calls and stochastic output repre-

sentation.

F§amtple A pliaction

An examDle application of the entropy procedure to

=imulation is given for the AFFDL problem of Figure 9.1.

':c problek is described in the first secticn and followed

ade'tailed discussion of entropy results using active

set selection mrethod one (linear regression). Methods two

tnd three are then considered and show very similar results.

Lll three methods provide accurate approximations to the

data.

DESIGN PERFORMANCE
PARAMETERS MEASURES

Weight Design
Thrust - Equationsi Takeoff Distance

Lift Coeff.

igh t Design
T ift4/raq DsgFlight RangeIEquations

I  lah agSpec. Fuel
Consumption

q 1 AFFDL Simulation Model
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-Simulation Model. AFFDL contracted for a study of

aircraft performance measures for several different aircraft

with different engines (Ref 59). Managers were concerned

with the stochastic nature of performance measures as

related to the stochastic behavior of several design param-

eters. The problem of interest is graphically displayed

in Figure 9.1. Our example involves the two performance

measures in Figure 9.1 (takeoff distance and flight range)

* and the indicated design parameters for one engine (TF2--

Ref 59). Variability in the aircraft production process,

ras reflected in the stochastic nature of design parameters,

means that no two aircraft will have the same values for

performance measures. The contract goal was to predict

performance measure distributions based on estimated

design parameter distributions. The approach was Monte

Carlo simulation. Aircraft production was simulated via

traditional design equations with the design parameters

as simulation inputs. Various distributions were assumed

for the input parameters, and a sample cumulative was pro-

duced for each performance measure. Constants in the

design equations and input distributions were altered to

represent different type aircraft or engines and compara-

tive sample cumulatives were produced.

To demonstrate the entropy method, we used the

contractor's design equations (Table IX.I) and input distri-

butions, but we developed our own simulation models (one
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TABLE IX.I

PERFORMANCE MODEL

Takeoff

r ~21.16
* distance = 8.656* W.Q.T + 425.2

empty fuel payload
S=density ratio

S = Wing surface area

C = Maximum coefficient of lift 4-

T = Thrust

Range

range = ( ) •(L)* in (W7)

empty payload reserve

V = Cruise speed

C t = Specific fuel consumptiontI
L/ D Lift/drag ratio

*NOTE: Constant 8.656 later corrected by contractor
to 10.81. We retained 8.656 in our examples.

1 r 3



for each performance measure). The models were developed

to provide experimental control but also proved useful in

identifying a minor contractor error in one design equation

(see Table IX.I). We use the equations as indicated in

Table IX.I without correction. For a specific example we

consider the input distributions of Table IX.II, i.e.,

normal distributions with bounds [i-4j, j+4o] where p is

the mean and a is the standard deviation. Random samples

* of 500 takeoff distances and 500 range values were generated

and stored. We now apply the entropy procedure to approxi-

mate the performance measure distributions.

Exoected Values and Integration Bounds. The entropy

approach requires estimates of expected values of informa-

tion functions in the simulation output space. The esti-

mates may be provided via average values (Monte Carlo) or

numerical quadrature. Each simulation in Figure 9.1

* involves three independent inputs and a univariate output,

thus suggesting quadrature for expected values (Ref Appendix

A and Chapter III). We use a 16 point quadrature formula

for the triple integration in our example. Multidimen-

sional quadrature is discussed in Appendix A. Table IX.III

provides a comparison of quadrature and average values for

simulation output means and variances with various samples

and sample sizes. Average values were computed as fol-
N

lows: <g(t)> F g(ti)/N where N is the sample size and
i=l
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TABLE IX.II

EXAMPLE INPUT DISTRIBUTIONS AND CONSTANTS

Input Distribution* Mean= I. Variance=C 2

W eoyNormal .7427 (+6) .702944(+9)

TNormal .3017(+6) .149810(<7)

C Normal .2920(+l) .324863(-2)

CCDNormal .2030(+2) .102478

Ct Normal .63 .332522 (-5)

Constant Value

" fuel 498,000 lbs.

Wiayod 390,000 lbs.

.944

5 11,270 ft

V 460 kns

wreserve 40,600 lbs.

*NOTE: All distributions bounded on tii-4a, vi+4c].
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TABLE IX.III

COMPARISON OF QUADRATURE AND AVERAGE VALUES

Sample Minimum Maximum
Measure Size Mean Variance Value Value

Quadrature:

Takeoff 16 6492.26 72050.87 5104.12 8262.58

Range 16 4880.56 14962.69 4185.34 5701.30

Averages:

Takeoff 1000 6506.04 70559.08 5605.12 7462.57

Takeoff 500 6496.71 70648.83 5830.01 7473.79

Takeoff 500 6491.58 71019.91 5745.75 7240.77

Takeoff 500 6539.59 70677.82 5603.24 7242.84

Takeoff 100 6520.41 81384.04 5629.48 *

Takeoff 100 6543.82 83514.99 5742.07 *

Takeoff 100 6570.19 91038.30 5750.68 *

Averages:

Range 1000 4880.91 14:90.92 4492.83 5304.45

Range 500 4887.31 14965.55 4484.93 5230.29

Range 500 4901.04 14915.77 4536.23 5418.93

Range 500 4900.85 13364.17 4585.49 5347.85

Range 100 4865.78 14127.65 4563.52 *

Range 100 4947.65 15569.14 4661.69 *

Range 100 4998.05 15611.30 4623.67 *

*NOTE: Upper bounds not retained on this run.
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ti is the output sample value. As expected, a sizeable

fluctuation is noted with sample size. The average value

appears to approach the quadrature value as N increases.

Haber (Ref 34) provides more insight to quadrature accu-

racy.

Table IX.III also compares sample and quadrature

output bounds. These bounds must be specified for con-

straint solution. For consistency, the bounding method

should agree with the method of estimating expected values,

i.e., sample bounds if averages are used. Notice that all

sample bounds are subsets of the quadrature interval. Our

examples use quadrature bounds.

Method One (Linear Regression). The entropy pro-

cedure requires selection of the active set of information

functions from a predefined potential set. As in previous

examples, we use the Chapter V potential set (repeated in

Table IX.IV for reader convenience) with quadrature values

for L, o, and [c,d]. Selection method one (Chapter VI)

TABLE IX.IV

POTENTIAL INFORMATION FUNCTION SET

Fi = (x-1i) /0 F4 = ln (x-c) F7 = ((x-i)/0) 

F2 = ((x-W)/7) 2 F5 = in (d-x) F6 = ((x-) / 7)

F3 :: In (x) F6 = (In(x-c)) 2  F9 = ln(x 2+l)

NOTE: = mean; a = standard deviation; [c,d]
bhunds.
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was applied to our random samples of size 500 for takeoff

distance and range simulation outputs. The regression

results and statistical measures are listed in Tables IX.V

and IX.VI for nine candidate sets. The function sets were

chosen based on largest and second largest adjusted R2 for

a given set size. We allowed up to six active functions

per set. Notice from the tables that different statistics

* imply different active sets. Chapter VI and Appendix B

* provide guidance in choice of statistic for final active

set selection. We choose the Anderson-Darling, A2 , sta-

tistic because we seek accuracy in the distribution tails.

Thus, E4=(F2,F4,F7,F8) is the active set for takeoff dis-

tance characterization and E2=(F2,F8) is active for flight

range. The best value for each statistic is underlined

in the tables.

Let us consider the approximation accuracy for the

takeoff distance example of Table IX.V. The value of A2

is .3193. Stephens (Ref 76) provides a table of critical

values up to the 15% significance level. Our null hypo-

thesis is:

H0: The sample distribution comes from a popula-
tion with distribution function that is
described by our entropy approximation, p(x).

Stephens' table gives a critical value of A2=1.610 at the

15% level and A2=1.933 at 10% significance. Thus we reject

H0 if our calculated value of A2 exceeds the critical value

at our chosen significance level. Our extremely small
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values of A 2 for both takeoff distance and flight range

indicate an accurate fit at significance levels much higher

than 15%. Thus, we have produced accurate approximation

to the output data for both simulations.

Figure 9.2 presents an entropy and sample density

comparison for takeoff distance to demonstrate the accu-

racy. We eliminate numerical differentiation noise by com-

paring sample and entropy cumulative distributions in

Figure 9.3. Differences between sample and entropy cumula-

tires are plotted versus the actual cumulatives because the

entropy fit is very accurate. Figures 9.4 and 9.5 provide

the same information for the flight range distribution with

active set E2. Thp four figures show an accurate fit to

the sample and thus imply an accurate representation of the

unknown distributions.

Active set selection method one uses linear regres-

sion and is thus sample dependent. As demonstrated, the

method provides an accurate fit to a given sample. However,

application of the method to a second sample from the same

distribution may result in selection of different active

functions. We wish to show that the active set (and thus

the entropy density) for a given sample will produce an

acceptable fit to subsequent samples. If a given sample is

a good approximation to the true underlying analytic dis-

tribution, then the entropy distribution which approximates

t is sample must also approximate the analytic distribution.
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In fact, as indicated in Chapter VI, the entropy distribu-

tion is a compromise between the sample and analytic dis-

tributions. Thus, subsequent sample distributions should

be well approximated by the entropy fit.

We demonstrate this prediction by generating addi-

tional samples and comparing the samples to our original

entropy cumulative. Figures 9.6 and 9.7 provide cumulative

comparisons for a second and third sample (again 500

* deviates each) from the unknown takeoff distance distribu-

tion. Figure 9.8 and 9.9 provide equivalent comparisons

for the flight range. We notice that subsequent samples,

particularly for the takeoff example, fit one side or the

other of the entropy approximation indicating that our

original approximation is indeed a compromise. To further

test our accuracy with the original entropy approximation,

we generate a fourth and larger random sample (1000 deviates).

Figures 9.10 through 9.13 graph results for the cumulatives.

As sample size increases, the sample distribution approaches

the entropy distribution (particularly in the tails) again

indicating that the entropy distribution is a good approxi-

mation to the unknown, underlying analytic distribution.

Method Two (Divergence). We apply method two to

the original takeoff distance sample data for comparison

with method one. Method two uses the divergence measure

and is described in Chapter VII. This method also produces
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a compromise distribution, but experimentation with known

distributions has shown that the divergence measure favors

a fit to the analytic distribution whereas method one

favors the sample. Method two includes a function elimina-

tion step which is not currently part of method one. The

elimination step (subroutine THROUT from Chapter VII) con-

siders the entropy'approximation and eliminates "redundant

information" functions in an "information theoretic" sense.

The results of method two when applied to the sample

takeoff distance data are shown in Table IX.VII. Notice

that method two stops adding functions at set F2,F7,F4

because the addition of a fourth function increases diver-

cience. The function deletion phase, iteration 6 of

Table IX.VII, indicates that little information is communi-

cated via function F7, and the analyst may consider elimin-

ating F7. The small value of X7 also indicates a less impor-

tant function. We chose to retain all three functions in

our active set. Before comparing methods one and two, we

consider method three.

Method Three (Expected Values). Method three (Ref

Chapter VIII) does not use the sample distribution to pro-

duce the entropy approximation, but concentrates on a fit

to the expected values of the potential set. Table IX.VIII

presents the results of method three for the takeoff dis-

tance example. This table highlights two interesting

t rnts. Iteraiion four shows that adding either functions *c
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TABLE IX.VII

DIVERGENCE METHOD APPLIED TO TAKEOFF DISTANCE SAMPLE

A. Function Addition on Ix(1),x(N)] = [5830., 7473.8]

Iteration Function Set Divergence

* 1 2 J(P2  (x),f(x)) .044093

* 2 2,7 J(P2 7  (x),f(x)) = .042295

3 2,7,4 J( (x) ,f(x)) = .038427

4 2,7,4,6 J(p2 7 4 6 (x),f(x)) = .038841

where f (x) is sample density

B. Function Deletion on Quadrature Bounds =

(5104.1, 8262.61

Iteration Divergence Action

-* 5 J(p(x),p 7 4 (x)) = 652.8 Retain Function 2

6 J(p(x),p 2 4 (x)) = .00532 Retain Function 7

J (P(),P27(x)) = 10.05 Retain function 4

where o(x) P2 7 4 (x)

C. Active Set = F2,F4,F7

X0 =4.648, ),2=.5086, X4=.2572, \7=-.0188
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TABLE IX.VIII

METHOD THREE APPLIED TO TAKEOFF DISTANCE EXAMPLE

A. Function Addition

Iteration Function Set M

1 2 .015916

S2,7 .003607

3 ),7,5 .000435

t 4 ,i 5,8 2.1 (-10)

2,7,5,4 9.9 (- 7)

B. Function Deletion (THROUT)

Iteration Divercence Action

5 J(p(X), 38 (x)) = 107.9 Retain function 2

6 J(p(x),r58 (x)) = .00540 Retain function 7

7 J((x) ,p2 7(x)) = 2.326 Retain function 5

8 -((x) ,p2 75 (x)) = .000082 Retain function 8

k0=9.045, ' ,='4940, 5 =-.3386, X7= - .0192, X8= .0 0 0 8 4

C. Active Set F2,F5,F7,F8 or F2,F5,F7

177

* %*



F8 or F4 will produce an acceptably small M 2. Thus, more

than one combination of functions can produce an acceptable

approximation. We chose FS. Notice in iteration eight that

deletion of F8 produces very little information loss, and

the analyst may prefer to use active set F2,F5,F7, i.e.,

set 8=0.0. These points again indicate the need for

analyst involvement in the selection procedure. All three

selection methods are designed as analyst tools and not

as stand-alone computer programs.

A summary of results for the three methods is pro-

vided in Table IX.IX. The three methods produce such

close results that graphs of the distributions are inade-

quate for distinction. Thus, Table IX.X is included to

provide a comparison of cumulative distribution values at

18 data points.

TABLE IX.IX

COiPARISCN OF THREE ENTROPY METHODS FOR
TAKEOFF DISTANCE DISTRIBUTION

Method Approximation Interval Active Set

Regression 5830.0, 7473.8 2,4,7,8

Divergence 5104.1, 8262.6 2,4,7

Expected Values 5104.1, 8262.6 2,5,7,8 (2,5,7)
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Summary

This chapter has discussed the application of our

entropy procedure to computer simulation. The three active

set selection methods were used on a specific example and

produced consistently similar results. The choice of method

is left to the analyst; previous chapters provide guidance.

The entropy method provides an excellent tool for distribu-

tion characterization and a viable tool for sensitivity

analysis.

The simulation application was presented in detail

because such a general procedure may be applied to numerous

stochastic modeling problems. The method treats the simula-

tion Like a "black box." Thus, if the analyst can formulate

his problem as a special case of the "black box" model then

he may apply the entropy procedure.

As a final note, the simulation input distributions

were provided in our examples and must be known to imple-

ment a simulation. However, the entropy characterization

procedure is also useful in defining input distributions.

Chan (Ref 10) suggests such an application for a special

case of our general model. Other entropy applications are

discussed in Chapter XI.
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Chapter X. Sensitivity

Introduction

The following sections address several aspects of

sensitivity analysis. We summarize sensitivity issues from

previous chapters on simulation and active set selection.

The central concern of this chapter is sensitivity of the

* entropy approximation, p(x)=expi-X 0-ig l ( x ) - . . . k g k ( x 1,

to errors in the expected value vector, <G>=(<g0>,<gl>,...
T where there are k functions in the active set.

(For notational convenience only, we do not include vari-

able x in our --pected value symbols, i.e., we let

<gi(x)>=<gi>.) We present theoretical developments from

the literature as well as two numerical procedures for

studying approximation sensitivity.

=Simulation Sensitivity

As R. E. Shannon states,

Sensitivity analysis is one of the most important
concepts in simulation modeling. By this we mean deter-
mining the sensitivity of our final answers to the
values of the parameters used [Ref 70:32).

Simulation is designed to facilitate sensitivity analysis

because the analyst has complete control over the param-

eters (or inputs) and can vary them one at a time (or

jointly) to observe the effect on simulation output. In

fact, the AFFDL problem of Chapter IX was solved via
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simulation to answer a sensitivity question, i.e., how do

design measures vary as input design parameters change?

Our entropy procedure provides-an effective tool

for output comparisons by producing an accurate description

of the output distribution. The inputs may then be

altered and a second entropy approximation generated for

density or cumulative comparisons. Frequently, graphs of

the resulting output distributions will answer the ana-

* lyst's sensitivity questions. While the entropy procedure

provides graphs, it provides additional insight to simula-

tion sensitivity. Notice that the entropy approximation,

p(x), is based on the expected value vector <G>,and changes

in the inputs cause subsequent changes in <G>. Given a

<G> vector for the output of a simulation with specified

inputs, we may study the sensitivity of p(x) to variations

in this <G' vector, and this study is accomplished without

* using the simulation. Once we have established acceptable

bounds for the output <G> vector, we may return to the simu-

lation to investigate the effect on <G> of varying simula-

tion inputs. Procedures for evaluating the sensitivity of

p(x) to vector <G> will be presented.

Active Set Selection

Chapters VI, VII, and VIII discuss three methods

for selecting the active set of information functions from

i predefined potential set. Methods one (linear regression)
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and two (divergence) use random samples of the unknown dis-

tribution to develop the active set and demonstrate sample

dependence. While sample sensitive, the methods produce

approximations that compromise between the sample and true

underlying distributions. The point of significance is

that this compromising quality insures an adequate fit to

subsequent samples with the active set from a previous

sample. Previous chapters provide conceptual and experi-

mental justification. Method three (expected values)

selects the active set based on expected value information

rand is sensitive to error in this data. The three methods

thus demonstrate data sensitivity. This data sensitivity

is a desired property and enables accurate approximations.

The importance of specifying a broad potential set

was presented in Chapter V and represents another form of

sensitivity. If the potential set contains the correct

functions, we can exactly recreate the unknown analytic

distribution as previously demonstrated. The accuracy of

approximation depends heavily on specifying enough infor-

mation via the potential set. The potential set of

Chapter V provides an excellent starting point and proved

quite accurate in experimentation.

Approximation Sensitivity

The term "approximation sensitavity" is used here

to describe the sensitivity of the approximation density,

183

,mop=-



p(x), to errors in the expected values vector <G>. We

assume that the active set has been selected and the infor-

mation functions are specified and fixed. Our concern

centers on how changes in the expected values of the active

set produce changes in p(x). We restate the problem in the

Lagrange formulation, discuss theoretic implications, and

then present two methods for studying this sensitivity.

The Problem. The maximum entropy procedure approxi-

mates the unknown density, f(x) , by a density of the form

p(x) = exo [-i 0 -igl1(x)-0 " "1 (x k gk(x ]

where the gi(x), i=0,1, .. .k, represent our active set of

information functions with q0 (x)El. The lambda vector, .
l(l0' -1 k) identifies the specific p(x) and is deter-

mined by solving a system of nonlinear constraint equations:

k ~
f f0 )  !g 0 (x) exp[- E Xig i (x) ] dx 0<g0

* i=O11F (, = "= I = <G >

kfk Lg(x) exp[-iE gi (x)1dx <g (0.1)

where the <G vector is provided via quadrature, average

:alue approximation, or other means. The only unknown is

Thus our approximation problem is transformed to a

problem of selecting a A vector, based on a given <G:,

such that the resulting p(x) satisfies the constraints.
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Assuming a "wise" choice of information functions, p(x)

will provide an adequate representation of f(x).

Sensitivity analysis is defined as an evaluation of

the change in system output effected by a systematic vari-

ation of system inputs. Our system is described by equa-

tions (10.1) with input <G> and output A or p(x). We thus

consider sensitivity at two levels; the sensitivity of A

to <G>, and the sensitivity of p(x) to <Gb.

Theoretical Support. The A vector defines the

explicit p(x) for a particular set of constraint values,

<G>. The Lagrange multiplier formulation of our problem

provides some immediate information on A sensitivity to

<G>. As discussed by Tribus, Jaynes, Crain (Refs 82; 42;

15), and others, we may consider A0 as a function of Air

i=1,2 .... k. Following Tribus' work with discrete entropy,

we consider the first constraint, f(A)=<g 0 >=l, to produce

k
exp[ 0] = fexp[- Z Aigi ()] dx (10.2)

i=l

or
k

X 0 (i .... k = Xn[lexp[- Z X gi(x)] dx]

Differentiation of (10.2) produces

0/3X = -<gm >  (10.3)
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Equation (10.3) states a linear relationship between X0

and A which is weighted by <gm> . This tells us that

X0( 01..'Y),called the "potential function" by Jaynes and

Tribus, is most strongly effected by variations in the

larger elements of <G>. We would thus expect that gm(x)

with large I<gm>1 would strongly effect p(x). While pro-

viding conceptual insight, equation (10.3) provides little

practical sensitivity information for our procedure. We

Lcale the information functions in our application to

reduce the values of <qi>o , i=l,2,...k. The scaling is

a numerical convenience but also enhances the performance

of the three active set selection methods. Let us pursue

the theoretical relationship between A and <G".
Given an r=r, . T

Givea E= " ) variation in <G> with

10=0 (g0(x) l), we want to find T=(o0,l,...5 k) where 6

is the variation produced in A. We again extend the dis-

- crete example of Tribus (Ref 82). Consider the p(x) which

produces maximum entropy Smax(p(x)). Then

Smax (p(x)) = -j:p(x) in (p(x)) dx

kSa(p(x)) = f T igi(x) p(x) dx, or
max i 0

Smax = i= !.T<G> (10.4)

As expected, the entropy is a function of the . and <G>

vectors. If we consider the <gi > to be the independent
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variables in equation (10.4), we find 8Smax (<G>)/a<gj
>=A,

j=0,1,...k or, subsequently, aX/ 0 . These

equations highlight-the ifterdependence of the elements of

A and <G>, i.e., a perturbation such as &=(0,..O,-m,0,..0),

Em 0, may result in a 6 with all nonzero elements. The

theory provides insight, but fails to provide a viable

means of examining the sensitivity of A to <G> and subse-

quently of p(x) to <G>.

Sensitivity of A to <G,. We are given a nominal

<G> vector, 'G>0  and solve equations (10.1) for .0 such

that F( 0)=<G 0 . From Theorem 4.3, if A0 exists then it

is locally unique, F(.) is one to one in some neighborhood

of A0, and F exists with F (<G>0)=. Given perturba-

tion , we wish to find vector 6 such that F(V0-)=' G 0

The usual approach to such a problem (Refs 14; 19;

70; 80; 63) is to vary a single element of <G 0 and calculate

6. Then reset <GI0 , vary a second element of <G>, compute

the respective 6, and continue to iterate. The result of

this brute force linear approximation is an approximation

to the partial derivatives

_A =____0 i _k 01T> <gi>0 ~ "jO

These partials can provide an indication of the strength

of a specific information function. A large value of
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/a<gi>0 for one or more values of j indicates that a

small error in <g.>0 may cause a large change in A and thus

p(x). This suggests additional effort to insure accuracy

for the subject <gi>0 .

The linear approximation provides useful information

about A sensitivity and is easily accomplished with the

computer programs of Chapter IV. However, the linear

approach has a recognized weakness (Refs 19; 20; 68; 80)

' in that constraint coupling has not been fully considered.

Wc must include simultaneous variations of all <gi > ,

i=l,2 ,...k, 0 (x)El, and observe the effect on A. We extend

the linear investigation.

Define a k dimensional rectangle, R0 (<G>0 ), about

vector <G'0 (k dimensions versus k+l because <.0 'El). This

rectanale is a function of parameter a where each side of

the rectangle is an interval, [<gi>0-a<gi>0 , <gi>0+a<gi>0 ] ,

- i=1,2 .... k. Thus, a denotes a confidence in our estimation

of the expected values. By sampling from R (<G>0) and com-

putingP=(. 0+), we may investigate the shape of the k+l

dimensional rectangle that is generated about A0 . For

example, we may record the maximum deviation for each ele-

ment of A 0 (i.e., the maximum value of 6i for each i) that

results from the allowable perturbations of <G>0 . "Large"

valucs of . may suggest a reduction in u. This approach1

has votential use for placing a bounds on <GN 0 when the

maximum allowable 6i, i=0,1,...k, are known or hypothesized.
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The scheme provides a starting point for a practical attack

on our central concern; how do errors in <G> affect the

entropy approximation, p(x)?

Sensitivity of p(x) to <G>. The previous sections

relate sensitivity concepts from the literature and our

research. They provide conceptual and theoretic insights.

This section directly attacks the sensitivity question and

describes a practical procedure for investigating the vari-

° ation in p(x) due to errors or changes in <G> 0 .

As in the previous section, we are given <G> from

which we find A0 and thus p(x). We select a to define

RC( <G 0 ) and sample from RC<G>) to produce <,>=(l.,< 1 >,
T

<k->) T where <gi is in [<gi>0-O<gi>0, <gi>0+a<gi>0.

Thus, <G> is composed of k independent, uniformly distri-

buted random variables, < i>, i=I,2,...k, and a constant,

<§0-i. Generation of the <G samples is accomplished by

sampling from k uniform distributions with the stated a

bounds. Each <G> vector results in a A which defines a

p(x), i.e., a perturbation of p(x).

The sample space, R (<G> ), is specified as a func-

tion of a and the expected value vector <G> 0 . Our pro-
0'

cedure is designed to place confidence bounds about p(x)

based on predefinition of the sample space. We generate

N samples of <6> and produce the corresponding N densities,

p(x). Each b(x) is a continuous density from the same
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entropy family as p(x) and on the same approximation inter-

val. To bound p(x), we specify M points on the interval

of approximation and consider the maximum deviations,

above and below p(x), achieved by the sample densities.

This approach specifies an upper and lower bound on the

nominal density, p(x), as a function of a for a given <G> 0.

Figures 10.1, 10.2, and 10.3 present the results

of this procedure when applied to the beta distribution of

Trevious chapters (M=50, N=500) . As expected, the bounds

on pi(x) rcw as , increases. Similar results are shown

in Figures 10.4 through 10.8 for the noral distribution;

1(xx=ex [-, 0 )/- C / ) ], ,=10., c'=2. For the normal

examole we allowed <(x-) 2 /c 2 .> to vary. This approach is

effective for determininq a reasonable , bound on the <G 0

vcctor, i.e., for speciiying an accuracy bound on the data.

For the beta example we conclude that an a creater than

.05 produces unsatisfactory approximation error. Other

analysts may be more or less tolerant. The normal example

Comonstrates less sensitivity. We must insure that suffi-

cient emphasis is placed on data collection and calculation

of <G,0 to accomplish the desired level of data accuracy.

The above sensitivity model offers a practical

.eans of evaiuatng the sensitivity of p(x). The results

-;ill depend on the form of p(x) , i.e., the information func-

I,.ms in p(x), and the values of <Q> 0 and a. Thus, we
0

innot state ieneral sensitivity results that pertain to
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all approximations or to all problems. Instead, we pro-

vide a procedure which the analyst may use on his specific

problem. Sensitivity conclusions derived from this pro-

cedure will be subjective. The procedure is easy to imple-

ment and, once <G>0 is specified, does not require addi-

tional access to the unknown distribution. The entropy

approach has thus provided sensitivity insight that other

characterization procedures lack.

Various modifications of our sensitivity model are

feasible. For example, the analyst may consider maximum

approximation error, i.e., maxip(x)-p(x)I. He may then
x

select a bounds that insure maxlp(x)-p(x)I less than some
x

epsilon. Secondly, the effect of a single expected value

<g > , may be evaluated by using the same approach but with

other elements of <G >
0 fixed. A third variation results if

additional information exists about the accuracy of <G>0 .

For example, we have assumed a uniform error for each ele-

ment of <G>0. The analyst may know that the error is better

approximated by another distribution. The above procedure

may still be used but with <> vectors produced from the

known error distribution. Finally, the analyst may prefer

to compare entropy cumulative distributions, P(x) and P(x),

versus densities. The same sensitivity model may be used

but with bounds now produced for P(x). We consider a second

model for sensitivity investigations in the next section.
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4 ,

Entropy Approximation for

Sensitivity Measures

A procedure to investigate the sensitivity of p(x)

to error in <G> 0 has been presented. We use this sensitiv-

ity model, information theory concepts, and our entropy

approximation procedure to develop a second sensitivity

model. The second model demonstrates another application of

our entropy approximation procedure.

In previous sections we defined the given data,

<G>  which produces entropy approximation p(x). A pertur-

bation of <G- produces vector <G'o which results in a

second density, 6(x). How may we "measure" the variation

in o(x) due to the perturbation in <G> We have

k
p(x) = exo[- g(x)1 and

i=0

k
(x) = exp [- E i gi (x)]

i=0

where E.= +K and <g "=<gi>o+ ir i=O,l, ...k; 0=O. A use-

ful measure of variation between densities is divergence,

J(p(x),(x)) (Chapters II and VII). Thus,

J(p(x) , (x)) = [p (x) - (x) ] ln [p(x) / (x)] dx

= :[p(x)- (x)] [-X i gi(x) + Fi gi(x)] dx

= fZ(Bi- i)gi (x)p(x) dx- I(Si-}i)gi(x) (x) dx
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= I(Si-Ai)<gi>0 - £(ii)<4i>

= E (S i- i (<gi>0 -<i
> )

= (i +6 i-iX ) (<gi>0-<gi >0-i)

J(p(x) ,p(x)) = (6 i ) (-I i) = (10.5)

where all summations are for i=0 to k. Equation 10.5

allows rapid computation of divergence and thus a measure

of information loss when p(x) is replaced by p(x).

*Combining the divergence measure with the concepts

of sensitivity model one, we create a second sensitivity

model in the form of a simulation:

<G------ H(<G>) -- J(p(x),p(x)) = y

Vector <G> is an independent, multivariate, uniformly dis-

tributed input random vector (th-at depends on a), and

J(p(x) ,p(x)) is the univariate simulation output.

Chapter IX discussed the use of our entropy approximation

procedure for simulations of this form. Given a which

defines our input distribution, we wish to determine the

sensitivity of p(x) in terms of the measure J(p(x),p(x)).

Application of our entropy procedure to the output of

model two provides a complete representation of the density

of J(p(x),p(x)), pj(y), for the given a. Knowledge of pj(y)

enables the development of confidence bounds and statistical

statements about the divergence, i.e., the probability that
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divergence is less than Q for the given a is dy.

Since divergence measures variation in p(x), then diver-

gence is a viable sensitivity measure. Thus, the simula-

tion approach has provided a means to numerically quantify

the sensitivity question.

As an example, the model was used for the beta dis-

tribution or previous sections with a=.l. We generated 500

sample input vectors, <G>, and calculated the correspond-

ing eivergence values. Method three (Chapter VIII) was

applied for the entropy characterization of pj(y). Figure

10.9 shows the entropy and sample divergence densities.

The sample density was computed by numerical differentia-

tion of the sample cumulative. With p (y) known, Aa con-

sider the impact ot errors in <G>0; i.e., given that <G> 0

producec p(x) and <a> produces ;(x), the probability that

the divergence between (x) and p(x) is less than .05 for
- ..05

all <G> in R ('G>0 ) is J0 pj(y) dy. For our example,

Prob(J<.05)=.608 and Prob(J<.5)=.983 where Prob(J<-)=l.

Experimentation has shown that a divergence of .05 produces

an "acceptable" fit between p(x) and p(x). For our example,

however, we have a 40% chance of exceeding a .05 diver-

gence with a of .1. As with the first sensitivity model,

we conclude that a=.l is too large.

The spnsitivity model was described in terms of the

divergence measure. Divergence provides an excellent rela-

Live measure, and we know that divergence "near" zero
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indicates "small" information exchange. We may readily

determine which elements of <G>0 are most influential by

systematically varying a single element and calculating

divergence. The element which produces the largest diver-

gence is the most influential. We may also compare diver-

gence densities or probability statements for different

values of a. For example, we may require Prob(J<.05)>.90

and experiment to find the appropriate a. The weakness in

mr oade' is that we cannot define a statistical meaning

for a given value of divergence, i.e., is J(p(x),p(x))=.l

an acceptable error? However, the scnsitivity model was

cessgned for flexibility and provides an alternative.

Diverqence may be replaced with more popular mea-

sures in the sensitivity model. The coodness of fit mea-

scres of Chapter VI and Appendix B (Kclmogorov-Smirnov,

etc.) are exam,'nes of measures that provide better sta-

tLtical quantification of sensitivity information. We

consider the Kolmogorov-Smirnov statistic as an example,

sun CN (X) -P(x) i where C (x) represents the sample cumula-N Nx
tive of size N for the unknown distribution. The D sta-

tistic may be used to test the hypothesis that C (x) was
N

Laken from distribution P(x) where P(x) is the entropy

wumulative. Thus, we are given <G' 0 and sample CN(x) from

-n unknown distribution. Vector <G' 0 produces the approxi-

.:.itio:. density p(x) and subsequently P(x). We define

-I<G > as before and Glect G from , (<(> 0
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Vector <G> produces (x), and we may calculate D(C (x),P(x))

and D(Cn (x),P(x)). Our sensitivity model is as follows:

---- H(<G>) D(Cn(x), (x) = y

We may again apply the entropy approximation procedure to

produce the density pD(y). Thus, for a given sample, Cn(x),

and a given a, we are able to make significant probability

statements, i.e., Prob(D<Q)=fQp (y) dy. If Q represents the
0

critical value of the D statistic for a given significance

level, then we have calculated the probability of not

exceeding Q for all <G> which are elements of Ra(<G> 0 ).

We may thus relate Thie error in <G>0, determined by a, to

a probability of accepting the hypothesis that a sample from

the unknown distribution is a sample from our approximation

distribution. While the D and other statistics are more

difficult to calculate than divergence, the statistical

meaning that results may be worth the effort.

Summarv

we have touched on several aspects of sensitivity

while concentrating on sensitivity of the approximation

density, p(x), to errors in the expected value vector,

<G> 0 . Two general sensitivity models were explored with

examples. One model resulted in an upper and lower bound

on p(x) as a function of an a error bound on <G> 0. The
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second model was cast in a "black box" simulation mold for

use with various measures of error between distributions.

Both models provide viable procedures for evaluation of

system sensitivity.

r

206



Chapter XI. Other Applications

Introduction

The entropy procedure, as presented in Chapter III,

is a flexible tool for characterizing or approximating

unknown distributions. Application of this procedure to

computer simulation has been discussed. However, the

generality and flexibility of the method enables wide appli-

cation. Three examples are presented in this chapter to

demonstrate potential use and with the intent of stimu-

lating thought for other applications.

Cumulativc Data Versus

Exoected Values

The entropy procedure provides an approximation of

an unknown distribution based on information about that

distribution. The entropy approximation is "minimally

prejudiced" in that only the available information is used

and "maximum uncertainty" is maintained with respect to

other information. Our development used information in

the form of expected values of certain information func-

tions. However, the entropy prccedure may be applied when

the available information takes other forms. As an example,

the analyst may encounter distributions where the cumula-

tive probability function is known or can be estimated at

a finite number of points and expected values cannot be
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estimated. We show that, using only the cumulative infor-

mation, the resulting "minimally prejudiced" distribution

is a piecewise uniform distribution.

Our total information consists of values of the

cumulative distribution, Ci, at n points, xi, i=1,2 .... n,

where a x l<x <  . . <x <b and [a,b] is the approximation- 1-2- -n

inverval. Following the development of Chapter IV, we

state the characterization problem:

max S( (x)) max ba p(x) 1n (p(x)) dx]
a

Q1ubject to:

-b
.a rp(x) dx= I

p(Y d a (x) ) dx = C1

!Xnp(x) dx =r bc (x) p(x) dx = C
a n n

where . (x) = 1 a<x<x.

= 0, otherwise.

The Lagrangian becomes

L(p(x),A) = -p(x) In p(x) - X 0 p(x) - [)i~i(x)p(x) dx + C.

= b  p ~ ) l ~ / ~ ) - - 7 X (x ) ] d x + C .a /0 i

p(x) in (i/p(x) ) exp- 0  (x) Idx i C

208



T

whereA =(XO'X ),* X n) and all summations are from i=l to n.

We recall that ln(-;)<w-l for all w and ln(w)=w-I if and

only if w=l. Thus,

b n
L(p(x),A)<f p(x){(1/p(x)) exp [-X0-EXiix - 1) dx+ E XiC.

- a i=l 1 1

Since we wish to maximize L(p(x),A), we seek equality which

occurs if and only if

n
p(x) = exp[-X0- ' (x)] almost everywhere. (11.1)

Thus, p(x) is a uniform distribution between each of the

known xi, i=l,...n; that is,

k
p(x) = expf- 0-I i ) + . (x), a_<x<x (11.2)

0-i=l 1 ' -k

and p(x) is a piecewise uniform distribution.

The Lagrange multipliers are easily calculated as

we show with a numerical example for n=3. Table XI.I and

Figure 11.1 present the data and the interval of action

for each y. (x) function. From the constraints we have

p (x) dxx) dx +fx p x ( x3 p(x) dx +.b p(x) dx

Working backward from point b we find;
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TABLE XI.I

SAMPLE CUMULATIVE VALUES

Symbol Value Cumulative

a 1.0 0

x 1.25 .1

x 2  1.50 .3

x 1.75 .6

b 2.0 1.0

0 ! ' 

I3

rL

- 3

C1  .1
* 2

.3 -------

1.0 1.25 1.5 1.25 2.0
a x1  x2  x3  b

F . 11.1. Sample Cunulative Data
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fb exp[-X O] dx= 1 - C3 or
X3 03

X= - in [(1-C 3 ) / (b-x 3)] = -. 47004,

x3
Ix2 exp[-X0 -X 3 ] dx = C3 - C2 or

X = -X0- In [ (C3 - C2 )/(x 3 -x 2 )] = .287682,

xi exp[-x 0 -X2 -X 3 dx= C2 - C1 , or

X2 = -x 0 - 3-1n [(C2-Cl)/(x 2-x ) ] = .405465,

and

x
a exp[- 0 - 1 -A 2 -A 3 I dx = C1  to find

1 = -0-,2-x3- in [C 1 /(x -a) ] = .693147.

Thus, from equation 11.2:

p(x) = exp[-.916290] 1.0<x<1.25,

exp[-.2231441 1.25<x<1.5,

expf.182322] 1.5<x<1.75,

exp[.470004] 1.75<x<2.0,

0 otherwise.

This simple example illustrates the concept. The

entropy density reproduces the known information, i.e., the

cumulative values, but does not bias our approximation in

any other sense. By providing more information, such as
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expected values, we increase the accuracy of approxima-

tion.

Hierarchical Models

Our entropy characterization procedure may prove

quite useful in the analysis of hierarchical models.

"Hierarchical model" implies a group of submodels of dif-

ferent degrees of detail (perhaps computer simulations)

where the outputs of the more detailed submodels provide

input to "higher level" submodels. As a typical example,

one might envision a large scale air war game where the

first modeling echelon is divided into models for the vari-

ous theaters of operation. The second echelon supports

the first level with models for air engagements, inter-

diction, or air defense. Subsequent levels provide detailed

models of munitions supply, aircraft maintenance, tanker

s-pport, targeting, etc.

The entropy procedure provides a means to evaluate

a hierarchical model at the submodel level. In fact, the

procedure enables characterization of the output distribu-

tion of a subodel. Potential benefits include evaluation

of the "degree of influence" of a specific submodel and sub-

model dependencies. If the models are computer simulations,

then the procedure may also save substantial computer time.
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Interval Arithmetic

As a third example, we consider application of the

entropy procedure to interval arithmetic. Moore discusses

interval arithmetic and potential uses in his article

"Bounding Sets in Function Spaces with Applications to

Nonlinear Operator Equations" (Ref 62). As the name

implies, interval arithmetic is the application of arith-

metic operations to intervals of the real line. The pur-

pose is to specify a bound on the result of an operation.

Interval operations are defined as follows:

addition, [a,b] + [c,d) [a+c,b+d];

subtraction, [a,b] - [c,d] = [a-d,b-c];

multiplication, [a,b] * [c,d] = [min(ac,ad,bc,bd),

max(ac,ad,bc,bd)J;

and division, [a,b)/[c,d] = [a,b] * [(i/d),(li/c)].

Moore mentions several areas for application of interval

arithmetic techniques: search procedures, safe starting

regions and stopping criteria for iterative schemes (Ref 61),

and error bounds for machine computation. The basic assump-

tions are that each operand is a bounded interval (as

[a,b]), and that the value of the operand can fall any-

where within the stated bound. Interval arithmetic provides

an absolute bound for an operation but provides no informa-

tion about the distribution of the result. When working

with the resulting interval, one must assume a uniform
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distribution or, if an explicit value is needed, assume

the middle or mean value.

Clearly, the usefulness of interval arithmetic is

enhanced if the distribution of the result is known in

addition to the absolute bound. In fact, knowledge of the

resulting distribution may enable reduction in size of the

resulting interval, with a selected degree of confidence,

or selection of a more accurate mean value. Our entropy

procedure can provide the desired distribution approxima-

tion. We demonstrate with the model of Figure 11.2.

A - . **2 A 2

A2+BC

C BC

A is U[-1,1], B is U[0,1, C is U[2,3) where
U[a,b] means uniformly distributed on interval
[a,b].

Fig. 11.2. Hierarchical Model of A 2+BC

Figure 11.2 provides a hierarchical scheme for the

interval equation A 2+BC where variables A, B, and C are

uniformly distributed as indicated. (This example also

demonstrates the use of entropy to evaluate submodels of a

simplified hierarchical model.) Applying Moore's
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operations on the given intervals we find the following:

A*A is U[-1,1, B*C is U[0,31, and AABC is U[-1,41. We

can improve these bounds by refining rules for the squaring

operation, i.e., A*A=A 2 must be nonnegative. Our improved

bounds follow: A2 is U[0,11, BC is U[0,3], and A2 +BC is

U(0,4]. In reality, the three variables (A2 , BC, and

A 2+BC) are not u:.iformly distributed. Using transformation

of variables techniques (Ref 37), the analytic distributions

of these variables may be derived. For example, the density

of A 2 given that A is -/[-1,1] is f(A 2 )=ln(l.5)/'A, O<A 2 <1.

However, anal\ytic derivation becomes increasingly difficult

as operand distributions become more complex. The entropy

approach offers a viable alterne'tIve.

Application of the entropy procedure to the problem

of Figure 11.2 produces an interesting demonstration of

procedure flexibility. We first generate 500 samples each

-, for A, B, and C from independent uniform distributions

and generate subsequent sample distributions for A2 , BC,

and (A2+BC). For each output distribution, we then calcu-

late average value estimates, i.e., <gi (x)>=E gi(xj)/500,.3
far the expected values of our potential information func-

tions. Application of method three (expected value method

of Chapter VIII) produces the results listed in Table XI.II.

Method three provides an excellent approximation for A2 ,

but notice the large errors in Table XI.II for BC and

(A +BC). Method three does not produce an acceptable fit
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TABLE XI.II

RESULTS OF METHOD 3 FOR INTERVAL ARITHMETIC

Variable Active Set Scuared Error

A 2  F2,F3,F7,F8 .001077

BC F3 3.25683

(A'+BC) F5 4.53455

9
where Squared Error = 7 (gi (x)-i (x)) and information* i=l

funcoions are defined in Table V.III.

t( the average value vectors for these two variables and,

thus, does not provide acceptable distribution approxima-

tions. The large errors indicate two possible problems;

either the potential set of information functions is inade-

qate (Ref Chapter V), or our data, i.e., the average value

vector, is too inaccurate. Examination of the sample dis-

tributions (graphs are presented in Figures 11.3 through

11.8) does not indicate extreme behavior, i.e., bimodal or

peaked distributions, thus our potential set seems appropri-

ate. We investigate the expected value approximations by

analytically computing a few expected values for the A 2 and

BC distributions. Table XI.III presents a comparison which

h:(hlights the error between average and true expected

values. As the table shows, we have tried to approximate
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TABLE XI.III

AVERAGE VALUES VERSUS ANALYTIC EXPECTED VALUES

Variable Function Average Value Analytic Value

A=x <x>  .339319 .333333

A2=x .090752 .088889

2

A =x <(x-")) /c,> .7 (-12) .0

A 2=x <ln(x) > -1.99329 -2.0

SA-=x <(x-) 3/c3> 613545 .638877

A 2=x <(x-K)4/0 >  2.10257 2.14286

A7x <(in(x-a) 79370 8.0

BC=x <x 1.23544 2-25

BC=x .(x-v) .556546 .548611

BC=x .(X-')/z> 1 (-11) .0

BC=x <1n(x) > -.129399 -.090458

BC=x < (x-.) /ce> 168989 .128175

BC=x <2x-u)2.02580 1.97674

where mean and a = standard deviation
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a distribution based on rather inaccurate information.

Method three performed properly for the supplied data.

The flexibility of our procedure is significant

at this point in that we have two options for increasina

the accuracy of approximation. First, we can produce

.:,re accurate expected value estimates via quadrature

(or -- rages withn a larcer sample) and reapply method

three. Secondly, we can use the available average values

* but decrease -her siqnificnnce by concentratino n a fit

to the sample distributions. We choose the second option

a-d r pplv active set selection method two (diverc,nce

ap~roach of Chapter VII) which takes advantae of samr'e

distribution availability.

The results of method two are disolayed in

Table Xi. IV. The accuracy of our approximations is shown

in Fiq.. ..es 11.3 through 11.8 which provide sample and

entroov con:ari:=ns for densities and cumulative distribu-

tIons. The cuo'ulative graphs include the unJiorn cu-muIa-

tive to hichiicht the error of assuming a uniform output

distribution. ,.tice that the entropy and sample cumula-

tives are plotted over the sample points, xi, i i ... 5O0,

while the uniform is plotted for the entire active inter-

vl , [a,b]. Thcuqh not plotted, the entropy approximation,

p ':) , ap:ie.c over the entire interval, and !abp(:)

Th. entre' .' .rrcure clearly provides acceptable approxi-

21th t distributions.
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TABLE XI.IV

RESULTS OF METHOD 2 FOR INTERVAL ARITHMETIC

Variable Active Set Divergence

A F5 J(p 5  (x),f(x))=.023823

BC F7,F9 J(P7 9 (x),f(x))=.000116

(A2+BC) F3,F4,F9 J(P 3 4 9 (x)'f(x))=.001512

where f(x) is the sample density and information functions
are defined in Table V.III.

Summary

We have touched on three potential applications

of the entropy procedure in addition to computer simula-

tion. The procedure uses available or computable informa-

tion, and the accuracy of approximation, of course, depends

on the amount and accuracy of the information. Thus, the

analyst must weigh information collection costs against

the benefit of accurate density approximations. The pos-

sible applications for such a procedure are numerous. Our

examples only represent a starting point.
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Chanter XII. Summary and Future Research

Summary

We have used the concept of "maximum entropy" to

develop a procedure for characterizing (or approximating)

an unknown distribution based on information about that

distribution. The procedure uses available information

but maintains "maximum uncertainty" with respect to unspe-

cified information and provides a "minimally prejudiced"

representation of the unknown density. Our development

requires information in the form of expected values of

"information functions," but the procedure can be applied

to other forms of information. The work is based on a con-

strained optimization problem and includes three procedural

steps: specification of a potential set of information

functions, selection of the active set for a particular

approximation, and solution of the constraint equations

to completely define the approximation density.

We have shown that if a solution exists to the

optimization problem, then it is unique. Further, the

solution density will take the following form:

p(x) = exp[-X 0 -X11 g(x) -'''-. Wg(x)I

where the g ix) are information functions and the Xi are

associated Lagrange multipliers. A numerical scheme for
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solution of the constraints was presented. The numerical

scheme may converge to a local optimum solution versus the

global solution. However, under extensive testing against

known distributions, the scheme has always produced the

correct result.

Three separate methods were presented for selection

of the active set of information functions. Methods one

and two require expected value estimates and a random

sample of the unknown distribution. Method three requires

only expected values. Selection of a specific method is

problem and data dependent. In experimentation with known

analytic distributions, the methods either characterized

the analytic or provided a compromilz between sample and

analytic distributions. Accuracy of approximation with

all methods is a function of potential set specification

and data accuracy.

*' Sensitivity aspects were addressed to include two

approaches to a study of system sensitivity. Finally,

several examples and example applications of the entropy

approximation procedure were presented. The entire approxi-

mation procedure, to include the three information func-

tion selection methods and sensitivity studies, has been

programmed for computer use.
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Future Research

Our research surfaced several areas for continued

investigation. These areas are highlighted in the follow-

ing paragraphs.

The entropy procedure was applied to interval [a,b],

assuming that the unknown density was "relatively" well

behaved. In at least two examples, the bimodal distribu-

tion of Figure 8.1 and the interval arithmetic examples for

BC and (A2+BC) of Figures 11.5 through 11.8, we approxi-

mated distributions that were not entirely well behaved.

For these examples we briefly investigated a piecewise

application of the entropy procedure, i.e., a division of

interval [a,b] into subintervals [a,b]=[a,c1 [ci,c 2 ]...

[cn ,b with application of the entropy proc-dure to each

subinterval. This concept holds potential for more diffi-

cult distributions.

Expansion of our work to distributions on the semi-

infinite and infinite intervals is feasible. Such an expan-

sion centers on an investigation of numerical quadrature

schemes and numerical procedures for solving the constraint

equations. Orr (Ref 63) has accomplished some preliminary

work in this area.

The research centered on characterizing univariate

distributions, yet the theoretical development supports

multivariate characterization. Such development may follow

from the work presented in this paper.
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We have discussed three methods for selection of

the active set of information functions. Two of the methods

involve a fit to the sample density where the sample density

is produced by numerical differentiation. The methods are

successful because they partially compensate for the numeri-

cal differentiation error. The development of a scheme

which uses the sample cumulative, thus avoiding one level

of numerical error, may prove beneficial. Such a scheme

could folw the structure of method two, aiven a means to

"efficiently" compute errors between cumulatives.

Use of the entropy procedure fcr hypothesis testing

is a viable research area. Consider method three which pro-

duces the entropy density by forcing an approximatior t the

expected values of the potential information functions

(Chapter VIII). As shown in Table VIII.II, when the expected

values are accurate and the potential set includes the

correct analytic functions, method three will accurately

characterize the unknown density. For example, if the

unknown density f(x) is normal and the potential set

includes functions x and x 2, then these functions are

selected for the entropy approximation, p(x), such that

p(x)=f(x). Such results suggest the use of this procedure

to test if the unknown distribution is normal, or beta,

etc. Again, the key factor in success of such an approach

is accurate estimation of expected values. The suggested
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research ties to recent work by Dudewicz and van der Meulen

(Ref 24).

Finally, our procedure provides an effective means

of approximating unknown distributions, and we have sug-

gested several applications. Potential applications are

numerous and a viable research area. Applications to risk

analysis, game theory, and pattern recognition, akin to the

discrete entropy applications, are examples for continued

investigation.
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Appendix A. Numerical Quadrature

The primary purpose of numerical integration (also
called quadrature) is evaluation of integrals which
are either impossible or else very difficult to evalu-
ate analytically [Ref 40:144].

Quadrature also offers an effective means of machine inte-

gration, and a variety of numerical integration methods are

available (Ref 1). One such method which is particularly

adaptable to machine computation is Gauss quadrature. We

4consider the general quadrature approach and then Gauss

quadrature specifically.

Given the function f(x) and the values of f(x) at

N points, xi , i=l,2,...N, we wish to calculate the inte-

gral I f(x) Ix. The general quadrature rule to approximatea

this integral follows:

b N
a f (x) dx ' Z W. f(xi) (A.1)ail 1i

0

where the weights, Wi, are determined by requiring that

equation A.1 be exactly true when f(x) is replaced by
Ix 2  . N-1

1, x, x2 ... x Thus we have N equations of the form

of equation A.1 with the N unknown Wi, i=l,2,...N. Select-

ing the weights by solving these N equations will guarantee

that the guadrature rule will exactly integrate any poly-

nomial of degree N-1 or less.
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Gauss quadrature improves the accuracy of the

integral by using orthogonal polynomials and selecting the

points x i, i=1,2,...N, to be zeroes of the orthogonal poly-

nomials. Gauss quadrature thus assumes that one can obtain

the values of f(x) at the unevenly spaced quadrature points

x il, i=l,2,...N. Abramowitz and Stegun (Ref 1) and Hornbeck

(Ref 40) provide detailed explanation and examples of

Gauss forms for various sets of orthogonal polynomials.

Abramowitz and Stegun provide tables for weights and quadra-

ture points. From this reference we find the following

formula for Legendre polynomials:

N
J-i f(x) dx = E W. f( x  + RNi=l 1 ) R

or
r b N

bf (x) dx= b-aa 2 Wi f(Y.) + P
a 2 *l 1 1

where

and

2N+I 4

RN (b-a) (N!)3 2 2N+lf2N(t)
(2N+I) ((2-N) 3

The Gauss-Legendre formula will produce exact results for a

polynomial of degree 2N-1 or less. Thus if f(x) is closely

approximated by a polynomial of degree 2N-1, then the error

of approximation, RN, will be small. The integrals that
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are involved in the characterization method of this paper

generally concern continuous, well-behaved functions.

Quadrature is thus an effective and accurate tool for our

application. Hornbeck (Ref 40) discusses practical methods

of testing quadrature accuracy and potential quadrature pit-

falls.

The quadrature formulae discussed above are easily

extended to multiple integrals:

b I fb 2  /b 2-a2) b N
a a f(x,y) dx dy z 1 Z Wi f(x,y i ) dx

(b-a)b -a2N N Wf (x. ,v.i ~il
Z W. Z 'i2 \2 / j=l 3 i=l

The accuracy of approximation is now reduced and more func-

tion evaluations are necessary. Specifically, we required

N function evaluations for one-dimensional quadrature.

Two-dimensional quadrature requires N2 function evaluations

or quadrature points. In a similar fashion, K-dimensional

quadrature requires NK quadrature points or functional

evaluations. The decreased accuracy and increased number

of functional evaluations are discussed in detail by Haber

(Ref 34). Haber suggests that multidimensional quadrature

is effective up to dimension three or four. He advises the

use of other methods, such as Monte Carlo quadrature, for
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integrals of dimension five or greater. Multidimensional

quadrature is of particular use in application of the

entropy characterization procedure to computer simulation;

see Chapter IX.

t
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Appendix B. Goodness of Fit Statistics

Statistical Tests

Selection of the active set of information func-

tions in the regression method, Chapter VI, involves the

use of "goodness of fit" statistics. That is, a random

sample of the unknown distribution is available, and we

wish to test the hypothesis that the given sample is from

one of the entropy distributions. We choose, as active,

the entropy distribution that provides the highest level

of confidence in the truth of our hypothesis, i.e., the dis-

tributicn with the smallest value for the selected statis-

tic. This appendix discusses a few popular statistics for

hypothesis testing to include Chi-squared (X2) and Empirical

Distribution Function (EDF) statistics.

Several references (Refs 6; 21; 25; 54; 55; 64)

define goodness of fit statistics which are appropriate for

testing the hypothesis, H0, that a given sample is from a

specified distribution. M. A. Stephens (Refs 75; 76) pre-

sents an excellent summary of the more well known statis-

tics to include advantages and disadvantages. As Stephens

mentions, the classical test for goodness of fit is the X
2

test.

The X2 test can be applied in our case, given that

the entropy densities are completely defined prior to the
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test and defined without recourse to the sample data, i.e.,

solution for the A vector in each p(x) may not depend on

the test sample x(I), I=I,...N. This restriction is neces-

sary because the X2 test, when estimated parameters are

involved, requires a maximum likelihood parameter estima-

tion to insure a X2 distribution for the test statistic

(Ref 85). The requirement for complete specification of

the entropy densities prior to goodness of fit testing will

also apply to the EDF statistics. Solution for the entropy

density parameters, the A vector, depends on the expected

value vector <G> (Chapters IV and VI). We produce <G> by

numerical quadrature in our tests of method one and do not

rely on the random sample. Thus the entropy densities are

specified before goodness of fit testing and without using

the sample.

The analyst should notice that the above restric-

tion on parameter estimation does not preclude the use of
N

average value estimates of <G>, i.e., <g.(x)> = E gj(xi)/N.
i=l 1

Method one may still be applied with average values and will,

as demonstrated in Chapter VI, provide an excellent approxi-

mation to the unknown density. However, if the sample is

used to generate <G> and thus to find p(x), then the analyst

can not place the usual statistical significance on the

values of calculated statistics. The statistics will still

offer a measure for selecting the best entropy distribution,

but we may not use the statistic in conjunction with
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existing statistical tables to state a confidence in our

test of hypothesis H0. A true statistical test of hypo-

thesis, under these circumstances, will require a second

independent sample of the unknown distribution. The refer-

ences provide more detail on this restriction and effective

use of statistics.

Stephens (Ref 75) states that when the hypothesized

distribution (the entropy distribution) is completely spe-

* cified and continuous then, ". in general, EDF statis-

tics give more powerful tests of H0 than x
2., The EDF

statistics of interest are summarized below. Statistic

selection is at the user's discretion. Method one can be

used with '2 and any of the EDF statistics, or other suit-

able statistical tests. The user must determine which

aspect of the approximation is of greatest importance to

him. For example, the Anderson-Darling statistic emphasizes

a fit to the tails of the unknown distribution while the

Kolmogorov-Smirnov statistic measures maximum error in the

approximation. Several statistics and their benefits are

now considered.

EDF Statistics
Let EN(I) x(I) p(x) dxwhere p(x) is the entropy

density for a given information function set, and x(I),

I=l,...N is the sorted random sample from the unknown
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distribution. The sample cumulative at each of the I points

is CUM(I) = I/N.

Kolmogorov Statistics.

D = max [(I/N) - EN(I)];
I

D = max [EN(I) - (1-1)/N]; and
I

D = max [D+ ,D-].

* The statistic of interest is D (usually called Kolmogorov-

Smircov statistic) which tests the maximum deviation of the

sample cumulative from the entropy cumulative.

Cramer-von Mises Statistic, W2.

W = n rb [F (x)-F(x) 2 G[F(x)] dF(x), where F(x)n a ' '

is the hypothesis distribution, F (x) is the sample, andn

G[F(x)] is a weight function. We use the Smirnov weight

function, G I, and integrate to obtain a computational form

of the statistic:

N
W = [EN(I) - (21-1)/2N]2  + [1/12N]

I=l

This form of the Cramer-von Mises statistic is akin to the

sum of errors squared and weights each data point evenly.
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__ Anderson-Darling Statistic, A2 . If we use the

Cram6r-von Mises W 2 statistic and define G[F(x)] to ben

l/{F(x) [l-F(x)]}, then the result is the Anderson-Darling

statistic. References 6, 54 and 75 reduce A2 to a computa-

tional form:

N
A2 = -{ [ (21-l) [ln(EN(I)) + ln(l-EN(N+l-I))]}/N - N

I=1

This statistic emphasizes a fit to the tails of the dis-

tribution.

Kuiper Statistic, V.

V= D+ +D -

Watson Statistic, U2 .

U2 
= W

2 - N(<EN> - 1/2)2

N
where <EN> E EN(I)/N. U 2 adjusts for the hypothesized

I=l
mean. Stephens states that both V and U 2 are useful in

identifying a change in scale (variance) of the sample while

D, W 2, and A2 are more effective for a change in location

(mean). The references discuss the above statistics and

other variations of the above. Stephens presents a compari-

son that, for his purposes, favors the A2, W 2 and U 2 sta-

tistics.
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I
Statistics for Method One

To select the "best" information function set from

the candidate regression sets of Chapter VI, we prefer the

A 2 or W2 EDF statistics. Again, the "best" set will be the

set of functions that results in the smallest value of A 2

(or W 2) . EDF statistics are preferred to X2 primarily

because the EDF statistics are distribution-free. Addi-

" tionally, the >2 test requires an "unbiased" grouping of

. the data ...hich detracts from a generalized approach.

*Finally, our entropy functions satisfy the "continuity"

and "completely defined" requirements of the EDF tests.

Under these conditions, Stephens (Ref 75) states that the

EDF tests should prove more powerful than X2 .
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