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1. INTRODUCTION

1.1 Purpose for This Research

In 1973 Boehm chronicled the tremendous impact of
software on the cost and reliability of advanced information
processing systems. Recently, DeRoze and Nyman (1978)
estimated the yearly cost for software within tne Department
of Defense to be as large as three billion dollars. De Roze
(1977) reported that perhaps 115 major defense systems depend
on software fur successful operation. Nevertheless, the
production and maintenance of software for Defense is
frequently inefficient.

In an effort to improve both software quality and the
efficiency of software development and maintenance, a number
of techniques have been developed as alternatives to

4conventional programming practices. These modern programming
practices include such techniques as structured coding,
structured design, program support libraries, and chief
programmer teams (W. Myers, 1978; Tausworthe, 1979). The New
York Times project implemented by IBM (Baker, 1972) was
lauded as a successful initial demonstration of these
techniques. Yet, some problems appear to have resulted from
an early release of the system (Yourdon Report, 1976).
Considerable variability has been reported in subsequent
studies on the effect of these techniques for various project
outcomes (Belford, Donahoo, & Heard, 1977; Black, 1977;
Brown, 1977; Walston & Felix, 1977). Many evaluations have
rested solely on subjective opinions obtained in
questionnaires. There is a critical need for empirical
research evaluating the effects of modern programming
practices on software development projects.

Rome Air Development Center (RADC) and the Space and
Missile Test Center (SAMTEC) at Vandenburg Air Force Base
have jointly developed a plan for improving software
development called ASTROS - Advanced Systematic Techniques
for Reliable Operational Software (Lyons & Hall, 1976). This
plan describes several modern programming practices which
should result in more reliable and less expensively produced
and maintained software. In order to evaluate the utility of
these techniques, RADC is sponsoring research into their use
on a software development project at SAMTEC.

Two development projects from the non-real-time segment
of the Metric Integrated Processing System (MIPS) were chosen
for comparison. The MIPS system provides control and data
analysis in preparation for missile launches. The Launch
Support Data Base (LSDB) segment of MIPS was implemented

%*I



under the ASTROS plan while the Data Analysis Processor (DAP)
was implemented with conventional software development
techniques.

Data from LSBD were compared with results from DAP,
allowing a quasi-experimental comparison of two similar
projects in the same environment, one implemented under the
ASTROS plan. Data from these two projects were also compared
with the results from software projects elsewhere in
industry. Because there is little control over many of the
influences on the two projects, a causal relationship between
programming practices and performance cannot be proved, but
the data can be investigated for evidence of their effects.

1.2 Advanced Systematic Techniques for Reliable Operational

Software (ASTROS)

The ASTROS plan was a joint effort by SAMTEC and RADC

to implement and evaluate modern programming practices in an
Air Force operational environment. ASTROS applied these
practices to selected programming projects in order to
demonstrate empirically the premise that these techniques
would yield lower costs per line of code, more reliable
software, more easily maintained code, and less schedule
slippage.

The ASTROS project focused on three objectives: 1) an
investigation and validation of structured programming tools
and concepts, 2) improving management aspects of structured
programming, and 3) empirical measurement of project process
and outcomes. The core of the ASTROS plan was the
specification of a set of modern programming practices. The
implementation of these practices by the LSDB project team as
described by Salazar and Hall (1977) is discussed below.

1.2.1 Structured design and testing - is the practice of
top-down development or stepwise refinement (Stevens, Myers,
& Constantine, 1974; Yourdon & Constantine, 1979). Each
subsystem is designed from the control sections down to the
lowest level subroutines prior to the start of coding. Thus,
the highest level units of a system or subsystem are coded
and tested first. Top-down implementation does not imply that
all system components at each level must be finished before
the next level is begun, but rather the fathers of a unit
must be completed before this unit can be coded.

Since higher level units will normally invoke lower
level units, dummy code must be substituted temporarily for
these latter units. The required dummy units (program stubs)
may be generalized, prestored on disk, and included

1.
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automatically by the linkage editor during a test run, as in
the case of a CALL sequence. Althouqh program stubs normally
perform no meaningful computations, they can output a message
for debugging purposes each time they are executed. Thus, it
is possible to exercise and check the processing paths in the
highest level unit before initiating implementation of the
lower level units it invokes. This procedure is repeated,
substituting actual program units for the dummy units at
successively lower levels until the entire system has been
integrated and tested. Program units at each level are fully
integrated and tested before coding begins at the next lower
level.

1.2.2 HIPO charts - Hierarchical Input-Process-Output
charts are diagramatic representions of the operations
performed on the data by each major unit of code (Katzen,
1976; Stay, 1974). A HIPO chart is essentially a block
diagram showing the inputs into a functional unit, the
processes performed on that data within the unit, and the
output from the unit (Figure 1). There was one HIPO per
functional unit, with the processing in one unit being
expanded to new HIPOs until the lowest level of detail was
reached. The hierarchical relationships among the HIPO
charts are displayed in a Visual Table of Contents.

1.2.3 Chief programmer teams - are organized so that
functional responsibilities such as data definition, program
design, and clerical operations are assigned to different
members (Baker, 1972; Baker & Mills, 1973; Barry & Naughton, 4
1975). This approach results in better integration of the
team's work, avoiding the isolation of individual programmers
that has often characterized programming projects. The chief
programmer team is made up of 3 core members and optional
support members who are programmers.

" Chief programmer - is responsible to the project
manager for developing the system and managing the
programming team. He carries technical
responsibility for the project including production
of the critical core of the programming system in
detailed code, direct specification of all other
codes required for system implementation, and review
of the code integration.

" Back-up programmer - supports the chief programmer
at a detailed task level so that he can assume the
chief programmer's role temporarily or permanently if
required. In the LSDB project, he was responsible
for generating 80% of the code.

3
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* Librarian - assembles, compiles, and link-edits
the proqrams submitted by project proqrammers.
The librarian is responsible for maintaininq the
library, includinq work books, record books,
subroutines and functions, and configuration control
for all source code not maintained by the program
support library.

There was a tester assigned to the LSDB project who was
not formally a member of the chief proqrammer team.
Nevertheless, he attended all walk-throughs and knew the
system almost as well as the project proqrammers. His primary
responsibility was to test the generated code for accuracy
and proper function. When a problem arose, he would send an
'Action Item' to the chief programmer regarding the test
results.

1.2.4 Structured coding - is based on the mathematically

proven Structure Theorem (Mills, 1975) which holds that any
proper program (a program with one entry and one exit) is
equivalent to a program that contains as control structures
only:

e Sequence - two or more operations in direct
succession.

* Selection - a conditional branching of control
flow. Selection control structures are:

1. IF-THEN-ELSE
2. CASE

" Repetition - a conditional repetition of operations
while a condition is true, or until a condition
becomes true. Repetition control structures are:

1. DO WHILE
2. REPEAT UNTIL

These control structures are illustrated in Figure 2. The
implementation of these constructs into a computer language
allows the implementation of a simpler, more visible control
flow which results in more easily understood programs
(Dijkstra, 1972).

1.2.5 Structured walk-throughs - A structured walk-
* through is a review of a developer's work (program design,

code, documentation, etc.) by fellow project members invited
,)y the developer. Not only can these reviews locate errors
earlier in the development cycle, but reviewers are exposed
to other design and coding strategies. A typical walk-

5
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Sequence Repetition Repetition

BEGIN WHILE [logical exp.] DO REPEAT
[statements] [statements] [statements]

END ENDDO UNTIL [logical exp.]

Selection Selection
CASE [expression] OF IF [logical expression] THEN
C1: [statement] [statements]

ELSE
[statements]

C.: [statement] ENDIF

END
Figure 2. Control Structures allowed in structured

programing

6



through is scheduled for one or two hours. If the objectives
have not been met by the end of the session, another walk-
through is scheduled.

During a walk-through reviewers are requested to comment
on the completeness, accuracy, and general quality of the
work presented. Major concerns are expressed and identified
as areas for potential follow-up. The developer then gives a
brief tutorial overview of his work. He next walks the
reviewers through his work step-by-step, simulating the
function under investigation. He attempts to take the
reviewers through the material in enough detail to satisfy
the major concerns expressed earlier in the meeting, although
new concerns may arise.

Immediately after the meeting, the appointed moderator
distributes copies of the action list to all attendees. It
is the responsibility of the developer to ensure that the
points of concern on the action list are successfully
resolved and reviewers are notified of the actions taken. It
is important that walk-through criticism focus on error
detection rather than fault finding in order to promote a
readiness to allow public analysis of a programmer's work.

1.2.6 Program support libre y_- The Applied Data
Research (ADR) LIBRARIAN software was chosen as the program
support library for the LSDB project. A major reason for
this choice was its versatility of tools for the IBM 360/65
system. A program support library provides a vehicle for the
organization and control of a programming project, the
communications among development personnel, and the interface

between programming personnel and the computer system. When
used with top-down structured programming, the program
support library maintains a repository of data necessary for
the orderly development of computer programs.

The ADR LIBRARIAN generates a weekly subroutine report
which indicates the subroutine size, number of updates,
number of runs, etc., during the preceding report period. It
is a source program retrieval and maintenance system designed
to eliminate problems involved in writing, maintaining,
testing, and documenting computer programs. Source programs,
test data, job control statements, and any other information
normally stored on cards was stored by the ADR LIBRARIAN on
tape or disk and updated by a set of simple commands. Data
is also stored in hardcopy form in project notebooks. The
ADR LIBRARIAN includes the necessary computer and officeI
procedures for controlling and manipulating this data.

7



1.3 Metric Integrated Processing System (MIPS)

MIPS was designed to support SAMTEC opertions as the
primary source of metric (positional) data processing
associated with missile, aircraft, satellite testing, or
trajectory measurement activities. The critical function of
MIPS is to determine range safety information before launch
and establish controls for any potential flight path or abort
problems. In preparation for each test, MIPS processes data
related to preflight planning, mission parameters, safety
parameters, weather data, and instrumentation testing. It
provides the capability for real-time missile flight control
(safety), post-test data reduction, and metric data analysis.
MIPS is capable of accepting metric data input, processing
it, and outputing data in appropriate display media for both
single and salvo launches.

MIPS was designed around a .nodular and common data base
concept, which together with the control function provides
the capability to use the system in a highly structured, yet
flexible manner. MIPS was designed to operate with the IBM
OS/MVT 360 operating system, and to provide both speed and
flexibility in real-time and non real-time processing.

The MIPS development effort consisted of reprogrammingand integrating several programs which performed similar

functions less flexibly and used the same hardware. The
development environments of the projects for separate
components were similar since they shared the same
management, were implemented on the same computer (IBM
360/65), and were of approximately the same size and
duration.

A decision was made at the start of the MIPS project to
provide for an evaluation of a highly disciplined programming
environment. Two increments of the MIPS project were
selected for increased attention and measurement; the Data
Analysis Processor using conventional programming techniques
and the Launch Support Data Base implemented under the ASTROS
plan. The arrangement allowed a quasi-experimental
evaluation of the modern programming practices specified in
the ASTROS plan.

1.3.1 Launch Support Data Base (LSDB). The LSDB
Computer Programming Configuration Item (CPCI) is a non-real-
time increment of the MIPS system which determines in advance
the range characteristics and possible trajectories of
missiles. LSDB represents the reprogramming of an earlier
system (VIPARS) which was not referenced during the
development. Since LSDB was a redevelopment, the customers
were knowledgeable of its function before it was

8



implemented. LSDB includes both data management functions
and complex scientific calculations which are run in batch
prior to launch operations without real-time constraints.
Specifically, this system provides the processinq necessary
to qenerate the Launch Support Data Base parameters used by
the Missile Flight Control (MFC) CPCI and by Backup Impact
Prediction Software (BIPS) CPCI to support specific launch
operations. LSDB also generates the user requested reports,
data set files, IBM 7094 GERTS, and the tape files used by
the MFC and BIPS from these parameters.

LSDB is composed of five major Computer Proqramminq
Components (to be described hereafter as subsystems), each
with numerous subroutines and procedures. The five functions
performed by subsystems within LSDB are Launch Support Data
Base Initialization (LDI), Launch Support Data Base

* Generation (LDG), Launch Support Data Base Summary Output
(LSO), BIPS Launch Support Data Base Preparation (BDP), and
Summary Report (BDR). LSDB was developed under the guidelines
of the ASTROS system.

1.3.2 Data Analysis Processor (DAP). The DAP
reprogramming effort was a sister project to LSDB. DAP
analyzed data usinq parameters generated by LSDB and
developed reports for the MIPS system. While the ASTROS plan
was not implemented on the DAP project, the manaqement
controls and development environment were made as identical
as possible to those employed in the LSDB project to provide
more valid comparisons between them. The DAP project was
implemented in standard FORTRAN, in a non-structured coding
environment, by a group of programmers not organized into a
chief programmer team.

1.4 Project Environment

1.4.1 Hardware - The processor used in the LSDB project
was an IBM 360/65 (768K, 2Mbytes LCS) which was chosen for
its numerous and versatile tools. The developmental system
was identical to the target system, requiring no conversion
effort. The system was available for remote batch and batch
use. Turnaround time for batch work was approximately 24
hours and for remote batch was approximately 2 hours. The
operating system was IBM OS/360, MVT, release 21 with HASP.

1.4.2 Software - After careful evaluation, S-Fortran was
chosen for use on this project. Most of the LSDB code was
written in S-Fortran. Small segments were coded in the BAL
assembly lanquage. S-Fortran is a hiqh level lanquage
(Caine, Farber, and Gordon, 1974) which allows programmers to
use structured concepts in their code (Dijkstra, 1972). S-
Fortran did allow what Dijkstra (1972) would consider

9



unstructured constructs. For instance, the UNDO statement
allowed exits from loops. A structured precompiler converted
the S-Fortran code to standard Fortran for compilation by
the standard ANSI-Fortran compiler. The LSDB project had
access to a subroutine library for some of the routines
needed.

1.4.3 Training - The project personnel underwent a
series of courses designed to provide the training necessary
to implement the advanced proqramminq techniques specified in
ASTROS. The trainer had studied with Yourdon, Inc. prior to
teaching these courses. The curriculum included:

0 Overview - a survey of the general idea of modern
programming practices. (2 hours)

0 Structured design- discussions of top-down design,
design languages, HIPO charts, threads, and top-

down testing (40 hours)

0 Structured coding - began with brief discussions of
the theory of structured constructs, their history,
and mathematical proofs. Primary instruction
concerned the use of S-FORTRAN with emphasis on
coding and actual problems. (20 hours)

* Program support library - description of the
optional features of the ADR LIBRARIAN and their
use, including a discussion of the system
management facilities. (20 hours)

* Measurement reporting - description of the
measurement forms and how to fill them out.
Emphasis was given to error classifications and
their meanings. (4 hours)

a Management of structured project - stressed the
systems management aspects of structured
programming, including military standards,
measurement reporting and management controls,
software life cycle management, chief programmer
teams, and structured walk-throughs. (20 hours)

1.5 Data Acquisition

Three types of data were collected on the LSDB project:
environment data, personnel data, and project development
data. Environment data provided information regarding the
system such as the processor, estimated costs, and the amount
of source code. Personnel data was information about the
people working on the project and their evaluations of

10



different aspects of it. In order to ensure privacy, strict
anonymity was maintained and no evaluation of personnel
qualifications was made. Project development data was
information describing the development and proqress of the
project. This information included run reports, manpower
loadings, and development information. Table 1 describes
these sources of information, and Appendix A contains the
data collections forms used during the LSDB project.

RADC has collected development data over a larqe number
of systems, including military and commercial software
projects (Duvall, 1978; Nelson, 1978). These data were
collected in an attempt to establish baselines and
parameters typical of the software development process.

* Some of the variables against which the LSDB and DAP projects
can be compared are listed in Table 2. Appendix B shows the

*. bivariate scatterplots for some of these data.
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Table 1

Data Collection Forms

Instrument Description

Environment data

General contract/ Initial estimates of system
project summary characteristics and scope such as total

cost and project environment

Management Initial assessments of system reports,
methodology schedules, management tools, and
summary standards

Design and Initial assessment of the hardware and
processor summary software configuration of the system

Testing summary Reported test document preparation and
tools, procedures, and visibility
mechanisms for test (unavailable)

General wrap-up Final statement of project effort and
report system requirements which allowed a

comparison with oriqinal estimates in
earlier summaries

Source code The delivered product of the

development project

Personnel data

Personnel profile Biographical information from each team
member on experience, training, and
current position

Technology Each team member's evaluation of the
critique tools and techniques used, the training

received, and possible future
improvements

Project development data

Action reports Generated whenever a problem or
extraordinary event occurred durinq
development typically requiring program
or requirement chanqes

12



Computer program Generated after each computer run and
run analysis reporting data, computer time, work
reports category, status, and number of

statements chanqed

Computer program Generated each time a computer run
failure analysis error occurred and reporting data
report error category and severity

Manpower loadings Breakdowns of manhours by work category
and month

Schedule Chronological data on project phases
information and milestones

Post-development Generated for each problem or error
error reports detected during post-development

subsystem and system inteqration
r testing which required corrective

action

13



Table 2

Variables in the RADC Database

Variable Definition

Program Size The total number of lines of source
code in the delivered product. This
count includes declarations, internal
program data, and comment lines. It
does not include throwway or external
data.

Project Effort The number of man-months required to
* produce the software product, including

management, desiqn, test, and
documentation.

Project duration The number of months elapsed during the
development phase minus dead time such
as work stoppages.

Errors The number of formally recorded
software problem reports for which a
correction was made during the period
covered by the project. This does not
include errors from the development
portion of the project, but rather from
testing through integration.

* Derived parameters Ratios obtained from other variables:

a. Productivity = Size/Effort

b. Average Number of Personnel =

Effort/Duration

c. Error Rate Errors/Size

14



2. THEORIES RELEVANT TO SOFTWARE DEVELOPMENT

2.1 Putnam's Software Life Cycle Model

Lawrence Putnam (1978) has refined and verified a
software cost and risk estimation model based in part upon
the work of Norden (1977). Putnam's model interrelates
manpower, effort, development time, level of technology, and
the total number of source statements in a system. Putnam's
equation describes the behavior of software development
projects which consist of over 25,000 lines of code. However,
it must be calibrated to each software development
organization because of different programming environments.

When provided with initial parameters from the software
project, Putnam's model can predict the manpower-time
tradeoff involved in implementing the system under
development. The model can determine the number of man-years
required for a project given limited calendar time. The
model is also useful for evaluating corrective action needed
on an existing project. Putnam's equation for the
developmental phases of the project life cycle is:

Ss = C Kd 1/3 td
I/3

where:

Ss = the size of the final system in source statements,

Ck = the technology constant,

Kd = the development effort in man-years,

td = the duration of development time in calander year.

The technology constant reflects factors influencing the
development environment such as use of modern programming
practices and hardware capabilities. These factors will
determine the time and manpower needed for development.
Normally this constant was determined for a particular
software organization and input to the model in order to
provide cost, time, and risk estimation. However, when size
and time are known as in the LSDB project, the model can be
applied in retrospect to obtain a technology factor. Solving
the software life cycle equation for C (the technology
constant) yields: S

1Ck 17 Td1 t 1-



Putnam has further calibrated his technology constant
through analyses of data on over 100 systems collected by GE,
IBM, TRW, and several government agencies. In development
environments typical of 10 to 15 years ago, where programming
was performed in batch mode and written in assembly language,
values for C could be as low as 1,000. Development
environments of systems built with a higher order language
such as FORTRAN, in batch processing, on one large mainframe
saturated with work, and slow turnaround could yield
technology constants of around 5,000. Higher values for C
occurred in an environment where modern programming practices
were implemented with on-line, interactive programming.

2.2 Halstead's Software Science

Maurice Halstead (1977) has developed a theory which
* provides objective estimates of the effort and time required

to generate a program, the effort required to understand a
program, and the number of bugs in a particular program
(Fitzsimmons & Love, 1978). In 1972, Halstead first
published his theory of software physics (renamed software
science) stating that algorithms have measurable
characteristics analogous to physical laws. According to
Halstead (1972, 1977), the amount of effort required to
generate a program can be calculated from simple counts of
the actual code. The calculations are based on four
quantities from which Halstead derives the number of mental
comparisons required to generate a program; namely, the
number of distinct operators and operands and the total
frequency of operators and operands. Preliminary tests of the
theory reported very high correlations (some greater than
.90) between Halstead's metric and such dependent measures as
the number of bugs in a program (Cornell & Halstead, 1976;
Funami & Halstead, 1975), programming and debugging time
(Curtis, Sheppard, & Milliman, 1979; Gordon & Halstead,
1976), and the quality of programs (Bulut & Halstead, 1974;
Curtis, Sheppard, Milliman, Borst, & Love, 1979; Elshoff,
1976; Gordon, 1977). Fitzsimmons and Love (1977), Funami and
Halstead (1975), and Akiyama (1971) found that Halstead's
effort metric was a much better predictor of the number of
errors in a program than either the number of program steps
or the sum of the decisions and calls.

2.2.1 Volume. Halstead presents a measure of program
size which is different from the number of statements in the
code. His measure of program volume is also independent of
the character set of the language in which the algorithm was
implemented. Halstead defines his measure of program volume
as:

V = (N1 + N2) log92 (I + n2 )

16



where,

n, = number of unique operators,

n2 = number of unique operands,

N1 = total frequency of operators,

N2 = total frequency of operands.

Halstead's measure of volume is stated in information
theoretic terms (Shannon, 1948). He represents volume as the
minimum length in bits of all the unique elements in a
program (its vocabulary) times the frequency with which these

* elements are invoked.
I

. 2.2.2 Level. Halstead's theory also generates a measure
of program level which indicates the power of a language. As
the program level approaches 1, the statement of the problem
or its solution becomes more succinct.- As the program level
approaches 0, the statement of a problem or its solution
becomes increasingly bulky, requiring many operators and
operands. A higher level language is assumed to have more
operators available, but these operators are more powerful
and fewer operators need to be used to implement a particular
algorithm. Halstead's estimate of program level is computed
as: /

1. = 2Tn 2 /r I N 2.

2.2.3 Effort. Halstead theorized that the effort
required to generate a program would be a ratio of the
program's volume to its level. He proposed this measure as
representing the number of mental discriminations a
programmer would need to make in developing the program.
Halstead's effort metric (E) can be computed precisely from a
program (Ottenstein, 1976) which accepts source code as
input. The computational formula is:

nI N2 (N1 + N2 ) log 2  (n I + T12 )
=2n2

The time required to generate the program can be estimated by
dividing E by the Stroud (1966) number of 18 mental
discriminations per second.

2.2.4 Scope. In using Halstead's equations to compute
the effort or time required to develop a system, it is
important to limit the computations to the scope of the
program that a programmer may be dealing with at one time. By

* V - scope, we mean the portion of a program that a programmer is

17



attempting to represent to himself cognitively, regardless of
whether he is developing code or attempting to understand an
existing program. There are several strategies that a
programmer could follow while working on a module, and they
result in different values for the overall effort.

2.2.4.1 Minimum scope case. In the minimum scope case,
the programmer would only keep the context of the subroutine
he was currently working on in mind. He would not keep track
of other variables from other routines. In this case, each
subroutine could be considered a separate program, and the
effort for the subsystem would be the summation of the effort
for the separate subroutines. In this case the volume of the
ith subroutine would be:

V. = (N1 . + N2 ) log 2 (1. + n2.'
*1 1 1 1

and the estimated level of the ith subroutine would be:
A
L . = (2 n2 .)/(n . N 2 )

i 11 1 1

The effort for the ith subroutine would then be:
AEiV i i

where the subscript i indicates that the values of the
variables are computed only from the operators and
operands in the ith subroutine. The total effort for
the subsystem is therefore the summation of the efforts
of the S subroutines of the subsystem:

EMIN E

where EMIN is the effort for the subsystem, assuming that
the programmer developed each subroutine as an
independent program and S is the total number of subroutines.

2.2.4.2 Maximum scope case. Cases 2 and 3 are
concerned with the two extremes where there is overlap
between the subroutines (e.g., global variables). In these
cases, the programmer is assumed to treat the entire subsystem
as one program. He mentally concatenates the subroutines
into a subsystem and treats the subsystem as one complete
algorithm (a gestalt) where he must keep track of all its
aspects at any given time.

2.2.4.2.1 Lower maximum scope. In the lower bound
for the maximum scope case, we assume that all the variables
in the subroutines of the system are the same. In other
words, we assume that the programmer will use the same set of

18



variables for each subroutine, and therefore, the maximum
number of unique operators and operands that he must keep
track of will be the maximum used in any one subroutine. The
effort of the subsyste? will then be:

N2  Nl + N2 ) log2 nlx + n))
E X i= 2n2

where,

IM = the number of operators in the subroutine with the
* largest number of unique operators,

r'2 the number of operands in the subroutine with the
MAX largest number of unique operand.,

N = the frequency of operators in subroutine i,
1

N2 = the frequency of operands in subroutine i,
1

S = the number of subroutines in the system.

2.2.4.2.2 Upper Maximum scope. To establish an upper
bound for the maximum scope case, we make the assumption that
the operators and operands for each separate section of code
are treated as being unique to that section of code (local
variables appearinq in that section and no other). The
absolute upper bound for the effort required to program the
system is:

i n(N 2 ( (N 1 + N2 )lg (nl + fl2)
ELX=i=l ,i=l i=l ~

2 T 2.
11

A mathematical proof is presented in Appendix C to show
that EMIN < E UM < EUMAW

2.2.5 Delivered Errors

Halstead (1977, p. 85) developed a formula for
predictinq the number of errors during system testing. The
equation he presents is B V/ECRIT where B is the number of
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errors expected, V is the volume, and ECRIT is "the mean number
of elementary discriminations between potential errors in
programming" (p. 85). E CRIT can also be expressed as the
critical value for effort computed from a critical value for
volume above which, at least one e ror is predicted to
occur. E is shown to be (V*cPIT )./IX, where V*CRIT is
the minimal value of E for an amount of code which would
consume the available space in the working (short term)
memory of the average programmer at a single instant andXis
the level of the implementation language derived from tables
developed by Halstead for a number of languages. Based on his
assumptions about memory capacity, Halstead derives a value
for V* of 24. Therefore, the revised formula for the
prediction of delivered bugs is:

"V VX 2

B = V/ECRIT -3- 13,824

2.3 McCabe's Complexity Metric

Thomas McCabe (1976) defined complexity in relation to
the decision structure of a program. He attempted to assess
complexity as it affects the testability and reliability of a
module. McCabe's complexity metric, v(G), is the classical
graph-theory cyclomatic number indicating the number of
regions in a graph, or in the current usage, the number of
linearly independent control paths comprising a program. The
computational formula is:

v(G) = # edges - # nodes + 2(# connected components).

Simply stated, McCabe's metric counts the number of basic
control path segments through a computer program. These are
the segments which when combined will generate every possible
path through the program. McCabe presents two simpler
methods of calculating v(G). McCabe's v(G) can be computed
as the number of predicate nodes plus 1, where a predicate
node represents a decision point in the program. Thus v(G)
may be most easily envisioned as the number of regions in a
planar graph (a graph in regional form) of the control flow.
Figure 3 presents several examples of how to compute v(G)
from a planar flowchart of the control logic.

The simplest possible program would have v(G) = 1.
Sequences do not add to the complexity. IF-THEN-ELSE, DO-
WHILE, or DO-UNTIL increase the complexity by 1. It is
assumed that regardless of the number of times a DO loop is
executed there are really only two control paths: the
straight path through the DO and the return to the top.
Clearly a DO executed 25 times is not 25 times more complex
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Figure 3. Control flow graphs and associated
values for v(G)
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than a DO executed once.

McCabe also presents a method for determining how well
the control flow of a program conforms to structured
programming practices. He decomposes the control flow
by identifying structured constructs (sequence, selection,
and repetition) that have one entrance and one exit and
replaces them with a node. If a program is perfectly
structured, then the flow graph can be reduced to a simple
sequence with a complexity of 1 by iteratively replacing
structured constructs by nodes. If a segment of code is not
structured, then it cannot be decomposed and will contribute to
the complexity of the program. Figure 4 demonstrates such an
analysis. McCabe calls the ultimate result of this
decomposition the essential complexity of the program. The
essential complexity of the reduced graphs indicates the

* unstructured complexity of the system.

2.4 Software Quality Metrics

One of the most comprehensive studies of software
quality was performed by McCall, Richards, and
Walters (1977) under an RADC contract. They defined various
factors of software quality as a means for quantitative
specification and measurement of the quality of a software
project. With these aids, a software manager can evaluate
the progress and quality of work and initiate necessary
corrective action.

A set of quality factors was identified in a
literature review. The importance of the factors was
determined through a survey of knowledgeable u-,ers. From
results of this survey a set of software quality
factors was chosen (Table 3) and classified as to their
impact in the software development process. For each
software quality factor, a set of underlying metrics was
developed which allowed objective measurement of specific
aspects of software which would impact quality. Each metric
was chosen as a descriptor of some aspect of the software
development process such as simplicity. A subset of the
metrics in the McCall et al. study was used in the current
study to demonstrate the quality of code produced for LSDB as
compared to code from DAP. Appendix D presents the seven
metrics selected and their derivation.
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Table 3

Software Quality Factors

Factor Definition

Correctness Extent to which a program satisfies its
specifications and fulfills the user's
mission objectives.

Reliability Extent to which a program can be
, expected to perform its intended

function with required precision.

Efficiency The amount of computing resources and
code required by a proqram to perform a
function.

Integrity Extent to which access to software or
data by unauthorized persons can be
controlled.

Usability Effort required to learn, operate,
prepare input, and interpret output of
a program.

Maintainability Effort required to locate and fix an
error in an operational proqram.

Testability Effort required to test a program to
insure it performs its intended
function.

Flexibility Effort required to modify an
operational program.

Portability Effort required to transfer a program
from one hardware configuration and/or
software system environment to another.

Reusability Extent to which a program can be used
in other applications - related to the
packaging and scope of the functions
that programs perform.

Interoperability Effgrt required to couple one system
with another.
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3. DATA ANALYSES

Data analyses will be reported in two sections. The first
section reports comparative analyses between LSDB and DAP.
The order of presentation will proceed from analyses at the
project level to detailed analyses of the source code. The
comparisons will include:

1. the descriptive data generated from both projects,

2. the technology levels as determined from Putnam's
model,

3. the efforts involved in generating the code as
determined from Halstead's theory,

4. the complexity of the control structures of the

systems as indexed by McCabe's metric,

5. the quality of the delivered source codes indicated
by software quality metrics, and

6. comparison to projects in the RADC database.

The second section of results will present analyses
of the error data collected on the LSDB project. These
analyses will include:

1. descriptive data for run-error categories,

2. comparison with error categories from TRW data,

3. prediction of run-errors by subroutine,

4. trends in run-errors across time,

5. prediction of post-development errors.

There were some seeming discrepencies in the data.
While run-error reports were obtained for the LSDB project
over a 16 month period, man-hour loadings were only reported
for 14 months. This discrepancy appears even greater in that
numerous runs were reported during the requirements
and preliminary design phases of the project, although no
hours were logged to coding. The LDI component was not
actually peculiar to the LSDB system. Thus, coding on LDI
began immediately at the start of the LSDB project since its
requirements were known and the team wanted practice writing
in S-Fortran. As the preliminary design progressed on the
remainder of the LSDB components, S-Fortran listings were
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used during walk-throughs in place of a Program Design
Language. Some of the early man-hours appear to have been
charged to an account other than that of LSDB. Thus, results
of analyses involving man-hours should be interpreted as
approximate rather than exact.

3.1 Comparative Analyses: LSDB Versus DAP

3.1.1 Descriptive data. The source code for the LSDB
Computer Program Configuration Item contained over three
times as many source lines and almost two and one half as
many executable lines as did that of DAP (Table 4).
Executable lines represented the source code minus comments,

data statements, and constructs not strictly applicable to
the algorithm. ENDIF, READ, and WRITE statements were not

* counted as executable lines. The original estimate of 5,000
* lines source code in S-FORTRAN for LSDB was close to the

number of lines of strictly algorithmic executable code
actually produced. The 16,775 source lines in LSDB were

*distributed across five subsystems (CPC's) which typically
ranged from 1700 to 2700 lines, with the exception of one
8013 line subsystem. The six subsystems constituting DAP
were all smaller, ranging from 200 to 1400 lines of code.

Comments accounted for a larger percentage of the LSDB
source code (38%) than of the DAP code (22%). While there
were fewer executable lines than comment lines (31% vs. 38%,
respectively) in the LSDB code, there were almost twice as
many executable lines as comment lines (44% vs. 23%) in the
DAP code.

The LSDB project required approximately 8081 man-hours
of effort to complete, while the DAP project required
approximately 6782 man-hours. Thus, while LSDB contained

* 239% more total source lines of code and 140% more executable
lines than DAP, the LSDB project required only 19% more man-
hours of effort to complete.

Figure 5 presents a plot of the man-hours expended on
LSDB and DAP during each month of the project from the
requirements phase through development testing and system
documentation (Appendix E). Different profiles were observed
across the 14 months required for each of the two projects.
For LSDB, the largest loadings occurred during the initial
five months of the project. With the exception of month 8,
only between 300 and 600 man-hours of effort were expended
during each of the last nine months of the LSDB project. Man-
hours expended on DAP, however, were greatest during the
final months of the project. That is, during the initial 8
months of DAP only 150 to 450 man-hours were expended per
month, while during the last six months (except for month 13)
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Table 4

Number of lines by Subsystem: LSDB versus DAP

Total Non-comment Executable
Subsystem lines lines lines

LSDB:

LDI 1757 1139 636

LDG 2527 1469 833

LSO 1801 1348 775

BDP 8013 4333 2009

BDR 2677 2024 952

Total 16775 10413 5205

DAP:

1 1357 1030 514

2 951 748 440

3 714 592 375

4 1336 1064 591

5 395 312 184

6 200 114 65

Total 4953 3860 2169
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man-hour expenditures ranged between 500 and 1050. Figure 6
presents a chronological history of both projects by life
cycle phase.

The percentages of man-hours expended during each phase
of development for LSDB and DAP are presented in Figure 7.
On both projects, approximately 20% of the man-hours were
expended in coding and integration, while 15% were expended
in product eocumentation and training. Differing profiles of
effort expenditure were observed on the other four phases for
each project. While only 6% of the man-hours on LSDB were
invested in requirements analysis, 21% of those on DAP were
consumed during this phase. However, it is likely that many
of the man-hours devoted to LSDB requirements analysis may
not have appeared among the manpower loadings charged to this
project. Almost one third of the requirements hours for DAP
were expended in what appears to have been a modification of
the requirements during month 10. When compared to the DAP
project, the percentage of total man-hours on the LSDB
project invested in the preliminary design was almost twice
as great, and in the detailed design was over four times as
great. One quarter of the man-hours on the LSDB project were
expended in development testing and evaluation, while one
third of those on the DAP project were so expended. However,
half of the testing-related time on the LSDB project was
invested in -preparation of the test procedures, compared to
only an eighth of the DAP test-related time being devoted to
preparation.

3.1.2 Level of Technology: Putnam's Model

Putnam's technology constant for the LSDB project was
anticipated to fall in the midrange of values (approximately
5,000) because advanced tools were employed, but the computer
was used in batch mode, turn around time was slow,
programming was non- interactive, and some of the code was
written in assembler. Putnam argues that in calculating the
technology constant for a development effort, calendar time
and development effort should be measured only from the date
that work on the detailed design was initiated. Further, the
constant was computed using the number of non-comment lines.
The level of technology for LSDB was calculated as follows:

Ck 10,413 lines of code 6,685
(3.78M/y) 1 / 3 (1 calendar yr.)1/3
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The level of technology for DAP was computed as follows:

Ck = 3,680 lines of code =2,891
(2.75M/y)1/3 (.75 calendar yr.)1/3

The technology constant computed for DAP is lower than that
computed for the LSDB project. Since both projects used the
same machine and access times were similar, differences in
the technology constant cannot be attributed to a factor
Putnam considers to be one of the primary influences on his
metric; access time. Although Putnam suggests that his
equation will yield an overestimate of the technology
constant for projects of under 25,000 lines of code, these
computations nevertheless validate the ASTROS plan as
providing a more advanced programming technology than the
conventional techniques practiced on the DAP project.

3.1.3 Programming Scope and Time: Halstead's Model

The volumes, estimated levels, and efforts for each
level of scope described in Section 2.2.4 for each of the
subsystems from LSDB and DAP are presented in Table 5. The
subsystems were treated as separate entities for the purpose
of analyses presented here. Thus, the maximum scope cases
are calculated on these subsystems separately rather than on
the total LSDB system.

Regardless of the level of scope at which the analysis
is conducted, the total volume of the LSDB code is greater
than that of DAP. However, if we assume that programmers
were maintaining a mental representation of an entire
subsystem at one time (-he two maximum scope cases), the
effort needed to create the LSDB subsystems was greater and
LSDB's level was lower than those associated with the DAP
code. However, if programmers are only attempting to track
one subroutine at a time (minimum scope), then the effort for
LSDB is less and the level greater than for DAP.

In order to determine which level of scope was most
accurately reflected in the data, the efforts associated with
each level of scope were used to predict the time required to
code each project. For each effort measure, the total number
of mental discriminations was divided first by the Stroud
number (18 discriminations per second; Stroud, 1966) and then
by the 3,600 seconds in an hour to obtain a prediction of the
man-hours required for coding. Since the Stroud number
represents an optimum measure of mental performance, the
effort measure which most accurately reflects the real effort
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involved in developing the code should underestimate the
actual coding time. This underestimation allows for the fact
that programmers do not work at peak efficiency throughout
their coding hours.

As evident in Figure 8, the two maximum scope cases
overestimate the actual coding time for both LSDB and DAP.
This overestimation is substantial for LSDB. Thus, the
minimum scope case where programmers only attempt to keep
track of the subroutine they are currently working on appears
to be best represented in the data from both projects. The
substantial underestimation of the coding time on the LSDB
project agrees with the reports of project programmers that
they had considerable slow time during the coding phase due
to poor turnaround time. It is also likely that the scope of
the .program that programmers were working with at a given

* time was somewhat larger than described by the assumptions of
the minimum scope case (e.g., programmers may have to
remember several global variables).

Since the data provide the best support for the
assumptions underlying the minimum scope case, it appears
that the effort required to code LSDB was less than that
required to program DAP. This may have occurred in part
because the programming level evident in the source code was
greater for LSDB when the assumptions of the minimum scope
case are accepted. That is, the LSDB code appears to have
been written more succinctly than the DAP code.

This comparison becomes even more evident if we use the
productivity defined as non-comment lines produced per man-
hour from each project to predict the programming time for
the other project. As evident in Figure 8, if the rate of
non-comment lines produced per man-hour that was observed on
the DAP project had been true for the LSDB project, it would
have taken almost two and one-half times as many man-hours
to produce the non-comment portion of the LSDB code.
Similarly, had the production rate of the LSDB project been
achieved on the DAP project, the DAP code could have been
completed much more quickly. Thus, the LSDB code was
produced with substantially less effort than was the DAP
code.

3.1.4 Complexity of Control Flow: McCabe's Model

In order to evaluate the complexity of the control flows
using McCabe's procedures, two subroutines were selected for
analysis from the source code of each project. McCabe's v(G)
was computed on each subroutine and the values ranged from 76
to 165 (Table 6, Column 1). However, differences in the
number of executable statements in each subroutine over which
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Table 6

McCabe Values for Selected Subroutines from Each Project

Raw data Adjusted values

Essential Essential
Subroutine v(G) v(G) v(G) v(G)

* LSDB:

1 76 31 101 41

2 136 18 119 18

DAP:

1 147 50 114 39

2 165 56 132 45
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these values were computed made their comparison difficult.
Values of v(G) for each subroutine were adjusted
proportionately to a value for a standard subroutine of 300
executable statements. That is, the ratio of v(G) to lines
of code for each subroutine was calculated, and then was
standardized to a baseline of 300 lines of code. Following
this transformation, the control flows of the subroutines
from each project were found to be of approximately equal
complexity (Table 6, Column 3).

The degree to which the code from each module exhibited
a control structure consistent with the structured principles
of Dijkstra (1972) was also evaluated using McCabe's (1976)
procedures for establishing essential complexity. Each
control structure consistent with those allowed by Dijkstra
was replaced in a flowchart by a node until all such
structures had been replaced. The result of this replacement
process for perfectly structured programs would be a sequence
with essential v(G) = 1, and values greater than 1 wouldIindicate the extent of "unstructuredness" in the control
flow. The essential complexity of the four modules ranged
from 31 to 56. The adjusted scores indicated that one of the
subroutines from LSDB was similar to those from DAP in its
degree of unstructuredness, while the other was substantially
more structured. Although this unstructuredness in LSDB
seems surprising, S-FORTRAN allows an UNDO statement, which
results in an unstructured construct by allowing jumps out of
loops (Figure 9). With the exception of this construct, the
LSDB code in the two modules analyzed was consistent with the
principles for structured code described by Dijkstra. The
violations of structured control flow in the DAP code were
much more varied.

* 3.1.5 Software Quality Metrics

Several software quality metrics concerning modularity,
simplicity, and descriptiveness reported by McCall, Richards,
and Walters (1977) were computed on the subroutines used in
the McCabe analysis. The detailed scoring of the software
quality metrics relevant to this study can be found in
Appendix D. Table 7 summarizes the results of this
analysis. On two of the six measures studied the LSDB code
was found to be clearly superior to the DAP code. That is,
LSDB was written in a language which incorporated structured
constructs, and the system design was generally implemented
in a modular fashion. Th( LSDB code in the subroutines
analyzed deviated from the principles of top-down modular
design to the extent that calling procedures did not define
controlling parameters, control the input data, or receive
output data. The LSDB subroutines received slightly higher
srores for coding simplicity than those of DAP. These scores
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Figure 9. An example from LSDB of decomposition
to essential complexity
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Table 7

Values of Software Quality Metrics for Selected Subroutines

LSDB DAP

Metric 1 2 1 2

Structured lanquage 1.00 1.00 .00 .00

Codinq simplicity .67 .69 .63 .57

Modular implementation .55 .41 .00 .00

Quantity of comments .49 .28 .46 .17

Effectiveness of comments .45 .45 .43 .40

Descriptiveness of 1.00 .98 .83 .83
implementation language
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reflected better implementation in LSDB of top to bottom
modular flow, use of statement labels, and avoidance of GO
TO's. Minor differences were observed between projects on
the effectiveness of comments. Thus, the greater percentage
of comments in the LSDB code may not have contributed
proportionately more to the quality of documentation beyond
the quality observed in DAP. The descriptiveness of the
LSDB code (e.g., use of mnemonic variable names,
indentation, single statement per line, etc.) was slightly
greater than that of the DAP code.

3.1.6. Comparison to RADC Databas

Richard Nelson (1978) has performed linear regressions of
delivered source lines of code on other variables in the RADC
software development database. These regressions allow an
investigation of performance trends as a function of project

*size. When outcomes from the LSDB and DAP projects are
* plotted into these regressions, it becomes possible to

compare the performance of LSDB and DAP with other software
development efforts while controlling for the size of the
project (in terms of delivered source lines).

Figure 10 presents the scatterplot for the regression of
delivered source lines of code on productivity (lines of code
per man-month). The datapoints for the LSDB and DAP
projects fall within one standard error of estimate of the
regression line. However, LSDB falls above the regression
line and DAP falls below it, suggesting that LSDB's
productivity was slightly higher than the average
productivity for projects of similar size and DAP's was
slightly lower. Scatterplots presented in Appendix B for
regressions of delivered source lines on total man-months,
project duration, total errors, error rate, and number of
project members indicated similar results. That is, the
performance of LSDB was usually better than that of DAP when
adjusted for differences in the number of lines of code.
Howevter, the performance of the LSDB project was only
slightly better than average when compared against results of
other projects.

3.2 Error Analyses

All of the data reported in this section are from the
LSDB project with the exception of the post-development
errors for which data were available from DAP. No records of
development runs were available from DAP.

3.2.1 Error Cateqories

3.2.1.1 Descriptive data, Of the 2,719 computer
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runs involved in the development of LSDB, 508 (19%) involved
an error of some type (see Appendix F). The frequencies of
these errors are reported in Table 8 by a categorization
scheme similar to that developed by Thayer et al. (1976) for
TRW Project 5. The 14 categories of errors are divided into
two groups and a lone category of unclassified errors. The
first group involved errors which were detected by a
malfunction of the algorithm implemented in the code. These
categories included computational errors, logic errors, data
errors, etc., and accounted for 28% of the total errors
recorded. Most numerous were logic errors which constituted
19% of all errors.

Over half of the errors recorded (55%) were non-
* algorithmic and involved the hardware functioning (23%), the
* job control language (14%), keypunch inaccuracies (10%), or

program execution errors (i.e., compile error or execution
limits exceeded, 8%). Seventeen percent of the errors
recorded could not be classified into an existing category in
either group.

3.2.1.2 Comparison with TRW data. As a partial test of
the generalizability of these error data, the profile across
selected error categories was compared to similar data from
three development projects conducted at TRW (Thayer et al.,
1976). Data are reported only for those Lrrors for which
similar classifications could be established. This analysis
was performed and first reported by Hecht, Sturm, and
Trattner (1977). The percentages reported in Figure 11 were
developed by dividing the number of'Lrrors in each category
by the total number of errors across the five categories.
LSDB and the fourth study from the TRW data were found to be
quite similar, especially with regard to the low percentage
of computational errors and the high percentage of logic
errors. The LSDB error profile was similar to the other two
TRW studies in the percent of data input and handling errors
and interface/program execution errors. Overall, it would
appear that the distribution of error types on the LSDB
project is similar to distributions observed on other
projects.

3.2.2 Prediction of Errors at the Subsystem Level

Table 9 presents the total number of runs involved in
developing each subsystem of LSDB. These runs are further
broken down by the number that contained an error of any type
and the number that contained an algorithmic error. Nineteen
percent of the runs contained some type of error, while 5%
contained an algorithmic error. There were 718 runs that
were not classified as belonging to a particular subsystem.
These runs appear to have involved either subsystem
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Table 8

Frequencies of Error Categories

Error category Freq.

Algorithmic errors:

Computational 5' 1

Logic 98 19

Data input 17 3

Data Handling 12 3

Data output 3 1

Interface 0 0

Array processing 1 0

Data base 4 1

Total 140 28

Non-algorithmic errors:

Operation 115 23

Program execution 41 8

Documentation 0 0

Keypunch 51 10

Job control language 73 14

Total 280 55

Unclassified: 88 17

Grand total 508
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Table 9

Frequencies of Runs and Errors by Subsystem

Number of Runs % error ratio

All Algorithmic

Subsystem Total Errors errors All Algorithmic

LDI 299 45 7 15 2

LDG 419 90 33 21 8

* LSO 458 97 27 21 6

BDP 510 112 18 22 4

BDR 315 57 16 18 5

A 533 71 29 13 5

B 185 36 10 19 5

Total 2719 508 140 19 5

45



II
integration work or development test runs, and are classified
as categories A and B.

Relationships among the various categories in Table 9
were evaluated with the use of Kendall's tau (T), a measure
of correlation for rank-ordered data. This statistic was
chosen to avoid the inflating effect extreme scores can often
have on parametric statistics calculated on as few data
points as represented by the number of subsystems. The rank
orderings of total and executable lines were identical.
However, the correlations of runs and error runs with lines
of code were insignificant. Across the five subsystems and
two unclassified categories, the number of runs correlated
significantly with total errors (T = .71) but not with
algorithmic errors or error rates. The errors associated
with each subsystem were unrelated to the Halstead metrics
for volume, level, or effort computed on those subsystems

. (minimum scope case). Thus, it appears that while there was
a relationship between the total number of runs and errors
for a subsystem, these measures were unrelated to other
characteristics of the subsystem such as size and complexity.

3.2.3 Error Trends over Time

A chronological history of the number of action
reports, error-runs (total and algorithmic), and post-
development errors is presented by month in Figure 12. The
63 action reports describing discrepencies between the design
and the functional requirements were recorded only during the
first seven months of development. Error-runs were reported
over the entire 16 months of development. The distribution
of total errors over months was bi-modal, with the first mode
occurring during the second and third months of the project,
and the second mode occurring between the ninth and eleventh
months of the project. Post-development errors were first
recorded during month 16 and continued until month 24.
However, no activity was recorded from months 17 to 19.

The development error data indicated that work was
performed on all subsystems nearly every month through the
life of the project. These data suggest that the project
team proceeded with the parallel development of subsystems.
The alternative approach of depth first coding and
implementation where one subsystem is completed before
proceeding to the next, did not appear to have been employed.

Since the number of errors per month varied with the
number of runs, a more representative measure of error
generation was developed by dividing the number of errors by
the number of runs. These rates for both total and
algorithmic errors are plotted by month in Figure 13. Linear
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regressions for these error rates indicated decreasing trends
over time. For total errors the correlation was -. 52, while
for algorithmic errors it was -.63. Rates for total errors
decreased sharply over the final nine months from 30% in
month 8 to 8% in month 16. The correlation associated with
this sharp decline was -.90 (predicted error rate =
-2.5(month #) + 47.78).

3.2.1 Post-Development Errors

There were 28 post-development errors reported for the
LSDB code, and as was evident in Figure 12, their frequency
declined over time. These errors included 12 subsystem
development test errors and 16 system integration test
errors. Forty-three system integration test errors were
reported for DAP. Compared to the size of the source code,
proportionately fewer post-development errors were reported

* for LSDB. This comparison is even more striking because
reports of subsystem development test errors were not
available for DAP, thus the total number of post-development
test errors for DAP should be even larger.

There are several methods of predicting the number of
post-development errors from the kinds of data available
here, the results of which are presented in Figure 14.
Halstead's (1977) equations for the total number of delivered
bugs led to a prediction of 27.2 errors for LSDB and 4
errors for DAP. Thus, the prediction was amazingly accurate
for LSDB and substantially underestimated for DAP. Since
much of Halstead's original work was performed on published
algorithms, the accuracy of his predictions may improve with
the quality of the code and the extent to which the code is
an accurate reflection of the requirements and
specifications. Such an explanation would be consistent with
observations in these data, and with the fact that some
requirements redefinition appears to have occurred during the
DAP project.

The ratio of post-development errors to number of
executable lines of code from each project was used to
predict the number of post-development errors in the other
project. The ratio for LSDB was 0.0027 and for DAP was
0.0111. When the ratio for the LSDB project was multiplied
by the number of executable lines in DAP, it led to a
prediction of only 10 post-development errors for the DAP
project (Figure 14). When the ratio for DAP was multiplied
by the number of executable lines in LSDB, it led to aI.
predicton of 116 post-development errors for LSDB. Thus, it
is obvious that the proportion of post-development errors per
line of executable code was four times greater for DAP than

* for LSDB. 49
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An attempt was made to predict post-development errors
from error-runs occurring in the development work performed
prior to testing. As a simple heuristic in place of curve-
fitting, a linear prediction equation was developed from the
error rates occurring between months 8 and 15, since the
standard error of estimate for error rates over this period
was much smaller. Month 16 data was not included since post-
development testing was initiated during this month. The six
months during which post-development errors were reported
were treated as continuous in this analysis since no activity
appeared to have occurred during the three month gap between
months 17 and 19in the chronological data. The equation
developed from the error rates recorded- during months 8
through 15 was -2.52X + 48.02, where X represents the month
number. In determining the predicted error rate for each
month, this equation was applied only to months 16 through
19 in the chronological data . The regression line
intercepts the X axis prior to month 20, predicting that no
errors will be detected after month 19. When these error
rates were multiplied by 170 runs (the average number of runs
per month during the development phase), it was predicted
that 26.5 errors would occur during months 16 to 19. The
four development errors which occured during month 16 were
subtracted from this total, and the final prediction was that
22.5 post-development errors would be detected. This
estimate is reasonably close to the 28 post-development
errors actually reported.
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4. INTERVIEWS

The following general observations emerged from
interviews with individuals associated with the LSDB
project. On the basis of these interviews it appeared that
the success enjoyed by this programming team was partly
achieved by a fortuitous selection of team members. The
particular personal styles of members were well-suited for
their roles on the team and for the practices employed. The
observations gleaned from these interviews are discussed
below.

4.1 Chief Programmer Teams

The team members interviewed felt that the most
significant practice was the chief programmer team. In
particular, they felt that the cohesiveness and the
visibility of each member's work contributed to higher
performance. It took several months of interaction before the

team really became cohesive. The team felt that a strong
source of morale resulted from keeping the nucleus of the
team intact throughout the development cycle (contrary to
ordinary practice at SAMTEC), with the possibility of
continuing into future assignments. Since all team members
shared in most tasks, no job (with the possible exception of
librarian) was allowed to become too tedious or mundane.

Project participants felt the team needed its own
physical space. The LSDB team had their own room with a lock
on the door. The team worked around a conference table-
resulting in continuous interaction among team members, and
ensured that the work of each member was consistent with the
work of others. During afternoon breaks, the team would make
popcorn, but some constraints were placed on their
independence when an administrator found them making ice
cream on a side porch.

The chief programmer was a software craftsman primarily
interested in doing technical work without being hampered by
administrative, personnel, or bureaucratic problems. He was
an experienced software designer and coder who, because he
understood the technical characteristics of the target system
better than other project members, had the final say on
system design and coding. Both the chief programmer and the
tester were considered "range rats" (a local term for people
who had considerable experience working on the Western Test
Range at Vandenberg AFB). Over the years they had performed
many jobs at Vandenberg and could anticipate many of the
practical and technical problems they encountered during the
software development. The chief programmer was a dynamic
individual who was able to establish close working
relationships with his customers.
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The backup programmer had to work very closely with the
chief programmer and their skills were supplementary. The
backup programmer was quieter, a hard worker, and capable of
generating large amounts of code. The backup did 80% of the
coding for the system.

The librarian was responsible for taking the code and
entering it into the system. The librarian was the only
person who could actually change or add code to the system,
although other members might have access to add data. The
librarian was able to tolerate time constraints and maintain
careful control throughout the project. The librarian was

* more than a keypuncher or "go-for", and was expected to
develop some basic technical abilities such as setting up job

, control. The job level of the librarian was one step higher
than an administrative specialist and several steps higher
then clericals.

The procedure for submitting programs in this project
required either the chief programmer or the backup to submit
a written version of the program or change to the librarian
who would enter it into the system, perform an initial check,
eliminate any obvious errors, and then return a compiled
listing of the program to the backup programmer. The backup
or chief programmer would review this listing before
performing the first execution. Careful records were kept of
every submission, any resulting errors, and the code that had
to be changed.

The tester worked along side the team almost as an alter
ego. He set up the necessary data for both intermediate and

* final acceptance tests. It was important that the tester
was not considered a member of the team. Nevertheless, the
tester was not someone brought in at the last minute. From
project initiation, he attended all the walk-throughs and
became intimately familiar with the LSDB code.

Team members felt it was important that the team be able
to select its members. Similarly, they felt the team should
be able to oust members who were not compatible or who were
not contributing to team efforts. The following list
summarizes the team's recommendations for selecting members.
The selection process should eliminate only incompetent
programmers. A chief programming team represents a
particular mix of skills and duties which may not be acquired
if only brilliant programmers are selected (someone has to
slog through the trenches). Some particular characteristics
which seemed important to this team were:

V..
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Chief Programmer

* dynamic

* excellent technical proficiency

* delegates red tape to someone higher up

* can establish close working relationships with
customers

o has an almost paternal, protective (but
democratic) attitude toward the team

Backup Programmer

* o less dynamic

9 areas of technical competence supplement those of
Chief Programmer.

* limitless capacity for generating code

* should be capable of filling in for Chief
Programmer when necessary

Support Programmer

* willing to participate in team interactions and
work within team consensus

* cannot be a prima donna, a solitary worker, or
unable to take criticism

0 should be given a trial period before becoming
a formal team member

Librarian

* high tolerance for frustration and pressure

* willing to perform unendless work

* needs some understanding of programming code

* needs typing skills

Tester

, needs experience in content area of the program
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* must be assertive

* should not become close knit with team

The team felt that new members would need some
orientation to the working environment they were entering.
Such training might be most effectively handled by
experienced chief programmers rather than professional
trainers. The type of people chosen for a team should be
those who are adaptive to the types of new habits that will
be the focus of training (this may be easier for less
experienced programmers).

4.2 Design and Coding Practices

LSDB was designed in a strictly top-down fashion and
this practice was considered an important contribution to
the success of the system. The chief programmer commented
that in his 20 years of experience he had usually done top-
down design, but that he had not employed top-down
development. He considered them both to be important,
especially when used in tandem. However, he reported.
problems in trying to implement the top-down development
strategy within standard Air Force practices, especially the
requirements for preliminary and critical design reviews.
Considerable time was lost while waiting for the
Configuration Control Board's approval of specifications.

In an attempt to implement modular design, most
procedures in the system were constrained to a maximum of 100
lines of code or two pages of output including comments.
There was an attempt to make each of the subroutines as
functionally independent as possible and to restrict
unnecessary data transmission between modules (G. Myers,
1978). The team favored the use of highly modular systems and
believed this practice contributed significantly to the ease
with which the resulting system could be maintained or
modified. Although they thought structured coding was of
benefit, they considered its relative importance to be small
compared to that of modularity or the use of the chief
programmer teams.

Variations in the construction of HIPO charts from
guidelines described by IBM were identified by an independent
validation and verification contractor and corrected. HIPO
charts were very unpopular with both the team and the
independent contractor. HIPO's were not maintained up-to-,
date throughout the project. The team felt that the HIPO
charts were not particularly useful beyond the first or
second level within the system hierarchy. HIPO's might have
been more readily accepted had an interactive system been
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available for generating them. The team recommended that a
program design language (PDL) would have been much more
useful than HIPO charts.

Walk-throughs were held every week and were attended by
the software development team, the tester, the project
administrator to whom the team reported, the customer, and
the end users of the system. The team felt it was important
that these walk- throughs were held weekly and that those
involved in the procurement and use of the system were in
attendance. In fact, since the team held code reviews
internally on an ad hoc basis, they felt that walk- throughs
were held primarily for the benefit of other interested
parties.

Walk-throughs tend.ed to last one to one and one-half
hours. In most cases, the chief programmer handed out either
the code or design description a week prior to its
consideration so that all attendees could review the material
and be prepared with detailed comments. They discovered1early that walking through the code in detail was not
practical. Rather, they gave high level descriptions of the
routine's processing and went into the code only as required.

The team felt that the amount and type of documentation
required was burdensome, especially the documentation of
specifications and design. Both the developers and
maintainers felt that the code was sufficiently well designed
and documented internally that no other documentation was
required. In no case had they gone back to the HIPO charts
or even the specifications to obtain information in order to
make a change to the system. Sophisticated documentation may
not have seemed as important since most necessary
modifications were so minor that a single statement could be
isolated rather quickly.

As of March 1978 very little maintenance had been
required. Since much of the maintenance has been minor, it
has been suggested that the team librarian or someone with
equivalent experience could make most of the one card
modifications that have been required. The LSDB development
team and tester received a letter of commendation from the
end users. They were complimented both for the high quality
of the software and for its production on time and within
budget.

One anecdote is instructive on the effectiveness of the
ASTROS guidelines. At the beginning of the project, the LSDB
team was required to suspend work while waiting for the
preliminary design review. In order to keep them from
beginning to code, the SAMTEC engineer gave the team a
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problem from another project. The program computed and
plotted some ranqe safety parameters. A tiqer team had
spent a month trying in vain to modify the existing program
for an upcoming launch. The LSDB team redesigned the
program and produced a working parameterized version in one
week.
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5. CONCLUSIONS

5.1 Current Results

The performance of the LSDB development project using
the modern programming practices specified in the ASTROS plan
was comparable to that of similar sized software development
projects on numerous criteria. The amount of code produced
per man-month was typical of conventional development efforts
(however, this is a controversial measure of productivity;
Jones, 1978). Nevertheless, the performance of the LSDB
project was superior to that of a similar project conducted
with conventional techniques in the same environment. Thus,
the benefits of the modern programming practices employed on
the LSDB project were limited by the constraints of
environmental factors such as computer access and turnaround
time.

* While the results of this study demonstrated reduced
programming effort and improved software quality for a
project guided by modern programming practices, no causal
interpretation can be reliably made. That is, with only two
projects and no experimental controls, causal factors can
only be suggested, not isolated. The ability to generalize
these results to other projects is uncertain. For instance,
it cannot be proven that modern programming practices had a
greater influence on the results than differences among the
individuals who comprised the LSDB and DAP project teams.
Having acknowledged this restriction on causal
interpretation, however, it is possible to weave together
evidence suggesting that important benefits can be derived
from the use of modern programming practices.

Several analyses demonstrated that improved efficiency
was achieved through the use of the modern programming
practices specified in the ASTRO plan. The value of Putnam's
technology constant computed for LSDB was higher than for
DAP. Further, the relative values of the LSDB and DAP
projects on the parameters described in the RADC database
consistently showed LSDB to have a higher performance than
DAP when compared to projects of similar size, although the
performance of both was close to the industry average. Since
the DAP and LSDB projects shared similar processing
environments, differences between the systems are probably
not attributable to environmental factors.

The LSDB project demonstrated more efficient use of
development man-hours than the DAP project. The Halstead
parameters indicated that the LSDB project generated more
code with less overall effort than DAP. LSDB exhibited a
higher program level, indicating a more succinct
representation of the underlying algorithm than was true for
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DAP. The results of the effort analyses emphasize the great

power in modular approaches to programming. If a programmer
is required to keep the total context of a subsystem in mind,
the time and effort required by the project increases. By
breaking up the project into independent functional
subroutines, the load upon the programmer is reduced.

Another area of evidence favoring modern programming
practices was the superioc quality of the LSDB code compared
to that of' DAP. Scores on the software quality metrics
produced by McCall, Richards, and Walters verified that the
practices employed on the LSDB project resulted in a more
modularized design and structured code than DAP. Further,
greater simplicity was evident in the LSDB code. Although
the McCabe analysis indicated that the complexity and
structuredness of the control flows were generally similar,
the breaches of structured practice in the LSDB code were
uniform. That is, the UNDO construct in S-FORTRAN allows
branches out of conditions and loops. Although used
consistently in the LSDB code, this construct is not among
the structured programming practices recommended by Dijkstra
(1972). This construct may not have made the control flow
more difficult to understand (Sheppard, Curtis, Milliman, &
Love, 1979). Departures from structured principles were far
more varied in the DAP code, resulting in a convoluted
control flow that is much more difficult to comprehend and
trace.

Perhaps the most impressive comparison between LSDB and
DAP concerns the number of post-development errors. When
compared to DAP, the LSDB code contained three times as many
lines and two and a half times as many executable lines, but
only two-thirds as many post-development errors were reported
for LSDB. The reliability achieved by LSDB was well predicted
by both the Halstead equation for delivered bugs and a
regression equation based on monthly error rates during
development. The inability of any of the methods to predict
post-development errors on DAP suggests that the prediction
obtained for LSDB may have occurred by chance. Nevertheless,
the existence of a tester associated with the LSDB
development and the orientation of the project towards its
final evaluation may have contributed to a strong
correspondence between the requirements and the delivered
code of LSDB. When this correspondence exists, the number of
errors or error rate may prove much more predictable.

It is cleAr from analyses reported here that a software
development project employing modern programming practices
performed better and produced a higher quality product than a
conventional project conducted in the same environment.
However, these data do not allow the luxury of causal
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interpretation. Even if such interpretation were possible,
the data still do not allow analyses of the relative values
of each separate practice. Further evaluative research will
be required before confident testimonials can be given to the
benefits of modern programming techniques. Nevertheless, the
results of this study suggest that future evaluations will
yield positive results if constraints in the development
environment are properly controlled.

5.2 Future Approaches to Evaluative Research

This study demonstrated that exercising some control over
the research environment can be extremely valuable. Without
the comparable environment of LSDB and DAP this study would
have found little evidence to indicate that modern
programming practices have benefit. The experimental

* manipulation of selected practices (e.g., different ways of
organizing programming teams) would improve future 4
research efforts. Unless the separate effects of different
practices can be identified, no recommendations can be made

*concerning them. Rather, the only conclusion that can be
reached concerns the use of modern programming practices as a
whole.

Data collection on programming projects often interferes
with the programming task or meets opposition from team
members. This problem can be counteracted by developing
measurement tools embedded in the system which are invisible
to programmers. Such tools would produce more reliable data
since they cannot be forgotten, ignored, or incorrectly
completed as manually completed forms frequently are. On the
LSDB project, information such as number of runs and errors
and time per run was acquired directly from t-he operating
system. Manpower loadings can be taken from the hours
recorded on time cards to be billed to the project, and can
be broken down into job classifications. The program source
code is also an excellent source of data concerning the
quality and complexity of the code, and the number and types
of statements. A program support library can keep track of
the relative status of programs with minimal impact on
programmers, the number of modules, and the time spent on
each one.

Data collection can serve the purposes of both research
and management. A software development manager needs
visibility of project progress in order to control events and
determine corrective action. A program support library can
report module size, number of runs, and other summary
information at regular intervals, and check project status to
alert the manager to milestones. When these collection
mechanisms are imposed unobtrusively on programming projects,
their use is more likely to gain support, and better data
will be available both to management and researchers.
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SYSTEM LSDB DATE 1/21/76

GENERAL CONTRACT/PROJECT SUMMARY

1. Type of Contract: FFP CPFF OTHER X

2. Total Cost (A~tual or Estimated)

3. -Level of Subcontracting NONE

4. Project Environment
Dev. Team Collocated with User? NO
Dev. Team Collocated with Computers? NO
Dev. System Same as Operational Systems? YES

Test & Integration Separate Organization? YES

5. Project Description: LSDB prepares and updesall
parameters needed by the Real Time Segment _.RTSI f
Project MIPS and the Backup Information Display System
(BI5S)

6. Est. Start Date 10/15/75 Est. End Date July 1977

7. Est. Number of Project Personnel
Management 1 Design & Analysis 1
Support 1 Programming est. 5 actual 2

Test 1

8. Est. Number of CPC's 5

9. Est. Number Pages of Documentation:
Requirements 100 Test Doc's 50
Specifications T- User Manuals 50

10. Est. Total Number of Instructions 4000 Fortran 1000 Bal

11. Est. Number of Different Input Formats 19

12. Est. Number of Different Output Formats 6

13. Est. Total Number of Man/Months:
Management 16 Design & Analysis 8
Support _-6__ Programming
Test 8

14. Est. Total Computer Time (HRS) 360 hours

Contact
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GENERAL CONTRACT/PROJECT SUMMARY
INSTRUCTIONS

To be filled out at contract award or work request
receipt by the chief programmer or project lead. This
form will provide a general feel for the relative size
and complexity of the project.

1. In a non-contract environment, put work request number
under other.

2. Actual or estimated (identify which) total budget for
the complete project.

3. Identify if more than one vendor is involved in
development.

4. Yes or No response. User collocation means same
facility. Computer collocation means same building.

5. Brief abstract and/or document references. Include such
information as whether project is a conversion or new
development, whether its real time or non-real time, and
any unusual constraints placed upon development
(hardware delivery, special schedules, unique data entry
procedures, etc.). Attach extra sheet, if needed.

6. Project start date and est. completion date (date system
is scheduled to become operational) in the form day-
month-year.

7. Self-explanatory.

8. Estimate of computer program components to be developed.

9. Includes all documentation (Design & Develop. Specs,
User Manuals, Test Plan, etc.).

10. Both for higher level languages and assembler code.

11. Includes card, tape, disk data calls.

12. Includes outputs to all peripheral devices.

13. Includes design, program, test as well as management and
support.

14. Includes pre-compile, compile, assembly, debug, test &
integration.
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SYSTEM LSDB DATE 21 January 76

MANAGEMENT METHODOLOGY SUMMARY

1. Management Procedures/Tool Used

2. List Reports Generated Including all Specs and
Requirement Documents.
a. Development Spec Supplied to Customer Yes
b. Product Spec Supplied to Customer Yes
c. Test Plan Supplied to Customer Yes-

* d. Test Procedures Supplied to Customer Yes
e. Final Report Supplied to Customer Yes

3. Formal Reviews and Schedule
a. PDR (Structured Walk Thru) Date June 1976
b. CDR (Structured Walk Thru) Date Sept 1976
c. Date _

d. Date _

4. AF Regulations, Manuals, and Military Standards Under
Which Development Will Be Conducted.

5. Description of Deliverable Software LSDB CPCI

6. Reference Measurement Gathering Procedures _
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MANAGEMENT METHODOLOGY SUMMARY

INSTRUCTIONS

To be filled out by chief programmer or project lead at
contract award or upon work request receipt. This form
will establish review schedule and guideline
documentation.

1. List any procedures and/or automated tools which will be
utilized to increase management control and visibility.

2. List all technical documentation available at CDR which
will serve as a guideline for development. Note if these
documents are to be provided to the customer.

3. List formal reviews and tentative schedules.

4. Reference all government documents to be used as
guideline to development, testing, review and
documentation.

5. Briefly describe the deliverable software package
including any special tools, assemblers, executives etc.,
which will supplied to customer.

6. Reference document(s) which provide measurement gathering
procedures/responsibilities.
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SYSTEM LSDB DATE 28 June 76
DESIGN AND PROCESSOR SUMMARY

1. Target Computer(s) 360-65
Target Computer Same as Development Computer Yes

2. Processing Environment

3. Configuration: On Line Batch X Remote Batch X

4. Operating System(s) Version 21.7 IBM OS

5. Compiler Version(s) H FORTRAN

6. Assembler(s) F

7. Est. Percent: Hol 90 % Assembler 10 %

8. Automated Software Tools Used

S-FORTRAN
LIBRARIAN (Attach Vendors User Manuals)

9. Design Standards _

10. Programming Standards ASTROS PLAN

11. Programming Techniques Employed:
Top Down Design X HIPO X
Chief Programmer X Structured Code X
Librarian X Structured Walk ThruX
Top Down Test X Other Program Support

TA ary__

12. List Existing Programs/CPC's to be Used _ Subirjuiae
Library

13. Est. Turnaround Time (HRS): Batch 24 Remote Batch 2 L
Contact _ __
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DESIGN AND PROCESSOR SUMMARY

INSTRUCTION

To be filled out by chief programmer or project lead
when project is ready for Critical Design Review (Before
coding starts). This form will define the processing
environment and the technologies to be employed.

1. List all computers to be used for development, test and
integration by manufacturers model number. Note if
target and development computers are the same.

2. List all Peripherals to be employed for I/O processing
and temporary storage. Note any Unique Data
Entry/Display Techniques to be used. Note any special
interpretive simulators, read-only memories, firmware,
etc., to be used or built for this project.

3. Check all job submittal methods to be employed.

4. List all operating systems and versions.

5. List compilers and levels for all higher level languages
employed, if applicable.

6. List all assembly languages to be used.

7. Estimate the percentage of object code to be generated
by both HOL's and assembly languages.

8. List any special automated tools to be employed for
assisting design coding, auditing, testing, measuring,
documenting, and management control.

9. Reference Design Standards Manual(s).

10. Reference Programming Standards Manual(s).

11. Check techniques to be employed.

12. Reference all guidelines, implementation plans, program
management plans, procedures, etc., which will be used
for management controls and procedures.

13. Estimate average turnaround time for job submittal.

Definition: Turnaround time is the total working hours
from the time the job leaves the developers
hands until the time it is returned to him,
minus any system down time.
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SYSTEM DATE

TESTING SUMMARY

1. quirements and Specification Documents

2. Test Plans/Procedures

3. Testing Philosophy

4. Method Employed to Audit Coding Standard Adherence

5. Formal Audits and Dates

a. Date
b. Date
c. Date

6. Internal Management Procedures for Control of Testing

7. Quality Assurance Procedures

Contact
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TESTING SUMMARY INSTRUCTIONS

To be filled out by chief programmer or member of
independent test group when project is ready for system
test. This form identifies testing and requirements
documents. It also identifies testing approaches,
tools, procedures, etc.

1. Reference all requirements and specification documents
which were the guidelines for system development.

2. Reference all test plans/procedures the system is being
tested against.

3. Briefly describe the overall testing philosophy including
debug, computer program test, and integration.

4. Briefly describe or reference procedure documentation for

verifying coding standard adherence.

5. List formal audits and tentative dates.

6. Reference management procedures used as guideline for
testing.

7. Reference quality assurance documents which describe QA
involvement in testing.

8. Estimate man-hours to be expended in testing, include
programmers, testers, QA, support and management.

74

* . I | e! -



SYSTEM DATE

GENERAL PROJECT WRAP-UP REPORT

1. Total Computer Resources Used (HRS)

2. Man-Hours Charged to Projects:

Management Prog ramming
Design & Analysis Support

Test

3. Project Completion Date

4. Actual Number of CPC's

5. Total Lines of Code: HOL Assembly--

6. Total Size of Object Program (Specify Units)

7. Number of Pages Documentation

8. Number of Different Input Formats

9. Number of Different Output Formats

10. Actual Turnaround Time: Batch Remote Batch__

11. Total Errors in Each Error Category:

A. Computational Error G. Array Processing Errors
B. Logic Errors _ H. Data Base Errors

C. Data Input Errors I. Operation Errors
D. Data Handling Errors J. Program Execution Errors _
E. Data Output Errors K. Documentation Errors
F. Interface Errors L. Other

12. Turnover Rate:
Chief Programmer

Back-Up Programmer

Librarian __

Other Project Personnel_

Contact __
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GENERAL PROJECT WRAP-UP REPORT
INSTRUCTIONS

To be filled out by the chief programmer or project lead
after the system has been bought by the user. This form
will provide "ACTUALS" to all the estimates made on
forms completed earlier in the development cycle.

1. Give the total computer time for development, test, and
integration to the nearest tenth of an hour.

2. Provide total man-hours expended in each of the four
categories, "SUPPORT" should include librarian,
clerical, technical editing, QA, etc.

3. Date system became operational in the form day-month-
yedr.

4. Number of computer program components in system.

5. Do not count comments or repeated common and data
declaration statements.

6. If figure given in words, specify number of bits per
word.

7. This should include all delivered documentation

generated in support of this project.

8. Includes, card, tape, disk data calls.

9. Incli.des outputs to all peripheral devices.

10. Turnaround time for job submittal.

Definition: Turnaround time is the total working hours
from the time the job leaves the developers
hands until the time it is returned to him,
minus any system down time.

11, These are the sums from all the COMPUTER PROGRAM FAILURE
ANALYSIS REPORT forms.

12. Turnover rate: Number of man-months each person held
the position. Use separate sheet if necessary.
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SYSTEM PERSONNEL PROFILE DT

1. Name or Id__ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _

2. Project Assignment (job Title)____-______

3. Education Level: HS -_ YRS ---College YRS
Degree(s)

4. Special Computer Training Courses:

* a. _ _ _ _ _ _ _ _ _ _ __Date

* b. _ _ _ _ _ _ _ _ _ _ _ -- Date
c__ _ _- Date -

5. Target Language(s) __ ___________

6. Years of Experience as:

Operator/Technical ______ Analyst-______
Prog rammer _____ _____Other _ _____

7. Years of Experience on:

Target Computer(s) _____Target Language- -

Operating System ______Similar Projects___-

B. List other Programming Languages ___

9. List Other Computers ___ __ __________
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PERSONNEL PROFILE INSTRUCTIONS

To be filled out by all project personnel when they are
assigned to the project. This form will provide the
education and experience levels of the personnel
assigned to the project.

1. Names are not necessary. We're evaluating the technology
not the people.

2. Persons assignment description or job title, if
meaningful.

3. List years completed and degrees attained, with majors.

* 4. Title of specialized computer or programming training
courses, with approximate date completed (month and
year).

5. The total of these four categories should equal total
years technical experience.

6. "Similar Projects" means projects requiring same amount
of mathematical knowledge, using similar I/O processors,
having equivalent data base requirements, of same
relative complexity, etc.

7. List other programming languages with which you have
coded.

8. List other computers you have written programs for, by
vendor and model number.
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SYSTEM _________DATE ____

1. Nme o IDTECHNOLOGY 
CRITIQUE

2. Project Assignment (Job Title) _________

3. Time on Project __________________

4. Techniques/Tools Used:

Top Down Design _________

Top Down Test ________

Structured Code _____

* ~~~~HIPO _______________

* ~~Program Design Language______

Structured Walk Thru________

Other _______ _________

r ~~~Preprocessor____________
Program Support Library______

Other ________________

5. List techniques/tools which seemed to yield
productivity/reliability benefits, and you would like to
use again. (Attach separate sheet if more room needed).

6. Recommend changes to organization/procedures/technology
application which should be made before attempting
another project. (Attach separate sheet if more room
needed).

7. List special training received for this project and
comment on its adequacy. (Attach separate sheet if more
room is needed)
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TECHNOLOGY CRITIQUE INSTRUCTIONS

To be filled out by all project personnel as they leave
the project or when the project is complete. This form
will provide a subjective evaluation of the technologies
employed by the people who actually used them.

1. Names are optional.

2. Person's assignment description or job title, if
meaningful.

3. List time assigned to project in months.

4. Check techniques/tools used on project, briefly describe
others.

5. Honest evaluation of your feelings.

6. Be candid, help us define a workable policy.

7. Once again be candid, lets make the training useful.
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SYSTEM ______DATE_____

SYSTEMS DEVELOPMENT LOG

1. Event _________________________

2. Phase in Life Cycle and Date______________

3. Major Decisions/Results_________________

4. Factors Determining the Decision/Results _______

5. Delivered Product(s) _________________

6. Other Documentation Related to this Event:

a. ____________ Supplied to Customer _____

b. ____________ Supplied to Customer ___

C. ___________ Supplied to Customer ____

7. Personnel Involved (Name/Organization)

8. Est. Schedule Impact_________________

Contact____________ ___
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SYSTEMS DEVELOPMENT LOG INSTRUCTIONS

To be filled out by chief programmer, backup programmer
or responsible developer whenever a significant event
occurs. These events include documentation delivery,
reviews, audits, turning over a CPC for integration
testing, formal demonstration, or any design decision
which may impact developmental schedule. This multi-
purpose form will chart the project progress and provide
a historical record of all significant events.

1. Describe the event, such as, delivery of a document,
critical design review, redesign of CPC XYZ, etc.

2. Phase refers to the traditional systems management phases
of software life cycle, i.e., concept, validation,

* development and operational.

3. Describe planned course of action or result of action,
whichever is applicable.

4. Describe cause of the event. (This could simply be a
schedule commitment).

5. Reference document(s) delivered as result of event, if
applicable.

6. Reference support documentation which either precipitated
the event or provides background for event.

7. List all personnel, both customer and developer, involved
in event.

S. If applicable, estimate positive or negative effect event
will have on schedule.
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SYSTEM DATE

COMPUTER PROGRAM RUN ANALYSIS REPORT

1. Computer Program Component ID

2. Run Date: Day Mon ____ Yr Hr Min

3. Successful Run?

4. CPU Time: Min Sec

5. Category of Work:

a. Program Development __

b. Program Modification:_
(1) Implementation of Additional Requirement
(2) Implementation of Hardware Change

(3) Memory/Time Optimization Enhancement
(4) Error Correction
(5) Design Modification

c. Program Conversion
d. Other

6. CPCI/CPC Status

a. CPC Test and Eval c. Full Integ. Test
b. Partial Integ. Test d. Production Program

e. Other

7. Program Activity

a. Compilation c. Run with no compile
b. Compile and run d. Other

8. Number of Source Statements Changed/Deleted Inserted

a. None e. 31-40 i 101-150 _

b. 1-10 f. 41-50 j. 151-200 __

c. 11-20 g. 51-75 k. Over 200
d. 21-30 h. 76-100

Contact _ _ _ _ _ _
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COMPUTER PROGRAM RUN ANALYSIS REPORT

INSTRUCTIONS

To be filled out by programming librarian or responsible
programmer after each computer run. If the run was
unsuccessful (SYNTAX errors, abort, calculation error,
loop, etc.), the supplemental form COMPUTER PROGRAM
FAILURE ANALYSIS REPORT should also be complete. This
form will yield error statistic data and computer run
time data.

1. Use program mnemonic.

2. This time is start time of computer execution from the
* computer printout.

* 3. If answer is no, complete COMPUTER PROGRAM FAILURE
ANALYSIS REPORT.

4. This can be gotten from the computer printout.

5. Check the appropriate box.

6. Check the appropriate box.

7. Check the appropriate box.

8. Check the appropriate box.
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SYSTEM DATE

COMPUTER PROGRAM FAILURE ANALYSIS REPORT

1. Computer Program Component ID

2. Run Date: - Day __ Mon Yr ____ Hr Min

3. Severity of Failure

A. Caused Complete System to Crash

B. Caused A Dependent Job to Fail

C. Local Job Failure Only

D. Real Time Failure

E. Other

4. Error Category Count

A. Computational Error

B. Logic Error

C. Data Input Error

D. Data Handling Error

E. Data Output Error

F. Interface Error

G. Array Processing Error

H. Data Base Error

J. Program Execution Error

K. Documentation Error

L. Other

Contact
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COMPUTER PROGRAM FAILURE ANALYSIS REPORT
INSTRUCTIONS

To be filled out by the responsible developer for each
unsuccessful run. The failure information should be
available on the program printout or from the computer
operator. The error data can be derived from an
analysis of the program output. (It is possible that a
failure can be caused by more than one error, list
them all).

1. Use program mnemonic.

* 2. This time is start time of computer execution from the
computer printout.

3. Check box which most nearly describes the failure
indication. If other is checked, briefly describe

Ifailure.
4. The count under the error category means number of errors

not number of erroneous statements.

A. Examples of COMPUTATIONAL ERRORS include: (1)
Incorrect operand in equation, (2) Incorrect use of
parenthesis, (3) Sign convention error (4) Units or
data conversion error, (5) Computation produces an
over/under flow, (6) Incorrect equation used, (7)
Precision lost due to mixed mode, (8) Missing
computations, (9) Rounding or truncation error and
loop.

B. Examples of LOGIC ERROR include: (1) Incorrect
operand in logical expression (2) Logic activities
out of sequence, (3) Wrong variable being checked,
(4) Missing logic or condition tests, (5) Too
many/too few statements in loop, (6) Loop iterated
incorrect number of times (including endless loop).

C. Examples of DATA INPUT ERRORS include: (1) Invalid
input read from correct data file, (2) Input read
from incorrect data file, (3) Incorrect input format,
(4) Incorrect format statement referenced, (5) EOF
encountered prematurely, (6) EOF missing.

D. Examples of DATA HANDLING ERRORS include: (1) Data
file not rewound before reading, (2) Data
initialization not done, (3) Data initialization done
improperly, (4) Variable used as a flag or index not
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set properly, (5) Variable referred to by wrong name,
(6) Variable type is incorrect, (7) Data
packing/unpacking error, (8) Sort error, (9)
Subscripting error.

E. Examples of DATA OUTPUT ERRORS include: (1) Data
written on wrong file, (2) Data written using format
statement, (3) Data written in the wrong format, (4)
Data written with wrong carriage control, (5)
Incomplete or missing output, (6) Output field size
to small, (7) Line count and page eject problems.

F. Exampes of INTERFACE ERRORS include: (1) Wrong
subroutine called, (2) Call to subroutine made in
wrong place, (3) Subroutine arguments not consistent
in type, units, order, etc, (4) Subroutine called is
nonexistent.

G. Examples of ARRAY PROCESSING ERRORS include: (1)
Array not properly dimensioned, (2) Array referenced
out of bounds, (3) Array being referenced at
incorrect location, (4) Array pointers not
incremented properly.

H. Examples of DATA BASE ERRORS include: (1) Data
should have been initialized in data base but wasn't,
(2) Data initialized to incorrect value in data base,
(3) Data base units are incorrect.

I. Examples of OPERATION ERRORS include: (1) Operating
system error, (2) Hardware error, (3) Operator error,
(4) Test execution error.

J. Examples of PROGRAM EXECUTION ERRORS include: (1)
Time limit exceeded, (2) Core storage limit exceeded,
(3) Output line limit exceeded, (4) Compilation
error.

K. Examples of DOCUMENTATION ERRORS include: (1) User
manual error, (2) Interface spec error, (3) Design
spec error, (4) Requirements spec error.

L. Briefly describe the error(s).
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I APPENDIX B

RADC DATA BASE SCNITERPLOTS
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APPENDIX C

PROOF OF RELATIONSHIPS AMONG LEVELS OF
PROGRAMMvING SCOPE
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Assumptions:

1. each subroutine has the same n and N as any other subroutine

2. furthermore - each n, and n2 is 1/2 n and each N1 and N2 is
1/2 N

3. we have subroutines in the subsystem

We intend to show for this highly simplified case that EUMAX  is greater

than ELmAx and both are expected to be greater than EMIN.

First we derive the basic form of EMIN

VMI N 1og 2 nE M IN AS 2 -NS(N n2))
N 2I

S N log2 n
2 )

N2

PROOF 1: Establish that EMIN < UA

1SN 1 2 n
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S2 N 2 log2 n

4

=S . EMI N

EMIN < EIMAX for S > 1.

PROOF 2: Establish that FU.rAX > EUIAX

"IMAX SN log 2 (Sn)* - ( i
LN S, .SN 2)

SN (log 2 S + log 2 n)

1 n N)

SN (log 2 S + log 2 n)

( )

S2 N2 2 N2SN log2 S +SN log2 n
4

Note that E S 2N 2 log2 T

and replace into equation for E WAX

S2N log2 Sg + E

4

E MA < FUMAXK

and by transitivity EMIN <ELIAX
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APPENDIX D

SOFTWARE QUALITY METRICS
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Comparisons of LSDB and DAP on McCall's Quality Metrics

Metric LSDB DAP

SI. 2 USE OF STRUCTURED LANGUAGE OR PREPROCESSOR 1 1 0 0
Structured language or structured language
preprocesser used to implement module. If
used = 1, if not used = 0.

SI.4 MEASURE OF CODING SIMPLICITY (by module)

(1) Module flow top to bottom .43 .75 0 0

(2) Negative Boolean or complicated .97 .96 .98 .95
compound Boolean expressions used.

(1 # of above
- # executable statements

(3) Jumps in and out of loops. .13 .69 .45 .70

sngle entry/single exit loops)
Qsn total # loops

(4) Loop index modified. 1 1 1 1
(1 - # loop indices modified)

total # loops

(5) Module is not self-modifying 1 1 1 1

(6) All arguments passed to a module are 0 0 0 0
parametric.

(7) Number of statement labels. 1 1 .83 .74
# labels

# executable statements
(8) Unique names for variables. 0 0 0 0

(9) Single use of variables. 1 1 1 1

(10) No mixed mode expressions. 1 1 1 1

(11) Nesting level. ( 1 ) .20 .17 .17 .17
(max nesting leve/

(12) Number of branches. .66 .26 .62 .33

- # branches#executabe statements)

(13) Number of GOTOs.(1- # GOTO statements \1 1 .76 .72
# executable statements/

(14) No extraneous code exits. 1 1 1 1
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(Cont 'd)

Metric LSDB DAP

(15) Variable mix in a module. .73 .30

# internal variables
total # variables /

(16) Variable density. .46 .13

1 # variables )
- # exec statementsJ

SUBROUTINE METRIC VALUE .67 .69 .63 .57

I

* SD. 1 QUANTITY OF CO41ENTS (by module)

( # of comments (nonblank)
Total #in (nonblank)/ .49 .28 .46 .17

SD. 2 EFFECTIVENESS OF COMMENTS MEASURE

(1) Modules have standard formated
prologue comments which describe:
- Module name/version numbei
- Author
- Date
- Purpose
- Inputs
- Outputs
- Function

* -Assumptions

Limitations and restrictions
- Accuracy requirements
- Error recovery procedures
- References

(1 #modules violate rule). 0 0
total #rmu] 1 /  0 0 0 0

(2) Comments set off from code in
uniform manner. 0 0 0 1

(1 -
# modules violate rule)

total # modules

(3) All transfers of control & destina-
tions commented. .14 .25 0 0 -.i

# modules violate rule\
total # modules
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(Cont' d)

Metric LSDB DAP

(4) All machine dependent code commented. 1 N/A I N/A

1-(# modules violate rule)
total # modules "

(5) All non-standard HOL statements 1 N/A 1 N/A
commented.

(# modules violate rule\
1 total # module

(6) Attributes of all declared variables 0 1 0 0
conmented.

1 (# modules violate rule
total T mulee

(7) Comments do not just repeat opera- 1 1 1 1
tion described in language.

i# modules violate rule1 -( total # modtules

SUBROUTINE METRIC VALUE = Total scores from .45 .45 .43 .40
applicable elements

# applicable elements

SD.3 DESCRIPTIVENESS OF INPLEMEIfATION
LANGUAGE MEASURE

(1) High order language used.

* 1(# modules with direct code)
1 - total # modules

(2) Standard fori-at for organization of 1 1 1 1
modules followed.

1 (# modules violate rule
total # modules /

(3) Variable names (mnemonic) descriptive 1 1 1 1
of physical or functicnal property
represented.

S_(# modules violate rule)
total # modules

(4) Source code logically blocked and 1 1 0 1
indented.

1 modules violate rule\
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(Cont' d)

Metric LSDB DAP

(5) One statement per line. 1 1 1 .99

# continuations + multiple
1 statement lines )

total # lines

(6) No language keywords used as names. 1 .88 0 1

# modules violate rule\1 \ total # -o ---- e'-s

Total Score from

SUBROINElicable elements 1.00 .98 .83 .83#ppliable elements

#l

MO.2 MODULAR IMPLEMENTATION MEASURE

(1) Hierarchical structure. .43 .25 N/A N/A
1 (# violations of hierarchy)

total Tnodules /

(2) All modules do not exceed standard 1 1 0 N/A
module size (100).

1(# modules > 100)

(3) All modules represent one function. 1 1 0 N/A

" 1 t# modules violate rule)
V total # modules ]

(4) Controlling parameters defined by 0 0 N/A N/A
calling module.

1 _# modules violate rule- toa WoYS- modules

(5) Input data controlled by calling module. 0 0 N/A N/A

(# modules violate rule)\
1 tot a#-T-modu les /

(6) Output data provided to calling module. 0 0 N/A N/A
1 #mdules violate rule)1 to tal 1#7e-mou"1es.)
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(Cont d)

Metric LSDB DAP

(7) Control returned to calling module. 1 1 N/A N/A

I _/# modules violate rule
k -ota7li~Tiau7is- /

(8) Moidules do not share temiporary storage. 1 0 N/A N/A

SUIBROUTINE METRIC VALUE =Total score from appli-
cable elements .55 .41 0 0
# aplica5-ie elements
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APPENDIX E

MANHOURS BY MONIH AND WORK BR.EAKDOWN STRUCTUR FCR
LSDB AND DAP
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APPENDIX F

NUMBER OF ERRORS BY CATEGORY AND MONIH
FOR LSDB
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