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1. INTRODUCTION

1.1 Purpose for This Research

In 1973 Boehm chronicled the tremendous impact of
software on the cost and reliability of advanced information
processing systems. Recently, DeRoze and Nyman (1978)
estimated the yearly cost for software within the Department
of Defense to be as large as three billion dollars. De Roze
(1977) reported that perhaps 115 major defense systems depend
on software for successful operation. Nevertheless, the
production and maintenance of software for Defense is
frequently inefficient.

* In an effort to improve both software quality and the
* efficiency of software development and maintenance, a number

of techniques have been developed as alternatives to
conventional programming practices. These modern programming
practices include such techniques as structured coding,
structured design, program support libraries, and chief
programmer teams (W. Myers, 1978). The New York Times
project implemented by IBM (Baker, 1972) was lauded as a
successful initial demonstration of these techniques. Yet,
some problems appear to have resulted from an early release
of the system (Yourdon Report, 1976). Considerable
variability has been reported in subsequent studies on the
effect of these techniques for various project outcomes
(Belford, Donahoo, & Heard, 1977; Black, 1977; Brown, 1977;
Walston & Felix, 1977). Many evaluations have rested solely
on subjective opinions obtained in questionnaires. There is a
critical need for empirical research evaluating the effects
of modern programming practices on software development
projects.

Rome Air Development Center (RADC) and the Space and
Missile Test Center (SAMTEC) at Vandenburg Air Force Base
have jointly developed a plan (Lyons & Hall, 1976) for
improving software development called Advanced Systematic
Techniques for Reliable Operational Software (ASTROS). This
plan describes several modern programming practices which
should result in more reliable and less expensively produced
and maintained software. In order to evaluate the utility of
these techniques, RADC is sponsoring research into their use
on a software development project at SAMTEC.

Two development projects from the non-real-time segment
of the Metric Integrated Processing System (MIPS) were chosen
for comparison. The MIPS system provides control and data
analysis in preparation for missile launches. The Launch
Support Data Base (LSDB) segment of MIPS was implemented
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under the ASTROS plan while the Data Analysis Processor (DAP)
was implemented with conventional software development
techniques.

Data from LSBD were compared with results from DAP,
allowing a quasi-experimental comparison of two similar
projects in the same environment, one implemented under the
ASTROS plan. Data from these two projects were also compared
with the results from software projects elsewhere in
industry. Because there is little control over many of the
influences on the two projects, a causal relationship between
programming practices and performance cannot be proved, but
the data can be investigated for evidence of their effects.

1.2 Advanced Systematic Techniques for Reliable Operational
*Software (ASTROS)

The ASTROS plan was a joint effort by SAMTEC and RADC
to implement and evaluate modern programming practices in an
Air Force operational environment. ASTROS applied these
practices to selected programming projects in order to
demonstrate empirically the premise that these techniques
would yield lower costs per line of code, more reliable
software, more easily maintained code, and less schedule
slippage.

The ASTROS project focused on three objectives: 1) an
investigation and validation of structured programming tools
and concepts, 2) improving management aspects of structured
programming, and 3) empirical measurement of project process

- and outcomes. The core of the ASTROS plan was the
specification of a set of modern programming practices. The

* implementation of these practices by the LSDB project team as
described by Salazar and Hall (1977) is discussed below.

1.2.1 Structured design and testing - is the practice of
top- down development or stepwise refinement (Stevens, Myers,
& Constantine, 1974; Yourdon & Constantine, 1975). Each
subsystem is designed from the control sections down to the
lowest level subroutines prior to the start of coding. Thus,
the highest level units of a system or subsystem are coded
and tested first. Top-down implementation does not imply that
all system components at each level must be finished before
the next level is begun, but rather the fathers of a unit
must be completed before this unit can be coded.

Since higher level units will normally invoke lower
level units, dummy code must be substituted temporarily for
these latter units. The required dummy units (program stubs)
may be generalized, prestored on disk, and included
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automatically by the linkage editor during a test run, as in
the case of a CALL sequence. Although program stubs normally
perform no meaningful computations, they can output a message
for debugging purposes each time they are executed. Thus, it
is possible to exercise and check the processing paths in the
highest level unit before initiating implementation of the
lower level units it invokes. This procedure is repeated,
substituting actual program units for the dummy units at
successively lower levels until the entire system has been
integrated and tested. Program units at each level are fully
integrated and tested before coding begins at the next lower

level.

" 1.2.2 HIPO charts - Hierarchical Input-Process-Output
* charts are diagramatic representions of the operations

performed on the data by each major unit of code (Katzen,
1976; Stay, 1974). A HIPO chart is essentially a block
diagram showing the inputs into a functional unit, the
processes performed on that data within the unit, and the
output from the unit (Figure 1). There was one HIPO per
functional unit, with the processing in one unit being
expanded to new HIPOs until the lowest level of detail was
reached. The hierarchical relationships among the HIPO
charts are displayed in a Visual Table of Contents.

1.2.3 Chief programmer teams - are organized so that
functional responsibilities such as data definition, program
design, and clerical operations are assigned to different
members (Baker, 1972; Baker & Mills, 1973). This approach
results in better integration of the team's work, avoiding
the isolation of individual programmers that has often
characterized programming projects. The chief programmer
team is made up of 3 core members and optional support
members who are programmers.

* Chief programmer - is responsible to the project
manager for developing the system and managing the
programming team. He carries technical
responsibility for the project including production
of the critical core of the programming system in
detailed code, direct specification of all other
codes required for system implementation, and review
of the code integration.

* Back-up programmer - supports the chief programmer
at a detailed task level so that he can assume the
chief programmer's role temporarily or permanently if
required. In the LSDB project, he was responsible
for generating 80% of the code.

* Librarian - assembles, compiles, and link-edits

3
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the programs submitted by project programmers.
The librarian is responsible for maintaining the
library, including work books, record books,
subroutines and functions, and configuration control
for all source code not maintained by the program
support library.

There was a tester assigned to the LSDB project who was
not formally a member of the chief programmer team.
Nevertheless, he attended all walk-throughs and knew the
system almost as well as the project programmers. His primary
responsibility was to test the generated code for accuracy
and proper function. When a problem arose, he would send an

* 'Action Item' to the chief programmer regarding the test
* results.

1.2.4 Structured coding - is based on the mathematically
*proven Structure Theorem (Mills, 1975) which holds that any

proper program (a program with one entry and one exit) is
equivalent to a program that contains as control structures
only:

* Sequence - two or more operations in direct
succession.

* Selection - a conditional branching of control
flow. Selection control structureb are:

1. IF-THEN-ELSE
2. CASE

* Repetition - a conditional repetition of operations
while a condition is true, or until a condition
becomes true. Repetition control structures are:

1. DO WHILE
2. REPEAT UNTIL

These control structures are illustrated in Figure 2. The
implementation of these constructs into a computer language
allows the implementation of a simpler, more visible control
flow which results in more easily understood programs
(Dijkstra, 1972).

1.2.5 Structured walk-throughs - A structured walk-
through is a review of a developer's work (program desiqn,
code, documentation, etc.) by fellow project members invited
by the developer. Not only can these reviews locate errors
earlier in the development cycle, but reviewers are exposed
to other design and coding strategies. A typical walk-through is scheduled for one or two hours. If the objectives

5
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Sequence Repetition Repetition

BEGIN WHILE [logical exp.] DO REPEAT
[statements] [statements] [statements]

END ENDDO UNTIL [logical exp.]

Selection Selection

CASE [expression] OF IF [logical exression] THEN
C1: [statement] [statementis

ELSE
[statements]

Cn: [statement] ENDIF

END

Figure 2. Control structures allowed in structured programing
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have not been met by the end of the session, another walk-
through is scheduled.

During a walk-through reviewers are requested to comment
on the completeness, accuracy, and general quality of the
work presented. Major concerns are expressed and identified
as areas for potential follow-up. The developer then gives a
brief tutorial overview of his work. He next walks the
reviewers through his work step-by-step, simulating the
function under investigation. He attempts to take the
reviewevc through the material in enough detail to satisfy
the major ocnc"o is expressed earlier in the meeting, although
new concerns m ise.

Immediatel _er the meeting, the appointed moderator

distributes copies of the action list to all attendees. It
is the responsibility of the developer to ensure that the
points of concern on the action list are successfully

resolved and reviewers are notified of the actions taken. It
is important that walk-through criticism focus on error
detection rather than fault finding in order to promote a
readiness to allow public analysis of a programmer's work.

1.2.6 Program support library - The Applied Data
Research (ADR) LIBRARIA sottware w.s chosen as the program
support library for the LSDB project. A major reason for
this choice was its versatility of tools for the IBM 360/65
system. A program support library provides a vehicle for the
organization and control of a programming project, the
communications among development personnel, and the interface
between programming personnel and the computer system. When
used with top-down structured programming, the program
support library maintains a repository of data necessary for
the orderly development of computer programs.

The ADR LIBRARIAN generates a weekly subroutine report
which indicates the subroutine size, number of updates,
number of runs, etc., during the preceding report period. It
is a source program retrieval and maintenance system designed
to eliminate problems involved in writing, maintaining,
testing, and documenting computer programs. Source programs,
test data, job control statements, and any other information
normally stored on cards was stored by the ADR LIBRARIAN on
tape or disk and updated by a set of simple commands. Data
is also stored in hardcopy form in project notebooks. The
ADR LIBRARIAN includes the necessary computer and office
procedures for controlling and manipulating this data.

1.3 Metric Integrated Processing System (MIPS)

MIPS was designed to support SAMTEC opertions as the

7



primary source of metric (positional) data processing
associated with missile, aircraft, satellite testing, or
trajectory measurement activities. The critical function of
MIPS is to determine range safety information before launch
and establish controls for any potential flight path or abort
problems. The MIPS development effort consisted of
reprogramming and integrating several programs which
performed similar functions less flexibly and used the
same hardware. The development environments of the projects
for separate components were similar since they shared the

same management, were implemented on the same computer (IBM
360/65), and were of approximately the same size and
duration. (For a more complete description of MIPS, see Vol.
II, Section 1.3).

A decision was made at the start of the MIPS project to
* provide for an evaluation of a highly disciplined programming
S.environment. Two increments of the MIP.S project were

selected for increased attention and measurement; the Data
Analysis Processor using conventional programming techniques
and the Launch Support Data Base implemented under the ASTROS

plan. The arrangement allowed a quasi-experimental
evaluation of the modern programming practices specified in
the ASTROS plan.

1.3.1 Launch Support Data Base (LSDB). The LSDB
Computer Programming Configuration Item (CPCI is a non-real-time

increment of the MIPS system which determines in advance the
range characteristics and possible trajectories of missiles.
LSDB represents the reprogramminq of an earlier system
(VIPARS) which was not referenced during the development.
Since LSDB was a redevelopment, the customers were
knowledgeable of its function before it was implemented.
LSDB includes both data management functions and complex

* scientific calculations which are run in batch prior to
launch operations without real-time constraints. LSDB is
composed of five major Computer Programming Components (to be
described hereafter as subsystems), each with numerous
subroutines and procedures. LSDB was developed under the
guidelines of the ASTROS plan.

1.3.2 Data Analysis Processor (DAP). The DAP
reprogrammiFg effort was a sister project to LSDB. DAP
analyzed data using parameters generated by LSDB and
developed reports for the MIPS system. While the ASTROS plan
was not implemented on the DAP project, the management
controls and development environment were made as identical
as possible to those employed in the LSDB project to provide
more valid comparisons between them. The DAP project was
implemented in standard FORTRAN, in a non-structured coding
environment, by a group of programmers not organized into a

8



chief programmer team.

1.4 Project Environment

The processor used in the LSDB project was an IBM 360/65
(768K, 2Mbytes LCS) which was chosen for its numerous and
versatile tools. The developmental system was identical to
the target system, requiring no conversion effort. The
system was available for remote batch and batch use.
Turnaround time for batch work was approximately 24 hours and
for remote batch was approximately 2 hours. The operating
system was IBM 0S/360, MVT, release 21 with HASP.

" After careful evaluation, S-Fortran was chosen for use
on this project. Most of the LSDB code was written in S-

* Fortran. Small segments were coded in the BAL assembly
language. S-Fortran is a high level language (Caine, Farber,
and Gordon, 1974) which allows programmers to use structured
concepts in their code (Dijkstra, 1972). S-Fortran did
allow what Dijkstra (1972) would consider unstructured
constructs. For instance, the UNDO statement allowed exits
from loops. A structured precompiler converted the S-Fortran
code to standard Fortran for compilation by the standard ANSI-
Fortran compiler. The LSDB project had access to a
subroutine library for some of the routines needed.

The project personnel underwent a series of courses
designed to provide the training necessary to implement the
advanced programming techniques specified in ASTROS. The
trainer had studied with Yourdon, Inc. prior to teaching
these courses. The curriculum included coursework in
structured design and coding, program support libraries,

* measurement reporting, and management of structured projects.

Three types of data were collected on the LSDB project:
environment data, personnel data, and project development
data. Environment data provided information regarding the
system such as the processor, estimated costs, and the amount
of source code. Personnel data was information about the
people working on the project and their evaluations of
different aspects of it. In order to ensure privacy, strict
anonymity was maintained and no evaluation of personnel
qualifications was made. Project development data was
information describing the development and progress of the
project. This information included run reports, manpower
loadings, and development information. Volume II - Appendix
A contains the data collections fnrms used during the LSDB
project. In addition, RADC has collected development data
over a large number of systems, including military and
commercial software projects (Duvall, 1978; Nelson, 1978).
These data were collected in an attempt to establish

9
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baselines and parameters typical of the software development
process. These data provide a source of comparison for LSDB
and DAP data.

1
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2. Findings

Data analyses will be reported in two sections. The
first section reports comparative analyses between LSDB and
DAP. The order of presentation will proceed from analyses
at the project level to detailed analyses of the source
code. The comparisons will include:

1) the descriptive data generated from both projects,

2) the technology levels as determined from Putnam's
model,

3) the efforts involved in generating the code as
determined from Halstead's theory,

4) the complexity of the control structures of the
systems as indexed by McCabe's metric,

5) the quality of the delivered source codes
indicated by software quality metrics.

6) comparison to projects in the RADC database.

The second section of results will present analyses of
the error data collected on the LSDB project. These analyses
will include:

1) descriptive data for run-error categories,

2) comparison with error categories from TRW data,

3) trends in run-errors across time,

4) prediction of post-development errors.

There were some seeming discrepencies in the data.
While run-error reports were obtained for the LSDB project
over a 16 month period, man-hour loadings were only reported
for 14 months. This discrepancy appears even greater in that
numerous runs were reported during the requirements and
preliminary design phases of the project, although no hours
were logged to coding. Some of the initial activity on the
LSDB project was performed on a component which was not
peculiar to the LSDB system. Some early man-hours appear to
have been charged to an account other than LSDB. Further,
during the preliminary design, S-Fortran listings were used
instead of a program design language. Thus, results of
analyses involving man-hours should be interpreted as
approximate rather than exact.

11



2.1 Comparative Analyses: LSDB Versus DAP

2.1.1 Descriptive data. The source code for the LSDB
Computer Program Configuration Item contained over three
times as many source lines and almost two and a half as many
executable lines as did that of DAP (Table 1). Executable
lines represented the source code minus comments, data
statements, and constructs not strictly applicable to the
algorithm. ENDIF, READ, and WRITE statements were not
counted as executable lines. The 16,775 source lines in LSDB
were distributed across five subsystems which typically
ranged from 1700 to 2700 lines, with the exception of one
8013 line subsystem. The six subsystems constituting DAP
were all smaller, ranging from 200 to 1400 lines of code.

Comments accounted for a larger percentage of the LSDB
source code (38%) than of the DAP code (22%). While there
were fewer executable lines than comment lines (31% vs. 38%,
respectively) in the LSDB code, there were almost twice as
many executable lines as comment lines (44% vs. 23%) in the
DAP code.

The LSDB project required approximately 8081 man-hours
of effort to complete, while the DAP project required
approximately 6782 man-hours (Table 1). Thus, while LSDB
contained 239% more total source lines of code and 140% more
executable lines than DAP, the LSDB project required only 19%
more man-hours of effort to complete.

Figure 3 presents a plot of the man-hours expended on
LSDB and DAP during each month of the project from the
requirements phase through development testing and system
documentation. Different profiles were observed across the
14 months required for each of the two projects. For LSDB,
the largest loadings occurred during the initial five months
of the project. With the exception of month 8, only between
300 and 600 man-hours of effort were expended during each of
the last nine months of the LSDB project. Man-hours expended
on DAP, however, were greatest during the final months of the
project. That is, during the initial 8 months of DAP only
150 to 450 man-hours were expended per month, while during
the last six months (except for month 13) man-hour
expenditures ranged between 50e and 1050.

The percentages of man-hours expended during each phase
of development for LSDB and DAP are presented in Figure 4.
On both projects, approximately 20% of the man-hours were
expended in coding and integration, while 15% were expended
in p:oduct documentation and training. Differing profiles of
effort expenditure were observed on the other four phases for

12



Table 1

Comparison of Descriptive Data from LSDB and DAP

Variable LSDB DAP

Lines of code

Total 16,775 4,953

*Non-conunent 10,413 3,860

*Executable 5,205 2,169

Man-hours 8,081 6,782

13
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each project. While only 6% of the man-hours on LSDB were
invested in requirements analysis, 21% of those on DAP were
consumed during this phase. However, it is likely that many
of the man-hours devoted to LSDB requirements analysis may
not have appeared among the manpower loadings charged to this
project. Almost one third of the requirements hours for DAP
was expended in what appears to have been a modification of
the requirements during month 10 (Vol. II, Appendix E). When
compared to the DAP project, the percentage of total man-
hours on the LSDB project invested in the preliminary design
was almost twice as great, and in the detailed design was
over four times as great. One quarter of the man-hours on
the LSDB project were expended in development testing and
evaluation, while one third of those on the DAP project were
so expended. However, half of the testing related time on
the LSDB project was invested in preparation of the test

*procedures, compared to only one eight of the DAP test-
related time being devoted to preparation.

2.1.2 Level of Technology: Putnam's Model

2.1.2.1 Theory. Lawrence Putnam (1978) has refined and
verified a software cost and risk estimation model which
interrelates manpower, effort, development time, level of
technology, and the total number of source statements in a
system. His equation describes the behavior of software
projects consisting of over 25,000 lines of code and must be
calibrated for each development environment. When provided
with initial parameters from the software project, Putnam's
model can predict the manpower-time tradeoff involved in
implementing the system under development. When size and
time are known as in the LSDB project, the model can be
applied in retrospect to obtain a technology constant. This
constant reflects factors in the development environment such
as software engineering techniques (e.g., modern programming
practices) and hazdware. These factors will determine the
time and manpower needed for development. (See Vol. II; 2.1
for a more complete description of Putnam's model).

Putnam has calibrated his technology constant from
analyses of data from approximately 100 systems collected by
GE, IBM, TRW, and several federal agencies. In development
environments typical of 10 to 15 years ago, where programming
was performed in batch mode and written in assembly language,
values could be as low as 1,000. Development environments of
systems build with a higher order language such as FORTRAN,
in batch processing, on one large mainframe saturated with
work, and slow turnaround could yield technology constants of
around 5,000. Higher values occurred in an environment where
modern programming practices were implemented with on-line,
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interactive programming.

2.1.2.2 Results. Putnam's technology constant for the
LSDB project was anticipated to fall in the midrange of
values (approximately 5,000) because advanced tools were
employed, but the computer was used in batch mode, turn
around time was slow, programming was non-interactive, and
some of the code was written in assembler. The computed
value of 6,685 is slightly higher than anticipated. The
level of technology computed for DAP was 2,891. This figure
is lower than the technology constant computed for the LSDB
project. Since both projects used the same machine and
access times were similar, differences in the technology
constant cannot be attributed to a factor Putnam considers to
be one of the primary influences on his metric; access time.
Although Putnam suggests that his equation will yield an
overestimate of the technology constant for projects of under
25,000 lines of code, these computations nevertheless
validate the ASTROS plan as providing a more advanced
programming technology than the conventional techniques
practiced on the DAP project.

2.1.3 Programming Scope and Time: Halstead's Model

2.1.3.1 Theory. Maurice Halstead (1977) has developed a
theory which provides objective estimates of the effort and
time required to generate a program, the effort required to
understand a program, and the number of bugs in a particular
program. In 1972, Halstead first published his theory of
software physics (renamed software science) stating that
algorithms have measurable characteristics analogous to
physical laws. According to his theory, the amount of effort
required to generate a program can be calculated from simple
counts of the actual code. The calculations are based on
four quantities from which Halstead derives the number of
mental comparisons required to generate a. program; namely,
the number of distinct operators and operands and the total
frequency of operators and operands. Preliminary tests of
the theory reported very high correlations (some greater than
.90) between Halstead's metric and such dependent measures as
he number of bugs in a program, programming time, and program
quality.

Halstead presents a measure of program size which is
different from the number of statements in the code. His
measure of program volume is also independent of the
character set of the language in which the algorithm was
implemented. Halstead's theory also generates a measure of
program level which indicates the power of a language. As
the level approaches 1, the statement of the problem or its
solution becomes more succinct. As the program level
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approach 0, the statement of a problem or its solution
becomes increasingly bulky, requiring many operators and
operands. A higher level language is assumed to have more
operators available, but these operators are more powerful
and fewer operators need to be used to implement a particular
algorithm. Halstead theorized that the effort required to
generate a program would be a ratio of the program's volume
to its level. He proposed this measure as representing the
number of mental discriminations a programmer would need to
make in developing the program. The time required to
generate the program could be estimated by dividing the
effort by the Stroud (1966) number of 18 mental
discriminations per second. (See Vol. II; 2.2.1 - 2.2.3).

In using Halstead's equations to compute the effort or
time required to develop a system, it is important to limit
the computations to the scope of the program that a
programmer may be dealing with at one time. By scope, we
mean the portion of a program that a programmer is attempting
to represent to himself cognitively, regardless of whether he
is developing code or attempting to understand existing code.
There are several strategies that a programmer could follow
while working on a module, and they result in different
values for the overall effort. (See Vol. II; 2.2.4 -

2.2.4.2.2).

In the minimum scope case, the programmer would only
keep the context of the subroutine he was currently working
on in mind. He would not keep track of other variables from
other routines. In this case, each subroutine could be
considered a separate program, and the effort for the
subsystem would be the summation of the effort for the
separate subroutines.

In maximum scope cases, the programmer is assumed
to treat the entire subsystem as one program. He mentally
concatenates the subroutines into a subsystem and treats the
subsystem as one complete algorithm (a gestalt) where he must
keep track of all its aspects at any given time. Data
presented in Vol. II; 3.1.3 indicate that the minimum scope
case where a programmer concentrates on one module at a time
is more consistent with the empirical evidence. Therefore,
only results for this case will be presented.

2.1.3.2 Results. The total volume of the LSDB code is
greater than that of DAP (Table 2). Further, the effort for
LSDB was less and the level greater than that for DAP.
According to the Halstead model, the effort required to code
LSDB was less than that required to program DAP. This may
have occurred in part because the programming level evident
in the source code was greater for LSDB. That is,
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Table 2

Comparison Between LSDB and DAP on Halstead's Metrics

Metric LSDB DAP

Volume 249793 131587

Level .C082 .0046

Effort 36.93M 71.97M

* Productivity predicted 3639 565
* from other project

Actual coding time 1524 1349

Predicted coding time 570 i111
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the. LSDB code appears to have been written more succinctly
than the DAP code. This comparison becomes even more evident
if we use the productivity defined as non-comment lines
produced per man- hour from each project to predict the
pr)gramming time for the other project. If the rate of non-
conment lines produced per man-hour for DAP had been true for
the LSDB project, it would have taken almost two and one half
times as many man- hours to produce the non-comment portion
of the LSDB code.

Finally, the predictions from the Halstead model
underestimate the actual times required to code the two
CPCI's, and in the case of LSDB this underestimation is
considerable. This underestimation agrees with the reports
of LSDB project programmers that they had considerable slow

* time during the coding phase due to poor turnaround time.

2.1.4 Complexity of Control Flow: McCabe's Model

2.1.4.1 Theory. Thomas McCabe (1976) defined complexity
in relation to the decision structure of a program. He
attempted to assess complexity as it affects the testability
and reliability of a module. McCabe's metric, v(G), counts
the number of basic control path segments through a computer
program. These are the segments which when combined will
generate every possible path through the program. McCabe's
v(G) can be computed as the number of predicate nodes plus 1
or as the number of regions in a planar flowchart of the
control logic.

McCabe also presents a method for determining how well
the control flow of a program conforms to structured
programming practices. He decomposes the control flow by
identifying structured constructs (sequence, selection, and
repetition) that have one entrance and one exit and replaces
them with a node. If a program is perfectly structured, then
the flow graph can be reduced to a simple sequence with a
complexity of 1 by iteratively replacing structured
constructs by nodes. If a segment of code is not structured,
then it cannot be decomposed and will contribute to the
complexity of the program. McCabe calls the ultimate result
of this decomposition the essential complexity of the
program (See Vol. II; 2.3).

2.1.4.2 Results. In order to evaluate the complexity of
the control flows using McCabe's procedures, two subroutines
were selected for analysis from the source code of each
project. McCabe's v(G) was computed on each subroutine and
the values ranged from 76 to 165 (Table 3). However,
differences in the number of executable statements in each

20



Table 3

McCabe's v(C) and Software Quality Metrics for
Selected Subroutines from LSDB and DAP

LSDB DAP

Metric 1 2 1 2

McCabe's v(G)

Actual 76 136 147 165

Adjusted 101 119 114 132

Essential v(G)

Actual 31 18 50 56

Adjusted 41 18 39 45

Software quality metrics

Structured language 1.00 1.00 .00 .00

Coding simplicity .67 .69 .63 .57

Modular implementation .55 .41 .00 .0c

o Quantity of comments .49 .28 .46 .17

Effectiveness of comments .45 .45 .43 .40

Descriptiveness of
implementation language 1.00 .98 .83 .83
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subroutine over which these values were computed made their
comparison difficult. Values of v(G) for each subroutine
were adjusted proportionately to a value for a standard
subroutine of 300 lines of code. Following this
transformation, the control flows of the subroutines from
each project were found to be of approximately equal
compl'exity.

The essential complexity of the four modules ranged from
31 to 56 (Table 3). The adjusted scores indicated that one
of the subroutines from LSDB was similar to those from DAP in
its degree of unstructuredness, while the other was
substantially more structured. Although this
unstructuredness in LSDB seems surprising, S-Fortran allows
an UNDO statement, which results in an unstructured construct

* by allowing jumps out of loops (Figure 5). With the
exception of this construct, the LSDB code in the two modules
analyzed was consistent with the principles for structured
code described by Dijkstra. The unstructured practices in
the DAP code were much more varied.

2.1.5 Software Quality Metrics

One of the most comprehensive studies of software
quality was performed by McCall, Richards, and Walters (1977)
under an RADC contract. They defined various factors of
software quality as a means for quantitative specification
and measurement of the quality of a software project. They
developed a set of metrics for evaluating each of their
factors on a unit of code. With these aids, a software
manager can evaluate the progress and quality of work and
initiate necessary corrective action.

Several software quality metrics concerning modularity,
simplicity, and descriptiveness reported by McCall, Richards,
and Walters, (1977) were computed on the subroutines used in
the McCabe analysis. (The detailed scoring of the software
quality metrics relevant to this study can be found in
Vol. II Appendix D). Table 3 summarizes the results of this
analysis. On two of the six measures studied the LSDB code
was found to be clearly superior to the DAP code. That is,
LSDB was written in a language which incorporated structured
constructs, and the system design was generally implemented
in a modular fashion. The LSDB code in the subroutines
analyzed deviated from the principles of top-down modular
design to the extent that calling procedures did not define
controlling parameters, control the input data, or receive
output data. The LSDB subroutines received slightly higher
scores for coding simplicity than those of DAP. These scores
reflected better implementation in LSDB of top to bottom
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modular flow, use of statement labels, and avoidance of GO
TO's. Minor differences were observed between projects on
the effectiveness of comments. Thus, the greater percentage
of comments in the LSDB code may not have contributed
proportionately more to the quality of documentation beyond
the quality observed in DAP. The descriptiveness of the LSDB
code (e.g., use of mnemonic variable names, indentation,
single statement per line, etc.) was slightly greater than
that of the DAP code.

2.1.6 Comparison to RADC Database

Richard Nelson (1978) has performed linear
regressions of delivered source lines of code on other
variables in the RADC software development database. These
regressions allow an investigation of performance trends as a
function of project size. When outcomes from the LSDB and
DAP projects were plotted into these regressions, it becomes
possible to compare the performance of LSDB and DAP with
other software development efiorts while controlling for the
size of the project (in terms of delivered source lines).
Figure 6 presents the scatterplot for the regression of
delivered source lines of code on productivity (lines of code
per man-month). The datapoints for the LSDB and DAP projects
fall within one standard error of estimate of the regression
line. However, LSDB falls above the regression line and DAP
falls below it, suggesting that LSDB's productivity was
slightly higher than the average productivity for projects of
similar size and DAP's was slightly lower. Scatterplots
presented in Vol. II, Appendix B for regressions of delivered
source lines on total man-months, project duration, total
errors, error rate, and number of project members indicated
similar results. That is, the performance of LSDB was usually
better than that of DAP when compared to projects of similar
size. However, the data points for both usually fell within
one standard error of estimate of the predicted value.

2.2 Error Analyses

All of the data reported in this section are from the
LSDB project with the exception of the post-development
errors for which data were available from DAP. No record of
development runs were available from DAP.

2.2.1 Error Categories

2.2.1.1 Descriptive data. Of the 2,719 computer
runs involved in the development of LSDB, 508 (19%) involved
an error of some type (Vol. II; Appendix F). The frequencies
of these errors are reported in Table 4 by a categorization
scheme similar to that developed by Thayer et al. (1976) for
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Table 4

Frequencies of Error Categories

Error category f %

Algorithmic errors

Computational 5 1

Logic 98 19

Data input 17 3

Data handling 12 3

Data output 3 1

Interface 0 0

Array processing 1 0

Data base 4 1

Total 140 28

Non-algorithmic errors

Operation 115 23

Program execution 41 8

Documentation 0 0

Keypunch 51 10

Job ccntrol language 73 14

Total 280 55

Unclassified 88 17

Grand total 508
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TRW Project 5. The 14 categories of errors are divided
into two groups and a lone category of unclassified errors.
The first group involved errors which were detected by a
malfunction of the algorithm implemented in the code. These
categories included computational errors, logic errors, data
errors, etc., and accounted for 28% of the total errors
recorded. Most numerous were logic errors which constituted
19% of all errors.

Over half of the errors recorded (55%) were non-
algorithmic and involved the hardware functioning (23%), the
job control language (14%), keypunch inaccuracies (10%), or
program execution errors (i.e., compile error or execution
limits exceeded, 8%). Seventeen percent of the errors
recorded could not be classified into an existing category in
either group.

2.2.1.2 Comparison with TRW data. As a partial test of
the generalizability of these error data, the profile across
selected error categories was compared to similar data from
three development projects conducted at TRW (Thayer et al.,
1976). Data are reported only for those errors for which
similar classifications could be established. This analysis
was performed and first reported by Hecht, Sturm, and
Trattner (1977). The percentages reported in Figure 7 were
developed by dividing the number of errors in each category
by the total number of errors across the five categories.
LSDB and the fourth study from the TRW data were found to be
quite similar, especially with regard to the low percentage
of computational errors and the high percentage of logic
errors. The LSDB error profile was similar to the other two
TRW studies in the percent of data input and handling errors
and interface/program execution errors. Overall, it would
appear that the distribution of error types on the LSDB
project is similar to distributions observed on other
projects.

2.2.2 Error Trends over Time

A chronological history of the number of action
reports, error-runs (total and algorithmic), and post-
development errors is presented by month in Vol. II, Figure
12. The 63 action reports describing discrepencies between
the design and the functional requirements were recorded only
during the first seven months of development. Error-runs
were reported over the entire 16 months of development. The
distribution of total errors over months was bi-modal, with
the first mode occurring during the second and third months
of the project, and the second mode occurring between the
ninth and eleventh months of the project. Post-development
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errors were first recorded during month 16 and continued
until month 24. However, no activity was recorded from months
17 to 19.

The development error data indicated that work was
performed on all subsystems nearly every month through the
life of the project. These data suggest that the project
team proceeded with the parallel development of subsystems.
The alternative approach of depth first coding and
implementation where one subsystem is completed before
proceeding to the next, did not appear to have been employed.

Since the number of errors per month varied with the
F *number of runs, a more representative measure of error

generation was developed by dividing the number of errors by
the number of runs. These rates for both total and
algorithmic errors are plotted by month in Figure 8. LinearKregressions for these error rates indicated decreasing trends
over time. For total errors the correlation was -.52, while
for algorithmic errors it was -.63. Rates for total errors
decreased sharply over the final nine months from 30% in
month 8 to 8% in month 16. The correlation associated with
this sharp decline was -.90 (predicted error rate =
-2.5(month #) + 47.78).

2.2.3 Post-Development Errors

There were 28 post-development errors reported for the
LSDB code, and their frequency declined over time. These
errors included 12 subsystem development test errors and 16
system integration test errors. Forty-three system
integration test errors were reported for DAP. Compared to
the size of the source code, proportionately fewer post-
development errors were reported for LSDB. This comparison
is even more striking because reports of subsystem
development test errors were not available for DAP, thus the
total number of post-development test errors for DAP should
be even larger.

There are several methods of predicting the number of
post-development errors from the kinds of data available
here, the results of which are presented in Figure 9.
Halstead's (1977) equations for the total number of delivered
bugs (see Vol I; 2.2.5) led to a prediction of 27.2 errors
for LSDB and 4 errors for DAP. Thus, the prediction was
amazingly accurate for LSDB and substantially underestimated
for DAP. Since much of Halstead's original work was
performed on published algorithms, the accuracy of his
predictions may improve with the quality of the code and the
extent to which the code is an accurate reflection of the
requirements and specifications. Such an explanation would
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be consistent with observations in these data, and with the
fact that some requirements redefinition appears to have
occurred during the DAP project.

The ratio of post-development errors to number of
executable lines of code from each project was used to
predict the number of post-development errors in the other
project. The ratio for LSDB was 0.0027 and for DAP was
0.0111. When the ratio for the LSDB project was multiplied
by the number of executable lines in DAP, it led to a
prediction of only 10 post-development errors for the DAP
project (Figure 9). When the ratio for DAP was multiplied
by the number of executable lines in LSDB, it led to a
predicton of 116 post-development errors for LSDB. Thus, it
is obvious that the proportion of post-development errors per
line of executable code was four times greater for DAP than
for LSDB.

An attempt was made to predict post-development errors
from error-runs occurring in the development work performed
prior to testing. As a simple heuristic in place of curve-
fitting, a linear prediction equation was developed from the
error rates occurring between months 8 and 15, since the
standard error of estimate for error rates over this period
was much smaller. (See Vol II; 3.2.4 for a more complete
description of the method). The equation developed from the
error rates recorded during months 8 through 15 was -2.52X +
43.02, where X represents the month number. It was predicted
that 22.5 post-development errors would be detected. This
estimate is reasonable close to the 28 post-development
errors actually reported.
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3. INTERVIEWS

The following general observations emerged from
interviews with individuals associated with the LSDB
project. On the basis of these interviews it appeared that
the success enjoyed by this programming team was partly
achieved by a fortuitous selection of team members. The
particular personal styles of members were well-suited for
their roles on the team and for the practices employed. The
observations gleaned from these interviews are discussed
below.

3.1 Chief Programmer Teams

* The team members interviewed felt that the most
. significant practice was the chief programmer team. In

particular, they felt that the cohesiveness and the
visibility of each member's work contributed to higher
performance. It took several months of interaction before the
team really became cohesive. The team felt that a strong
source of morale resulted from keeping the nucleus of the
team intact throughout the development cycle (contrary to
ordinary practice at SAMTEC), with the possibility of
continuing into future assignments. Since all team members
shared in most tasks, no job (with the possible exception of
librarian) was allowed to become too tedious or mundane.

Project participants felt the team needed its own
physical space. The LSDB team had their own room with a lock
on the door. The team worked around a conference table
resulting in continuous interaction among team members, and
ensured that the work of each member was consistent with the
work of others. During afternoon breaks, the team would make
popcorn, but some constraints were placed on their
independence when an administrator found them making ice
cream on a side porch.

The chief programmer was a software craftsman primarily
interested in doing technical work without being hampered by
administrative, personnel, or bureaucratic problems. He was
an experienced software designer and coder who, because he
understood the technical characteristics of the target system
better than other project members, had the final say on
system design and coding. Both the chief programmer and the
tester were considered "range rats" (a local term for people
who had considerable experience working on the Western Test
Range at Vandenberg AFB). Over the years they had performed
many jobs at Vandenberg and could anticipate many of the
practical and technical problems they encountered during the
software development. The chief programmer was a dynamic
individual who was able to establish close working
relationships with his customers.
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The backup programmer had to work very closely with the
chief programmer and their skills were supplementary. The
backup programmer was quieter, a hard worker, and capable of
generating large amounts of code. The backup did 80% of the
coding for the system.

The librarian was responsible for taking the code and
entering it into the system. The librarian was the only
person who could actually change or add code to the system,
although other members might have access to add data. The
librarian was able to tolerate time constraints and maintain
careful control throughout the project. The librarian was
more than a keypuncher or "go-for", and was expected to
develop some basic technical abilities such as setting up job
control. The job level of the librarian was one step higher
than an administrative specialist and several steps higher
then clericals.

The procedure for submitting programs in this project
required either the chief programmer or the backup to submit
a written version of the program or change to the librarian
who would enter it into the system, perform an initial check,
eliminate any obvious errors, and then return a compiled
listing of the program to the backup programmer. The backup
or chief programmer would review this listing before
performing the first execution. Careful records were kept of
every submission, any resulting errors, and the code that had
to be changed.

The tester worked along side the team almost as an alter
ego. He set up the necessary data for both intermediate and
final acceptance tests. It was important that the tester
was not considered a member of the team. Nevertheless, the
tester was not someone brought in at the last minute. From
project initiation, he attended all the walk-throughs and
became intimately familiar with the LSDB code.

Team members felt it was important that the team be able
to select its members. Similarly, they felt the team should
be able to oust members who were not compatible or who were
not contributing to team efforts. The following list
summarizes the team's recommendations for selecting members.
The selection process should eliminate only incompetent
programmers. A chief programming team represents a
particular mix of skills and duties which may not be acquired
if only brilliant programmers are selected (someone has to
slog through the trenches). Some particular characteristics
which seemed important to this team were:

..



Chief Programmer

* dynamic
* excellent technical proficiency
* delegates red tape to someone higher up
e can establish close working relationships with

customers
* has an almost paternal, protective (but

democratic) attitude toward the team

Backup Programmer

* less dynamic
9 areas of technical competence supplement those of

* Chief Programmer.
* limitless capacity for generating code

* * should be capable of filling in for Chief
Programmer when necessary

Support Programmer

* willing to participate in team interactions and
work within team consensus

* cannot be a prima donna, a solitary worker, or
unable to take criticism

* should be given a trial period before becoming
a formal team member

Librarian

* high tolerance for frustration and pressure
" willing to perform unendless work
9 needs some understanding of programming code
* needs typing skills

Tester

" needs experience in content area of the program
" must be assertive
" should not become close knit with team

The team felt that new members would need some
orientation to the working environment they were entering.
Such training might be most effectively handled by
experienced chief programmers rather than professional
trainers. The type of people chosen for a team should be
those who are adaptive to the types of new habits that will
be the focus of training (this may be easier for less
experienced programmers).
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3.2 Design and Coding Practices

LSDB was designed in a strictly top-down fashion and
this practice was considered an important contribution to
the success of the system. The chief programmer commented
that in his 20 years of experience he had usually done top-
down design, but that he had not employed top-down
development. He considered them both to be important,
especially when used in tandem. However, he reported
problems in trying to implement the top-down development
strategy within standard Air Force practices, especially the
requirements for preliminary and critical design reviews.
Considerable time was lost while waiting for the
Configuration Control Board's approval of specifications.

a In an attempt to implement modular design, most

* procedures in the system were constrained to a maximum of 100
lines of code or two pages of output including comments.
There was an attempt to make each of the subroutines as
functionally independent as possible and to restrict
unnecessary data transmission between modules (G. Myers,
1978). The team favored the use of highly modular systems and
believed this practice contributed significantly to the ease
with which the resulting system could be maintained or
modified. Although they thought structured coding was of
benefit, they considered its relative importance to be small
compared to that of modularity or the use of the chief
programmer teams.

Varia'tions in the construction of HIPO charts from
guidelines described by IBM were identified by an independent
validation and verification contractor and corrected. HIPO
charts were very unpopular with both the team and the
independent contractor. HIPO's were not maintained up-to-
date throughout the project. The team felt that the HIPO
charts were not particularly useful beyond the first or
second level within the system hierarchy. HIPO's might have
been more readily accepted had an interactive system been
available for generating them. The team recommended that a
program design language (PDL) would have been much more
useful than HIPO charts.

Walk-throughs were held every week and were attended by
the software development team, the tester, the project
administrator to whom the team reported, the customer, and
the end users of the system. The team felt it was important
that these walk- throughs were held weekly and that those
involved in the procurement and use of the system were in
attendance. In fact, since the team held code reviews
internally on an ad hoc basis, they felt that walk-throughs
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were held primarily for the benefit of other interested
parties.

Walk-throughs tended to last one to one and one-half
hours. In most cases, the chief programmer handed out either
the code or design description a week prior to its
consideration so that all attendees could review the material
and be prepared with detailed comments. They discovered
early that walking through the code in detail was not
practical. Rather, they gave high level descriptions of the
routine's processing and went into the code only as required.

The team felt that the amount and type of documentation
required was burdensome, especially the documentation of
specifications and design. Both the developers and
maintainers felt that the code was sufficiently well designed
and documented internally that no other documentation was
required. In no case had they gone back to the HIPO charts
or even the specifications to obtain information in order to
make a change to the system. Sophisticated documentation may
not have seemed as important since most necessary
modifications were so minor that a single statement could be
isolated rather quickly.

As of March 1978 very little maintenance had been
required. Since much of the maintenance has been minor, it
has been suggested that the team librarian or someone with
equivalent experience could make most of the one card
modifications that have been required. The LSDB development
team and tester received a letter of commendation from the
end users. They were complimented both for the high quality
of the software and for its production on time and within
budget.

0

One anecdote is instructive on the effectiveness of the
ASTROS guidelines. At the beginning of the project, the LSDB
team was required to suspend work while waiting for the
preliminary design review. In order to keep them from
beginning to code, the SAMTEC engineer gave the team a
problem from another project. The program computed and
plotted some range safety parameters. A tiger team had
spent a month trying In vain to modify the existing program
for an upcoming launch. The LSDB team redesigned the
program and produced a working parameterized version in one
week.
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4. CONCLUSIONS

4.1 Current Results

The perf'; rmance of the LSDB development project using
the modern programming practices specified in the ASTROS plan
was comparable to that of similar sized software development

projects on numerous criteria. The amount of code produced
per man-month was typical of conventional development efforts
(however, this is a controversial measure of productivity;
Jones, 1978). Nevertheless, the performance of the LSDB
project was superior to that of a similar project conducted
with conventional techniques in the same environment. Thus,
the benefits of the modern programming practices employed on
the LSDB project were limited by the constraints of
environmental factors such as computer access and turnaround
time.

While the results of this study demonstrated reduced
programming effort and improved software quality for a
project guided by modern programming practices, no causal
interpretation can be reliably made. That is, with only two
projects and no experimental controls, causal factors can
only be suggested, not isolated. The ability to generalize
these results to other projects is uncertain. For instance,
it cannot be proven that modern programming practices had a
greater influence on the results than differences among the
individuals who comprised the LSDB and DAP project teams.
Having acknowledged this restriction on causal
interpretation, however, it is possible to weave together
evidence suggesting that important benefits can be derived
from the use of modern programming practices.

Several analyses demonstrated that improved efficiency
was achieved through the use of the modern programming
practices specified in the ASTRO plan. The value of Putnam's
technology constant computed for LSDB was higher than for
DAP. Further, the relative values of the LSDB and DAP
projects on the parameters described in the RADC database
consistently showed LSDB to have a higher performance than
DAP when compared to projects of similar size, although the
performance of both was close to the industry average. Since
the DAP and LSDB projects shared similar processing
environments, differences between the systems are probably
not attributable to environmental factors.

The LSDB project demonstrated more efficient use of
development man-hours than the DAP project. The Halstead
parameters indicated that the LSDB project generated more
code with less overall effort than DAP. LSDB exhibited a
higher program level, indicating a more succinct
representation of the underlying algorithm than was true for
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DAP. The results of the effort analyses emphasize the great
power in modular approaches to programming. If a programmer
is required to keep the total context of a subsystem in mind,
the time and effort required by the project increases. By
breaking up the project into independent functional
subroutines, the load upon the programmer is reduced.

Another area of evidence favoring modern programming
practices was the superior quality of the LSDB code compared
to that of DAP. Scores on the software quality metrics
produced by McCall, Richards, and Walters verified that t'-e
practices employed on the LSDB project resulted in a more
modularized design and structured code than DAP. Further,

. greater simplicity was evident in the LSDB code. Although
the McCabe analysis indicated that the complexity and
structuredness of the control flows were generally similar,
the breaches of structured practice in the LSDB code were
uniform. That is, the UNDO construct in S-FORTRAN allows
branches out of conditions and loops. Although used
consistently in the LSDB code, this construct is not among
the structured programming practices recommended by Dijkstra
(1972). This construct may not have made the control flow
more difficult to understand (Sheppard, Curtis, Milliman, &
Love, 1979). Departures from structured principles were far
more varied in the DAP code, resulting in a convoluted
control flow that is much more difficult to comprehend and
trace.

Perhaps the most impressive comparison between LSDB and
DAP concerns the number of post-development errors. When
compared to DAP, the LSDB code contained three times as many

* lines and two and a half times as many executable lines, but
* only two-thirds as many post-development errors were reported

for LSDB. The reliability achieved by LSDB was well predicted
by both the Halstead equation for delivered bugs and a
regression equation based on monthly error rates during
development. The inability of any of the methods to predict
post-development errors on DAP suggests that the prediction
obtained for LSDB may have occurred by chance. Nevertheless,
the existence of a tester associated with the LSDB
development and the orientation of the project towards its
final evaluation may have contributed to a strong
correspondence between the requirements and the delivered
code of LSDB. When this correspondence exists, the number of
errors or error rate may prove much more predictable.

It is clear from analyses reported here that a software
development project employing modern programming practices
performed better and produced a higher quality product than a
conventional project conducted in the same environment.
However, these data do not allow the luxury of causal
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interpretation. Even if such interpretation were possible,
the data still do not allow analyses of the relative values
of each separate practice. Further evaluative research will
be required before confident testimonials can be given to -he
benefits of modern programming techniques. Nevertheless, tne
results of this study suggest that future evaluations will
yield positive results if constraints in the development
environment are properly controlled.

4.2 Future Approaches to Evaluative Research

This study demonstrated that exercising some control over
the research environment can be extremely valuable. Without
the comparable environment of LSDB and DAP this study would
have found liftle evidence to indicate that modern
programming practices have benefit. The experimental
manipulation of selected practices (e.g., different ways of
organizing programming teams) would improve future
research efforts. Unless the separate effects of different
practices can be identified, no recommendations can be made
concerning them. Rather, the only conclusion that can be
reached concerns the use of modern programming practices as a
whole.

Data collection on programming projects often interferes
with the programming task or meets opposition from team
members. This problem can be counteracted by developing
measurement tools embedded in the system which are invisible
to programmers. Such tools would produce more reliable data
since they cannot be forgotten, ignored, or incorrectly
completed as manually completed forms frequently are. On the
LSDB project, information such as number of runs and errors

* and time per run was acquired directly from the operating
system. Manpower loadings can be taken from the hours
recorded on time cards to be billed to the project, and can
be broken down into job classifications. The program source
code is also an excellent source of data concerning the
quality and complexity of the code, and the number and types
of statements. A program support library can keep track of
the relative status of programs with minimal impact on
programmers, the number of modules, and the time spent on
each one.

Data collection can serve the purposes of both research
and management. A software development manager needs
visibility of project progress in order to control events and
determine corrective action. A program support library can
report module size, number of runs, and other summary
information at regular intervals, and check project status to
alert the manager to milestones. When these collection
mechanisms are imposed unobtrusively on programming projects,
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their use is more likely to gain support, and better data
will be available both to management and researchers.
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