
7AD-AOG13 491 MASSACHUSETTS INST OF TECH CAMBRIDGE LAS FOR COMPUTE--ETC F/G 9/2
A M4ANAGER FOR NAMED, PERMANENT OBJECTS. (U)

APR GO A M MARCUM NOOOI'4-75-C-OAAI

UNCLASSIFIED MIT/LCS/TMIAZ2 NL

*2IffIfIIIIlIIlflfflf
-ElllllEllllEEmuulllulluuuuu
mulllulllullll.iniiuuiiiii

" SACH ETTS)

LABORATORY FOR ft MASSAAOINSTITUTE OFCOMPUTER SCIENCE TECHNOLOGY

A MA=E FOR NMNED, PERIUMV OBJCIS O

Alan Michael Marcum

April 1980

The research on which this report is based was supported
in part by the Computer Research Laboratory of the

Electronics Research Center of Hewlett-Packard Company
through the Electrical Engineering and Computer Science

Department's Co-operative Education Program. It was also
supported in part by the Advanced Research Projects Agency

_L of the Department of Defense and was nmnitored by the
Office of Naval Research under Contract No. N00014-75-C-0661

5I545 TECHNOLOGY SQUARE. CAMBRIDGE, MASSACHUSETTS 02139

S80 4
i Ii:,

SECURITY CLASSIFICATION OF THIS PAGE (Man Dat. Entered)

REA INTRCTONREPORT DOCUMENTATION PAGE READ NsRucTIGORsDE FORE COMPLEIrNG FORM

.OVT ACCESSIONTMIm-

MIT/LIs/I-162 .' 4oert'

A Manager for Named, Permanent Objects -7, 1-97

6. PERFORMING ORG. REPORT NUMBER

T/LCSITM-162
7. AUTHOR(a) S. CONTRACT OR GRANT NUMBER(.)

Alan Michael N00014-75-C-066L]

S. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

MIT/Laboratory for Cacputer Science AREA S WORK UNIT NUMBERS

545 TIechnology Square
Cambridge, MA 02139

1. CONTPOLLING OFFICE NAME AND ADDRESS Ia 4. REPORT OTARPA/Department of Defense (/ Apr//80/
* 1400 Wilson Boulevard .- TI.-Wm 'AGES
SArlington, VA 22209 139

14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Olflice) IS. SECURITY CLASS. (of this report)

ONR/Department of the Navy
Information Systems Program ___.______Unclassified

1Arlington, V5 . OECLASSIFICATON/OOWNGRAOINGt VSCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

This docunent has been approved for public release and sale;
its distribution is unlimited

17. DISTRIBUTION STATEMENT (of the abetract entered In Block 20, If different from Report)

IS. SUPPLEMENTARY NOTES
0!

II

19. KEY WORDS (Continue on reverse side If necessary and Identify by block numbe)

filing system
data abstraction
permanent storage

20. k RACT (Continue on reverse aide It neceeary and Identify by block number)

Storing data in a cniputing system for a long time has been of interest
ever since it was possible to do so. Classically, one stores bit-or byte-
strings, or perhaps arrays of erecxords."et, current programming philosophy
stresses data abstraction techniques and concepts. This report describes an
object-oriented filing system which stores abstract objects, and allows the
user to view the system as though one were storing abstract objects, rather

S,than storing sore external representation of the abstractions. Names may be
attached to the (penranent) objects, and objects may be contained in (and may.

DD JAN,3 1473 EDITION OF I NOV 65 IS OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (*Wen Daea fnd')

0/

maU Y' CL.AMWVICAVS@W OF T1NSS Ffi(11140 WO ee.

20. contain) other objects. FurthenOre, an object may be contained in more
than one object, thereby allowing the naming structure to be a network.

S '

6!

SSCURITY CLASSIFICAION OF THIS PA~GIMhom Date Shterod)

MEN

A MANAGER FOR NAMED, PERMANENT OBJECTS

by

Alan Michael M~arcum

June, 1979

1979 by Alan M. Marcum

Massachusetts Institute of Technology

Laboratory for Computer Science

Cambridge Massachusetts 02139

A Manager for Named, Permanent Objects

by

Alan Michael Marcum

Submitted to the Department of
Electrical Engineering and Computer Science

on May 17, 1979 in partial fulfillment
of the requirements for the Degrees of

Bachelor of Science and Master of Science.

I: ABSTRACT

Storing data in a computing system for a tong time has been of interest

ever since it was possible to do so. Classically, one stores bit- or
byte-strings, or perhaps arrays of "records." Yet, current programming
philosophy stresses data abstraction techniques and concepts.

This report describes an object-oriented filing system which stores

abstract objects, and allows the user to view the system as though one were
storing abstract objects, rather than star-Lag somle external representation
of the abstractions. Names may be attached to the (permanent) objects, and
objects may be contained in (and may contain) other objects. Furthermore,
an object may be contained in more than one object, thereby allowing the
naming structure to be a network.

CR Catestories: 3.73, 4.33, 4.34, 4.9.

!Le Wortds: filing system, data abstraction, permanent storage.

ThssS!!ZErIsor: David D. Clark,
Research Associate in Electrical Engineering and Computer Science

-2-

Dedication

I dedicate this thesis report to my parents, Stan and Helen. They have

provided support and encouragement always. Sometimes, it has been

difficult for them -- I would drive home from school at the end of the

term, spend the night there, and then leave the next morning to go skiing,

to see friends, to go out to HP to begin a work assignment. Often, I would

spend more time driving home than I would spend at home.

r Thanks, folks, for your love, your support, your understanding, your

- friendship. To express my appreciation, in whatever small way this might

be, I dedicate this work to you.

-3-

kcknowlednements

The research on which this thesis is based was performed under the

Electrical Engineering and Computer Science Department's Co-operative

Education Program ("Vt-A"), at Hewlett-Packard Laboratories, Computer

Research Laboratory, in Palo Alto, California. To express my appreciation

for the opportunity of participating in VI-A, my first thanks go to the
4W

Department's Co-operative Education Program, and especially to its

* director, John Tucker, and his secretary, Lydia Wereminski.

q

My thesis supervisor, Dave Clark, provided me with constant guidance,

advice, and support. His efforts to bridge the continental distance

between us white I worked at HP were extraordinary. His efforts to help me

clarify my thoughts and the exposition of those thoughts were remarkable.

Dave read preliminary versions more quickly than I could reasonably expect.

My deepest thanks go to him.

The members of the Computer Systems Research Group at MIT's Laboratory

for Computer Science have helped me crystallize some of the ideas presented

in the following chapters. Many of them helped me, despite my very brief

association with the group. Some of the people, deserve special thanks.

Allen Luniewski has been mentioned in several of the other CSR theses I

have read recently; despite a very busy schedule, and a thesis of his own

to write, Allen has taken time to talk with ma and help me. Karen Sollins

likewise took time out from writing her thesis to discuss some of my ideas.

Wayne Gramlich helped me find several references on Hydra. Gene Ciccarelli

-4-

Acknowledgements

and I talked a great deal late several nights. In general, people were

just there, ready to talk, or to listen.

Thanks are due also to Roy Levin, of Xerox's Palo Alto Research Center

(Xerox PARC). His exceptionally prompt reply to a request for information

- about Hydra is greatly appreciated.

rJerry Morrison, again of Xerox (but with their System Development

Division -- Xerox SDD), helped transfer drafts of this report to HP Labs.

My thanks to him for his assistance.

During the previous five years I have been associated with the MIr

Varsity Rifle Team, first as a team member, then as team captain, and this

year as assistant coach. In addition to the Rifle Team, there was also the

entire MIT shooting community, in which I include the Varsity Pistol Team

and the Pistol and Rifle Club, in addition to the Varsity Rifle Team. A

finer, more fun-loving bunch of people exists nowhere. They gave me their

-friendship, companionship, and competition, and provided a refuge when I

had to "get away from it all." Thank you for everything.

Finally, my thanks go to my co-workers at HP Labs. Many theses I have

read claim that a list of such people is too long to include; I feel they

all deserve notice. Jim Duley, Bob Fraley, Bruce Hamilton, Ron Johnston,

Nancy Kendzierski, Jeff Levinsky, Martin Liu, Dave Means, Darrell Hiller,

-5-

kcknowledemen t s

Bruce Nordman, Jim Stinger, Howard Steadman, Paul Stoft, and Ken Van Bree

waded through drafts of the thesis proposal and the thesis report, giving

me their comments and ideas, often with not nearly enough time to do what

was asked, but it was always done nonetheless. Besides doing their jobs,

these people, in addition to John and Lydia, help keep VI-A going. We had

many discussions, ranging from friendly chats to heated debates, between

just two of us, or with the entire group. Bob Fraley, Bruce Nordman, and

Dave Means deserve special thanks: Bob for his special help in sorting out

my ideas; Bruce for his assistance in transferring copies of drafts of this

report to the people at the Lab; Dave for his consultation when I most

needed it. Thank you, people, for your support -- both personal and

technical.

I hereby grant to MIT and to the U.S.
Government a non-exclusive, royalty-free, irrevocable,
license to use, reproduce and distribute copies of my work,
entitled A MANAGER FOR NAMED, PERMANENT OBJECTS.

The research on which this report is based was supported in part by the
Computer Research Laboratory of the Electronics Research Center of
Hewlett-Packard Company through the Electrical Engineering and Computer
Science Department's Co-operative Education Program. It was also supported
in part by the Advanced Research Projects Agency of the Department of
Defease and was monitored by the Office of Naval Research under Contract
Number N00014-75-C-0661.

-6-

Disclaimer

The English language has no explicitly neuter personal pronoun. Many

people consider this an unfortunate omission. However, traditional proper

- usage dictates that the personal pronoun "he" and its derivatives be used

when a neuter personal pronoun is required. I shall follow tradition, and

use "he," the Women's Liberation Movement notwithstanding. I do not mean

to offend with my use of "he", merely to express myself cleaaLy and easily.

-7-

Table of Contents

ABSTRACT . 2

DEDICATION . 3

ACKNOWLEDGMENTS 4

DISCLkIMER 7

TABLE OF CONTENTS 8

TkBLE OF FIGURES 10

. INTRODUCTION

A. The Problem 12

B. The Environment 14

C. The Programming Language: Syspal 16
D. The "Things" 20

E. Related Work 22
F. Plan for the Remainder of this Presentation. 23

it. &NTECEDENTS 24

A. Honeywell's Muitics 25

B. Hewlett-Packard's MPE/3000 31

C. Miscellaneous 35
1. Unix 36

2. Hydra 37

3. Version Maintenance38

D. Summary 39

III. DEFINITION OF A "CATOAN-OBJECT" 41

A. Issues: Containment, and Trust42
1. Containment and Catoan43
2. Trust and Catoan45

B. The Basic Object 47

1. The Operations of the Basic Object 52
2. Comments on the " SET" Operations 57
3. Naming and the DIRECTORY58
4. Storing Data: The CONTENTS60

5. Protection and Security62
C. A Refined Object 65

1. Protection and Security66
2. Cross-Referencing 70

A.o

Table of Contents

D. Versioned objects. 73
1. Version Naming. .. *.......................74
2. Storing and Implementing Versions 76
3. More on Version Naming. 84

E . Summary. 86

IV. AN EXAMPLE: A SYSPAL PROGRAM OBJECT 87
A. Motivation 88
B. Definition 90
C. Use. 94

*D. Summary. 96

V. IMPLICATIONS OF MULTIPLE NAMING ENVIRONMENTS 97
A. Disjoint Naming Spaces 98
B. A Standard Interface for Filing Systems. 100
C. Garbage Collection. 103
D. Summary 107

VI. SUMMARY, AND EVALUATION OF THE PROPOSED SOLUTION 108
A. Summary 109
B. Completeness. 11
C. Trade-offs. 115
D. Remaining Work. 11.8

APPENDIX A. 120

REFERENCES. 133

-9-

Table of iue

Figure 1: Sample Representations of Multice Objects 29
Figure la: Directory29
Figure lb: Segment30
Figure 1c: Link 31

Figure 2: Sample Representation of an MPE/3000 File34

Figure 3: The Basic Catoan-Object 49

Figure 4: Catoan-Object with CONTENTS of Type "text" 52

Figure 5: An Access Control List Scheme for Catoan 69

Figure 6: Additions to the Basic Object for Cross-Referencing . . . 72

Figure 7: Version Naming Hierarchy75

Figure 8: Additional Information and Operations for Version
Maintenance 78

Figure 9: Definition of VERSION GENERATING PROCEDUREs 80

Figure 10: A Syspal-Program Object 91

Figure ii: Standard, Minimal Interface for a Filing System 101

Figure 12: A Module Implementing a Stack127

-t0-

CHAPTER ONE

INTRODUCT ION

Ink this chapter, I describe the problem to which this report is

addressed. The environment which was assumed during my research is

described (including the types of computing systems at which the results

presented here are aimed), as are the assumptions about that environment.

The programming language used in the examples and descriptions in this

report is also briefly described. K short description of the entities in

- the computing system which are addressed here is presented. I then discuss

related work, and present a plan for the remainder of the presentation.

qthpter One Introduction

Section A The Problem

l.A. The Problem.

How does one store and reference things in a computing system?

Especially, how does one store and reference things whose existence isI

longer than that of the process which created them? What is the structure

of these "things" which are stored? How can they be manipulated? What are

the common characteristics of most of the "things" in a computing system?

Is there anything that can be done to those "things" which does not fit the

model of "common characteristics"?

One of the important trends in current computer science research is

data abstractions: programming using abstract data objects, whose

representation is not only of no concern to the user, but is forcibly

hidden from him.

When using a computing system, one usually wants to retain some data

for long periods of time. This requires some form of permanent storage on

the computing system, and a mechanism for accessing the data stored in the

permanent storage. Unfortunately, many abstraction languages ignore the

issue of permanence, retaining objects only for the life of the process

which created them. Yet, users want permanent storage of their objects.

-12-

MEMO

qh~k~tK OneIntroduction

Section A The Problem

Once an object exists for longer than the life of its creating process,

- it is desirable to attach a human-usable, hopefully mnemonic, name to it.

Such a desire requires a managing program for the names, and objects: to

translate names to internal object references, to provide a uniform

semantic interpretation for the names, and to manage the stored objects.

Classically, in order to permanently store an (abstract) object, and to

attach a name to it, the object had to be transformed from its internal

representation to some external representation (like a stream of bits).

This external representation was then passed to a "file system," which

stored the stream of bits representing the abstract object in a "file."

Usually, the conversions from internal representation to external

representation was very visible to the user. Such a transformation is

undesirable, as it negates some of the benefits of data abstraction

techniques.

In this thesis report, I shall address these, and other, issues. I

shall describe the "things" stored in a computing system, and how one might

manipulate, define, and characterize them. I shall compare and contrast

this work with that of other schemes for referencing and manipulating

"things." I shall examine how the definition of the "things" affects their

knamsing and other properties.

-13-

Chs~te One Introduction

Section B The Environment

1.8. The Environment.

Described here is a scheme aimed at a range of environments. It will

work equally well on single user computing systems and on multiple user,

shared systems. Often, on single user systems, some of the problems of

concurrent accessing and of protection become moot points, and so the focus

of this report will be on shared systems.

A virtual machine is similar to both the single and multiple user

systems. Within one process or collection of processes, it appears to be

single user. However, many virtual machines running on the same real .

machine often share logical, as well as physical, resources. For example,

multiple virtual machines may share the same file system for permanent

storage, thereby sharing not only the physical storage devices but also the-

logical naming space. The scheme presented in the following chapters will

also till the needs of a virtual machine environment.

Loosely connecting autonomous systems together to form a network of

computers presents some problems which I shall not address. For example,

there are the problems of naming resources on remote systems, locating

resources on remote systems, and network-wide sharing and protection. It

is hoped, however, that the general network case is a simple extension of

the work described here for a single, multiple user system. -

-14-

ChatEr One Introduction

Section B The Environment

The specific environment assumed in this work is a single, multi-user

computing system, with a large address space (for example, at least a

trillion bits). Storage entities are accessed by presenting a unique

identifier for the entity (such as an address, a segment number, or a

capability) and an address within the entity to the memory management

system, which is responsible for the allocation of and access to the memory

resource. Within each entity in the system, references to other entities

may exist, and they may exist anywhere within the entity (rather than in

some particular location within the entity).

The memory resource is presumed to be virtual, though it could be

entirely real memory, provided there is a sufficiently large non-volatile

component. Permanent storage of an entity is achieved by not deleting the

entity; future accessing taust be done with the unique identifier used to

create the entity. Memory MpeSrs to be single level; all entities exist

- in the same collection of memory. In particular, the notion of separate

permanent and temporary memories is foreign to my presumed environment.

In my assumed system environment, security is a major concern. An

objective is to minimize the number of trusted components in the system.

By "trust" I mean to give access to one's data, when that access is not for

reason of explicit use. In most existing systems, the filing system in

Chapter One Introduction

Section B The Environment

trusted -- it can delete, modify, make inaccessible, or leak the data in

any file in the system. In the proposals following, the filing system

(object manager) need not be trusted to not modify or leak data. (It will

still be able to delete data, and to make them inaccessible.) The only

component of the system that will have to be trusted with one's data is the

memory management system, which deals with data on a bit (or collection of

bits) level, and can place data in any address space in the system. (If a

single-level, non-volatile storage system is used, the memory manager need

not have the "power" it would in a multiple-level, volatile (virtual)

storage system.)

kn additional aspect of my presumed environment is that the operating

system provided is a kernel, to which some user-environment features have

been added. The user-environment features need not be used if one desires

to write a replacement (or simply do without the feature). The filing

system provided with the kernel is part of the optional section of the

system; therefore, multiple filing systems could exist.

I.C. The Prozramin Lanu : US.

The examples presented in the following chapters use the "Syspal"

programming language. Syspal [101 is a Pascal-based systems programming

language being developed at Hewlett-Packard's Computer Research Laboratory.

-16-

Chater One Introduction

Section C The Language

Syspal is an object-oriented language, similar to MIT's CLU (21, 22] or

Carnegie-Mellon's Alphard [34, 35, 371. One defines an object by defining

the operations one can perform on the object; the actual realization of the

abstract object is not visible to its users. Following is a short summary

" of some of the features of Syspal which are used in this report; a summary

, of the relevant features of Syspal is in Appendix A.

Syspal provides only a very few types, and allows the programmer to

extend those types. Specifically, Syspal includes no "string for direct

use. Throughout this report, strings will have the representation

string(size: 0 TO 100) - TYPE RECORD
length: 0 TO size;
chars: ARRAY(TO size) OF CHAR;
END; !string

with all the usual string operations defined.

The definition of STRING points out several features of Syspal.

Defined types can take one or more parameters which further specify the

type. The string definition shown above takes "size" as its parameter,

specifying the length of the string. The statement

life-history: string(50);

declares a variable as a string of length fifty.

-17-

Chapter One Introduction

Section C The Language

There are two kinds of comments; a "here to end of line" comment

(denoted by "L"), and a "here to end of comment" comment (which uses

to open the comment and "*)" to rlose it).

Syspal allows pointers to be declared. Pointers are typed; that is, a

pointer refers to an object of some particular type, rather than a pointer

to anything (PL/l pointers are of the latter flavor). As an example, the

following could be the representation of a list. Like strings, lists are

parameter-based: the type of the list's elements is supplied by the

"abstraction" user.

list(element type: TYPE) - TYPE RECORD
first: @element type;
rest: @list(elesent type);
END; lUist

The field "first" is a pointer to an object of type "elementtype"; "rest"

is a pointer to a list of type "elementtype."

As a further example, shown in Figure 12 in Appendix A Is a definition

of a STkCK abstraction which takes, as its parameters, the type of the

objects on the stack, and the number of elements the stack will be able to

contain. The definition takes the form of a "module," the Syspal

equivalent of the CLU "cluster." The operations on stacks, a

-t8-

Qater One Introduction

Section C The Language

representation of a stack, and various "interfaces" for, or "means of

referencing," stacks are shown.

Within a module, the keyword SELF is bound to the object on which the

operation was called. SELF is not included in the header of the function,

. but is supplied as the first argument to the operation when it is called.

The name of the module need not be provided in the CALL statement; it is

recognized from the type of the first argument. For example, with the

declarations

envr: stack(algol-stack frame);

x: algol-stack frame;

algol stack frame - TYPE .

CLU would require a CALL similar to

CALL stack$push(envr, x);

whereas in Syspal, the same statement would be

CALL push(envr, x);

or, optionally,

CALL stack.push(envr, x);

if the fully-qualified operation name was desired. Within the module

implementing stacks, "SELF" would refer to "envr" in the above example.

-9-

9Chnter One Introduction

Section D The "Things"

I.D. The "Thiq~t."

At the beginning of this chapter, I referred to the "things," the

entities, stored in a computing system. What are those "things"? What are

their properties, what is their structure, what operations can be performed

* on them?

The "things" to which I refer are the abstract data objects which are

stored in the computing systems long-term ("permanent") storage. Such

objects may be viewed as files, segments, programs, hierarchical or

relational databases -- whatever one might want to retain for long periods

of time. The various kinds of objects3 are defined by the operations which

can be performed on them, in addition to those which can be performed on

ALL objects. Most existing permanent-storage systems do not take this

view, but, rather, view storage as a collection or stream of bits or bytes,

or possibly as an array of "records." Indeed, some of the reports on

current research on storage systems take a byte-stream view of storage,

when such a view is not necessary (see, for example, [201).

The view of objects as abstractions is similar to that which CLU,

ALPHARD, SmailtaLk [121, and Syspal take of data. An object is an abstract

data type, out of which other abstract data types are made. An example of

this is building a first-in, first-out queue from a linked list. The

-20-

ChtrOne Introduction

Section D rhe "Things"

programmer implementing the queue is not concerned with the implementation

- of the li1st abstraction, merely with the definition of the operations of

the 1list (FIRST, REST, APPEND). If the input-output specifications of the

operations on lists remain the same, changing the implementation of lists

does not matter. Perhaps the person maintaining lists may decide that

lists larger than some critical size should be stored using a different

format; the user of lists does not care about internal representation.

Syspal provides the abstractions ARRAY, RECORD, INTEGER, CHkR and BOOL

for direct use. And yet, one is not concerned with the implementation of

such things; one merely wants to use them, often, as here, to build other,

more complicated abstractions.

(In addition to the languages mentioned above taking a view of objects

similar to mine, Hydra [36] has a similar view of objects which are to be

stored for long periods of time. Again, objects are abstract (and

explicitly extensible). There are other similarities between the Hydra

view pf objects and mine; these will be mentioned later, as appropriate.)

- More details on abstract data types can be found in the previiously

- cited references on CLU and Alphard.

-21-

Chapter One Introduction

Section E Related Work

I.E. Related Work.

The work which has most influenced my thinking about oblect management

has been the research on data abstractions. Much of this work has its

origins in SIMULA (6]. Parnas describes abstraction techniques [231; CLU,

Alphard, and Syspal all embody these concepts. It was the desire to store

objects, rather than files, and to view storage as a collection of abstract

data, rather than as bit or byte strings, which motivated this research.

The file systems of Honeywell's Multics [15], Bell Labs' Unix (26, 29,

321, and Hewlett-Packard's MPE/3000 [131 helped me determine the

characteristics of the objects stored in a computing system. The naming

structure is derived directly from Multics. Hydra's file system (36] views

objects in a manner similar to that presented here.

Much of my thoughts on protection also were influenced by Multics. The

capability-based schemes described by Wulf (Hydra, [36]), Lampson and

Sturgis (Cal, (191), and Saltzer (28] provided an interesting alternative

to the Multics Access Control List (also described in [28], and in [[51).

Various mechanisms have been developed for version maintenance. Most

of them simply store the object as a linear sequence of complete versions

(for example, TENEX [71, ITS [9], and OS/VSl [16, 171). The Source Code

-22-

Chapter One Introduction

Section E Related Work

Control System (SCCS) (5, 11, 27], part of Unix's Programmer's WorkBench

[8, 18, 29], implements a novel way of maintaining versions as a set of

updates. SCCS also allows a (limited) hierarchy of versions. The scheme I

propose is an immediate extension of that embodied in SCCS.

* I.F. Plan for the Remainder of this Presentation.

In the following chapters, I describe "Catoan" (pronounced ku-t~n' (1)),

an object-oriented filing system for large, multi-user computing

systems. Chapter Two describes previous work which influenced my thinking,

especially about those attributes which are common to all permanently

stored objects in a computing system such as the one I assume. In Chapter

Three, my view of a "basic" object is developed, followed by a discussion

of a "refined" object and a "versioned" object. In Chapter Four, I present

an example of how one mighL use Catoan to store a Syspal program. Chapter

Five examines the problems which arise when other filing systems, and,

therefore, other naming schemes and spaces, are allowed to co-exist with

Catoan. The final chapter, Chapter Six, contains an evaluation of Catoan,

and describes areas where further research is needed.

- --------

(1) Notation from Webster's New World Dictionary of the American Lan&Suae.

-23-

CHkPTER TWO

ANTECEDENTS

In this chapter, I shall discuss previous work which had a large

influence on my research and thinking. The systems discussed here were

studied as examiples of ways to manage particular kinds of objects.

The typical kind of object in each of these systems is the "classical

file," often appearing under different names (such as "segment"). A

"classical file" is presented to the user as a string or stream of bits or

characters. it does not have ay structure, save in the way in which it is

interpreted by the user. Usually, files are stored as blocks of contiguous

bits, along with some system overhead information.

Sample representations of the files in Multics and MPE/3000 will be

described using Syspal notation.

-24-

jh__Zt Two Catoan Antecedents

Section A Multics

It.A. Honeywell's Multics.

The Multics file system is described abstractly by Saltzer [281, and

concretely in the Multics Programmer's Manual [15). Here, those features

* which most influenced this work are described.

4

- There are two major kinds of objects in the Multics file system:

"directories" and "segments." Directories contain mappings of

character-string names to object references (unique identifiers); the

objects can be either segments or other directories. Segments contain the

data stored in the system. In addition to directories and segments, there

are also "links" and "multi-segment files"; these will be discussed only

brie fly.

The objects in the Multics file system are arranged in a hierarchical

fashion, starting from a directory called the "ROOT." Directories can be

either nodes or leaves (generally, they are nodes; only an empty directory

can be a leaf); segments must be leaves. Any object in the hierarchy can

be named directly, by specifying the names of all the containing

directories in order, starting from the ROOT. For example, the payroll for

the month of June might be specified, using "^" as a name separator,

-25-

C hater Two Catoan. Antecedents

Section A Muttics

"ROOT'Accounting-payroLlsJune" (assuming that the payroll function is part

of the accounting department).

In addition to specifying a futly-quatified name (like that in the

previous paragraph), local names are allowed, with the system automatically

supplying the higher levels of qualification. This requires a slight

change in the form of fully-qualified, or global, names: if the search for

an obj,_ct is to start at the ROOT, the first component of the name is not

supplied, thereby beginning the name with the separator character.

Therefore, the above example would become "-Accounting-payrolls-June"; a

user executing in the "Accounting" (beneath the ROOT) directory could

reference the same segment with "payrolls-June," and someone in the

"Accounting-payrolls" directory (again, beneath the ROOT) couli use simply

"June.

Each object in the file system has some system information associated

with it. Some of this information is part of all the types of objects;

some of it is object-type particular. 4n example representation of a

Muttics directory, segment, and link appear in Figure 1. The most

interesting parts of this information concern protection and sharing: the

"access control list" and "ring brackets." The accessc control list

specifies the types of access granted to each user in the system.

Directory access types are search (look in the directory), modify (change

-26-

Chtpater Two Catoan Antecedents

Section A Multics

entries in the directory), and append (add entries to the directory);

segment access types are read (get the contents of the segment), execute

(interpret the segment as a program), and write (change the contents of the

segment). The ring-brackets specify the position in the system's protection

rings (an extension of the supervisor-user mode concept; see [28]) in

which the object can be accessed.

The Multics file system implements a strict hierarchy; therefore, each

object in the system has exactly one parent (t), though directories can

have multiple children. To allow an object to appear to exist in more than

one directory, Multics provides "links". A link is a mapping of a local

(one component) name to a global (fully qualified) name. Returning to the

above payroll example, assume that top-level management wanted to access

the payroll files, and desired to do so directly, rather than through the

entire ^Accounting-payrolls^June name. A link might be created in the

CorpMgt directory called "JunePay," which would be mapped into the name

"Accounting-payrolls-June."

An important point about Multics links is that they map local names to

global names, not local names to object references. Such links are called

(1) This is true for all objects in the system except the ROOT, which has
no parent.

-27-

' ' -a

Chapter Two Catoan Antecedents,

Section A Mlultics

"soft" links (1); their resolution is a two-step process: resolving the

local name to a global name, and then resolving the global name to a unique

internal identifier (segment number). This position need not be taken;

Unix, for example, links local names directly to object references (see

Section II.C.1).

A multi-segment file allows more than one segment's worth of data in

one object (segments have a limited size). A multi-segment file appears to

be very similar to a normal segment, though it is implemented as a

directory, with the segments comprising the multi-segment file as children

of the directory.

(1) A "hard" link maps a local name directly to an object reference.

-28-

Chapter Two Catoan Antecedents

Section A Mutt ics

multics directory - TYPE RECORD
(* Defined types (such as ACCESS ID) are shown in Figure 1c. *)

access class: string(32); !Eg. Classified, Top Secret.

access control list: ARRAY(*) OF RECORD
id: access id; !Principal identifier
modes: RECORD

(s, m, a): BOOL; !Search, Modify, Append

END; !modes
END; !access control list

* author: access id;
, currentlength: INTEGER; lNumber of pages.

(date_time dumped,
date timeentry modified,
date time modified,
date time salvaged,

date time used): multics datetime;
initial access control lists: RECORD

segment: LIKE mulics segment.ac;
directory: LIKE multics directory.acl;

END; linitial access control list
multisegment_fie_indicator: INTEGER; !Segments in multi-segment

!file; 0 if not msf.
names: A RRAY(*) OF string(32); !Names of this directory.

quota: INTEGER; !Pages allowed under directory.
records used: INTEGER; BSecondary storage.
ring-brackets: RECORD !Rings of protection.

(m-a, s): rings;
END; !ring brackets

safetyswitch: BOOL; !Query user upon DELETE?
securityout of service switch: BOOL; !Access class discrepancy

!has been detected.
type: ARRAY(3) OF BOOL (*segment, directory, link*) :

(FALSE, TRUE, FALSE);
uniqueid: INTEGER;

name map: kRRAY(*) OF RECORD !Segments under this directory.
name: string(32);
object: UNION(@multics directory,

@multics segment,
@multics link);

END; Iname-map
END; !multics directory

Figure ta: Sample Representation of a Multics Directory.

-29-

. ..

Chater Two Catoan Antecedents

Section A Multics

multics segment f TYPE RECORD
access class: string(32); !Eg. Classified, Top Secret.
access control list: kRRAY(*) OF RECORD

Id: access Id; !Principal identifier
modes: RECORD

(r, e, w): BOOL; IRead, Execute, Write.

* END; !modes
END; !access control list

author: access id; -
bit count: INTEGER;
bitcount author: access id; IPrincipal who last set BIT COUNT.
copy switch: BOOL; ICopy on write?
current length: INTEGER; !Number of pages.
(date time dumped,
date timeentry odified,
date time modif ied,
date time used): multics date_time;

maximum-length: 0 To 262144; !256K words.
names: ARRAY(*) OF string(32); INames of this segment.

records used: INTEGER; !Secondary storage.
ring-brackets: RECORD !Rings of protection.

(w, r, e): rings;
END; !ring brackets

safetyswitch: BOOL; !Query user upon DELETE?
type: ARRAY(3) OF BOOL (*segment, directory, link*) :-

(TRUE, FALSE, FALSE);
unique Id: INTEGER;
contents: 4RRAY(262144) OF data word; 1256K words.
END; Imultics segment

Figure Ib: Sample Representation of a Multics Segment.

-30-

Chapter Two Catoan Antecedents

Section A Rultics

multics link TYPE RECORD
author: access id;
(date time dumped,
date time entry modified,
date time used): multics date;
names: ARRAY(*) OF string(32); !Names of this link.
type: ARRAY(3) OF BOOL (*segment, directory, link*) :

(FALSE, FALSE, TRUE);

uniqueid: INTEGER;
linked to path: string(168);
END; !multics link

access-id - TYPE RECORD

person: string(15);
project: string(15);

instance: string(l);
END (*access-id*);

rings - TYPE DISTINCT 0 TO 7; !Rings of protection.

multics date time - TYPE 0 TO 2**64-1; IMicroseconds since

!January 1, 1901 00:00 GMT.

data word = TYPE 0 TO 2**36-1;

S4

Figure Ic: Sample Representation of a Multics Link.

I.B. Hewlett-Packard's MPE/3000.

I examined MPE/3000 file system as an example of a

"limited-hierarchical" file system. Users cannot create their own

directories. Rather, the naming hierarchy is a fixed three-level system:

file-name (segment name), group name, account-name. The file name is the

. - "lowest" level name, the account name, the "highest." If a higher level is

-31-

Chapter Two Catoan. Antecedents

Section B HP's !4PE/3000

specified, all lower levels must also be specified. There is a very strict

rule for interpreting names: a one level name is extended with the current

group and account; a two level name is extended with the current account.

A process executes under exactly one account and one group within that

account for its entire lifetime; the notion of changing the "working

directory" of the process does not exist.

Segments can be created only in the process's current group within the

current account. Segments exist in exactly one place in the hierarchy, and

have exactly one name; neither soft nor hard links exist. To reference a

segment by another name, it must be renamed (if staying in the same group

and account) or copied (in which case it becomes an entirely new entity).

Security is specified in two ways: with an aggregate-level access

control list (called the "security matrix"), and with a pas sword

Clockvord). The latter, if required, must be supplied whenever the segment

is "opened" ',nade ready for use) or deleted. The security matrix is

checked at times similar to those when the password is checked, and

specifies the types of access various groups of users are granted.

The access types which can be granted are: read, append (write at the

end of the segment), write (anywhere in the segment), lock (access the

segment exclusively), and execute. The groups are: any (anyone in the

-32-

Chapter Two Catoan Antecedents

Section B HP's MPE/3000

system), account user (anyone in the same account), account librarian (an

account member deemed responsible for all the segments in an account),

group user, group librarian, and creator. In addition, the "account

manager" (a user who is responsible for administration of the account) has

access to all the segments in that account, and the "system manager" (a

user who is responsible for administration of all the accounts in the

system) has access to all segments in the system.

Figure 2 shows a sample representation of a file in the MPE/3000 file

system. This representation is rather abstract, and incomplete in detail.

More detail can be found in (13].

-33-

Chater Two Catoan Antecedents

Section B HP's MPE/3000

HP3000 MPE file = TYPE RECORD
label:-RECORD

name: fname; !File name. -- I
group: fname; !Group name. I-- Full file name.
account: fname; !Account name.
creator: fname;
lockword: UNION(null, fname); IMust be supplied at OPEN

!if non-NULL.
securitymatrix: kRRAY(5) OF RECORD !Who can access file.

(* Subscripts: I - read 2 - append
3 - write 4 - lock 5 - execute. *)
(any,

account-user,
account librarian,

Igroupuser,
group_librarian,
creator): BOOL;
END (*security*);

secuTe: BOOL; !Is SECURITY MATRIX enforced?
date created: Julian date;
date accessed: Julian-date;
date modified: Julian date;
file type: word; !Type (eg. program, kPL workspace).
accessflags: RECORD !How file is being accessed.

store: BOOL; !File being backed-up to tape.
restore: BOOL; !File being recovered from tape.
load: BOOL; !Memory-resident program file.
exclusive: BOOL; !Opened for exclusive use.
END; !accesses

how-open: RECORD
write: BOOL;
read: BOOL;
END; !how open

user labels written: halfword;
user labels max: halfword;
max -records: dbl word;
private volumeinfo: bit_string(32);
logicalrecord size: word;
block size: word;
last block size: word;
records_ infile: dblword;
END; !label

data: ARRAY(0 TO 2**47) OF CHAR;

IND; lImpe_file

-34-

- s

Chapter Two Catoan Antecedents

Section B HP's MPE/3000

fname - TYPE alphastring(8);
alpha string(size: 0 TO 100) - TYPE RECORD

length: 0 TO 100;
chart: letters;
charn: kRRAY(2 TO size) OF UNION(letters, "0" TO "9");
END; !alpha string

letters - TYPE UNION("a" TO "z", "A" TO "Z");
halfword = TYPE 0 TO 255;
word -, TYPE 0 rO 32767;

a dbl word - TYPE 0 ro 2147482711;
* Julian date = TYPE RECORD

year: 0 TO 99;
day: 0 TO 366;
END; ijulian date

Figure 2: Sample Representation of an MPE/3000 File.

II.C. Miscellaneous.

In addition to the file systems of Multics and MPE/3000, various other

file systems influenced my thinking on Catoan. Unix influenced my ideas on

'inks and the structure of the naming environment (that is, whether to use

a hierarchy or a network). Hydra's form of objects proved interesting.

TENEX's file system supplies a form of version maintenance, as do those of

ITS, OS/VSI, and many others. This section presents the various systems

which were investigated and which made some (at least minor) contributions

to this work.

-35-

Chapter Two Catoan Antecedents

Section C Miscellaneous

II.C.l. Unix.

The Unix file system is similar to the Multics file system. Like

Multics, Unix provides a hierarchical file system, with an access control

list protection scheme. However, the hierarchy is not strict, and the

* access control list is more coarse than .hat of the Multics system.

Like Multics, Unix has, conceptually, two types of objects: directories

and segments (files). However, unlike Multics, Unix segments can have

multiple parents. AIso, links in Unix are "hard" links (those in Multics

are called "soft"). The local name is translated directly to a unique

identifier (segment number -- "i-node" in Unix terminology), without the

intervening global name. This is a more efficient form of Link (it skips

the additional name resolution step (1) when following the link), but that

is relatively unimportant. Soft links provide greater indirection

facilities than do hard links (because they can be bound to another link).

Hard links, though, provide a known interpretation of a link, and make it

easier for the owner of a segment to determine all the people using it.

Implementing a complete cross-reference with soft links, for example, would

require that the link be completely traced when it was created; in a hard

link system, the link is directly resolved.

•. (1) Or steps: a soft link can bind a locai name to another soft link.

-36-

7o

Chapter Two Catoan Antecedents

Section C Miscellaneous

Although Unix segments can have multiple parents (can be contained in

-. multiple directories), directories cannot. This precludes building a

general network in the Unix file system.

. The protection scheme in Unix allows the object owner to specify access

for certain groups of users, rather than on a user-by-user basis. The

scheme is tied to the accounting system, with access being granted to the

-owner, to members of the owner's project (account), and to all users in the

system. See [26, 29, 321 for more details.

II.C.2. Hydra.

The Hydra file system (1, 131 stores Hydra-objects, which are

pseudo-abstract, and are each of a particular type or type extension. Each

Hydra-object (call one "CRL") has two parts: the data part, and the

"c-list." The actual data in CRL is stored in the data part. The c-list

contains references to Hydra-objects which are contained in CRL. Every

object in Hydra has both parts.

Because each Hydra-object has both a data and a c-list part, there is

need for only one kind of object, which can function as both a "segment"

and a "directory." However, one other important reason for including both

-37-

Chapter Two Catoan Antecedents

Section C Miscellaneous

parts in all objects is that references to other objects cannot exist in

the data part, but only in the c-list.

II.C.3. Version Maintenance: TOPS-20, ITS, OS/VS1, and SCCS.

Version maintenance has been a topic of interest for some time.

TOPS-20 [71, ITS (1) [91, and OS/VSl [16, 17] all provide similar forms of

version maintenance. All three systems store each version in its entirety

(as opposed to storing updates relative to some base version). Versions in

TOPS-20 and ITS are linear, time-ordered sequences, referenced by numbers

which increase from older to newer (more recent) versions. The default

version (the version obtained if none is explicitly specified) is always

the most recent version. The symbol ">" in ITS, and the (special) version

number 0 in TOPS-20, reference the latest version on read and create a new

version on write. The symbol "<" in ITS and the (special) version number

"-.2" in TOS-20 access the oldest version.

OS/VS1's version naming scheme differs from that of TOPS-20 and ITS.

It is a two-level system, allowing both a "generation" and a "version"

specification. The specification becomes a suffix of "GnnnnVmm" to the

regular file name, where "nnnn" is the "generation number" and "mm" is the

(1) ITS is an operating system developed at MIT for the PDP-10 family of 4"

computers.

-38-

Chater Two Catoan Antecedents

Section C Miscellaneous

"version number." This provides a limited tree-structure for version

naming: generation within the file, and version within the generation. The

suffix "(0)" references the latest generation; "(+I)" creates a new

generation; "(-I)" references the previous generation, and "(-n)"

references the nth previous generation. The automatic version maintenance

system does not use the version field; it can be accessed directly by the

user, however.

The Programmer's WorkBench under Unix provides a facility called the

Source Code Control System [5, 11, 27] for version maintenance. SCCS

allows versions to be arranged in a hierarchy, with the names representing

a derivation sequence. Versions are stored as sets of updates to the

previous version. I shall discuss SCCS further in Section 11.D, "A

Versioned Object."

tI.D. Summary.

In this chapter, I have discussed various existing systems which

significantly influenced the research presented in the following chapters

of this report. The file systems of Honeywell's Multics and of

Hewlett-Packard's 4P&/3000 were described, with an examination of their

abstract file structures. The Unix file system is very similar to that of

Multics, except that a segment can be contained in more than onp directory.

-39-

Chaper Two Catoan Antecedents

Section D Summary

The structure of the Hydra file system was also discussed, especially the

structure of the objects stored. Finally, existing version maintenance

systems were described, including TOPS-20, ITS, OS/VSl, and the Source Code

Control System.

-40-

CHAPTER THREE

DEFINITION OF 4 "CATO4N-OBJECT"

" In this chapter, I describe the objects managed by Catoan. First, the

* "basic" object, its characteristics, its operations, and its representation

will be defined. Then, a "refined" object, whose operations are less

primitive than those of the basic object, will be presented. Lastly,

objects which have explicit versions (such as programs) will be described.

-41-

Chapter Three Catoan Object Definition

Section A Issues

III.A. Issues: Containment and Trust.

As will be shown later in this chapter, there are three ways to put

data in a Catoan-object; all of them are different, all have different

semantics and characteristics. But, why three ways?

*. In Chapter One, I wrote that "multiple filing systems could exist."

4Furthermore, "the filing system (object manager) need not be trusted to not

modify or leak data." Both of these issues involve trust: need one trust

the filing system, and, if not, what can be done about it?

What does it mean to "contain" something? What does it mean to "trust"

something? In this introductory section, I shall explore these ideas as

they relate to Catoan. Some of the issues I shall raise may not be clear

until later in the chapter; I think this is better than delaying their

discussion, however.

First, though, a little groundwork must be laid. The unit of storage

in Catoan is the "Catoan-object"; let a typical Catoan-object be called

"CRL." In data abstraction terminology, Catoan implements the abstraction

"Catoan-object." Catoan-objects can "contain" other Catoan-objects, and

other kinds of abstractions, too. Each Catoan-object has a DIRECTORY and a

-42-

Chater Three Catoan Qbect Definition

Section A Issues

CONTENTS; the things one normally puts in each of these is different, and

things are put in them for different reasons, as will be explained.

III.A.I. Containment and Catoan.

What does it mean for a Catoan-object to "contain" another

* Catoan-object. What does it mean for a Catoan-object to "contain" any kLnd

of (abstract) object?

Each Catoan-object (such as CRL) has a "CONTENTS," which specifies the

abstract object which is the data of CRL. This is one form of

"containment": containment in the CONTENTS. The primary reason for

creating a Catoan-object is to provide a means for permanently storing,

referencing, and naming the data of the CONrENTS.

The data which the object contains -- its CONTENTS -- should be readily

accessible. It should be easy to read, easy to set, and easy to change the

CONTENTS. The CONTENTS could be used to hold the text of a letter which

was stored in a computing system which implemented Catoan.

In addition to a CONTENTS, Catoan-objects have a DIRECTORY. The

DIRECTORY has two parts: a "named" part, and an "unnamed" part. In the

mamaed DIRECTORY of CRL, one would store references (hard links) to those

-43-

- I 'a I*

Chapter Three Catoan Object Deftinition

Section A Issues

Catoan-objects considered to be sub-objects of CR1L. This is usually a

logical grouping, and can be thought of as placing a segment in a certain

directory in a Multics or Unix file system. The sub-objects of CRL are

Catoan-objects in their own rights; changing their relationsi tp with CRL

* (that is, the exact sub-object to which a particular name refers) usually

is not done.

In the unnamed part of CRL's DIRECTORY are references (hard links, but

without local names attached to the reference) to Catoan-objects which are

physical sub-objects of CRL. Those Catoan-objects referenced in the

unnamed part of the DIRECTORY are part of the implementation of the

particular Catoan-object, and are not usually of interest to the object's

users. As vith objects referenced in the named part of the DIRECTORY, the

relationship between CRL and the sub-objects in the unnamed part of the

DIRECTORY usually is not changed.

The objects in the DIRECTORY of a Catoan-object are considered less

accessible than the CONTENTS. Once a reference to an object is added to

the DIRECTORY, it cannot be replaced, but must be deleted and then added.

This reflects the accessibility semantics of such an inclusion. If these

semantics are not appropriate for a particular application, the CONTENTS

could be used to implement a directory which is interpreted by some

* program. Because the CONTENTS of a Catoan-object can be an arbitrary

-44-

Chater Three Catoan Object Definition

Section A Issues

abstract object, the DIRECTORY portion of a Catoan-object can be ignored,

and the CONTENTS used to implement a filing system which is more natural

for the particular application.

All three of the forms of including data in an object might be used to

represent a system composed of a collection of programs (1). The

highest-level module in the system is a program, with the source stored in

the CONTENTS, representing the view of the source as the abstract program.

In the unnamed portion of the DIRECTORY would be the implementation of the

program object, including such things as documentation and object-code.

Named references to the programs comprising the system would be in the

named portion of the DIRECTORY. Chapter Four, "An Example: k Syspal

Program Object," describes the aspects of this example relating to programs

in more detail.

III.A.2. Trust and Catoan.

What does it mean to "trust" a non-sentient entity? What does it mean

to "trust" a filing system? What does it mean to "trust" Catoan?

"Trust" in general is very difficult to define, especially when applied

to non-sentient entities. However, "trusting" a filing system is easier to

* (1) 1 shall return to this example throughout the chapter.

-45-

Chater Three Catoan Obect Definition

Section A Issues

define. In this report, to trust a filing system is to give the filing

system access to data when it doesn't explicitly require such access to

perform its duties. My perception of a filing system's duties does not

include access to the CONTENTS (as defined in the previous section).

Rather, a filing system is a manager for named, permanent objects -- not

the CONTENTS of those objects.

A, "trusted" module is a module which a) the user believes is secure,

and will not access things except on explicit instructions from the user,

and b) does not allow other users to access it, except as is appropriate

for that user. Part (a) is primarily a belief on the part of the user;

part (b) has some implications on the kind of information which the trusted

module can supply to environments outside the module.

Specifically, a trusted module, in order to prevent other entities from

accessing its protected data, cannot give out any references to any portion

of the protected data's internal representation. Rather, it must give out

an indirect reference, which the trusted module, and only the trusted

module, can translate into the actual representation of the protected data.

Gatoan, however, gives out a pointer to portions of the representation

of a Catoan-object. The CONTENTS READ operation (see Section IIt.B.l.b)

returns a pointer to the CONTENTS of the Catoan-object. This allows

-46-

r r

qhaetr Three Catoan Qject 2efinition

Section A Issues

entities besides Catoan to access part of the representation of the

Catoan-object.

Because a module which gives out portions of its data's representation

does not have total control over the representation, it does not have total

* control over what can be done to the representation, and so is unable to

ensure certain kinds of internal consistency. In the case of Catoan, for

example, the information accessed by the "principals" and the "dates"

sub-classes of operations may not be accurate. Furthermore, Catoan has no

way of verifying the identities of those accessing the data in the CONTENTS

of the Catoan-object, because they may be accessing the data without using

Catoan.

This report examines some of the implications of not trusting the

filing system. The filing system will have access to its objects

(Catoan-objects), but not to the data in the CONTENTS of the Catoan-object.

This is done partly out of lack of trust, and partly to allow more than one

filing system to exist in the host computing system more easily.

III.B. The Basic Object.

An OBJECT ("Catoan-object") is the basic unit of data in Catoan.

Catoan-objects conceptually have three parts: SYSTEM OVERREAD ENFORMAtION,

-47-

Chater Three Catoa2 Object Definition

Section B Basic Object

a DIRECTORY, and a CONTENTS. The first is information the system keeps

about each object, such as when it was created. The DIRECTORY and CONTENTS

were described in Section III.A.1 above.

Figure 3 shows the operations and representation of a Catoan-object.

Many points in the figure and the immediately ensuing discussion may be

unclear. Subsequent sub-sections in this section will clarify the

Iproblems.

Most of the operations on an object are related to the "SYSTEM OVERREkD

INFORMATION" in the object. There are only eight operations dealing with

the DIRECTORY, and only two with the CONTENTS. Yet, these two parts of an

object are the most interesting. The SYSTEM OVERHEAD INFORMATION is very

structured, and has a very limited scope; we know the form it will take

long before the object is actually defined. The DIRECTORY, on theaother

hand, may change drastically during the existence of the object -- it may

start off empty, have some objects added to it, have some objects deleted

from it, and will have an unpredictable size. Similarly, the structure and

size of the CONTENTS is unpredictable, and the structure might never be

known to Catoan.

-48-

1AW' - | " i i I '

Cha2ttE re Catoan Obeeteinition

MODULE catoano bject(contents type);

new: PROCEDURE
RETURNS(o:'-catoan obj ect)
(H ake a new catoan object.*)

delete:PROCEDURE
(Delete a catoan object.*)

contents set:PROCEDURE(c:@contents type)
(Stow the contents of the object.*)

* . contents read:PROCEDURE
RETURNSCc: @contents type)
EXCEPrION(contents doesnt exist)
(Retrieve this ob~ject's -contents.*)

directory unnamed add:PROCEDURE(o:'@catoan object, n:INTEGER)
EXCEPTION(directory full, directory_slot _occupied)
(* This object now includes unnamed objec't number N.*)

directory-unnamed delete:PROCEDURE(n:INTEGER)

F ~EXCEPrION (directory doesnt -exist
direc tory doesnt -contain -obj ect)

(Remove Nth entry from unnamed portion of DIRECTORY. *
directory unnamed lookup:PROCEDURE(n: INTEGER)

RETURNS (o:@catoan -obj ect)
EXcEPrioNvdirec tory doesnt exist

directory doesnt contain-obj ect)
(Return Nth entry from unnamed portion of DIRECTORY. *

directory named add:PROCEDURE(n:object name, o:acatoan _object)
EXCEPTION(directory full., directory slot occupied)-
(* This object now includes another named object.*)

directory named delete:PROCEDUIE(n:object name)
EXCEPT ION (direc tory doesnt -ex ist,

directory doesnt -contain -object)
(This oblect no longer includes a certain object.*)

directory_ named contains:PROCEDIJRE(n:object name)
RETURNS (b :boolean)
EXCEPTION(direc tory doesnt exist)
(* nVses this object contain object 'n'?*)

directory. amed lookup:PROCEDURE~n:object name)
ORETURNS(u. 3catoan object)
EXCEPTTON(direc tory doeant exist,

directory doesnt contain 001 ec t)
(Translittes a contained object-name into an object reference. *

K diretory namn d reaid: PROCEDURE

RETURiS(nAkRhY.(*) of object name)

-49-

Chapter Three Catoan Oblect Definition

Section B Basic Object

EXCEPTION(directorydoesnt exist)
(* Which objects does this one contain? *);

owner read:PROCEDURE

RETURNS (p:princ ipal id)
(* Who owns this module? (obtained from mem mgrl *);

creator set: PROCEDUJRE(p: principalid)
(* indicate that principal 'p" is object's creator. *)

creator read :PROCEDURE
RETURNS(p:principal id)
(* Who created this object? *);

last modifier set:PROCEDURE(p:principal_id)

(* State who last modified this object. *);
last modifier read:PROCEDURE

RETURNS(p:principal ,id)
(* Who last modified this object? *);

date created set:PROCEDURE(d:date)
EXCEPrIOW(date _invalid)
(* Indicate when the object was m'de. J;

date created read:PROCEDURE
RETURNS (d: date)
(* When was this object created? *);

date last modified set:PROCEDURE(d:date)
EXCEPrION (date -invalid)
(* Indicate when this object was last modified. *);

date last modified read:PROCEDURE

RETURNS (d: date)
(* When was this object last modified? *);

date last accessed set:PROCEDURE(d:date)
EXCEPrION(date -invalid)
(* indicate when this object was last accessed. *);

date last accessed read:PROCEDURE
RETURiS (d: date)
(* When was this object last accessed? *);

size read: PROCEDURE

RETURNS(s: integer)
(* How big is this object?

[overhead+memlmgr.size(CONTENTS)+mem_mgr.size(DIRECTORY) *);

-50-

Chapiter Three Catoan Oject Definition

Section B Basic Object

object name = string(20);
principalid - string(20);

date = RECORD

year: 1975 TO 3975; !assumption: system will last <2000 years
month: I TO 12;
day: I TO 31,
hour: 0 TO 23,
minute: 0 TO 59,
second: 0 TO 59.9999 PRECISION 4
END; !date

SELF - RECORD !Representation of an object.
contents = @contents _type;
(date created,
date last.modif ied,
date last _accessed) - date;
(creator,
last modifier,
owner) - principalid;
directory = RECORD

named: kRRAY(*) OF RECORD
n: object name;
o: @catoan object;
END; !named

unnamed: kRRAY(*) OF @catoanobject;
END; !directory

END; !SELF

END MODULE; !catoan object

Figure 3: The Basic Catoan-Object.

Assume that the CONTENTS of a Catoan-object holding a Syspal program is

to be of type "text." Figure 4 shows how CRL would be declared, and how

one would store and retrieve Its CONTENTS.

-51-

I,

Ch~tr Three Catoac, 2Utect Definition

Section B Basic Object

I!
text TYPE . . ;
edit-buffer: text;
crl: catoan object;

crl :- NEW catoan object(text);

* edit-buffer :- contents read(crl);

contents set(crl, edit buffer);

Figure 4: Catoan-Object with CONTENTS of Type "teyt."

III.B.I. The Operations of the Basic Object.

The operations on an object can be classified according to the

information they reference. The classes of operations are overhead:

instance, principals, dates, miscellaneous; contents; and directory. Each

class will be considered below.

l11l.B.1.a. Overhead-Class Operations: Instance.

The "instance" operations are NEW and DELETE. These operations are

invoked whenever a Catoan-object is created or deleted. NEW sets up the

initial contents of the overhead information, and initializes the DIRECTORY

and CONTENTS to be empty (NULL). DELETE passes a message to each of the

-52-
'C

Chaster Three Catoan bJqect Definition

Section B Basic Object

Catoan-objects referenced in the DIRECTORY and to the object referenced in

the CONTENTS indicating that they are no longer referenced by CRL, and

deletes CRL.

IIl.B. .b. CONTENTS-Class Operations.

The "contents" operations are CONTENTS SET and CONTENTS READ. They

deposit data into, and extract data from, a Catoan-oblect's CONTENTS. The

argument to -SET (1) and the return value from READ are pointers to the

type of the CONTENTS, as specified by the module parameter ("contentstype"

in Figure 3) when the Catoan-object was instantiated by NEW. (For example,

if CRL is defined as in Figure 4, SET takes and -READ returns something of

type @TEXT.)

The effects of SET and READ are to translate between Catoan-object

references and Syspal-object references. Notice that both operations work

with pointers, and not directly with the data. The READ operation is

analogous to the OPEN operation in a classical file system; the SET

operation is analogous to CLOSE.

(1) his is a shor-thand notation for "CONTENTS SET." When there will be no
confusion as to the meaning and context, the prefix (portion of the narue
before the " ") will be omitted. A similar convention will be used for
eliding suffixes.

-53-

- r

Chapter Three Catoan Object Definition

Section B Basic Object

The SET operation must ensure that the Catoan-object and its

components are safely stored in non-volatile storage. Hopefully, part of

the interface of the memory manager is an operation like MAKE NON VOLATILE,

which, if all memory is non-volatile, and there is no buffering in volatile

memory (by the memory manager), may be a null operation. Similarly, READ

might "stage" some part of the contents by calling the memory manager's

PRIME BUFFER operation.

III.B.1.c. DIRECTORY-Class Operations.

The DIRECTORY of CRL specifies those Catoan-objects which are

sul-objects of CRL. There are two parts to the DIRECTORY of a

Catoan-object: the named part, and the unnamed part. The two parts

represent different logical relationships between CRL and its sub-objects.

The DIRECTORY is described in Section iii.A.l.

The unnamed portion of the DIRECTORY represents those Catoan-objects

which are internal sub-objects of CRL. Generally, these are part of the

implementation of the abstraction which uses CRL, and are of ao concern to

CRL's users. An example of using the unnamed portion of the DIRECTORY is

shown in Chapter Four, "An Example: 4 Syspal Program Object," where it is

used for (among other things) the object-code of a program.

-54-

Chater Three Catoan Oiject Definition

Section B Basic Object

The named portion of the DIRECTORY represents Catoan-objects which tile

-user feels are logically parts of CRL. He might, for example, build CRL

from several component objects, thereby forming one Catoan-object from

several sub-Catoan-objects.

* The operations on the unnamed portion of the DIRECTORY are

DIRECTORY UNNAMEDADD, DELETE, and LOOKUP. ADD inserts a sub-object in

rthe nth DIRECTORY slot; DELETE removes a specified unnamed entry from

the DIRECTORY. -LOOKUP returns the object referenced by the Nth entry in

the unnamed portion of the DIRECTORY.

The operations on the named portion of the DIRECTORY are

DIRECTORYNAMED _DD, DELETE, CONTAINS, LOOKUP, and REMD. ADD

associates a name and an object reference in CRL's DIRECTORY; DELETE

removes such an association. _CONTAINS is a predicate which indicates

whether the supplied name is in the DIRECTORY; LOOKUP translates a name

to an object reference. -READ returns a matrix containing all the names in

the DIRECTORY, and is supplied so that a DIRECTORY can be searched.

III.B.I.d. Overhead-Class Operations: Principals.

The "principal" operations obtain and manipulate the

principal-identifiers stored in the overhead portion of a Catoan-object.

The identity of the Catoan-object's owner (the principal paying for the

-55-

Chater Three Catoan Object Definition

Section B Basic Object

storage), creator, and last modifier are accessed through the operations

OWNERREAD, CREATOR-SET and READ, and LAST MODIFIER-SET and READ (1).

The creator and last-modifier can be changed; the owner is obtained from

the memory management system.

IIl.B.I.e. Overhead-Class Operations: Dates.

The "date" operations provide access to the time and date when various

operations last occurred for the Catoan-object. Available are times and

dates for the Catoan-object's creation, last modification, and last access.

These operations are DATE CREATED-SET and READ, DATELAST-MODIFIED-SET and

READ, and DATE LASTACCESSED SET and -READ. The dates automatically

maintained by Catoan are for creating, modifying, and accessing the

Catoan-object, not the CONTENTS of the Catoan-object. This is related to

the trust issue discussed in Section III.A.2.

IIt.B.l.f. Overhead-Class Operations: Miscellaneous.

The "miscellaneous" operations provide information about the physical

size of the Catoan-object. SIZE READ obtains the sizes of the CONTENTS,

DIRECTORY, and overhead from the memory manager, and returns their sum.

(L) The SET operations are generally not explicitly used, and exist
primarily for completeness.

-56-

Chapter Three Catoan qject Definition

Section B Basic Object

1I[.B.2. Comments on the "SET" Operations.

The inclusion of some of the SET operations (1) may be puzzling. For

example, why is there a DkTE MODIFIED SET operation? Won't Catoan take

care of such things?

* Recall that Catoan is part of the optional extensions to the kernel

operating system. Furthermore, Catoan is not necessarily trusted, and it

is possible to access portions of Catoan-objects (specifically, the data in

the CONTENTS) without using Catoan. A user who directly accesses the data

in the CONTENTS (for example) might want to update the SYSTEM OVERREkD

INFORMATION in a containing Catoan-object so that it accurately reflects

what has happened.

It is possible that a failure of the host computing system's hardware,

the operating system kernel, or Catoan may introduce errors into

Catoan-objects. These errors may require human intervention. Even in a

trusted filing system like that on Multics, the ability for people to

access some of the "overhead" fields is considered necessary. In a

non-trusted filing system, such abilities are mandatory so that "expected

errors" (2) can be corrected.

(I) Specifically, the CREATOR_, LAST MODIFIER , DkTE CREATED,

DATE LASTMODIF[ED_, and DkTE LAST ACCESSED SET ope-rations.

. (2) One of the reasons a system aight not be trusted by its users is that

-57-

Chapter Three Catoan Object Definition

Section B Basic Object

II1.B.3. Naming and the DIRECTORY.

Each Catoan-object contains a DIRECTORY part. This DIRECTORY specifies

all those objects which are sub-objects of, for example, CRL; the

contained objects need not have names associated with them, in which case

, they are referenced numerically. See Section III.A.1 for a discussion and

example of DIRECTORY use.

If one wanted to implement a Multics-like directory, the CONTENTS of

the object would be NULL; for a Multics-like segment, the DIRECTORY would

be empty. But, one can have a non-empty DIRECTORY and a non-empty CONrENTS

at the same time, thereby allowing objects to "contain" other objects.

Multics has the concept of a "soft link," between a local name and a

global name. No such concept exists in Catoan. Rather, because an object

can be in the DIRECTORies of many objects, the same object can be

referenced directly by many local names. This is often referred to as a

"hard link," and is similar to the Unix link.

One of the implications of the unrestricted DIRECTORY inclusion is

that, rather than implementing a naming hierarchy, Catoan realizes a naming

the users expect the system to make mistakes (that they can, perhaps,
correct).

-58-

- *0 *

Chater Three Catoan QOlect Definition

Section B Basic Object

network. Just as object A can contain more than one object, so can more

than one object contain object A. Furthermore, loops can be created in the

network, by A containing B which contains A.

An advantage of this arbitrary network structure is that it can more

readily reflect the structure of some objects. Recursive objects and

objects which include other objects exist in the world; it would be nice

if one could model them in a computing system. Such object inclusion also

aids in modularity. For example, if one were implementing a network-model

database, one could define the network parent-child relationships using the

DIRECTORY of each object to contain the children.

Allowing a general network in the naming structure presents a problem

only when the entire naming network must be walked. If it is deemed

important to be able to walk the network, VISITED flags must be included in

each Catoan-object, which must be reset upon completion of the network

traversal. If such flags ARE included, it may be necessary to reset them

all upon system restart, to guard against a failure during a walking of the

network, and subsequent traversals encountering a non-existent loop because

a VISITED flag stayed set from a previously aborted walk. Various problems

besides system failure exist when the network must be walked; for example,

what if a walk aborts for a reason other than system failure? I shall not

discuss such problems here, but, rather, refer the interested reader to the

-59-

_hmttse Three CatoajQnec Definitio

Section B Basic Object

literature (garbage collection algorithms often solve this problem; see,

for example, [3, 4, 30, 331).

hs long as the network does not have to be walked, loops and

self-containment do not present a problem. The only other traversal of the

* naming network is for resolving a name, which is directed by the name to be

resolved. If a name hits a loop, intentionally or unintentionally, the

I'. results may be unexpected, but the system will not incur any great problem

(like an infinite loop), because the name must, by its physical properties,

have a finite length. If there are soft links, however, name resolution

may enter an infinite loop if a cycle of links is encountered (1).

IIt.B.4. Storing Data: The CONTENTS.

The purpose of Catoan, and of any filing system, is to allow the users

of a computing system to retain data for long periods of time. For this

purpose, Catoan objects have a component called the "CONTENTS." It is in

the CONTENTS that the actual data are stored.

Most filing systems are "record" oriented: one retrieves ("reads") and

deposits ("writes") bit- or byte-strings, or some collection of bits or

(1) Muttics has this problem; its solution is to abort link resolution 5
after encountering some number of consecutive links.

-60-

Chapte h Three Catoan Object Definition

Section B Basic Object

bytes ("records"). The structure of the data is very visible to the file

system, and to the user of the file system. Furthermore, the user MUST

know the structure of the data -- not necessarily how it is stored

physically, but usually at least how it is stored logically ("logical

records").

The CONTENTS of a Catoan object is of arbitrary type; Catoan has no

explicit knowledge of the structure of the data in the CONTENTS.

Therefore, the CONTENTS must be handled in its entirety through a pointer,

rather than piecemeal (as in many other filing systems). Because Catoan

works with abstract data, users of Catoan can view the contents abstractly,

and can deposit and retrieve arbitrary data structures. There is no

explicit notion of records in Catoan.

Because a pointer to the data in the CONTENTS is returned, rather than

a copy of the data, sharing of the data in Catoan-objects is provided. If

one wanted to implement an airline reservation system with many agents

accessing a shared database, the database could be stored as a

Catoan-object, retrieved from Catoan, and then manipulated by the

operations defined on the database. If a text editor were implemented

where it was desired to operate on a copy of the original data, a new

object containing a copy of the data in the CONTENTS would be created,

-61 -

Chapter Three Catoan Object Definition

/

Section B Basic Object

iii

operations performed on the copy, and then, perhaps, the copy stored in

place of the old CONTENTS.

II.B.5. Protection and Security.

" hn interesting consequence of the way Catoan stores data is that Catoan

, need not be trusted with the data. True, it could maliciously delete an

4 object, but it cannot leak parts of the contents of the object to other

users. hll Catoan could leak would be the entire object. If one wanted to

store one's data securely, so that no one else could read it, one could

store it as the CONTENTS of a Catoan object, and simply not give anyone an

interface to the module that implements the data in the CONTENTS. Al

Catoan can do is to leak the entire CONTENTS of the object; if the

interface is not also possessed, the CONTENTS does no one any good.

It might be undesirable to let even the CONTENTS of the object reach

"unfriendly" hands. For example, it might be necessary for someone to have

an interface to the module which implements the object stored in the

CONTENTS, and yet he should be restricted from using the CONTENTS of a

particular Catoan-object. Such protection can be provided through various

schemes, ranging from passwords, to access control lists, to capabilities.

Passwords can be included easily in Catoan, by adding P4SSWORDSET and

-62-

*0 *

Chapter Three Catoan qObect Definition

' Section B Basic Object

PkSSWORD VERIFY operations to the module, for example. This, however,

require trusting Catoan to properly implement password protection.

Similarly, Catoan could implement access control lists, and could

- verify the right of some principal to perform certain operations on a given
I

object. This, again, requires trusting Catoan to properly enforce the

protection.

If one does not want to have to trust the object manager with his data,

what can be done? Capabilities [28] offer a solution. If someone does not

have the capability of something, that thing cannot be accessed, because it

cannot be named. This level of protection must be enforced by the system's

memory manager.

In a capability-based system, implementing a directory-walking

mechanism for name resolution, where all resolution begins from a "root" as

in a Multics-like file system, allows all users access to all objects. To

resolve a name, start at the root (to which all have access); find the name

in the directory, and use the capability there found to proceed to the next

node, where the process is repeated. Since names are "translated" directly

to capabilities, and since capabilities are the mechanism on which

protection is based, naming and protection become equated. Since naming is

universal in a Multtics-like system, there is no protection.

-63-

qttSThree Catoan gkjet Definition

Section B Basic Object

What is needed is a restriction on the initial entry into the naming

network. Providing a single node (object) from which all other nodes

(objects) can be reached is the problem in the Multics-like name resolution

in a capability system. E~ach user must be able to name, to find in some

accessible directory, only those objects which should be accessible to him.

* This requires a per-user directory of objects initially accessible upon

4 entry to the system, and then careful control of which capabilities are

given to which users, and to which additional objects, besides the one

directly referenced, access is granted (that is, which objects are

contained in the DIRECTORY of the directly referenced object). This

restriction is a general property of capability-based protection systems.

A more detailed description of the issues underlying this discussion is in

Part of C~toan's job is to produce internal names (like capabilities)

from external names (like character strings). This is the job of the

directory manipulation operations of an object. The DIRECTORY LOOKUJP

operation "translates" a character string into an object, thereby

generating an internal name, or capability. The solution here comes from a

refinement to the basic capability mechanism, and requires introducing

"locked" capabilities.

-64-

qhapterE Three Catoan Objetct Definition

Section B Basic Object

A locked capability has, in addition to the reference to an object, a

"lock" associated with it. k locked capability is implemented by a trusted

module, such as described in Section III.A. 2. In order to access the

capability protected by the lock, and the data protected by the locked

* capability, an accessor must go through the proper type manager, which can

verify the accessor's identify and rights in whatever way its implementor

pleases. In other words, in order to use the locked capability, a "key"

fitting the lock must be presented.

Capability locks and keys, like capabilities themselves, must be

unforgeable (locked capabilities must also be unforgeable). Thus, if one

wants to place an object in a somewhat publicly available directory (as may

be required, because all directories may be "somewhat publicly available"),

and yet retain control over who can access the object, a locked capability,

rather than an ordinary capability, is placed in the directory. The key

for the locked capability is then distributed in a secure manner to those

who are allowed access to the object.

II[.C. A Refined Object.

The basic object, described above, is rather spartan. Often, a more

"civilized" object Is desired which supplies features convenient for human

use. For example, one might want to provide a "classical file" object,

-65-

Chapter Three Catoan Object Definition

Section C Refined Object

supporting record-at-a-time access. Perhaps more security, automatic

object cross-referencing, locking (or some other form of "sequencing"), or

version control might be desired. This section describes a more refined,

"civilized" object than that described above.

III.C.I. Protection and Security.

An important refinement to the basic Catoan-object is the addition of

further protection features. Given the directory lookup mechanism, a

capabiLity-based protection system may provide little security, as

previously noted (Section 111.8.5). A solution to this problem is to

provide an access control list scheme as a feature of a refined object.

The access control list would be a matching of principal identifiers with a

specificacion describing the types of access allowed the principal. This

is the scheme Multics uses, and is described in [28].

An <ernative to the complete access control list is a Unix (26] or

MPE/3000 [13] protection scheme, which allows all members of particular

groups the same access. For example, all members of a particular project,

or of a particular sub-project, might be given access to the object. In

Multics, this would be represented as "*.Syspal," where "Syspal" was the

name of the project.

-66-

a~. *

4r
.. _ . . .

Chapter Three Catoan Object Definition

Section C Refined Object

Further protection refinements can also be implemented. k

security-clearance concept (confidential, secret, top secret) is a

possibility, where each process would have an unforgeable indication of its

current clearance; passwords could be provided, requiring that the correct

password be supplied when the object is accessed; arbitrary protection

schemes, requiring access only between certain times, or on certain days,

4 or after a program sufficiently verifies the identity of the user, might be

desired. By making the various "protected objects" each a different type,

with different object managers, and allowing access only through the

correct manager, access to the objects can be restricted as desired.

A point of note is: what is being protected by the access control list

of the refined Catoan-object? Catoan is not necessarily trusted;

furthermore, it is possible to access the data in the CONrENTS of a

Catoan-object without the intervention of Catoan. Therefore, the access

control list cannot protect the data in the CONTENTS in the general case.

Rather, the access control list protects the Catoan-object, since that is

the only thing for which access requires using Catoan.

,- How, then, might the data in the CONTENTS of a Catoan-object be

protected? Locked capabilities, described above, offer one solution.

Another solution is to control the distribution of the data's

addressabiLity. In a capability-based protection system, this implies not

-67-

Chapter Three Catoan Obect Definition

Section C Refined Object

distributing the capability for the data to other users, but instead

requiring them to use Catoan to access the data. This requires the user to

trust Catoan to enforce the access control list.

Figure 5 shows the operations and representation of an access control

* list scheme. The access control list is implemented as an array, matching

principal identifiers with access rights. The access rights are specified

Iby bits indicating DIRECTORY read, DIRECTORY search, DIRECTORY modify,

DIRECTORY append, CONTENTS read, CONTENTS set, access control list read,

access control list modify, and access control list append. Each operation

protected by the access control list must verify that the principal

requesting the operation is authorized to perform the operation on the

object; if not, UNkUTHORZEDkCCESS is signaled.

The ACL -DD PRINCIPAL operation gives a new principal access to a

Catoan-object. The arguments are the identifier of the principal and the

access specification. If the specified principal is already in the access

control list, an exception is signaled. _ADD ACCESS adds a the specified

access rights to a principal in the Catoan-object's access control list.

DELETE PRINCIPaL rescinds a principal's right to access the

Catoan-object. Similarly, _DELPTEkCCESS removes a particular access right

of a principal in the Catoan-object's access control list.

-68-

-',

-pa--

Chater Three Catoan qject Definitton

Section C Refined Object

act -addprincipal:PROCEDURE(new acl:ac L, prin:principalid)
EXCEprioN(unauthorized access, ac lprincipalalreadyin ac)
(* Inserts new principal in the access control list. *);

act delete principal:PROCEDURE(prin:principal id)
EXCEPTION(unauthorized access, ac l_principal notin acl)
(* Removes a principal from the access control list. *);

act add access:PROCEDURE(add acl:acl, prin:principaliid)
RETURNS(old acl:acl)

* EXCEPTION(unauthorized access, aclprincipal notin ac)
* (* Ensures PRIN has specified permission. *);

acldelete access:PROCEDURE(del _acl:acl, prin:principal id)
RETURNS(old acl:acl)
EXCEPTION(unauthorized access, ac l_principal not in act)
(* Ensures PRIN does not have specified permission. *);

act read:PROCEDURE
RETURNS(acl:access control list _rep)
EXCEPTION(unauthorized access)
(* Formats the access control list for external perusal. *)

act set:PROCEDURE(new acl:access control listrep)
RETURNS(old _acl:access control _list _rep)
EXCEPrION(unauthorized access)
(* Allows bulk setting of the access control list. *);

access control list rep - ARRAY(*) OF RECORD
prin:principal id;
the acl:acl;
END; !access control list-rep

ac - RECORD
dir acl: ARRAY(4) OF BOOL (*Read, Search, Modify, Append.*);
cont acl: ARRAY(2) OF BOOL (*Read, Set.*);
act act: ARRAY(3) OF BOOL (*Read, Modify, kppend.*);
END; !ac

principal id = string(20);

Figure 5: An Access Control List Scheme for Catoan.

READ returns the entire access control list so that it can be examined

externally. This operation might be used to obtain an access control list

for use in setting some other Catoan-object's access control list, using

-69-

Chapter Three Catoan_ bjct Definittion

Section C Refined Object

the SET operation. -SET's argument is an entire access control list, like

the value returned by READ.

The representation of an access control list consists of a sequence of

two-component RECORDs. Each RECORD consists of a PRINCIPAL ID and an ACL.

* The ACL is a three-component RECORD: the DIR ACL, the CONTAkCL, and the

ACL kCL. Each component is an ARRAY OF BOOL, with the several bits

corresponding to the various modes of permission which can be granted.

Each permission type is independent of all the others.

III.C.2. Cross-Referencing.

One often wants to determine which Catoan-objects reference CRL, and

which Catoan-objects CRL references. This requires two collections of

data: those objects referenced by CRL, and those objects which reference

CRL. The first set is the DIRECTORY of CRL, and so is readily available.

The second set, however, is not so readily available -- it must be

explicitly collected.

How might such a cross-reference be implemented? Suppose each object

had a structure and operations like those of Figure 6 as part of its

definition. Then, upon adding a reference to an object's DIRECTORY, a call

to the contained object's XREF ADD REF operation would be included in the

-70- '0

ri

Chater Three Catoan ObQect Definition

Section C Refined Object

implementation of DIRECTORY NMEDADD and DIRECTORY UNNkNED ADD. (Similar

definitions and calls are required for XREF DELETE REF.)

there is a problem with the above method for storing cross-reference

information: who pays for the storage? A straight-forward implementation

of a versioned-object would have the object's owner paying for the storage

of cross-reference information. This penalizes owners of very popular

objects, for the object's owner may have little control over the number of

referencing objects.

One solution is to ignore the problem; that is, to let the object's

owner pay for the object's cross-reference information. Another

possibility is for the accounting system to keep track of the number of

cross-references to each object, and to deduct the charges for the

cross-reference information from the object owner's bill. This would

effectively make cross-reference information part of the system's overhead,

and so all users would pay a share of the cross-reference storage costs.

-71-

Chapter Three Catoan Oject Defitu ion

Section C Refined Object

xref add ref :PROCEDURE(name:object name, obj :@object)

EXCEPTION(xref furl);
(* NME is the name of the referencing object.

OBJ is a reference to the referencing object. *)

array ref out-of-bounds: EXCEPTION;

EXCEPTION
ON array ref -out of bounds DO

RETURN(xref full);
* BEGIN

SELF.xref.refdbys[SELF.xref.nextl.obj :- obj;
END;

END;
SELF.xref.refdbys(SELF.xref.next$.name := name;

SELF.xref.next :=# +1;
END PROCEDURE; !xref

xref: RECORD

next: INTEGER;
refdbys: kRRkY(*) OF RECORD

name: object name;
obj: @object;

END; !refd bys
END; !xref

Figure 6: Additions to the Basic Object for Cross-Referencing.

Two problems exist with the system overhead solution. The first is

that it is inequitable: if a system has two users, with the first

referencing five objects not owned by him and the second referencing one

such object, both users would probably pay for three references, thereby

overcharging the second user. The second problem is: what prevents someone

from informing the system of far more references than actually exist to his

objects and (illegally) lowering his storage bills?

-72-

-'B
° -

.. ., j

Chapter Three Catoan _ect Definition

Section C Refined Object

Assume that the following fragment is part of the XREF ADD REF

operation:

CALL acc tg storage add ref(arluments)

The ACCTG STORAGE ADD REF operation tells the accounting manager that a

cross-reference entry has been added to a particular object, and that the

object's owner should not be charged for the storage occupied by the entry.

r This operation must be carefully protected; the only entities which are

allowed to call ACCTGSTORAGE ADD REF must be trusted by the accounting

manager not to call it excessively (that is, more times than are

appropriate for the number of references), because otherwise someone could

obtain free storage.

III.D. A Versioned Obect.

Another refinement to the basic object is the "versioned" object.

Rather than directly modifying an object when changing it, a new instance

of the object is created, which is somehow related to a previous instance.

Therefore, rather than an object appearing mutable, it is a "history" of

immutable versions. This provides access to instances of the object

besides the most recent one, and facilitates, for example, concurrent

support and development of software.

-73-

qhapter Three Catoan QOject ef inition

Section D Versioned Object

III.D.I. Version Naming.

For each object, a hierarchy of versions exists, which is reflected in

each version's name. The hierarchical relationship is that of "logical

derivation": if Version B is the child of Version A, then B was "logically

derived from" A. For example, B might be a refinement of A, correcting an

implementation error if the object were a program. klternatively, B might

become a sibling-version to A, which could imply that A and B were similar

sorts of refinements (improvements, modifications) of their mutual parent.

Whether a version is a child or a sibling is the decision of the version's

author.

A version name consists of a sequence of qualifiers to the object name.

These qualifiers are suffixes to the object name or to a "qualified" object

name (an object name with a version name suffix). Each qualifier is a

number, specifying the version number from the appropriate level in the

version hierarchy which is desired. The name "CRL.3.62" is a qualified

object name, whose object name is "CRL," and whose version name is "3.62."

Figure 7 shows an sample version hierarchy. The versioned

Catoan-object is named "CRL." CRL has three "top-level" versions; that

is, three versions which are, in some sense, major modifications of CRL.

In system installation terms, this level in the tree might correspond to a

-74-

Chapter Three Catoan Object Definition

Section D Versioned Object

"release," with lower levels being called "level" and "fix." To obtain CRL

release two, one would use the name "CRL.2"; to obtain CRL release three,

level one, "CRL.3. 1" would be used.

CRL

~A
. .2 . 2

.1.2

Figure 7: Version Naming Hierarchy.

Examining the CRL.3 subtree, there are two children of CRL.3: CRL.3.2

has no children; CRL.3.1 has three children. In system installation

terms, one might reference CRL release three level one fix two as

CRL. 3. 1. 2.

There are no restrictions on the semantics attached to the various

levels in the hierarchy. For example, rather than "system installation,"

version management could be used in a class on software engineering.

Suppose an exercise in modifying existing programs is to be given. The

students might be broken into groups, with each group developing a

-75-

II I ...

Chapter Three Catoan OUitit Definition

Section D Versioned Object

solution. The initial program is CIL; each group is to create its

solution as CRL.n. While working on the assignment, various trial

solutions might be attempted, with modifications being made in an attempt

to produce a better solution. Perhaps one group has one small part of the

problem remaining which is especially difficult, and so two of the group

* members attempt a solution in parallel. kll of this could be handled very

easily with the versicn maintenance system proposed in this chapter.

It.D.2. Storing and Implementing Versions.

Storing versions is a problem distinct from naming, though they are

often coupled, especially if versions are stored as incremental changes to

other versions, as in the Source Code Control System (SCCS) [5, I, 27]

available with the Programmer's WorkBench under Unix [8, 18]. SCCS stores

a set of versions as a collection of updates run against che parent

version. 4 version is created from some particular existing version, is

named relative to that version, and is generated from that version. (The

version generation process is recursive if necessary.)

By de-coupling version naming from version generation, additional

flexibility is obtained, without sacrificing the potential benefits of

coupling naming and generation (coupling can be done by the user if

desired). Furthermore, the proposed mechanisms allow version generation to

-76-

7-,

Chater Three Catoan bLecr De finition

Section D Versioned Object

be done in any manner desired, allowing the user to specify space-time

:t'le-offs, derivation relationships, policies for creating new versions

(as opposed to including the changes in an exis*ing version for

efficiency), et ceterae.

The additional information contained in a Catoan versioned object to

rprovide version maintenance and the operations on such objects are shown in

Figure 8.

A versioned Catoan-object consists of four types of information:

Lnformation describing how to generate the version (VERSION GEN INFO), the

logical children of the node in the version namiag hierarchy (CHILDREN),

the logical parent of the node (PA.RENT), and whether some other version is

physically derived from this version.

-77-

CatjThree Catoan 2Utict Refinition

Section D Versioned Object

version new:PROCEDURE(v name: version-name,
v Ibase: @versioned catoan object,
update info: updates -specification,
vgener: version generating program)

RETURNS(new version: @versioned c atoan object)
EXCEPTION(version exists)
(* Creates a new v7ersion; SELF - parent.*)

version delete:PROCEDURE(v name:version name)
EXCEP'rlON(version nonexistent)
(* Remove a version from the history; SELF - parent.*)

version get :PROCEDLJRE(v name:version -name)
KETURNS(v obj :@versioned catoan object)
EXCEPT(version nonexistent)
(* Translate a name into a versioned object; SELF - parent. *

version read :PROCEDLJRE
RETURNS(o:'@catoan object)
(* Translates a version into an object; SELF - the version. *

version replace:PROCEDIJRE(v-name: version.2name,
v Ibase: @versioned catoan object,
update info: updates spec ificat ion,
v gener :vers ion generating program)

EXCEPTION(vervion nonexistent, version not_ replaceable)
(Replace a (leaf) version with a new-one.*)

additional -versioning information(updates specification) -TYPE RECORD
version gen info: RECORD

base-version: @versioned-catoan-Obj ect;
updates: updates specification;
version gen _pgm: verston generating procedure;
END; Iversiongen info

children: AkRRAkY(*) OF RECORD
name: version name;
version: @versioned catoan object;
END; Ichildren

parent: RECORD
name: version name;-
version: @versioned catoan object;
END; Iparent

used as base: BOOL;
END; !versioned catoan object

-78-

Chapter Three Catoan Oject Definition

Section D Versioned Object

version name(size: 0 TO 100) - TYPE RECORD
length: 0 TO size;
chars: ARRAY(0 TO size) OF

UNION ("0" TO "9", ".")

END; !version-name;

Figure 8: Additional Information and Operations for

Version Maintenance.

The VERSION GEN INFO contains three pieces of information. The

BASE VERSION denotes the version from which the current version is

physically derived. To generate the current version, as is done by

VERSION READ, start with the BASE VERSION and apply the UPDATES. The

UPDATES specify the transformation under which the base version must go to

obtain the current version. The UPDATES are applied by the

VERSION GENERATING-PROCEDURE, in which the semantics of the UPDATES are

embodied. The minimal definition of VERSION GENERATING PROCEDUREs is shown

in Figure 9.

The definition of the UPDATES SPECIFICATION (the parameter to the

VERSIONED CATOAN OBJECT type) is up to the user. as is that of the

VERSION GENERATING PROCEDURE. The only requirements of either of these is

that the VERSION GENERATING PROCEDURE meets the proper interface, ind the

VERSION GENERATING PROCEDURE and UPDATES SPECIFICATION are compatible.

-79-

-r - -

ChapSter Three Catoan Object Def initton

Section D Verseoned Object

version_generating_procedure(updates specification, contents_type)=

IfPE
PROCEDURE(base: version-name, updates: updates specification)
RETURNS (contents type)

EXCEPTION(versioned _object nonexistent base,
versioned obj ect inconsistentupdates)

(UPDATES SPECIFICATION is a type definition describing the

form of the updates.
CONTENTS TYPE describes the form of the CONTENTS of the

version.

BASE is the version from which this version is physically
derived.

* UADATES is the updates to be run against the base. *);

Figure 9: Definition of VERSION GENERATING PROCEDUREs.

VERSIONREPLACE allows certain versions to be mutable, rather than

immutable, so that changes to certain versions need not create a new

version (though one could be made, if desired). Any version with a child

becomes immutable, and any version wt ch is the BASE VERSION of some other

version also becomes immutable. However, if a version is a leaf in tt...

naming structure, and no other versions depend upon it, it can be changed.

This is an efficiency refinement, and allows small changes to be readily

incorporated.

The VERSION DELETE operation is not totally straightforward; it cannot

merely remove the version. Some other version may be using the

to-be-deleted version as its BASE VERSION. If deleting a version Will

remove a BASE VERSION, either the version cannot be deleted, or the

-80-

Chapter Three Catoan Obect Definition

Section D Versioned Object

information in it must be included in those versions which depend on the

version to be deleted. This may require a cross-referencing mechanism,

similar to that presented in Section III.C.2.

The CHILDREN field specifies those versions which are immediate

* .children of the current version. The CHILDREN fields of all the versions

of a versioned object specify the logical relationships among the various

versions, as described above. Because the CHILDREN information and the

VERSION GEN INFO information are separate, the logical derivation of a

version need not be related to the physical derivation of the version.

The CHILDREN field attaches names to the logically derived children of

the current version. The name of the child, together with the names of all

the eventual parents of the child, specify the position of the child in the

version hierarchy. See Section III.D.l for a discussion of version naming.

The PARENT information indicates the version which is the logical

parent of this version. It allows tracing back up the version hierarchy

when necessary.

To demonstrate how a VERSION gENERkTING PROCEDURE and an

UPD&TES-SPECIFICATION might be defined, consider an example: maintaining

versions of a program. The version history is that of Figure 7.

-S1-

Chater Three Catoan Object Definition

Section D Versioned Object

Logically, the UPDTES SPECIFICATION could be a collection of "commands,"

specifying operations like "delete" or "insert" on a particular line of the

document. (This is similar to the record-oriented update programs which

exist in some batch-oriented computing systems for including updates tn the

source for a program.)

The VERSION GENERATING PROCEDURE would take the BASE VERSION and "run

the UPDATES against" the base. The result of this process is the text of

the version represented by the BASE VERSION and the UPDATES. Each pair of

<UPDATES, BASE VERSION> could represent a different logical version of the

document (1), depending on how the VERSION GENERATING PROCEDURE interpreted

the UPDATES relative to the BASE VERSION.

How does one create the initial version of such a program? First, a

VERSIONED CATOAN OBJECT, CRL, is created. The VERSION GEN PGM is specified

to be the "Syspal version editor," which would apply the change directives

properly. The BASE VERSION is specified as NULL, indicating that there is

no version on which this one is based. Then, the UPDATES which will create

the initial version of CRL from "nothing" are supplied. CRL's initial

version is now complete.

(1) In general, only a small subset of the <UPDATES, BASE VERSION>s
actually represent meaningful versions.

-82-

I

Chater Three Catoan QOect Definition

Section D Versioned Object

As an example, suppose that CRL. 3.1.3 is to be created under CRL. 3.1

(that is, CRL..3.1 is to be CRL. 3.1.3's parent). For whatever reason,

CRL. 3. 1.3 will be derived from CRL..3.2. What follows Is a description of

generating CRL. 3.1.3 at the lowest level.

Call the version to be created NEWVER, and let ADaM denote the most

ancient ancestor in the version tree (in this case, CRL). First, the

version on which NEWVER is based must be obtained. The statement

base "- version get(adam, base-name);

fines the version denoted by BASE Nk)iE (which would have the value ".3.2")

and assigns it to BASE. The program of CRL.3.2 would be obtained by

original pgm :- version read(base);

this program would be provided as input to an editor, the output of which

would be the new version of the program's source, which would be assigned

to NEW PGM. The incremental differences between ORIGINAL PGM and NEW PGM

could be determined by

differences :- Syspal differences(original pgm, newpgm);

and everything is almost ready to complete the process. The parent of

NEW VER must be obtained:

parent :- versionget(adam, parent-name);

assuming ".3.1" is the value of PkRENT NAME. Now, NEWVER can be included

in the version hierarchy of CRL, using the statement

-83-

Chapter Three Catoan O Definition.

Section D Versioned Object

newver :- version new(parent, new name, base,
differences, Syspal version editor);

where NEW NME has ".2" as its value. This completes the creation of

CRL. 3.1.3.

To obtain the program as of a particular version, the version's name is

supplied to VERSION GET, which finds the version in the version naming

hierarchy. VERSION READ is then invoked, which passes the version's base

and updates to the version generator (VERSION GEN PGM), which returns the

version.

At some point, after the version history becomes very large, generating

a given version may take a very long time. What could then be done is to

create a version which is complete (similar to the initial version).

Thereafter, future new versions could be generated off this new "complete"

version, rather than having to incrementally generate all the previous

versions before generating the desired one.

III.D.3. More on Version Naming.

In addition to the regular version names, one might want to have

"sliding" names for versions. For example, when developing a program, one

oftel has a backup, a current, and a test version of the program. Upoit
'V -

determining that the test version is ready for installation, one would want

-84-

-'-

.p-%

Chapter Three Catoan Object Definition

Section D Versioned Object

to change the meanings of the names "backup," "current," and "test" to

reflect the new state. This can be accomplished, and the general problem

of "sliding" names can be solved, by introducing "variables" to reference

versions.

*k simple method of specifying variables for version references is to

include an optional user-defined procedure for variable assignment which

would be called whenever a new version is created. This procedure, or

another one, could also be called directly by the user when he wanted to

update the variable assignments. The variables' names and the objects they

referenced could be stored in the named DIRECTORY in the highest-level

Catoan-obj ec t.

It may be desirable to allow a general network of version names, rather

than just a hierarchy. Catoan supports a general network for naming

objects; version naming may require similar capabilities. At this point,

the value of a version network has not been proven. Despite always

referring to a hierarchy of naming versions, though, Catoan will support a

network of versions using the definition presented in Figure 3 above. Any

-restrictions to a hierarchy would have to be done In the VERSION NEW

operation.

-85-

MM,-MMM

Chater Three Catoan Obect Definition

Section D Versioned Object

The operations presented here are very tow level. Presumably, a

higher-level interface to version maintenance would be presented to the

user by, for example, the editor.

III. E. Sumarv.I4

Definitions of the "Basic Catoan-Object," a "refined" object, and a

" versioned" object have been presented in this chapter. The operations of

the objects, and sample representations, have been described. Issues of

naming, protection, and (in some cases) efficiency were mentioned.

-86-

CHAPTER FOUR

AN EXkMPLE: A SYSPAL PROGRkM OBJECT

, In this chapter, I shall demonstrate how Catoan might be used. The

demonstration will be based on an example: a "Syspal program object." A

Syspal program object is a convenient way to store a program written in

Syspal using Catoan as the object storage mechanism.

In this object, one would store a Syspal program though the same

general structure, if not the exact structure, could be used for storing

programs written in most languages. The Syspal program object is an

extension of the versioned Catoan object described in Section IIl.D, and

the cross-referenced Catoan object described in Section III.C.2. In

addition to the operations pertaining to Syspal programs, the operations of

the versioned Catoan object and those for cross-referencing are part of the

definition of the Syspal program object.

-87-

ChaQtter Four Catoan S Prsola= f

Section A otivatton

IJ

IV.A. Motivation.

Classically, a program is stored as a collection of files, each one

containing some portion of the program. For example, one might have a

source file, a documentation file, an object-code file, an interface file,

a load-able (executable-code) file, and so on. These are usuallyII
differentiated by a suffix indicating the kind of file: ALG68 for an

ALGOL68 source file, PL1 for a PL/A source file, DOC for a documentation

file, OBJ for an object-code file, et ceterae. Each file is individually

visible to the user.

tk typical scenario in a system like this is as follows. A user wants

to write a program to help him balance his checkbook. kssume he wants to

use the Syspal programming language. He types something like

edit CheckBook Syspal new

meaning that a new file, of "type" Syspal, named "CheckBook," is to be

edited. Upon finishing his first attempts at writing the program, he might

type

run CheckBook

with a resultant error message like

NO SUCH FILE: CheckBook.LOAD

which is reported because he had never compiled the program. Upon

discovering his error, a likely follow-up might be

-88-

Chater Four Catoan nyal trram

Section A Motivation

compile CheckBook

for which another error message might be generated, because there is no

COMPILE command. Finally, after much aggravation, the user might realize

that he should type

Syspal CheckBook

which would compile his program.

Thinking that he can now run his program (assuming it compiled

properly), the example user might type

run CheckBook

for which an error message like the one he received the last time he tried

RUN would be elicited. Eventually, he might realize that

link CheckBook

is needed, after which

run CheckBook

would work - assuming that SYSPAL, LINK, and RUN dii not require the user

-. to supply the proper suffixes for CheckBook.

How many times does the user actually care about the object-code file,

or the load-able file? How many times does the user actually care about

compiling, or about linking (except to check for compile-time errors)? Why

can't RUN simply produce a properly executable form of the program?
1..

-bstractly, the user is writing a §_sta. program, not a machine-language

-99-

qhater Four Catoan S Program

Section A Motivation

program; what does he care about the representation of his program?

(Indeed, even if he were writing a machine-language program, the

representation of the program may of no concern to him.)

The example presented in this chapter addresses these problems. The

* Syspal program object defined in the next section consists of several

. internal parts, which correspond to the classical object-code, load-able,

documentation, source, et ceterae files. Normally, these are of no concern

of the user, and so need not be dealt with explicitly (though the ability

to do so exists).

IV.B. Definition.

Like any abstract object, a Syspal program object is defined by the

operations one performs on it. The primary operations one performs on such

objects are NEW, DELETE, EDIT, RUN, EDIT DOCUMENTkTION, and DEBUG. Secondary

operations, which exist more for efficiency than for completeness, include

COMPILE, and RESOLVE-REFERENCES. In addition to those operations specific to

Syspal programs, the operations of the versioned Catoan-object and the

cross-referenced Catoan-object are part of the definition of the Syspal

program object. These extra operations are available directly to the user

because of the %VISIBLY EXTEND statement. Figure 10 shows the interface for

and representation of the Syspal-program object.

-90-

Chatr Four Catoan yplPofa_

Section B Definit Lon

new: PROCEDURE
RETURNS (p: @Sys palI_prog ram)

(* Instatiates a new Syspal program. *);

delete: PROCEDURE

(* Destroys a Syspal program and its subsidiary objects.

edit :aPROCEDURE

*Allows modification to a Syspal program.
" run :PROCEDURE

Executes the Syspal program. *);
' ~ed it doe umenta t on: PROCEDURE

iXCEPT(syspalprogram nordocumentatlon)

Modifies the documentation of a Syspal program. *);

comple: PROCEDURE

EpCEP (syspalprogram compl atonfailed)
(* Compiles the SyspaT program. *T;

resolve references:rPROCEDURE
EXCiPt (syspa l-prog ram -unresolveab le reference)
(Resolves external references (cafls the system LINKER).*)

debug: PROCEDURE

(* Invokes the DEBUGGIN G subsystem.*;

%VIS IBLYEXTEND vers ioned-catoan obJ ect,

SELFREORD c ross-re ferenced-catoan-obj
ect ;

program: verstoned -catoan object;

xre f: c ro ss reference_informat ion ;

(* Use of the VERSIONED CATOhN OBJECT:

CONTENTS = source code.
unnamed DIRECTORY slot I = object code.

unnamed DIRECTORY slot 2 - documentation.

unnamed DIRECTORY slot 3 = interface.

unnamed DIRECTORY slot 4 - object code with external
references resolved.

named DIRECTORY slots - sub-programs. *)

END; !SELF

Figure 10: k Syspal-Program Object.

-91-

Chapter Four Catoan S2.lal Protgra

Section B Definition

The NEW operation is invoked when a Syspal-program object is created.

It takes no arguments, and returns as a result the new object. Usually,

this operation is automatically invoked by the EDIT operation on a new

program. NEW initializes the various fields in the representation of the

program before returning.

DELETE destroys a Syspal-program, and all of its underlying sub-objects

and versions.

The EDIT operation is invoked when changes are to be made to the

program. ks mentioned above, EDIT will invoke NEW if a new program is

being edited. The only argument of the operation is the implicitly

supplied program object; it returns nothing.

RUN attempts to execute some representation of the program. For Syspal

programs, this may require compiling first. RUN verifies that valid,

current executable code exists for the source; if it does not, RUN will

implicitly invoke the COPILE operation. If the supporting system requires

pre-execution binding (linking), RUN will also invoke the

RESOLVE REFERENCES operation. Once current executable code is obtained,

RUN will transfer execution-control to the program.

-92-

Chapter Four Catoan aSal Pro__&Sm

Section B Definition

EDIT DOCUMENTkTION provides access to the DOCUMENTkTION portion of the

Syspal program.

DEBUG calls a debugging facility, allowing the programmer to control

i- the execution of the program, to examine the state of its execution, et

ceterae.

The secondary operations, COMPILE and RESOLVE REFERENCES produce

object- and bound-code, respectively. As mentioned, they exist primarily

for efficiency. They would probably be used by a programmer to be sure

that an error would not occur if someone else shoitld cause the operations

to be implicitly invoked.

In addition to the explicitly defined operations listed above, the

operations of version management and cross-referencing, as well as those of

the basic Catoan-object, are available for use with Syspal program objects.

The %VISIBLY EXTEND pseudo-statement causes the named interfaces to be

included in this one. (Appendix A describes this in a little more detail).

Syspal programmers can treat Syspal program objects as ordinary

Catoan-objects, including them in other Catoan-objects, including other

Catoan-objects in them, explicitly creating new versions, accessing the

croas-reference Liformation, et ceterae.

-93-

I AD-AGB3 491 MASSACHUSETTS INST OF TECH CAMBRIDGE LAB FOR COMPUTE--ETC F/B 9/2
A MANAGER FOR NAMED, PERMANENT OBJECTS.(U)
APR 80 A M MARCUM N0OGL4-79-C-066I

UNCLASSIFIED MIT/LCS/TM-162 NL

,-V

ChpS Four Catoan WjES! Emu

Section B Definition

For example, assume that a user named "Ribak" was writing a system

composed of several Syspal programs. One of the programs (called "DRIVER")

is the top-level program, which controls dispatching the other parts of the

subsystem. One way to reflect this structure in the external structure of

the programs is to have the other parts of the subsystem be sub-objects of

DRIVER, included in the DIRECTORY of the Catoan-object used to store the

DRIVER Syspal program object. Then, Ribak could easily see the system's

* structure by NAMED READing the DIRECTORY of the Catoan-object.

IV.C. Use.

To use the Syspal program object, a user would invoke the EDIT

operation. ED[I would obtain the source code of the program, or initialize

it to empty if the program was new. The user would make whatever changes

had to be made, replace the old edition of the program with the updated one

(or, perhaps, create a new version instead), and terminate the editing

session.

If the editor was able to check some or all of the syntax and semantics

of the program, a COMPILE merely to verify that no compilation errors

existed wouli be unnecessary. If the editor was unable to perform such

checks, the user might want explicitly to COMPILE the program if he was not

going to run it immediately, and someone else might try to RJN it before he

-94-

*e~e

Chapter Four Catoan !Xsea1 Program

Section C Use

had a chance to do so. Otherwise, he could invoke the RUN operation, which

would automatically invoke COMPILE and, if necessary, RESOLVE REFERENCES.

If an error is discovered while RUNning the program, the DEBUG

* operation could be invoked, allowing the programmer to examine the program

and its environment. If changes were made to the program while debugging,

EDIT could be called directly by DEBUG, thereby automatically incorporating

changes which were made while DEBUGging into the permanent copy of the

program.

Assume that the programmer finishes DEBUGging the program, 4nd then

neglects to COMPILE the program. One of the users of the program then

tries to RUN the program. kt this point, the COMPILE operation is

implicitly invoked, and the program is transformed into some form which can

be executed by the host system. The user had no knowledge of this

transformation; it is an implementation detail.

The Syspal program object is an extension of the Catoan-object. This

allows the programmer to use the properties of Catoan-objects when thinking

about managing his programs. For example, if someone has written a utility

program which produces a copy of a Catoan-object, that same program could

probably be used with Syspal program objects with very little, if any,

modification. If other computing systems or other naming environments (see

-95-

Chapter Four Catoan Syspal rra"

Section C Use

Chapter Five) could reference his Catoan-objects, then they could.

likewise, reference his Syspal program objects. This allows the issues of

object management to be left to the object manager, regardless of the use

to which the objects are being put, regardless of the extensions which are

made of the basic Catoan-object.

* IV.D. Summary.

Many people do little with computers but write programs on and for

them. Generally, the abstractions available for their use for actually

writing the programs are very primitive. The Syspal program object

presented above is a high-level abstraction for writing and storing

programs which is based on the Catoan-object and its extensions.

-96-

CHAPTER FIVE

IMPLICATIONS OF MULTIPLE NIAMING ENVIRONMENTS

As mentioned in Chapter One, I do not assume that Catoan is the only

manager for named, permanent objects that exists in the system. Therefore,

Catoan's is not the only naming environment in the computing system. If

there exist other naming schemes, and another naming environment is created

which is disjoint from the one I propose, what are the implications? Are

the name spaces forever disjoint? Is there a way to refer to objects in

one namespace while within another? Is there a way to transfer objects

from one namespace to another, either from within either of the two

namespace in question, or from a third one?

-97-

Chapter Five Cat oan Multipl gam Spaces

Section A Disjoint Naming Spaces

V.A. q ji.lt !aiAU& Sp.

Given the existence of more than one object manager, it is very

probable that the objects of one system cannot be handled by the others.

In classical file systems, internal storage formats may differ, the system

overhead information stored may differ, the structure of the files may

differ -- in fact, the "type" (in the programming language sense of the

4 word) of the files may be incompatible, so that the different kinds of

files are Implemented by different modules.

In Catoan, the naming mechanism is part of the object structure, and is

handled by the object management mechanism. Separating names from objects

is not part of Catoan's underlying philosophy. Therefore, regardless of

the structures of other object managers, regardless of the nailing

mechanisms of other object managers, if an object is not a Catoan-object,

it cannot be named within Catoan.

If Catoan-objects can be named and accessed directly by some other

object manager, the naming structures are not disjoint. In this case, data

transfer is no problem, and is, indeed, a moot point: the objects of both

systems are accessible from one of the systems.

-98-

Chapter Five Catoan Multiple Name S~cea

Section A Disjoint Naming Spaces

Let us assume that, not only can Catoan not access non-Catoan-objects,

but other systems likewise cannot access Catoan-objects, either. In this

case, the naming structures are truly disjoint, and data in the objects of

one system cannot be transferred directly into objects of the other. What

is needed for such data transfer is some procedure which can bridge the two

*naming structures.

-To be able to write a "bridging" procedure, it must be possible to

access both object managers from the same procedure. This requires that

the interface for both systems be available to the procedure. The

procedure must be able to name and to access (in a protection sense) the

interfaces; if naming can be done at this level directly, with internal

names (segment numbers, capabilities), then providing the procedure with

the internal unique identifiers of the two object managers produces the

necessary availability.

If naming cannot be done with internal names, then a mechanism is

needed to allow translation of external names (character strings) to

internal ones. This requires, essentially, another name manager for

"special" interfaces which are needed between, among, and above the normal

naming structures.

-99-

Chapter Five Catoan Kultipl Naefae

Section A Disjoint Naming Spaces

once the interfaces (and modules) for both object managers are

available to the bridging procedure, transferring data between the two

naming environments involves obtaining the necessary information from one

environment (using the operations of its objects), and supplying that

information to the other environment (using the operations on its objects).

The author of the procedure must, therefore, know the interfaces for both

systems. Such bridges might be provided as part of a system-wide library

41
of "utility" routines.

V.B. A Standard Interface for Fili&~es

An alternative to forcing someone who is trying to transfer data

between object managers into learning the idiosyncrasies of both systems is

to have all object managers meet the same interface (if standard data

transfer is to be possible). This interface would specify the minimal set

of operations required of an object manager, and would also allow data to

be transferred freely among object management systems and their naming

environments.

Because of the wide variety of storage techniques, protection schemes,-

and information collected, access to the "overhead" information will not be

included in the "standard, minimal interface" which v411 be defined.

Because there are many ways to interpret names, many ways to organize a

-too-

Chapter Five Catoan Mul ptl Name Spaces

Section B Standard Inter face

naming structure, many ways to attach semantics to a naming structure (be

it a hierarchy, a network, or even a list), passing components of names to

the object manager may not make sense. Because there are many ways to

structure data, a limited means for accessing an object manager's data will

be provided. Figure 11 shows the standard, minimal interface for object

* managers.

lookup: PROCEDURE(name:string(*), root:@TYPE(SELF)
RETURNS(obj :@TYPE(SELF))
EXCEPTION(name not found(index: INTEGER),

name invalid(index: INTEGER))
(* Translates a character-string name into an object
reference, relative to "root." "index" is the
position in "name" up to which the name could be
found or parsed. *);

contents read: PROCEDURE
RETURNS (cont:@contents type)
(* Extracts the CONTENTS from the object. *);

contents set: PROCEDURE(cont:@contents type)
EXCEPTION(contents type inappropriate)
(* Places "cont" in the CONTENTS of the object. *);

Figure It: Standard, Minimal Interface for a Filing System.

Names are handled in their entirety only, and are relative to some

point which is supplied by the caller. This "root" pointer may be NULL, in

which case the object manager determines the root. If the root is not

NULL, the name is parsed relative to the supplied root. For example, if

one wanted to have a Multics file system parse the name

-lot-

Chapter Five Catoan Multlple a §aaces

Section B Standard Interface

"'udd-CSR-Marcua-thesis," the root would not have to be specified, because

Multics has one global root. If "Marcum-thesis" were to be located

relative to "-uddCSR", then "-udd-CSR" could be supplied as the root.

If the above example were to be executed in Catoan, and the object

* "thesis," a sub-object of the object "Marcum," were to be found, a pointer

to CSR would be supplied as the root, and "Marcum'thesis" would be supplied

as the name.

Just as names are handled in their entirety, the data contained in an

object are accessible only in their entirety. One is allowed to SET and

READ the CONTENTS of some object as a whole. Returned by READ is a

pointer to the CONTENTS, which may be of arbitrary type, just as the

CONTENTS of a Catoan object may be of arbitrary type. SET's argument is a

pointer to a datum of arbitrary type to be used as the CONTENTS of the

object.

Some object managers may have to place restrictions on the types of the

objects which are the CONTENTS being stored. It is the responsibility of

the object manager to verify that the type of the CONTENTS is sensible for

that particular style of object manager. The exception

CONTUITS TYPEINAPPROPRIATE is provided to allow a standard mechanists for

signalling such a problem.

-102-

Chapter Five Catoan Multiple Name jajeit

Section B Standard Interface

Catoan does not meet, as described so far, the standard, minimal

interface. The operations on the CONTENTS (SET and RED) are compatible,

but an additional DIRECTORY operation is needed to take a full name and a

. ,- root point, and return a pointer to the named object. This is a simple

. addition, with which Catoan meets the standard, minimal interface of

Figure II.

V.C. Garbage Collection.

Reclaiming storage used by objects which are inaccessible may be

necessary. If such "garbage collection" is needed, how does the existence

of multiple naming environments affect garbage-collection?

Garbage collection is a reclamation of the physical storage used by

logical entities (objects) which become inaccessible. Garbage collection

techniques have been a topic of investigation for a long time; they still

are. I shall not discuss the actual techniques here; the interested

reader is referred to [3, 4, 30, 33]. Rather, what follows is a discussion

of the effects of multiple name spaces on garbage collection.

Usually, garbage collection is performed by the object manager. If

this view of garbage collection is taken, all works well while there is

-103-

ChaSter Five Catoan Multiole Name spes

Section C Garbage Collection

only one object manager. Indeed, all may work well within each of the

individual object managers. Each object manager has enough information to

garbage collect its own objects. What happens, however, if there exist

inter-namespace references? What happens if an arbitrary object can refer

to another arbitrary object, as can happen in Catoan?

A possible solution is to extend the standard, minimal interface for

object managers (see Figure 11) to include operations for communicating

garbage collection information. Suppose two object managers, Catoan and

Namit, exist in one computing system. Let "Cl," "C2," et ceterae be

Catoan-objects; let "Ni," "N2," et ceterae be Namit-objects. There can be

references in Cl to C2, for example, and there might be references

permitted between two Namit-objects. Objects in Catoan can certainly

reference objects in Namit; whether objects in Namit can reference

Catoan's objects is immaterial.

Perhaps Cl references C2, and C2 references N6. Catoan reaches a stage

when garbage collection is required, and so it scans its objects Eor

inter-object references. It records the CI-C2 reference. Upon discovering

the C2-N6 reference, it must transmit the information that N6 is referenced

to N6's manager, Namit. How might this be done?

-104-

Chaptet Five Catoan Multiple Name Spaces

Section C Garbage Collection

Let us assume that Catoan can determine that N6 belongs to Namit (I

shall return to this issue shortly). Catoan must (conceptually) send a

message to Namit indicating that N6 is referenced from some other naming

environment. Perhaps Catoan would even specify that N6 was referenced from

,.- the Catoan naming environment, by object C2. How would Catoan name N6 to

* Namit? If all inter-namespace references are symbolic, Catoan could use

the same name that C2 used. (This also solves the problem of determining

the object manager of N6, mentioned above.) If, however, references are

direct (rather than symbolic), as they could be in Catoan, it would be

necessary to pass to Namit the direct reference (which might be a segment

number). This presents no problem if garbage collection can be done

without object names, as is usually the case.

-. Direct references pose another problem: how does Catoan determine that

Namit is the manager of N6 Perhaps some extra information is stored with

the reference in C2 to N6 enabling Catoan (or any other object manager) to

determine that the reference is to an object of some other object manager.

(Indeed, some such information is needed to allow an object manager to

determine at least that an object reference is to one of its objects or to

an object of some other object manager.) knother possible solution is to

maintain a directory of references to objects of other object managers.

-105-

Chater Five Catoan Kult Nae ... e_

Section C Garbage Collection

Regardless of the exact methods for solving the various problems of

inter-namespace references, garbage collection will require much

inter-object manager communication to convey the inter-namespace

references. Furthermore, additional complexity is introduced into the

standard, minimal interface for object managers of Figure 11, into the

* information stored for references, into the mechanics of garbage

collection. [4] contains a discussion of garbage collection in multiple

raddress spaces with inter-address space references. When the address

spaces are logical rather than physical, when they are name spaces rather

than address spaces, when they are managed by more than one entity, garbage

collection is even more difficult than as described in [4].

Another solution, which I prefer, is to make garbage collection the

function of the memory management system. This is especially appealing in

an addressing system in which all references must be made through tagged

"pointers." Such references can be recognized easily by the memory manager

(because they are tagged). Generally, as long as the memory manager can

determine that a reference to an area of storage exists somewhere, the

precise form of addressing is immaterial -- it can be through segment

numbers, disc addresses, capabilities, et ceterae.

If the memory management system can determine that an area of memory is

referenced, regardless of where the reference is located within the memory

-106-

Chjatr Five Catoan Mlil ae~e

Section C Garbage Collection

system, it can do the garbage collection. The memory management system is

-~ below the object managers. Furthermore, because the memory management

system is part of the operating system kernel, all object managers use the

same (the onlyl memory manager. Therefore, because a single entity has

access to all the object references, and can determine when something is

* and is not an object reference, the problem of garbage collection in

multiple naming environments is solved.

V.D. Summr.

Chapter Five has presented the issues surrounding the existence of

multiple naming environments in a computing system. The effects of

multiple naming environments on system-wide naming, on transferring data

among name spaces, and on garbage collection (storage management) were

discussed. A~ "standard, minimal" filing system interface was described.

-107-

CHAPTER SIX

SUMMRY, AD EVALUATION OF THlE PROPOSED SOLUTION.

In the following, I look at my proposals, commenting on what they are

and "where I am," on their completeness, and on the trade-offs that have

been or could be made. I examine them with regard to previous work and

what "might be done." Lastly, I present my recommendations for further

research in the area of managing tamed, permanent objects in computing

systems which range in size from a single-user personal computer to a

distributed network composed of many autonomous hosts (which range in size

from personal computers, to multiple-user computing utilities, to networks

themselves).

-108-

Chapter Six Catoan Summary and Evaluation

Section A Summary

VI.A. Summary.

This report has presented the results of an investigation into storing

things in modern computing systems. The investigation has produced a

design of a system called "Catoan," which is a manager for named, permanent

objects. Colloquially, such a manger could be considered an

object-oriented filing system.

A description of existing ways of viewing permanent storage was

presented in Chapter Two, describing Honeywell's Multics and

Hewlett-Packard's MPE/3000 in depth. Bell Telephone Laboratories' Unix was

briefly described, as was Carnegie-Mellon University's Hydra. The file

systems in each of these influenced my thinking about permanently storing

objects in a computing system. A few methods for maintaining versions of

objects were also described in Chapter Two.

In Chapter Three, I described Catoan. The "Basic Catoan-object" was

defined and described, and a representation of the information in the

Catoan-object was presented. Refinements of the basic object were shown,

including an access control list protection scheme, cross-referencing, and

version maintenance. A general scheme for storing versions was described,

which allows the user to make the space-time trade-offs which most other

version maintenance schemes make for the him.

-109-

hatter Six Catoan SummarX and Evaluation

Section A Summary

An example of using Catoan was described in Chapter Four. A

Syspal-program object was built using the cross-referenced and versioned

Catoan-obj ec ts.

Chapter Five related the problems which occur when multiple naming

4environments exist in the same computing system. It is assumed that Catoan

might not be the only object manager in the computing system, and that

users might desire to transfer information among object managers and their

naming environments. The effects of multiple naming environments on

garbage collection were also stated.

4ore globally, more abstractly, in this report I have described a view

of storing data in a computing system which departs from the classical

view. I have made this departure because the classical views of data

storage are not amenable to many of the current philosophies on

programming, software engineering, and data abstraction. Catoan allows one

to think of lata storage in the abstract; it allows one to think of

storing abstract data objects, rather than storing "piles of bits."

Catoan is merely a type manager, for a Catoan-object. However, it is a

rather odd type manager: it gives out references to portions of the

representation of its data -- namely, a pointer to the CONTENTS. It is .5

-ItO-

*0 *

qhater Six Catoan Summa and Evaluation

Section A Summary

this aspect of Catoan which makes it untrusted: part of the representation

of a Catoan-object is not secure.

VI. B. Completeness.

Catoan has also been a vehicle for exploration. Very rarely is the

*. permanent data storage mechanism of a computing system not trusted. Very

rarely do multiple filing systems exist within the same computing system.

-Yet, these are two important issues in the design of Catoan.

When one is exploring and experimenting, there is a good chance that

he cosults will not be perfect. So it is with Catoan. The decision that

Catoan need not be trusted, and will not be trusted, limits its use.

Because of the lack of trust, Catoan cannot enforce extended controls on

access to the data or a Catoan-object.

If one were to trust Catoan, and make Catoan the only object manager,

then other filing systems and naming environments could still exist.

However, rather than building directly on the memory management facilities,

the other filing systems would build on Catoan. Although this does solve

-the trust issue, it introduces inefficiency by imposing another layer of

mechanism between the user and permanent storage. It may limit flexibility

if, in fact, a particular application is ill suited to Catoan (a

" possibility if for no other reason than Catoan is not implemented).

-111-

Chapter Six Catoan Surn" and Evaluation

Section B Comlpleteness

Hopefully, Catoan could be implemented efficiently, so that the additional

layer would not cost very much.

The naming scheme of Catoan allows a network of Catoan-objects to be

built. This introduces additional complexity by making it more difficult

to traverse the naming environment. When writing a program to traverse a

tree, it is known that there will be no loops encountered during the

Itraversal. But, when traversing a network, it is possible to encounter a

loop; therefore, loop detection is needed. However, the additional

flexibility gained by allowing multiple parents and, therefore, a naming

network often outweigh the cost of additional traversing complexity.

Furthermore, because a network is a superset of a hierarchy, a naming

hierarchy can be used, foregoing the generality (and cost) of a network.

Catoan ha no concept, analogous to the soft link, of associating an

external name with another external name. Catoan recognizes only hard

links, and multiple parents of an object. There are semantics of soft

links which cannot be modeled using hard links. For example, allowing a

user to use the same (local) name for some object, regardless of the

modifications made to the object, is much easier using soft links. If it

is possible at all with hard links (and this depends on the type of

internal name to which a hard link translates an external name),

substitution is usually much more visible to the unconcerned user than with

-112-

**,.*

Chater Six Catoan SuM a and Evaluation

Section B Completeness

soft links. Nonetheless, because changing the CONTENTS of a Catoan-object

does not affect the containing objects, the "soft substitution" provided by

soft links is easier to approach with Catoan hard links than with, for

example, Unix hard links.

* The Catoan philosophy would dictate that, because of uniformity, each

object should contain a section for soft links, if they were to be included

in Catoan. An alternative is to introduce a new type of Catoan-object, a

"soft link." This points out another feature of Catoan: there is only one

type of Catoan-object. This forces the overhead of both portions on all

the users of Catoan, even if eighty-seven percent of their objects do not

use the CONTENTS.

One of the most important questions to be answered about Catoan is:

"Can one do everything with Catoan that one can do with 'conventional' file

systems?" I claim that, except for issues of trust, one can, and that, in

fact, one can do some things in Catoan that cannot be done in many existing

file systems. As to trust, the overhead operations are most greatly

impacted by not trusting Catoan -- the SYSTEM OVERHEkD INFORMATION is not

necessarily correct.

The data-oriented operations in Catoan are the "CONTENTS" operations,

described in Section Ilt.B.l.b. The operations are very simple, and from

-113-

Chapter Six Catoan Summar. and Evaluation

Section B Completeness

their simplicity comes much generality. Also, because of the lack of

constraints on the structure of the CONTENTS, anything which can be

described in Syspal can be stored directly in a Catoan-object. (It can be

argued that Syspal's data description facilities are universal; such

arguments are outside the coverage of this report.)

Because Catoan allows an arbitrary network of objects in its naming

structure, relationships which cannot be expressed in some other systems

(for example, hierarchical naming environments) can be easily expressed in

Catoan. Objects can be composed of sub-objects, which may themselves be

composed of further sub-objects, any of which (at any level) may be part of

other objects.

In the basic Catoan-object, there is no provision for enforcing

protection (except at the CONTENTS's type level, which is somewhat clumsy).

Protection is, however, introduced as a refinement. This refinement is

merely a suggestion, and is presented as such to re-enforce its

optionality. For similar reasons, cross-references and version maintenance

schemes are extensions and refinements, and are not critical to the basic

theory.

No mechanisms for concurrency control have been presented in this

report. This is because there are very many schemes, ranging from

-114-

Lm

Chter Six Catoan S and Evaluation

Section B Completeness

"classical" locks, to monitors [14], to semaphores, to event counts (25],

to some very recent, perhaps esoteric schemes aimed primarily at

distributed systems (24]. If one desired to implement concurrency control

atop the basic Catoan-object, or any of its refinements, this could be

done, and should not impact the abstractions which exist.

4

When designing a computing system, recovery from semi-catastrophic

rfailures and from human errors is often considered. The concept of

off-line backup of on-line storage is crucial to a system which portends to

be a safe repository for its users* data [31]. However, backup is not

4igeusaed in this report. To make Catoan complete, some form of off-line

backup must be included, at some level. This was not done here because of

the implications that lack of trust has on the ability to access data so as

to transfer it to off-line backup. If Catoan is, in fact, not trusted, the

task of backup must be relegated to the memory manager, which is trusted,

or to a higher level abstraction which is in a better position to implement

backup when it is needed.

VI.C. Trade-Offs.

4n implicit trade-off has been responsibility for memory management.

Most filing systems perform their own buffering between primary and

secondary memory; Catoan relies on the underlying memory management system

-A'5-

qhater Six Catoan Summar and Evaluation

Section C Tradeoffs

for this. While this certainly sLmpliftes Catoan, and helps support the

multiple-level, abstract system concept [23, 36, 2], there may be a

sacrifice in control over buffer management, resulting in a decrease in

system performance.

In a memory system which is "automatically" managed, the performance

degradation will generally be local, visible only to the user of Catoan

whose application would benefit from detailed control over the buffer

management. However, sur:h local control will often result in degraded

global performance, because the memory (buffer) manager, which has more

global information than the filing system, is being circumvented.

An instance of the "classical space-time trade-off" can be found in

version maintenance. One has the option of very fast access to any version

(at the expense of storing each version in its entirety), or of very little

storage (at the expense of building the requested version from a "base" by

applying "updates"). This trade-off has been left to the user of Catoan's

version maintenance system, by allowing him to specify a "base," a set of

"updates," and a program to apply the updates to the base. See

Section III.D for further details.

The view of stored objects presented by Catoan is very unlike that

K presented by most existing object managers (filing systems). Usually,

-116-

Chapter Six Catoan SummaR. and Evaluation

Section C Tradeoffs

stored objects are viewed as a one-dimensional array of records (byte

strings). This view allows the object to be access in pieces, rather than

requiring that it be accessed in its entirety (as far as the object manager

is concerned). This decision allows objects to be viewed abstractly, and

to have an internal structure which is unknown to Catoan. If a more

*classical view is desired (because, for example, most of the object are

very large, and one generally wants to access only a small portion of them,

r anyway), a record-at-a-time view could be built atop Catoan, using Catoan

to actually store the object. Because Catoan's CONTESTS READ operation

returns a pointer to the contents, rather than the entire contents itself,

such a system would not require modification to Catoan, nor would it

generate excessive memory referencing from reading in the entire contents.

What happens if some portion of memory is volatile? How must Catoan be

changed so that a user can be assured that his data is in stable storage?

Catoan must provide the user with a MAKE RON VOLATILE operation which

performs a "synchronous write" so that, upon termination of the operation,

the user is assured that the object has been transferred to non-volatile

storage. This requires a similar operation exist for the memory manager,

since the view it presents to Catoan is that of non-volatile storage.

A very important trade-off is that of trust. Because Catoan need not

be trusted, the information in the DATEs and PRINCIP.Ls fields may be

-117-

Chapter Six Catoan Summar and Evaluation

Section C Tradeoffs

inaccurate. Lack of trust implies a certain difficulty in enforcing

security and in implementing backup, and implies certain uncontrolled

accessibility to Catoan-objects (in particular, to the CONTENTS). But,

Catoan is optional. If Catoan provides protection mechanisms, if Catoan is

secure, then it must be trusted, and it probably becomes mandatory.

VI.D. Remainini Work.

P4uch has been done on and with Catoan. Much is left to do: more

theory needs developing, practical experience needs to be gained with the

concepts embodied in Catoan. This section describes some of the work which

remains to be done relating to Catoan and the ideas presented in this

report.

As mentioned in Chapter One, Catoan n.ight be used on a machine which is

part of a multi-node network. In such an environment, one often wants to

name resources which exist at remote nodes. Furthermore, one often wants

to locate a resource thought to exist somewhere in the network, but at an

unknown node. Despite the need for investigation into this area, this

report on Catoan does not address network-wide filing systems or naming

environments. One possible view of a network-wide filing system built

using Catoan is to consider the remote nodes as representing other members

of a collection of multiple naming environments. It might then be possible

-118-

Chapter Six Catoan SumaL. and Evaluation

Section D Remaining Work

to apply the concepts presented in Chapter Five to the problems of

network-wide filing systems.

Issues of protection, security, and sharing are relevant to the goals

of Catoan. These have been discussed briefly throughout this report;

* additional work is needed to present a unified view of protection and

sharing to the users of Catoan that is both convenient and powerful.

As discussed in Section III.C.2, when implementing cross-references

there is a problem of who pays for the storage occupied by the

cross-reference information. This is part of a more global problem of how

to determine the amount of storage in one principal's space which is

occupied by the data of another principal (including "The System"). I know

of no previous work done in this area.

Designing a system which is robust in the face of host-system failures

is still a large open research question. Because Catoan manages permanent

data objects, it should provide stability in the face of failure.

Lastly, how might one implement Catoan? How difficult would it be? Is

the environment Catoan presents to its users really the right one? Is

Catoan complete, sufficient, and easy to use? Only an attempted

, "implementation can answer these questions.

~-119-

hPPENDtX k

SUMMARY OF THE SYSPAL PROGRAMMUNG L.ANGUAGE.

This appendix summarizes the salient features of Syspal (1) (10) as

they relate to this presentation. The reader is warned that this is not a

definitive explanation of the language, nor is it complete. The reader is

warned further that this represents Syspal as I knew it in May, 1979, while

the language was still undergoing active development. The language as it

actually is defined at the time this paper is read, or even published, may

differ substantially from the summary presented here.

Syspal is a dati-abstraction language, based on Pascal, and geared

toward systems programming. Much of the syntax and semantics are derived

from Pascal, and from CLU. One of the design goals of Syspal is to support

modular programming conveniently.

(1) Syspal is an experimental programming language under development 4t
Hewlett-Packard Laboratories, Electronics Research Center, Computer
Research Laboratory, in Palo Alto, California.

-120-

" -

Apendix A Catoan S

Syspal provides the programmer with a few standard, "built in" data

types. Various forms of enumeration types, which specify the range of

values of a type, are available. Using enumerations, the usual INTEGER,

a REAL, BOOL, and CHAR types can be defined. For example, INTEGER might be

defined

INTEGER - TYPE -1000000 TO 1000000

if INTEGERs between positive and negative one million were desired. The

REAL type might be

REAL - TYPE PRECISION 6 EXPONENT 32

stating that six digits of precision and an exponent between positive and

negative thirty-two was available. BOOL, representing truth and falsehood,

could be defined

BOOL - TYPE UNORDERED(TRUE, FALSE)

where UNORDERED specifies that the relations based on order (less, greater,

et ceterae) are not defined on BOOLs (though equal and not equal still

are). The CHAR type represents the ASCII character set, and is an ORDERED

collection of the values according to the ASCII collating sequence.

In addition to the scalar types, aggregates are provided by Syspal.

Two kinds of aggregates exist: RECORDs and ARRAYs. ARRAYs are homogeneous

- collaections of elements which can be referenced using numeric subsc1v:s.

-121-

Appendix A Catoan S .2al

A definition like

x: kRRAY(L TO 6) OF INTEGER

defines "x" to be a six element ARRAY of INTEGERs. The declaration

y: ARRAY(*) OF CIRCULAR(0, 1, 2)

specifies "y" as an array with unknown size of modulo-three integers.

RECORDs allow non-homogeneous data to be iicluded in the same

aggregate. The elements of RECORDs are accessed by their field names. For

example, suppose the following definition were part of a Syspal program:

employee: RECORD
name: string(30);
addr: RECORD

street: string(35);
city state: string(35);
zip code: 0 TO 99999;
END; laddress

salary: 10000 TO 500000;
monthly-productivity: ARRAY(i ro 12) OF 0 TO 10;
END; Iemployee

This defines the variable "employee" to contain four fields: "name" (a

character-string of length thirty; see Section I.C for a definition of

strings); "addr" (which itself is a RECORD, consisting of two thirty-five

character strings and a non-negative integer less than 100,000); "salary"

(an integer between 10,000 and 500,000), and "monthly-productivity" (which

is another aggregate: an ARRAY containing twelve elements, each of which

* - is an integer between zero and ten).

-122-

&pend ix A Catoan Sa_

In addition to being able to define variables, the Syspal programmer is

allowed to define new types. This is done in the same way that INTEGER,

REAL, et ceterae were defined above. For example,

address - TYPE RECORD

. street: string(35);
city state: string(35);

i zip code: 0 TO 99999;
END; !address

defines a type called "address," with the same structure as the "addr"

field in the "employee" structure above (also called "employee.addr"). 1k

programmer-defined type (call it "PDTP") can be an extension of some other

type (the "base type," call it BTP)., meaning tat PDTP is built on BTP and

"extends" it. Unless specifically prohibited, an extension of a type will

match the base type for the purpose of compile-time type checking.

Defined types can have user-specified parameters, as shown in the

definition of the "string" type found in Section I.C. Parameters are very

useful when defining modules, such as a stack consisting of INTEGERs, or of

REALs; see below for a discussion of modules.

-123-

Appendix A Catoan W

One can also define a variable or type as the UNION of two or more

types. This specifies that any of the base types might be the type of the

defined variable.

Syspal provides pointers. Pointers are typed, and can refer to only

* one kind of object (as opposed to PL/t pointers, which can reference

anything). A pointer to an INTEGER is declared

pint: UINTEGER;

and a pointer to an address would be

paddr: @address;

If the value of "pint" were assigned to "paddr," an error would be raised.

Control Structures.

Most of the "usual" flow control constructs exist in Syspal.

Conditionals ([F-THEN-ELSE and CASE), iteration (WHILE, REPEAT, FOR, and

LOOP [infinite repetition$), exception handling (EXCEPTION), and procedure

calling (CALL), among others, are provided. In addition, iteration can be

controlled by a "sequencer" (I), which is a co-routine to provide the next

value for iteration.

(1) This is very similar to the CLU "iterator" [221.

-124-

i'V

hopendix A Catoan sZ_ al

Procedure and Function Definition and Calling.

Procedure declarations have the form:

name: PROCEDlRE(parmL:pep, parm2:t.ep, ...)
RETURNS (vart: .. elv, va2:te2.v, ...)
EXCEPION(co nd(exvarsl), co nd2(exvars2), ...);

This defines a PROCEDURE called name. The parameters are parmN (N being 1,

2, et ceterae), of types tpeNNa. The procedure returns values of types

tU.eNv through the internal names varN. Exceptional conditions condN can

be raised in this procedure; they will return with parameters exvarsN,

respectively. The parameters, RETURNS clause, EXCEPTION clause, and vars

portion of the exceptional conditions ("condN") are optional.

As mentioned in Section I.C, Syspal recognizes the type of the implicit

operand to module operations, and, furthermore, assigns this implicit

operand to the keyword "SELF." Type checking is performed for calling

sequences, as well as for other variable references.

In addition to a normal procedure termination, an abnormal termination

can occur. There is only one way for a procedure or function to terminate

normally: assign a value to the RETURNS variable defined in the function

header (if any exist), and exit through the end of the procedure or

function. An abnormal termination is indicated by the RETURN statement.

-125-

&_endix A Catoan

Abnormal termination can, in addition to returning the name of the

exceptional condition, return values which can be used by the calling

procedure to diagnose the error.

* Hodulariti, Data Abstractions, and Interfaces.

Syspal is a data-abstraction language, similar to CLU [221, for

~m. example. The Syspal analogue to the CLU cluster is a "module." When one

defines an abstract data type, one does so by defining the module which

will manage the abstraction. Variables of the abstract type are then

declared to be of the module's type.

The abstraction is defined by the "interface" of the module. The

interface defines those things (operations, constants, type declarations,

et ceterae) which are to be visible to users of the abstraction; all other

information about the module is invisible to all but the module itself. A

module can have many interfaces; for example, the creator of an object

might be able to modify the object, but he might not want others to be able

to modify it, only to read it. Figure 12 shows the definition for a module

implementing a STACK abstraction. The module definition, including the

operations and representation, and three interfaces are presented.

-126-

A_.endix A Catoan ssl

MODULE stack(elementtype: TYPE, stack lim: INTEGER):
stack, strict stack, loose stack, pseudo-stack;

new: PROCEDURE
RETURNS(stk: @stack)
(* Creates a new STXCK, of "type" ELEMENT TYPE, with
STCK LIM elements (maximum). *);

ALLOCATE SELF;
SELF.tos :- 0;
stk := EXT(SELF);
END PROCEDURE; !new

push: PROCEDURE(val: elementtype)

EXCEPT ION (stack over flow)A. (* Puts VAL onto the top of the stack. *);
- IF SELF.tos-stack lim THEN

RETURN(stack overflow);
ELSE SELF.tos :-# +1;

SELF.elements(SELF.tos) :- val;
END;

END PROCEDURE; !push

pop: PROCEDURE
RETURNS(top: element type)
EXCEPTION(stack under flow)
(* Return and discard the top of the stack. *);
IF SELF.tos-O THEN

RETURN(stack underfLow);
* ELSE top :- SELF.elements(SELF.tos);

SELF.tos :-# -1;
END;

END PROCEDURE; !pop

is-empty: PROCEDURE

RETURNS(ans: BOOL)
(* Returns TRUE if the stack has no elements. *);
ans :- SELF.tos-O;
END PROCEDURE; !is-empty

-127-

ApedxA Catoan Y2a

make empty: PROCEDURE
?* Forces the stack to have no elements. ;

i : INTEGER;
operation not defined on type: EXCEPTION;

i :- 1;
EXCEPT ION

ON operation not defined on type Do
£ :- stack 11.44;

* BEGIN
WHILE 1<-stack lim DO

* SELF.eleruents(i) :- NULL(eIlement type);
1 4 1
END;

END;
SELP.tos :- 0;
END PROCEDURE; Imake empty

extract: PROCEDURE(index: INTEGER)
RETURNS (elem: el~ement type)
EXCEPTION(stack nonexistent element(size: I TO stack Iim))
(* Returns the INDEXth-from-top element (top - 1).)

IF index>SELF.tos THEN
RETURN(tack-nonexistent element(SELF. tos));
ELSE etc. :- SELF.elements(SELF.tos-(index-1));

END PROCEDURE; lextract

insert: PROCEDURE(val: element type, index: INTEGER)
EXCEPTION(tack nonexistent element(size: 1 TO stack i.))
(* Sets the INDEXth-from-toi element to VkL (top -1).C;
IF index>SELF.tos THEN

RETURN(stack nonexistent element(SELF. tos);
ELSE SELF.elseents(SELF.tos-(index-1)) :- val;

END PROCEDURE; linsert

SELF: RECORD
tos: 0 TO stack i.;-
elements: A.RRAY(1 TO stack-lim) OF element type;
END; ISELF

END MODULE; Istack

-128-

Apendix A Catoan S sI

Itnterface definitions.

(stack(elementtype: TYPE, stack lim: INTEGER),
strict stack(element type: TYPE, stack lim: INTEGER)): INTERFACE;

new: PROCEDURE
RETURNS(stk: @stack);

push: PROCEDURE(val: element type)
EXCEPTION (stack-over flow);

* -pop: PROCEDURE
* RETURNS (top: element type)
* EXCEPTION(stack underflow);

is-empty: PROCEDURE
RETURNS (ans: BOOL);Istack overflow, stack underflow: EXCEPTION;

END LNTERFACE; !stack, strict stack

loose stack(elementtype: TYPE, stack lim: INTEGER): INTERFACE;
%VISIBLY EXTENDS strict stack(element-type, stack lim);

makeempty: PROCEDURE;
extract: PROCEDURE(index: INTEGER)

RETURNS (elem: elementtype)
EXcEPrION(stack nonexistent element(size: I TO stack lim));

stack nonexistent element(size: I TO stack lim): EXCEPTION;
END INTERFACE; !loose stack

pseudostack(element type: TYPE, stack lim: INTEGER): INTERFACE;
ZVISIBLY EXTENDS loose stack;

insert: PROCEDURE(val: element-type, index: INTEGER)
EXCEPTION(stack nonexistent element(size: 1 TO stack lin));

END INTERFACE; !pseudo stack

Figure 12: A Module Implementing a Stack.

-129-

kvendix A Catoan S ~.al

The STkCK module has two parameters: defining the type of the STkCK's

elements ('element type") and its maximum size ("stacklimr"). These

parameters are passed to SThCK when a new STkCK is created. They are

supplied by the programmer when the particular STkCK variable is declared.

For example,

I

inventory: stack;

inventory :- NEW stack(inven control record, 150);

declares "inventory" to be a STkCK, and instantiates it as a stack of

"Inven control records," with at most one hundred fifty

inven control records. The list of names after the last colon in the

MODULE statement is a list of the interfaces which this module meets.

The NEW operation, invoked by the NEW statement, initializes the fields

in the representation of the STACK, and returns the external (abstract)

representation of a stack ("EXT(SELF)"). -

PUSH and POP present no particular surprises. They do illustrate,

however, the exception-handling mechanisms of Syspal. The only way to

terminate the execution of a procedure normally is to exit through the last

statement of the procedure body, having previously assigned to the

appropriate variables whatever values are to be returned. If an

-130-

returnins ox Ab Catoan §yral

exceptional return is to be performed, the RETURN statement is used, naming

the exception, and specifying the parameters which might be returned with

the exception (see EXTRACT and INSERT).

The IS EMPTY operation is a predicate to allow the user to see if the

stack has any elements. MAKE EMPTY alters the stack to ensure that, if

IS E PTY were called immediately after make empty, IS EMPTY would return

TRUE.

EXTRACT and INSERT allow direct access to the elements of the stack.

If an undefined element is accessed, the exception

STACK NONEXISTENT ELEMENT is signalled, and the current size of the stack

is returned with the exception name.

The interfaces allow various forms of access to the STkCK abstraction

(modulel. If a strict stack discipline is desired (access to only the top

of the stack), the "stack" or "strict stack" interface would be used. It a

slightly looser stack discipline is desired, allowing writing only through

PUSH but reading anywhere in the stack, "loose stack" would be used. If no

controls over the usp. of the stack, but the convenience of a stack, were

desired, the "pseudo-stack" interface would be appropriate.

-L31-

612endix A Catoan ya

Note that the "loose stack" and "pseudo-stack" interfaces are built on

other interfaces. The "%VISIBLY EXTENDS" statement specifies that the

named interface should be considered as part of this interface, and that

this interface extends it. It further specifies that all information in

the extended interface should be explicitly visible to the user. (In

contrast, %EXTENDS would allow the extending interface access to the

operations of the extended interface, but would not allow the user access

to the information in the extended interface unless it was explicitly

given.)

;

-132-

"a, "

References

[11 Almes, G. and G. Robertson. "An Extensible File System for HYDRA,"
Carnegie-Mellon University, Department of Computer Science,
CMU-CS-78-102, February 1978.

[2] Anderson, T., P.A. Lee, and S.K. Shrivastava. "A Model of
Recoverability in Multi-Level Systems," IEEE Transactions on
Software Engkneer i SE-4 (November 1979), pp. 486-494.

[31 Baker, Henry G., Jr. "Actor Systems for Real-Time Computation."
M.I.T. Laboratory for Computer Science Technical Report TR-t97,

, 1978.

(41 Bishop, P.B. "Computer Systems with a Very Large Address Space and
Garbage Collection." M.I.T. Laboratory for Computer Science

Technical Report TR-178, 1977.

(51 Bonanni, L.E., and A.L. Glasser. SCCS/PWB User's Manual. Bell
Telephone Laboratories, 1977.

(6] Dahl, O.-J., and K. Nygaard. "SIMULA -- an ALGOL-Based Simulation
Lanugage," Communications of the ACM 9 (September 1966)1 pp.
671-678.

[7] DEC. DECSystem-20 User's Guide. Digital Equipment Corporation,
AD-4179B, 1973.

(81 Dolotta, T.A., R.C. Haight, and E.M. Piskorik, editors. PWB/Unix

User's Manual -- Edition 1.0. Bell Telephone Laboratories, 1977.

(91 E? 'lake, D., et al. ITS 1.5 Reference Manual. M.I.T. Artificial
Intc-ligence Laboratory Memo AIM-16T, July 1969.

(10] Fraley, Robert A. "Syspal: A Pascal-Based Language for Operating
System Implementation," Proceedins of Conmsn, Srin 1978.
IEEE, 1978, pp. 32ff.

[111 Glasser, Alan L. "The Evolution of a Source Code Control System,"
preprint of a paper submitted to the IEEE Transactions on
Software Eqnjneern&. Bell Telephone Laboratories, 1978.

(121 Goldberg, A., and A. Kay, editors. SMALLTALK-72 Instruction Manual.
Xerox Palo Alto Research Center, SSL-76-6, 1976.

[(31 HP-GSD. MPE Commands Reference Manual, Second Edition.
Hewlett-Packard Company, General Systems Division, 1973.

-133-

References

[14] Hoare, C.A.R. "Monitors: an Operating System Structuring Concept,"
Communications of the ACM 17 (October 1974), pp. 549-557.

([151 HISI. Multics Pro&rammers' Manual Reference Guide. Honeywell
Information Systems, Incorporated, 1975.

(16] iBM. OS/VSl JCL Services. International Business Machines
GC24-5100-4, 1976.

(17] ------- OS/VSL Utilities. International Business Machines
GC26-3901-0, 1977.

* (18] [vie, E.L. "The Programmer's Workbench -- A Machine for Software
* Development," Communications of the ACM 20 (October 1977), pp.

746-753.

(19] Lampson, B.W., and H.E. Sturgis. "Reflections on an Operating
System Design," Communications of the ACM 19 (May 1976), pp.
251-265.

[20] ------- "Crash Recovery in a Distributed Data Storage System," to be
published in Communications of the ACK.

[21] Liskov, B.H., et al. "Abstraction Mechanisms in CLU," Communications
of the ACH 20, (August 1977), pp. 564-576.

(22] Liskov, B.H., et al. "The CLU Reference Manual," Computation
Structures Group Memo Number 161. M.I.T. Laboratory for
Computer Science, July, 1978.

(231 Parnas, D.L. "On the Criteria to be Used in Decomposing Systems into
Modules," Communications of the ACM 15 (December 1972), pp.
1053-1058.

(24] Reed, D.P. "Naming and Synchronization in a Decentralized Computer
System," M.I.T. Laboratory for Computer Science Technical Report
TR-205, 1973.

[25] ------- , and R.K. Kanodia. "Synchronization with Eventcounts and
Sequencers," Communications of the ACM 22 (February 1979), pp.
115-123.

(26] Ritchie, D.M., and K. Thompson. "The Unix Time-Sharing System,"
Communications of the ACM 17 (July 1974), pp. 365ff.

-134-

References

[271 Rochkind, M.J. "The Source Code Control System," IEEE Transactions
on Software EKaineerim& SE-L (December 1975), pp. 364-370.

(28] Saltzer, J.H. "Topics in the Engineering of Information Systems."
M.I.T. Department of Electrical Engineering and Computer
Science, 1977.

(29] Schindler, G.E., Jr., editor. "Unix Time-Sharing System," The Bell
SystemR Technical Journal 57 (July-August 1978), part 2.

* (30] Steele, G.L., Jr. "Multiprocessing Compactifying Garbage
Collection," Communications of the ACM 18 (September 1975), pp.
495-508.

[31] Stern, J. "Backup and Recovery of On-Line Information in a
Computer Utility." M.I.T. Project MAC Technical Report
TR-116, January, 1974

(32] thompson, K., and D.M. Ritchie. Unix Proranmmer's Manual. Bell
Telephone Laboratories, 1975.

[33] Wadler, P.L. "Analysis of an Algorithm for Real Time Garbage
Collection," Communications of the ACM 19 (September 1976), pp.
49 1-500.

[34] Wulf, W.A. "ALPHARD: Toward a Language to Support Structured
Programs." Carnegie-Mellon University, Department of Computer
Science, April 1974.

[351 ------ , editor. "An Informal Definition of ALPEARD." Carnegie-Mellon
University, Department of Computer Science, CMU-CS-78-t05,
February 1978.

(36] ------ , R. Levin, and C. Pierson. "Overview of the Hydra Operating
System Development," Proceedings of the Fifth SoEIum on
_ratin Systea Prinpls, November 1975.

[371 Wulf, W.k., R.L. London, and M. Shaw. "Abstraction and
Verification in ALP~kRD" Introduction to Language and
Methodology." Carnegie-Mellon University, Department of Computer
Science, ,Jun,! 1976.

-135-

OFFICIAL DISTRIBUTION LIST

Defense Technical Information Center
Cameron Station
Alexandria, VA 22314 12 copies

Office of Naval Research Office of Naval Research
Information Systems Program Code 455
Code 437 Arlington, VA 22217
Arlington, VA 22217 1 copy

2 copies
Dr. A. L. Slafkosky

Office of Naval Research Scientific Advisor
Branch Office/Boston Commandant of the Marine Corps

* Building 114, Section D (Code RD-I)
666 Summer Street Washington, D. C. 20380
Boston, MA 02210 1 copy

icopy
Office of Naval Research

Office of Naval Research Code 458
Branch Office/Chicago Arlington, VA 22217
536 South Clark Street 1 copy
Chicago, IL 60605

1 copy Naval Ocean Systems Center, Code 91
Headquarters-Ccanputer Sciences &

Office of Naval Research Simulation Department
Branch Office/Pasadena San Diego, CA 92152
1030 East Green Street Mr. Lloyd Z. Maudlin
Pasadena, CA 91106 1 copy

1icopy
Mr. E. H. Gleissner

New York Area Naval Ship Research & Development Center
715 Broadway - 5th floor Computation & Math Department
New York, N. Y. 10003 Bethesda, MD 20084

I copy lcopy

Naval Research Laboratory Captain Grace M. Hopper, USNR
Technical Information Division NAVDAC-OOH
Code 2627 Department of the Navy
Washington, D. C. 20375 Washingon, D. C. 20374

6 copies I copy

Assistant Chief for Technology
Office of Naval Research
Code 200
Arlington, VA 22217

1 copy

k-.

__. m ,

