AD=A083 491

UNCLASSIFIED

MASSACHUSETTS INST OF TECH CAMBRIDGE LAB FOR COMPUTE==ETC F/6 9/2

A MANAGER FOR NAMED, PERMANENT OBJECTS, (U}
APR 80 A M MARCUM
MIT/LCS/TM=~162

NO0014=78~C=0661
NL

ol
“

;
!

ADAO83491

00g

DB mE

LABORATORY FOR I%g;%@gggogﬂs
COMPUTER SCIENCE TECHNOLOGY

MIT/LCS/TM-162

A MANAGER FOR NAMED, PERMANENT OBJECTS

Alan Michael Marcum

April 1980

The research on which this report is based was supported
in part by the Camputer Research Laboratory of the
Electronics Research Center of Hewlett-Packard Company
through the Electrical Engineering and Computer Science
Department's Co-operative Education Program. It was also
supported in part by the Advanced Research Projects Agency
of the Department of Defense and was monitored by the
Office of Naval Research under Contract No. N00014-75-C-0661

545 TECHNOLOGY SQUARE. CAMBRIDGE, MASSACHUSETTS 02139

80 4 91

‘
S
\ .).‘
L
JHp

TN TSt s X 7 te

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE BEF O RM

- 2. GOVT ACCESSION
@ MIT/LCS/TM-162) / -l
) j}’ A /‘

%’ﬁn:(d Subtitle)
B . / //z 'Qa 4%
6 A Manager for Named, 7Pexmanent Objects « e B.S.&M.S."Iheses, y'17, 1

6. PERFORMING ORG. REPORY NUMBER

7

IN —-7)

! MIT/LCS/TM~162
7. AUTHOR(a) 8. CONTRACT OR GRANT NUMBER(s)
:) <l
/0| Man Michael/Marcum (45 |no0014-75-c-0661 -
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

MIT/Laboratory for Camputer Science
545 Technology Square

Cambridge, MA 02139 e

t1. CONTROLLING OFFICE NAME AND ADDRESS "'“‘1 -+42. REPOAT DAT
ARPA/Department of Defense (/. Aprid 1980 /
1400 Wilson Boulevard - T TR RE oS
Arlington, VA 22209 139

Td. MONITORING AGENCY NAME & ADDRESS{H ditferant from Controlling Oftice) 15. SECURITY CLASS. (of this report)

ONR/Department of the Navy e~ .
Information Systems Program . /7 / z ./ [Unclassified
Arlington, VA 22217 7i AN TSa, gggésgtlglcAT!ONTOOWNGRAD!NG

16. DISTRIBUTION STATEMENT (of this Report)

This document has been approved for public release and sale;
its distribution is unlimited

P

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, i different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse alde if necessary and Identify by block number)
filing system
data abstraction
permanent storage

R e ™" T

..
20. %RACT (Continue on reverse side if necessary and identify by block number)

Stori.ng data in a computing system for a long time has been of interest
ever since it was possible to do so. Classically, one stores bit-or byte-
strings, or perhaps arrays of ”records.” Yet, current programming philosophy
stresses data abstraction techniques and concepts. This report describes an
object-oriented filing system which stores abstract objects, and allows the
user to view the system as though one were storing abstract objects, rather
than storing some external representation of the abstractions. Names may be I

attached to the (permanent) objects, and objects may be contained in (and ma ¥
DD , 35", 1473 eoiTion oF 1 NOV 68 1s OBsoLETE e f !
g Y

SECURITY CLASSIFICATION OF THIS PAGE (When Data 8»;7)

. . S ,
r;/¢ 7 (‘;// L //‘*/

SICUEE‘Y CLASBIPICATION OF THIS PATE(Wien Dale Enlered)

20. ¥ contain) other objects. Furthermore, an object may be contained in more
than one cbject, thereby allowing the naming structure to be a network.

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

[P

A MANAGER FOR NAMED, PERMANENT OBJECTS

by

Alan Michael Marcum

June, 1979 |(

© 1979 by Alan M. Marcum

Massachusetts Institute of Technology

Laboratory for Computer Science

Cambridge Massachusetts 02139

A ok

el ke

A Manager for Named, Permaneant Objects
by

Alan Michael Marcum

Submitted to the Department of
Electrical Engineering and Computer Science
on May 17, 1979 in partial fulfillment
of the requirements for the Degrees of
Bachelor of Science and Master of Science.

ABSTRACT

Storing data in a computing system for a long time has been of interest
ever since it was pogsible to do so. Classically, one stores bit- or
byte-strings, or perhaps arrays of "records." Yet, current programming
philosophy stresses data abstraction techniques and concepts.

This report describes an object-oriented filing system which stores
abstract objects, and allows the user to view the system as though one were
storing abstract objects, rather thaa storiag some external represeantation
of the abstractions. Names may be attached to the (permanent) objects, and
objects may be contained in (and may contain) other objects. Furthermore,
an object may be contained in more than one object, thereby allowing the
naming structure to be a network.

CR Categories: 3.73, 4.33, 4.34, 4.9.

Key Words: filing system, data abstraction, permanent storage.

Thesis supervisor: David D. Clark,
Research Associate i{n Electrical Engineering and Computer Science

-2-

T e - A i T

w LR, NPT - e -
Dedication

I dedicate this thesis report to my parents, Stan and Helen. They have
provided support and encouragement always. Sometimes, it has been
difficult for them -- I would drive home from school at the end of the
term, spend the night there, and then leave the next morning to go skiing,

to see friends, to go out to HP to begin a work assignment. Often, I would

spend more time driving home than I would spend at home.

Thanks, folks, for your love, your support, your understanding, your
friendship. To express my appreciation, in whatever small way this might

be, I dedicate this work to you.

Acknowledgements

My thesls supervisor, Dave Clark, provided me with constant guidance,

advice, and support. His efforts to bridge the continental distance

between us while T worked at HP were extraordinary.

clarify my thoughts and the exposition of those thoughts were remarkable.

Dave read preliminary versions more quickly than 1 could reasonably expect.

My deepest thanks go to him.

The members of the Computer Systems Research Group at MIT’s Laboratory
for Computer Sclence have helped me crystallize some of the ideas presented
in the following chapters., Many of them helped me, despite my very brief
association with the group. Some of the people, degerve special thanks.
Allen Luniewski has been mentfoned in several of the other CSR theses I
have read recently; despite a very busy schedule, and a thesis of his own
to write, Allen has taken time to talk with r2 and help me. Karen Sollins

! likewise took time out from writing her thesis to discuss some of my ideaa.

Wayne Graamlich helped me find several references on Hydra. Gene Ciccarelli

-l

The research on which this thesis is based was performed under the
Electrical Engineering and Computer Science Department’s Co-operative
Education Program ("VI-A"), at Hewlett-Packard Laboratories, Computer
Research Laboratory, in Palo Alto, Californfa. To express my appreciation
for the opportunity of participating in VI-A, my first thanks go to the
Department’s Co-operative Education Program, and especially to its

director, John Tucker, and his secretary, Lydia Wereminski.

His efforts to help me

e T

v

sy o

Acknowledgements

and I talked a great deal late several nights. In general, people were

just there, ready to talk, or to listen.

Thanks are due also to Roy Levin, of Xerox’s Palo Alto Research Center
(Xerox PARC). His exceptfionally prompt reply to a request for information

about Hydra is greatly appreclated.

Jerry Morrison, again of Xerox (but with their System Development
Division -- Xerox SDD), helped transfer drafts of this report to HP Labs.

My thanks to him for his assistance.

During the previous five years I have been associated with the MIT
Varsity Rifle Team, first as a team member, then as team captain, and this
year as assistant coach. 1In addition to the Rifle Team, there was also the
entire MIT shooting community, {n which I include the Varsity Pistol Team
and the Pistol and Rifle Club, in addition to the Varsity Rifle Team. A
finer, more fun-loving bunch of people exists nowhere. They gave me thelr
friendship, companionship, and competition, and provided a refuge when I

had to "get away from it all."” Thank you for everything.

Finally, my thaaks go to my co-workers at HP Labs. Many theses I have
read claim that a list of such people is too long to include; I feel they
all daserve notice. Jim Duley, Bob Fraley, Bruce Hamilton, Ron Johnsaton,

Nancy Keandzierski, Jeff Levinsky, Martin Liu, Dave Means, Darrell Miller,

5=

et U s wmm o~ Sy

C Eth s

e

Acknowledgements

Bruce Nordman, Jim Stinger, Howard Steadman, Paul Stoft, and Ken Van Bree
waded through drafts of the thesis proposal and the thesis report, giving
me their comments and ideas, often with not nearly enough time to do what
was asked, but it was always done nonetheless. Besides doing their jobs,
these people, in addition to John and Lydia, help keep VI-A going. We had
many discussions, ranging from friendly chats to heated debates, between
just two of us, or with the entire group. Bob Fraley, Bruce Nordman, and
Dave Means deserve special thanks: Bob for his special help 1ia sorting out
my ideas; Bruce for his assistance in transferring coples of drafts of this
report to the people at the Lab; Dave for his consultation when I most
needed it. Thaonk you, people, for your support -- both personal and

technical.

I hereby grant to MIT and to the U.S.
Government a non-exclusive, royalty-free, irrevocable,

license to use, reproduce and distribute copies of my work,
entitled A MANAGER FOR NAMED, PERMANENT OBJECTS.

- I W g,

-

The research on which this report is based was supported ia part by the

Computer Research Laboratory of the Electronics Research Center of

Hewlett-Packard Company through the Electrical Eagineering and Computer

Science Department’s Co-operative Education Program. It was also supported

in part by the Advanced Research Projects Agency of the Department of

Defense and was monitored by the Office of Naval Research under Contract -
Number NOOQl4-75-C-0661.

Disclaimer
The English language has no explicitly neuter personal pronoun. Maay
people consider this an unfortunate omission. However, traditional proper
usage dictates that the personal pronoun "he" and its derivatives be used
when a neuter personal pronoun is required. I shall follow tradition, and

use "he," the Women’s Liberation Movement notwithstanding. I do not mean

to offend with my use of "he", merely to express myself cleanly and easily.

Table of Contents

ABSTRACT « v ¢« v+ s & o o o o o & o o o o o o o o o o o s o & o o o o 2
; DEDICATION . + & & o ¢ ¢ ¢ o o o o o o o o s o s o s s ¢ o o o o o+ 3
] ACKNOWLEDGMENTS. . . « & 4o o o o o o o o 2 o o o o s o o s o s « o« » &
DISCLAIMER . . « ¢ ¢ ¢ ¢ ¢ ¢ o o o o o o s o o s o o o s o s o o oo 1
TABLE OF CONTENTS. . & o + & ¢ o o o o o o s o s o s o« s s o o o o« « 8

TABLE OF FIGURES . . . ¢ ¢ ¢ ¢ ¢ ¢ ¢« 4 s o s o o s s « o o« o o o« o« 10

L. INTRODUCTION., . 4 ¢ ¢ o o ¢ o 5 o o o o o o s o o o o o o o « o« 11
A. The Problem. . o « ¢ ¢« ¢ o ¢ o o o o o o s o o« o o o & o 12
B. The Environment. « « « ¢« s+ ¢ s+ « o + o o o s« o o« » o » « 14
C. The Programming Laanguage: Syspal. 16
D. The "Things" . « « ¢ ¢« 4 ¢ & ¢ & o & ¢ s o o s « & » « « 20
E. Related Work s e e s e e e s e e e s s .o o 22
F. Plan for the Remainder of this Presentation. e e e s . . 23

o

TL. ANTECEDENTS . . & ¢ o 4 o ¢ o 5 o s o o s o s s s s o s s« o o o« 24

A, Honeywell’s Multics. « . « « « &+ ¢« & ¢ ¢ o & o o o« o & « 25

B. Hewlett-Packard’ s MPE/3000 « + & « o« « « « &+ « » 31

C. MisScellaneouS. « + « o o ¢ s o o o o s o o =« « s s o «» + 35
Lo Undx. & v ¢ ¢ v v ¢ o ¢ o 4 o o o o« o« o o o« « « 36
2. Hydra . . 4 ¢« 4 4 o v o e 0w s e e e e s e e 37 ~
3. Version Maintenance . . « « ¢« ¢ « « « « «» o « . 38

D. SUNMATY. ¢ « o = « « o o o o o s s s o o s o o« « « o « « 39

TI1. DEFINITION OF A "CATOAN-OBJIECT™ . . & ¢ ¢ &« ¢ v o = o« o « « « & 41
A. Issues: Containment, and Trust. « « « « « .« . 42 -
1. Contatnment and Catoan. « « « + « » . 43
2. Trust and Catoan. . . « o « o o o o o« o o o o« o 45
B. The Basic Object o e s e e s e« o 47
1. The Operations of the Basic Object. I ¥
2. Comments on the " SET" Operations 57
3. Naming and the DIRECTORY. . . « « « &« « « . . . 58 -
4. Storing Data: The CONTENTS 60
5. Protection and Security « « ¢« « + . .+ . 62
C. ARefifned Obfect . « « « ¢« ¢ ¢« 4+ o+ o o ¢ ¢ o o o s « + « 65
S ~ 1. Protection and Security 66
2. Cross-Referencing« . .+ .. . 170

L

~-8-
L o
1 .

Table of Contents

D. Versioned Objects. « ¢« v v v ¢ v v v v 0 s o « . 13 !
l. Version Naming. . . « + &« « ¢ ¢ ¢ ¢« v ¢ ¢« « & « 14
2. Storing and Implementing Versions 76 J
3. More on Version Naming. 8%
- E. Summary. ¢ . 0 4 0 0 i oo s o v e e e 86 J
IV. AN EXAMPLE: A SYSPAL PROGRAM OBJECT + o & « « . .
A, Motivation . . . ¢ ¢ o ¢ 4 ¢ ¢ 4 4 e 4 e e e e e e
. B. Definition . . . & ¢ ¢ v ¢ v v v o 04 h v e h e e e
. - Co USB:y ¢« ¢ 4 6 o v ¢ ¢ 4 o o o o s o o o o o s s o« o o
. D. Summary. . « o o ¢ ¢ ¢« ¢ o ¢ ¢ s o o o o s e s o e s .

F f V. IMPLICATIONS OF MULTIPLE NAMING ENVIRONMENTS
, r A. Disjoint Naming Spaces . . . « + ¢« ¢« & v s ¢ & 4 o v .
- B. A Standard Interface for Filing Systems.

C. Garbage Collection . . ¢ « v ¢ & ¢ ¢ ¢« o 4 ¢« o o o o &

D. SUNMATY. ¢« « o« o s s o« o o s o o s o o s o o s o o o«

VI. SUMMARY, AND EVALUATION OF THE PROPOSED SOLUTION . .

-~ A, Summary. . . ¢ . ¢ ¢ i 4 b e e e s e e s e e e e e
B, Completeness . . « o + o « o ¢ s o o o s o s s s o o
C. Trade=offs . . . v v ¢ ¢ ¢ ¢ ¢ o o o s o o o o o o « &
D. Remaining Work + + ¢ ¢ ¢ ¢ ¢« o v ¢ ¢« o o o & &

-~ APPENDIX A . & & & ¢ v v v bt b v v et e o v o o e e e e e

REFERENCES . . . ¢ 4 & o ¢ 4t ¢ s v ¢ @ o o o o o o v o o o

1Y
3 -
} 1)
NI -

.

Figure

Figure
Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure

Figure

Figure
Figure
Figure

Figure

1:

2:

3:

4:

10:

11:

: A Module Implementing a Stack + . « . .

Table of Figures

Sample Representations of Multics Objects
Ia: DIcectorY. v v & & ¢ ¢ ¢ ¢ o o o o 2 « « o o o « 29
Ib: Segment. . « ¢ ¢ ¢ 4 4 4 4 4 e e e e e e e s . . 30
les Link o & 4 0 0 0 0 0 it e s e e e e e e e e . e 3L
Sample Representation of an MPE/3000 File . . .
The Basic Catoan-Object, . . .
Catoan-Object with CONTENTS of Type "text". . ., .
An Access Control List Scheme for Catoan.
Additions to the Basic Object for Cross-Referencing . .

Version Naming Hierarchy.

Additional Information and Operations for Version
Maintenance ¢ ¢ ¢ ¢t 4t 4 4 4 e e e e e e ..

Definition of VERSION GENERATING PROCEDUREs
A Syspal-Program Object v v & v v ¢ 4 o o o

Standard, Minimal Interface for a Filing System . . .

-10-

29

34
49
52
69
72

75

78
80

91

.101

CHAPTER ONE

INTRODUCTION

In this chapter, I describe the problem to which this report is
addressed. The environment which was assumed during my research is
described (including the types of computing systems at which the results
presented here are aimed), as are the assumptions about that enviroament.
The programming language used in the examples and descriptions in this
report 1s also briefly described. A short description of the entlities in

the computing system which are addressed here is presented. I then discuss

related work, and present a plan for the remainder of the presentation.

—
)

Chapter One

Introduction
Section A The Problen

I.A. The Problem.

How does one store and reference things in a computing system?
Especially, how does one store and reference things whose existence ts
longer than that of the process which created them? What {s the structure
of these "things" which are stored? How can they be manipulated? What are
. the common characteristics of most of the "things" in a computing system?

Is there anything that can be done to those "things" which does not fit the

oy o

model of "common characteristics"?

One of the important trends in current computer science research is
data abstractions: programming using abstract data objects, whose
representation is not only of no concern to the user, but is forcibly

hidden from him.

When usfng a computing system, one usually wants to retain some data
for long periods of time. This requires some form of permaneat storage on

the computing system, and a mechanism for accessing the data stored in the

permaneat storage. Uanfortunately, many abstraction languages ignore the
issue of permanence, retaining objects only for the life of the process

which created them. Yet, users want permanent storage of their objects.

-12-

Chapter One Introduction

Section A The Problem

Once an object exists for longer than the 1ife of 1ts creating process,
it is desirable to attach a human-usable, hopefully mnemonic, name to 1it.
Such a desire requires a managing program for the names, and objects: to
translate names to internal object references, to provide a uniform

semantic interpretation for the names, and to manage the stored objects.

Classically, in order to permanently store an (abstract) object, and to
attach a name to it, the object had to be transformed from its internal
representation to some external represeantation (like a stream of bits),
This external representation was then passed to a "file system," which
stored the stream of bits representing the abstract object in a "file."
Usually, the conversions from internal representation to external
representation was very visible to the user. Such a transformation is
undesirable, as it negates some of the benefits of data abstraction

techniques.

In this thesis report, 1 shall address these, and other, issues. I
shall describe the "things" stored in a computing system, and how one might
manipulate, define, and characterize them. 1 shall compare and contrast
this work with that of other schemes for referencing and manipulating
"things." 1 shall examine how the definition of the "things" affects their

naming and other properties.

-13=

Chapter One

— e . S

Section B The Environment

[.B. The Eavironmeat.

Described here 18 a scheme aimed at a range of eanvironments. It will
work equally well on single user computing systems and on multiple user,
shared systems. Often, on single user systems, some of the problems of 1

concurreat accessing and of protection become moot points, and so the focus

- of this report will be on shared systems.
* -
} A virtual machine is similar to both the single and multiple user
systems. Within one process or collection of processes, it appears to be
‘ single user. However, many virtual machines running on the same real s
machine oftea share logical, as well as physical, resources. PFor example,
multiple virtual machines may share the same file system for permanent
storage, thereby sharing not only the physical storage devices but also the -
logical naming space. The scheme presented in the following chapters will
. also fill the needs of a virtual machine environment.
-
Loosely connecting autonomous systems together to form a network of
computers preseants some problems which I shall not address. For example,
there are the problems of naming resources on remote systems, locating ¢
resources on remote systems, and network-wide sharing and protection. Tt
{s hoped, however, that the geaneral network case is a simple extension of
‘ the work described here for a single, multiple user systenm. ~
e
-l4-
-

. »
. ¢ ON N

Chapter One Introduction

Section B The Environment

The specific environment assumed in this work is a single, multi-user
computing system, with a large address space (for example, at least a
trillion bits). Storage entities are accessed by presenting a unique
identifier for the entity (such as an address, a segment number, or a
capability) and an address within the entity to the memory managemeat
systea, which is responsible for the allocation of and access to the memory
resource. Within each entity in the system, creferences to other entities
may exist, and they may exist anywhere within the entity (rather than 1in

some particular location within the entity).

The memory resource i8 presumed to be virtual, though it could be
entirely real memory, provided there is a sufficiently large non-volatile
component. Permanent storage of an entity is achieved by not deleting the
eatity; future accessing iaust be done with the unique identifier used to
create the entity. Memory appears to be single level; all entities exist
in the same collection of memory. In particular, the notion of separate

permanent and temporary memories is foreign to my presumed environment.

In my assumed system eavironment, security is a major concern. An
objective is to minimize the number of trusted components in the system.
By "trust" I mean to give access to one’s data, whea that access is nat for

reason of explicit use. In most exlsting systems, the filing system i3

=15~

—11--"""1

Chapter One Lntroduction
Section B The Environment

trusted —- it can delete, modify, make inaccessible, or leak the data in

any file in the system. 1In the proposals following, the filing system

(object manager) need not be trusted to not modify or leak data. (It will
still be able to delete data, and to make them inaccessible.) The only

component of the system that will have to be trusted with one’s data is the

memory management system, which deals with data on a bit (or collection of
bits) level, and can place data in any address space in the gsystem. (If a
single-level, non-volatile storage system is used, the memory manager need
not have the "power" it would in a multiple-level, volatile (virtual)

storage system.)

An additional aspect of my presumed eanvironmeat 1is that the operating
syatem provided is a kernel, to which some user-eavironmeat features have
been added. The user-environment features need not be used 1f one desires
to write a replacement (or simply do without the feature). The filing
system provided with the kernel is part of the optional section of the

system; therefore, multiple filing systems could exist.

I.C. The Programming Language: Syspal.

The examples presented in the following chapters use the '"Syspal"

programming language. Syspal (10] 13 a Pascal-based systems programming

language being developed at Hewlett-Packard”s Computer Research Laboratory. <

-16-

Chapter One Introduction

- s s s - o

Section C The Language

Syspal is an object-oriented language, similar to MIT’s CLU [21, 22] or

Carnegie-Mellon’s Alphard [34, 35, 37). One defines an object by defining
the operations one can perform on the object; the actual realization of the
abstract object is not visible to its users. Following is a short summary
of some of the features of Syspal which are used in this report; a summary

of the relevant features of Syspal is in Appendix A,

Syspal provides only a very few types, and allows the programmer to
extend those types. Specifically, Syspal includes no "string for direct
use. Throughout this report, strings will have the representation

string(size: 0 TO 100) = TYPE RECORD
length: 0 TO size;

chars: ARRAY(l TO size) OF CHAR;
END; !string

with all the usual string operations defined.

The definition of STRING points out several features of Syspal.
Defined types can take one or more parameters which further specify the
type. The string definition shown above takes "size" as its parameter,
specifying the length of the string. The statement

life _history: string(50);

declares a variable as a string of length fifey.

-17-

Chapter One

Introduction

Section C The Language
There are two kinds of comments; a "here to end of line" comment

(denoted by "!"), and a "here to end of comment”" coamment (which uses "(*"

to open the comment and "*)" to close it).

Syspal allows pointers to be declared., Pointers are typed; that is, a
pointer refers to an object of some particular type, rather than a pointer
to anything (PL/l pointers are of the latter flavor). As an example, the
following could be the representation of a list. Like strings, lists are

parameter-based: the type of the list’s elements is supplied by the

"abstraction" user.

list(element _type: TYPE) = TYPE RECORD
first: @element_type;
rest: Q@list(element_type);
END; !list

The field "first" is a pointer to an object of type "element _type"; 'rest"

is a polnter to a list of type "element_type."

As a further example, shown in Figure 12 in Appendix A is a definition

of a STACK.abstraction which takes, as lts parameters, the type of the
objects on the stack, and the number of elements the stack will be able to
contain. The definition takes the form of a "module," the Syspal

equivalent of the CLU "cluster." The operations on stacks, a

-18=-

-

3 " — — "
e T e .

Chapter One Introduction
Section C The Language

representation of a stack, and various "interfaces" for, or "means of

~ referencing,”" stacks are shown,

Within a module, the keyword SELF Ls bouad to the object on which the

1 . - operation was called. SELF is not lncluded in the header of the function,
: . but is supplied as the first argument to the operation when it is called.

1 3 The name of the module need not be provided in the CALL statemeant; it is
r - recognized from the type of the first argument. For example, with the

L ’ declarations

envr: stack(algol_stack_frame);
-~ x: algol stack_frame;
algol _stack_frame = TYPE . . . ;
CLU would require a CALL similar to
-~ CALL stack$push(eavr, x);
whereas in Syspal, the same statement would be
CALL push(eanvr, x);
S A or, optionally, w
CALL stack.push(envr, x);
if the fully-qualified operation name was desired. Within the module

- implementing stacks, "SELF" would refer to "envr" in the above example.

~19-

Chapter One Introduction

- -

Section D The "Things"

I.D. The "Things.”

At the beginning of this chapter, I referred to the "things," the
entities, stored in a coamputing system. What are those "things"? What are

their properties, what is their structure, what operations can be performed

on them?

The "things" to which I refer are the abstract data objects which are
stored in the computing system’s long-term ("permanent”") storage. Such
objects may be viewed as files, segments, programs, hierarchical or
relational databases -- whatever one might want to retaln for long periods
of time. The various kinds of object3 are defined by the operations which
can be performed on them, in addition to those which can be performed on
ALL objects. Most existing permanent-storage systems do not take this
view, but, rather, view storage as a collection or stream of bits or bytes,
or possibly as an array of "records." 1Indeed, some of the reports on
current research on storage systems take a byte-stream view of storage,

when such a view is not necessary (see, for example, {20]).

The view of objects as abstractions is similar to that which CLU,
ALPHARD, Smalltalk {12}, and Syspal take of data. An object i3 an abstract
data type, out of which other abstract data types are made. An example of

this is building a first-in, first-out queue from a linked list. The

-20-

L

Ty e T

-

Chapter One Introductd

- -

Section D CThe "Things"

programmer implementing the queue is not concerned with the {mplementation
of the list abstraction, merely with the defianition of the operations of
the list (FIRST, REST, APPEND). 1If the input-output specifications of the
operations on lists remain the same, changing the implementation of lists
does not matter. Perhaps the person maintaining lists may decide that
lists larger than some critical size should be stored using a different

format; the user of lists does not care about i{nternal represeatation.

Syspal provides the abstractions ARRAY, RECORD, INTEGER, CHAR and BOOL
for direct use. And yet, one is not concerned with the implementation of
such things; one merely waats to use them, often, as here, to build other,

more complicated abstractions.

(In addition to the languages mentioned above taking a view of objects
similar to mine, Hydra [36] has a similar view of objects which are to be
stored for long periods of time. Again, objects are abstract (and
explicitly exteansible). There are other similarities between the Hydra

view of objects and mine; these will be mentioned later, as appropriate.)

More details on abstract data types can be found in the previously

cited references on CLU and Alphard.

-21-

Chapter One Introduction

- e o .

Section E Related Work

[.E. Related Work.

The work which has most influenced my thinking about object management
has been the research on data abstractions. Much of this work has {ts
origins ia SIMULA ([6]. Parnas.describes abstraction techniques [23}; CLU,
Alphard, and Syspal all embody these concepts. It was the desire to store
objects, rather than files, and to view storage as a collection of abstract

data, rather than as bit or byte strings, which motivated this research.

The file systems of Honeywell’s Multics [15], Bell Labs’ Unix (26, 29,
32], and Hewlett-Packard’s MPE/3000 [13] helped me determine the
characteristics of the objects stored in a compuring system. The naming
structure is derived directly from Multics. Hydra’s file system [36] views

objects in a manner similar to that presented here.

Much of my thoughts on protection also were influenced by Multics. The
capability-based schemes described by Wulf (Hydra, [36]), Lampson aad
Sturgis (Cal, [19]), and Saltzer (28] provided an interesting alternative

to the Multics Access Control List (also described in [28], and in [15]).
Various mechanisms have been developed for version maintenance. Most
of them simply store the object as a linear sequence of complete versions

(for example, TENEX [7], ITS [9], and 0S/VS1l [16, l7]). The Source Code

-22-

Chapter One

- o

Section E Related Work

Control System (SCCS) [5, 11, 27}, part of Unix’s Programmer’s WorkBench
{8, 18, 29], implements a novel way of maintaining versions as a set of
updates. SCCS also allows a (limited) hierarchy of versions. The scheme I

propose is an immediate extension of that embodied in SCCS.

I.F. Plan for the Remainder of thig Presentation.

In the following chapters, I describe "Catoan" (pronounced ku-tdn’ (1)),
an object-oriented filing system for large, mult{-user computing
systems., Chapter Two describes previous work which influenced amy thiaking,
especially about those attributes which are common to all permanently
stored objects in a computing system such as the one I assume. In Chapter
Three, my view of a "basic" object is developed, followed by a discussion
of a "refined" object and a "versioned" object. 1In Chapter Four, I preseat
an example of how one might use Catoan to store a Syspal program. Chapter
Five examines the problems which arise when other filing systems, and,
therefore, other naming schemes and spaces, are allowed to co-exist with
Catoan, The final chapter, Chapter Six, contains an evaluation of Catoan,

and describes areas where further research 1s needed.

(1) Notation from Webster’s New World Dictionary of the American Language.

=23

CHAPTER TWO

ANTECEDENTS

In this chapter, I shall discuss previous work which had a large
influence on my research and thinking. The systems discussed here were

studied as examples of ways to manage particular kinds of objects,

The typical kind of object in each of these systems is the "classical
file," often appearing uader different names (such as "segment"). A
"clagsical file" is presented to the user as a string or stream of bits or
characters. It does not have any structure, save in the way in which it {is
interpreted by the user. Usually, files are stored as blocks of contiguous

bits, along with some system overhead information.

Sample representations of the files in Multics and MPE/3000 will be

described using Syspal notation.

-2b=

Chapter Two Catoan Antecedents

-y m—— o - e o o o e e

Section A Multics

IL.A. Honeywell’s Multics.

The Multics file system is described abstractly by Saltzer [28]), and
concretely in the Multics Programmer’s Manual [15). Here, those features

which most influeaced this work are described.

There are two major kinds of objects {n the Multics file system:
"directories" and "segments." Directories coantain mappings of
character-string names to object references (unique ideatifiers); the
objects can be either segments or other directories. Segments contain the
data stored in the system. 1In addition to directories and segments, there
are also "links" and "multi-segment files"; these will be discussed only

briefly.

The objects in the Multics file system are arranged in a hierarchical
fashion, starting from a directory called the "ROOT." Directories can be
either nodes or leaves (generally, they are nodes; only an empty directory
can be a leaf); segments must be leaves. Any object in the hierarchy can
be named directly, by specifying the names of all the containing
directories in order, starting from the ROOT. For example, the payroll for

1~

the month of June might be specified, using as a name separator,

-254

el

{

Chapter Two Catoan Antecedents
Section A Multics

""ROOT"Accounting”payrolls”June" (assuming that the payroll function is part

of the accounting department).

In addition to specifying a fully-qualified name (like that in the
previous paragraph), local names are allowed, with the system automatically
supplying the higher levels of qualification. This requires a slight
change in the form of fully-qualified, or global, names: if the search for
an objuct is to start at the ROOT, the first component of the name is not
supplied, thereby beginning the name with the separator character.
Therefore, the above example would become "“Accounting~payrolls~June"; a
user executing in the "Accounting" (beneath the ROOT) directory could
reference the same segment with "payrolls™June," and someone in the

"Accounting~payrolls" directory (again, beneath the ROOT) could use simply

"June."

Each object in the file system has some system information associated
with it. Some of this information is part of all the types of objects;
some of it 1s object-type particular. An example representation of a
Multics directory, segment, and link appear in Figure 1. The most
interesting parts of this information concern protection and sharing: the
"access control_list" and "ring brackets." The access control list
specifies the types of access granted to each user in the system.

Directory access types are search (look in the directory), modify (change

=26-

(

Chapter Two Catoan Antecedents

Section A : Multics

entries in the directory), and append (add entries to the directory);
Segment access types are read (get the coatents of the segment), execute
(interpret the segment as a program), and write (change the contents of the
segment). The ring brackets specify the position in the system’s protection
rings (an extension of the supervisor-user mode concept; see [28]) in

which the object can be accessed.

The Multics file system implements a strict hierarchy; therefore, each
object in the system has exactly one parent (1), though directories can
have multiple childrea. To allow an object to appear to exist in more than
one directory, Multics provides "links". A link is a mapping of a local
(one component) name to a global (fully qualified) name. Returning to the
above payroll example, assume that top-level management wanted to access
the payroll files, and desired to do so directly, rather than through the
entire “Accounting~payrolls”™June name. A link might be created in the
CorpMgt directory called "JunePay,”" which would be mapped into the name

"“Accounting~payrolls~June."

An important point about Multics links is that they map local names to

global names, not local names to object refereaces. Such links are called

- 2 D 2t e

(1) Tais is true for all objects in the system except the ROOT, which has
no parent.

Chapter Two Catoan Antecedents '

-
Section A Multics .
"goft" links (1); their resolutlon is a two-step process: resolving the
local name to a global name, and then resolving the global name to a unique =
internal identifier (segment number), This position need not be taken;
Unix, for example, links local names directly to object references (see
Section III.C.1). -
A multi-segment file allows more than one segment’s worth of data in
-
one object (segments have a limited size). A multi-segment file appears to
be very similar to a normal segment, though it {s implemented as a
directory, with the segments comprising the multi-segment file as children
of the directory. ~
-
-

(1) A "hard" link maps a local name directly to an object reference.

-28-

Chapter Two Catoan Antecedeats
Section A Multlics
multics_directory = TYPE RECORD
(* Defined types (such as ACCESS_ID) are shown in Figure lc. %)
access_class: string(32); !Eg. Classified, Top Secret.
access_control list: ARRAY(*) OF RECORD
id: access_id; !Principal identifier
modes: RECORD
(s, m, a): BOOL; {Search, Modify, Append
END; !modes
END; !access _control_list
author: access_id;
current_length: INTEGER; !Number of pages.
(date_time_dumped,
date_time_entry modified,
date_time modified,
date_time_salvaged,
date_time_used): multics_date_time;
fnitial _access_control lists: RECORD
segment: LIKE multics_segment.acl;
directory: LIKE multics_directory.acl;
END; !initial_access _control _list
multisegment file_indicator: INTEGER; |Segments in multi-segment
1file; 0 {f not msf.
names: ARRAY(*) OF string(32); !Names of this directory.
quota: INTEGER; !Pages allowed uander directory.
records used: INTEGER; |Secondary storage.
ring brackets: RECORD !Rings of protection.
(m_a, 8): rings;
END; !ring_brackets
safety_switch: BOOL; !{Query user upon DELETE?
security out of service_switch: BOOL; lAccegs class discrepancy

thas been detected.
type: ARRAY(3) OF BOOL (*segment, directory, link*) :=
(FALSE, TRUE, FALSE);
unique_id: INTEGER;

name map: ARRAY(*) OF RECORD !Segments under this directory.

name: string(32);
object: UNION/@multics directory,
@multics_segment,
@multics_link);
END; !name_map
END; !multics _directory

Figure la: Sample Representation of a Multics Directory.

-29.

Chapter Two Catoan Antecedents

-
Section A Multics
multics_segment = TYPE RECORD
access _class: string(32); !Eg. Classified, Top Secret.
access_control _list: ARRAY(*) OF RECORD)
id: access_id; !Principal identifier
modes: RECORD
(r, e, w): BOOL; !Read, Execute, Write.
END; !modes
END; !access _control_list
author: access _1id; -
bit _count: INTEGER;
bit_count_author: access_id; |Principal who last set BIT COUNT.
copy_switch: BOOL; {Copy on write?
current length: INTEGER; !Number of pages.
(date_time_dumped,
date_time_entry modified, -
date_time _modified,
date_time_used): multics_date_time;
maximum_leagth: 0 To 262144; 1256K words.
names: ARRAY(*) OF string(32); !Names of this segment.
records_used: INTEGER; !Secondary storage.
ring brackets: RECORD !Rings of protection. -
(w, r, e): rings;
END; !ring_brackets
safety switch: BOOL; !Query user upon DELETE?
type: ARRAY(3) OF BOOL (*segment, directory, link#*) :=
(TRUE, FALSE, FALSE):;
unique id: INTEGER; -
contents: ARRAY(262144) OF data_word; 1256K words.
END; lmultics_segment
Figure lb: Sample Represeatation of a Multics Segment.

-30-

Chapter Two Catoan Antecedents

——— s > > >

Section A Multics

multics_link = TYPE RECORD

author: access_1id;

(date_time dumped,

date_time_entry modified,

date_time_used): multics_date;

names: ARRAY(*) OF string(32); !Names of this link.

type: ARRAY(3) OF BOOL (*segment, directory, link*) :=
(FALSE, FALSE, TRUE);

unique id: INTEGER;

linked to_path: string(168);

END; !multics_ link

access_1d = TYPE RECORD
person: string(15);
project: string(15);
instance: striag(l);
END (*access_id*);

rings = TYPE DISTINCT 0 TO 7; IRiags of protection.

multics_date_time = TYPE O TO 2#%*%64-1; IMicroseconds since
{January 1, 1901 00:00 GMT.

data _word = TYPE O TO 2**36-1;

Figure lc: Sample Representation of a Multics Link.

W em e A W o e M W) M W A W W P R - e e = A W B uE ws B« e

I1.B. Hewlett-Packard”s MPE/3000.

1 examined MPE/3000 file system as an example of a
"limited-hierarchical” file system. Users cannot create their own
dicrectories. Rather, the naming hierarchy is a fixed three-level system:
file_name (segment name), group _name, account _name. The file name is the

"lowest" level name, the account _name, the "highest." If a higher level is

-31=

Chapter Two Catoan

Antecedents

Section B HP‘s MPE/3000

specified, all lower levels must also be specified. There {8 a very strict
rule for interpreting names: a one level name {s exteaded with the current
group and account; a two level name {s extended with the curreat account.
A process executes under exactly one account and one group within that
account for its entire lifetime; the notion of changing the "working

directory" of the process does not exist.

Segments can be created only in the process’s current group within the
curreat accouant. Segments exist in exactly one place in the hierarchy, and
have exactly one name; neither soft nor hard links exist. To reference a
segmeat by another name, it must be renamed (if staying in the same group

and account) or copied (in which case it becomes an entirely new entity).

Security 18 specified in two ways: with an aggregate-level access
control 1list (called the "security matrix"), and with a pagsword
(lockword). The latter, if required, must be supplied whenéver the segmeat
is "opened" made ready for use) or deleted. The security matrix is
checked at times similar to those when the password 1s checked, and

specifies the types of access various groups of users are granted.

The access types which can be granted are: read, append (write at the
end of the segmeat), write (anywhere in the segment), lock (access the

segment exclusively), and execute. The groups are: any (anyone in the

-32-

Chapter Two Catoan Antecedents

Section B HP’s MPE/3000

system) , account user (anyone in the same account), account librarian (an
account member deemed responsible for all the segments in an account),
group user, group librarian, and creator. In addition, the "accouant
nanager" (a user who is responsible for administration of the account) has
access to all the segments in that account, and the "system manager" (a
user who is responsible for administration of all the accouats in the

system) has access to all segments ian the system.
Figure 2 shows a sample representation of a file in the MPE/3000 file

system. This representation is rather abstract, and lncomplete in detail.

More detail can be found in [13].

33~

Chapter Two Cato Antecedents

Section B HP’s MPE/3000

HP3000_MPE file = TYPE RECORD
label: RECORD

-
name: fname; !File name. —|
group: fname; !Group name. |-~ Full file name.
account: fname; lAccount name. --|
creator: faname;
lockword: UNION(aull, fname); !Must be supplied at OPEN
1if non-NULL. -
security matrix: ARRAY(5) OF RECORD !Who can access file.
{ ' (* Subscripts: 1 - read 2 - append
* 3 - write 4 - lock 5 - execute. *)
’ (any,
) account _user,
H account _librarian, -
T group user,
group librarian,
. creator): BOOL;
i END (*security*);
secure: BOOL; !Is SECURITY MATRIX enforced?
date created: julian date; -
date_accessed: julian_date;
date modified: julian_date;
file_type: word; !Type (eg. program, APL workspace).
access _flags: RECORD !How file 1is being accessed.
store: BOOL; |File being backed-up to tape.
restore: BOOL; !File being recovered from tape. -
load: BOOL; !Memory-resident program file. 1
exclusive: BOOL; tOpened for exclusive use.
¢ END; !accesses
how_open: RECORD
write: BOOL;
read: BOOL; -
END; !how_open
uger labels written: halfword;
user _labels max: halfword;
max_records: dbl_word;
private volume_info: bit string(32);
logical _record _size: word; -

i block size: word;
last_block _size: word;
\ records _in_file: dbl _word;
END; l!label
data: ARRAY(1l TO 2%*47) OF CHAR;
BND; Impe file

-34-

R A

B D

v

Chapter Two Catoan Antecedents

Section B HP’s MPE/3000

fname = TYPE alpha_string(8);
alpha_string(size: 0 TO 100) = TYPE RECORD
length: 0 TO 100;
charl: letters;
charn: ARRAY(2 TO size) OF UNION(letters, "0" TO "9'");
END; !alpha_string
letters = TYPE UNION("a" TO "z", "A" TO "2');
halfword = TYPE 0 IO 255
word = TYPE O TO 32767;
dbl _word = TYPE O TO 2147482711;
julian_date = TYPE RECORD
year: 0 TO 99;
day: 0 TO 366;
END; !Julian_date

Figure 2: Sample Representation of an MPE/3000 File.

- e W W@ W B @ e e B N s A M M g e W W uE - B s um B = e ws =

IT1.C. Miscellaneous.

In addition to the file systems of Multics and MPE/3000, various other
file systems influenced my thinking on Catoan. Unix influenced my ideas on
‘inks and the structure of the naming eanvironmeat (that is, whether to use
a hierarchy or a network). Hydra’s form of objects proved interesting.
TENEX’ s file sys%em supplies a form of version maintenance, as do those of

ITS, 0S/VSl, and many others. This section presents the various systems

which were investigated and which made some (at least minor) contributions

to this work.

~35-

Chapter Two Catoan Antecedeats
Section C Miscellaneous -
II.C.1. Unix.
The Unix file system 1is similar to the Multics file system. Like
Multics, Unix provides a hierarchical file system, with an access control
list protection scheme. However, the hierarchy is not strict, and the <
. access control list is more coarse than .~hat of the Multics system.
;
r Like Multics, Unix has, conceptually, two types of objects: directories -
and segments (files). However, unlike Multics, Unix segments can have
multiple pareats. Also, links in Unix are "hard" links (those in Multics
are called "soft"). The local name {s translated directly to a unique -
identifier (segment aumber -- "i-node" in Unix terminology), without the
intervening global name. This 13 a more efficient form of link (it skips
the additional name resolution step (1) when following the link), but that -
i is relatively unimportant. Soft links provide greater indirection
facilities than do hard links (because they can be bound to another link).
Hard links, though, provide a known interpretation of a link, and make it -
easier for the owner of a segment to determine all the people using 1it.
Implementing a complete cross-reference with soft links, for example, would
require that the link be completely traced whea it was created; 1in a hard -
) link system, the link is directly resolved.
N ~*
(1) Or steps: a soft link can bind a loca: name to another soft link,
-36-

....',_

A4
L)
.

Chapter Two Catoan Antecedents
Section C Miscel laneous

Although Unix segments can have multiple parents (can be coatained in
multiple directories), directories cannot. This precludes building a

general network in the Unix file system.

The protection scheme in Unix allows the object owner to specify access
for ce;tain groups of users, trather than on a user-by-user basis. The
scheme {s tied to the accounting system, with access being granted to the
owner, to members of the owner’s project (account), and to all users in the

system. See [26, 29, 32] for more details.

I1.C.2. Hydra.

The Hydra file system [l1, 13] stores Hydra-objects, which are
pseudo-abstract, and are each of a particular type or type extension. Each
Hydra-object (call one "CRL") has two parts: the data part, and the
"e-11ist." The actual data in CRL is stored in the data part. The c-list
contains references to Hydra-objects which are contained in CRL. Every

object in Hydra has both parts.
Because each Hydra-object has both a data and a c-1list part, there is

need for only one kind of object, which can function as both a '"segment"

and a "directory." However, one other important reason for including both

-37-

-

oy e

o el

Chapter Two Catoan Antecedents

———— — - — s o

Section C Miscellaneous

parts Lin all objects is that refereances to other objects cannot exist in

the data part, but ounly in the c-list.

I1.C.3. Version Maintenance: TOPS-20, ITS, 0S/VSl, and SCCS.

Version majintenance has been a topic of interest for some time.
TOPS-20 [7], ITS (1) [9], and 0S/VSL [16, 17] all provide similar forms of
version malntenance. All three systems store each version in 1its entirety
(as opposed to storing updates relative to some base version). Versions in
TOPS-20 and ITS are linear, time-ordered sequences, referenced by numbers
which increase from older to newer (more recent) versions. The default
version (the version obtained if none is explicitly specified) is always
the most recent version. The symbol ">" in ITS, and the (special) version
number 0 ia TOPS-20, reference the latest version on read and create a new
version on write. The symbol "<" in ITS and the (special) version number

"..2" {ian TOPS-20 access the oldest version.

0S/VS1°s version naming scheme differs from that of TOPS-20 and ITS.
It is a two-level system, allowing both a '"generation" aand a "version"
specification. The specification becomes a suffix of "GnnanVmm" to the

regular file name, where "nnan" is the "generation number" and "mm" is the

- o -

(1) ITS is an operating system developed at MIT for the PDP-10 family of
computers.

-38-

|
z
]
i

Chapter Two Catoan Antecedents

Section C Miscellaneous

"version number." This provides a limited tree-structure for version
naming: generation within the file, and version within the generation. The
suffix "(0)" references the latest generation; "(+1)" creates a new
generation; "(-1)" refereances the previous generation, and "(-n)"
references the anth previous generation. The automatic version malntenance
system does not use the version fileld; it can be accessed directly by the

user, however.

The Programmer’s WorkBeach under Unix provides a facility called the
Source Code Control System [S5, 11, 27] for version maintenance. SCCS
allows versions to be arranged in a hierarchy, with the names representing
a derivation sequence. Versions are stored as sets of updates to the
previous version. I shall discuss SCCS further in Section IIL.D, "A

Versioned Object."

IL.D. Summary.

In this chapter, I have discussed various existing systems which
significantly influenced the research presented in the followiag chapters
of this report. The file systems of Honeywell’s Multics and of
Hewlett-Packard’s MPE/3000 were described, with an examination of their
abstract file structures. The Unix file system is very siunilar to that of

Multics, except that a segment can be contained in more than one directory.

-39~

ey

{

., &
-
Chapter Two Catoan Antecedents I
(
Section D Summary e
The structure of the Hydra file system was also discussed, especially the
structure of the objects stored. Finally, existing version maiatenance -
systems were described, including TOPS-20, ITS, 0S/VSl, and the Source Code
Control System.
L 4
-

<40-

CHAPTER THREE

DEFINITION OF A "CATQAN-OBJECT"

In this chapter, I describe the objects managed by Catoan. First, the
"basic" object, its characteristics, its operations, and its representation
will be defined. Then, a "refined" object, whose operatfons are less
primitive than those of the basic object, will be presented. Lastly,

objects which have explicit versions (Such as programs) will be described.

=41-

Chapter Three Catoan Object Definition

Section A Issues

I11.A. Issues: Containment and Trust.

As will be shown later ian this chapter, there are three ways to put
data in a Catoan-object; all of them are differeant, all have differeat

semantics and characteristics. But, why three ways?

In Chapter One, I wrote that "multiple filing systems could exist."
Furthermore, "the filing system (object manager) need not be trusted to not
a0odify or leak data." Both of these issues involve trust: need one trust

the filing system, and, if not, what can be done about {t?

Wwhat does it mean to "contain" something? What does it mean to "trust”
something? In this introductory section, I shall explore these ideas as
they relate to Catoan. Some of the 1ssues I shall raise may not be clear
until later in the chapter; I think this is better than delaying their

discussion, however.

First, though, a little groundwork must be laid. The unit of storage
in Catoan is the "Catoan-object"; let a typical Catoan-object be called
"CRL." 1In data abstraction terminology, Catoan implements the abstraction
"Catoan-object." Catoan-objects can "contain" other Catoan-objects, and

other kinds of abstractions, too. Each Catoan-object has a DIRECTORY and a

-42-

Chapter Three Catoan Object Definition

Section A Issues

CONTENTS; the things one normally puts in each of these is different, and

things are put in them for different reasons, as will be explained.

III.A.l. Containment and Catoan.

What does it mean for a Catoan-object to "contain" another
Catoan-object, What does it mean for a Catoan-object to "contain" any kind

of (abstract) object?

Each Catoan-object (such as CRL) has a "CONTENTS," which specifies the
abstract object which is the data of CRL. This 1s one form of
"containment": containment in the CONTENTS. The primary reason for
creating a Catoan-object {8 to provide a means for permaneantly storing,

referencing, and naming the data of the CONTENTS.

The data which the object coantains -~ its CONTENTS -- should be readily
accessible. It should be easy to read, easy to set, and easy to change the
CONTENTS. The CONTENTS could be used to hold the text of a letter which

was stored in a computing system which implemented Catoan.

In addition to a CONTENTS, Catoan-objects have a DIRECTORY. The
DIRECTORY has two parts: a '"named" part, and an "“unnamed" part. In the

named DIRECTORY of CRL, one would store references (hard links) to those

Chapter Three Catoan Object Defiaition

Section A Issues

Catoan-objects considered to be sub-objects of CRL. This is usually a
logical grouping, and can be thought of as placing a segmeat in a certain
directory in a Multics or Unix file system. The sub-objects of CRL are
Catoan-objects in their own rights; changing their relatioms! {p with CRL
(that is, the exact sub-object to which a particular name refers) usually

is not done.

In the unnamed part of CRL s DIRECTORY are references (hard links, but
without local names attached to the reference) to Catoan-objects which are
physical sub-objects of CRL. Those Catoan-objects referenced in the
unnamed part of the DIRECTORY are part of the implementation of thae
particular Catoan-object, and are not usually of interest to the object’s
users. As with objects referenced in the named part of the DIRECTORY, the
relationship between CRL and the sub-objects in the unnamed part of the

DIRECTORY usually {s not changed.

The objects in the DIRECTORY of a Catoan-object are considered less
accessible than the CONTENTS. Once a reference to an object is added to
the DIRECTORY, it cannot be replaced, but must be deleted and then added.
This reflects the accessibility semantics of such an inclusfon. 1If these
semantics are not appropriate for a particular application, the CONTENTS
could be used to ilmplement a directory which is interpreted by some

program. Because the CONTENTS of a Catoan-object can be an arbitrary

bl

¢

Chapter Three Catoan Object Definition

Section A Issues

abstract object, the DIRECTORY portion of a Catoan-object can be ignored,
and the CONTENTS used to implement a filing system which is more natural

for the particular application.

All three of the forms of including data in an object mizht be used to
represeat a system composed of a collection of programs (1). The
highest-level module in the system 18 a program, with the source stored in
the CONTENTS, representing the view of the source as the abstract program.
In the unnamed portion of the DIRECTORY would be the implementation of the
program object, including such things as documentation and object-code,
Named references to the programs comprising the system would be in the
named portion of the DIRECTORY. Chapter Four, "An Example: A Syspal
Program Object,”" describes the aspects of this example relating to programs

in more detall.

I11.A.2. Trust aand Catoan.

What does it mean to "trust" a non-sentient entity? What does Lt mean

to "“trust" a filing system? What does it mean to “trust" Catoan?

"Trust" in general is very difficult to define, especially when applied

to non-sentient entities. However, "trusting"” a filing system is easier to

(1) T shall return to this example throughout the chapter.

45

Chapter Three Catoan Object Definition

Section A Issues

define. 1In this report, to trust a filing system is to give the filing
system access to data when it doesn’t explicitly require such access to
perform its duties. My perception of a filing system’s dutles does aot
include access to the CONTENTS (as defined in the.previous section).
Rather, a filing system is a manager for named, permaneant objects -- not

the CONTENTS of thosa objects.

A "trusted" module 1s a module which a) the user believes is secure,
and will not access things except on explicit instructions from the user,
and b) does not allow other users to access it, except as is appropriate
for that user. Part (a) is primarily a belief on the part of the user;
part (b) has some laplications on the kind of information which the trusted

module can supply to eavironments outside the module.

Specifically, a trusted module, in order to preveat other entities from
accessing 1its protected data, cannot give out any references to any portion
of the protected data’s internal representation. Rather, it must give out
an indirect reference, which the trusted module, and only the trusted

module, can translate into the actual representation of the protected data.

Gatoan, however, gives out a pointer to portions of the representation
of a Catoan-object. The CONTENTS READ operation (see Section IIL.B.l.b)

returns a pointer to the CONTENTS of the Catoan-object. This allows

6=

'y At Lol AL

pon

—aye

s " . _ - ——— — - o o -
s :

Chapter Three Catoan Object Definition
Section A Issues

entities besides Catoan to access part of the representation of the

Catoan-object.

Because a module which gives out portions of its data’s representation
does not have total coatrol over the representation, it does not have total
control over what can be done to the representation, and so is unable to
ensure certain kinds of iaternal coansistency. 1In the case of Catoan, for
example, the information accessed by the "principals”" and the '"dates"
sub-classes of operatious may not be accurate. Furthermore, Catoan has no
way of verifying the {deantities of those accessing the data in the CONTENTS

of the Catoan-object, because they may be accessing the data without using

Catoan.

This report examines some of the implications of not trustiang the
filing system. The filing system will have access to its objects
(Catoan-objects), but not to the data in the CONTENTS of the Catoan-object.
This is done partly out of lack of trust, and partly to allow more than one

filing system to exist in the host computing system more easily.

[IT.B. The Basic Object.

An OBJECT ('Catoan-object") is the basic unit of data ia Catoan.

Catoan~objects conceptually have three parts: SYSTEM OVERHEAD INFORMATION,

-47-

e [. - . - -

Chapter Three Catoan Object Definition

Section B Basic Object

a DIRECTORY, and a CONTENTS. The first is ianformation the system keeps
about each object, such as when it was created. The DIRECTORY and CONTENTS

were described in Section I11.A.1 above.

Figure 3 shows the operations and representation of a Catoan-object.
Many points in the figure and the immediately ensuing discussion may be
unclear. Subsequent sub-sections in this section will clarify the

problems.

Most of the operations on an object are related to the 'SYSTEM OVERHEAD
INFORMATION" in the object. There are only eight operations dealing with
the DIRECTORY, and only two with the CONTENTS. Yet, these two parts of an
object are the most interesting. The SYSTEM OVERHEAD INFORMATION is very
structured, and has a very limited scope; we know the form it will take
long before the object 1s actually defined. The DIRECTORY, on the ‘other
hand, may change drastically during the existeace of the object -~ it may
start off empty, have some objects added to it, have some objects deleted
from it, and will have an unpredictable size. Similarly, the stcucture aand
size of the CONTENTS is unpredictable, and the structure might never be

known to Catoan,

-
*
|
i -
1
_
1
~

RA
I
.

Chapter Three Catoan Object Definttion

em e e e —-

Section B Basic Object

MODULE catoan object(contents_type);

new: PROCEDURE

RETURNS (0:4catoan _object)

(* Make a new catoan_object. *);
delete:PROCEDURE

(* Delete a catoan_object. *);

contents set:PROCEDURE(c:@contents_type)
(* Stow the contents of the object. *);
contents _read:PROCEDURE
RETURNS (c:@contents_type)
EXCEPTION(contents _doesnt_exist)
(* Retrieve this object’s contents. *);
directory_unnamed _add:PROCEDURE(o:3catoan object, n:INTEGER)
EXCEPTION(directory_full, directory_slot_occupied)
(* This object now includes uanamed object number N. *);
directory_uanamed _delete:PROCEDURE(n:INTEGER)
EXCEPTION(directory_doesat exist
directory_doegnt_contain object)
(* Remove Nth eantry from unnamed portion of DIRECTORY. *)
directory_unnamed_lookup:PROCEDURE(n: INTEGER)
RETURNS(O @catoan _object)
EXCEPTION(directory doesnt_exist
directory doesnt _contain_object)
(* Return Nth entry from unnamed portion of DIRECTORY. *)
directory named add:PROCEDURE(n:object name, o: Acatoan _object)
EXCEPTION(directory full, directory_slot occupied)
(* This object now includes another named object. *);
directory named delete:PROCEDURE(n:object name)
EXCEPTION(directory_doesnt _exist,
directory_doesnt _contain object)
(* This objsct no longer includes a certain object, *);
dtrectoty_named_contains:PROCEDURE(n:object_name)
RETURNS (b:boolean)
EXCEPTION(directory_doesnt _exist)
(* Pres this object contain object “n"? *);
directory . *med lookup:PROCEDURE(n:object name)
RETURNS (0. Pcatoan _object)
EXCEPTION(directory _doesnt _exist,
directory_doesnt contain object)
(* Translates a contained object-name into an object creference. *)
directory nam:d _read:PROCEDURE
RFTURNQ(n ARRAY(*) of object_name)

~49-

Chapter Three Catoan Object Definition

Section B Basic Object

EXCEPTLON(directory_doesnt_exist)
(* Which objects does this one contain? *);

owner _read:PROCEDURE

RETURNS (p:principal_id)

(* Who owns this module? [obtained from mem mgrhk *);
creator_set:PROCEDURE(p:principal _id)

(* Indicate that principal “p’ 1is object’s creator. *);
creator _read:PROCEDURE

RETURNS (p:principal _id)

(* Who created this object? *);
last _modifier_set:PROCEDURE(p:principal_id)

(* State who last modified this object. *);
last modifier read:PROCEDURE

RETURNS(p principal 1d)

(* Who last modified this object? *);

date created_set:PROCEDURE(d:date)

EXCEPTTION(date _invalid)

(* Indicate when the object was m-de.
date_created _read:PROCEDURE

RETURNS (d:date)

(* When was this object created? *);
date_last modified set:PROCEDURE(d:date)

EXCEPTION(date invalid)

(* Indicate when this object was last modified.
date_last modified read:PROCEDURE

RETURVS(d date)

(* When was this object last modified? *);
date last _accessed set:PROCEDURE(d:date)

EXCEPTION(date _invalid)

(* Indicate when this object was last accessed.
date _last _accessed_read:PROCEDURE

RETURNS (d: date)

(* When was this object last accessed? *);

size_read:PROCEDURE
RETURNS(8:integer)
(* How big is this object?

[overhead+mem_mgr.size(CONTENTS)+mem_pgr.size(DIRECTORY)I *) 3

Chapter Three Catoan

- Section B

object name = string(20);
principal _id = string(20);

END MODULE; !catoan _object

one would store and retrieve 1ts CONTENTS.

Object Definition

Figure 3: The Basic Catoan-Object.

- - e . B s s m W e P B m e m e B em A em wm e o m

Assume that the CONTENTS of a Catoan-object holding a Syspal

Basic Object

date = RECORD
year: 1975 TO 3975; !assumption: system will last <2000 years
month: 1 TO 12;
day: 1 TO 31,
‘ hour: 0 TO 23,
. - minute: 0 TO 59,
b second: 0 TO 59.9999 PRECISION 4
, END; !date
f SELF = RECORD |Representation of an object.
r contents = @contents_type;
- (date created,
date_last _modified,
date_last _accessed) = date;
(creator,
last modifier,
owner) = principal_id;
- directory = RECORD
named: ARRAY(*) OF RECORD
a: object_name;
0: Qcatoan _object;
END; !named
uanamed: ARRAY(*) OF @catoan_object;
- END; !directory
. END; !SELF

- - . - . - -

program 1s

to be of type "text." Figure 4 shows how CRL would be declared, and how

Chapter Three

Section B Basic Object

text = TYPE . . . }
edit_buffer: text;
erl: catoan object;

e A T S 35

crl := NEW catoan_object(text);

edit _buffer := contents_read(crl);

coatents set(crl, edit buffer);

Figure 4: Catoan-Object with CONTENTS of Type "text."

III.B.1. The Operations of the Basic Object.

The operations on an object can be classified according to the
information they reference. The classes of operations are overhead:

Each

class will be considered below.

I1I.B.1l.a. Overhead-Class Operations: Instance,.

The "instance" operations are NEW and DELETE. These operations are
invoked whenever a Catoan-object 13 created or deleted. NEW sets up the
{nftial contents of the overhead information, and initializes the DIRECTORY

and CONTENTS to be empty (NULL). DELETE passes a message to each of the

Chapter Three Catoan Object Definition

Section B Basic Object

Catoan-objects referenced in the DIRECTORY and to the object referenced in
the CONTENTS indicating that they are no longer referenced by CRL, and

deletes CRL.
II1.B.l.b. CONTENTS-Class Operations.

The "coatents” operations are CONTENTS SET and CONTENTS READ. They
deposit data into, and extract data from, 3 Catoan-object’s CONTENTS. The
argument to SET (1) and the return value from READ are pointers to the
type of the CONTENTS, as specified by the module parameter ("conteants type'
in Figure 3) when the Catoan-object was Ilnstantiated by NEW. (For example,
Lf CRL Ls defined as Ln Figure 4, SET takes and READ returns something of

type 2TEXT.)

The effects of SET and _READ are to translate between Catoan-object
references and Syspal-object references. Notice that both operatioans work
with pointers, and not directly with the data. The _READ operation is
analogous to the OPEN operation in a classical file system; the _SET

operation is analogous to CLOSE.

——— s S o o e

(1) This is a shorthand notation for "CONTENTS SET." When there will be na
confusion as to the meaning and context, the prefix (portion of the name

before the " ") will be omitted. A similar convention will be used for
eltding suffixes.

~53-

Chapter Three Catoan

Section B Basic Object

The _SET operation must ensure that the Catoan-object and its

components are safely stored in non-volatile storage. Hopefully, part of

the iaterface of the memory manager 1is an operation like MAKE NON VOLATILE,
which, if all memory is non-volatile, and there is no buffering in volatile
memory (by the memory manager), may be a null operation. Similarly, _READ
might "stage" some part of the contents by calling the memory manager’s

PRIME_BUFFER operation.
III.B.l.c. DIRECTORY-Class Operations.

The DIRECTORY of CRL specifies those Catoan-objects which are

sub-objects of CRL. There are two parts to the DIRECTORY of a

Catoan-object: the named part, and the unnamed part. The two parts
represgent different logical relationships betweea CRL and its sub-objects.

The DIRECTORY 18 described in Section 11{.A.1.

The unnamed portion of the DIRECTORY represents those Catoan-objects
which are {nternal sub-objects of CRL. Generally, these are part of the
implementation of the abstraction which uses CRL, and are of no concern to
CRL"s users. An example of using the unnamed portion of the DIRECTORY is
shown in Chapter Four, "An Example: A Syspal Program Object," where it is

used for (among other things) the object-code of a program.

=54 =

m————— - m— T ,
oOTe L N -

Chapter Three Catoan Object Definition

Section B Basic Object

The named portion of the DIRECTORY represents Catoan-objects which the
user feels are logically parts of CRL. He might, for example, build CRL
from several component objects, thereby forming one Catoan-object from

several sub-Catoan-objects.

The operations on the unnamed portion of the DIRECTORY are
DIRECTORY_UNNAMED_ADD, DELETE, and LOOKUP. ADD inserts a sub-object in
the nth DIRECTORY slot; DELETE removes a specified unnamed entry from
the DIRECTORY. _LOOKUP returns the object referenced by the Nth entry in

the unnamed portion of the DIRECTORY.

The operations on the named portion of the DIRECTORY are
DIRECTORY NAMED_ADD, _DELETE, CONTAINS, LOOKUP, and _READ. _ADD
assoclates a name and an object reference in CRL"s DIRECTORY; _DELETE
removes such an association. _CONTAINS 18 a predicate which indicates
whether the supplied name is La the DIRECTORY; _LOOKUP translates a name
to an object reference. _READ returns a matrix containing all the names in

the DIRECTORY, and is supplied so that a DIRECTORY can be searched.
II1.B.1.d. Overhead-Class Operatlons: Principals.

The "principal” operations obtain and mantipulate the
{

principal-identifiers stored in the overhead portion of a Catoan-object.

b .. The identity of the Catoan-object”s owner (the principal paying for the
~55-
b
e 1

Chapter Three Catoan Object Definition

Section B . Basic Object

storage), creator, and last modifier are accessed through the operations
OWNER _READ, CREATOR SET and _READ, and LAST MODIFIER _SET and _READ (1).
The creator and last-modifier can be changed; the owner is obtained from

the memory management system.

IIL.B.l.e. Overhead-Class Operations: Dates.

The "date" operations provide access to the time and date when various

operations last occurred for the Catoan-object. Avallable are times and

dates for the Catoan-object’s creation, last modification, and last access.

These operations are DATE_CREATED SET and _READ, DATE _LAST MODIFIED SET and

_READ, and DATE_LAST ACCESSED_SET and READ. The dates automatically
maintained by Catoan are for creating, modifying, and accessing the
Catoan~object, not the CONTENTS of the Catoan-object. This 1s related to

the trust issue discussed in Section III.A.2.

I11.B.1.f. Overhead-Class Operations: Miscellaneous.

The "miscellaneous" operations provide information about the physical
size of the Catoan-object. SIZE READ obtains the sizes of the CONTENTS,

DIRECTORY, and overhead from the memory manager, and returans their sum.

(1) The _SET operations are generally not explicitly used, and exist
primarily for completeness.

=56

oo

s

et PN P

Chapter Three Catoan Object Definition

Section B Basic Object

III.B.2. Comments on the " SET" Operations.
The inclusion of some of the SET operations (1) may be puzzling. For

example, why is there a DATE MODIFIED _SET operation? Won’t Catoan take

care of such things?

Recall that Catoan is part of the optional exteansions to the kernel
operating system. Furthermore, Catoan is not necessarily trusted, aand it
is possible to access portions of Catoan-objects (speciflcélly, the data in
the CONTENTS) without using Catoan. A user who directly accesses the data
in the CONTENTS (for example) might want to update the SYSTEM OVERHEAD
INFORMATION in a contailaning Catoan-object so that it accurately reflects

what has happened.

It is possible that a failure of the host computing system’s hardware,
the operating system kernel, or Catoan may introduce errors into
Catoan-objects., These errors may require human interventfon. Even in a
trusted filing system like that on Multics, the ability for people to
access some of the "overhead" fields is coansidered necessary. 1In a
non-trusted filing system, such abilities are mandatory so that "expected

errors" (2) can be corrected.

(1) Specifically, the CREATOR _, LAST MODIFIER _, DATE CREATED ,
DATE_LAST MODIFIED , and DATE LAST ACCESSED _ SET oparations.

(2) One of the reasons a system might not be trusted by 1{ts ugsers {s that

-57=

Chapter Three Catoan Object Definition

Section B Basic Object

IIT.B.3. Naming and the DIRECTORY,

Each Catoan-object contains a DIRECTORY part. .This DIRECTORY specifies
all those objects which are sub-objects of, for example, CRL; the
contained objects need not have names associated with them, in which case
they are referenced numerically. See Section IIT.A.l for a discussion and

example of DIRECTORY use.

If one wanted to implement a Multics-like directory, the CONTENTS of
the object would be NULL; for a Multics-like segment, the DIRECTORY would
be empty. But, one can have a non-empty DIRECTORY and a non-empty CONTENTS

at the same time, thereby allowing objects to "contain" other objects.

Multics has the concept of a "soft link," between a local name and a
global name. No such concept exists in Catoan. Rather, because an object
can be in the DIRECTORies of many objects, the same object can be
referenced directly by many local names. This is often referred to as a

"hard link," and is similar to the Unix link.

One of the implicatioans of the unrestricted DIRECTORY inclusion is

that, rvather than implementing a naming hierarchy, Catoan realizes a naming

———— P it Dt D D i =

the users expect the system to make mistakes (that they can, perhaps,
correct).

-58-

o

Chapter Three Catoan Object Definition

Section B Basic Object

network. Just as object A can contain more than one object, so can more
than one object contain object A. Furthermore, loops can be created in the

network, by A containing B which contains A.

An advantage of this arbitrary network structure is that it can more
readily reflect the structure of some objects. Recursive objects and
objects which include other objects exist in the world; 1t would be nice
if one could model them in a computing system. Such object inclusion also
alds in modularity. For example, if one were lmplementing a network-model
database, one could define the network pareant-child relaticnships usiang the

DIRECTORY of each object to coatain the children.

Allowing a general network in the naming structure presents a problem
only when the eatire naming network must be walked. If it is deemed
important to be able to walk the network, VISITED flags must be ilancluded in
each Catoan-object, which must be reset upon completion of the network
traversal. If such flags ARE included, it may be necessary to reset them
all upon system restart, to guard against a failure during a walking of the
network, and subsequent traversals encountering a non-existent loop because
a VISITED flag stayed set from a previously aborted walk., Various problems
besides system failure exist whea the network must be walked; for example,
what if a walk aborts for a reason other than system failure? I shall not

discuss such problems here, but, rather, refer the {aterested reader to the

~59.

Chapter Three Catoan Object Definition

Section B Basic Object

literature (garbage collection algorithms often solve this problem; see,

for example, [3, 4, 30, 331).

As long as the network does not have to be walked, loops and

self-containment do not present a problem. The only other traversal of the

naming network is for resolving a name, which is directed by the name to be
resolved. If a name hits a loop, intentionally or unintentionally, the
} results may be unexpected, but the system will not incur any great problem -
. (1ike an infinite loop), because the name must, by its physical properties,

have a finite length. 1If there are soft links, however, name resolution

may enter an infinite loop Lf a cycle of links 18 encountered (1).

TII.B.4. Storing Data: The CONTENTS.

The purpose of Catoan, and of any filing system, is to allow the users
of a computing system to retain data for long periods of time. For this

purposa, Catoan objects have a component called the "CONTENTS." It 13 in

the CONTENTS that the actual data are stored.

Most filing systems are "record"” oriented: one retrieves ("reads") and

deposits ("writes") bit- or byte-strings, or some collection of bits or

(1) Myltics has this problem; 1{ts solution is to abort link resolution
. after encountering some number of consecutive links.

L - -60-

Chapter Three Object Definition

Section B Basic Object

bytes ("records"). The structure of the data is very visible to the file
system, and to the user of the file system. Furthermore, the user MUST
know the structure of the data -- not necessarily how it is stored
physically, but usually at least how it is stored logically ("logical

records").

The CONTENTS of a Catoan object is of arbitrary type; Catoan has no
explicit knowledge of the structure of the data in the CONTENTS.

Therefore, the CONTENTS must be handled in its entirety through a poianter,

rather than plecemeal (as in many other filing systems). Because Catoan
works with abstract data, users of Catoan can view the contents abstractly,
and can deposit and retrieve arbitrary data structures. There is no

explicit notion of records in Catoan.

Because a pointer to the data in the CONTENTS is returned, rather than
a copy of the data, sharing of the data in Catoan-objects is provided. 1If
one wanted to implement an airline reservation system with many agents
accessing a shared database, the database could be stored as a
Catoan-object, retrieved from Catoan, and then manipulated by the
operations defined on the database. 1If a text editor were implemented
where {t was desired to operate on a copy of the original data, a new

object containing a copy of the data in the CONTENTS would be created,

61 -

e - -

Chapter Three Catoan Object Definition
I4

Section B Basic Object

operations performed on the copy, and then, perhaps, the copy stored in

place of the old CONTENTS.

ITI1.B.5, Protection and Security.

An interesting consequence of the way Catoan stores data is that Catoan
need not be trusted with the data. True, it could maliciously delete an
object, but it cannot leak parts of the contents of the object to other
users. All Catoan could leak would be the entire object. 1If one wanted to
atore one’s data securely, so that no one else could read it, one could
store it as the CONTENTS of a Catoan object, and simply not give anyone an
interface to the module that implements the data in the CONTENTS. All
Catoan can do is to leak the entire CONTENTS of the object; 1if the

interface is not also possessed, the CONTENTS does ano one any good.

1t might be undesirable to let even the CONTENTS of the object reach
"unfriendly" hands. For example, it might be necessary for someone to have
an interface to the module which implements the object stored in the
CONTENTS, and yet he should be restricted from using the CONTENTS of a
particular Catoan-object. Such protection can be provided through various
schemes, ranging from passwords, to access coatrol 1ists, to capabilities.

Passwords can be included easily in Catoan, by adding PASSWORD_SET and

-62-

1
i
i
1
|

e ame et e B = 4

Chapter Three Catoan Object Definttion

Section B Basic Object

PASSWORD VERIFY operations to the module, for example. This, however,

require trusting Catoan to properly implement password protection.

Similarly, Catoan could implement access control lists, and could
verify the right of some principal to perform certain operations on a given
object. This, again, requires trusting Catoan to properly enforce the

protection.

1f one does not want to have to trust the object manager with his data,
what can be done? Capabilities [28] offer a solutioan. If someone does not
have the capability of something, that thing cannot be accessed, because it
cannot be named. This level of protection must be enforced by the system’s

memory manager.

In a capability-based system, implementing a directory-walking
mechanism for name cesolution, where all resolution begins from a "root" as
in a Multics-like file system, allows all users access to all objects. To
resolve a name, start at the root (to which all have access); find the name
in the directory, and use the capability there found to proceed to the next
node, where the process Ls repeated. Since names are "translated" directly
to capabilities, and since capabilities are the mechanism on which
protection is based, naming and protection become equated. Since namling 1s

universal in a Multics-like system, there 13 no protection.

-$3=

I o

LA

Chapter Three Catoan Object Definition :

L 4

Section B Basic Object ;
What is needed 1s a restriction on the initial entry into the naming

~
network. Providing a single node (object) from which all other nodes
(objects) can be reached is the prohblem in the Multics-like name resolution
in a capability system. Each user must be able to name, to find in some

L

accessible directory, only those objects which should be accessible to hinm.

This requires a per-user directory of objects initially accessible upon

entry to the system, and then careful control of which capabilities are
given to which users, and to which additional objects, besides the one
directly referenced, access is granted (that is, which objects are
contained in the DIRECTORY of the directly referenced object). This
restriction is a general property of capability-based protection systems.
A more detailed description of the issues underlying this discussion is in

[28].

Part of Cutoan’s job is to broduce internal names (like capabilities)
from external names (like character strings). This is the job of the
directory manipulation operations of an object. The DIRECTORY_LOOKUP
operation "translates" a character string into an object, thereby
generating an internal name, or capability. The solution here comes from a
refinement to the basic capability mechanism, and requires introducing

"locked" capabilities.

“64=

Chapter Three Catoan Object Definition

-~ Section B Basic Object

A locked capability has, ia additlioa to the vreference to an object, a
-~ "lock" associated with it. A locked capability i{s implemented by a trusted
module, such as described in Section IIT.A.2. In order to access the
capability protected by the lock, and the data protected by the locked
. ~ capability, an accessor must go through the proper type manager, which can

verify the accessor’s identify and rights in whatever way {ts ilmplementor

-y o

pleases. 1In other words, in order to use the locked capability, a "key"

.- fitting the lock must be presented.

Capability locks and keys, like capabilities theamselves, must be

-~ unforgeable (locked capabilities must also be unforgeable). Thus, if one
wants to place an object in a somewhat publicly available directory (as may
be required, because all directories may be '"somewhat publicly available'),

* -~

and yet retain control over who can access the object, a locked capability,
rather than an ordinary capability, 1s placed in the directory. The key

for the locked capability is then distributed in a secure manner to those

who are allowed access to the object.

II1.C. A Refined Object.

The basic object, described above, is rather spartan. Often, a more
"civilized" object is desired which supplies features convenient for human

use. For example, one might want to provide a "classical file" object,

-5~

“ "'E==lllllllllllll"

T

g e

Chapter Three Catoan Object Definition

Section C Refined Object

supporting record-at-a-time access. Perhaps more security, automatic
object cross-referencing, locking (or some other form of "sequencing"), or
version control might be desired. This section describes a more refined,

"eivilized" object than that described above.

ITI.C.1. Protection and Security.

An important refinemeat to the basic Catoan-object {3 the addition of
further protection features. Given the directory lookup mechanism, a
capability-based protection system may provide little security, as
previously noted (Section III.B.5). A solution to this problem is to
provide an access control list scheme as a feature of a refined object.

The access control list would be a matching of principal identifiers with a
specificacion describing the types of access allowed the principal. This

is the scheme Multics uses, and is described in ([28].

An alternative to the complete access control list 13 a Unix [26] or
MPE/3000 [13] protection scheme, which allows all members of particular
groups the same access. For example, all members of a particular project,
or of a particular sub-project, might be given access to the object. 1In
Multics, this would be represented as "*.Syspal,"” where "Syspal" was the

name of the project.

-66-

Chapter Three Catoan Object Definition

Section C Refined Object

Further protection refinements can also be implemented. A
security-clearance concept (confidential, secret, top secret) is a
possibility, where each process would have an unforgeable indication of its
current clearance; passwords could be provided, requiring that the correct
password be supplied when the object is accessed; arbltrary protection
schemes, requiring access ounly between certain times, or on certain days,
or after a program sufficiently verifies the identity of the user, might be !
desired. By making the various "protected objects" each a different type,
wita different object managers, and allowing access only through the

correct manager, access to the objects can be restricted as degired.

A point of note is: what {s being protected by the access control list
of the refined Catoan-object? Catoan 18 not necessarily trusted;
furthermore, it 1s possible to access the data in the CONTENTS of 3
Catoan-object without the intervention of Catoan. Therefore, the access
control list cannot protect the data in the CONTENTS in the general case.

Rather, the access control list protects the Catoan-object, since that is

the only thing for which access requires using Catoan.

How, then, might the data in the CONTENTS of a Catoan-object be
protected? ULocked capabilitlies, described above, offer one solution,
Another solutfon {8 to control the distribution of the data’s

addressability. 1In a capability-based protection system, this Lmplies not

67 -

Chapter Three Catoan Object Defintition
Section C Refined Object

distributing the capability for the data to other users, but instead
requiring them to use Catoan to access the data. This requires the user to

trust Catoan to enforce the access control list.

Figure 5 shows the operations and representation of an access coatrol
list scheme. The access control list i{s implemented as an array, matching
principal identifiers with access rights. The access rights are specified
by bits indicating DIRECTORY read, DIRECTORY search, DIRECTORY modify,
DIRECTORY append, CONTENTS read, CONTENTS get, access control list read,
access control list modify, and access control list append. Each operation
protected by the access control list must verify that the principal
requesting the operation is authorized to perform the operation on the

object; Lf not, UNAUTHORIZED ACCESS is signaled.

The ACL_ADD PRINCIPAL operation gives a new principal access to a
Catoan-object. The arguments are the identifier of the principal and the
access sgpecification. If the specified principal is already in the access
control list, an exception is signaled. _ADD_ACCESS adds a the specified

access rights to a principal in the Catoan-object’s access control list.

_DELETE PRINCIPAL rescinds a principal’s right to access the
Catoan-object. Similarly, DELETE _ACCESS removes a particular access right

of a principal in the Catoan-object’s access control list,

68—

Chapter Three Catoan Object Definition

- ——

Section C Refined Object

T

acl_add principal:PROCEDURE(new_acl:acl, prin:principal _id)
EXCEPTION(unauthorized access, acl _principal_already_in_acl)
(* Inserts new principal in the access control list. *);
acl _delete_principal:PROCEDURE(prin:principal_id)
EXCEPTION(unauthorized access, acl_principal not_1in_acl)
(* Removes a principal from the access control list. *); e
acl_add _access:PROCEDURE(add _acl:acl, prin:principal_id) .
RETURNS (old _acl:acl) %
EXCEPTION(unauthorized access, acl _principal _not_in_acl) .
(* Ensures PRIN has specified permission. *);
acl delete _access:PROCEDURE(del acl:acl, prin:principal_id)
"RETURNS (old _acl:acl)
bXCEPTION(unauthorized_access, acl_principal _not_in_acl)
(* Ensures PRIN does not have specified permission. *):
acl_read :PROCEDURE
RETURNS (acl:access _control _list _rep)
EXCEPTION(unauthorized access)
(* Formats the access coatrol list for external perusal. *);
acl _Ser:PROCEDURE(new_acl:access _coantrol list rep)
"RETURNS (old _acl:access control _list rep)
EXCEPFION(unauthorized_access)
(* Allows bulk setting of the access control list. *); 1

access_control _list rep = ARRAY(*) OF RECORD
1 prin:principal _id;
-~ the _acl:acl;
END; laccess coatrol_list rep
acl = RECORD
dir_acl: ARRAY(4) OF BOOL (*Read, Search, Modify, Append.*);
cont acl: ARRAY(2) OF BOOL (*Read, Set.*);
acl _acl: ARRAY(3) OF BOOL (*Read, Modify, Append.*);
- END; lacl
) principal _id = string(20);

Figure 5: An Access Control List Scheme for Catoan.
T s e e s mm o
3 ! _READ returns the entire access control list so that it can be examined
externally. This operation might be used to obtain an access coantrol list
L for use in setting some other Catoan-object’s access control list, using
~
g -69-
o
b e

Chapter Three Catoan Object Definition

Section C Refined Object

the _SET operation. _SET’s argument 18 an entire access control list, like

the value returned by _READ.

The representation of an access control list consists of a sequence of
two-component RECORDs. Each RECORD consists of a PRINCIPAL _ID and an ACL.
The ACL is a three-component RECORD: the DIR_ACL, the CONT _ACL, and the
ACL_ACL. Each componeant is an ARRAY OF BOOL, with the several bits
corresponding to the various modes of permission which can be granted.

Each permission type 13 independent of all the others.

111.C.2. Cross-Referencing.

One often wants to determine which Catoan-objects reference CRL, and
which Catoan-objects CRL references. This requires two collections of
data: those objects referenced by CRL, and those objects which reference
CRL. The first set 1is the DIRECTORY of CRL, and so 13 readily available.
The second set, however, is not so readily available -~ it must be

explicitly collected.

How might such a cross-reference be {mplemented? Suppose each object
had a structure and operations like those of Figure 6 as part of its
definition. Then, upon adding a reference to an object’s DIRECTORY, a call

to the coatained object’s XREF_ADD_REF operation would be included in the

-70-

Chapter Three Catoan Object Definition

Section C Refined Object

implementation of DIRECTORY NAMED ADD and DIRECTORY UNNAMED ADD. (Similar

definitions and calls are required for XREF_DELETE REF.)

There is a problem with the above method for storing cross-reference
information: who pays for the storage? A straight-forward implementation
of a versioned-object would have the object’s owner paying for the storage
of cross-reference information. This penalizes owners of very popular
objects, for the object’s owner may have little control over the number of

referencing objects,.

One solution 18 to ignore the problem; that is, to let the object’s
owner pay for the object’s crosg-reference information. Another
possibility is for the accounting system to keep track of the number of
cross-references to each object, and to deduct the charges for the
cross-reference information from the object owner”s bill, This would
effectively make cross-reference information part of the system’s overhead,

and so all users would pay a share of the cross-reference storage costs.

-71-

Chapter Three Catoan Obiect Definition

Section C Refined Object

xref_add _ref:PROCEDURE(name:object name, obj:@object)
EXCEPTION(xref full);
(* NAME is the name of the referencing object.
08J is a reference to the referencing object. *)

array ref out of bounds: EXCEPTION;

EXCEPTION
ON array _ref out _of bounds DO
RETURN(xref full);
BEGIN
SELF.xref.refd bys[SELF.xref.nexth.obj := obj;
END;
END;

SELF.xref.refd bys{SELF.xref.next}.name := name;

SELF.xref.,next :=# +1;
END PROCEDURE; !xref

xref: RECORD
next: INTEGER;
refd bys: ARRAY(*) OF RECORD
name: object name;
obj: @object;
END; lrefd bys
END; Ixref

Figure 6: Additions to the Basic Object for Cross-Referencing.

Two problems exist with the system overhead solution. The first 1is
that it is inequitable: if a system has two users, with the first
referencing five objects not owned by him and the second refereacing ocae
such object, both users would probably pay for three references, thereby
overcharging the second user. The second problem 1s: what preveats sSomeone
from iaforming the system of far more references than actually exist to his

objects and (illegally) lowering his storage bills?

Py iy

ek AL R e

Chapter Three Catoan Object Definition

Section C Refined Object

Assume that the following fragment is part of the XREF_ADD _REF

operation:

The ACCTG_STORAGE _ADD REF operation tells the accounting manager that a
crosg-reference entry has been added to a particular object, and that the

object”s owner should not be charged for the storage occupied by the entry. -
This operation must be carefully protected; the only entities which are

allowed to call ACCTG_STORAGE_ADD REF must be trusted by the accounting

manager not to call 1t excessively (that 13, more times than are

appropriate for the number of references), because otherwise someone could

obtain free storage.

IIT1.D. A Versioned Object.

Another refinement to the basic object is the "versioned" object.
Rather than directly modifying an object when changing it, a new instance
of the object 18 created, which is somehow related to a previous instance.
Therefore, rather than an object appearing mutable, it is a "history" of
immutable versions., This provides access to instances of the object
besides the most recent one, and facilitates, for example, concurrent

support and development of software.

-73-

Chapter Three Catoan

Section D Versioned Object

ITI.D.1. Version Naming.

For each object, a hierarchy of versions exists, which (s raflected in
each version’s name. The hierarchical relationship is that of "logical
derivation”": {f Version B is the child of Version A, then B was "logically
derived from" A. For example, B might be a refinement of A, correcting an
implemeatation error if the object were a program. Alternatively, B might
become a sibling-version to A, which could imply that A and B were sinilar
sorts of refinements (improvements, modifications) of their mutual parent.
Whether a version 1is a child or a sibling is the decision of the version’s

author.

A version name consists of a sequence of qualifiers to the object name.
These qualifiers are suffixes to the object name or to a "qualified" object
name (an object name with a versfon name suffix). Each qualifier is a
number, specifying the version number from the appropriate level in the
version hierarchy which is desired. The name "CRL.3.62" is a qualified

object name, whose object name is "CRL," and whose version name is "3.62."

Figure 7 shows an sample version hierarchy. The versioned
Catoan-object is named "CRL." CRL has three "top-level"” versions; that
13, three versions which are, in some sense, major modifications of CRL.

In system installation terms, this level in the tree might correspond to a

. T

Chapter Three Catoan Object Definition

- ——

Section D Versioned Object

"release," with lower levels being called "level" and "fix." To obtain CRL
telease two, one would use the name "CRL.2"; to obtain CRL release three,

level one, "CRL.3.1" would be used.

- A A B e @ W A ML B - M W B W B s m wm e e e w A W . w > -

CRL
//}i\ .2 .3
.1 .2 .{//A\§2

Figure 7: Version Namiang Hierarchy.

- AR w A m B B e A e B W e W W e o m o e e s wm e e om e - . e

Exanining the CRL.3 subtree, there are two children of CRL.3: CRL.3.2
has no children; CRL.3.1 has three children. 1In system installation

terms, one might reference CRL release three level one fix two as

"CRL.3.1.2."

There are no restrictions on the semantics attached to the various
levels in the hierarchy. For example, rather than "system iastallatlon,”
version management could be used in a class on software engineering.
Suppose an exercigse in modifying existing programs {s to be given. The

students might be broken {nto groups, with each group developing a

~75-

Chapter Three Catoan Object Definition

Section D Versioned Object

solut{on. The initial program is CRL; each group is to create its
solution as CRL.n. While working on the assignment, various trial
solutioas might be attempted, with modifications being made in an attempt
to produce a better solution. Perhaps one group has one small part of the
problem remafining which {3 especially difficult, and so two of the group
members attempt a solution in parallel. All of this could be handled very

easily with the versicn maintenance system proposed in this chapter.

I1I.D.2. Storing and Implementing Versions.

Storing versions 13 a problem distinct from namiag, though they are
often coupled, especially if versions are stored as incremental changes to
other versions, as in the Source Code Control System (SCC3) [5, 11, 27}
available with the Programmer’s WorkBench under Unix [8, 18]. SCCS stores
a set of versions as a collection of updates run against che parent
version. A version is created from some particular existing version, is
named relative to that version, and {s generated from that version. {The

version generation process 1is recursive 1{f necessary.}

By de-coupling version naming from version generation, addit{iomnal
flexibility 18 obtained, without sacrificing the potential benefits of

coupling naming and generation (coupling can be done by the user if

desired). Furthermore, the proposed mechanisms allow version geaeraticm to

~76=

e e

Chapter Three Catoan Object Definition

e o

Section D Versioned Object

be done in any manner desired, allowing the user to specify space-time
it yle-offs, derivation relationships, policies for creating new versions

(as opposed to including the changes in an exis:ing version for

efficiency), et ceterae.

The additfional information contained in a Catoan versioned object to

provide version maintenance and the operations on such objects are shown in

Figure 8.

A versioned Catoan-object consists of four types of information:
{nformation describing how to generate the version (VERSIGN GEN_INFO), the
logical children of the node ian the version naming hierarchy (CHILDREN),
the logical parent of the node (PARENT), and whether some other versioan is

physically derived from this versionm.

-77-

- . T T v 'l‘l

Chapter Three Catoan Object Definition

Section D Versioned Object

version _new:PROCEDURE(v_name: version_name,
v_base: @versioned _catoan object,
update_info: updates_specffication,
v_gener: version_generating_program)
RETURNS (new_version: @versioned_gatoan_object)
EXCEPTION(version_exists)
(* Creates a new version; SELF = pareat. *);
version_delete:PROCEDURE(v_name:version_name)
EXCEPTION(version nonexisteat)
(* Remove a version from the history; SELF = parent. *);

version_get :PROCEDURE(v_name:version_name)
RETURNS(v_obj:@versioned catoan_object)
EXCEPT(version_nonexistent)
(* Translate a name Into a versioned object; SELF = parent. *)
version_read:PROCEDURE
RETURNS(o0:3catoan_object)
(* Translates a version into an object; SELF = the version. *)

version_replace:PROCEDURE(v_name: versioa name,
v_base: @versioned catoan object,
update info:updates _specification,
v _gener:version _generating program)
EXCEPTION(version _nonexistent, version not _replaceable)
(* Replace a (leaf) version with a new one. *);

additional versioning information(updates specification) = TYPE RECORD
o version _gen_ianfo: RECORD
base version: Qversioned catoan_object;
updates: updates specification;
version_gen pgm: @verston_generattng_procedure;
END; !version _gen_info
childrean: ARRAY(*) OF RECORD
name: version_name;
version: @versioned catoan object;
END; !children
parent: RECORD
name: version_name;
version: @versioned catoan_object;
END; !parent
used _as_base: BOOL;
END; !versioned _catoan object

p—

| -78-

o Y e - " — e > —
' . [V onF N !

Chapter Three Catoan Object Definition

Section D Versioned Object

version_name(size: 0 TO 100) = TYPE RECORD
length: 0 TO size;
chars: ARRAY(l TO size) OF
WION(HOH TO l|9ll’ ".ll);
END; lversion_name;

Figure 8: Additional Information and Operations for
Version Maintenance.

" m A e m w m A R e - B M M A B R m e B wm e e @ am e e w wm um = ua

The VERSION GEN_INFO contains three pleces of information. The
BASE_VERSION denotes the version from which the current version is
physically derived. To generate the curreant version, as is done by
VERSION READ, start with the BASE VERSION and apply the UPDATES. The
UPDATES specify the transformation under which the base version must go to
obtain the current version. The UPDATES are applied by the
VERSION _GENERATING_PROCEDURE, in which the semantics of the UPDATES are

embodied. The minimal definition of VERSION GENERATING_PROCEDUREs is shown

in Figure 9.

The definition of the UPDATES SPECIFICATION (the parameter to the
VERSTONED CATOAN OBJECT type) is up to the user. as is that of the
VERSTON _GENERATING PROCEDURE. The only requirements of elther of these {is
that the VERSION GENERATING_PROCEDURE meets the proper Interface, and the

VERSTON_GENERATING PROCEDURE and UPDATES _SPECIFICATION are compatible.

~79-

.-qb"

Chapter Three Catoan Object Definition
Section D Versioned Object

version_generating procedure(updates_specification, coatents_type) =
T{PE

PROCEDURE(base: version name, updates: updates_specification)
RETURNS (contents _type)
EXCEPTION(versioned object_nonexisteat _base,
versioned object “inconsistent _updates)
(* UPDATES SPECIFICATION i8 a type definition describing the
form of the updates.

CONTENTS _TYPE describes the form of the CONTENTS of the
version.

BASE 18 the version from which this version {s physically
derived.

UYDATES is the updates to be run against the base. ¥*);

Figure 9: Definition of VERSION GENERATING PROCEDUREs

- e A w . W e M W W e L W e - s o um o A e e

VERSION_REPLACE allows certain versions to be mutable, rather than
immutable, so that changes to certain versions need not create a new
versioan (though one could be made, 1{f desired). Any version with a child
becomes {mmutable, and any version wkich is the BASE VERSION of some other
version also becomes immutable. However, if a version is a leaf in tie

naming structure, and no other versions depend upon it, it can be changed.

This 18 an efficiency refinement, and allows small changes to he readily

{acorporated.

The VERSION DELETE operation is anot totally straightforward; it cannot
merely remove the version. Some other version may be using the
to-be-deleted version as its BASE VERSION. If deleting a version will

remove a BASE VERSION, either the version cannot be deleted, or the

-80-

Chapter Three Catoan Object Definition

Section D Versioned Object

information in it must be included in those versions which depend on the
version to be deleted. This may require a cross-referencing mechanisnm,

gsimilar to that presented in Section IIIL.C.2.

The CHILDREN field specifies those versious which are immediate
children of the current version. The CHILDREN fields of all the versions
of a versioned object specify the logical relationships among the various
versions, as described above. Because the CHILDREN information and the
VERSION GEN INFO information are separate, the logical derivation of a

version need not be related to the physical derivation of the version.

The CHILDREN field attaches names to the logically derived children of
the curreat version. The name of the child, together with the names of all
the eventual parents of the child, specify the position of the child in the

version hierarchy. See Section IIL.D.1 for a discussion of version naming.

The PARENT information indicates the version which 1s the logical
parent of this version. 1t allows tracing back up the version hilerarchy

when necessary.

To demonstrate how a VERSION GENERATING PROCEDURE and an
UPDATES SPECIFICATION might be defined, consider an example: maintaining

versions of a program. The version history is that of Figure 7.

-81-

g o

Chapter Three Catoan Object Definition

Section D Versioned Object

Logically, the UPDATES_SPECIFICATION could be a collection of "commands,"
specifying operations like "delete" or "insert" on a particular line of the
document. (This is similar to the record-oriented update programs which
exist in some batch-oriented computing systems for including updates in the

source for a program.)

The VERSION GENERATING_PROCEDURE would take the BASE VERSION and "run
the UPDATES against" the base. The result of this process is the text of
the version represented by the BASE VERSION and the UPDATES. Each pair of
<UPDATES, BASE VERSION> could represent a different loglcal version of the
document (1), depending on how the VERSION GENERATING_PROCEDURE interpreted

the UPDATES relative to the BASE_VERSION.

How does one create the initial version of such a program? Ficst, a
VERSIONED_CATOAN OBJECT, CRL, 18 created. The VERSION GEN PGM is speciffed
to be the "Syspal _version _editor,” which would apply the change directives
properly. The BASE_VERSION is specified as NULL, indicating that there is
no version on which this one i3 based. Then, the UPDATES which will create

the initial version of CRL from "nothing" are supplied. CRL’s {nitial

version is now complete.

(1) In general, only a small subset of the <UPDATES, BASE VERSION>s
actually represent meaningful versiouns.

-82-

Chapter Three Catoan Object Definition
-~ Section D Versioned Object

As an example, suppose that CRL.3.1.3 is to be created under CRL.3.1
-~ (that is, CRL.3.1 is to be CRL.3.1.3°s parent). For whatever reason,

CRL.3.1.3 will be derived from CRL.3.2. What follows is a description of

generating CRL.3.1.3 at the lowest level.

Call the version to be created NEW VER, and let ADAM denote the most
‘ ancient ancestor in the version tree (in this case, CRL). First, the
f - version on which NEW_VER is based must be obtained. The statement
base := version get(adam, base name);
fincs the version denoted by BASE NAME (which would have the value ".3.2")
-~ and assigns {t to BASE. The program of CRL.3.2 would be obtained by
original pgm := version_read(base);

This program would be provided as input to an editor, the output of which

-~ would be the new version of the program’s source, which would be assigned
) to NEW PGM. The incremental differeaces between ORIGINAL PGM and NEW_PGM
could be determined by .
- differences := Syspal differences(original_pgm, new_pgm);
and everything is almost ready to complete the process. The parent of
NEW _VER must be obtained:
2 -~ parent := version_get(adam, parent_name);
f \ assuming ".3.1" 1is the value of PARENT NAME. Now, NEW _VER can be included
in the version hierarchy of CRL, using the statement
L -
! ~83-

| Chapter Three Catoan Object Definition
% Section D Versioned Object
E

new_ver := vergion_new(parent, new_name, base,
i differences, Syspal _version_editor);

where NEW _NAME has ".2" as 1ts value. This completes the creatfon of

CRL.3.1.3.

To obtain the program as of a particular versioa, the version’s name {s

b, supplied to VERSION GET, which finds the version in the version naming
hierarchy. VERSION READ {s thea invoked, which passes the version’s base

} and updates to the verslon generator (VERSION_QEN_?GH). which returns the

version.

At some point, after the version history becomes very large, generating
a given versioa may take a very long time. What could then be done 1is to
create a version which is complete (similar to the initial vecsion).
Thereafter, future new versions could be generated off thls new “"complete"
. version, rather than having to incrementally generate all the previous

versions before generating the desired one,

111.D.3. More on Version Naming.

In addition to the regular version names, one might waat to have

; "sliding" names for versions. For example, when developing a program, one
} ! often has a backup, a current, and a test version of the program. Upan
determining that the test version is ready for fanstallation, one would want
L
-84
-

Chapter Three Object Definition

Section D Versioned Object

to change the meanings of the names "backup, current," and “test" to
reflect the new state., This can be accomplished, and the general problem
of "sliding" names can be solved, by introducing "variables" to reference

versions.

A simple method of specifying variables for version references {s to
include an optional user-defined procedure for variable assignment which
would be called whenever a new version is created., This procedure, or
another one, could also be called directly by the user when he wanted to
update the variable assignments. The variables’ names and the objects they
referenced could be stored in the named DIRECTORY in the highest-level

Catoan-object,

It may be desirable to allow a general network of version names, rather
than just a hierarchy., Catoan supports a general network for naming

objects; verslon naming may require similar capabilities. At this point,

the value of a version network has not been proven. Despite always

referring to a hierarchy of naming versions, though, Catoan will support a

network of versions using the definition presented in Figure 8 above. Any

restrictions to a hierarchy would have to be done in the VERSION NEW

operation,

- -

Chapter Three Catoan Object Definition

Section D Versioned Object

The operations presented here are very low level. Presumably, a
higher-level interface to version maintenance would be presented to the

user by, for example, the editor,

II1.E. Summary.

Definitions of the "Basic Catoan-Object,”" a "refined" object, and a
"versioned" object have been presented in this chapter. The operations of
the objects, and sample trepresentations, have been described. 1ssues of

naming, protection, and (in some cases) efficiency were mentioned.

sy

ST R

CHAPTER FOUR

AN EXAMPLE: A SYSPAL PROGRAM OBJECT

I[n this chapter, I shall demonstrate how Catoan might be used. The
demonstration will be based on an example: a "Syspal program object.”" A
Syspal program object is a convenient way to store a program written in

Syspal using Catoan as the object storage mechanism.

In this object, one would store a Syspal program though the same
general structure, 1f not the exact structure, could be used for storing
programs written in most languages. The Syspal program object is an
extension of the versioned Catoan object described in Section IIL.D, and
the cross-referenced Catoan object described in Section III.C.2. In
addition to the operations pertaining to Syspal programs, the operatioas of
the versioned Catoan object and those for cross-referencing are part of the

definition of the Syspal program object.

-87=

Chapter Four Catoan Syspal Program
Section A Motivation

IV.A. Motivation.

Classically, a program 1s stored as a collection of files, each one
contalning some portion of the program. For example, one might have a
source file, a documentation file, an object-code file, an intecface file,
a load-able (executable-code) file, and so on. These are usually
differentiated by a suffix indicating the kind of file: ALG63 for an
ALGOL68 source file, PL1 for a PL/l1 source file, DOC for a documeantation
file, OBJ for an object-code file, et ceterae. Each file is individually

vigsible to the user.

A typlcal scenario in a system like this i{s as follows. A user wants
to write a program to help him balence his checkbook. Assume he waants to
use the Syspal programming language. He types something like

edit CheckBook Syspal new
meaanlng that a new file, of "type" Syspal, named "CheckBook," 13 to be
edited. Upon finishing his first attempts at writing the program, he might
type
run CheckBook
with a resultant error message like
NO SUCH FILE: CheckBook.LOAD

which 1s reported because he had never compiled the program. Upon

discovering his error, a likely follow-up might be

Catoan

Syspal Program

Section A Motivacion

compile CheckBook
for which another error message might be generated, because there is no
COMPILE command. Finally, after much aggravation, the user might realize
that he should type

Syspal CheckBook

which would compile his program.

Thinking that he can now run his program (assuming it compiled
properly), the example user might type
rua CheckBook
for which an error message like the one he received the last time he tried
RUN would be elicited. Eventually, he might realize that
link CheckBook
is needed, after which
run CheckBook
would work -- assuming that SYSPAL, LINK, and RUN did not require the user

to supply the proper suffixes for CheckBook.

How many times does the user actually care about the object-code file,
or the load-able file? How many times does the user actually care about
compiling, or about linking (except to check for compile-time errors)? Why
can’t RUN simply produce a properly executable form of the program?

Abstractly, the user is writing a Syspal program, not a machine-language

-89

Chapter Four Catoan Syspal Program

Section A Motivation

program; what does he care about the representation of his program?
(Iladeed, evea if he were writing a machine-language program, the

representation of the program may of no concern to him.)

The example preseanted in this chapter addresses these problems. The
Syspal program object defined in the next section consists of several
internal parts, which correspond to the classical object-code, load-able,
documentation, source, et ceterae files. WNormally, these are of no coacern

of the user, and so need not be dealt with explicitly (though the ability

to do so exists).

IV.B. Defiaitton.

Like any abstract object, 2 Syspal program object is defined by the
operations one performs on it. The primary operations one performs oan such
objects are NEW, DELETE, EDIT, RUN, EDIT_DOCUMENTATION, and DEBUG. Secoundary
operations, which exist more for efficiency than for completeness, include
COMPILE, and RESOLVE REFERENCES. In addition to those operations specific to

Syspal programs, the operations of the versioned Catoan-object aud the

cross-refereaced Catoan-object are part of the definition of the Syspal
program object., These extra operations are available directly to the user
because of the ITVISIBLY EXTEND statement. Figure 10 shows the {nterface for

and representation of the Syspal-program object.

-90-

Chapter Four Catoan Syspal Program

Section B Definttion

new:PROCEDURE
RETURNS (p:@Syspal program)
(* Instantiates a new Syspal program. *);
delete:PROCEDURE
(* Destroys a Syspal program and its subsidiary objects., *);

ed it : PROCEDURE
(* Allows modification to a Syspal program. *);
run : PROCEDURE
(* Executes the Syspal program. *);
edit documentation:PROCEDURE
EXCEPT(syspal program_no_documentation)
(* Modifies the documentation of a Syspal program. *):

compile:PROCEDURE
EXCEPT(syspal program _compilation_failed)
(* Compiles the Syspal program. *);
resolve references:PROCEDURE
EXCEPT(syspal _program_unresolveable reference)
(* Resolves external references (calls the system LINKER). *);

debug : PROCEDURE
(* Invokes the DEBUGGING subsystem. *);

ZVISIBLY EXTEND versioned catoan_object,
cross_referenced _catoan_object;

SELF: RECORD

program: versioned catoan_object;

xref: cross_reference_information;

(* Use of the VERSIONED_CATOAN_OBJECT:
CONTENTS = source code.
unnamed DIRECTORY slot 1| = object code.
unnamed DIRECTORY slot 2 = documentation.
uanamed DIRECTORY slot 3 = interface.
unnamed DIRECTORY slot 4 = object code with external

references resolved.

named DIRECTORY slots = sub-programs. *)

END; !SELF

Figure 10: A Syspal-Program Object.

- A P e d o A A D B W B e am AP W D B A A MR M E > B R AR um B .

-91-

bttt i

Chapter Four Catoan Syspal Program v

- H
Section B Definition)
The NEW operation is invoked when a Syspal-program object is created.
-
It takes no arguments, and returns as a result the new object. Usually,
this operation is automatically finvoked by the EDIT operation on a new
program, NEW initializes the various fields in the representation of the
-
program before returning.
DELETE destroys a Syspal-program, and all of its underlying sub-objects
-
and versions.
The EDIT operation is lnvoked when changes are to be made to the
-
program. As mentioned above, EDIT will invoke NEW if a new program is
being edited. The oaly argument of the operation is the implicitly
supplied program object; 1t returns nothing.
~'
RUN attempts to execute some representation of the program. For Syspal
programs, this may require compiling first. RUN verifies that valid,
~
current executable code exists for the source; {if it does anot, RUN will
implicitly invoke the COMPILE operation. 1If the supporting system raquires
pre-execution binding (linking), RUN will also invoke the
-
RESOLVE REFERENCES operation. Once current executable code is obtained,
RUN will transfer execution-coatrol to the program.
-’

=92

Chapter Four Catoan Syspal Program

Section B Definition

EDIT_DOCUMENTATION provides access to the DOCUMENTATION portion of the

Syspal progranm.

DEBUG calls a debugging facility, allowing the programmer to control
the execution of the program, to examine the state of its execution, et

ceterae.

The secondary operations, COMPILE and RESOLVE REFERENCES produce
object- and bound-code, respectively. As mentioned, they exist primarily
for efficiency. They would probably be used by a programmer to be sure
that an errocr would not occur {f someone else should cause the operatians

to be implicitly iavoked.

In addition to the explicitly defined operations listed above, the
operations of version management and cross-referencing, as well as those of
the basic Catoan-object, are available for use with Syspal program objects.
The %ZVISIBLY EXTEND pseudo-statement causes the named interfaces to be
included in this one. (Appendix A describes this in a little more detail).
Syspal programmers can treat Syspal program objects as ordinary
Catoan-objects, including them in other Catoan-objects, including other
Catoan-objects in them, explicitly creating new versions, accessing the

croga-reference i{nformation, et ceterae.

-93-

AD=A083 491

UNCLASSIFIED

MASSACHUSETTS INST OF TECH CAMBRIDGE LAB FOR COMPUTE-~ETC F/6 972
A MANAGER FOR NAMED» PERMANENT OBJECTS.(U)

APR 80 A M MARCUM NOOQ14~75=C=0661
MIT/LCS/TM=162 NL

Chapter Four Catoan Syspal Program
Section B Definittion

Por example, assume that a user named "Ribak" was writing a system
composed of several Syspal programs. Omne of the programs (called '"DRIVER™)
is the top-level program, which controls dispatching the other parts of the
subsystem. One way to reflect this structure in the external structure of
the programs is to have the other parts of the subsystem be sub-objects of
DRIVER, included in the DIRECTORY of the Catoan~object used to gtore the
DRIVER Syspal program object. Thea, Ribak could easily see the system’s

structure by NAMED _READing the DIRECTORY of the Catoan-object.

IV.C. Use.

To use the Syspal program object, a user would invoke the EDIT
operation. EDIT would obtain the source code of the program, or intitialize
it to empty 1f the program was new. The user would make whatever changes
had to be made, replace the old edition of the program with the updated one
(or, perhaps, create a new version instead), and terminate the editing

session.

If the editor was able to check some or all of the syntax and semantics
of the program, a COMPILE merely to verify that no compilation errors
existed would be uanecessary. If the editor was unable to perform such
checks, the user might want explicitly to COMPILE the program if he was not

going to run it {mmediately, and someone else might try to RUN it befare he

=94 =

ik

Chapter Four Catoan Syspal Program

Section C Use

had a chance to do so. Otherwise, he could iavoke the RUN operation, which

would automatically invoke COMPILE and, if necessary, RESOLVE REFERENCES.

If an error is discovered while RUNning the program, the DEBUG
operation could be invoked, allowing the programmer to examiane the program
and its environment. If changes were made to the program while debugging,
EDIT could be called directly by DEBUG, thereby automatically incorporating
changes which were made while DEBUGging into the permanent copy of the

program.

Aggume that the programmer finishes DEBUGging the program, and then
neglects to COMPILE the program. Oune of the users of the program then
tries to RUN the program. At this point, the COMPILE operation {is
implicitly invoked, and the program 1s transformed into some form which can
be executed by the host system. The user had no knowledge of this

transformation; it is an implementation detail.

The Syspal program object is an extension of the Catoan-object. This
allows the programmer to use the properties of Catoan-objects when thinking
about managing his programs. For example, {f someone has written a utility
program which produces a copy of a Catoan-object, that same program could
probably be used with Syspal program objects with very little, if any,

modiflcatlion. 1€ other computlng systems oc other naming enviroaments (see

=95

-y

Chapter Four Catoan Syspal Program

Section C Use -
Chapter Five) could refereace his Catoan-objects, thea they could,
likewise, reference his Syspal program objects. This allows the issues of o
object management to be left to the object manager, regardless of the use
to which the objects are being put, regardless of the extensions which are
made of the basic Catoan-object. ~
IV.D. Summary.

-

Many people do little with computers but write programs on and for

them. Generally, the abstractions available for their use for actually
writing the programs are very primitive. The Syspal program object s
presented above is a high-level abstraction for writing aad storing
programs which is based on the Catoan-object and its extensioas.

vy

-96=

}

CHAPTER FIVE

IMPLICATIONS OF MULTIPLE NAMING ENVIRONMENTS

As mentioned in Chapter One, I do not assume that Catoan {8 the only

. manager for named, permanent objects that exists in the system. Therefore, !
Catoan’s 1is not the oaly naming environment in the computing system. If

there exist other naming schemes, and another naming environmeat 18 created
which is disjoint from the one I propose, what are the implications? Are

the name spaces forever disjoint? 1Is there a way to tefer to objects tn

ks S T P TR

one namespace while within another? 1Is there a way to transfer objects

pryvw—

from one namespace to another, either from within either of the two '

namespace in question, or from a third one?

-97-

) -

Chapter Five Catoan Multiple Name Spaces
Section A ' Disjoint Naming Spaces

V.A. Disjoint Naming Spaces.

Given the existence of more than one object manager, it is very
probable that the objects of one system cannot be handled by the others.
In classical file systems, internal storage formats may differ, the systea
overhead information stored may differ, the structure of the files may
differ -~ in fact, the "type" (in the programming language sense of the
word) of the files may be incompatible, so that the differeat kinds of

files are implemented by differeat modules.

In Catoan, the naming mechanism 18 part of the object structure, and is
handled by the object management mechanism. Separating names from objects
is not part of Catoan’s underlying philosophy. Therefore, regardless of
the structures of other object managers, regardless of the naming
mechanisms of other object managers, if an object is not a Catoan-object,

it cannot be named within Catoan.

If Catoan-objects can be named and accessed directly by some other
object manager, the naming structures are not disjoint. In this case, data
transfer is no problem, and is, indeed, a moot point: the objects of both

systems are accessible from one of the systeas.

98-

P

I W S

Chapter Five Catoan Multiple Name Spaces
Section A

Disjoint Naming Spaces

Let us assume that, not oanly can Catoan not access non-Catoan-objects,
but other systems likewise cannot access Catoan-objects, either. In this
case, the naming structures are truly disjoint, and data in the objects of
one system cannot be transferred directly into objects of the other. What

i3 needed for such data transfer is some procedure which can bridge the two

naming structures.

To be able to write a "bridging" procedure, it must be possible to
access both object managers from the same procedure. This requires that
the interface for both systems be available to the procedure. The
procedure must be able to name and to access (in a protection sense) the
interfaces; if naming can be done at this level directly, with internal
names (segment numbers, capabilities), then providing the procedure with
the internal unique identifiers of the two object managers produces the

necessary availability.

If naming cannot be done with internal names, then a mechanism is
needed to allow translation of external names (character strings) to
internal ones. This requires, esseatially, another name manager for
"gpecial" interfaces which are needed between, among, and above the normal

namiag structures.

~99-

sy o

— o — ™ - i T
-
Chapter Five Catoan Multiple Name Spaces
Section A ' Disjoint Naming Spaces -
Once the {nterfaces (and modules) for both object managers are
available to the bridging procedure, transferring data between the two ~
naaning eaviconments involves obtainiang the necessary information from one
eavironment (using the operations of its objects), and supplying that
1nformation to the other enviroament (using the operations on its objects). -
The author of the procedure must, therefore, know the interfaces for both .
systems. Such bridges might be provided as part of a system-wide library
of "utility" routines. =
V.B. A Standard Interface for Filing Systems.
-’
An alternative to forcing someone who is trying to transfer data
between object managers into learaning the idiosyncrasies of both systems is
to have all object managers meet the same interface (if standard data -
transfer 13 to be possible). This interface would specify the minimal set
of operations trequired of an object manager, and would also allow data to
be transferred freely amoag object management systems and their namiag o
environments.
Because of the wide variety of storage techaniques, protection schemes, -
and information collected, access to the "overhead" information will not be
included in the "standard, minimal interface" which will be daefined.
Because there are many ways to interpret names, many ways to organize a -
-100-
-

Chapter Five Catoan Multiple Name Spaces

Section B Standard Interface

naming structure, many ways to attach semantics to a naming structure (be
it a hierarchy, a network, or even a list), passing components of names to
the object manager may not make seanse. Because there are many ways to
structure data, a limited means for accessing an object manager’s data will
be provided. Figure 11 shows the standard, minimal interface for object

managers.

lookup: PROCEDURE(name:string(*), root:@TYPE(SELF)

RETURNS (obj : @TYPE (SELF))

EXCEPTION(name _not_found(index: INTEGER),

name_invalid(index: INTEGER))

(* Translates a character-string name into an object
reference, relative to "root.” "index" 1is the
position in "name" up to which the name could be
found or parsed. *);

contents_read: PROCEDURE
RETURNS (cont :@contents _type)
(* Extracts the CONTENTS from the object. *);

contents set: PROCEDURE(cont:@contents _type)
EXCEPTION(contents_type _inappropriate)
(* Places "cont" in the CONTENTS of the object. *);

Figure 11: Standard, Minimal Interface for a Filing Systen.

W B e MR A M W N wn M W LA B MR M B B M - B M @ e - e um .a wm -m = -

Names are handled in their entirety oaly, and are relative to some
point which 1is supplied by the caller. This "root" pointer may be NULL, in

which case the object manager determines the root. If the root is not

NULL, the name is parsed relative to the supplied root. For example, {f

one wanted to have a Multics file system parse the name

-101-

- T T rymTyeesT

Chapter Five Catoan Multiple Name Spaces

Section B Standard Interface

"“udd"CSR"Marcum~thesis," the root would not have to be spacified, because
Multics has one global root., If "Marcum™thesis" were to be located

relative to "“udd“CSR", then "~udd“CSR" could be supplied as the coot.

If the above example were to be executed in Catoan, and the object
"thesis," a sub-object of the object "Marcum," were to be found, a pointer
to CSR would be supplied as the root, and "Marcum~thesis" would be supplied

as the name.

Just as names are handled in their entirety, the data coantained in an
object are accessible only in their entirety. One 1s allowed to _SET and
READ the CONTENTS of some object as a whole. Returned by READ is a
pointer to the CONTENTS, which may be of arbitrary type, just as the
CONTENTS of a Catoan object may be of arbitrary type. _SET’s argument is a
pointer to a datum of arbitrary type to be used as the CONTENTS of the

object.

Some object managers may have to place restrictions on the types of the
objects which are the CONTENTS being stored. It is the responsibility of
the object manager to verify that the type of the CONTENTS is sensible for
that particular style of object manager. The exception
CONTENTS _TYPE_INAPPROPRIATE is provided to allow a standard mechanismy for

signalling such a problem.

-102-

‘-J') N . !
I oo " .
J O - .- ——— e o ear

Chapter Five Catoan Multiple Name Spaces
i~ Section B Standard Interface
~ Catoan does not meet, as described so far, the standard, miaimal

interface. The operations on the CONTENTS (_SET and READ) are compatible,
but an additional DIRECTORY operation is needed to take a full name and a

. -~ root poiant, and return a pointer to the named object. This is a simple

. addition, with which Catoan meets the standard, minimal interface of

F Figure 11,

V.C. Garbage Collection.

Reclaiming storage used by objects which are lnaccessible may be
necessary. If such "garbage collection"” 1is needed, how does the existence

of multiple naming environments affect garbage-collection?

. Garbage collection 1is a reclamation of the physical storage used by

logical entities (objects) which become inaccessible. Garbage collection
techniques have been a topic of investigation for a long time; they still

are. I shall not discuss the actual techniques here; the interested

reader 18 refecrred to (3, 4, 30, 33]. Rather, what follows is a discussioa

1 of the effects of multiple name spaces on garbage collectioan.

Usually, garbage collection is performed by the object manager. 1If

3 . this view of garbage collection is taken, all works well while there 1is

- _ -103-

Chapter Five Catoan Multiple Name Spaces

Section C Garbage Collection !

only one object manager. Indeed, all may work well within each of the
individual object managers. Each object manager has enough information to
garbage collect its own objects. What happens, however, {f there exist
later-namespace references? What happens 1f an arbitrary object can refer

to another arbitrary object, as can happen in Catoan?

A possible solution 1s to extend the standard, minimal interface for
object managers (see Figure 11) to include operations for communicating
garbage collection information. Suppose two object managers, Catoan and
Namit, exist in one computing system. Let "Cl1," "C2," et cetatae be
Catoan-objects; 1let "N1," "N2," et ceterae be Namit-objects. Thaere can be
references in Cl to C2, for example, and there might be refarences
permicted between two Namit-objects. Objects in Catoan can certainly
reference objects in Namit; whether objects in Namit can refarence

Catoan’s objects 1is immaterial.

Perhaps Cl references C2, and C2 references N6. Catoan reaches a stage

when garbage collection 18 required, and so it scans its objects for

inter-object references. It records the Cl-C2 reference. Upon discovering
the C2-N6 reference, it must transmit the information that N6 is referenced

to N6°s manager, Namit. How might this be done?

-104-

-
L]
. ~
.
.
=
4
r
L]
-~
d
~~

> v > ————
Chapter Five Catoan Multiple Name Spaces
Section C Garbage Collection

Let us asgsume that Catoan can determine that N6 beloags to Namit (I
shall retura to this issue shortly). Catoan must (conceptually) send a
message to Namit indicating that N6 is referenced from some other naming
environment. Perhaps Catoan would even specify that N6 was referenced from
the Catoan naming environmeant, by object C2. How would Catoan name N6 to
Namit? 1If all {ianter-namespace references are symbolic, Catoan could use
the same name that C2 used. (This also solves the problem of determining
the object manager of N6, mentioned above.) 1f, however, refereaces are
direct (rather than symbolic), as they could be in Catoan, it would be
necessary to pass to Namit the direct reference (which might be a segment
number), This presents no problem 1if garbage collection can be done

without object names, as is usually the case.

Direct references pose another problem: how does Catoan determine that
Namit is the manager of N6? Perhaps some extra information is stored with
the reference in C2 to N6 enabling Catoan (or any other object manager) to
determine that the refereace 1s to an object of some other object manager.
(Indeed, some such information is needed to allow an object manager to
determine at least that an object reference is to one of its objects or to
an object of some other object manager.) Another possible solution is to

maintain a directory of references to objects of other object managers.

-105-

Multiple Name Spaces

Section C Garbage Collecttion

Regardless of the exact methods for solving the various problems of
inter-namespace references, garbage collection will require much
inter-object manager communication to coavey the inter-namespace
refereaces. Furthermore, additional complexity is introduced into the
standard, minimal laterface for object managers of Figure 11, ianto the
laformation stored for references, into the mechanics of garbage
collection. [4]) contains a discussion of garbage collection in multiple
address spaces with inter-address space references. When the address
spaces are logical rather than physical, when they are name spacaes rather
than address spaces, when they are managed by more than one entity, garbage

collection is even more difficult than as described ia [4].

Another solution, which I prefer, i{s to make garbage collection the
function of the memory management system. This 18 especially appealing ia
an addressing system in which all references must be made through tagged
"pointers.”" Such references can be recognized easily by the memory manager
(because they are tagged). Generally, as long as the memory manager can
determine that a reference to an area of storage exists somewhare, the
ptecise form of addressing is immaterial -- it can be through segment

numbers, disc addresses, capabilities, et ceterae.

If the memory management system can determine that an area of memory is

referenced, regardless of where the reference is located within the memory

-106-

Chapter Five Catoan Multiple Name Spaces

Section C Garbage Collection

gystem, it can do the garbage collection. The memory management system is
below the object managers. Furthermore, because the memory management
system is part of the operating system kernel, all object managers use the
same (the only) memory manager. Therefore, because a single entity has
access to all the object references, and can determine when something is
and is not an object reference, the problem of garbage collection in

multiple naming eavironments is solved.

V.D. Summary.

Chapter Five has presented the issues surrounding the existence of
multiple naming environments in a computing system. The effects of
multiple naming environmeants on system-wide naming, on transferring data
among name spaces, and on garbage collection (storage management) were

discussed. A "standard, minimal" filing system interface was described.

-107-

| & N

CHAPTER SIX
-~
SUMMARY, AND EVALUATION OF THE PROPOSED SOLUTION.
In the following, I look at my proposals, commenting on what they are ‘-
and "where I am," on their completenesas, and on the trade-offs that have
been or could be made. I examine them with regard to previous work and
-
what "might be done." Lastly, I preseant my recommendations for further
research in the area of managing ramed, permanent objects in computing
systems which range in size from a single-user personal computer to a
-
distributed network composed of many autonomous hosts (which raange in size
from personal coaputers, to multiple-user computing utilities, to networks
themselves).
-
L4
E
-
-108-
-

Chapter Six Catoan Summary and Evaluation

Section A Summary

VI.A. Summary.

This report has presented the results of an investigation into storing
things in modern computing systems. The investigation has produced a
design of a system called "Catoan," which is a manager for named, permanent
objects. Colloquially, such a manger could be considered an

object-oriented filing systeam.

A description of existing ways of viewing permanent storage was
presented in Chapter Two, describing Honeywell’s Multics and
Hewlett-Packard’s MPE/3000 in depth. Bell Telephone Laboratories’ Unix was
briefly described, as was Carnegle-Mellon University’s Hydra. The file
systems in each of these influenced my thinking about permanently storing
objects in a computing system. A few methods for maintaining versiouns of

objects were also described in Chapter Two.

In Chapter Three, I described Catoan. The "Basic Catoan-object" was
defined and described, and a representation of the information in the
Catoan-object was presented. Refinements of the basic object were shown,
including an access control list protection scheme, cross-referencing, and
version maintenance. A general scheme for storing versions was described,
which allows the user to make the space-time trade-offs which most other

verslon mailntenance schemes make for the him.

-109-

Chapter Six Catoan Summary and Evaluation
Section A Summary

An example of using Catoan was described in Chapter Four. A

Syspal-program object was bullt using the cross-referenced and versioned

Catoan-objects.

Chapter Five related the problems which occur when multiple naming
environments exist in the same computing system. It 1is assumed that Catoan
might not be the only object manager in the computing system, and that
users might desire to transfer information among object managers and their
naming enviroaments. The effects of multiple naming eavirouments on

garbage collection were also stated.

More globally, more abstractly, {n this report I have described a view
of storing data in a computing system which departs from the classical
view. I have made this departure because the classical views of data
storage are not amenable to many of the current philosophies on
programming, software engineering, and data abstraction. Catoan allows one
to think of data storage in the abstract; it allows one to think of

storing abstract data objects, rather than storing "piles of bits.”"

Catoan is merely a type manager, for a Catoan-object. However, it is a
rather odd type manager: 1t gives out references to portions of the

rtepresentation of 1its data -- namely, a pointer to the CONTENTS. It 1is

-110-

Chapter Six Catoan Summary and Evaluation
~ Section A Summary

this aspect of Catoan which makes it untrusted: part of the represeatation

~ of a Catoan-object is not secure.

e

. ~ Catoan has also been a vehicle for exploration. Very rarely 1is the
. . permanent data storage mechanism of a computing system not trusted. Very
rarely do multiple filing systems exist within the same computing system.

-~ Yet, these are two important issues ian the design of Catoan,

When one is exploring and experimenting, there i3 a good chance that
~ the results will not be perfect. So it is with Catoan. The decision that
Catoan need not be trusted, and will not be trusted, limits its use.
Because of the lack of trust, Catoan cannot enforce extended controls on

~ access to the data or a Catoan-object.

1If one were to trust Catoan, and make Catoan the only object manager,
C - then other filing systems and naming eavironments could still exist.

However, rather than building directly on the memory management facilities,

the other filing systems would build on Catoan. Although this does solve
the trust 1ssue, it introduces inefficieacy by imposing another layer of

mechanism between the user and permanent storage. It may limit flexibility

1€, in fact, a particular application is 1l1 suited to Catoan (a

possibility {f for no other reason than Catoan is not implemented).

-111=-

Chapter Six Catoan Summary and Evaluation
Section B Completeness

~Hopefully, Catoaa could be implemented efficiently, so that the additional

layer would not cost very auch.

The naming scheme of Catoan allows a network of Catoan-objects to be
built. This introduces additional complexity by making it more difficult
to traverse the naming environment. When writing a program to traverse a
tree, it 18 known that there will be no loops encountered during the
traversal. But, when traversing a network, it 1is possible to eacounter a
loop; therefore, loop detection is needed. However, the additional
flexibility gained by allowiag multiple parents and, therefore, 3 naming
network often outweigh the cost of additional traversing complexity.
Furthermore, because a network is a superset of a hierarchy, a naming

hierarchy can be used, foregoing the generality (and cost) of a network.

Catoan hae no concept, analogous to the soft link, of associating an
external name with another external name. Catoan recognizes only hard
links, and multiple pareants of an object. There are semantics of soft
links which cannot be modeled using hard links. For example, allowing a
user to use the same (local) name for some object, regardless of the
modifications made to the object, is much easier using soft links, If it
1s possible at all with hard links (and this depends on the type of
internal name to which a hard link traaslates an external name),

substitution {is usualiy much more visible to the unconcerned user than with

-112-

L3 a P aas o e

LN
-tz @ ke . S

Chapter Six Catoan Summary and Evaluation
Section B Completeness

soft links. Nonetheless, because changing the CONTENTS of a Catoan-object
does not affect the containing objects, the "soft substitution” provided by
goft links {s easier to approach with Catoan hard links than with, for

example, Unix hard links.

The Catoan philosophy would dictate that, because of uniformity, each
object should contain a section for soft links, 1f they were to be included
in Catoan. An alternative is to introduce a new type of Catoan-object, a
"soft link." This points out another feature of Catoan: there is only one
type of Catoan-object. This forces the overhead of both portions on all
the users of Catoan, even if eighty-seven percent of their objects do not

use the CONTENTS.

One of the most important questions to be answered about Catoan 1is:
"Can one do everything with Catoan that one can do with ’coaventional’ file
systema?" 1 claim that, except for issues of trust, one cam, and that, in
fact, one can do some things ian Catoan that cannot be done in many existing
file systems. As to trust, the overhead operations are most greatly
impacted by not trusting Catoan -- the SYSTEM OVERHEAD INFORMATION is not

necessarily correct.

The data-oriented operations in Catoan are the "CONTENTS" operattions,

described in Section II1.B.1l.b. The operations are very simple, and from

-113-

- A B e~ W,

Chapter Six Catoan Summary and Evaluation

Section B Completeness

their simplicity comes much generality. Also, because of the lack of
constraints on the structure of the CONTENTS, anything which can be
described in Syspal can be stored directly in a Catoan-object., (It can be
argued that Syspal’s data description facilities are universal; such

arguments are outside the coverage of this report.)

Because Catoan allows an arbitrary network of objects in 1its naming
? structure, relationships which cannot be expressed in some other systems
(for example, hierarchical naming eavironments) can be easily expressed in
Catoan. Objects can be composed of sub-objects, which may themsalves be
composed of further sub-objects, any of which (at any level) may be part of

other objects.

In the basic Catoan-object, there is no provision for enforcing
* protection (except at the CONTENTS’s type level, which is somewhat clumsy).
Protection 1is, however, introduced as a refinement. This refinement is
nerely a suggestion, and is presented as such to re-enforce its
optionality. For similar reasons, cross-references and version maintenance
schemes are exteansions and refinements, and are not critical to the basic

t theory.

No amechanisms for concurrency coatrol have been preseanted in this

report., This is because there are very many schemes, ranging from

-114-

o TWERRETR T e T

Chapter Six Catoan Summary and Evaluation
Section B Completeness

"classical" locks, to monitors [l4], to semaphores, to event counts [25],
to some very recent, perhaps esoteric schemes aimed primarily at
distributed systems (24]. 1If one desired to implement concurrency control
atop the basic Catoan-object, or any of its refinemeats, this could be

done, and should not impact the abstractions which exist.

When designing a computing system, recovery from semi-catastrophic
failures and from human errors is often considered. The concept of
off-line backup of on-line storage is crucial to a system which portends to
be a safe repository for its users’ data [31]). However, backup is not
discussed in this report. To make Catoan complete, some form of off-line
backup must be included, at some level. This was not done here because of
the implications that lack of trust has on the ability to access data so as
to transfer it to off-line backup. If Catoan is, in fact, not trusted, the
task of backup must be relegated to the memory manager, which is trusted,
or to a higher level abstraction which 1s in a better position to {mplement

backup when it is needed.

VI.C. Trade-0ffs.

An implicit trade-off has been responsibility for memory management.
Most filing systems perform their own buffering between primary and

secondary memory; Catoan relies on the underlying memory management system

-115-

sy o

Chapter Six Catoan Summary and Evaluation
Section C Tradeoffs

for this. While this certalnly stmplifies Catoan, and helps support the
multiple-level, abstract system concept {23, 36, 2], there may be a
sacrifice in control over buffer management, resulting in a decrease in

systea performance,

In a memory system which is "automatically" managed, the performance
degradation will generally be local, visible only to the user of Catoan
whose application would benefit from detailed coatrol over the buffer
management. However, su:h local control will often result in degraded
global performance, because the memory (buffer) manager, which has more

global information than the filing system, 18 being circumvented.

An instance of the "classical space-time trade-off" can be found in
version maintenance. One has the option of very fast access to any version
(at the expense of storing each version in its entirety), or of very little
storage (at the expense of building the requested version from a "base" by
applying "updates"). This trade-off has been left to the user of Catoan’s
version mailntenance system, by allowing him to specify a "base," a sat of

"updates,”" and a program to apply the updates to the base. See

Section II1I.D for further details.

The view of stored objects presented by Catoan is very ualike that

preseanted by most existing object managers (filing systems). Usually,

-116-

Chapter Six Catoan Summary and Evaluation
-~ Section C Tradeoffs

stored objects are viewed as a one-dimensional array of records (byte
-~ strings). This view allows the object to be access in pleces, rather than
requiring that it be accessed in its entirety (as far as the object manager
1s concerned). This decision allows objects to be viewed abstractly, aad
~ to have an ilaternal structure which is unknown to Catoan. If a more
clagsical view is desired (because, for example, most of the object are

very large, and one generally wants to access only a small portion of them,

o e
)

anyway), 3 record-at-a-time view could be built atop Catoan, using Catoan
to actually store the object. Because Catoan”s CONTENTS_READ operation

! returns a pointer to the contents, rather than the entire contents itself,
i such a system would not require modification to Catoan, nor would it

generate excessive memory referencing from reading in the entire contents.

What happens if some portion of memory is volatile? How must Catoan be
chaaged so that a user can be assured that his data is in stable storage?
Catoan must provide the ugser with a MAKE NON VOLATILE operation which
performs a "synchronous write" so that, upon termination of the operation,
the user 1s assured that the object has been transferred to non-volatile
storage. This requires a similar operation exist for the memory manager,

} - since the view it presents to Catoan is that of non-volatile storage.

A very ilmportant trade-off is that of trust. Because Catoan need not

h . -~ be trusted, the information in the DATEs and PRINCIPALs fields may be

. -117-
]]

Chapter Six Catoan Summary and Evaluation

Section C Tradeoffs

inaccurate. Lack of trust implies a certain difficulty in enforcing
gsecurity and in ilmplementing backup, and implies certain uncontrolled
accessibility to Catoan-objects (in particular, to the CONTENTS). But,
Catoan is optional. If Catoan provides protection mechanisms, if Catoan is

secure, then it must be trusted, and it probably becomes mandatory.

VI.D. Remaining Work.

Much has been done oa and with Catoan. Much is left to do: more
theory needs developing, practical experience needs to be gained with the
concepts embodied in Catoan. This section describes some of the work which
remains to be done relating to Catoan and the ideas presented in this

report.

As mentioned in Chapter One, Catoan night be used on a machine which is
part of a multi-node network. 1In such an environment, one often wante to
name resources which exist at remote nodes. Furthermore, one often wants
to locate a resource thought to exist somewhere in the network, but at an
unknown node. Despite the need for investigation iato this area, this
report on Catoan does aot address network-wide filing systems or naming
environments. One possible view of a network-wide filing system built
using Catoan is to consider the remote nodes as representing other members

of a collection of multiple naming eavironments. 1t might then be possible

-118-

Y T gy 3 -

Chapter Six Catoan Summary and Evaluation

Section D Remaining Work

to apply the concepts presented in Chapter Five to the problems of

network-wide filing systeams.

Issues of protection, security, and sharing are relevant to the goals

- of Catoan. These have been discussed briefly throughout this report;

=

.) additional work is needed to present a unified view of protection and

sharing to the users of Catoan that is both convenient and powerful.

H
r -
As discussed in Section III.C.2, when implementing cross-references
1 there 1is a problem of who pays for the storage occupled by the
- cross-reference information, This is part of a more global problem of how
to determine the amount of storage in one principal’s space which is
occupled by the data of another principal (including "The System"). 1 know
- of no previous work done in this area.
.
Designing a system which is robust in the face of host-system failures i
- is still a large open research question. Because Catoan manages permanent !
data objects, it should provide stability in the face of failure.
b -

Lastly, how amight one implement Catoan? How difficult would it be? 1s
! the environment Catoan presents to its users really the right one? Is

Catoan complete, sufficient, and easy to use? Only an attempted

implementation can answer these questions,

-119-

APPENDIX A

SUMMARY OF THE SYSPAL PROGRAMMING LANGUAGE.

This appendix summarizes the salient features of Syspal (1) [10] as
they relate to this presentation. The reader is warned that this 18 not a
definitive explanation of the language, nor is it complete. The reader is
warned further that this represents Syspal as I knew it in May, 1979, while
the language was still undergoing active development. The language as it
actually is defined at the time this paper is read, or even published, may

differ substantially from the summary presented here.

Syspal i3 a da.i-abstraction language, based on Pascal, and geared
toward systems programming. Much of the syntax and semantics are derived
from Pascal, and from CLU. One of the design goals of Syspal is to support

modular programming coaveniently.

(1) Syspal 1is an experimental programming language under development at
Hewlett-Packard Laboratories, Electronics Research Center, Computer
Research Laboratory, in Palo Alto, California.

-120-

Appendix A Catoan Syspal

Data Types.

Syspal provides the programmer with a few standard, "built in" data
types. Various forms of enumeration types, which specify the range of
values of a type, are available. Using enumerations, the usual INTEGER,
REAL, BOOL, and CHAR types caa be defined. For example, INTEGER might be
defined

INTEGER = TYPE -1000000 TO 1000000
1f INTEGERs between positive and negative one million were desired., The
REAL type might be

REAL = TYPE PRECISION 6 EXPONENT 32
stating that gix digits of precision and an exponent between positive and
negative thirty-two was available. BOOL, trepresenting truth and falsehood,
could be defined

BOOL = TYPE UNORDERED(TRUE, FALSE)
where UNORDERED specifies that the relations based on ccder (less, greater,
et ceterae) are not defined on BOOLs (though equal and not equal atill
are) . The CHAR type represents the ASCII character set, and is an ORDERED

collection of the values according to the ASCII collating sequence.
In addition to the scalar types, aggregates are provided by Syspal. '
Two kinds of aggregates exist: RECORDs and ARRAYs. ARRAYs are homogeneous

collactions of clements which can be referenced using numeric subsc:cints.

-121-

sy o

Appendix A Catoan Syspal

A definition like
x: ARRAY(L TO 6) OF INTEGER
defines "x" to be a six element ARRAY of INTEGERs. The declaration
y: ARRAY(*) OF CIRCULAR(D, 1, 2)

specifies "y" as an array with unknown size of modulo-three integers.

RECORDs allow non~homogeneous data to be idcluded in the same
aggregate. The elements of RECORDs are accessed by their field names. For
example, suppose the following definition were part of a Syspal program:

employee: RECORD

name: string(30);

addr: RECORD
street: string(35);
city state: string(35);
zip _code: 0 TO 99999;
END; !address

salary: 10000 TO 500000;

monthly productivity: ARRAY(l TO 12) OF 0 TO 10;
END; lemployee

This defines the variable "employee" to contain four fields: 'name" (a
character-string of leangth thirty; see Section I.C for a definition of
strings); "addr" (which itself is a RECORD, consisting of two thicty-five
character stcings and a non-negative lnteger lesa than 100,000); ‘"salary"
(an integer between 10,000 and 500,000), and "moathly_productivity"” (which
is another aggregate: an ARRAY containing twelve elemeats, each of which

is an integer between zero and ten),

-122-

Appendix A Catoan Syspal

In addition to being able to define variables, the Syspal programmer is
allowed to define new types. This i3 done in the same way that INTEGER,
REAL, et ceterae were defined above. For example,

address = TYPE RECORD
street: string(35);
city _state: string(35);

zip_code: 0 TO 99999;
END; !address

defines a type called "address," with the same structure as the "addr"
field in the "employee" structure above (also called "employee.addr"). A
programmer-defined type (call it "PDTP") can be an extension of some other
type (the "base type," call it BIP)., meaning t“at PDTP is built on BTP and
"extends" 1t. Unless specifically prohibited, an exteansion of a type will

match the base type for the purpose of compile-time type checking.

Defined types can have user-specified parameters, as showmn 1ia the
definition of the "string" type found in Section I.C. Parameters are very
useful when defining modules, such as a stack consisting of INTEGERs, or of

REALS; see below for a discussion of modules.

-123-

oy &

(2]
»
[
]

Appendix A Syspal

One can also define a variable or type as the UNION of two or mote
types. This specifies that any of the base types might be the type of the

defined variable.

Syspal provides pointers. Pointers are typed, and can refer to only
one kind of object (as opposed to PL/l pointers, which can reference
anything). A pointer to an INTEGER is declared

pint: QINTEGER;
and a pointer to an address would be
paddr: @address;

If the value of "pint" were assigned to "paddr,” an error would be raisaed.

Control Structures.

Most of the "usual" flow control coastructs exist in Syspal.
Conditionals (IF-THEN-ELSE and CASE), iteratioan (WHILE, REPEAT, FOR, and
LOOP ([infinite repetitiont), exception handling (EXCEPTION), and procedure
calling (CALL), amoag others, ave provided. In addition, iteration can be
controlled by a "sequencer" (1), which i3 a co-routine to provide the next

value for iteration.

(1) This is very similar to the CLU "{iterator" (22].

-124-

Appendix A Catoan Syspal

Procedure and Function Definition and Calling.

Procedure declarations have the form:

name: PROCEDURE(parml:typelp, parm2:type2p, ...)
RETURNS (varl:typelv, var2:typelv, ...)
EXCEPTION(condl(exvarsl), cond2(exvars?2), ...);

This defines a PROCEDURE called name. The parameters are parmN (N being 1,
2, et ceterae), of types typeNp. The procedure returns values of types
typeNv through the internal names varN. Exceptional conditions condN can
be raised in this procedure; they will return with parameters exvarsN,
regpectively. The parameters, RETURNS clause, EXCEPTION clause, and vars

portion of the exceptional conditions ("condN") are optional.

As mentioned in Section I.C, Syspal recognizes the type of the implicit
operand to module operations, and, furthermore, assigns this implicit
operand to the keyword "SELF." Type checking 1is performed for calling

sequences, a3 well as for other variable references.

In addition to a normal procedure termination, an abnormal tecrmination
can occur. There is only one way for a procedure or function to terminate
normally: assign a value to the RETURNS variable defined in the function
header (1f any exist), and exit through the end of the procedure or

function. An abnormal termination is indicated by the RETURN statement.

-125-

vy

Appendix A Catoan Syspal

Abnormal termination can, in addition to returning the name of the

exceptional condition, return values which can be used by the calling

procedure to diagnose the error.

Modularity, Data Abstractions, and Interfaces. *
Syspal is a data-abstraction language, similar to CLU [22], for '

example. The Syspal analogue to the CLU cluster is a "module." When ome P

defines an abstract data type, one does 30 by defining the module which

will manage the abstraction. Variables of the abstract type are then

declared to be of the module’s type. -
The abstr#ction is defined by the "interface" of the module. The

interface defines those things (operations, constaats, type declarations, -

et ceterae) which are to be visible to users of the abstraction; all other

information about the module is invisible to all but the module {tself. A

module can have many interfaces; for example, the creator of an object -

might be able to modify the object, but he might not want others to be able .

to modify 1it, only to read it. Figure 12 shows the definition for a module

implementing a STACK abstractifon. The module definition, including the -

operations and representation, and three interfaces are presented.

-126-

B S .-

Appendix A Catoan Syspal

MODULE stack(element_type: TYPE, stack _lim: INTEGER):
stack, strict_stack, loose_stack, pseudo_stack;
-~ new: PROCEDURE
RETURNS (stk: @stack)
(* Creates a new STACK, of "type" ELEMENT TYPE, with
STACK_LIM elements (maximum). *); -
ALLOCATE SELF;
SELF.tos := Qg

. -~ stk := EXT(SELF);
. END PROCEDURE; !new
R Y
push: PROCEDURE(val: element_type)
H EXCEPTION(stack overflow)
i (* Puts VAL onto the top of the stack. *);
- IF SELF.tos=stack_lim THEN
. RETURN(stack overflow);

ELSE SELF.tos :=f +1;
SELF.elements(SELF.tos) := val;
END;
END PROCEDURE; !push

pop: PROCEDURE
RETURNS (top: element _type)
EXCEPTION(stack underflow)
(* Return and discard the top of the stack. *);
IF SELF.tos=0) THEN
RETURN(stack underflow);
ELSE top := SELF.elements(SELF.tos);
SELF.tos :=f# -1}
END;
END PROCEDURE; !pop

1s_empty: PROCEDURE
RETURNS (ans: BOOL)

(* Returns TRUE if the stack has no elements. *);
ans := SELF.tos=(;
END PROCEDURE; !is_empty

-127-

Appeadix A Catoan Syspal

make empty: PROCEDURE i
* Porces the stack to have no elements. *); -
1 : INTEGER;
operation_not_defined on_type: EXCEPTION;
L :=1;
EXCEPTION
ON operation_not_defined on_type DO <
1 := stack_lim+l;
BEGIN
WHILE i<=stack_lim DO €
SELF.elemeats(1i) := NULL(element_type);
1 =% +1;
END; -
END;
SELF.tos := (3
END PROCEDURE; !make empty
extract: PROCEDURE(index: INTEGER)
RETURNS (elem: element_type) y
EXCEPTION(stack_nonexistent_element(size: I TO stack_lim))
(* Returns the INDEXth-from-top elemeat (top = 1). *);
IF index>SELF,.tos THEN
RETURN(stack nonexistent element(SELF.tos));
ELSE elem := SELF.elementa(SELF.tos-(index-1)):
END PROCEDURE; lextract -
insert: PROCEDURE(val: element_type, index: INTEGER)
EXCEPTION(stack_nonexistent_element(size: 1 TO stack_lim))
(* Sets the INDEXth-from-top element to VAL (top = 1), %*);
IF index>SELF.tos THEN
RETURN(stack_ponexlstent_glement(SELF.tos); -
ELSE SELF.elements(SELF.tos-(index-1)) := val;
END PROCEDURE; !insert
SELF: RECORD i
tos: 0 TO stack_lim; -
elements: ARRAY(L TO stack_lim) OF element_type;
END; ISELF
END MODULE; Istack
[~
-

Appendix A Catoan Syspal

! Interface definitions.

(stack(element_type: TYPE, stack_lim: INTEGER),
scrict_stack(element_;ype: TYPE, stack _lim: INTEGER)): INTERFACE;
new: PROCEDURE
RETURNS(stk: @stack);
push: PROCEDURE(val: element_type)
EXCEPTION(stack_overflow);
pop: PROCEDURE
RETURNS (top: element _type)
EXCEPTION(stack underflow);
is_empty: PROCEDURE
RETURNS (ans: BOOL);
stack overflow, stack _underflow: EXCEPTION;
END INTERFACE° 'stack, strict_stack

looge _stack(element_type: TYPE, stack_lim: INTEGER): INTERFACE;
TVISIBLY _EXTENDS strict etack(element _type, stack_lim);
make empty. PROCEDURE;
extract: PROCEDURE(index: INTEGER)
RETURNS(elem: element_type)
EXCEPIION(stack nonexistent element(size: 1 TO stack_lim));

stack_ponexistent_glement(size. "1 TO stack _lim): EXCEPTION'
END INTERFACE; !loose_stack

pseudo_stack(element type: TYPE, stack_lim: INTEGER): INTERFACE;
IVISIBLY _EXTENDS loose _stack;

{nsert: PROCEDURE(val: element _type, index: INTEGER)

EXCEPTION(stack_ponexistent_glement(size. 1 TO stack_lim));
END INTERFACE; !pseudo_stack

Figure 12: A Module Implementing a Stack.

- e e s . - - - @ = = - -

-129-

o e — - [.

Appendix A Catoan Syspal

The STACK module has two parameters: defining the type of the STACK’s
elements ("element_type") and its maximum size ("stack_lim"). These
parameters are passed to STACK when a new STACK is created. They are
supplied by the programmer when the particular STACK variable is declared.

For exaaple,

inventory: stack;

r laventory := NEW stack(inven_control record, 150);

declares "inventory" to be a STACK, and instantiates it as a stack of
"iavea_control_records,” with at most one hundred fifty

ilaven_control_records. The list of names after the last colon in the

MODULE statement is a list of the interfaces which this module meets.

-
. The NEW operation, invoked by the NEW statement, initializes the fields
in the represeantation of the STACK, and returns the external (abstract) ‘
representation of a stack ("EXT(SEL®)"). =
PUSH and POP present no particular surprises. They do illustrate,
-

however, the exception-handling mechanisms of Syspal. The oaly way to
terainate the execution of a procedure normally is to exit through the last
statement of the procedure body, having previously assigned to the

g appropriate variables whatever values are to be returned. If an

-130-

s

)

Appendix A Catoan Syspal

exceptional return is to be performed, the RETURN statement is used, naming
the exception, and specifying the parameters which might be returned with

the exception (see EXTRACT and INSERT).

The IS_EMPTY operation is a predicate to allow the user to see if the
stack has any elements. MAKE EMPTY alters the stack to ensure that, if

IS _EMPTY were called immediately after make_empty, IS_EMPTY would retura

TRUE.

EXTRACT and INSERT allow direct access to the elements of the stack.
If an undefined element is accessed, the exception
STACK_NONEXISTENT ELEMENT is signalled, and the curreat size of the stack

is returned with the exception name.

The interfaces allow various forms of access to the STACK abstraction
(module)., 1If a strict stack discipline is desired (access to only the top
of the stack), the "stack" or "strict_stack" interface would be used. 1If a

slightly looser stack discipline 1s desired, allowing writing oanly through

PUSH but reading anywhere in the stack, “loose_stack” would be used. If no
controls over the use of the stack, but the convenience of a stack, were

desired, the "pseudo_stack" interface would be appropriate.

-131=-

g

-

Appeadix A Catoan Syspal

1

Note that the "loose_stack" and "pseudo_stack" interfaces are built on

.1
other interfaces. The "ZVISIBLY EXTENDS" statement specifies that the
named interface should be considered as part of this interface, and that
this interface extends it. It further specifies that all {anformatioan in

W
the extended interface should be explicitly visible to the ugser. (In
contrast, YEXTENDS would allow the extending interface access to the .
operations of the extended interface, but would not allow the user access

-
to the information in the extended interface unless it was explicitly
given.)

vy

-

-132-
=4
]

References

{l] Almes, G. and G. Robertson. "An Exteansible File System focr HYDRA,"
Carnegie-Mellon University, Department of Computer Science,
CMU-CS-78-102, February 1978.

2] Anderson, T., P.A. Lee, and S.K. Shrivastava, "A Model of
Recoverability in Multi-Level Systems," IEEE Transactions on
Software Engineering SE-4 (November 1979), pp. 486-494,

{31 Baker, Heary G., Jr. "Actor Systems for Real-Time Computation."
M.I.T. Laboratory for Computer Science Technical Report TR-197,
1978.

[4] Bishop, P.B. '"Computer Systems with a Very Large Address Space and
Garbage Collectlon." M.I.T. Laboratory for Computer Science
Technical Report TR-178, 1977.

(5] Bonaani, L.E., and A.L. Glasser. SCCS/PWB User’s Manual. Bell
Telephone Laboratories, 1977.

(6] Dahl, 0.-J., and K. Nygaard. "SIMULA -- an ALGOL-Based Simulation
Lanugage," Communications of the ACM 9 (September 1966)} pp.
671-678.

[7] DEC. DECSystem-20 User’s Guide. Digital Equipment Corporation,
AD-41798, 1978.

(81 Dolotta, T.A., R.C. Haight, and E.M. Piskorik, editors. PWB/Unix
User’s Manual -- Edition 1.0. Bell Telephone Laboratories, 1977.

{91 R~crlake, D., et al. ITS 1.5 Reference Manual. M.I.T. Artificial
Inte .ligence Laboratory Memo AIM-1614A, July 1969.

(10] Fraley, Robert A. "Syspal: A Pascal-Based Language for Operating
System Implementation,” Proceedings of Compcon, Spring 1978.
IEEE, 1978, pp. 32ff.

[11] Glasser, Alan L. "The Evolution of a Source Code Coantrol System,"
preprint of a paper submitted to the IEEE Transactioas on
Software Engineering. Bell Telephone Laboratories, 1978.

(12} Goldberg, A., and A. Kay, editors. SMALLTALK-72 Instruction Manual.
Xerox Palo Alto Research Center, SSL-76-6, 1976,

[13] 4P-GSD. MPE Commands Reference Manual, Second Edition.

. . Al e ik o i e ety s o P

Hewlett-Packard Company, General Systems Division, 1978.

[14)

[15]

(16]

(171

(18]

{19]

(20]

[21)

[22]

{231

[24)

[25]

[26)

References

Hoare, C.A.R. '"Monitors: an Operating System Structuring Concept,”
Communications of the ACM 17 (October 1974), pp. 549-557.

HISI. Multics Programmers’ Manual Reference Guide. Honeywell
Information Systems, Incorporated, 1975.

IBM. 0S/VSl JCL Services. Ianternational Business Machines
GC24-5100-4, 1976.

—————— . 0S/VSl Utilities. TInternational Business Machines
GC26-3901-0, 1977.

[vie, E.L. '"The Programmer’s Workbench -- A Machine for Software

Development," Communications of the ACM 20 (October 1977), pp.
746-753.

Lampson, B.W., and H.E. Sturgis. "Reflectious on an Operating

Systeam Design,” Communications of the ACM 19 (May 1976), pp.
251-265.

===w===, 'Crash Recovery in a Distributed Data Storage System,” to be
published in Communications of the ACM.

Liskov, B.H., et al. "Abstraction Mechanisms ia CLU," Communications
of the ACM 20, (August 1977), pp. 564-576.

Liskov, B.H., et al. "The CLU Refereance Manual," Computation
Structures Group Memo Number 161. M.I.T. Laboratory for
Computer Science, July, 1978,

Parnas, D.L. '"On the Criteria to be Used in Decomposing Systems into
Modules," Communications of the ACM 15 (December 1972), pp.
1053-1058,

Reed, D.P. "Naming and Synchronization in a Deceatralized Computer

System,”" M.I.T. Laboratory for Computer Science Technical Report
TR-205, 1978.

«=—-—w=, and R.K. Kanodia. '"Synchronization with Eventcounts and
Sequencers," Communications of the ACM 22 (February 1979), pp.
115-123.

Ritchie, D.M., and K. Thompson. "The Uaix Time-Sharing System,"
Communications of the ACM 17 (July 1974), pp. 365ff.

-134-

Refetences

— b

[27] Rochkind, M.J. "The Source Code Countrol System," IEEE Transactions
on Software Engineering SE-1 (December 1975), pp. . 364-379.

-~ {28) Saltzer, J.H. "Topics in the Englneering of Information Systems."
M.I.T. Department of Electrical Engineering and Computer
Science, 1977.

(291 Schindler, G.E., Jr., editor. '"Unix Time-Sharing System," The Bell
System Technical Journal 57 (July-August 1978), part 2,

. (30] Steele, G.L., Jr. "Multiprocessing Compactifying Garbage
; Collection," Communications of the ACM 18 (September 1975), pp.
495-508.

4

r {31] Stern, J. '"Backup and Recovery of Ou-Line Information in a
Computer Utility." M.I.T. Project MAC Techaical Report
TR-116, January, 1974

(32] Thompson, K., and D.M. Ritchie. Unix Programmer’s Manual. Bell
Telephone Laboratories, 1975.

- {33) Wadler, P.L. '"Analysis of an Algorithm for Real Time Garbage

L a8 P o m—— a— o

49[-500.

{34] Wulf, W.A. '"ALPHARD: Toward a Language to Support Structured
Programs.'" Carnegle-Mellon University, Department of Computer
- Science, April 1974,

[35] -==w-=, aditor. "An Informal Definition of ALPHARD." Carnegie-Mellon
University, Department of Computer Science, CMU-CS-78-105,
February 1978.

- (36] «—=-=w-e= » R, Levin, and C. Pierson. "Overview of the Hydra Operating
System Development," Proceedings of the Fifth Symposium on

- et e et e o o e

{37) Wulf, W.A., R.L. London, and M. Shaw. "Abstraction and
Verification in ALPHARD: Introduction to Language and
Methodology." Carnegie-Mellon University, Department of Computer
Science, Jun: 1976.

-135-

|
4

OFFICIAL DISTRIBUTION LIST

Defense Technical Information Center

Cameron Station
Alexandria, VA 22314

Office of Naval Research
Information Systems Program
Code 437

Arlington, VA 22217

2 copies

Office of Naval Research
Branch Office/Boston
Building 114, Section D
666 Summer Street
Boston, MA 02210

1 copy

Office of Naval Research
Branch Office/Chicago
536 South Clark Street
Chicago, IL 60605

1 copy

Office of Naval Research
Branch Office/Pasadena
1030 East Green Street
Pasadena, CA 91106

1 copy

New York Area
715 Broadway - 5th floor
New York, N. Y. 10003

1 copy

Naval Research Laboratory
Technical Information Division
Code 2627
Washington, D. C. 20375

6 copies

Assistant Chief for Technology
Office of Naval Research
Cocde 200
Arlington, VA 22217
1 copy

12 copies

Office of Naval Research
Code 455
Arlington, VA 22217

1 copy

Dr. A. L. Slafkosky
Scientific Advisor

Caommandant of the Marine Corps
(Code RD-1)

Washington, D. C. 20380

1 copy

Office of Naval Research
Code 458
Arlington, VA 22217

1 copy

Naval Ocean Systems Center, Code 91
Headquarters-Camputer Sciences &
Simulation Department
San Diego, CA 92152
Mr. Lloyd Z. Maudlin

1 copy

Mr. E. H. Gleissner
Naval Ship Research & Development Center

Camputation & Math Department
Bethesda, MD 20084

1 copy

Captain Grace M. Hopper, USNR
NAVDAC-OCH

Department of the Navy
Washingon, D. C. 20374

4+ COPY

