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Abstract.

Transient acoustic wave propagation is analyzed for the case of

an unlimited plane-stratified fluid having constant density and sound

speed c(y) at depth y given by the Epstein profile
J ..2&1- s .. . .

K sech2 (y/H) + L tanh (y/H) + M

The acoustic potential is a solution of the wave equation
Dt 0 ~r~4 4L'or *,

D - C2 (y) (PI + bTu + DiU) = f(t,x,y)

where x - (xl,x 2) are horizontal coordinates and f(t,x,y) characterizes

the wave sources. The principal results of the analysis show that u is

the sum of a free component, which behaves like a diverging spherical

wave for large t, and a guided component which is approximately localized

in a region ly - y0 l <- h and propagates outward in horizontal planes

like a diverging cylindrical wave.
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§1. Introduction.

This paper presents an analysis of transient acoustic wave

propagation in a stationary unlimited plane stratified fluid with

constant density and sound speed c(y) at depth y defined by the Epstein

profile

I

c(y) = [K sech2 (y/H) + L tanh (y/H) + M)- 1/2 (1.1)

where H, K, L and M are constants such that c(y) > 0. The acoustic

field is characterized by a real-valued potential u(t,x,y) that satis-

* fies the wave equation [8]

D 2 U- c ()( U+ D 2u + D2 U) - f(t'xty) (1.2)
t 12 yC~ 2 y

where t is a time coordinate, x - (x1 ,x2) are Cartesian coordinates in a

horizontal plane, f(t,x,y) is a function that characterizes the wave

sources and Dj 3/ Xj, Dt = D/3t, Dy - 3/ay.

The sound speed profiles (1.1) were introduced by P. S. Epstein

[2] who discovered that (1.2) with this choice of c(y) can be integrated

by means of hypergeometric functions. This fact is of interest in

theoretical acoustics because the Epstein profile provides an example of

the physically interesting phenomenon of an acoustic duct when c(y) has

a minimum. This case is characterized by the parameter values [3,4]

H > 0, M > L > 0, K > L/2 (1.3)

For these values the limits c(±-) - (M L)-1/2 are finite and c(y) has

a unique minimum c(y0) < c(-) < c(-o) at y0  H tanh - (L/2K).
, %1
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The integration of equation (1.2) below is based on the spectral

theory of the Epstein operator A in the Hilbert space K - L2(R
3,c-2(y)dxdy)

as developed in [3,4] and the notation and results of that paper are used.

Equation (1.2) is interpreted as the equation

Dtu + Au - f(t,.), t E R, (1.4)

for a function t - u(t,-) E 3. The wave sources are assumed to act

* during the time interval [0,T], so that supp f C [0,T]. The correspond-

ing acoustic wave is the solution of (1.4) that satisfies the initial

condition

u(t,') - 0 for all t < 0 (1.5)

The solution is given by Duhamel's integral

u(t,') - {A- 1/2 sin (t - T) A1/2 } f(T,')dT, t > 0 (1.6)
0

Indeed, if f 6 C([0,T],R) then (1.6) is the unique "solution with finite

energy" of [9], while if f E C(O,T], D(A1/2 )) then (1.6) is the "strict

solution with finite energy." In addition, if f 6 C([0,T], D(A - /2 ))

then

u(t,x,y) - Re {v(t,x,y)} (1.7)

where v(t,.) is the complex-valued potential defined b.-

ft
v(t,*) - i exp {-it A1/2 } A-1 /2  exp {iT Al/a } f(T,.)dT

0

In particular,
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a

v(t,') - exp [-it Al/2 }h, t > T (1.8)

where

* rT
h - i A-

1/2 exp {iT A1/2 } f(t,)d-r (1.9)
0

The initial-value problem

I

, D 2u + Au - 0 for all t > 0 (1.10)
t

u(O) - f, Dtu(0) g (1.11)

can be treated by the same formalism. Indeed, if f E D(AI/2 ) and

g E D(A- /2 ) then the solution of (1.10), (1.11) is given by (1.7),

(1.8) where h - f + i A- 1/ 2 g E D(AI/2 ) (cf. [11, Ch.31).

The integral

E(u,K,t) = f {(Diu) 2 + (D2u)
2 + (D Yu) 2 + c-2(y)(D tu) 2 }dxdy (1.12)

may be interpreted as the energy of the acoustic field u in the set

K C R3 at time t. Moreover, A is the selfadjoint operator associated

with the Dirichlet integral

2
A(u,v) E (DjuDjV)L CR3) + (DyuDyV)L (R3 )

in the sense of T. Kato's theory of sesquilinear forms [5]. Indeed, if

the domain of A is D(A) - L'(R 3), the first Sobolev space, then A is

precisely the associated operator of Kato's theory. It follows from

Kato's second representation theorem (5, p. 331] that

D(A1/2 ) = L(R 3 ) (1.13)
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and

2A 112 U,: 2" A(u,u) -Z7 IDua (U1 ) + IDyU1 (R2 (1.14)

Hence the total energy satisfies

E(u,R',t) - 1A1/2 u1I2 + IDtulO (1.15)

, If h E D(A1/ 2 ) and u is defined by (1.7), (1.8) then a simple calculation

shows that

E(u,R3 ,t) = N A1/2 hqz for all t > T (1.16)

The analysis of the structure of the acoustic potential (1.7),

(1.8) presented below is based on the eigenfunction expansion of [4]. The

orthogonal projections in 3C

Pf = P+ + P_ + P0  (1.17)

and

00

Pg E Pk (1.18)
9 k-i

defined by the eigenfunction expansion provide a decomposition

u(t,.) - uf(t,.) + u (t,.)

into orthogonal partial waves

uf(t,') - Pf u(t,'), u (t,') - P u(t,')

The first, called the free component, will be shown to behave for large

times like a diverging spherical wave in a homogeneous fluid. The
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second, called the guided component, will be shown to be approximately

localized near the plane y = Yo and to propagate outward in horizontal

planes like a diverging cylindrical wave. This second component shows

the profound effect of an acoustic duct on transient acoustic waves. It

is absent when c(y) has no minimum.

Transient wave propagation in the analogous but simpler case of

the Pekeris duct (c(y) piece-wise constant) was analyzed by Wilcox in

[12] and [13]. This paper is a sequel to the report [10] of Wilcox and

the article [4] of Guillot and Wilcox. In [10] the special case of a

symmetric Epstein profile (L - 0) was analyzed without detailed proofs.

[4] presented a complete spectral analysis of the Epstein operator. Here

the results of [4] are used to treat the general Epstein duct and to

supply the proofs that were omitted in [10]. Some of the results of

this paper were announced in [1].

The remainder of this paper is organized as follows. In §2 the

eigenfunction expansion of [4] is reformulated to provide a convenient

starting point for the analysis of the free component uf. The behavior

of uf(t,') for t - - is calculated in §3. The justification of these

* calculations is technically more difficult than for the Pekeris profile

treated in [13] and proofs of the results are presented here for the

first time. §4 presents a calculation of the asymptotic behavior for

t - - of the guided component ug(t,-). §5 presents applications of the

results of §§3 and 4 to calculating asymptotic distributions of energy for

large times. The proofs of the results in §§4 and 5 are essentially the

same as those for the Pekeris profile, given in [13], and are therefore

omitted. A version of the method of stationary phase for oscillatory

integrals containing parameters in given in an Appendix.
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§2. Eigenfunction Expansions for the Epstein Operator.
The generalized eigenfunctions i_+(x,y,p,X) and p0(x,y,p,X) were

defined in [4] as multiples of certain hypergeometric functions. The

normalizing constants a_(p,X) and a0 (p,X) are determined only up to

factors of modulus 1. In [4] these factors were chosen to make a_+(p,X)

and a0 (p,X) real and positive [4, pp. 92-93]. Here it will be convenient

to renormalize to make the constants c (p,X) and c0 (p,X) of the

* asymptotic forms [4, (1.7), (1.8), (1.11)] real and positive. Calcula-

tion of c+(p,A) and c 0 (p,L) when a+(p,X) and a,(p,X) are defined as in

[4] shows that the quantities (4nq _)2  c +(p,X) = exp {i T+(p,X)} and

(41q+)1/2 c0 (p,X) = exp {i T0 (p,A)} have modulus 1. Hence, if _ and

are renormalized by replacing a+(p,X) and a0 (PX) by

a+(p,X) exp {-i T+(p,X)} and a0 (p,X) exp {-i T0 (p,X)} then

(47q+)/2 c+(p,X) - 1, (41Tq+) 11 2 c 0 (P,X) = 1 (2.1)

Explicit expressions for exp fi T +(p,A)} and exp {i To (p,X)} as

quotients of products of r-functions are easily obtained but will not be

needed here. The normalization (2.1) is employed in the remainder of

this paper.

The generalized eigenfunctions + and 0, renormalized as above,

satisfy
i(ypX) - (4Tq+_)- 1/2 T+(y,p,X) exp {Pi q.y} 

(2.2)

O(y,p,X) = (4Tq+) -1/2 To(y,p,X) exp {8 y/H} (2.3)

where

1 
0-
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T+(y,p,X) - (4Trq+)11/2 a(p,A) exp f-.i'i+(p,X) + iq-y} 03(y'pA)

T0 (y,p,X) = (47rq+)1/2 a,(p,X) exp {-i'iolp,) - ;y/H} 1(y,p,X)

and

limr T4(y,p,X) T+(p,X) (2.4)

lrn T0(y,p,X) T0(pX) (2.5)

Similarly, well-known identities for the hypergeometric functions

imply [3]

iP+(y,p, A) = (4q-''{+(pA exp (;iq~y) +R+(ytp, X) exp (±iq~y)1 (2.6)

00(ypA)= (4Trq+) 112 {IO (y,p,X) exp (-iq~y) + R0 (y,p,A) exp (iq~y)} (2.7)

where

I +(y,p,X) - (2/H)"12 eXp (iqpr) 2(Y'PX)

I_(y,p,X) -(2/H) 112 exp (-iqy) O4,(y,p,X))

10(y,p,X) - (2/H) 1/2 exp (iq +Y) 42(y'PX)

R4(y,p,A) - (2/H) 112 eXp (_iq~y) R+(p,A) 04(Y.P,X)

R_(y,p,X) - (2/H) 112 eXp (iqy) R_(p,X) 3(YIPX)

R0 (y,p,)X) - (2/11)1/2 exp (-iq~y) R0Cp,A) 0,(y,p,X)
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and

lir I'(y,p,A) = 1 (2.8)

y-,±Oo

lim I0 (y,p,X) = 1 (2.9)

lim R±(y,p,X) = R±(p,X) (2.10)

y-*±oo

li R0 (y,p,X) = R0 (p,X) (2.11)

The easily calculated expressions for R+(p,X), RO(p,A), T_(p,X) and

T0(p,X) as quotients of products of F-functions were given in [3] and

will not be needed here. They imply that

q+ NR±= + q_ IT+I 2 = q,, IR0i = 1 (2.12)
+

The construction of uf(t,.) = Pf u(t,.) will be simplified by

representing Pf = P+ + P + P0 by means of a single family of generalized

eigenfunctions, rather than the three families +, 0_ and 00. This may

be motivated by noting that W+, _ and 40 , collectively, represent the

response of the Epstein fluid to the incident plane waves

exp {i(p" x - q y)}, (p,q) e R 3. To see this consider the mappings

(pq) - X+(p,X) - (p,q+(p,X)), (p,X) E 2

(p,q) = X0 (p,X) - (p,q+(p,X)), (pX) E Q0

(p,q) - X_(p,X) - (p,-q_(p,X)), (p,X) e SI

X+ is an analytic transformation of onto the cone
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C+ {(p,q): q > alpl}

where

a ((C(-_)/c(_)) 2 - 1)1/2 > 0

Similarly, X0 is an analytic transformation of S0 onto the cone

CO = {(p,q): 0 < q < alpil}

and X is an analytic transformation of Q onto the cone

C_ = {(p,q): q < 0}

Thus, the asymptotic forms of tp. and , for y -+- [4,(1.7), (1.8),

(1.11)] show that P+(x,y,p,X) with (p,X) E 2 is the response of the

medium to a plane wave exp {i(p. x - q y)} with (p,q) e C+, %,(x,y,p,X)

is the response to a plane wave with (p,q) E C0 and i_(x,y,p,X) is the

response to a plane wave with (p,q) E C-. Note that

R3 = C+ U CO U C_ U N

where N is a Lebesgue null set.

The interpretation of 4+, i_ and %0 given above suggests defining

the composite eigenfunction

+(x,y,p,q) = (27) - exp (ip x) 0+(y,p,q), (p,q) E C+ u C0 U C_ (2.13)

by

(2.14)

(2q) 1/2 c(ao) +(y,p,X), (pA) X+' (p,q), (p,q) E C+

(y,P,q) =< (2q)'I/2 c(-c) 4) (y,p,X), (p,X) = X-'(p,q), (p,q) E C0

(21qi)I/ 2 c(-oo) _(y,p,X), (pX) - X-(p,q), (p,q) E C_

- - ...



The terms (2q) 1/2 c(-) and (21qj) 1/2 c(--) are normalizing factors. Note

that 2q c 2() is the Jacobian of X+1 and X01 and 2q c2 (-o) is the

Jacobian of X- 1.

The eigenfunction expansion of [4] will be reformulated in terms

of +. To this end let h E K and note that hf = Pfh P+h + P_h + P0 h

has the representation

I
* hf(x,y ) = +(xy,pX) h+(p,X) dpdX

+ 0f 0 (x,y,p,X) h 0 (p,X) dpdX

+ f _(x,y,p,X) h (p,X) dpdX

where the integrals converge in .C. The JC-lim notation will be suppressed

for brevity. Changing the variables in the three integrals by means of

X+, X0 and X_, respectively, gives

hf(x,y) = C+ +(x,y,p,q) h+(p,A) c(-) (2q)1/2 dpdq

+

* C o
+ qP+(x,y~p,q) h(p,X) c(-) (2q)" 2 dpdq

+ f c'-~ ~ " h+(~ ~) (p,A) c(-m)(21qi )112 dpdq

R3 0+(x,yp,q) 
h+(p,q) dpdq

where
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c 2C_)(IlpI12 + q2), q > 0
X = X(p,q) 2) (2.15)1c2(- ')(Ipl 2 + q2), q < 0J

and

(2q) '12 c(-o) h+(p,X(p,q)) , (p,q) e C+

h+(p,q) = < (2q)" 2 c(-°) ho(p,X(p,q)), (p,q) E CO  (2.16)

(21qj)1/2 c(-_) h_(p,X(p,q)), (p,q) E C_

* It is easy to verify by considering the three cones C+, CO and C_

*separately that

h+(p~q) W f 3+(x,y,p,q) h(x,y) c (y) dxdy

R
3

,

where the integral converges in L2 (R
3 ). Moreover, it can be shown by

direct calculation, using the Parseval formula of [41, that

hfII X I~L2( 3

These considerations and the eigenfunction expansion theory of [4, §5]

imply

Theorem 2.1. For all h E X the strong limit

h+(p,q) = L2 (R
3)-li . +(x,y,p,q)* h(x,y) c 2 (y) dxdy (2.17)M- ixl 2 +yz<M L

exists. Moreover, the mapping Q+: 3C - L2 (R3 ) defined by Q+h - h+ is a

partial isometry such that

Q-land +Q- Pf
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The adjoint mapping hf Q+ h+ is given by

hf(xY) = X-lim f p2 +2 .+(x,y,p,q) h+(p,q) dpdq (2.18)
M-* pI2+2-l

p

Finally, R+ is a spectral mapping for A in the sense that for all h C D(A)

one has

* (E+Ah) (p,q) - X(p,q) Q+h(p,q) (2.19)

where X(p,q) is defined by (2.15).

Note that these results are simply a reformation of the results

of [4, §5] and not a new theorem.

It is important for the calculations of §3 to recognize that

another family of generalized eigenfunctions of A is defined by

0_(x,y,p,q) = 0+(x,y,-p,q)*, (p,q) E R3 - N

It is clear that A_ = X(p,q)O_ and

0_(x,y,p,q) = (2r) exp (ip" x) 0_(y,p,q)

Moreover,

0_(y,p,q) = 0+(y,p,q)* (2.20)

because +(y,p,X), %0(y,p,A) and therefore 4+(y,p,q), depend on p through

jpj alone. The asymptotic behavior of 0+ and 0_ for y - - may be seen

from (2.2), (2.6), (2.7), (2.14) and (2.20). It is given by

t

* - . A
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c(o-){exp (-iqy) + R+(p,X) exp (iqy)}, (p,q) E C

0+(y~p~q (2Tr) 1/2 < c(co){e-xp (-iqy) + R,(p,X) exp Ciqy)), (p,q) E C0

c(-) T_(p,X) exp (iq~y), (p,q) E C_

and

(27)-12 <c(c){exp iqy) + R+(p,) exp (-iqy) }, (p,q) e C

_(y,p,q) - 2r /<c(-)exp (iqy) + RO Cp,X)* exp (-iqy)}, (p,q) e C0

c (--) T_ (p,),) exp (-iq~y) , (p,q) E C_

These relations clearly imply that 4_(y,p,X) is not simply a multiple of

4+(y,p,X). By contrast, the guided mode eigenfunctions have the symmetry

property

k(P)= k ~ ,)* k = 1,2,--- (2.21)

because they are real-valued and depend on p only through Ipi.
The family 0_(x,y,p,q), (p,q) E R - N, is a second family of

generalized eigenfunctions for A that spans the reducing subspace

JKf -=fK In fact, the following exact counterpart of Theorem 2.1 holds.

Theorem 2.2. For all h (= JC the strong limit

h_(p,q) - L2(R
3)-l JM fI1+2<2 (x,y,p,q)* h~x,y) c 2(y) dxdy

exists. Moreover, the mapping 0_: K -, LCR3) defined by O~h - jis a

partial isometry such that

2 2=1 and QQ - P f

The adjoint mapping hf S1 h is given by
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h f (xY) =X-lim 2 2 (x,y,p,q) h_(p,q) dpdq
f- 1pI +q <M2

* Finally, Q_ is a spectral mapping for A in the sense that for all

h e D(A) one has

(PAh) (p,q) = X(p,q) 2h(p,q) (2.22)

Theorem 2.2 is a direct corollary of Theorem 2.1. This follows

* from the observations that f(p,q) -~ f(-p,q) defines a unitary transforma-

tion ii. L2(R
3 ) while f ~f* defines a unitary transformation in bath JC

and L2(R
3 ).
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§3. Transient Free Waves.

The e'genfunction expansion of Theorem 2.2 is used in this

section to calculate the asymptotic behavior for t - - of the free

component uf(t,") - Pf u(t,"). The principal result is that in each of

3 3,3 _{XY:
the half-spaces R+ and R3, where R± - {(xy): y > 0}, uf(t,) is

asymptotically equal to a wave function for a homogeneous fluid with

* propagation speed c(-) and c(--), respectively. It is this behavior

that motivates the term "free component" for uf(t,.).

4It will be assumed that the total acoustic potential u satisfies

u(t,-)=Re{v(t,')} where v(t,') = exp {-itA"/ 2 } h and h E D(A" / 2 ) (see

§1). The corresponding partial waves uk(t,.) = Pk u(t,') with k > 1

satisfy uk(t,-) - Re {exp (-itA/2 ) Pkh}. This follows from relations

(2.21) which imply that Pk(h*) = (Pkh)* It follows by addition that

u (t,-) = Re {exp (-itA1/2 )P h} = Re {v (t,.)} and hence

u f(t,-) - Re {vf(t,')} (3.1)

where vf(t,-) = exp (-itA1/2 )Pfh - exp (-itA1/2 )hf. The starting point

for calculating the asymptotic behavior of uf(t,-) will be the eigen-

function expansions of §2. Theorems 2.1 and 2.2 imply the representations

vf(t,x,y) = R +(x,y,p,q) exp {-it X0 2 (p,q)} ^h(p,q) dpdq (3.2)

convergent in IC. The X-lim notation will be suppressed.

Equation (3.2) gives two representations of vf corresponding to

the two families 0+ and 0-. The calculations below are based on the

$_-representation which has been found to yield the simplest form of the

,e-A 6"jK-j ~ rlI ,,
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asymptotic wave function. It will be convenient to introduce the char-

acteristic functions x+, xO, and X_ of the cones C+, CO and C_ in

(p,q)-space and to decompose h_ as

h_(p,q) = a(p,q) + b(p,q) + c(p,q) (3.3)

where a - X+ h_, b X0 h_ and c = X h. The corresponding decomposi-

tion of vf is

vf = va + vb + v (3.4)

where

v = exp (-itA1/2 ) *a 1
a-

Vb = exp (-itA1/2 ) *b (3.5)

vc = exp (-itA1/2 )q*C

The behavior for t - a of these three functions will be analyzed

separately.

Behavior of va . The partial wave va has the representation

Va(txy) C 0_(x,y,p,q) exp (-itw+(p,q)) a(p,q) dpdq (3.6)

where

w+(p,q) - c(±)VFp2 +q

To discover the behavior of va(t,x,y) for (x,y) E t 3, t the

representation (2.6) for 0.(y,p,q)- (2q)1/2 c(_) +(y,p,A)* on C+ is

substituted into (3.6). The result is
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Va (txy) = c) M exp {i(x -p+yq- tw+(p,q))} I+(y,p,A)*a(p,q) dpdqa( 2 r) 3 f C +

c 3/2 f C exp {i(x" p- yq- t+(p,q))} R+(y,p,X)* a(p,q) dpdq

C+

It is natural to expect that in R+ the partial wave v a(tx,y) will

propagate as t -+ - into regions where y is large and hence I+(y,p,X) and

R+(y,p,X) are near their limiting values. Thus one is led to conjecture
4

* that

Va(t,*) - Va(t,) + v'(t,) in L2 (R 3), t -
o  (3.7)

where

S(t , x y (2w) 3 2  exp {i(x ,p+yq- t (p,q))} a(p,q) dpdqa f C+

and

V'(txy) = c(00) I exp {t(x p- yq- tw+(p,q)} R+(p) a(p,q) dpdq
= &) t •i~ p - ,)a q dpdq

a (27r)y7 fc+

- CM exp t(x" p+Cyq-t+(p,q))} R+(p,X)*a(p,-q)dpdq

where -C+ m {(p,q): (p,-q) E C+} " p,q): q < -alp[}. This conjecture

is proved below. Note that

v°(t,') - exp (-it c(°°) A1/2 ) ha

(3.8)

va(t, ") - exp (-it c(oo) A1/2 ) h'a 0 a

where A0 is the selfadjoint realization in L2(R
3) of -A -(D2+D2+Dy)

1 2 y
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and h and ha are the functions in L2(R
3) whose Fourier transforms are

a a

h a(p,q) - c(-) a(p,q) - c(-o) X (p,q) h_(p,q)

(3.9)

ha(p,q) - c(Q)R+(pX) a(p,-q) (-X+(p,q)) h_iP,-q)

Both are in L2(R
3) because h_ E L2(R3) and R+(p,X) is bounded, by (2.12).

Moreover, supp ha C - C+ and hence the theory of asymptotic wave functions

a -

for d'Alembert's equation [11, Ch. 2] implies that vl(t, .) - 0 in L2 (R3)

* when t o. Combining this with (3.7) gives

va(t,) v'(t,') in L2 (R'), t (3.10)

Now consider the behavior of va (t,x,y) for (x,y) e R3, t +

a*

Substituting the representation (2.2) for p_(y,p,X) - (2q)1/2 c(o)i+(y,p,X)
*

into (3.6) gives

Va(t'xy) = .c() exp ti(x. p+yq_- tw+(p,q))}T+(y,p,X)* a(p,q) dpdqa(2 ) 3/2 f +t

which suggests the conjecture that

va (t,-) - v 2(t,.) in L2 (R3 ), t . 00 (3.11)

where

v (t,x,y) - 5 exp {i(x p+yq- tw+(p,q)) T+(p,)* a(p,q) dpdq

Now the mapping (p,q) - (p,q') - X'(pq) - (p,q_(p,X(p,q))) has range

X'(C+) R3, Jacobian D(p,q)/a(p,q') c2(-o)q'/c 2 (oo)q and satisfies

w+(p,q) w_(p,q'). Thus

i0
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vz(txy) c- (00)- exp {i(x" p+yq'- tw (p,q'))} x

x T+(p,_2(p,q'))* a(p,q)(c 2 (-o)q'/c 2 (oo)q) dpdq'

which may be written

• ! v 2 (t,) = exp (-it C(-Oo) Al/2) h2

a a

where h2 E L2(R
3) has Fourier transform

a

^2 C*)T(,2C Ch (p,q') = c(oo) T+(p,w2 (pq))* a(p,q(p,q')) c2 (--)q'/c (o)q

Since supp h c R+ the results of [i, Ch. 2] imply v2 (t,") - 0 in
a +a

L2 (R
3 ) when t - o. Combining this with (3.11) gives

V (t,-) - 0 in L2 (R3), t ( 0 (3.12)

a

Analogous conjectures concerning vb(t,.) and vc (t,-) will now be

* formulated. Only the main steps of the calculations will be given since

the method is the same as for va (t,*).

Behavior of vh. Combining (3.5) and (2.7) gives

v (t,x,y)  2 c(-) exp p(x. p+yq- tw+(p,q) } 0 (y,p, A)b(p,q) dpdq
c (27) 

*0

+J exp {i(x. p-yq- t+ (p,q))}R(y.p,X) b(p,q) dpdq
(27r) 3/2  Co

which suggests the conjecture

vb(t,.) - v,(t,-) + v' (t,-) in L2 (R.), t -o (3.13)

-~~ b + .. . ."~r
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where

v'(t,.) = exp (-it c(co) A /2 ) hb  (

> (3.14)

VI (t,') = exp (-it c(°o) A 1/2 ) h 3
and hb and h.' are the functions in L2 (R

3 ) whose Fourier transforms are

h(p,q) = c(-) b(p,q) c(-) Xo(p,q) h_(p,q)

>(3 .15)

* h(p,q) = c(=) Ro(PX) b(p,-q) =c(o) Ro(p,X) (l- X(p,q)) h_(p, q)

* Since supp h C - CO C R, v (t,.) 0 in L3(R ) when t - , by [11,

Ch. 2]. Combining this with (3.13) gives

Vb (t,) - v'(t,.) in L2 (R), t -o (3.16)

Similarly (3.5) and (2.3) imply the representation

vb(t,x,y)

c () f exp {i(x. p- tw+(p,q))} T0 (y,p,X)* exp (jy/H) b(p,q) dpdq" ( 2 O 3/2 C

0

and since

lir T(y,p,X) exp ( y/H) -0

one expects that

vb(t,-) - 0 in L2 (R
3), t .+ (3.17)

Behavior of vy. Combining (3.5) and (2.2) gives
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1 v C(t,x,y)

= (2703/2 fC exp i(x" p-yq+- tw_(p,q))}T_(y,p,) c(pq) dpdq

which suggests that

v (t,') - v'(t,') in L2 (R), t (3.18)

where

V(txy) = () exp {i(x. p-yq+- tw (p,q))}T (p,A) c(p,q) dpdq

The mapping (p,q) - (p,q') - X"(p,q) = (p,-q+(p,X(p,q))) has range

X"(C_) - C+, Jacobian D(p,q)/a(p,q') = c2 (-)q'/c2 (-)q and satisfies

W_(p,q) W+(p,q'). Thus

v1 (t,*) - exp (-it c(-) AI/2 ) h'
C 0 c

where h' has Fourier transformC

P;C(p, q ) -c(- )T pw

)T_(p,w (p,q')) c(p,q(p,q')) c 2 (oo)q'/c 2 (-=)q

Moreover, supp R1 C - C+ C R 3 and hence one expects v1 (t,.) - 0 in

L2 (R3), t . Combining this with (3.18) gives

v c(t,*) - 0 in L2 (R'), t * (3.19)

Finally, combining (3.5) and (2.2) gives

v (txy)- - I exp{i(x p+yq -t (p,*q))}(y,p,X)*
(2; C_

+ c-s. exp{i(x" p-yq-tw_(p,q))R (y,p,A)* c(p,q)dpdq
(21T) 3/2 C

MD
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which suggests that

V (t,') - v'(t, ") + v1 (t," ) in L2 (R
3) t (3.20)c C

where

v0 (t,') = exp (-it c(--) A1/2 ) h

(3.21)

vl(t, ") = exp (-it c(--) A'/2 ) h'C

and h and h' are the functions in L2 (R
3) whose Fourier transforms arec c

h (pq) = c(--) c(p,q) = c(--) X_(p,q) h_(p,q)

^p1q) ^-(3.22)

h(p,q) = c(-00) R_A(p,) c(p, -q) = c (-) (l-X_(p,q))h(p, q)

Since supp h' C - C C R+, v(t,") - 0 in L2 (R 3 ) when t - 0, by [11,
c + c

Ch. 2). Combining this with (3.20) gives

Vc (t,.) - vc(t,') in L2 (R-), t - (3.23)

The asymptotic behavior of vf(t,-) for t is obtained from

the three cases analyzed above by superposition, equation (3.4). Thus,

equations (3.10), (3.12), (3.16), (3.17), (3.19) and (3.23) imply

F Va(t,') + vo(t,') in L2 (R+)j

vf(t,.) -< t 00

vc(t,.) in L2 (R
3)J

Combining this with the definition of v a, vb and v °, equations (3.8),

(3.9), (3.14), (3.15), (3.21) and (3.22) suggests

Theorem 3.1. For all h E X let vo(t,') be defined by

bf
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[exp (-it c(-°) A 112 )h+(xY) (x' Y) E R+ 3

vf(t,x,y) =< (3.24)

f

exp (-it c(-) A0  ) h-(x,y) , (x,y) E R 3

where h+ and h- are the functions in L 2(R 3 ) whose Fourier transforms are

given by

h+(p,q) =< (3.25)

0 (p,q) E R J

*and

[0 , (p,q) E R+
h-(p,q) =< (3.26)

c(--) h_(p,q), (p,q) E R3

Then

lim v f(t,') - vI(t,')Il = 0 (3.27)

Proof of Theorem 3.1. The decomposition (3.3) will be used for

the proof. Moreover, for brevity, only the asymptotic equality (3.7)

for va (t,-) will be proved. The five remaining cases, namely (3.11),

(3.13), (3.17), (3.18) and (3.20), can be proved by the method used

for v aa

As a first step, (3.7) will be proved for the special case where

a(p,q) E C 0(C+). The general case will then be proved by using the fact

that C0 (C+) is dense in L2(C+).

When a(p,q) E C0(C+) the integrals defining va, vo and v1
c pi-sa a

converge point-wise, as well as in ,K, ana one has
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tX exp (ix p) w(ty,p) dp
a _v(t,x,y)_Va(t,x,y)= (2r) 3

/
2  

R2 (3.28)

where

w(ty,p) = w°(t,y,p) + w'(ty,p) (3.29)

w°(t,y,p) = a p exp {i(yq- tw+(p,q))}(I+(y,p,)-1) a(p,q) dq (3.30)
alp

and

w (typ) = lp I exp (i(-yq- tw+(p q))}(R+(y,p,A)- R+(p, )) a(p,q) dq
Jalp

(3.31)

= exp {i(yq- tw+(p,q))}(R+(y,p,X)- R+(p,X)) a(p,-q) dq

Parseval's formula in L2 (R
2 ), applied to (3.28), gives

IR2 lv(t,x,y) - Va (ttxgy ) - Vl(t,x,y)1
2 dx = c 2(o) R2 w(t,y,p) 2 dp

Integrating this over y > 0 gives

IV (t,') - v0 (t,') - v'(t,*)L 3 c() Iw)tlU 3

a a a L L2(R + (29ir)'72 iwt)L2CR)
(3.32)

c(-) 1 w
< /2 w°(t,') 0 3 + OW (t,) ( 3 )

-(2?r)LI 1"'' 2 (R .)L2(R

by (3.29) and the triangle inequality.

The estimate (3.32) implies that to prove (3.7) it is sufficient

to prove that wo(t, ") - 0 and wl(t, ") - 0 in L2 (R ) when t o. To this

end the integrals in (3.30) and (3.31) will be estimated by the method

S.



27

of stationary phase as formulated in the Appendix. To apply the method

define

r = ivt'r t = r sin a, y = r cos a where 0 < a < ff/2

and

e(p,q,) = q cos a - w+(p,q) sin a (3.33)

Then the integrals in (3.30) and (3.31) have the form (A.1) with

s = q (m = 1) and = (p,a) (n = 3). Moreover,

V 6(p,q,a) = cos a - U(p,q) sin a
q

where

U(p,q) = c(_)q/__-

is the group speed associated with the dispersion relation w = w+(p,q).

Clearly V e(p,q,a) = 0 if and only ifq

y/t - ctn a = U(p,q)

Note that ctn a > 0 for 0 < a < ir/2. In the case of (3.31), U(p,q) < 0

on the interval of integration and there are no points of stationary

phase. In the case of (3.30), alpl < q < - and hence 0 < U(p,q) < c(-).

Thus there is a unique point of stationary phase if 0 < ctn a < c(-), or

a0 < a < 7r/2 where ctn a0 - c(-), and no point of stationary phase if

0 < a < a0 . The point of stationary phase is

q T(p,a) - pI ctn a/(c 2 (O) - ctn 2 a) 1/2  (3.34)

when 0 < ctn a < c(-). The corresponding approximation to w°(t,y,p) is,
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from (A.11),

w (t,y,p) -

(3.35)

= X(t,y) (27)1 12 g(r,p,q,a) exp {i(yq- r_,(p,q))- 7T/4}/(tUq (p,q))1/ 2

where X(t,y) is the characteristic function of the set

{(t,y): 0 < y < c(o)t},

* g(r,p,q,t) = (I+(r cos c,p,A(p,q)) - 1) a(p,q) (3.36)

U (p,q) = c(°)lpl2/(lpl2+q2) 31 2

t q

and q is given by (3.34) with ctn a = y/t. These results and Theorems

A.1 and A.2 imply the

Lemma. For every a(p,q) E C0(C+) there exists a constant

M = M(a) such that

Iw0 (t,y,p) _ w'(t,y,p)l < M/(t 2 + y2)3/4 (3.37)

for all t > 0, y > 0 and p E R2 . Similarly, for each positive integer k

there exists a constant Mk = Mk(a) such that

Iw'(t,y,p) <_ Mk/(t 2 + y2 )k/2 (3.38)

for all t > 0, y > 0 and p C R2 .
Proof of the Lemma. The hypothesis a E C0(C + ) implies that

supp a - K0 is a compact subset of C+. Let K and KI denote its

orthogonal projections on the q-axis and the p-plane, respectively. Then

the functions w (t,y,p), w'(t,y,p) and w (t,y,p) are all zero for

.1- p E R2 - Ki . Hence it is enough to verify (3.37) and (3.38) for p E KI .
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Consider first the integral in (3.31). It has the form (A.l)

with q E 0 = R (the negative real numbers), (p,a) E 0'

= (R2 _ 0}) x (0,ir/2) and g given by

g(r,p,q,0t) - [R+(r cos ct,p,X(p,q)) - R+(p,A(p,q))]*a(p,-q) (3.39)

Hypothesis (A.2) is evident from (3.33), while (A.3) follows from (3.39)

and well-known properties of hypergeometric functions. Moreover,

supp g(r,',',) C K for all r > 0 and 0 < a < 7/2 and hence (A.4) holds.

The uniform estimates (A.6) may be derived from the integral representa-

tions of the hypergeometric functions - see [3, pp. 77-79]. Finally,

e(p,q,a) has no points of stationary phase for g E K C R_. Thus Theorem

A.1 is applicable to wl(t,y,p) and (3.38) follows.

Next consider the integral in (3.30). For 0 < a = ctn-(y/t)

< there are no points of stationary phase q E K. Moreover,

w (t,y,p) = 0 on this set. Hence Theorem A.1 is applicable and implies

that (3.37) holds for y > c(-) t. On the other land, for cc < a < 7/2

or 0 < y < c(-)t there is exactly one point of stationary phase q given

by (3.34) and hence (A.8) holds. Moreover,

* O"(p,q,t) - -U (p,q) sin a # 0 for q E K, (p,a) E 0'

q q

which implies (A.9). Finally, (A.10) follows from properties of the

hypergeometric functions, as in the preceding cases. Thus Theorem A.2

is applicable and implies that (3.37) holds for 0 < y < c(-)t.

Proof of Theorem 3.1 (concluded). The lemma implies that if

a E CO(C+) then wo(t, " ) and wl(t,.) tend to zero in L2 (R.) when t -

and thereby proves Theorem 3.1 in this case. Indeed, integrating (3.38)

gives

po--
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30 NW, (t, 12 3 f : iw1(ty,p)12 dpdy

(3.40)

< C2 K11J (t2 
+ y 2)-k dy C t'-

2k
k foo

0

where jK11 is the measure of K1 and Ck = C2 jKu[ f (l + E2)-k dE. Now
00

consider w0 . The lemma implies that

w°(t,y,p) w0 (t,y,p) + q(t,y,p)

* where

lq(t,y,p)l < M/(t 2 + y2 ) 3 /"

Thus

Awl(t,.)Ot (R+) < w L 3R) + Rq(t,-))L (R ) (3.41)

Moreover,

llq(t,*)IllL2(R 3) < C'/t 2 
Z

by the calculation used to prove (3.40) with k = 3/2. It remains to

show that Kw (t,.)l L (R') ' 0 when t -+ 0. Direct calculation using

(3.35) and (3.36) gives

qw,(t, .)I L2(R
3
) ' fc()t f lw'(t,y,p) 2 dpdy

+ K,
(3.42)

-2 fl+(y,p,X(p,q)) - 112 ja(p,q) 1 2 t-1 Uq (p,q)- dpdy

- where q T(p,ctn- (y/t)) is given by (3.34). Since (3.34) defines the

solution q of y/t = U(p,q) it is natural to make the change of variable
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y = t U(p,q), dy = t U (p,q) dq (p fixed) in (3.42). The result isq

00

Uw (t, (R+)

(3.43)

= 27r 'K1 fK JI+(t U(p,q),p,A(p,q)) - 112 jg(p,q) 12 dqdp

since supp g C K, x K. Finally the representation l+(y,p,X)

= (2/H) 1/2 exp (iq+y) 0 2 (y,p,A) implies that

I+(t U(p,q),p,A(p,q)) - 1 when t -

r uniformly for (p,q) C K x K. It follows by Lebesgue's dominated

convergence theorem that HwW(t,)II (R3 ) = o(1), t - o. In fact, a

careful estimate of the hypergeometric function 0 gives the stronger

estimate

Iw (t,-)IIL2 (R;
3 ) = O(e-it), t -' ®

where P = i(a) is a positive constant.

The arguments given above, applied to va, vb and Vc, show that

the conclusion (3.27) of Theorem 3.1 holds for all h such that

h_ E Co(C + U CO U C_). Moreover, this set is dense in L2 (R3 ) and hence

SCO(C+ u Co U C_) is dense in Xf - PfJ by Theorem 2.2. These facts can

be used to extend (3.27) to all h E JC, provided the mappings

U(t): Cf -) L2 (R
3 ) and U0 (t): C f - L2 (R3 ) defined by U(t)hf

- exp (-it A1/2 )hf and U0 (t)hf = v (t,') are uniformly bounded for all

t e R. This density argument has been given in many places; see, for

example, [11, Ch. 2] or [13, p. 260]. To prove the uniform boundedness

note that the L2 (R3 ) and X norms are equivalent:
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c(y )  Hhll3 < IhU L 2(R3 )  < c(-0 1hH3

and hence

OU(t)hfHL2(R 3 ) < c(-) OU(t)hfI C = c(-) 1hfII

for all t E R. Similarly, (3.24), (3.25) and (3.26) imply the estimates

* 0U0(t)hfL2(R3) = IIv (t,.)IL2(R 3 )

I

(OV(t, )2 + Hvf/t, )12 3)1/

f 2(R) + h-L2(R3))

(c2(c ) Ith 31 2 Hh 2 31/2

-L 2(R ) + 2(_ - L2 R
L _ 2 (R_)

< c(--) IhI L2(R 3 ) = c(--) UhhfIN

for all t E R. This completes the proof of Theorem 3.1.

Theorem 3.1 implies corresponding asymptotic estimates for the

free component uf(t,.) - Pf u(t,.) - Re {vf (t,-)} of the acoustic

potential u(t,.). Indeed, if uf(t,') is defined by

U0(t,x,y) - Re (vo(t,x,y)} (3.44)uff

then Theorem 3.1 and the elementary inequality lRe z< Izi imply

*0*.,_
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Corollary 3.2. For all h E .C one has

lim Iuf(t,') - ul(t,.)Il - 0 (3.45)
t-O- f 3

* If the initial state h has derivatives in JC then uf(t,') and

uO(t,') have the same derivatives in JC and (3.45) can be strengthened to

include these derivatives. In particular, one has

* Corollary 3.3. For all h E L'(R 3) = D(A /2 ) one has

lir ID - D ul(t,')H, = 0, j = 0,1,2,3 (3.46)

where Do = 3/t, D, f 3/3x,, D2 = /ax2 and D 3 -
3/ay. Note that (3.46)

is equivalent to convergence in energy:

lim E(uf - u,R 3 ,t) = 0

t*w

Corollary 3.3 can be proved by applying the method of this

section to the derivatives D vf(t,') (j - 0,1,2,3) which are given by

integrals of the same form as (3.2). Detailed proofs for the case of

the Pekeris profile were given in [13].

S
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§4. Transient Guided Waves.

The asymptotic behavior for t of the guided component

U (t,') - P u(t,') is derived in this section. u (t,') is a sum in X

of mutually orthogonal partial waves uk(t,.) = Pk u(t,')

- Re {vk(t,')}, k > 1. The starting point for the analysis is the

integral representation

~I
Vk(t,x,y) = k (x,y,p) exp {-it wk(pl)} hk(p) dp (4.1)

k

where

hk(p) = fR3 k(xy,p) h(x,y) c- (y) dxdy

and the integrals converge in X and L2(Sk), respectively. The integral

in (4.1) can be written

vk(t,x,y) exp {i(x" p - twk(IpI))} 4 ky'p) hk(p) dp (4.2)

This is an oscillatory integral that can be estimated by the method of

stationary phase of the Appendix when hk G Co(. To apply the method

define

r , /t 2 + Ix1 2

t = r &0, x, - r &', = r

- ( o, 1 , 2 ) s 2 C R3

where S2 denote the unit sphere in R3 . Then (4.2) takes the form A.1
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with m = 2, n - 3

6k(P,&,Y) 0 + 2P2 - 0Wk(OPI) (4.3)

gk (r,p, ,y) - (27r) - l k(y,p) hk(P) (4.4)

Note that Ok is independent of y and gk is independent of r and . They

have been written in the forms (4.3) and (4.4) to emphasize the applica-

bility of the results of the Appendix.

The phase function (4.3) has a point of stationary phase if and

4only if

Uk(lpf)p/IpI = x/t (4.5)

where

Uk(jpj ) - DIp I Wk(IPI)

is the group speed associated with the dispersion relation w wk(Ipl).

The analysis will be simplified by the following

Proposition. If the parameters defining c(y), equation (1.1),

satisfy

8K > M (4.6)

then each of the functions Uk(IpI), k - 1,2,-'-, is a strictly decreasing

function on Pk f IPI < - such that Uk(Pk) - c(-) and Uk(Ipl) - c(y0 ) when

A proof of the proposition may be derived from the parametric

representation of the dispersion relation [4]. The calculation is too 0

long to give here.

OR
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For simplicity of presentation condition (4.6) is assumed in the

remainder of this paper. If 8K < M then Uk(JpI) may have a finite

number of zeros. This complicates the form of the asymptotic wave func-

* tions but is otherwise tractable. In the case of the Pekeris profile,

treated in [13], the functions U(JIpI) have exactly one zero on

IPI Pk"

*By calculating the Hessian 6" one can show that
k

r Id e t 6jk(p,~,y)l = t 2 Uk(1 l) IUk(IPI)I/Ipl

and

sgn ek(p,Ey) - 0

In particular, each point of stationary phase is non-degenerate, by the

Proposition. Moreover, (4.5) implies that 0k has a point p of stationary

phase if and only if

lxI/t - Uk(Ipl) (4.7)

Now (4.7) has a unique solution Ipl if IxI/t lies in the range of

Uk(IPl); that is if

c(yo) < jxj/t < c(-) (4.8)

The point of stationary phase is then given by

p Qk(Ixl/t)x/lxl for x r R2 - {0}, t > 0 (4.9)

where Q is the inverse function to Uk. It is a monotone decreasing

function that maps (c(y0),c(-)) onto (pk, ). By Theorem A.2 the point
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(4.9) makes a contribution

V(txYp) - p/2 exp {i(jxI p I - twk(IpI))} Wk(YP) hk(p) (4.10)k t {U k(pl ) [Uq(11,0) } / 2

to the integral in (4.2) when (t,x) satisfies (4.8). For Ixj/t outside

the interval (4.8) there is no point of stationary phase. Thus the

stationary phase approximation to vk(t,x,y) is given by

Vk(t,x,y) = x(lxI/t) Vk(t,x,Y,Qk(Ixn/t)x/lxI) (4.11)

where X is the characteristic function of (c(y0 ),c(-)) and one has
h_0

Theorem 4.1. For all h E KC such that h CO(Qk) there exists a

constant C = Ck (h) such that

Ivk(t,x,y) - Vk(t,x,Y)I < C/t 2  (4.12)

for all t > 0, x E R2 - {0} and y E R.

This result can be proved by application of Theorems A.1 and A.2.

The proof is similar to that of the Lemma in §3 and will not be recorded

here. If hk is not a smooth function then Theorems A.1 and A.2 are not

applicable and the estimate (4.12) may fail. However, the definition

(4.10), (4.11) is applicable to all h E JC. More precisely, one can prove

Theorem 4.2. For all h E X, all t > 0 and k - 1,2,--" one has

e K,

and

IVk(t,')X - I hkAL2 ( k ) I PkhhIX

[. 4
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Moreover, the mapping t vk(t,) is continuous from R to 'K and

lir IVk(t,') - Vk(t,')I = 0 (4.13)

The proofs of these properties are the same as those for the

Pekeris profile, given in [13], and are not reproduced here. On defining

uk(t,x,y) - Re {vk(t,x,y)}

* one has

Corollary 4.3. For all h E K( and k = 1,2,3,-

r lim ouk(t,.) - uk(t,'), . 0
t-k

If he L1(R 3) then uk(t,o) E L'(R 3) and asymptotic wave functions

for the first derivatives of uk can be constructed. Indeed, if

hk E C0 O(k) then the first derivatives of vk are given by

D Vk(txy) = -L exp {i(x( p-tik(IpI))} Ik(y,p)(-ipk(IpI)) hk(P) dp
t k 27 f exp {i(x" p- tuk(lp))} lPk(Y'P)(ipj) hk(P) dp (J =1,2)

Dj Vk(tqx~y) , x ijh p pQ 2) 

D vk(t,x,y) - 1 exp {i(x. p- tw, (p))} D (y,p) (p) dp

Y k 27k(f "k Yhpk

These integrals have the same form as the integral (4.2) for vk(t,x,y).

The corresponding asymptotic wave functions are defined by

V k0 (txyP) = p(I) )) Vk(tyxyP)

V kj(t~x~yop ) (ip ) V k(t,x,y, p ) (Q 1,2)
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Vk3 (t, x,y,p)
k3 y k,x,y,p)

and

v kj(t,x,y) x(xII/t) vkj(tlxYQk(Ilx/t)x/jx ) (j = 0,1,2,3)

The analogue of Theorem 4.2 is

Theorem 4.4. For all h E L'(R3 ), all t > 0 and k 1,2,3,-'"

one has

V Vt, X, V(t.) ( L2 (R 3 ), j = 1,2,3Vko~t' kj,

3

9vk00 (t')g + Z UVk (t ,.)12 3) = 2 hk0

koj1 kj LZCR) kA" h-IC

and

lira IIDj V(t,') - Vk(t,')u = 0 (j = 0,1,2,3)

Finally if

ukj(t,x,y) = Re fvk (t,x,y)} (J = 0,1,2,3)

then one has

CorollarY 4.5. For all h E L'(R 3) and k = 1,2,3,-'.

lir ID. uk(t,-) - U0 (t,.)Il = 0
t-) J k 

u k j  X

Theorem 4.4 may be proved by the technique used for the Pekeris

profile in [13].
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§5. The Asymptotic Distribution of Energy for Large Times.

The total energy of the acoustic field u(t,x,y), given by (1.16),

is constant for t > T. The same is true of the partial waves uf, ug and

Uk, k = 1,2,'''. Moreover, the eigenfunction expansion of [4] implies

that {Pf,PI,P 2 ,.} is a complete family of orthogonal projections that

*reduces A. It follows that

IIAI/2 hl 2 = IA1/2 hf11 2+ IIA1/2 hk 2 (5.1)f c k=l kN

which may be interpreted as an energy partition theorem. The energies of

the partial waves can be calculated from the initial state h, or source

function f(t,x,y), by means of the eigenfunction expansion theorem. The

relationship between h and f is given by (1.9). Hence

h(p,q) = i -1/
2 (p,q) f (_X1/2 (p,q),p,q)

where

f( ,p,q) exp (-iwT) 0_(x,y,p,q)* f(t,x,y) c- (y) dydx

and similarly

hk(p) k I (Ip I) fk(-wk(IpI),p)

where

f'= exp (-iT) kx'y'p)* f(Tx'y) c-2(y) dydx
fR
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It follows that the partial energies are given by Q

E(ufR 3 ,t) = UAI/2 hfa J f R3 If_-A" 2 (p,q),p,q)12 dpdq, t > T

and

E(uk,R 3
,t) = RA 1/2 h2 = i f-k(P1 ),P) 2 dp, t > T

The theorems of §3 and §4 make possible the calculation of

asymptotic energy distributions in bounded and unbounded subsets of R
3.

Only the principal results are formulated here since the proofs are the

same as for the case of the Pekeris profile given in [13].

The notation

Ec(uK) = lira E(u,K,t)

will be used whenever the limit exists. A first result is the

transiency of all waves with finite energy in an Epstein duct:

E(u,K) = 0 for all compact sets K C R
3

Next let C+ (resp. C-) denote a cone in R3 (resp. R 3). Then Corollary

3.3 and the results of [11] imply

E'(uf'C-) - c2 (f) + (Ipf 2 + q2) h(p,q)12 dpdq

- f(-. 1 / 2 (p,q),p,q)12 dpdq

Now define the cone C by

i~o~1



43

C {(x,y): ly - Y01 Ejxl}, E > 0

Then, in contrast to the preceding result, one has

t=a(UkR 3,t A/2 i

(uk,C ) k = .A/ 2 hk1 for every E > 0

and for k - 1,2,3,''' (see [13, Theorem 5.5]).

* Finally, if

* S -{(x,y): x E R2 and y, < y < Y2 }

Pthen it can be shown by means of Corollary 4.5 that

E(U, S) 12 f 1 q{(y'p) C-2(y)dyj dp

fk

S

9

0D • • -,€ . 4-
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§6. Concluding Remarks. Examination of the proofs in [4] and in this

paper reveals that the methods should apply to a large class of sound

* speed profiles c(y). As remarked in [4], the principal obstacle to such

a generalization is the lack of information about the p-dependence of

the eigenfunctions and eigenvalues. In the cases of the Pekeris and

Epstein profiles this information was obtained from explicit construc-

tions of the eigenfunctions in terms of known functions.

m. I

S

b.
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Appendix. Estimates of Oscillatory Integrals with Parameters.

The method of stationary phase provides asymptotic estimates for

r + of oscillatory integrals of the form

I(r) = f exp {ir O(s)} g(s) ds, 0 c R7

The method is needed in §3 and §4 above to estimate the oscillatory

integrals in equations (3.30), (3.31) and (4.2). In (4.2) the integrand

*g contains a parameter y in addition to the variables of integration. In

(3.30) and (3.31) both 6 and g contain parameters and, in addition, g

contains the large parameter r. In both cases estimates that are

* uniform in the parameters are needed. This suggests the study of

oscillatory integrals of the form

I(r, ) = J exp {ir e(s, )} g(r,s, ) ds (A.1)

where r > 0, s C Rm and E E Rn. e(s, ) is a real-valued phase function

and it is assumed that there are open sets 0 C Rm and 0' C Rn such that

D6 e(s,) E C(0 x 0') for all multi-indices 6 (A.2)
s

D g(r,s,&) E C(R+ x 0 x 0') for all multi-indices 6 (A.3)

where R+ denotes the positive real numbers. Moreover, it is assumed

that there is a compact set K C 0 such that

supp g C R+ x K x 01 (A.4)
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Estimates of I(r, ) for r - are sought which are uniform in E on compact

subsets of 0'. For large values of r the exponential in (A.1) is highly

oscillatory except near critical points of the phase function 6(s,&).

Two estimates of I(r,&) are given here, corresponding to the cases of no

critical points and one critical point, respectively. The first case is

formulated as

Theorem A.l. Assume that

VO(s,) = (ae/asi,''',a/asm) # 0 for all (s,&) e K x O' (A.5)

Moreover, assume that for each compact set K' C 0', each r0 > 0 and each

positive integer k there exists a constant M = M(K,K',r 0,k) > 0 such that

ID g(r,s,&)I < M for all r > r0 , s E K, & G K' and 161 < k (A.6)

Then there exists a constant C = C(K,K',r 0 ,k,g) > 0 such that

I(r, )1 < C r - k for all r > r 0 and E K' (A.7)

In the second case considered here e(s, ) has a unique non-

degenerate critical point s = T(E) for each E E 0'. It is formulated as

Theorem A.2. Assume that there is a function T E C (0',0) such

that, for all C E 0',

Vs (s, ) - 0 if and only if S - T(&) (A.8)

Moreover, assume that the Hessian "(s, ) = (a2O(s,)/asjask) satisfies

det e"(T(&), ) 0 0 for all 1 e 0' (A.9)

In addition, assume that for each compact set K' C 0' and each r0 > 0

there exists a constant M = M(K,K',r0 ) such that
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D g(r,s,Q)I < Mfor all r > r,, s EK, E K' and 161 < m +5 (A.l10)

Then there exists a constant C - C(K,K' ,r0,g) > 0 such that if q(r,C) is

defined by

I (r,) (27r11 rM/2 4dell 6(T(~ ,~ 1/2 + q(r,&)

* (A.11)

* then

<C r-m 2 -1 for all r > ro and E rG K' (A.12)

In (A.11), sgn e"(s,Q) is the signature of the real symmetric

matrix e"(s,Q).

The uniform estimates given above are due, in essence, to

M. Matsumura [6]. No proofs are offered because the theorems can be

proved by following Matsumura 's proofs and recognizing that under the

hypotheses formulated above his estimates are uniform for C- VK.
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