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Abstract.

———

Transient acoustic wave propagation is analyzed for the case of

an unlimited planme-stratified fluid having constant density and sound

speed c(y) at depth y given by the Epstein profile

[ BRI EEE VR

@—.‘{@ = K sech? (y/H) + L tanh (y/H) + M
S0 A

The acoustic potential is a solution of the wave equation
Dt =S$§uared e Sguaced et

Sy

. { ,
Dip - ¢2(y) (th + DZu + g;u) = £(t,x,y)
Lt 5,_;.5.;;1.'-'»' ’

where x = (xl,xz) are horizontal coordinates and f(t,x,y) characterizes
the wave sources. The principal results of the analysis show that u is
the sum of a free component, which behaves like a diverging spherical
wave for large t, and a guided component which is approximately localized
in a region ]y - yol < h and propagates outward in horizontal planes

like a diverging cylindrical wave.
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§1. Introduction.

This paper presents an analysis of transient acoustic wave
propagation in a stationary unlimited plane stratified fluid with
constant density and sound speed c(y) at depth y defined by the Epstein

profile

c(y) = [K sech? (y/H) + L tanh (y/H) + M)~ Y2 (1.1)

. a

R where H, K, L and M are constants such that c(y) > 0. The acoustic

’ field is characterized by a real-valued potential u(t,x,y) that satis-

sunpe

fies the wave equation [8]
Diu - cz(y)(Dfu + Dgu + D;u) = £(t,x,y) (1.2)

where t is a time coordinate, x = (x,,x,) are Cartesian coordinates in a

horizontal plane, £(t,x,y) is a function that characterizes the wave
sources and Dj = 3/3xj, Dt
The sound speed profiles (1.l1) were introduced by P. S. Fpstein

= 3/3t, D_ = 3/9y.
/ty /9y

[2] who discovered that (1.2) with this choice of c(y) can be integrated
7 by means of hypergeometric functions. This fact is of interest in

theoretical acoustics because the Epstein profile provides an example of

the physically interesting phenomenon of an acoustic duct when c(y) has

. a minimum. This case is characterized by the parameter values [3,4]

H>0, M>L >0, K>L/2 (1.3)

~1/2

For these values the limits c(¢x) = (M + L) are finite and c(y) has

a unique minimum c(yy) < c(®) < c(=o) at y, = H tanh-l(L/ZK).
- 0

1
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The integration of equation (1.2) below is based on the spectral v
theory of the Epstein operator A in the Hilbert space ¥ = L,(R%,c” ?(y)dxdy)
as developed in [3,4] and the notation and results of that paper are used.
Equation (1.2) is interpreted as the equation {
Diu + Au = £(t,*), t € R, (1.4) E
E
for a function t + u(t,*) € X. The wave sources are assumed to act K
. during the time interval [0,T], so that supp £ c [0,T]. The correspond- ]

ing acoustic wave is the solution of (1.4) that satisfies the initial

condition

u(t,*) = 0 for all t < O (1.5)

e’li

T T

The solution is given by Duhamel's integral

t
u(t,*) = J {A"Y2 510 (£ - 1) AY2} £(1,)dT, £ > 0 (1.6)

0
Indeed, if £ € C([0,T]},H) then (1.6) is the unique ''solution with finite
energy" of [9], while if £ e C([0,T], D(AY2)) then (1.6) is the "strict

solution with finite energy.” 1In addition, if f € C([0,T], D(A-I/Z))

then

u(t,x,y) = Re {v(t,x,y)} (1.7)

where v(t,*) is the complex-valued potential defined b

t
v(t,*) = 1 exp {-it A}2} A~V¥2 J exp {it AY2} f(t,*)dt
0

In particular,




v(t,*) = exp {-it A¥2 }h, t > T

where
’ T
h=1i4a"%2 I exp {11 AY?} £(1,+)dT (1.9)
0
The initial-value problem
»
) Diu 4+ Au = 0 for all t > O (1.10)
E .

u(0) = £, Dtu(O) = g (1.11)

can be treated by the same formalism. Indeed, if f € D(AY?) and
g € D(A"Y2 ) then the solution of (1.10), (1.11) is given by (1.7),
(1.8) where h = £ + 1 A™Y2 g € D(AY?) (cf. [11, Ch.3]).

The integral

E(u,K,t) = f {(u)? + (D,u)? + (Dyu)2 + ¢ 3 (y)(D,uw)*ldxdy  (1.12)

K
may be interpreted as the energy of the acoustic field u in the set

Kc R® at time t. Moreover, A is the selfadjoint operator associated

with the Dirichlet integral

2
A(u,v) = I (D

1o ju,D

1L, @) * Oyt @)

in the sense of T. Kato's theory of sesquilinear forms [5]. Indeed, 1if
the domain of A is D(A) = L3 (R%), the first Sobolev space, then A is
precisely the associated operator of Kato's theory. It follows from

Kato's second representation theorem [5, p. 331] that

D(AY2) = LI(RY) (1.13)
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and

2
W2 2 - | 2 2
1A% ulye A(u,u) jf]_ DquLz(Ra) + IDyule(Ra)
Hence the total energy satisfies
E(u,R%,£) = 142 ubf + 1D uld, (1.15)

If he D(AY2 ) and u is defined by (1.7), (1.8) then a simple calculation

shows that
E@,R%,t) = ya’2m2 for all £ > T (1.16)

The analysis of the structure of the acoustic potential (1.7),
(1.8) presented below is based on the eigenfunction expansion of [4]. The

orthogonal projections in ¥

Pp = P, +P_+ P (1.17)
L |
and
=]
P = T P (1.18)
8 ka1 K

defined by the eigenfunction expansion provide a decomposition
u(t,) = uf(ts°) + ug(ts')
into orthogonal partial waves

wg(t,®) = Peult, ), u(t,0) = B oule,*)

The first, called the free component, will be shown to behave for large

times like a diverging spherical wave in a homogeneous fluid. The




second, called the guided component, will be shown to be approximately
localized near the plane y = y, and to propagate outward in horizontal
planes like a diverging cylindrical wave. This second component shows
the profound effect of an acoustic duct on transient acoustic waves. It
is absent when c(y) has no minimum.

Transient wave propagation in the analogous but simpler case of
the Pekeris duct (c(y) piece-wise constant) was analyzed by Wilcox in
[12] and [13]. This paper is a sequel to the report [10] of Wilcox and
the article [4] of Guillot and Wilcox. 1In [10] the special case of a
symmetric Epstein profile (L = Q) was analyzed without detailed proofs.
(4] presented a complete spectral analysis of the Epstein operator. Here
the results of {4] are used to treat the general Epstein duct and to
supply the proofs that were omitted in [10]. Some of the results of
this paper were announced in [1].

The remainder of this paper is organized as follows. In §2 the
eigenfunction expansion of [4] is reformulated to provide a convenient
starting point for the analysis of the free component uc. The behavior
of uf(t,°) for t + = is calculated in §3. The justification of these
calculations is technically more difficult than for the Pekeris profile
treated in [13] and proofs of the results are presented here for the
first time. §4 presents a calculation of the asymptotic behavior fof
t > © of the guided component ug(t,-). §5 presents applications of the
results of §83 and 4 to calculating asymptotic distributions of energy for
large times. The proofs of the results in 8§84 and 5 are essentially the
same as those for the Pekeris profile, given in [13], and are therefore
omitted. A version of the method of stationary phase for oscillatory

integrals containing parameters in given in an Appendix.
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§2. Eigenfunction Expansions for the Epstein Operator.

The generalized eigenfunctions wi(x,y,p,l) and wo(x,y,p,k) were
defined in [4] as multiples of certain hypergeometric functions. The
normalizing constants at(p,k) and a,(p,A) are determined only up to
factors of modulus 1. In [4] these factors were chosen to make at(p,A)
and a,(p,A) real and positive [4, pp. 92-93]. Here it will be convenient
to renormalize to make the constants ct(p,k) and c4(p,A) of the
asymptotic forms [4, (1.7), (1.8), (1.11)] real and positive. Calcula-
tion of ci(p,l) and c,(p,A) when ai(p,A) and a,(p,A) are defined as in
[4] shows that the quantities (lmq_t)l/2 ct(p,k) = exp {1 Wi(p,l)} and
(lmq_,'_)”'2 co(PsA) = exp {1 ¥,(p,A)} have modulus 1. Hence, if ¥, and ¥,
are renormalized by replacing at(p,A) and ao(p;i) by

a,(p,)) exp {-i ¥,(p,\)} and a;(p,\) exp {-i ¥ (p,\)} then
(41q,) 2 ¢, (p,2) = 1, (41q ) Y% ey (p,2) = 1 (2.1)

Explicit expressions for exp {i Wi(p,k)} and exp {i ¥,(p,\)} as
quotients of products of I'-functions are easily obtained but will not be
needed here. The normalization (2.1) is employed in the remainder of
this paper.

The generalized eigenfunctions wt and y,, renormalized as above,

satisfy
¥, (ysp,A) = (4ma,) V2 T (y,p,0) exp {71 q_y} (2.2)
¥, (9,0,0) = (4mq)"¥2 T, (y,p,)) exp {8 y/H) (2.3)

where

FALCEWING Feaulh bLanK=inOT FI .




g

- o~ RS AR

T, (y,0,A) = (47q) " a (p,1) exp {~1¥,(p,A) + 1q_y} ¢,(y,p,})
T_(y,p,A) = (41q_)? a_(p,A) exp {~i¥_(p,A) - iq.y} ¢,(y,p,A)

To(y,p,A) = (47q) Y2 a;(p,A) exp {~1¥,{p,N) - By/H} ¢,(y,p,})

and

lim Tt(Y;P’)\) = Ti(P,A) (2.4)
v+
lim To(y,p,A) = To(psx) (2.5)
Y-

Similarly, well-known identities for the hypergeometric functions

imply [3]
¥, (v,p,2) = (4mq,) Y2 {1, (y,p,)) exp (3iq,y) + R, (y,p,\) exp (*iq,y)} 2.6
Vo (50,1) = (41q) T2 {1, (y,p,A) exp (~1q,y) + R, (y,p,A) exp (iq,y)} o
where

L,(y,p,A) = (2/H) 2 exp (1q,y) ¢,(y,p,})

I_(y,p,A) = (2/H)Y2 exp (-iq_y) ¢,(¥,p,)\)

I,(y,,A) = (2/H)Y/2 exp (14,y) 6, (y,P,))

R (y,0,A) = (2/H)2 exp (~iqy) R (P,A) ¢4 (y,p5A)

R_(y,p,A) = (2/H)*? exp (iq_y) R_(p>A) ¢5(¥,p>\)

R, (y,p,A) = (2/H)Y2 exp (-1iq,y) R, (p,A) ¢,(y,p,})




.

9
and
lim I {y,p,A) =1 (2.8
yrie T
lim IO(Y:P:)\) =1 (2.9)
y+e
lim R, (y,p;2) = R, (p,}) (2.10)
yrreo T -
lim R, (y,P>A) = Ry(p,}) (2.11)
yte
The easily calculated expressions for Rt(p,A), R,(p,A), T,(p,A) and
To(p,k) as quotients of products of I'-functions were given in [3] and
will not be needed here. They imply that
ay [Ry[* + a_|T,]* = qy, |R,| =1 (2.12)

The construction of uf(t,') = Pf u(t,*) will be simplified by
representing Pf = P+ + P_ + P, by means of a single family of generalized
eigenfunctions, rather than the three families Vs W_ and Yo. This may
be motivated by noting that w+, Y_ and Y, collectively, represent the
response of the Epstein fluid to the incident plane waves

exp {1(p*x ~q ¥y}, (p,q) € R}, To see this consider the mappings

(prq) = X (p,A) = (p,q,(pP,))), (p,A) € @
(Prq) = X,(p,2) = (p,q . (P,A)), (p,A) € Q
(p»q) = X_(p,A) = (p,~q_(p,A)), (p,A) € Q

X+ is an analytic transformation of { onto the cone
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¢, = {(@): q > alpl}

where

a = ((c(-=)/c(=))? - DY >0
Similarly, X, is an analytic transformation of {; onto the cone
Co = {(p,@): 0 < q < alp|}
and X_ is an analytic transformation of Q onto the cone
c_=1{(p,q): q <0}

Thus, the asymptotic forms of ¢ _ and y, for y + 2= [4,(1.7), (1.8),

(1.11)] show that w+(x,y,p,A) with (p,A) € @ is the response of the

13

medium to a plane wave exp {i{p+*x - q y)} with (p,q) € C.» by (x,y,p,2)

is the response to a plane wave with (p,q) € Cy and Y_(x,y,p,A) is the

response to a plane wave with (p,q) € C_. Note that
3 .
R® = C+ UC,UC_UN

where N is a Lebesgue null set.

The interpretation of Vs Y_ and Y, given above suggests defining

the composite eigenfunction

0, (x,7,2,) = (2M)7" exp (ip* %) ¢, (y,p»a), (P,a) € C U Cy U C_ (2.13) ¥

by
: (2.14)
QD)2 e v, (y,0,0, () = % (,0), (psa) € C,

0,(7,0,0) =< Q)2 e(®) ¥ (v,p,1), (2,1) = X' (p,q), (p,q) € C,

(2[q|)M? c(==) y_(y,p,1), (p,A) = X_'(p,q), (p,q) € C_
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The terms (Zq)l/zc(w) and (2Iq|)1/2c(—¢0 are normalizing factors. Note
that 2q cz(“D is the Jacobian of X;l and X;l and 2q c?(-») is the

Jacobian of le.

The eigenfunction expansion of [4] will be reformulated in terms
of ¢ . To this end let h € J and note that he = Pch = P.h+ P h+ Poh

has the representation
he(x,y ) = JQ ¥, (x,7,0,A) h (p,A) dpd:

+J Yo (x,¥,p,A) h,y(p,A) dpdi
0 .

+ IQ ‘P_(X’}’;P,D B_(P,l) dpd)\

where the integrals converge in H. The #-1lim notation will be suppressed
for brevity. Changing the variables in the three integrals by means of

X+, X, and X_, respectively, gives
he (x,y) = j ¢,(x,7,0,q) h(p,}) c(= (2q)2 dpdq
C
+

+j ¢,.(x,y.p,9) Eo(p,k) c(®) (2q)'/% dpdq
CO

+ JC ¢+(xt}’9p)q) -i"l_(p,A) C(-°°)(2|q])1/2 dpdq

- Jas 0,(,7.p,0) B, (p,q) dpdq

where
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(=) (lp|? + q%), q>0}>
A= A(p,q) =< (2.15)
2= (fpl* + 9%, q<0
and
QY2 e(=) b (pA(p,)),  (pya) € C,
B (pa) = ¢ QD2 c(®) ho(p,A(p,@)),  (p,@) € Cq (2.16)

2lq]) Y2 c(-=) h_(p,A(p,q)), (p,q) € C_

It is easy to verify by considering the three cones C,, Cy and C_

separately that

- * -2
h, (p,q) = IRa ¢, (x,y,p,q) h(x,y) ¢ (y) dxdy

where the integral converges in LZ(R3). Moreover, it can be shown by

direct calculation, using the Parseval formula of [4], that

Inglye = 1h,0y (29

These considerations and the eigenfunction expansion theory of [4, §5]
imply

Theorem 2.1. For all h € X the strong limit

h,(p,a) = Ly (R*)-11m

* -2
) (x.y,P,q) h(X,y) [od (y) dxdy (2.17)
Mo IIXl2+y2£M2 *

exists. Moreover, the mapping Q+: ¥ + L,(R®) defined by Q+h = ﬁ+ is a

partial isometry such that

* *
Q=1 and Q+Q+ = P

&
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*’\
The adjoint mapping h, = Q+ h, is given by

he (x,y) = #-1im ¢, (x,y,p,a) B (p,a) dpdq (2.18)

Moo jlp‘z_*_qZSMZ

Finally, Q+ is a spectral mapping for A in the sense that for all h € D(A)

one has
(8,An) (p,q) = A(p,q) £ h(p,q) (2.19)

where A(p,q) is defined by (2.15).

Note that these results are simply a reformation of the results
of [4, §5] and not a new theorem.

It is important for the calculations of §3 to recognize that

another family of generalized eigenfunctions of A is defined by
* 3

¢_(x,y,p,9) = ¢, (%,y,-p»q) » (p>q) €R" - N

It is clear that Ad_ = A(p,q)¢_ and
¢_(x,7,2,0) = (2m)~" exp (ip* x) ¢_(y,p,q)
Moreover,
*
¢_(v,p,q) = ¢,.(y,p>q) (2.20)

because y_(y,p,A), Yy(y,P,A) and therefore ¢+(y,p,q), depend on p through
|p| alone. The asymptotic behavior of ¢, and ¢_ for y * = may be seen

from (2.2), (2.6), (2.7), (2.14) and (2.20). It is given by




c(=){exp (-iqy) + R _(p,A) exp (iqy)}, (p,q) € C
¢, (y,2,9) ~ (2m) Y2 ¢ c(x){exp (-iqy) + R,(p,}) exp (iqy)}, (p,q) € C,

c(==) T_(p,A) exp (iqy), (p,q) € C_

c(@){exp (iqy) + B (p, M) " exp (-ian)}, (p,@) € C,
o (7,0, ~ (2M)7V2 | c(=){exp (1qy) + R, (p,N) " exp (-ian)}, (p,q) € €,

(=) T_(p, 1) " exp (-1q,y), (p,q) € C_

These relations clearly imply that ¢_(y,p,A) is not simply a multiple of
¢+(y,p,l). By contrast, the guided mode eigenfunctions have the symmetry

property

WP = B (op) s ko= 1,200

because they are real-valued and depend on p only through |p|.

The family ¢_(x,y,p,q), (P.q) € R’ - N, is a second family of
generalized eigenfunctions for A that spans the reducing subspace
X% = PéK. In fact, the following exact counterpart of Theorem 2.1 holds.

Theorem 2.2. For all h € ¥ the strong limit

A * -
h_(p,q) = L, (R¥)-1lim J ¢_(x,¥,P,q)" h(x,y) ¢ 2(y) dxdy
Moo |x| 2+y2 M2

exists. Moreover, the mapping Q_: ¥ + L,(R®) defined by Q. h = h_ is a

partial isometry such that

* *
QQ =1and QQ =P

*n
The adjoint mapping hf = Q_h_ is given by




£
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l

he(x,y) =J('-limJ s 22 ¢_(x,y,p,q) h_(p,q) dpdq
Mo/ |p|Z+q®

» Finally, §}_ is a spectral mapping for A in the sense that for all
h € D(A) one has
(9_Ah) (p,q) = A(p,q) 2 _h(p,q) (2.22)
»
: Theorem 2.2 is a direct corollary of Theorem 2.1.

This follows
from the observations that f(p,q) * £(-p,q) defines a unitary transforma-

tion ian Lz(RS) while £ - £* defines a unitary transformation in both ¥
and L, (R%).
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§3. Transient Free Waves.

The e’fgenfunction expansion of Theorem 2.2 is used in this
section to calculate the asymptotic behavior for t = ® of the free
component uf(t,°) = Pf u(t,*). The principal result is that in each of
the half-spaces Ri and R, where R; = {(x,y): %y > 0}, ug(t,*) is
asymptotically equal to a wave function for a homogeneous fluid with
propagation speed c(®) and c(~®), respectively. It is this behavior
that motivates the term "free component" for uf(t,°).

It will be assumed that the total acoustic potential u satisfies
u(t,*) =Re{v(t,*)} where v(t,*) = exp {-itA”?} h and h € D(AY2 ) (see
§1). The corresponding partial waves uk(t,°) = Py u(t,*) with k > 1
satisfy uk(t,°) = Re {exp (-:’LtAl/2 ) th}. This follows from relations
(2.21) which imply that Pk(h*) = (th)*. It follows by addition that

ug(t,‘) = Re {exp (-itA”z)Pgh} = Re {vg(t,')} and hence
ug(t,*) = Re {vf(t,')} (3.1)

where vf(t,') = exp (-itA”z)Pfh = exp (-itAVz)hf. The starting point
for calculating the asymptotic behavior of uf(t,') will be the eigen~
function expansions of §2. Theorems 2.1 and 2.2 imply the representations

ve(t,x,y) = J , $:(x¥,0,0) exp {-1e Y2 (p,q)} ﬁt(p,q) dpdq (3.2

R

convergent in . The #H-lim notation will be suppressed.
Equation (3.2) gives two representations of Ve corresponding to
the two families ¢ _and ¢_. The calculations below are based on the

¢_-representation which has been found to yield the simplest form of the

FRLCEWING Fo il bleuK=iOl Fl.omEu
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asymptotic wave function. It will be convenient to introduce the char-
acteristic functions X4 Xos and X_ of the cones C+, Co and C_ in

(p»q)-space and to decompose ﬁ_ as

ﬁ_(p,q) = a(p,q) + b(p,q) + c(p,q) (3.3)

where a = X _h_, b = X ﬁ_ and ¢ = x_ G_. The corresponding decomposi-

tion of vf is

Ve =V, tv + v, (3.4)

where

exp (-itAl?)Q*a

v =

a

v, = exp (-1ta¥2)@’p (3.5)
v, = exp (-it:Al/2 )th

The behavior for t + ® of these three functions will be analyzed
separately.

Behavior of vi. The partial wave v, has the representation

v, (t,%x,y) = J ¢_(x,¥,p,q) exp (-itw, (p,q)) a(p,q) dpdq (3.6)

Cy

where

w, (P,a) = c(x=)/Tp[Z + ¢?

To discover the behavior of va(t,x,y) for (x,y) € Ri, t - © the

representation (2.6) for ¢_(y,p,q) = (Zq)l/2 c () ¢+(y,p,A)* on C_ is

substituted into (3.6). The result is
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v, (t,x,y) = (—;#)%)n- Jc exp {1(x * p+yq- tw (p,a))} I+(y,p,>\)*a(p,q) dpdq
+

* (%,T)%r Jc exp {1(x *p-yq- tw+(p,q))}R+(y,p,A)* a(p,q) dpdq
+

It is natural to expect that in Ri the partial wave va(t,x,y) will
propagate as t * © into regions where y is large and hence I+(y,p,x) and
R+(y,p,l) are near their limiting values. Thus one is led to conjecture

that
. -~ 0 3 1 . 3 o0
va(t, ) va(t, ) + va(t, ) in Lz(R+), t - 3.7)

where

va(t,x,y) = (%)%z— Jc exp {i(x * p+yq- tw (p,a))} a(p,q) dpdq

+
and
vi(t,x,y) = (Tc}(;'%r Jc exp {1(x* p- yq- tw (p,q)} R+(p,>\)*a(p,q) dpdq

+

" i J_C exp {10x+ p+ya- tw, (p,@)} Ry(p, 1) " a(p,-a) dpdq
+
where -C_ = {(p,0): (p,-q) € C+} = {.9): q < -afp[}. This conjecture

is proved below. Note that

va(t,*) = exp (~it c() Ay?) n,

(3.8)
l(t,*) = - w) Al
v (t,*) = exp (-it c() AY?) h;

where A, is the selfadjoint realization in Lz(R’) of ~A = -(Dfi-D%*-D;)
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and h_  and h; are the functions in L,(R? whose Fourier transforms are

hy(p,q) = c(=) a(p,@) = () X, (p,a) B_(p,®)
(3.9)
hy(paa) = (DR (M) a(p,-0) = (RPN (- X (Pra)) B_(p,-a)

Both are in L,(R®) because f._ € L,(R®) and R (p,)) is bounded, by (2.12).
Moreover, supp ﬁ; C - C+ and hence the theory of asymptotic wave functions
for d'Alembert's equation [11, Ch. 2] implies that v;(t,') ~ 0 in Lz(Ri)

when t = ®, Combining this with (3.7) gives
) ~ yt . 3
va(t, ) Va(t, ) in LZ(R+), t > ® (3.10)

Now consider the behavior of va(t,x,y) for (x,y) € Ri, t + o,
Substituting the representation (2.2) for ¢_(y,p,A) = (2q)1/2c(w)w+(y,p,l)*

into (3.6) gives

v (t,x,y) = (—zcﬁ%%l/z— Jc exp {1(x * p+yq_- tw+(p,q))}1‘+(y,p,k)* a(p,q) dpdq
'+

which suggests the conjecture that
v (t,e) ~ vi(t,s) in L, (R, t > = (3.11)
where
o *
v2(t,%,y) = (—297;()—3%- Jc exp {1(x* p+yq_- tw,(p,d)) T _(p,A) a(p,q) dpdq
+

Now the mapping (p,q) + (p,q') = X'(p,q) = (p,q_(p,A(p,q))) has range
X'(C+) = Ri, Jacobian 3(p,q)/3(p,q') = c2(~»)q'/c?(®)q and satisfies

w+(p’Q) = W_(P)Q')- Thus

O
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2 - _C ©) : . L '
v (€.x,y) W JR3 exp {i(x* p+yq' - tw_(p,q'))} x
4+
2 [ * 2 ] 2 13
x T, (p,w2(p,q")) a(p,q)(c(-=)q'/c®(»)q) dpdq
which may be written
2 s /2 2
va(t,') = exp (-it c(-=) A)°) ha
where h; € Lz(Ra) has Fourier transform
2 t 2 * ' 2 172
b (p,q") = c(®) T, (p,w (p,q)) alp,q(p,q")) c*(-=)q'/c™(x)q
Since supp ﬁ: c Ri the results of [11, Ch. 2] imply v;(t,-) ~ 0 in
Lz(Ri) when t + «®, Combining this with (3.11) gives
v (t,*) ~ 0 in L (RY), t > = (3.12)

Analogous conjectures concerning vb(t,-) and vc(t,°) will now be
formulated. Only the main steps of the calculations will be given since
the method is the same as for va(t,').

Behavior of vi. Combining (3.5) and (2.7) gives

vy (E,%,y) = -(-2%:;272— jc exp {1(x* p+yq- tw,(p,q))} Io(y,p.A)" b(p,q) dpdq

c(®

* (—2?()_31/2_ Jc exp {i(x*p-yq- tw_,.(p,q))}R,,(y,p,A)* b(p,q) dpdq
0

which suggests the conjecture

vp(ts®) ~ vp(e, o) + vi(t,) fn L (R}), t + (3.13)
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where

vi(t,*) = exp (-1t c(=) Af?) hy

(3.14)

vi(t,*) = exp (-it c(=) A%y nl

and h  and hé are the functions in L, (R?) whose Fourier transforms are

ﬁb(p,q) = ¢(®) b(p,q) = c(=®) X, (pP>q) ﬁ_(p,q)

(3.15)
R Bl (p,a) = c(®) Ry (p,1)*b(p,-a) = (@) By (p:M)* (1=x,(p,a)) B_(p>La)
f } Since supp ﬁ; c-¢C,¢C Ri, vé(t,-) ~ 0 in L3(Ri) when t + =, by [11,
Ch. 2]. Combining this with (3.13) gives
1 vb(t,') ~ vﬂ(t,-) in Lz(Ri), t > o (3.16) i
Similarly (3.5) and (2.3) imply the representation
vb(c,x,y)
* ~
= T%%rf exp {i{(x+p-tw (p,q))} T (y,p,A) exp (By/H) b(p,q) dpdq
c
. 0
and since
lim T,(y,p,A) exp (By/H) = 0
y->~w
one expects that
-
] vi(t,*) ~ 0 in L, R), t +» = (3.17)
S
Behavior of v.. Combining (3.5) and (2.2) gives
L
b
b [
e "




vc(t,x,y)

= T;ﬁ— J exp {i(x* p-yq, - tw_(p,9))} T_(y,p,/\)* c(p,q) dpdq
c

which suggests that
o) ~ y! . 3
vc(t, ) vc(t, ) in LZ(R+), t > o (3.18)

where

vé(t,x,y) = z%éf;%— jc exp {i(x* p-yq+-tw_(p,q))}T_(p,l)* c(p,q) dpdq

The mapping (p,q) + (p,q') = X"(p,q) = (p,-q,(p,A(p,q))) has range
X"(C_) = - C_, Jacobian 3(p,q)/9(p,q') = c?(®)q'/c?(~»)q and satisfies

w_(p,q) = w.(p,q'). Thus
1 . = - 1/2 1
v.(t,®) = exp (-it c(®) A/®) h_
where hé has Fourier transform
s *
Bl (paa") = c(==) T_(p,w}(p,a")) " c(p,a(p,4")) c?(=)q'/c?(—=)q

Moreover, supp ﬁé C - C+ c Ri and hence one expects vé(t,') ~ 0 in

L,(R}), t > =. Combining this with (3.18) gives
v(t,) ~0in L (RY), t > (3.19)

Finally, combining (3.5) and (2.2) gives

vc(t.x,y)--z%#§§ﬁ- j exp {i(x* p+yq- tw_(p,q))}I_(y,p,A)* c(p,q) dpdq
c

* (;n;;; jc exp {i(x* p-yq- tw_(p,q))}R_(y,p,A)* c(p,q) dpdq ,
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which suggests that

v (t,0) ~ vi(e,0) + v (t,r) din LRY), £ > (3.20)

where

. 1/2
vg(t,-) = exp (~it c(-») Ao/ ) hc

(3.21)

. . _ 1/2 1
vé(t, ) = exp (-it c(-=) A}/?) h

and hc and hé are the functions in Lz(Rs) whose Fourier transforms are

] ; ﬁc(p,q) = c(-®) c(p,q) = c(-®) x_(p,q) h_(p,q)
b }(3.22)
~ * A
BL(p,@) = c(-=) R_(p, 1) c(py-0) = c(=) R_(p, )" (1= x_(p,))B_(p,La)
Since supp ﬁé Cc-C_cC Ri, vé(t,‘) ~ 0 in Lz(Ri) when t ~ o, by [1l1, < F
Ch. 2}. Combining this with (3.20) gives
v (t,*) ~ vg(t,') in L, (R}), t - (3.23) ;

The asymptotic behavior of vf(t,-) for t - » is obtained from
the three cases analyzed above by superposition, equation (3.4). Thus,

equations (3.10), (3.12), (3.16), (3.17), (3.19) and (3.23) imply

va(t,*) + vp(t,*) in L, (RD)
ve(t,*) ~< t > o

vg(t,') in Lz(Ri) ¢

Combining this with the definition of v;, vg and vg, equations (3.8),

(3.9), (3.14), (3.15), (3.21) and (3.22) suggests

Theorem 3.1. For all h € X let vg(t,-) be defined by
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exp (-it c(®) a2) W' (x,y), (x,y) € R}
vg(c,x,y) = < (3.24)
exp (-it c(==) A/%) n7(x,y), (x,y) € R}

L ]
where h+ and h~ are the functions in LZ(Ra) whose Fourier transforms are
given by
» c(=) h_(p,q), (p,q) € R}
. R (p,q) = < (3.25)
. 0 » (p,q) € Ri
4
T P and
. 3
A 0 » (Pyq) € R
h (p,q) = < (3.26)
' C(-w) h_(P,CI); (PsQ) € Ri
Then
' Lim 1v (t,*) = vg(t,*)ly = 0 (3.27)
t—»oo
L
Proof of Theorem 3.1. The decomposition (3.3) will be used for
the proof. Moreover, for brevity, only the asymptotic equality (3.7)
? for va(t,') will be proved. The five remaining cases, namely (3.11),
(3.13), (3.17), (3.18) and (3.20), can be proved by the method used
for v_.
a
A As a first step, (3.7) will be proved for the special case where
) a(p,q) € C?(C+). The general case will then be proved by using the fact
Lo el
that CO(C+) is dense in L2(C+).
, ! When a(p,q) € C?(C+) the integrals defining 2 v; and v;

converge point-wise, as well as in K, and one has
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0 ol o c(® -
va(t,x,y) va(t,x.Y) va(t,x,y) )3 ijexp (ix * p) w(t,y,p) dp(3-28)
where )
w(t,y,p) = w’(t,y,p) + wi(t,y,p) (3.29)
w'(e,y,p) = j exp {i(yq- tw, (p,9)) NI (y,p,}) - 1*a(p,q) dq  (3.30)
alp

and

(co
w'(t,y,p) = j exp {i(-yq- tw (p,q)) } (R (y,p,A) - R_,_(P,A))*a(p,q) dq

alp

(3.31)

-alp|
= j exp {i(yq- tw+(P»Q))}(R+(YsP,>\) - R+(Pa)\))*a(P,‘Q) dq

-0

Parseval's formula in LZ(RZ), applied to (3.28), gives

2
e’ ()
JRZ Iva(t’x’}') = V;(t9x’Y) = V;(t,xf}')lz dx = 27 JRZ lw(ta)’!p)lz dp

Integrating this over y > 0 gives

. - . - . = C(w *
UVa(t, ) V;(ta ) V;(t, )ﬂLz(Rj-) (2.”)1’72 lw(t, )HLZ(R:_)
(3.32)

: ’(ZCT()O%"" ["wo(t")"Lz(Ri) * "wl(t")"Lz(Ri)]

by (3.29) and the triangle inequality.
The estimate (3.32) implies that to prove (3.7) it is sufficient
to prove that wo(t,') + 0 and w!(t,*) +~ 0 in Lz(Ri) when t + », To this

end the integrals in (3.30) and (3.31) will be 2stimated by the method
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of stationary phase as formulated in the Appendix. To apply the method

define
r=vVt+y?, t =r sina, y = r cos o where 0 < a < T/2

and

8(p,q,a) = ¢q cos o - w+(p,q) sin a (3.33)

Then the integrals in (3.30) and (3.31) have the form (A.l) with

s=q{(m=1) and £ = (p,0) (n = 3). Moreover,
Vq 6(p,q,®) = cos a - U(p,q) sin a

where

U(p,q) = c(=)q/V[p[%+q?

is the group speed associated with the dispersion relation w = q+(p,q).

Clearly Vq 6(p,q,a) = 0 if and only if
y/t = ctn a = U(p,q)

Note that ctn a > 0 for 0 < @ < /2. In the case of (3.31), U(p,q) <O
on the interval of integration and there are no points of stationary
phase. In the case of (3.30), a|p| < q < ®» and hence 0 < U(p,q) < c(®).
Thus there is a unique point of stationary phase if 0 < ctn a < c(®), or
a, <ac< m/2 where ctn a, = c(»), and no point of stationary phase if

0 < o < ay. The point of stationary phase is
q = T(p,@) = |p| ctn a/(c?(®) - ctn? a)!f? (3.34)

when 0 < ctn a < ¢c(®). The corresponding approximation to wl(t,y,p) is,
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from (A.1l1),

w (t,y,p)
(3.35)

= x(t,y) (2m*? g(r,p,q,0) exp {i(yq- tw,(p,q)) = m/4}/ (e U, ()2

where x(t,y) is the characteristic function of the set

{(t,y): 0 <y <c(otl},
8(r.P,q,0!-) = (I+(r cos O‘aPaA(P:Q)) - l)* a(Psq) (3-36)
U (pr@) = (=) [p]?/([p|*+q*) ¥

and q is given by (3.34) with ctn a = y/t. These results and Theorems

A.l and A.2 imply the

Lemma. For every a(p,q) € Cf(C+) there exists a constant

M = M(a) such that
[wo(t,y,p) = w (t,y,p)| < M/(t2 + y2)¥* (3.37)

for all t >0, y > 0 and p € R?, Similarly, for each positive integer k

there exists a constant Mk = Mk(a) such that

Wit y,p) | € M/ (e2 + v/ (3.38)

for all t > 0, y > 0 and p € R2.

Proof of the Lemma. The hypothesis a e CT(C+) implies that

supp a = K, is a compact subset of C,. Let K and K, denote its
orthogonal projections on the g-axis and the p-plane, respectively. Then
the functions w°(c,y,p), w!(t,y,p) and wm(t.y,p) are all zero for

pE R - K,. Hence it is enough to verify (3.37) and (3.38) for p € K, .
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Consider first the integral in (3.31). It has the form (A.l)
with q € 0 = R_ (the negative real numbers), (p,a) e 0'
= (R? - {0}) x (0,7/2) and g given by
*
g(r,p,q,0) = [R (r cos a,p,A(p,q)) - R (p,A(p,q))] a(p,-q) (3.39)

Hypothesis (A.2) is evident from (3.33), while (A.3) follows from (3.39)
and well-known properties of hypergeometric functions. Moreover,
supp g(r,*,*,a) C K for all r > 0 and 0 < a < /2 and hence (A.4) holds.
The uniform estimates (A.6) may be derived from the integral representa-
tions of the hypergeometric functions - see (3, pp. 77-79]. Finally,
0(p,q,2) has no points of stationary phase for g € K C R_. Thus Theorem
A.1 is applicable to w'(t,y,p) and (3.38) follows.

Next consider the integral in (3.30). For 0 < a = ctn ’(y/t)
< @, there are no points of stationary phase q € K. Moreover,
wm(t,y,p) = 0 on this set. Hence Theorem A.l is applicable and implies
that (3.37) holds for y > c¢(®) t. On the other !and, for a, <ac< /2
or 0 <y < c(»)t there is exactly one point of stationary phase q given

by (3.34) and hence (A.8) holds. Moreover,
eg(p,q,a) = —Uq(p,q) sin a # 0 for q € K, (p,a) € 0'

which implies (A.9). Finally, (A.10) follows from properties of the
hypergeometric functions, as in the preceding cases. Thus Theorem A.2
is applicable and implies that (3.37) holds for 0 < y < c(=)t.

Proof of Theorem 3.1 (concluded). The lemma implies that 1if

a € Cf(C+) then w’(t,*) and w!(t,*) tend to zero in Lz(Ri) when t + @
and thereby proves Theorem 3.1 in this case. Indeed, integrating (3.38)

gives
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““l(t")"ﬁz<xi> - f J lw'(e,y,p)|* dpdy

(3.40)

A

00
~k 1-2k
Cp k] J (2 +y) Fdy=c) ¢t
0
where |K,| is the measure of K, and Cp = Ci K | f?(l +g2)7k df. Now

consider w’. The lemma implies that

w(t,y,p) = w (t,y,p) + q(t,y,p)

where
. .
laCt,y,p) | < M/(t? + y2) 3/
Thus
L 8
“Wo(t,')nL (R3) E “wm(t’.)“L (R3) + "q(t’.)HL (R3) (3-41)
23 2 2%
Moreover,
~
. < 1 2
(e, )y g3y < €'/
by the calculation used to prove (3.40) with k = 3/2. It remains to
show that ﬂwm(t,')ﬂL (R?) + 0 when t = ®, Direct calculation using
2 By
(3.35) and (3.36) gives
. @,
Iw (e, gy = f J |w (t,y,p)|? dpdy
L2 (R)) 5 K, o
(3.42)
c(o)t - -
=2m J J |, (vopsd ) = 12 fatp,@)|® €7 U (pya) ' dpdy
0 K1

where q = T(p,ctn-l(y/t)) is given by (3.34). Since (3.34) defines the

solution q of y/t = U(p,q) it is natural to make the change of variable




y = t U(p,q), dy = ¢ Uq(p,q) dq (p fixed) in (3.42). The result is

lw (t,')HLz(Ri)

(3.43)

- 217J f |1,(t U(p,9),p,A(p,0)) - 1|* |g(p,q)|? dqdp
K, ‘K
since supp g C Ky x K. Finally the representation I+(y,p,k)

= (2/1{)1/2 exp (iq+y) $,(y,p,A) implies that
I,.(t U(p,q),p,A(p,q)) * 1 when t +

uniformly for (p,q) € K, x K. It follows by Lebesgue's dominated

x
convergence theorem that fw (t,*)l =0(1), t + o, In fact, a

3
LZ(R+)
careful estimate of the hypergeometric function ¢, gives the stronger

estimate

1" (t, ) = 0™y, t+w>

L, (R})

where u = u(a) is a positive constant.

The arguments given above, applied to Vo Yy and Var show that
the conclusion (3.27) of Theorem 3.1 holds for all h such that
ﬁ_ € C?(C+ U Cy U C_). Moreover, this set is dense in L,(R®) and hence
QtC?(C+ U Cy UC) is dense in H; = PJ by Theorem 2.2. These facts can
be used to extend (3.27) to all h € X, provided the mappings
ue): g > L, (R*) and U,(t): He > Ly (R}) defined by Ut)he
= exp (-1t Al/z)hf and Uo(c)hf = vg(t,') are uniformly bounded for all
t € R. This density argument has been given in many places; see, for
example, [11, Ch. 2} or [13, p. 260]. To prove the uniform boundedness

note that the Lz(R3) and ¥ norms are equivalent:
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c(y,) Uhil.. < yhy 3y < c(-=) phi
0 X - L,(R%) - X
and hence
W(thely g3y S (=) 1U(D)hely = c(==) Fhgly
for all t € R. Similarly, (3.24), (3.25) and (3.26) imply the estimates

ﬂUo(t)h

'L,y = IVEE L g3y

1/2

A

(Ivg(e, )il + bvg(e, )l

3 2 o3y)

+ In712

+ /2
< (Ih uLz(Rg) Lz(Ra))l

oy 2 fey 2 1/2 {
(Ih uLz(Rg) + Ih NLZ(Ra))

2(0) I1H N2 20 ) Ih 12 1/2
(e (=) “h‘"Lz(Ri) + ¢ (-») ﬂh_an(Ri))

(WA

c(==) Thl] g3y = c(==) Ihely

for all t € R. This completes the proof of Theorem 3.1.
Theorem 3.1 implies corresponding asymptotic estimates for the
free component uf(t,') = Pf u(t,*) = Re {vf(t,~)} of the acoustic

potential u(t,*). Indeed, if ug(c,-) is defined by

u;(t,x,y) = Re {vg(t,x,y)} (3.44)

then Theorem 3.1 and the elementary inequality |Re z| < |z| imply
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Corollary 3.2. For all h € ¥ one has J
. - o - =
lim Muf(t, ) uf(t, )ﬂﬂ. 0 (3.45)
oo

If the initial state h has derivatives in X then uf(t,°) and
ug(t,°) have the same derivatives in j¢ and (3.45) can be strengthened to
include these derivatives. In particular, one has

Corollary 3.3. For all h e LI(R®) = D(A!/?) one has

1lim 1D

{00

5 ug(t,*) - DJ. ug(t,')llx= 0, j =0,1,2,3 (3.46)

where D, = 3/3¢t, bl = 3/9x;, D,=23/3%x; and D; = 3/3y. Note that (3.46)
is equivalent to convergence in energy:

lim E(u, - ul,R3,t) = 0

f £
-0
Corollary 3.3 can be proved by applying the method of this

section to the derivatives Dj vf(t,°) (j = 0,1,2,3) which are given by
integrals of the same form as (3.2). Detailed proofs for the case of

the Pekeris profile were given in [13].
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§4. Transient Guided Waves. ’

The asymptotic behavior for t + « of the guided component
ug(t,') = Pg u(t,*) is derived in this section. ug(t,') is a sum in ¥
of mutually orthogonal partial waves uk(t,') = Pk u(t,*)

= Re {vk(t,°)}, k > 1. The starting point for the analysis is the

integral representation

Vi (t,x,3) = JQ Y (x,y,p) exp {~it w ([p])} By (p) dp (4.1)
k

where

B (p) = [R3 PGy, hGx,y) ¢TI (y) dxdy

and the integrals converge in X and Lz(Qk), respectively. The integral

in (4.1) can be written

v (t,x,y) = %J exp {i(x*p - ty (|p|N} ¥ (y,p) b (p) dp  (4.2)

This is an oscillatory integral that can be estimated by the method of

stationary phase of the Appendix when Bk € C?(Qk). To apply the method
define

t=r&, x, =1 E1s X, =T &,
g = (50’51’52) € s? c ®?

where S? denote the unit sphere in R3’. Then (4.2) takes the form A.l

FALCELING Falh blasK=iOT PlumEy
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withm =2, n=3
6, (P.E,y) = £1p1 + £,0, ~ Egu ([p]) (4.3)
g, (rs0,E,5) = (2M7" ¥ (7,p) by () (4.4)

Note that Gk is independent of y and 8 is independent of r and §. They
have been written in the forms (4.3) and (4.4) to emphasize the applica-
bility of the results of the Appendix.

The phase function (4.3) has a point of stationary phase if and

only if

v (pDe/lp| = x/t (4.5)

where

U pl) = o) e e

is the group speed associated with the dispersion relation w = mk(|p|).
The analysis will be simplified by the following
Proposition. If the parameters defining c(y), equation (1.1),

satisfy
8K > M (4.6)

then each of the functions Uk(lpl), k=1,2,°*+, is a strictly decreasing
function on Py < lpl < ® such that Uk(pk) = c(®) and Uk(lpl) + c(y,) when
Ip| + =.

A proof of the proposition may be derived from the parametric
representation of the dispersion relation [4]. The calculation is too

long to give here.

C

T
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For simplicity of presentation condition (4.6) is assumed in the
remainder of this paper. If 8K < M then Ué([pl) may have a finite
number of zeros. This complicates the form of the asymptotic wave func-
tions but is otherwise tractable. 1In the case of the Pekeris profile,
treated in {13], the functions UL(lpl) have exactly one zero on
lel 2 py-

By calculating the Hessian 6; one can show that
r? |dee 8} (p, &) | = €2 U (lpl) [upcipl)|/]p] {

and
sgn B,(p,E,y) = 0

In particular, each point of stationary phase is non-degenerate, by the
Proposition. Moreover, (4.5) implies that Gk has a point p of stationary

phase if and only if
||/t = v (lp]) (4.7)

Now (4.7) has a unique solution |p| if |x|/t lies in the range of

Uk(lpl); that is if
elye) < |xl/t < c(=) (4.8)
The point of stationary phase is then given by
p = Q (Ix|/t)x/|x| for x€ R? - {0}, £ >0 (4.9)

where Qk is the inverse function to Uk' It is a monotone decreasing

function that maps (c(ya),c(w)) onto (pk,m). By Theorem A.2 the point
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(4.9) makes a contribution

1/2

- [pl¥2 exp {(1(|x||p] - tw (|pIN} ¥ (v,p) Ny (p)
vk(t,x,y,p) = Mk k k (4.10)
e el Tugddp |32

to the integral in (4.2) when (t,x) satisfies (4.8). For [x|/t outside
the interval (4.8) there is no point of stationary phase. Thus the

stationary phase approximation to vk(t,x,y) is given by
(o] «©
Vk(tsx,y) = X(le/t) Vk(t,x,y,Qk(|X|/t)X/IX|) (4.11)

where X is the characteristic function of (c(y,),c(®)) and one has
Theorem 4.1. For all h € ¥ such that Ek S C?(Qk) there exists a

constant C = Ck(h) such that

v (£,%,9) = vi(e,x,¥)| < c/t? (4.12)

for all t > 0, x € R? - {0} and y € R.

This result can be proved by application of Theorems A.l and A.2.
The proof is similar to that of the Lemma in §3 and will not be recorded
here. 1If ﬁk is not a smooth function then Theorems A.l and A.2 are not
applicable and the estimate (4.12) may fail. However, the definition
(4.10), (4.11) is applicable to all h € . More precisely, one can prove

Theorem 4.2. For all he€ ¥, all t >0 and k = 1,2,*** one has
(- -]
Vk(t9 .) € ¥,
and

« -
e My = Iy gy = TRl

.
e ‘
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<o
Moreover, the mapping t + vk(t,') is continuous from R+ to ¥ and

Lim v, (t,*) - v:(t,')llx =0 (4.13)

-0
The proofs of these properties are the same as those for the

Pekeris profile, given in [13], and are not reproduced here. On defining
@©
uk(t,x,y) = Re {vk(t,x,y)}

one has

Corollary 4.3. For all h<& X and k = 1,2,3,°°°

lim ﬂuk(t,°) - uk(t’.)"M =0

c-vm
If h e L;(R3) then uk(c,°) € L;(R3) and asymptotic wave functions
for the first derivatives of u, can be constructed. Indeed, if

Ek € C:(Qk) then the first derivatives of v, are given by

D, v (t,x,y) = %; J exp {i(x+p-tu ([p[N} ¥ (y,p) (~iw (|p[)) Ek(p) dp
Dy vy (£,%,y) = %; ] exp {1(x * p = twy (|p))} ¥y (v,p) (dp;) h (P)dp (§=1,2)
D, v, (6,%,y) = %; f exp {1(x * p- tw ([p|))} Dy Yy (y5P) Ek(p) dp

These integrals have the same form as the integral (4.2) for vk(c,x,y).

The corresponding asymptotic wave functions are defined by

vzo(t.x.y,p) = (1w, (|p[)) vt(t,x,y.p)

v:j(:,x,y,p) = (ipj) v:(t.x,y.p) (3 =1,2)
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. 5]
Vi3 (8:%:¥,P) = D vy (£,%,y,p)

and

Vg (659 = x([xl/0) v, e,y Q (Uxl/Ox/[x]) (1 = 0,1,2,3)

The analogue of Theorem 4.2 is

Theorem 4.4. For all h & Ly(R®), all t > 0 and k = 1,2,3,°¢°
one has

. by? ® . 3 1 =
vko(t, ) € K, vkj(t’ ) € L, (R%), j 1,2,3

3
oo . 2 <o
v (E, 5+ F v

(e,)i2 50 = 2 1AM h 02
58 K L, R%) kI
and
lim ID. v, (t,*) ~ vo.(t,*)M.. =0 (j = 0,1,2,3)
oo ik kj H
Finally if

@ o
ukj(t’x’y) = Re {ka (t’x’y)} (j = 091)293)
then one has

Corollary 4.5. For all he L%(Ra) and k = 1,2,3,¢°*"

lim D, u, (t,*) = u..(t,*)l.. =0
fom  J k kj H

Theorem 4.4 way be proved by the technique used for the Pekeris
profile in [13].

(‘C
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§5. The Asymptotic Distribution of Energy for Large Times.

The total energy of the acoustic field u(t,x,y), given by (1.16),
is constant for t > T. The same is true of the partial waves Ug, ug and
Uy k = 1,2,***. Moreover, the eigenfunction expansion of [4] implies
that {Pf,Pl,Pz,"'} is a complete family of orthogonal projections that

reduces A. It follows that
[s+]
A2 RiZ = haY2npl + § oAt (5.1)
k=1

which may be interpreted as an energy partition theorem. The energies of
the partial waves can be calculated from the initial state h, or source
function f(t,x,y), by means of the eigenfunction expansion theorem. The

relationship between h and f is given by (1.9). Hence

h_(p,q) = i ATM2 (p,q) E_(-AY2 (p,q),p,q)

where

~ *© * -

f_(w,p,q) = J J , exp (-1wD) ¢_(x,y,p,q9) £(T,x,y) ¢ 2(y) dydx
-0 R

and similarly

B ) = 1wy (p]) E (o ([p]),p)

where

Ek(w,p) = f J exp (-iwt) wk(x,y,p)* £(1,x,y) ¢ 2(y) dydx
-—aoR3
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It follows that the partial energies are given by
Eug,R%,£) = a2 b2 = |£_(-x"? (p,q),p,a)|? dpdq, t > T
f £l R3S T z
and
E(u,R,t) = [AY2 h Ik = J [£, o (Up)sp) % dp, £ > T

The theorems of §3 and §4 make possible the calculation of
asymptotic energy distributions in bounded and unbounded subsets of R®.
Only the principal results are formulated here since the proofs are the
same as for the case of the Pekeris profile given in [13].

The notation

E%(u,K) = lim E(u,K,t)

t—m
will be used whenever the limit exists. A first result is the

transiency of all waves with finite energy in an Epstein duct:
Ew(u,K) = 0 for all compact sets K c R?

Next let C' (resp. C7) denote a come in Ri (resp. R}). Then Corollary

3.3 and the results of [11] imply
+ ~
g0 = o) [, (pl? + 0D [Re0)]? dode
e
= f . 1E_(-A"2 (p,q),p,q)|? dpdq
ot

Now define the cone C_ by

k

W
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c. = {(x,y): |y -yl <elx]|}, e >0

Then, in contrast to the preceding result, one has
Em(uk,Ce) = e(uk,Ra,t) = nAlN'hkni for every e > 0

and for k = 1,2,3,*+* (see [13, Theorem 5.5]).

Finally, if
Ss{(XaY): X € R2 and y1<y<y2}

then it can be shown by means of Corollary 4.5 that

o ~ Y -
€7 (uy,S) =j EMC NP U W (y,p) ¢ 2 (y)dy| dp
Qk ¥,




§6. Concluding Remarks. Examination of the proofs in (4] and in this

paper reveals that the methods should apply to a large class of sound
speed profiles c(y). As remarked in [4], the principal obstacle to such
a generalization is the lack of information about the p-dependence of
the eigenfunctions and eigenvalues. In the cases of the Pekeris and
Epstein profiles this information was obtained from explicit construc-

tions of the eigenfunctions in terms of known functions.

———
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Appendix. Estimates of Oscillatory Integrals with Parameters.

The method of stationary phase provides asymptotic estimates for

r > ®© of oscillatory integrals of the form
I(r) = j exp {ir 6(s)} g(s) ds, 0 c R®
0

The method is needed in §3 and §4 above to estimate the oscillatory
integrals in equations (3.30), (3.31) and (4.2). In (4.2) the integrand
g contains a parameter y in addition to the variables of integration. In
(3.30) and (3.31) both 6 and g contain parameters and, in addition, g
contains the large parameter r. In both cases estimates that are

uniform in the parameters are needed. This suggests the study of

oscillatory integrals of the form

I(r,%) = J exp {ir 6(s,8)} g(r,s,E) ds (A.1)

0
where r > 0, s € R® and £ € R™. 8(s,£) is a real-valued phase function
and it is assumed that there are open sets O C R® and 0' ¢ R™ such that
D% 8(s,) € C(0 x 0') for all multi-indices 6 (A.2)
Dg g(r,s,t) € C(R+ x 0 x 0'") for all multi-indices § (A.3)

where R+ denotes the positive real numbers. Moreover, it is assumed

that there is a compact set K C 0 such that

supp g C R, X K x o (A.4)

—
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Estimates of I(r,£) for r + « are sought which are uniform in £ on compact
subsets of 0'. For large values of r the exponential in (A.l) is highly
oscillatory except near critical points of the phase function 6(s,£).

Two estimates of I(r,£) are given here, corresponding to the cases of no
critical points and one critical point, respectively. The first case is
formulated as

Theorem A.l. Assume that
VS 8(s,£) = (36/351,"',89/Bsm) # 0 for all (s,£) e K x Q' (A.5)

Moreover, assume that for each compact set K' C ', each r, > 0 and each

positive integer k there exists a constant M = M(K,K',ro,k) > 0 such that
|D2 g(r,s,&) | <M for all r > r, s€K, £ €K' and |§] <k (A.6)
Then there exists a constant C = C(K,K',ry,k,g) > O such that
|1(r,&)| < Cr X for all r > r, and £ € K' (A.7)

In the second case considered here 6(s,£) has a unique non-
degenerate critical point s = T(§) for each § € 0'. It is formulated as
Theorem A.2. Assume that there is a function T € C7(0',0) such

that, for all £ € 0,
VS 6(s,€) = 0 if and only if s = T(E) (A.8)

Moreover, assume that the Hessian 8'"(s,£)

(829(5,5)/asjask) satisfies

det 8"(t(§),5) # 0 for all £ e 0' (A.9)

¥

In addition, assume that for each compact set K' ¢ 0' and each r, > 0

there exists a constant M = M(K,K',ro) such that

tl




B P o

)
[Dg g(r,s,6)| <M forallr>ry, s€K, E€K" and |§] <m+ 5 (A.10)
Then there exists a constant C = C(K,K',r;,g) > O such that if q(r,f) is
] defined by
, exp{iz 8(t(8),8) + 17 sgn 8"(1(£).6) }a(r,T(6),8)
I(r,€) = (2m™¥ - + a(r,£)
r™? |det 8"(1(£),) |V?
] (A.11)
! ) then
la(r,&)} < ¢ r™* " for all £ > r, and £ € K’ (A.12)

In (A.11), sgn 8"(s,{) is the signature of the real symmetric
matrix 6" (s,£).

The uniform estimates given above are due, in essence, to
M. Matsumura [6]. No proofs are offered because the theorems can be
proved by following Matsumura's proofs and recognizing that under the

hypotheses formulated above his estimates are uniform for £ € K'.
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