CNS 1100

QUALITY OF MARINES: PRE-ENLISTMENT SCREENING BASED ON PREDICTED PERFORMANCE

CENTER FOR NAVAL ANALYSES

1401 Wilson Boulevard Arlington, Virginia 22209

Marine Corps Operations Analysis Group

By: Warren T. Matthews

June 1977

Approved for public release; distribution unlimited

80

Prepared for:

OFFICE OF NAVAL RESEARCH Department of the Navy Arlington, Virginia 22217

DEPUTY CHIEF OF STAFF (RD&S) Headquarters, Marine Corps Washington, D.C. 20380

in de la compañía de

- 17 July Surveyor

07 110000.00 4 24 018

DEF ARTMENT OF THE NAVY HEADQUARTERS UNITED STATES MARINE CORPS WASHINGTON, D. C. 20380

IN REPLY REFER TO

RD-4-cm 3930 **15 FEB 1979**

From: Commandant of the Marine Corps To: Distribution List

5 ibj: CNA Study CNS 1100: "Quality of Marines: Pre-Enlistment Screening Based on Predicted Performance"

Encl: Subject study

1. The enclosure is the final report of a study of the quality and performance of enlisted Marines. The study was conducted by the Marine Corps Operations Analysis Group of the Center for Naval Analyses in response to a request by the Deputy Chief of Staff for Manpower at Headquarters, Marine Corps.

2. The objective of the study was to develop a method of converting the information available about Marine Corps applicants into an estimate of the quality of service they will provide. Such estimates are required to achieve and maintain the improved manpower quality required in the allvolunteer environment.

3. The objective of the study has been met and it is approved for distribution. In particular, the study identified several variables highly correlated with attrition and desertion and validates the importance placed on a high school diploma in current enlistment standards.

4. A copy of this letter will be affixed inside the front cover of each copy of the subject study prior to its distribution.

W. H. FITCH DEPUTY CHIEF OF STAFF FOR RD4S

RD-4-cm 3930

> Parris Is. S.Diego

CNA Study 1100, "Quality of Marines: Pre-Enlistment Subj: Screening Eased on Predicted Performance"

1000

DISTRIBUTION LIST

Department of the Navy

SNDL Pa:	rt I:		
24H1	COMTRALANT	FF38	USNA, Nimitz Library
	COMTRAPAC	FJ18	NAVPERSPROGSUPPACT
24J1	CG FMFLANT	FJ76	NAVCRUITCOM
24J2	CG FMFPAC	FKA6A16	NAVPERSR&DCEN
26V1	CC LFTCLANT	FTl	CNET
26V2	CG LFTCPAC	FT2	CNATRA
42D1	FASOTRAGRULANT	FT5	CNTECHTRA
42D2	FASOTRAGRUPAC	FT10	NAVAVSCOLCOM
45B	CG FIRST MARDIV	FT13	NATTC, Lakehurst
	CG SECOND MARDIV	FT13	NATTC, Millington
45B	CG THIRD MARDIV	FT22	FLECOMBATRACEN LANT
	CG FOURTH MARDIV	FT22	FLECOMBATRACEN PAC
45EE	CG FORTRPS SECOND	FT73	NAVPGSCOL
_	FSSG LANT	FT75 FT87	NAVWARCOL
	CG FORTRPS PAC	FT87	HUMRESMANSCOL
		V6	MARTC (Fourth MAW)
	CG SECOND MAW	V8	MARCORPSCRUITDEP, Parris I
46B		V8	MARCORPSCRUITDEP, S.Diego
SNDL Par		V12	CG MCDEC
Al	ASST SECNAV (MRA&L)	V16	MARCORB, Camp Lejeune
A2A	ONR	V16	MARCORB, Camp Pendleton
	-	V16	MARCORB, Camp Smith
		V16	MARCORB, Camp Butler
		V16	MARCORB, Twentynine Palms
A6	DC/S, O&T		
A6	Dir, MC Reserve	OpNav:	Ор-09ВН
ВЪ́	Nat'l Defense Univ		Op-099
B3	AFSC		Op-01
	HUMRESMANCEN LANT		Op-59
FA44	HUMRESMANCEN PAC		
FC9	HUMRESMANCEN EUR		
	NAVMMACLANT		
FF30	NAVMMACPAC		

Other

Under SecDef for Research and Engineering Ass't SecDef, Program Analysis and Evaluation (2 copies) Defense Documentation Center Department of the Army (Adj Gen'l)(6 copies) Department of the Air Force (AFXOD) Human Resource Research Organization

TABLE OF CONTENTS

	Page
List of tables	••••••••••••••••••••••••••••••••••••••
Summary	····· Ŷ
IntroductionBackground Objective and approach	····· 1
Data and methodology Data Measures of effective service Explanatory variables Methodology.	3 7 7 7
Regression results Measures of quality Desertion Early attrition Rank achieved Superior recruit training performance Aggregate quality measure Scaling to the ASVAB 6/7 test scores	9 9 9 9 9 9 9 9 12 12
Application of results	
References	
Append' ' - Means and standard deviations	A-1
App Correction for range restriction .	B-1 - B-2
Appendix C - Table of correlation coefficients .	C-1 - C-3
Appendix D - An alternative model	D-1 - D-5
Appendix E - Scaling from ACB-61 test scores	to ASVAB 6/7
	•••••• E-1 - E-2
Appendix F - Alternative regression results	
	Accession For
	NTIS G.AI DDC TAB Unennounced Justice tion
	The set of
-i-	· · · · · · · · · · · · · · · · ·
	la aita 1/or Dista special

(¹¹)⁽¹¹)

а

à. À

LIST OF TABLES

	Pag
1.	Variables 4 [*]
2.	Regression results: desertion 10
3.	Regression results: early attrition 11
4.	Regression results: rank achieved 13
5.	Regression results: superior recruit training performance
6.	Regression results: loss potential 16
7.	Regression results: loss potential with selected variables 17
8.	Success potential: diploma graduate, age 17-20 20
9.	Success potential: diploma graduate, age 21 or more 21
10.	Success potential: nongraduate, age 17-20 22
11.	Success potential: nongraduate, age 21 or more

Ŧ

-iii-

SUMMARY

The objective of this study is to develop a method of screening applicants for enlistment into the Marine Corps that will result in improved manpower quality in the allvolunteer environment. Such a screening method must be based on the limited applicant information that is available to recruiters before the acceptance decision is made.

This study is based on data collected between July 1973 and June 1976. All regular Marines who began their service during FY 1974 (July 1973 through June 1974) were monitored through their first 24 months of service. The Marines in this sample are true volunteers, since they enlisted after the end of the military draft (December 1972).

Several measures of performance were analyzed in terms of the personal characteristics, aptitude test scores, and other data available on the sample of Marines, to determine how such information can be used to screen high quality applicants from others with less likelihood of performing well. The measures of performance examined included:

- Early promotion,
- Rank achieved,
- Desertion, and
- Early attrition.

The data found to be most highly correlated with these measures of performance included certain aptitude test scores, age at time of enlistment, and education. Since many of the same explanatory variables were found to be among the best predictors of several of the measures of performance examined (see tables 2 through 5), an aggregate measure--desertion combined with early attrition--was adopted for the analysis.

Education, age when entering the service, general classification test score (GCT), and classification inventory test score (CI) (see table 7) correlated most highly with the aggregate measure of manpower quality. The two test scores are from the test battery used before September 1976, but similar test scores are available in the Armed Services Vocational Aptitude Battery (ASVAB 6/7)--the all-service enlistment screening test now used. Correlations between the obsolete test scores and those from the ASVAB 6/7 were used to express the aggregate quality measure in terms of education, age, and the combat scale test score (CC) and mental group score from the ASVAB 6/7 (see appendix E).

Tables were developed that show the probability of successful service (i.e., service without desertion or early attrition), based on an applicant's age, educational level, CC score, and mental group score (see tables 8-11). The tables illustrate the relative importance of these dissimilar characteristics, and permit the comparison of, for instance, a high school graduate with low test scores and a nongraduate with high scores.

b,

-V-

The method of selecting applicants that is recommended in this analysis gives recruiters more guidance than the present system, which gives only a single quota and the minimum standards for enlistment. The existing system provides no basis for devoting extra effort to searching for candidates whose chances of success are well above those of marginally qualified applicants. The method presented here recognizes the known differences in quality of service rendered by different enlistees. It provides this information in a form that can be used to help recruiters produce man-years of effective service rather than simply numbers of entering recruits.

-vi-

I. INTRODUCTION

BACKGROUND

Prior to 1973, the military draft provided many recruits for the Army each year. Although a few draftees were assigned to the Marine Corps during the Vietnam War, the primary effect of the draft on the Marine Corps was to generate draft-motivated volunteers. Draft calls ended in December 1972, and the statutory authority for them expired on 1 July 1973.

When the draft ended, Marine Corps recruiting shortfalls began. In FY 1974, the Marine Corps enlisted 48, 764 regular, male recruits. The quota was 57, 800, and the shortfall of 9, 036 amounted to almost 16 percent of the goal (reference 1). During FY 1975 and 1976, Marine Corps recruiting goals were achieved. However, monthly shortfalls in the published recruiting quota occurred from July 1976 through March 1977. The authorized end of year strength of the Marine Corps has been reduced from 196,000 to 191,500; the actual strength on 31 October 1977 was 192,069. Although scheduled and unscheduled discharges are currently below anticipated levels, the continuing shortfall in recruiting could become a problem affecting manpower planning and the future grade structure and promotion rates.

Several current trends will have an impact on future Marine Corps manpower requirements and supply. Technological advances in weaponry, communications, data processing, and other fields have brought more complex equipment into the Marine Corps inventory. Many of these items require operators, technicians, and repairmen who are more highly trained and more capable than the men they will replace. No doubt, this trend will continue to require relatively more recruits with higher mental aptitudes. As a result of fluctuations in the U.S. birthrate since 1950, the population of young men in the age group 17-21 will begin to decline after 1978. This population will decline from 10.7 million in 1978 to 9 million in 1990 (see reference 5). If a greater percentage of high school graduates attend college or trade school, the number actually available to the Marine Corps may decline even more. If Marine Corps manpower requirements remain fixed at current levels, and if the percentage of the eligible population entering the Marine Corps remains constant, the declining population will magnify the Marine Corps manpower shortfall in the years ahead.

These trends may lead the Marine Corps to more serious manpower shortfalls of both quantity and quality. The Marine Corps has responded by taking steps to: develop more attractive enlistment guarantees, improve recruiting efficiency, factor manpower requirements into the hardware design process, and improve retention. While ex . of these efforts is required to help the Marine Corps adapt to the allvolunteer environment, their success depends in part on the selection of the best applicants for enlistment. If manpower supply exceeds requirements, then an effective screening procedure would admit those applicants whose chances of serving satisfactorily are high and exclude those whose chances are low. If manpower supply falls short of requirements, an orderly screening procedure could be even more important. It would allow the Marine Corps to decide at what point they should accept manpower shortages rather than men with lower chances of serving successfully. The point of minimum acceptable quality can and should be adjusted as conditions change.

OBJECTIVE AND APPROACH

The objective of this analysis is to develop a method of converting the information available about Marine Corps applicants into an estimate of the quality of service they will provide. Manpower quality will be measured by desertion, attrition, and promotion during the first two years of service. Attrition or desertion identify those men whose problems were so severe that they could or would not fit into the scheme of things in the Marine Corps. Promotion, which requires one to meet eligibility requirements and to be recommended by the commander, is assumed to be an indication of good quality service.

In order to identify the factors related to quality of service, many test scores, personal characteristics, and other data will be examined. This analysis will show which data are best for predicting quality of service, as well as the relative importance of different variables. The application of this analysis will show how the limited information available to recruiters can best be used to screen applicants for enlistment.

II. DATA AND METHODOLOGY

DATA

The data used in this analysis include most of the applicant information that is available to recruiters before an enlistment decision is made. (No attempt is made to consider the desirability of collecting new data for the recruiter's use; such considerations, while possibly useful, are beyond the scope of this analysis.) The variables are listed in table 1, and the means and standard deviations are shown in appendix A.

The data were collected from the records of the 49,540 regular, male, nonpriorservice enlistees who reported for recruit training during FY 1974. These records were obtained from the Marine Corps Manpower Management System (MMS) and the Recruit Accession Management System (RAMS). Each man was tracked for 24 months, and his performance (in terms of promotion, early attrition, and desertion) was recorded. Incomplete records numbered 3,671 (or 7 percent).

Each FY-1974 enlistee was required to attain a mental group percentile score of 21 or more on the Armed Forces Qualification Test (AFQT). This range restriction in mental group can affect the results of the analysis by introducing bias into the coefficients. Thus, the data were corrected for range restriction, so they approximate the mobilization population. The procedure is described in appendix B.

The same vas selected for two reasons:

- All of the men in the sample enlisted into an all-volunteer environment and were therefore considered more representative of future enlistees than were earlier cohorts.
- They have been in the Marine Corps long enough to be evaluated on the basis of their performance in Fleet Marine Force (FMF) jobs.

It is assumed that actual job performance should be the fundamental and final criterion of manpower quality. The dependent variables used in this study are believed to be the best available measures of manpower quality. These measures are selected because they are ultimately determined by the officers and staff noncommissioned officers who supervise enlisted Marines and who are responsible for readiness. This analysis assumes that those Marines who are promoted early or who reach a higher rank during their first two years of service are somehow of higher quality than those who are not so recognized. Likewise, this analysis assumes that those Marines who desert or are discharged prior to serving two years are of lower quality. Although manpower quality cannot be defined, we assume that it is recognized by Marines and that it is reflected in favorable and unfavorable personnel actions.

-3-

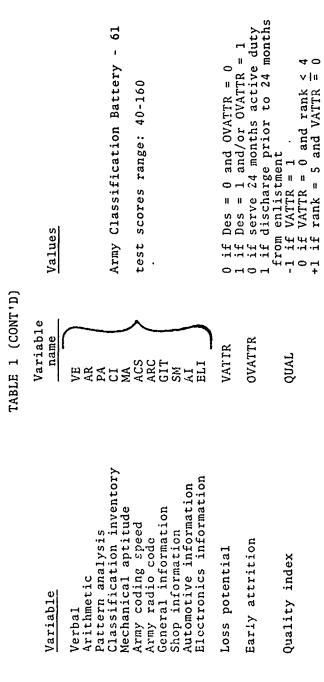
8 if 8 years or less and no GED 9 if 9 years and no GED 10 if 10 years and no GED 11 if 11 years and no GED 11.5 if GED and no college or trade school 12 if diploma graduate and no college or trade school 13 if any college or trade school 8 if age < 17 upon regular enlistment 7 if age 18 upon regular enlistment 6 if age 19 upon regular enlistment 5 if age 20 upon regular enlistment 4 if age 21 or more upon regular enlistment 88779999 graduate **76.** 11 **Ж. 1** tt 15 YA 15 YA 16 YA 16 YA 16 YA 16 YA 3 Values Ŀ. 0 0-0-0-0-VARIABLES Variable name A 17 A 20 A 18 A 19 XA χ Age in years (25-age) Years of schooling Variable Age 17 Age 18 Age 20 Agc 19

-4-

Ĵ

t

TABLE 1 (CONT'D)


z

Ş

<u>lindidddau Saffada Sactonedd</u>

	(A MON) T HURLI	
Variable	Variable name	Values
Ninth grade education	HS 9	1 1. 1
Tenth grade education	HS 10	
Eleventh grade education	HS 11	 # '%
Diptoma	HS 12	
GED	GED	1 11 XA = 12 0 15 XA ≠ 11.5
College training	Coll	
Rucc	Race	<u>-</u>
Marital status	Marit	
Age/education interaction (1) Age/education interaction (2)	Aged Mix	l 11 marricd upon enlistment (XA) (YA) (XA) (true age upon enlistment,
General classification test		22
100 010	Age 21	0 if YA < 5 1 if YA = 4
Deserter	Des	
Promotion	Prom	<pre>1 it deserted once or more 0 if promoted to];-2 after recruit</pre>
		training l if not promoted after recruit
Rank	Rank	training 1 if grude E-1 after 2 months or
		uischarge 2 if grade E-2 after 24 months or
		discharge 3 if grade E-3 after 24 months or
		discharge 4 if grade E-4 after 24 months or dischardener
		uischuige 5 if grade E-5 after 24 months or dischnrge
		ł

-5-

enterente Anno

\$

J A

ŧ

-6-

Measures of Effective Service

Both positive and negative measures of manpower quality are used in this analysis. The positive measures of quality are rank achieved and superior recruit training performance (as indicated by promotion at the end of recruit training). The negative measures are desertion and attrition from the Marine Corps during the first 24 months of service.

Explanatory Variables

The explanatory data consist of personal characteristics and aptitude test scores. Included among the personal characteristics are education, race, age, and marital status. The available test scores are from the Army Classification Battery (ACB-61). The men in this sample took the AFQT mental group test to determine their eligibility for enlistment. Upon arrival at a recruit training depot they took the ACB-61, which includes 11 subtests. The quality of their service (as indicated by beveral measures) will be analyzed in terms of the explanatory variables (see table 1).

METHODOLOGY

The method of analysis is multiple linear regression. A stepwise regression procedure is used to examine the explanatory power of the variables and to determine which linear combination of variables best predicts quality. The coefficients of correlation between each pair of variables, corrected for range restriction, are shown in appendix C. The linear function of the explanatory variables that best predicts quality of service is determined. This function is used to compute tables that show the probability of effective service for men with selected combinations of the test scores and other significant attributes. These probabilities can be used by the Marine Corps to screen applicants for enlistment. They can be easily adjusted by the Marine Corps when manpower policy, demand, or supply change.

Since the results of this analysis must be stated in terms of applicant test scores presently available, a procedure to scale the results from the ACB-61 scores to ASVAB 6/7 scores has been developed. This procedure is described in appendix E.

III. REGRESSION RESULTS

This analysis is designed to identify the mathematical relations between test scores and personal characteristics and each of several measures of manpower quality. Once known, these relations can be used to predict the various quality measures in terms of the available test scores and personal characteristics.

The results presented here are based on a forward step-wise regression procedure. This procedure considers all available variables and selects variables into the regression equation in the order of their joint value in predicting the dependent variable. The first variable shown (in the tables which follow) is the single best predictor of the dependent variable. The second variable is the single variable which adds the most predictive power to the regression equation after the first variable is considered. This procedure continues in steps as long as added variables are statistically significant. The cumulative R^2 values (the ratio of the regression sum of squares to the total sum of squares at each step) that are shown increase as more variables are added to the equation. The decision of where to cut off a regression equation is based on the significance of the variables, the increase in cumulative R^2 provided by each additional variable, and the operational usefulness of the variables. The standard error of the coefficients will be provided with these regression results.

The coefficients constitute the linear regression equation which best predicts the dependent variable. These coefficients should not be compared directly, since they are determined by variables measured in different units. In order to provide a measure of the relative importance of the variables in any regression equation, a model computed with normalized coefficients may be used. This model is:

$$\frac{Y_i - Y}{S_y} = \sum_{i=1}^{n} \Im \frac{X_i - X_i}{S_i}$$

where:

Y_i = dependent variable,

X_i = independent variables,

 β_{i} = coefficients of the normalized independent variables, and

n = number of independent variables.

-8-

Since the variables are measured in normalized form, the beta coefficients of different (normalized) variables can be compared directly to determine the relative importance of (a unit of standard deviation of) each variable. The values of the beta coefficients are provided with the regression results.

MEASURES OF QUALITY

Desertion

Desertion is a widely accepted indicator of manpower quality used for inter-unit and inter-service comparisons. Of the 45,869 men in our sample with complete records, 12 percent deserted, although some were returned to duty. Table 2 shows the results of a regression of the available measured variables on desertion.

The single variable which best predicts desertion is high school diploma. The negative coefficient indicates that diploma high school graduates are less likely to desert than are Marines in the other educational categories. The coefficient value of -.1075 indicates that when all other variables (test scores, race, etc.) are held constant, the probability that a diploma high school graduate will desert is .1075 less than the probability that a nongraduate will desert. (See table 1 for definitions of variables.)

Once education is known, the arithmetic reasoning test score (AR) is the next best predictor of desertion. The negative sign of the coefficient indicates that men with higher AR scores are slightly less likely to desert. Other significant predictors of desertion are verbal (VE) and pattern analysis (PA). Alternative regressions with different variables used to measure age, education, and test scores are shown in tables F-1 and F-2 of appendix F.

Early Attrition

Another quality variable used in this analysis is early attrition during the first 24 months of service. Table 3 shows the regression results for early attrition. Again, high school education is the single best predictor. The second variable is classification inventory (CI), a psychological test of interests thought to be related to military service. The third variable is pattern analysis (PA), which is a non-verbal test of reasoning ability forming a part of the score that defines mental group. Men enlisting at age 21 or more are poorer risks. An alternative regression based on multi-valued age and education variables is shown in table F-3.

Rank Achieved

A positive measure of manpower quality is the rank achieved within 24 months of enlistment in the regular Marine Corps. The men in this sample ranged in rank from E1 (private) to E5 (sergeant). A regression of rank (1 through 5) on test scores and

)))))))

L

REGRESSION RESULTS: DESERTION

explanatory variable Co	Coefficient	standard error of coefficient	Beta	Cumulative R ²
Diploma	1075	.0030	1631	.034
Arithmetic	0006	.0001	0349	.038
Verbal	0006	.0001	0379	.039
Pattern analysis0004	0004	.0001	0209	.040
(Constant)	+.3185			

F = 512

^aThese variables were considered but not selected by the step-wise regression: marital status, age, racc, CI, MA, ACS, ARC, GIT, SM, AI, and ELI.

distributions and the second secon

:

-10-

REGRESSION RESULTS: EARLY ATTRITION^a

Cumulative R ²	.041	.068	.077	.080	
Beta	1672	1354	0959	+.0551	
Standard error of coefficient	.0041	.0001	.0001	.0067	
Coefficient	1547	0024	0023	+.0856	+.8127
Explanatofy variable	Diploma	Classification	inventory Pattern analysis	Too old	(Constant)

F = 1,077

-11-

^aEarly attrition is attrition from the Marine Corps within the first 24 months of service and prior to completion of the contracted term of enlistment.

brhese variables were considered but not selected by the step-wise regression: race, marital status, VE, AR, MA, ACS, ARC, GIT, SM, AI, and ELI.

olantical activitation of the first of the f

statis a hut hat the distriction of the

personal characteristics is shown in table 4. A high school diploma proved to be the single best predictor of rank achieved. Test scores that are significant predictors of rank achieved include AR, CI, and PA. The alternative regression shown in table F-4 is based on multi-valued variables measuring age and education.

Superior Recruit Training Performance

1

The first opportunity a young recruit has to excel is during recruit training. Approximately 15 percent of the Marines in each recruit training class are selected for promotion to grade E2 at the end of their training. We have correlated this measure of quality with the test scores and other available data. Table 5 shows the results. Again, a high school diploma is one of the significant variables. Important ACB-61 test scores include CI, ARC, PA, ACS, and AR. In this regression, race is a significant predictor of the quality measure. Nonwhites are slightly more likely to achieve a higher rank when education and certain test scores are held constant. Table F-5 shows a similar regression with age and education measured differently.

AGGREGATE QUALITY MEASURE

Analysis of both positive and negative measures of manpower quality identifies some of the same variables as predictors of manpower quality. The high school diploma and PA score are identified as predictors of each of the four selected quality measures (tables 2, 3, 4, and 5) examined in the analysis. CI and AR were selected as significant predictors of three of these quality measures. Age is an important predictor of early attrition when education and certain test scores are considered. Since a single measure must be selected for enlistment screening, it is fortunate that some of the same explanatory variables are correlated with both positive and negative measures of performance. In this section, two aggregate quality measures will be defined.

The first quality measure incorporates both postive and negative quality indicators, and the other uses only negative indicators. The positive-negative measure, called quality index, takes a value of -1 for men who desert or are discharged during the first 24 months of service, a value of 0 for men who serve the 24 months without reaching grade E-5, and a value of ± 1 for men who serve satisfactorily and reach grade E-5 (see table 1). The other aggregate measure is called loss potential. This measure is valued at 0 for men who either desert or are discharged before completing 24 months of service and at 1 for other men (see table 1).

The regression results of each aggregate variable on the data are similar. The quality index variable, as a three-valued dummy variable, is based on an implicit assumption that the difference between the characteristics valued at -1 and 0 is the same as the difference between characteristics valued at 0 and +1. While this implicit

REGRESSION RESULTS: RANK ACHIEVED

Explanatory variable	Coefficient	Standard error of coefficient	Beta	Cumulative R ²
Diploma	+.5825	.0099	+.2509	.096
Arithmetic	+.0067	.0003	+.1111	.138
Classification	+.0049	.0002	+.1122	.151
pattern analysis +.0058	+.0058	.0003	+.0983	.157
(Constant)	+.5824			

F = 2,312

^aThese variables were considered but not selected by the step-wise regression: race, age, marital status, VE, MA, ACS, ARC, GIT, SM, ELI, and AI.

-13-

REGRESSION RESULTS: SUPERIOR RECRUIT TRAINING PERFORMANCE^a

Explanatory variable	Cocfficient	Standard error of coefficient	Beta	Cumulative R ²
Classification inventory	+.0015	.0001	+.1085	.034
Army radio code	+.0013	.0001	+.0874	.049
Diploma	+.0477	.0033	+.0659	.055
Pattern analysis	; +.0009	.0001	+.0470	.058
Race	+.0348	.0029	+.0558	.060
Army coding	+.0008	.0001	+.0434	.062
Arithmetic	+.0006	.0001	+.0343	.063
(Constant)	3577			

F = 474

-14-

 $[^]a{\rm Superior}$ performance as recognized by promotion to grade E-2 upon completion of recruit training.

b_These variables were considered but not selected by the step-wise regression: marital status, age, VE, MA, GIT, SM, AI, and ELL.

assumption might be plausible, other plausible assumptions (such as values of -1.5, 0, +.3) would yield different results. The regression results of quality index on the independent variables are shown in table F-6.

Table 6 shows the regression of loss potential on the data. It does not appear to suffer from the exclusion of a positive indicator, and the results are consistent with the results shown in tables 2~5. High school diploma remains the single most useful predictor variable and explains more than half of the variance in loss potential (combined attrition and desertion) that can be explained by the available data (5.6 of the possible 9.5 percent). The PA, CI, AR, GIT, and age variables are also important predictors. (The CI score has never been used by the Marine Corps for enlistment screening but is used with other variables in assigning men to the infantry field.)

Three of the ACB-61 aptitude tests are PA, AR, and VE. These variables determine the GCT composite score and are analogous to the three components of the traditional mental group score of both the AFQT and ASVAB 6/7. Since mental group is widely used by the military services in enlisting and classifying men, it is desirable to know if GCT could replace other test scores in a regression of quality without a loss of predictive power. The results of such a regression are shown in table 7. The four variables considered were education, age, CI score, and GCT (PA+AR+VE)/3. This equation explains approximately as much of the variance in the quality measure ($R^2 = 0.093$) as do the first four variables in table 6, and it offers the advantage of a link to mental group score. The remainder of this analysis will be based on the regression equation of table 7, which is shown here:

Loss potential = -.1826 (diploma) -.0034 (GCT) -.0018 (CI) +.0829 (age) +.9179.

The regression equation predicting loss potential as a function of education, age, and certain test scores can be used to estimate the relative probability that recruits with different values of these variables will become losses to the Marine Corps within 24 months. The standard error of the individual predictions is .45. The standard error of the mean for a group of 500 applicants with the same scores, age, and education is .02.

Scaling to the ASVAB 6/7 Test Scores

The regression reported in table 7 provided a prediction equation in terms of education, age, and two ACB-61 test scores, CI and GCT.

This equation can be expressed in terms of education, age, and the two ASVAB 6/7 tests analogous to CI and GCT, which are combat scale (CC), a personality test, and mental group (MG) (see appendix E):

REGRESSION RESULTS: LOSS POTENTIAL

Explanatory variable	Coefficient	Standard error of coefficient	Beta	Cumulative R ²
Diploma	1819	.0042	1898	.056
Classification	0017	.0001	0952	.080
inventory Pattern analysis	0016	.0001	0668	.089
Too old	+.0823	.0069	+.0512	.092
(cncra]	0012	.0002	0459	.094
Information Arithmetic	0012	.0001	0462	.095
(Constant)	+.9588			

-16-

F = 869

^aThese variables were considered but not selected by the step-wise regression: marital status, race, VE, MA, ACS, ARC, SM, AI, and ELI.

REGRESSION RESULTS: LOSS POTENTIAL WITH SELECTED VARIABLES

Cumulative R ²	.056	.083	.090	.093	
Beta	1906	1183	1004	+.0515	
Standard error of coefficient	.0042	.0002	.0001	.0069	
Coefficient	1826	0034	0018	+.0829	+.9179
Explanatory variable	Diploma	General classi-	llcation test Classification	inventory Too old	(Constant)

F = 1,263

-17-

Loss potential =
$$-.1826$$
 (diploma) $-.0038$ (MG) $-.0063$ (CC)
+ $.0829$ (age) + $.6616$. (1)

In order to convert the measure to a positive one, we define success potential as:

Success potential = 1 - loss potential.

Therefore:

ŧ

Success potential =
$$+.1826$$
 (diploma) $+.0038$ (MG) $+.0063$ (CC)
 $-.0829$ (age) $+.3384$. (2)

The usefulness of this measure is not to predict quality of service of a particular individual, but to provide a method for screening or ranking groups of applicants according to their likelihood of success in the Marine Corps.

IV. APPLICATION OF RESULTS

The regression results in terms of the ASVAB 6/7 tests (equation 2) have been used to compute tables of succe s potentials. The success potential is a predicted success rate for applicants with similar characteristics. Tables 8-11 show the success potentials for groups of applicants defined by education, test scores, and age. (The analysis should be updated when the Marines who actually took the ASVAB have served longer in the Fleet Marine Force. The resulting analysis can then predict manpower effectiveness directly in terms of the variables available prior to enlistment.)

The use of these results for enlistment screening will concribute to Marine Corps efforts to reduce early attrition and disciplinary problems and will orient the recruiting establishment toward a few more good men.

۱,

SUCCESS POTENTIAL: DIPLOMA GRADUATE, AGE 17-20^a (Probability of successfully serving 24 months)

	<u>IV (20)</u>	.73	.71	.70	.69	.68	.67	.65
ile score)	IIIB (35)	.79	.77	.76	.75	.74	.72	.71
ASVAB mental group (percentile score)	<u>IIIA (50)</u>	.84	.83	.82	.81	.79	.78	.77
mental gro	<u>II (65)</u>	06.	.89	.88	.86	.85	.84	.82
ASVAB	<u>II (80)</u>	.96	.94	.93	.92	.91	. 89	. 88
	<u>I (95)</u>	.99 ^a	.99 ^a	66.	.98	.96	.95	.94
Combat scale (CC)	(Percentile)	98	06	74	54	36	22	13
Comba	Raw	21	19	17	15	13	11	6

-20-

Success potential = +.0038 (MG) +.0063 (CC) +.5210

^aSuccess potential constrained to \leq .99.

ł

l

1

SUCC¹¹:SS POTENTIAL: DIPLOMA GRADUATE, AGE 21 OR MORE (Piubability of successfully serving 24 months)

	Comb	Combat scale (CC)		ASVAB	mental gro	ASVAB mental group (percentile score)	le score).	
	Raw	(Percentile)	<u>I (95)</u>	<u>II (80)</u>	<u>II (65)</u>	IIIA (50)	<u>IIIB (35)</u>	IV (20)
	21	98	.93	.87	.82	.76	.70	.65
	19	00	.92	.86	.80	.75	.69	.63
	17	74	.91	.85	.79	.74	.68	.62
	15	54	. 89	.84	.78	.72	.67	.61
-21	13	36	. 88	.82	.77	.71	.65	.60
-	11	22	.87	.81	.75	.70	.64	.58
	6	13	.86	.80	.74	. 68	.63	.57

Success potential = +.0038 (MG) +.0063 (CC) +.4381

SUCCESS POTENTIAL: NONGRADUATE, AGE 17-20 (Probability of successfully serving 24 months)

	IV (20)	.55	.53	.52	.51	.50	.48	.47	
ASVAB mental group (percentile score)	<u>IIIB (35)</u>	.60	.59	.58	.57	.55	.54	.53	
	<u> 111A (50)</u>	.66	. 65	.64	.62	.61	.60	.59	
	<u>II (65)</u>	.72	.71	. 69	.68	.67	.65	.64	
	<u>II (80)</u>	.77	.76	.75	.74	.72	.71	.70	
	I (95)	.83	.82	.81	.79	.78	.77	.76	
Combat scale (CC)	(Percentile)	98	06	74	54	36	22	13	
Combé	Raw	21	19	17	15	13	11	6	

Success potentia1 = +.0038 (MG) +.0063 (CC) +.3384

-22-

SUCCESS POTENTIAL: NONGRADUATE, AGE 21 OR MORE (Probability of successfully serving 24 months)

	IV (20)	.46	.45	.44	.43	.41	.40	.39
ASVAB mental group (percentile score)	IIIB (35)	.52	.51	.50	.48	.47	.46	.45
	<u>IIIA (50)</u>	.58	.57	.55	.54	.53	.51	.50
	<u>II (65)</u>	.63	.62	.61	.60	.58	.57	. 56
	<u>II (80)</u>	.69	.68	.67	.65	.64	.63	.62
	I (95)	.75	.74	.72	.71	.70	. 69	.67
Combet scale (CC)	(Percentile)	98	00	74	54	36	22	13
Combi	Raw	21	19	17	15	13	11	თ

-23-

Success potential = +.0038 (MG) +.0063 (CC) +.2555

REFERENCES

- 1. Headquarters, USMC, CMC 1tr MMRC-8-lar MC-1130-05, "Detailed Report of Enlisted Recruiting Results as Reported by Marine Corps Districts," (see ies)
- Center for Naval Analyses, Memorandum (CNA) 76-3091.10, "An Examination of the Normalization of the Armed Forces Vocational Aptitude Test (ASVAB) Forms 6 and 7," by R.L. Kohn and W.H. Sims, Unclassified, 28 Feb 1977
- 3. Center for Naval Analyses, Research Contribution 326, "Profile of a Successful Marine," by W.H. Sims, Unclassified, Sep 1977
- Center for Naval Analyses, Professional Paper 177, "Predicting Attrition: A Test of Alternative Approaches," by R.F. Lockman and J.T. Warner, Unclassified, Mar 19"7
- 5. U.S. Department of Commerce, Bureau of the Census, Current Population Reports, Population Estimates and Projections, Series P-25, No. 601, Oct 1975
- 6. Review of the International Statistical Institute, "The Grouping of Observations in Regression Analysis," Vol. 22, pp 1-22

APPENDIX A

Ł

MEANS AND STANDARD DEVIATIONS

TABLE A-1

MEANS AND STANDARD VARIATIONS OF VARIABLES^a

XA 11.0658 1.1579 YA 6.5592 1.6770 A17 0.3082 0.4618 A18 0.3499 0.4769 A20 0.0751 0.3769 A21 0.00751 0.2636 HS9 0.0007 0.2724 HS10 0.1995 0.3997 HS11 0.1936 0.3997 HS12 0.44199 0.4935 GED 0.0434 0.2038 COLL 0.03488 0.41832 GCL 0.4346 0.5731 MAPIT 0.0709 0.2646 AGED 72.1125 18.5642 MIX 204.5324 31.6990 GCT 93.6888 16.3562 AGE21 0.0955 0.2239 DES 0.1201 0.3251 PROM 0.1504 0.3575 QANK 2.5255 1.1457 VE 93.8874 19.0646 PA 104.4193 19.4631 </th <th></th> <th></th> <th>Standard</th>			Standard
YA 6.5592 1.67760 A17 0.3082 0.4618 A18 0.3499 0.4769 A19 0.1714 0.3769 A26 0.0751 0.2636 HS9 0.0807 0.2724 HS10 0.1995 0.3997 HS11 0.1936 0.3997 HS12 0.4199 0.4935 GEC 0.0434 0.2038 COLL 0.03468 0.1832 RACE 0.2717 0.5731 MAFIT 0.0709 0.2646 AGED 72.1125 18.5842 MIX 204.5324 31.6990 GCT 98.9688 16.3692 AGE2 0.10955 0.2939 DE2 0.1201 6.3251 PROM 0.1504 0.3575 RANK 2.5255 1.1457 VE 98.5996 19.8762 AR 93.8874 19.0646 PA 104.4193 19.4831 CI 95.1595 26.1461 AR 93.6	Variable name *	Mean	deviation
YA 6.5592 1.67760 A17 0.3082 0.4618 A18 0.3499 0.4769 A19 0.1714 0.3769 A26 0.0751 0.2636 HS9 0.0807 0.2724 HS10 0.1995 0.3997 HS11 0.1936 0.3997 HS12 0.4199 0.4935 GEC 0.0434 0.2038 COLL 0.03468 0.1832 RACE 0.2717 0.5731 MAFIT 0.0709 0.2646 AGED 72.1125 18.5842 MIX 204.5324 31.6990 GCT 98.9688 16.3692 AGE2 0.10955 0.2939 DE2 0.1201 6.3251 PROM 0.1504 0.3575 RANK 2.5255 1.1457 VE 98.5996 19.8762 AR 93.8874 19.0646 PA 104.4193 19.4831 CI 95.1595 26.1461 AR 93.6			
A17 0.3082 C.4618 A18 0.3499 C.4769 A19 0.1714 0.3763 A20 0.0751 C.2636 HS9 0.0807 C.2724 HS10 0.1995 0.3997 HS11 0.1936 0.3991 HS12 0.4439 C.4935 GEC 0.0434 0.2038 COLL 0.03468 0.1832 GACE 0.2717 0.5731 MAFIT 0.0709 0.2646 AGED 72.1125 18.5842 MIX 204.5324 31.6990 GCT 98.9688 16.3692 AGED 72.1125 18.5842 MIX 204.5324 31.6990 GCT 98.9688 16.3692 AGED 72.1125 18.5842 MIX 20.955 C.2939 GES 0.1201 0.3251 PROM 0.1504 9.3575 QANK 2.5255 1.1457 VE 93.8874 19.0646 PA <td< td=""><td></td><td>11.0658</td><td>1 • 15 79</td></td<>		11.0658	1 • 15 79
A18 0.000 0.000 A19 0.1714 0.3769 A20 0.0751 0.2636 HS9 0.0807 0.2724 HS10 0.1995 0.3997 HS11 0.1936 0.3951 HS12 0.44199 0.4035 GEC 0.0434 0.2038 COLL 0.0346 0.1832 RACE 0.2717 0.5731 MAFIT 0.0709 0.2646 AGED 72.1125 18.5842 MIX 204.5324 31.6990 GCT 93.9688 16.3692 AC521 0.0955 0.2939 DES 0.1201 0.3251 PROM 0.1504 0.3575 QANK 2.5255 1.1457 VE 98.5996 19.8762 AR 93.8874 19.0646 PA 104.4193 19.4831 CI 95.1595 24.3761 ACS 96.8649 14.4364 AA 96.0186 17.4210 ACS 96		6.5592	1.6740
A19 0.1714 0.3769 A20 0.0037 0.2636 HS9 0.0837 0.2724 HS10 0.1995 0.3997 HS11 0.1936 0.3951 HS12 0.4199 0.4935 GEC 0.0434 0.2038 GOLL 0.0348 0.1832 RACE 0.2717 0.5731 MAFIT 0.0709 0.2646 AGED 72.1125 18.5842 MIX 204.5324 31.6990 GCT 98.688 16.3692 AGE21 0.0955 0.2939 DES 0.1201 0.3251 PROM 0.1504 0.3575 RANK 2.5255 1.1457 VE 98.5996 19.8762 AR 93.8874 19.0646 PA 104.4193 19.4831 CI 95.1595 26.1461 MA 96.0186 17.4210 ACS 96.8649 16.4364 MA 96.1865 16.9044 AI 94		0.3082	C.4618
A26 0.0751 0.2636 HS9 0.0807 0.2724 HS10 0.1995 0.3997 HS11 0.1936 0.3951 HS12 0.4199 0.4935 GEC 0.0434 0.2038 COLL 0.0348 0.1832 RACE 0.2717 0.5731 MAFIT 0.0709 0.2646 AGED 72.1125 18.5842 MIX 204.5324 31.6990 GCT 98.9688 16.3692 AGE21 0.0955 0.2939 DES 0.1201 0.3575 RANK 2.5255 1.1457 VE 98.996 19.8762 AR 93.8874 19.0646 PA 104.4193 19.46831 CI 95.1595 26.1461 MA 98.0186 17.4210 ACS 96.8649 16.4364 PA 104.46193 19.4646 PA 104.655 16.9044 AI 96.5338 17.4032 GIT <		0.3499	0.4769
HS9 0.0807 C.2724 HS10 0.1995 0.3997 HS11 0.1936 0.3951 HS12 0.4199 C.4935 GEC 0.0434 0.2038 COLL 0.0348 0.1832 RACE 0.2717 0.5731 MARIT 0.0709 0.2646 AGED 72.1125 18.5842 MIX 204.5324 31.6990 GCT 98.9688 16.3692 AGE21 0.0955 C.2939 DES 0.1201 0.3575 RAMK 2.5255 1.1457 VE 98.5996 19.8762 AR 93.8874 19.0646 PA 104.4193 19.4631 CI 95.1595 26.1461 MA 98.0186 17.4210 ACS 96.8649 16.4364 ARC 32.5095 24.3791 GIT 92.0904 17.9197 SM 95.4085 16.9044 AI 94.469 21.8102 VATTR		0.1714	0.3763
HS10 0.1995 0.3997 HS11 0.1936 0.3951 HS12 0.4199 0.4935 GED 0.0434 0.2038 COLL 0.0348 0.1832 RACE 0.2717 0.5731 MARIT 0.0709 0.2646 AGED 72.1125 18.5842 MIX 204.5324 31.6990 GCT 98.9688 16.3692 AGE21 0.0955 0.2239 DES 0.1201 0.3251 PROM 0.1504 0.3575 RANK 2.5255 1.1457 VE 98.5996 19.8762 AR 93.8874 19.0646 PA 104.4193 19.4831 CI 95.1595 26.1461 MA 96.0186 17.4210 ACS 96.8649 16.4364 ARC 82.5095 24.3761 GIT 92.0904 17.9197 SM 95.4085 16.9044 AI 96.5338 17.4032 ELI		0.0751	C • 26 36
HS11 0.1936 0.3951 HS12 0.4199 0.4935 GED 0.0434 0.2038 COLL 0.0348 0.1832 RACE 0.2717 0.5731 MAFIT 0.0709 0.2646 AGED 72.1125 18.5842 MIX 204.5324 31.6990 GCT 98.9688 16.3692 AGE21 0.0955 0.2939 DES 0.1201 0.3251 PROM 0.1504 0.3575 RANK 2.5255 1.1457 VE 98.5996 19.8762 AR 93.8874 19.0646 PA 104.4193 19.4831 CI 95.1595 26.1461 MA 98.0186 17.4210 ACS 96.8649 16.4364 ARC 82.5095 24.3761 GIT 92.0904 17.9197 SM 95.4085 16.9044 AI 98.5338 17.4032 ELI 91.4469 21.8102 VATTR		0.0837	C • 27 2 4
HS12 0.4199 C.4935 GED 0.0434 0.2038 COLL 0.0348 0.1832 RACE 0.2717 0.5731 MAFIT 0.0709 0.2646 AGED 72.1125 18.5842 MIX 204.5324 31.6990 GCT 98.9688 16.3692 AGE21 0.0955 C.2939 DES 0.1201 6.3251 PROM 0.1504 0.3575 RANK 2.5255 1.1457 VE 98.5996 19.6762 AR 93.8874 19.0646 PA 104.4193 19.4631 CI 95.1595 26.1461 MA 96.0186 17.4210 ACS 96.8649 16.4364 ARC 92.5095 24.3761 GIT 92.0904 17.9197 SM 95.4085 16.9044 AI 98.5338 17.4032 ELI 91.4469 21.8102 VATTR 0.3380 C.4730 OVATTR		0.1995	0.3997
GED 0.0434 0.2038 COLL 0.0348 0.1832 RACE 0.2717 0.5731 MAFIT 0.0709 0.2646 AGED 72.1125 18.5842 MIX 204.5324 31.6990 GCT 98.9688 16.3692 AGE21 0.0955 0.2939 DES 0.1201 6.3251 PROM 0.1504 0.3575 RANK 2.5255 1.1457 VE 98.5996 19.6762 AR 93.8874 19.0646 PA 104.4193 19.4831 CI 95.1595 26.1461 MA 96.0186 17.4210 ACS 96.8649 16.4364 ARC 82.5095 24.3761 GIT 92.0904 17.9197 SM 95.4085 16.9044 AI 98.5338 17.4032 ELI 91.4469 21.8102 VATTR 0.3380 0.4566		0.1936	0.3951
GED 0.0434 0.2038 COLL 0.0348 0.1832 RACE 0.2717 0.5731 MAFIT 0.0709 0.2646 AGED 72.1125 18.5842 MIX 204.5324 31.6990 GCT 98.9688 16.3692 AGE21 0.0955 0.2939 DES 0.1201 0.3251 PROM 0.1504 0.3575 RANK 2.5255 1.1457 VE 98.5996 19.8762 AR 93.8874 19.0646 PA 104.4193 19.4831 CI 95.1595 26.1421 MA 98.0186 17.4210 ACS 96.8649 16.4364 MA 98.0186 17.4210 ACS 96.8649 16.4364 ARC 82.5095 24.3761 GIT 92.0904 17.9197 SM 95.4085 16.9044 AI 98.5338 17.4032 ELI 91.4469 21.8102 VATTR		0.4199	C • 49 35
COLL 0.0348 0.1832 RACE 0.2717 0.5731 MAPIT 0.0709 0.2646 AGED 72.1125 18.5842 MIX 204.5324 31.6990 GCT 98.9688 16.3692 AGE21 0.0955 0.2939 DES 0.1201 0.3575 RANK 2.5255 1.1457 VE 98.5996 19.8762 AR 93.8874 19.0646 PA 104.4193 19.4831 CI 95.555 26.1461 MA 96.0186 17.4210 ACS 96.8649 16.3644 ARC 82.5095 24.3761 GIT 92.0904 17.9197 SM 95.4085 16.9044 AI 98.5338 17.4032 VATTR 0.3380 0.4566		0.0434	
RACE 0.2717 0.5731 MAFIT 0.0709 0.2646 AGED 72.1125 18.5842 MIX 204.5324 31.6990 GCT 98.9688 16.3692 AG521 0.0955 0.2939 DES 0.1201 0.3251 PROM 0.1504 0.3575 RANK 2.5255 1.1457 VE 98.5996 19.8762 AR 93.8874 19.0646 PA 104.4193 19.4831 CI 95.1595 26.1461 MA 96.0186 17.4210 ACS 96.8649 16.4364 ARC 82.5095 24.3761 GIT 92.0904 17.9197 SM 95.4085 16.9044 AI 98.5338 17.4032 ELI 91.4469 21.8102 VATTR 0.3380 0.4566		0.0348	
MAFIT0.07090.2646AGED72.112518.5842MIX204.532431.6990GCT98.968816.3692AGE210.0955C.2939DES0.12016.3251PROM0.15040.3575RANK2.52551.1457VE98.599619.8762AR93.887419.0646PA104.419319.4831CI95.159526.1461MA96.018617.4210ACS96.864916.4364ARC82.509524.3791GIT92.090417.9197SM95.468516.9044AI98.533817.4032ELI91.446921.8102VATTR0.3380C.4730OVATTR0.29630.4566		0.2717	
AGED 72.1125 18.5842 MIX 204.5324 31.6990 GCT 98.9688 16.3692 AGE21 0.0955 0.2939 DES 0.1201 0.3251 PROM 0.1504 0.3575 RANK 2.5255 1.1457 VE 98.5996 19.8762 AR 93.8874 19.0646 PA 104.4193 19.4831 CI 95.1595 26.1461 MA 98.0186 17.4210 ACS 96.8649 16.4364 ARC 92.5095 24.3761 GIT 92.0904 17.9197 SM 95.4085 16.9044 AI 98.5338 17.4032 ELI 91.4469 21.8102 VATTR 0.3380 C.4730 OVATTR 0.2963 0.4566	MARIT	0.0709	
MIX 204.5324 31.6990 GCT 98.9688 16.3692 AGE21 0.0955 0.2939 DES 0.1201 0.3251 PROM 0.1504 0.3575 RANK 2.5255 1.1457 VE 98.5996 19.8762 AR 93.8874 19.0646 PA 104.4193 19.4831 CI 95.1595 26.1461 MA 96.0186 17.4210 ACS 96.8649 16.4364 ARC 92.0904 17.9197 SM 95.4085 16.9044 AI 98.5338 17.4032 ELI 91.4469 21.8102 VATTR 0.3380 0.4566	AGED		
GCT 98.9688 16.3692 AGE21 0.0955 C.2939 DES 0.1201 G.3251 PROM 0.1504 0.3575 RANK 2.5255 1.1457 VE 98.5996 19.8762 AR 93.8874 19.0646 PA 104.4193 19.4831 CI 95.1595 26.1461 MA 98.0186 17.4210 ACS 96.8649 16.4364 ARC 82.5095 24.3791 GIT 92.0904 17.9197 SM 95.4085 16.9044 AI 98.5338 17.4032 ELI 91.4469 21.8102 VATTR 0.3380 C.4730 OVATTR 0.2963 0.4566		204.5324	
AGE 21 0.0955 C.2939 DES 0.1201 C.3251 PROM 0.1504 0.3575 RANK 2.5255 1.1457 VE 98.5996 19.8762 AR 93.8874 19.0646 PA 104.4193 19.4831 CI 95.1595 26.1461 MA 98.0186 17.4210 ACS 96.8649 16.4364 ARC 92.5095 24.3761 GIT 92.0904 17.9197 SM 95.4085 16.9044 AI 98.5338 17.4032 ELI 91.4469 21.8102 VATTR 0.3380 C.4730 OVATTR 0.2963 0.4566		-	
DES0.1201C.3251PROM0.15040.3575RANK2.52551.1457VE98.599619.8762AR93.887419.0646PA104.419319.4831CI95.159526.1461MA98.018617.4210ACS96.864916.4364ARC82.509524.3741GIT92.090417.9197SM95.468516.9044AI98.533817.4032ELI91.446921.8102VATTR0.3380C.4730OVATTR0.29630.4566			
PROM 0.1504 0.3575 RANK 2.5255 1.1457 VE 98.5996 19.8762 AR 93.8874 19.0646 PA 104.4193 19.4831 CI 95.1595 26.1461 MA 98.0186 17.4210 ACS 96.8649 16.4364 ARC 82.5095 24.3791 GIT 92.0904 17.9197 SM 95.4085 16.9044 AI 98.5338 17.4032 ELI 91.4469 21.8102 VATTR 0.3380 C.4730 OVATTR 0.2963 0.4566	DES		
RANK2.52551.1457VE98.599619.8762AR93.887419.0646PA104.419319.4831CI95.159526.1461MA98.018617.4210ACS96.864918.4364ARC82.509524.3791GIT92.090417.9197SM95.408516.9044AI98.533817.4032ELI91.446921.8102VATTR0.3380C.4730OVATTR0.29630.4566	PROM		
VE 98.5996 19.8762 AR 93.8874 19.0646 PA 104.4193 19.4831 CI 95.1595 26.1481 MA 98.0186 17.4210 ACS 96.8649 16.4364 ARC 82.5095 24.3791 GIT 92.0904 17.9197 SM 95.4085 16.9044 AI 98.5338 17.4032 ELI 91.4469 21.8102 VATTR 0.3380 C.4730 OVATTR 0.2963 0.4566	RANK		
AR 93.8874 19.0646 PA 104.4193 19.4831 CI 95.1595 26.1461 MA 98.0186 17.4210 ACS 96.8649 16.4364 ARC 82.5095 24.3741 GIT 92.0904 17.9197 SM 95.4085 16.9044 AI 98.5338 17.4032 ELI 91.4469 21.8102 VATTR 0.3380 C.4730 OVATTR 0.2963 0.4566	VE		
PA 104.4193 19.4831 CI 95.1595 26.1461 MA 98.0186 17.4210 ACS 96.8649 16.4364 ARC 82.5095 24.3791 GIT 92.0904 17.9197 SM 95.4085 16.9044 AI 98.5338 17.4032 ELI 91.4469 21.8102 VATTR 0.3380 C.4730 OVATTR 0.2963 0.4566	۵R		
CI 95.1595 26.1481 MA 98.0186 17.4210 ACS 96.8649 18.4364 ARC 82.5095 24.3791 GIT 92.0904 17.9197 SM 95.4085 16.9044 AI 98.5338 17.4032 ELI 91.4469 21.8102 VATTR 0.3380 0.4566	ъд		
MA 98.0186 17.4210 ACS 96.8649 18.4364 ARC 82.5095 24.3791 GIT 92.0904 17.9197 SM 95.4085 16.9044 AI 98.5338 17.4032 ELI 91.4469 21.8102 VATTR 0.3380 0.4566	CI		
ACS 96.8649 16.4364 ARC 82.5095 24.3741 GIT 92.0904 17.9197 SM 95.4085 16.9044 AI 98.5338 17.4032 ELI 91.4469 21.8102 VATTR 0.3380 0.4566	МА		
ARC 82.5095 24.37°1 GIT 92.0904 17.9197 SM 95.4085 16.9044 AI 98.5338 17.4032 ELI 91.4469 21.8102 VATTR 0.3380 0.4730 OVATTR 0.2963 0.4566	ACS		
GIT 92.0904 17.9197 SM 95.4085 16.9044 AI 98.5338 17.4032 ELI 91.4469 21.8102 VATTR 0.3380 C.4730 OVATTR 0.2963 0.4566	ARC		
SM 95.4085 16.9044 AI 98.5338 17.4032 ELI 91.4469 21.8102 VATTR 0.3380 0.4730 OVATTR 0.2963 0.4566	GIT		
AI 98.5338 17.4032 ELI 91.4469 21.8102 VATTR 0.3380 C.4730 OVATTR 0.2963 0.4566	SM		
ELI 91.4469 21.8102 VATTR 0.3380 C.4730 OVATTR 0.2963 0.4566	AI		
VATTR 0.3380 C.4730 OVATTR 0.2963 0.4566	ELI		
OVATTR 0.2963 0.4566	VATTR		
A	OVATTR		
JUAL -0.3228 0.4990	QUAL	-0.3228	0.4990

^aVariables weighted to approximate the mobilization population by GCT (see appendix B).

APPENDIX B

Ą

CORRECTION FOR RANGE RESTRICTION

Brockin initial marter filter electron in the site of the initial of the second site of the site of the second s

APPENDIX B

CORRECTION FOR RANGE RESTRICTION

1

In FY 1974, all Marine Corps enlistees were required to pass the AFQT mental group test with a percentile score of 21 or more. Those scoring lower than 21 were excluded from enlistment and are, therefore, not in the 45,000-man sample. Since mental group or GCT is an important variable in explaining attrition and performance, it is prudent to correct the data for this restriction in the range of mental group.

In recent years, the Marine Corps has enjoyed the benefits of double testing enlistees. Applicants were given the AFQT test prior to enlistment, and successful applicants were then given the ACB-61 test upon arrival at recruit training. The AFQT score, composed of verbal, arithmetic, and pattern analysis components, defines mental group. The ACB-61 test includes three analogous subtests: word knowledge, arithmetic, and spatial perception, which together form the GCT score.

During FY 1974, an apparent discrepancy between AFQT mental group scores and the subsequent ACB-61 scores of enlistees developed. It appears that a sizeable number of FY-1974 enlistees obtained higher AFQT mental group scores than would be expected based on their ACB-61 scores. The ACB-61 test, administered at the recruit depots under controlled conditions, is thought to be a better measure of the verbal, arithmetic, and spatial perception aptitudes of the men in the sample. Therefore, the correction for range restriction is applied based on GCT score.

Reference 2 provides an estimate of the GCT distribution of the mobilization population. This GCT distribution was compared with the actual GCT distribution of the 45,000-man sample, and weights were computed for each of seven segments of the GCT range. The weights were then applied to each man in the sample to produce the table of correlation coefficients shown as appendix C. These coefficients were used to conduct the regression analysis of this study. Table B-1 shows the relevant GCT distribution and the derived weights.

B-1

TABLE B-1

GCT DISTRIBUTIONS AND WEIGHTS

GCT range	Mobilization population distribution	FY 1974 Marine Corps distribution	Weight (2)÷(3)
(1)	(2)	(3)	(4)
130-160	6.924%	2.320%	2.984
110-129	29.954	24.832	1.206
100-109	18.394	23.343	.788
90-99	16.734	21.664	.772
80-89	12.801	15.126	.846
65-79	12.921	10.613	1.217
1-64	2.273	2.104	1.080
Total	100.0	100.0	-

APPENDIX B

CORRECTION FOR RANGE RESTRICTION

In FY 1974, all Marine Corps enlistees were required to pass the AFQT mental group test with a percentile score of 21 or more. Those scoring lower than 21 were excluded from enlistment and are, therefore, not in the 45,000-man sample. Since mental group or GCT is an important variable in explaining attrition and performance, it is prudent to correct the data for this restriction in the range of mental group.

In recent years, the Marine Corps has enjoyed the benefits of double testing enlistees. Applicants were given the AFQT test prior to enlistment, and successful applicants were then given the ACB-61 test upon arrival at recruit training. The AFQT score, composed of verbal, arithmetic, and pattern analysis components, defines mental group. The ACB-61 test includes three analogous subtests: word knowledge, arithmetic, and spatial perception, which together form the GCT score.

During FY 1974, an apparent discrepancy between A FQT mental group scores and the subsequent ACB-61 scores of enlistees developed. It appears that a sizeable number of FY-1974 enlistees obtained higher A FQT mental group scores than would be expected based on their ACB-61 scores. The ACB-61 test, administered at the recruit depots under controlled conditions, is thought to be a better measure of the verbal, arithmetic, and spatial perception aptitudes of the men in the sample. Therefore, the correction for range restriction is applied based on GCT score.

Reference 2 provides an estimate of the GCT distribution of the mobilization population. This GCT distribution was compared with the actual GCT distribution of the 45,000-man sample, and weights were computed for each of seven segments of the GCT range. The weights were then applied to each man in the sample to produce the table of correlation coefficients shown as appendix C. These coefficients were used to conduct the regression analysis of this study. Table B-1 shows the relevant GCT distribution and the derived weights.

B-1

TABLE B-1

:

GCT DISTRIBUTIONS AND WEIGHTS

GCT_range	Mobilization population distribution	FY 1974 Marine Corps distribution	Weight (2)÷(3)
(1)	(2)	(3)	(4)
130-160	6.924%	2.320%	2.984
110-129	29.954	24.832	1.206
100-109	18.394	23.343	.788
90-99	16.734	21.664	.772
80-89	12.801	15.126	.846
65-79	12.921	10.613	1.217
1-64	2.273	2.104	1.080
Total	100.0	100.0	-

APPENDIX C

ñ

TABLE OF CORRELATION COEFFICIENTS (WEIGHTED TO THE MOBILIZATION POPULATION)

TABLE C-1

der Sahrling auf der Bergen auf der Stehten der

____;>

3

CORRELATION COEFFICIENTS

A VALUE UF 99.00000 IS PRINTED If a coefficient cannot be computed.

	¥ X	Y A	417	41.5	618	A 20	HS9	HS 10	11 SH	1512	650	COLL	
K 0	0000	-0.24206	-0.35187	0.10%20	0.14659	0.09943	-0.52853	-0.45956	-0.02754	0.65636	0.07990	0.315 5	
۲. A	-0.24206	1.09030	122447	0.19296	-0.15172	-0.26510	0.10229	0.15945	0.04950	-0.12269	-0.03519	_	
117	-0.35187	0.57447	1.00000	-2.48954	-0.30353	-0.19020	0.170.62	0.24927	0.01734	-0.29625	0.03455	~	
41 V	0.10420	0.19295		1.00000	-0.33359	+0602.0-	-0.07047	-0.08376	0.0.5539	126+1.0	-0.04305	-0.165 4	
419	0.14699	-0.1-172		-0.33169	1.00330	-0.12359	-0.06143	-0.10336	-2.02205	0.1.360	-0.02479	0.033 4	
620	246(0.0	-0.26510		+1.20934-	-0.12359	1.01030	-0.140.0-	-0.05197	-0.02134	0.05507	-0.03157	0.162 5	
1.51	1.28.2.01	0,19229		-0.07047	-0.06145	-0.04190	1.00000	-0.14792	-0.14516	-0.25204	-0.06512	-0.055 1	
4510	-0.45955	0.15945		-0.01376	-0.10356	-0.06137	-0.14792	1.00000	-0.24464	-0.42476	-0.10638	+ + 60'0-	
1154	-0.0.736	0.04930	0.017.44	0.03549	-0.3226%	-0.02134	-0.14515	-0.24464	1.00030	-0.41664	-0.13440	250	
ч; 1 °	0.5.516	-3.12249		1.14921	0.14330	0.05527	-0.25204	-0.42476	-0.41044	1.03300	- 4.1.51.7		
510	0.07.000	-0.03439		-0.04305	-0.32479	-0.00167	-3.06312	-0.10638	-0.10440	-0.19127	1.30300		
COLL	0.51695	-0.24832	-0.119(3	-0.1.874	0.93944	0.10265	-0.05621	-0.03474	-0.09217	-0.10142	-0.64043		
	12110.0	-3.12352	-0.090(4	-0.0.15	0.03022	0.75225	-0.03277	-0.61703	0.04913	0.01741	-0.62762		
11.44	-0.31769	-0.2456	10.11044	-0-01554	0.J1467	0.15456	0.01017	-1.01563	0.00063	-0-03443	0.03262		
2657	0.15596	0.91052	0.41472	0.25635	-0.08511	-0.22435	-0.12553	-0.01140	0.05041	9-1691-0	0.00165		
4 x	0.61594	-9.75447	-0.56448	-3,0%5.55	0.15577	0.22352	-0.40910	- 0.40120	-0.05498	0.52759	0.07260		
3CT	0.1324	0.01144	-0.04239	0.04044	0.00252	-0.01558	-0.1.384	-0.14175	-0.08237	0.25163	0.02845		
46521	0.1066%	-0.7 P354	- C. 216P4	-0.25852	-0.14774	-0.0425A	-0.05768	20690.0-	-0.03732	-0.07525	0.04008		
06.5	-0.20579	106-00-0	0.03578	-0.04417	-0.75966	-0.02206	12001.0	0.11057	0.04058	-0.15582	0.00849		
トレスロ	0.11277	-2.014/1	-0.05446	0.030.1	0.01001	0.0.0	-0.05970		-0.02938	0.12383	-0.01455		
5.5.4	0.51593	- 3. 01 595	-0.12525	0.03540	1+151-0	0.02275	-0.13113	+20110-	+8160.0-	0.30320	-0.05926		
75	0.34075	9.570*0-	-0.05562	3.04457	41400.0	-0,00517	02421.0-	-0.19924	-0.07309	3.24478	6.03576		
27	0.31018	-0.01195	-0.05145	9.05471	-0.0000-	-0.00672	-0.1.1.76	-0.14964	-0.043)1	0.73425	0.02002		
6 A	0.20121	0.05683	0.00024	9.04543	0.00217	-0.02480	-0.00651	-0.10296	-0.05135	0.15544	0.01611		
c]	0.17.5.0	-0.01316	62720-0-	0.07476	0.00/29	0.00179	-0.10829	-0.12252	-0.02419	0.15211	0.03146		
4	0.22153	0.024.15	-0.41750	0.04913	-0.00201	-0.120.0-	-0.01202	-0.12587	-0.05734	110.17044	0.01655		
AC3	20122.0	0.03416	-0.01770	0.05149	0100.0	- C. 01707	-0.13769	-0.1.2300	-0.05442	0.14425	0,00540		
244	0.21112	0.01315	-0.0 5420	0.05172	0.60115	-0.01130	71 NEO . D-	-0.13352	-0.04232	0.16344	-0.00006		
-10	0.29450	-0.05139	-0.07030	0.04952	0.00336	0.00014	-0.12336	-0.17504	-0.06042	0.22069	0.03456		
SH SH	1+25550	0.01395	-0.0350	9.05231	-0.00151	-0.01729	-	-0.13405	-0.05497	0.19051	0.02336		
1 7	0.11.335	-0.04933	-0.06315	0.02503	0.31865	0.01015	-0.07426	-0.10366	-0.02675	0.13244	0.02606	0.053 5	
511	0.16655	-0.02760	-0.01999	0.02550	0.00.452	-0.00247	-0.06903	-0.0/965	-0.04204	0.12700	0.01972		
21142	-0.24799	41610.0-	0.07545	-0.07457	-0.01601	0.00151	211	0.11270	0.00467	-0.5354	0.02142		
948718		-0.03354	0.05040	-0.07530	-0.02850	0.004.14	24910.0	0.11253	0.04421	-0.20500	0.01790		
9U&L	0.25134	0.01512	-0.02040	0.000.0	0.05457	- 0.0001	-0,11540	-0.13546	-0.06045	0.24350	-0.02465	0.053 8	

and a start of the second start and and a start of the start of the second star

ž

TABLE C-1 (CONT'D)

ar ar 🔆

	-	-		-	~	-	_	•		•	_		_			10	-		•	•	~	•	2	~	•••			-	~	-		•	1	_	~
¥4			C D O								0.015									0.154	_	_			••	~			1 1 1 1 1 1	~		~	~	172	9-155
AR	8.31818	-0.01195	-0.05145	0.05471	-0.03000	-0.00672	-0.13176	-0.16564	-0.0301	0.23425	0.02052	0.16222	-0.26368	-2.01456	0.11315	0.21653	0.86356	-0.03152	-0.1310	0.16584	0.27208	0.64462	1.03000	C.55622	2.42333						8.395t2		-3.1939	-0.1	0.20712
YE	3+095	0252	-1.05562	0.04937	9-00434	-3.00577	-0.14420	-3.18924	-3.07309	0.24478	0.03576	0.17326	-0.25338	-0.02780	0.11092	0.24634	0.84542	J.OC639	-0.11029	3.16169	0.24768	1.00300	0.64402	9.49054	0.51020	0.55765	3.41388	42614.0	0.63352	0.57258	0.43498	0.4790	-0.1774	-0.16569	J. 16991
RANK	0,3159J	-0.01395	-0.12525	0.08645	0.05747	0.02273	-0.13119	-0.17624	-0.09734	0.30928	-0.65526	0.09252	-0.07527	-0.01653	0.11923	0.21861	6.30055	-0.03762	-0.35559	0.24374	1.00000	0.24768	0.27230	0.23853	0.23213	0.21312	0.23651	0.13626	2.25036	0.22395	0.17594	0.26776	6625	-0.61329	0.64391
PROM	0.13277	-0.01571	-0.06446	0.03000	0.03091	0.02035	-0*02610	-0.07363	-0.02908	0.12083	-0.01453	0.03839	-0.00673	0.00453	0.03746	Q.C3329	0.14110	-0.00530	-0.03984	1.63040	0.24374	0.16109	9.15684	0.154J7	0.18335	0.15269	0.16338	9-17474	0.14955	0.13871	0,1,296	0.69529	-0.13028	-0.12794	0.14296
065	-8.20579	0.04907	0.09570	-0.04417	-0.03966	-0.02206	0.13037	0.11057	0,04058	-0.18392	0.03549	-0°04959	0.01643	0.02263	-0.03784	-0.16575	-0.12026	-0.00618	1.02000	-0.03984	-0.35559	-0.11029	-0.10910	-0.03346	-0.07321	-0.07304	-0.06674	-0.05332	-0.10118	-0.07500	-0.05406	-0.06413		~	-0.50136
AGE 21	0.10664	-0.78354	-0.21664	-0.23832	-0.14774	-0.03258	-0.03768	-0.05992	-0.03732	-0.00025	0.0490	0.22191	0.10023	0.22189	-0.75587	0.54053	-0.02086	2.00000	-0.00918	-0.00530	-0.03762	0.06689	-0.00192	-0.05774	0.01714	-0.03051	-0.04166	-0.02378	0.02566	-0.31386	C.02529	0.01259	0.05348	0.05938	-0.04914
GCT	0.33524	0.00768	-0.04239	******	0.00252	-0.01556	-0.14344	-0.18175	-0.08237	0.25169	0.02895	0.17022	-0.31320	-0.02091	0.14343	0.22431	1.00000	-0.02096	-0.12326	0.13110	0.30055	0.84542	0.36956	0.90717	0.51053	0.62191	1+625.041	0.48416	11629.0	0.52012	0.49176	0.5346J	-0.21859	•	0.23211
XIH	0.81594	-0.75487	-0.56448	-0.05525	0.18377	0.22352	-0.40910	-0.40128	-0.05498	0.52759	0.07200	0.38137	0.10277	0.13650	-0.43471	1.00030	0.22491	0.54053	-0.16575	0.09929	3.21861	0.24634	0.21693	0.10305	0.18344	0.13464	0.14755	0.13442	0.22932	0.15624	0.13937	.1289	÷0.15336	-0.12431	0.16269
AGED	0.16596	0.91052	0.41472	0.25656	-0.08511	-0.22630	-0.12550	-0.03140	0.05041	***	0.00165	-0.15660	· 0.11558	-0.25943	1.00000	-0.43471	U.14343	-0.75587	-0.037.44	2.03746	0.11923	0.11092	0.11315	0.13764	0.06233	0.11510	0.13452	13660.0	0.06810	0.10020	0.01845	0.03947	-0.12457	-0.12425	0.12335
MARIT	-0.01709	-0.25366						-0.00563			0.01262		•		-0.25943	0.13650	-9.02091	0.22139	0.02263	0.00453	-0.01653	-0.02780	-0.01465	-0.00980	0.00312	-0.00593	-0.00749	-0.03697	-0.00038	0.00.91	0.05131	0.00989	0.03644	0.03588	-0.03379
RACE	0.03834	-0.12932	-0.09054	-0.02675	0.65022	0.05225	-0.03277	-0.01703	0.04713	0.00741	- 0.02562	0.01348	1.00000	-0.01 2	- 0.11558	D. 14277	- 0.31320	C. 10023	0.01643	-0.00673	-0.07527	-0.25336	-0.26368	-0.24211	-0.17500	-0.29224	-0.20528	-0.16791	-0.33308	-0.31006	-0.31856	-0.23694	3.04164	0.33743	-0.04438
	¥ X	A N	417	A18	419	220	HS9	015H	HSII	HS12	560	COLL	RACE	TIGAM		A I K		AGE 21	DFS	H080	RAKK	ΥE	4.R.	٩V	CI	44	105	ARC	611	r.	а Т	561	VATTR	OVA TYR	DUAL
															(η.	.2																		

L

C-2

TABLE C-1 (CONT'D)

ι

00000000000000000000000000000000000000	0.24792 0.03416 -0.01778 0.05149 0.05149 0.01707 -0.01707	0.21112				1			
001454 001414 001400000000	0.03416 -0.01778 0.05149 0.00104 -0.01707 -0.10769	3444353	0.29450	0.2354L	0.153.54	0.15655	-0.74789	•	0.25734
$\begin{array}{c} 1 1 1 1 1 1 1 1$	-0.01778 0.05149 0.00104 -0.01707	0.01315	-0.05188	0.00398	-0.04931	-0.02760	-0.01998	•	0.01512
00000000000000000000000000000000000000	0.05149 0.00104 -0.01707 -0.10769	-0.33420	-0.07030	-0.03390	-0.05315	-0.03999	0.07545		-0.08040
	0.00104 -0.01707 -0.10769	0.05152	0.04352	0.05201	0.02509	0.02560	-0.07857	•	0.04059
$\begin{array}{c} 0 0 0 0 0 0 0 0$	-0.01707	0.00315	0.00336	-0.00151	0.01065	0.00552	-0.03623	•	0.03457
Construction C	-0.10769	-0.01130	0.00014	-0.01723	0.01035	-0.00247	0.00151		-0.03033
V0000000000000000000000000000000000000		-0.09817	-0.12336	-0.10260	-0.07426	-0.05363	0.11340		-0.11540
	-0.12960	-0.10852	-0.17304	-0.13405	-0.10366	-0.09965	0.13278		-0.13946
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-0.05442	-0.04232	-0.06042	-0.05497	-0.02875	-0.04204	0.05457		-0.00045
0.00 0.00	0.19425	0.16344	0.22059	0.19051	0.13244	0.12766	16353.0-	•	0.24350
	0.00590	-0.00016	0.03456	0.02336	0.02505	C.01972	0.02142	0.01798	-0.02465
	0.16521	0.09335	0.13564	0.08743	0.05055	0.09321	-0.04196	-0.03449	0.05365
-0.00593 0.11510 0.113464 0.113464 0.113464 0.013161 110101 100010 10101 10001 10001 10001 10001 10001 10001 10001 10001 10001 10001 10001 10001 10001 10001 10001 10001 10001 100000 100000 100000 100000 1000000	-0.20528	-0.16791	-0.33398	-0.31006	-0.31856	-0.23694	0.04164	0.03743	-0.04438
0.11510 0.62191 1.62191 1.62191 1.622191 1.62305 0.15269 0.15269 0.15269 0.15269 0.15269 0.15269 0.15269 0.15269 0.15269 0.15269 0.15275 0.15755 0.15755 0.15755 0.15755 0.15755 0.15755 0.15755 0.15755 0.15755 0.157555 0.157555 0.157555 0.157555 0.1575555 0.15755555555555555555555555555555555555	-0.00749	-0.00697	-0.00038	0.00191	0.05131	0.00989	0.03644	0.63588	-0.03379
0.13464 0.62191 -0.03051 -0.03051 -0.15269 0.21312	0.13452	0.09557	0.06810	0.10020	0.01848	0.03947	-0.12457		0.12335
0.62191 -0.052191 -0.07309 -0.15269 0.21315	0.14755	0.13442	0.22902	0.15624	0.13837	0.12896	-0.15336		0.16263
-0.03051 -0.07305 C.15269 0.21312	0.55041	0.46416	0.57944	0.52012	0.4 11 79	0.53460	-0.21853		0.23211
-0.07309 C.15269 0.21312	-0.04166	-0.02379	0.32556	-0.01386	0.02529	0.01259	0.05345		-0.04914
C.15269 0.21312	-0.05878	-0.05332	-0.10118	-0.07500	-0.05405	-0.05413	0.51731	6.29847	-0.53136
0.21312	0.16338	0.17474	0.14355	0.13871	0.10296	0.63529	-0.13028		0.14256
0 00400	0.23555	0.19525	0.25346	0.22395	0.17584	0.16776	-0.66258		G.63351
	0.41985	0.41024	0.68392	0.57258	0.43499	0.47904	-0.17774		0.18951
J. 51725	0.51073	0.43039	0.56112	6.50268	0.39562	0.42340	-0.19395		0.20712
0.40250	0.45321	0.38010	0.46587	0.44700	0.4.3866	0.44742	-0.17985		0.14862
0.46609	0.37129	0.31143	0.49343	0.43789	0.35175	6.30892	-0.14886		0.19854
1.00005	0.454.91	0.36735	0.57999	0.63328	0.54293	0.47568	-0-1	-0.14691	0.16452
0.45481	1.00000	0.45003	0.43265	0.41224	0.24710	0.26951		-0.13509	0.15900
0. 35795	0.45003	1.00000	0.36455	0.32668	0.21482	0.23151		-0.12691	0.14363
0.57939	0.46259	0.36466	1.00000	0.63306	1,50341	0.52455	-0.1	-0.18177	6.23127
0.63026	0.41224	0.32658	0.53806	1.06000	0.65966	0.53438		-0.15895	0.17266
0.14298	0.28715	0.21432	0.58941	0.65966	1.00000	0.54259		-0.12299	0.13068
0.47566	0.26961	0.23151	0.52465	0.53438	0.54259	1.00360		-0.10537	0.12466
-0.15400	-0.14643	-0.13406	++061.0-	-0.16403	-0.12563	-0.11644		0.90815	-0.96973
-0.14691	-0.13669	-0.12691	-0.16177	-0.15895	-0.12299	108	0.90815	1.00000	-0.85066
•	0.15900	0.14363	0.20127	0.17205	0.13068	0.12466	-0.96973	-9.88066	1.00960

C-3

60 A.u

APPENDIX D

AN ALTERNATIVE MODEL

4

APPENDIX D

AN ALTERNATIVE MODEL

An alternative to the model used in this analysis is a linear regression model with grouped data (see reference 4). An early attrition prediction model based on grouped data has been computed and will be compared with the individual data model used for the analysis.

Early attrition is one of the measures of effective service used in this analysis. Table 3 shows regression results which identify education, age, CI, and PA as the best four predictors of early attrition. These four variables have been used in a grouped model and in an individual data model so that the models can be compared.

This analysis is based on the 45,948 records which included values for attrition, education, age, and the test scores. The regression of table 3 was repeated with these records and resulted in the regression equation shown in table D-1. This equation was used to compute the predicted chances of early attrition for men at the midpoint of each test score group with each education and age value, also shown by table D-1.

The same variables were used to group the data. Education and age were each grouped into two values and the test scores were grouped into four values, as shown by table D-2. One value of each dummy variable is excluded in the regression; there are 64 possible combinations of the four variables. The grouped regression model is based on these 64 observations, with each observation consisting of the average attrition rate for the group and the unique combination of the four variables which define the group. The results of the grouped regression model are shown in table D-3. Table D-4 shows the predicted attrition for each group based on the equation of table D-3.

While the grouped-data model results in a larger R² value than does the micro model, it is not necessarily a better predictor of attrition. The reason is that the dependent variables of the micro model and the grouped model are different (see reference 6). The micro model explains 7.8 percent of variaties in individual attrition, while the grouped model explains 76.9 percent of the variation between attrition of the 64 groups, after the within-group variation is removed by grouping. The attrition predictions generated by the two models were compared using a Chi-square test. Assume a uniform distribution of 100 Marines in each of the 64 groups and compute the number of observed attrition losses (based on the micro model) and the number of expected attrition losses (based on the grouped model). The Chi-square test can be used to test for any difference between the two distributions:

$$x^{2} = \sum \frac{(O_{i} - E_{i})^{2}}{E_{i}}$$
$$x^{2} = 27.6$$
$$x^{2} 63, .95 = 82.5$$

Therefore, we can reject the hypothesis that the two sets of predictions are different.

The individual data model has been shown to provide predictions not different from those generated by the grouped model. In addition, the individual data model offers an advantage in policy planning and implementation. The regression equation produces a unique attrition estimate for each combination of scores, age, and education. Such a presentation (as in tables 8-11) shows the relative importance of dissimilar variables in predicting attrition and facilitates the selection of screening standards. To do this with the grouped model would require a different computation of the equation for each grouping. The individual model is actually the limiting form of a grouped model, where each possible combination is recognized as a group. The individual data model is selected for this analysis. For an alternative formulation of an individual model, see reference 3.

-
1
Р
щ
Ξ
В
4
ĥ

PREDICTED EARLY ATTRITION RATES INDIVIDUAL DATA REGRESSION MODEL

(Percentages)

	1	High School Graduate	Graduate		0N N	Non-High School Graduate	nool Gradu	late
	Classifi	Classification Inventory Score (CI)	entory Sco	re (CI)	Classifi	Classification Inventory Score (CI)	ventory So	core (CI)
	136	104	87	59	136	104	87	59
<u>Age less than 21</u>	And the second							
Pattern Analysis				<u></u>				
Score (PA):								
1.39	1.9	7.3	10.2	15.0	17.0	22.5	25.4	30.1
112	7.8	13.3	16.1	20.9	23.0	28.4	31.3	36.1
98	10.9	16.3	19.2	24.0	26.1	31.5	34.4	39.1
65	18.2	23.6	26.5	31.3	33.3	38.7	41.6	46.4
Age 21 or more								
Pattern Analysis								
Score (PA):								
139	17.4	22.9	25.8	30.5	32.6	38.0	40.9	45.7
112	23.4	28.8	31.7	36.5	38.5	44.0	46.9	51.6
8 6	26.5	31.9	34.8	39.5	41.6	47.1	49.9	54.7
							1	•

Predicted attrition rate = -.1515(HS) - .0022(PA) - .0017(CI) + .1556(Age) + .7073

62.0

57.2

54.3

48.9

46.8

42.1

39.2

33.7

65

 $R^2 = .078$

•

D-3

TABLE D-2

VARIABLES USED IN GROUPED REGRESSION

<u>Variable</u>			Values		
Education	1	if	high school graduate	0	otherwise
Age	-	if	age 21 or more	0	otherwise
CI-1	1	if	CI <u>></u> 113	0	otherwise
CI-2	1	if	96 <u><</u> CI <u><</u> 112	0	otherwise
CI-3	1	if	79 <u><</u> CI <u><</u> 95	0	otherwise
PA-1	1	if	PA ≥ 119	0	otherwise
PA-2	1	if	106 ≤ PA ≤ 118	0	otherwise
PA-3	1	if	92 <u><</u> PA <u><</u> 105	0	otherwise

TABLE D-3

RESULTS OF GROUPED REGRESSION: EARLY ATTRITION

Variable	Regression Coefficient	Cumulative R^2
Education	1650	.494
Age	.1523	.594
CI-1	1096	.641
CI-2	0980	.692
CI - 3	0704	.719
PA-1	0969	.735
PA - 2	0794	.750
PA-3	0621	.769
(Constant)	+.4477	
	n = 64	

D-4

TABLE D-4

PREDICTED ATTRITION RATES: GROUPED DATA REGRESSION MODEL

(Percentages)

	Classi	High School Graduate Classification Inventory Score (Cl)	ol Gradus nventory	tte Score (CI)	Classi	don-High S	<u>Non-High School Graduate</u> Classification Inventory Score (CI)	duate Score (CI)
	113+	96-112	56-62	1-78	113+	96-112	79-95	1-78
Age less than 21								
Pattern Analysis								
Score (PA):								
119+	7.6	8.8	11.5	18.6.	24.1 -	25.3.	28.0	35.1
106-118	9.4	10.5	13.3	20.3	25.9	27.0	29.8	36.8
92-105	11.1	12.3	15.0	۲.	27.6	28.8	31.5	38.6
19-1	17.3	18.5	21.2	28.3	33.8	35.0	57.7	44.8
Age 21 or more								-
Pattern Analysis								
Score (PA):								
119+	22.8	24.0	26.8	33.8.	39.4	40.S	43.5	50.3
106-118	24.6	25.7	28.5	35.5	41.1	42.2	45.0	52.0
92-105	26.3	27.5	30.2	37.3	42.8	44.0	46.7	53.8
191	32.5	33.7	36.4	43.5	49.0	50.2	52.9	60.0

Predicted attrition rate = -.1650(HS) + .1523(Age) - .1096(CI1) - .0980(CI2) - .0704(CI3) -.0970(PA1) - .0794(PA2) - .0621(PA3) + .4477

R² = .769

in extra build in the state of the state oft he state of the state of

D-5

APPENDIX E

7

È

ī,

SCALING FROM ACB-61 TEST SCORES TO ASVAB 6/7 TEST SCORES

APPENDIX E

SCALING FROM ACB-61 TEST SCORES TO ASVAB 6/7 TEST SCORES

The most useful prediction equation of the quality measure was shown to be (equation 1):

Loss potential = - .1826 (diploma) - .0034 (GCT) - .0018 (CI) + .0829 (age) + .9179 (E-1) F = 1, 263 N = 45, 869

This equation is expressed in terms of scores from the Army Classification Battery (ACB-61), which is no longer administered. The test now used for pre-enlistment screening is the Armed Services Vocational Aptitude Battery (ASVAB 6/7). A procedure to scale CI and GCT to the analogous scores of the ASVAB 6/7 is described below.

The ASVAB 6/7 is composed of 17 subtests. One of these, combat scale (CC), is designed to measure the aptitude measured by CI of the ACB-61. The ASVAB 6/7 mental group score (MG) is based on three tests: word knowledge (WK), alithmetic reasoning (AR), and spatial perception (SP). These three tests are analogous to the verbal (VE), arithmetic (AR), and pattern analysis (PA) tests of the ACB-61. A scaling technique was devised to convert equation (1) to a function of education, age, CC, and ASVAB mental group score.

During December 1975 and January 1976, 3, 081 recruits arriving at the Marine Corps Recruit Depots at Parris Island and San Diego were administered both the ACB-61 and ASVAB 6/7. Approximately the same number of men were tested at each depot, and half of each group took the ACB-61 test first. Testing conditions were monitored and designed to produce consistent results. The analysis of the correlation between the tests of these two batteries has been published (see reference 2). The relevant correlations produced in that analysis are shown here:

COEFFICIENTS OF CORRELATION

	AC	B-61	ASVAB	5/7
	ĈI	GCT	CC	MG
ACB-61:	CI	.4313	.5617	.4044
	GCT		.3435	.8679
ASVAB 6/7:	CC			.3568
	MG			

E-1

The data from the two tests were used to derive prediction equations for CI and GCT in terms of the corresponding ASVAB 6/7 tests. The results are:

CI =
$$3.516(CC) + 40.475$$
 (E-2)
R² = .32
F = 1,419
GCT = $1.12(MG) + 53.942$ (E-3)
R² = .75
F = 9,400

Substituting in equation (E-1) and solving:

Loss potential =
$$-.1826$$
 (diploma) $-.0038$ (MG) $-.0063$ (CC)
+.0829 (age) +.6616 (E-4)

The interpretation of the quality measure is the probability that an applicant with a given vector of age, test scores, and level of education will be lost to the Marine Corps within 24 months due to desertion or early attrition. In order to use a positive measure of manpower quality in the application of these results, success potential is defined:

-

The interpretation of the success potential is .he probability that an applicant (or the percentage of a group of applicants) with a given vector of age, test scores, and level of education will serve satisfactorily for 24 months as measured by desertion and early attrition.

APPENDIX F

7

ŝ

÷4

ALTERNATIVE REGRESSION RESULTS

3

ALTERNATIVE REGRESSION RESULTS: DESERTION

Explanatory variable	Coefficient	Standard error of coefficient	Beta	Cumulative R ²
Ycars of	0531	.0013	1892	.042
schooling Arithmetic	0006	.0001	0359	.045
Pattern analysis	0004	.0001	0257	.045
Marital status	+.0229	.0054	.0136	.045
(Constant)	+.8084			

F = 589

^aThese variables were considered but not selected by the step-wise regression: age in years, race, mix, VE, CI, MA, ACS, ARC, GIT, SM, AI, and ELI.

 $\sim c \sim c$

F-1

ALTERNATIVE REGRESSION RESULTS: DESERTION

Cumulative R ²	.034	.040	.045	.046	.047	.048	
Beta	2010	0206	0568	0714	0590	0339	
Standard error of coefficient	.0055	.0001	.0001	.0113	.0047	.0081	
Coefficient	1324	-,0002	0011	1267	0486	0540	+.3466
Explanatory viable	Diploma	~	Interaction (2) General classi-	rication test College training	Eleventh grade education	General equiva-	tency arproma (Constant)

F-2

F = 416

^aThese variables were considered but not selected: age 17, age 18, age 19, age 20, 9 years of schooling, 10 years of schooling, race, marital status, and CI.

7

3

ALTERNATIVE REGRESSION RESULTS: EARLY ATTRITION

Explanatogy variable	Coefficient	Standard error of coefficient	Beta	Cumulative R ²
Years of schooling	1080	.0031	2740	.047
Classification	0019	.0001	1077	.068
inventory Pattern analysis	0016	.0001	0678	.076
Age/education	+.0020	.0001	+.1404	.082
Interaction (2) General informa-	0016	.0002	0619	.083
urun test Verbal	+.0010	.0002	+.0452	.084
Arithmetic	0011	.0002	0439	.085
Race	0168	.0038	0211	.085
(Constant)	1.569			

F-3

F = 577

age in years, marital status, ^aThese variables were considered but not selected: MA, ACS, ARC, SM, AI, and ELI.

ALTERNATIVE REGRESSION RESULTS: RANK ACHIEVED

Cumulative R ²	.100	.133	.143	.150	.153	.155	.156	
Beta	+.3008	+.0665	+.0756	+.0733	+.0588	0823	+.0487	
Standard error of coefficient	.0074	.0004	.0002	.0003	.0003	.0003	.0004	
Coefficient	+.2976	+.0040	+.0033	+.0043	1 +.0037	0030	+.0031	-1.9409
Explanatory variable	Years of schooling	Arithmetic	Classification	Pattern analysis	Army coding speed +.0037	Age/education	General informa-	(Constant)

F-4

F = 1,311

^aThese variables were considered but not selected: age in years, race, marital status, VE, MA, ARC, SM, AI, and ELI.

A DRIVE A PROPAGE A NUMBER AND A DRIVE AND A

and the star in under this and in u

1. A THE A TO REPORT A REPORT MULTINE AND A DECEMPTION OF A

÷

¢

3

ALTERNATIVE REGRESSION RESULTS: SUPERIOR RECRUIT TRAINING PERFORMANCE

Explanatory variable	Coefficient	Standard error of coefficient	Beta	Cumulative R ²
Classification	+.0014	.0001	+.1051	.034
inventory Army radio code	+.0013	.0001	+.0874	.049
Years of schooling	+.0176	.0015	+.0569	.054
Pattern analysis	+.0009	.0001	+.0472	.057
Race	+.0331	.0029	+.0531	.059
Army coding speed +.0008	d +.0008	.0001	+.0435	.061
Arithmetic	+.0006	.0001	+.0326	.062
(Constant)	5250			

F-5

F = 464

^aThese variables were considered but not selected: age in years, marital status, mix, VE, MA, GIT, SM, AI, and ELI.

ALTERNATIVE REGRESSION RESULTS: QUALITY INDEX^a

Explanatofy variable	<u>Coefficient</u>	Standard error of coofficient	Beta	Cumulative R ²
Diploma	+.2420	.0054	+.2391	.059
Classification	+.0020	.0001	+.1044	.086
ınventory Pattern analysis	+.0019	. 1000.	+.0752	.097
College training	+.2321	.0129	+.0852	.101
. Eleventh grade . education	+.0691	.0061	+.0547	.103
Arithmetic	+.0014	.0001	+.0542	. 105
Age 18	+.0970	.0065	+.0927	107
Age 17	+.0737	.0068	+.0682	.108
Age 19	+.0648	.0073	+.0489	.109
(Constant)	-1.0374			

F = 676

^aStandard error of the mean (of Q.I.) for n = 500 = .021.

^bThese variables were considered but not selectéd: age 20, 9th grade education. 10th grade education, GED, race, marital status, mix, VE, MA, ACS, ARC, GIT, SM. Al, and ELI.

ાને અને છે કે તે તે છે છે. તે તે બનાર કે પા તત્કા છે છે, આપટીથી દાકારે જેમથી બીપોલી છે. મોર્ગ્સ કે 10 માઉલ્લે છે, કે પાસ તે તે છે જે

F-6

	REPORT DOCUMENTA	TION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
ł	L. REPORT.NUMBER	2. GOVT ACCESSION NO	. 3. RECIPIENT'S CATALOG NUMBER
ĺ	CNS-1100 /	AD-A083 446	,
Ĩ	4 TITLE (and Subtilio)	د من بالا من الله من ا الله من الله من	5. TYPE OF REPORT & PERIOD COVERI
ľ	Quality of Marines: Pre-Enlistn	nent Screening Based	
	on Predicted Performance	كمتبع المستين مناجع بدرجلعات فالتيتيه والمتحاليات والأعلاقات	6. PERFORMING ORG. REPORT NUMBER
ľ	Construction of the state of the state of the		
	7. AUTHOR(#)	\sim	8. CONTRACT OR GRANT NUMBER(.)
The Annula	Warren T./Matthews	(JE)	NØ0014-76-C-Ø746
1	9. PERFORMING ORGANIZATION NAME AND A	DDRESS	10. PROGRAM ELEMENT, PROJECT, TAS
	Center for Naval Analyses		1:10
	1401 Wilson Boulevard		
	Arlington, Virginia 22209	s	12 PSPURT.DATE
	Deputy Chief of Staff (RD&S)	(3 .e	June 1977
	Headquarters, Marine Corps Washington, D.C. 20380		47
ŀ	14 MONITORING AGENCY NAME & ADDRESS	different from Controlling Office)	15. SECURITY CLASS. (of this report)
l			Unclassified
			15. DECLASSIFICATION/DOWNGRADING SCHEDULE
L	16. DISTRIBUTION STATEMENT (of this Report)		
1	Approved for public release; dis		om Report)
	17. DISTRIBUTION STATEMENT (of the abetract		om Report)
		entered in Block 20, if different for ducted under the direct nion of the Center for 1 epresent the opinion of every end identify by block number nearity, Marine Corps election, predictions,	tion of the Center for Naval Naval Analyses at the time of 2 the Commandant, Marine 25 3 personnel, performance promotion (advancement),
	 17. DISTRIBUTION STATEMENT (of the abetract 18. SUPPLEMENTARY NOTES The work reported here was con Analyses and represents the opin issue. It does not necessarily r Corps. 19. KEY WORDS (Continue on reverse side if nece desertion, enlisted personnel, li (human), personnel, personnel s 	entered in Block 20, if different in ducted under the direct nion of the Center for i epresent the opinion of enery and identify by block number nearity, Marine Corps election, predictions, selection, statistical p enery and identify by block number mathematical relations t scores and selected in the of application for ss is used to identify t	tion of the Center for Naval Naval Analyses at the time of the Commandant, Marine personnel, performance promotion (advancement), rocesses between the performance of personal characteristics. The est scores and personal char- enlistment). A step-wise he variables which best pre-
	 17. DISTRIBUTION STATEMENT (of the abstract 18. SUPPLEMENTARY NOTES The work reported here was con Analyses and represents the opin issue. It does not necessarily r Corps. 19. KEY WORDS (Continue on reverse elde II nece desertion, enlisted personnel, li (human), personnel, personnel s recruiting, retention (general), s 10. ABSTRACT (Continue on reverse elde II neces AThis analysis examines the first-term Marines and their tes objective is to predict performant acteristics are known (i.e., at t linear multiple regression proce dict performance. Measure: of 	entered in Block 20, if different in ducted under the direc- nion of the Center for i epresent the opinion of every and identify by block number nearity, Marine Corps election, predictions, selection, statistical p every and losnify by block number mathematical relations t scores and selected ince when only certain to ime of application for ess is used to identify t	tion of the Center for Naval Naval Analyses at the time of the Commandant, Marine personnel, performance promotion (advancement), rocesses between the performance of personal characteristics. The est scores and personal char- enlistment). A step-wise he variables which best pre-

SECURITY CLASSIFICATION OF THIS F	AGE (When Date Entered)	
20	e for expressing the results	in terms of the $(new) \land SV \land$
nreenligtment test is n	covided, and a method for ap nt screening is presented.	nlication of these results to

. . . .