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I.  INTRODUCTION 

The development of shaped charges using conical liners has over 
the years generated conflicting theories as to why a large scatter in 
maximum penetration occurs in what appears to be identical charges.  In 
general, blame is given to the non-uniform loading of the explosive 
component of the charge1. Various reasons are given for this non- 
uniformity, including separation of the components of the explosive mix; 
voids formed due to stresses produced by non-uniform cooling; and trap- 
ed air bubbles in the viscous melt of explosive.  During the course of 
development of shaped charges, the Ballistic Research Laboratory (BRL) 
realized that significant improvements in penetration could be obtained 
by machining very accurately the metallic liner located in the center 
of the explosive charge1'2. This research has led to what is now 
considered a standard charge, referred to as the BRL 81.3mm precision 
charge.  Details of the charge3 are shown in Figure 1.  The tolerances 
as indicated are, in general, adhered to accurately in the machining 
process.  The object of this report is to present some insight into 
the importance of both metal and explosive tolerances, and how they 
might affect jet performance. 

II.  THEORY 

The first asymmetry to be considered is the residual velocity of 
the jet in a transverse direction due to a liner thickness variation. 
Starting with the vector relationships defined in Figure 2. 

rt = v (t) [cos B i - sin 0 j] 

where v(t) is evaluated just before the stagnation region. From the 
mirror image 

v = v (t) [- cos 3 i - sin B j] 

V. Simon,  R,  DiPevsio,  and A,  Mevendino,   "The Penetration Capability 
and Effeativeness of A Precision Shaped Charge Warhead," Ballistic 
Research Laboratory Report No.   1636, March 1965.  (AD #5249451) 

2R.  DiPersio,  J.  Simon, A.  Merendino,   "Penetration of Shaped-Charge 
Jets into Metallic Targets," Ballistic Research Laboratory Report No. 
1296,  September 1965.    (AD #476717) 

3J.  Simon,  R.   DiPersio,   "The Evaluation of Explosive Filler on Shaped 
Charge Performance and Lethality Effectiveness," Ballistic Research 
Laboratory Report No,   1552,  October 1971,    (AD #5189891.) 
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Assume now that a uniform liner thickness variation exists from the 
apex to the base of the cone. Assume also that one side of the liner 
is at the lower thickness limit, while the other side is at the maximum 
thickness limit.  If two oppositely opposed mass elementsm ± Am, having 
an equal cross section, A, driven by an identical pressure pulse, P, 
are considered, the following expression can be obtained. 

i _ A cos B 
1  m - Am 

/v^t 1* i    A cos 3 r  J*. ^ pdt ' v2 = " rr^r J Pdt 1 

where v is the velocity component of m perpendicular to the axis of cone, 
In order to solve equations in closed form, it is assumed that the ratio 

m + Am is a constant during the collapse. Thus, the residual velocity 

of the jet perpendicular to the axis will be 

j Im-Amy^ m+Amy^ 

= A cos  3 /"pdt      —^— l——     t 
J [_m-Am      m+AmJ 

cos  B  i 

CD 

, ■  • n ,       Am- using a binomial expansion and assuming — << 1 
m 

i   . v. « A cos /pdt [f] T 
L m J 

;ume For the purposes of obtaining a solution in closed form, let us assi 
a pressure pulse of the shape shown in Figure 3 where for the values of 
pressure and time indicated 

b2p ro 

24 x 10-6 sec. 

These values were obtained by iterating calculated collapse velocities 
with experimental results. 

10 



P = a(t+b) 

0      4     8     12     16     20 
t (/is) 

Figure 3. Pressure Function Assumed to Drive Liner 
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Thus, 

V. = A cos 

A cos 3 

v.  = A cos 3 

b2 (t + b)-2 dt 

(t + b)  + Q (2) 

Since at t =0, v. = 0 
j 

C1=F 

Therefore, 

v. = A cos 
2 Am 

m *[ p b 1 - b (t + b) >] (3) 

In a similar fashion the total distance traveled by the particle, m, 
can be shown by integration of ITT, | to be 

X = 
Ap bt 
^o - p b2 £n (t + b) + C- 
m    m ro J 2 

Over the region of interest 

2t 
In (t + b) « In b + 2 b + t 

Thus, 

AP bt o 
m 

A p b2 rin b +  2t  "I 
mo  L     2 b + tj 

+ C, (4) 

12 



Now at t =  0,   X = 0,  therefore, 

2 
Apob   r 2t   1 

m |_2  b  +  tj 
Ap bt o 

m 

by rearranging 

Ap bt o 
m 

Xt - 2bX = 0 (5) 

is in the standard quadratic form and thus, 

t^7T 8bApobx 
m 

2Ap b 
o 

m 

(6) 

This can then be inserted in the equation for the transverse velocity 
to give 

A cos 3 —x— p b 
2 ^o 

m 
1 - b lb + +v^ 8bApobx 

2AP b 
o 

m 

(7) 

To get the distances at a specific position and time it can be seen 
in Figure 2 that 

H tan a 
X _ cos (a  + (|)/2) 

The only unknown, $,  in this expression can be calculated from relation- 
ship proposed by Defourneaux^ 

^M.  defoumeaux,   "Energy Transfers in Explosive Propulsion, " Soi and 
Techniques de  I'Armement,   Vol.   47,  No.   S  (1973),  pp  723-930. 

13 



i    i   K p  - 

6  ())    e 
o 

where, tf  is the angle obtained for infinite explosive belt; 

K is an experimental constant; 

p is the metal density; 
m 

e is the metal thickness; 

e is the explosive thickness. 

The unknown collapse angle, 3, can be calculated from another 
Defourneaux relationship5, 

[sin Ca+40 - sin a] tan $  + H  tan a cos a — 
tan (3-a) =  ^ . 

[sin (a+(t>) - sin a] - H tan a cos a tan $ -r— 

An additional correction involving the variation of impulse imparted to 
the liner versus explosive thickness will now be discussed.  As the 
explosive layer becomes thinner, the impulse delivered to the liner will 
be reduced.  Based on the release wave model of Eichelberger6, it can be 
assumed the release initiates immediately after passage of the detonation 
wave at the charge boundary.  The time at which the liner sees the 
release is then determined by the thickness of the explosive at the 
point of interest.  The value of the constant, b, in the pressure time 
relationship was calculated only at the apex of the liner.  It is 
possible to define a new variable, b0, which is proportional to the 
radial thickness of the charge at a particular position along the liner, 
and having a value b at the apex.  This relationship can be expressed 
as 

bo = b  (R - g tan oQ > (9) 

where R is the radius of the cone base.  The term in parenthesis will 
vary the value of b0 linearly from 0 to b, as a function of position, 

H, down the liner.  Thus, the value v^ as given by Equation 1 can be 

calculated with all phenomena of interest included. 

5M.   Defourneaux,   "Uydvodynamic Theory of Shaped Charges and of Jet 
Penetration," Sciences and Techniques de  V'Armement,   Vol.   44,   (1970), 
pp  292-334. 

6E.  Eichelberger,   "Predictions of Shaped Charge Performance from The 
Release Wave Theory," Fundamentals of Shaped Charges Status Report 
No,  1,   Carnegie Inst.  of Tech.,  January 2954. 

14 



III.  LINER THICKNESS VARIATIONS 

We have already developed the theory for collapse problems caused by 
a liner thickness variation. Attention will now be turned to the effect 
of liner thickness tolerances on jet performance. 
Figure 4 shows prints of two jet x-rays.  One is perfectly straight while 
the other is bowed by approximately 50mm.  Therefore, a good comparison 
can be made between jets by investigating the extent of bowing produced 
by an asymmetry in the charge.  Consider first the effect of a liner 
thickness variation in a plane perpendicular to the liner axis.  Also, 
assume as before that this variation is constant from the top to the 
bottom of the liner and the opposite sides are at the respective ± limit 
extremes in tolerance. This is then the case derived in the previous 
section.  Thus, the transverse velocity of a jet region as a function of 
its original liner position can be calculated.  The results of this 
calculation for liner thickness variations are shown in Figure 5. Note 
that the maximum transverse velocity occurs at the tip region of the 
jet and rapidly falls to zero further back in the jet. The non-linear 
dependence generates a jet with the front bowed away from the initial 
axis.  Theoretically, Equation 7 indicates that this frontal bowing is 
caused by the cos g term which multiplies the entire transverse velocity 
expression. This term provides the largest contribution when 3 is small. 
This occurs for the first 1/3 to 1/2 of the cone. Thus, it would seem 
that in order to get a straight jet, particular attention should be 
paid to the tolerances on the upper half of the cone. 

It would be worth digressing into possible causes of asymmetries 
described above.  One principal cause of a non-uniformity in thickness 
would be the repositioning of the cone between machining the inner and 
outer surface. This would allow an error in the amount of the alignment 
gage tolerances to be introduced into the liner thickness that would 
extend from the top to the bottom of the cone.  The use of the newly 
developed dual machines which machine inner and outer surfaces simul- 
taneously should correct this problem as long as spacing between cutting 
tips can be held to a very high tolerance. 

IV.  EXPLOSIVE HOMOGENEITY 

The next charge irregularity to be considered is the minute 
fluctuations in pressure that can occur due to a variation of composi- 
tion in the explosive surrounding the charge.  Equation 1 can be modified 
to assess the effects of a pressure difference from side to side in the 
amount of ± AP. 

15 
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Figure 4. Flash X-rays of (A) Precision 81.3mni Charge; 
(B) 2% RDX Inhomogeneity 81.Sum Charge 
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Figure 5. Transverse Jet Velocity vs. Liner Position for 
Different Liner Thickness Variations 
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V. = 1 / (p+Ap)dt -yV (p-Ap)dt) cos 3 

— / Apdt cos 3 

/• m 

Now from the assumed pressure pulse, one can express Ap to first order 

Ap = Ap b2 (t + b )"2 r
    r0 0        0 

Therefore,       vt m 2  cos g AT, /^2 f± + h ^ 
of o 

Ap ib^ (t + b )  dt. (10) 
p e   ro / o ^    o 

■'    m       J 

The results of this calculation are presented in Figure 6 for pressure 
variations of 1, 2, and 3%. Again only the front portion of the jet is 
appreciably bowed. However, the amount of bowing produced by a 3% 
pressure variation is approximately 10 times larger than the bow produced 
by a liner thickness variation of ± .0076 mm.  In an earlier work7. Cole 
found 3% RDX variations in cast Comp B charges. This RDX variation can 
be converted by using the well known formula8 for maximum density Comp B, 

29.5 + .157 (% RDX - 64) + 67.85 [(P - 1.717)] ^ GPa 

where p is the density of the resulting explosive. For an increase in 
RDX percentage to 67% the pressure increase will be 2.24%. Table I 
illustrates the dependence of % Ap vs % RDX composition with 64% being 
Ap = 0. These asymmetries observed by Cole are well within the range 
to produce an observable effect on the jet. 

7J.  E.  Cole,   "The Quality of Explosive Loading of Shaped Charges at 
The Ballistic Eesearah Laboratory," Ballistia Besearah Laboratory 
Report 1927,  July 1968.   (AD #A030357) 

8S. Dobratz,   "Properties of Chemiaal Explosives and Explosive Simulants," 
Lawrence Livermore Laboratory Report No.  UCRL-51319, Rev.   1, July 
1974. 

18 
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Figure 6. Transverse Jet Velocity vs. Liner Position for 
Pressure Variation Across Liner 
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Table I 

% RDX Ap (%) 

60 -2.8 

61 -2.1 

62 -1.3 

63 - .6 

64 0 

65 + .8 

66 +1.5 

67 +2.24 

68 +2.95 

V.  EXPLOSIVE ASYMMETRY 

From the pressure function, 

P=Pob2o(t + bi"2 ' (11) 

a determination can be made of the effect of the explosive asymmetry on 
the transverse velocity.  The factor which varies is the term b . Thus, 

Ap=   [2pobo(t+bi-
2-2pob2

o(t+b^3]   Abo. 

The value of Ab0, for an explosive asymmetry can be found in the follow- 
ing way. Equation 9 gives 

,  / R - H tan a \ bo= b (—R—n' 
where (R - H tan a)  is the thickness of explosive, e, remaining between 
the liner and the outside of the charge. Thus, 

and 

bo = b I' 

AV b R- 

20 



Therefore, 

AP 
-2 2 -3    b Ae [2pobo(t  + bj 2  +   (-2)  pob2   (t  + b)   3J — 

i 4 cos  g    / b Ae        ,    .        ,,-2 ,2   ^      . .-3 v.   .   =    I —=—   p b  (t + bj       - p b„  (t + bj 
jet p£jRroov d ^oo^ d 

dt .  (12) 

The results of this calculation are presented in Figure 7 for Ae = .025ram 
and Ae = .13mm.  Note the relative insensitivity of this asymmetry upon 
jet quality.  In this example any bowing that exists occurs near the 
last 1/3 of the jet, where the influence of the asymmetry is more capable 
of effecting the collapse process. 

VI.  CONFINEMENT ASYMMETRY 

In order to investigate the effect of confinement tolerances, a 
different approach must be followed. Not knowing the effect of confine- 
ment on the value of b in Equation 11, it is necessary to determine the 
tolerance limit in a different fashion. The well known Gumey relation- 
ships can provide insight into the relative importance of various por- 
tions of the charge.  Since cylindrical Gumey formulae are not available 
we will use the results of the explosive layer system which have been shown 
to be acceptable for shaped charges9. For a metal-explosive-tamper sandwich 
the velocity of the metal surface is given by10, 

v = /2E 
m 

(1-A + A2  n A2  mV 
1/2 

A 
1 + 2 5i 
 c 

1 + 22- 
c 

where m is metal mass, n is tamper mass, and c is charge mass, and E = 
the Gurney energy.  The change in velocity of the metal layer with respect 
to a change in thickness of any layer of the sandwich can be found by 
taking the derivative of v with respect to the layer of interest. 
The results are. 

3Private aorrmmioation BRL,  Shaped Charge Branch personnel. 
10J. E.  Kennedy,   "Gumey Energy of Explosives: Estimation of The  Velocity 

and Impulse Imparted to Driven Metal," Sandia Report No.  SC-RR-70-790, 
Deoembev 1970. 

21 
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-£-    ^ -       1/2 [l-A t A2    + 
n A2  + ^1 "3/2 

^E    dS 1/2 [ 3         c A        c J 

x 
["(ZA -  1)  A   + 2nAA +  ^ 

where 
1  + 2 ^ 

A =  C- 
1  + 2 5- c 

A = -i- 
1  +  2 =- c 

dv n   .       .2        _    o      _-|-3/2 cm 
/2E dc 

.^[izA-i.   t|A2^] 

r(2A -  1)  A        2nAA      nA2      ml x   [ !       +— r- z\ 

where _, m n 
-  2 5L (1 +  2 ^   (-  2 ^ 

A = — 
1  +  2^ 

c (—ir 
dv r,   .       »2        ^    -,      „T-3/2 cm 

/2E dn 1/2[i^A_.+ |A^H] 

r(2A -^1)  A t A2 ^    ^^1 

where 2m 2TI '2 

A'  =  -  2   Cl  ^f1)   Cl  ^)     • 
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These equations can be plotted as shown in Figures 8, 9, and 10.  Thus 

for a given — in the shaped charge, the relative importance of each 

layer can be assessed assuming a cylindrically confined shaped charge as 

shown in Figure 11. The values of — and — can then be found by inspec- 
tion to be, c    c 

2 p r t 
m      m m m 

and 

C     ,2    2  ' 
P  (r  - r ) c v n    m ^ 

2 p r t 
n n n n 
c ^   .2    2, 

p^, (r  - r ) en m 

Assuming the jet tip originates 1/3 of the way down from the apex to the 

base.  The values of — and — for the values shown in Figure 11 are 

5U .18 and 2-= .64. 
c c 

Then referring to the graphs of Figures 8, 9, and 10 the following 
values can be obtained 

%= /2E 
dm    c (1.6) 

dv   2IT p r /2E" 
m     mm     ,-i ^ _-"  (1.6) 
m 

dc    c (.22) 

dv   2Tr p r /2E 
—SLm  £—2  (22) 
dt      c       l ^ 

c 

^1=^1 (.05) 
dn    c       K      J 
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t = 

c 

1.9 mm 

3.175 mm 

i 
1.717 gm/cnT 

3 
p  = 8.9 gm/cm^ 
m 

r = 
m 

7.85 gm/cm" 

40.6 mm 

13.6 mm 

Figure 11. Charge Geometry Used to Estimate Relative 
Importance of Gurney Estimates 
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dv   2TT p r /2E 

n 

where tm, tc, tn refer to the thickness of the liner, charge, and tamper 
respectively.  Thus, as would be expected the variation in the liner 
dimensions is the most critical. The relative importance is the 
following: 

RELATIVE LINER IMPORTANCE   Pm rm (-1,6-) 

RELATIVE CHARGE IMPORTANCE ~ p  r  (.22) 
en 

RELATIVE LINER IMPORTANCE   pm rm (-1,6-) 

RELATIVE TAMPER IMPORTANCE  p  r  (.05) 
n n 

12.6 

12.1 

Thus, it would seem that the tolerance placed on the thickness of the 
tamper layer can be 12.6 times less rigid than the tolerance placed on 
the metal liner.  For most charges this would be ± .064mm in any trans- 
verse plane. For this charge the explosive tolerance can be 12.1 times 
less rigid than the liner tolerance or ± .061mm. 

VII.  CONCLUSION 

In the manufacture of shaped charges, certain minimum requirements 
have been experimentally determined for fabrication of the individual 
pieces making up the charge. This report develops a simple calculational 
scheme which can test the validity of the requirements and make estimates 
for those mechanical parameters not assessed previously. A modified 
shaped charge collapse theory was used to determine the transverse jet 
velocities arising from non-uniform collapse of the liner.  Results 
indicate more precision is required over the upper one-half of the 
liner-explosive system than anywhere else in the charge." 

29 



LIST OF SYMBOLS 

v(t) speed of liner element 

v,, v„ velocity vectors of two opposing liner elements 

g collapse angle of conventional shaped charge 

A cross sectional area of liner element 

m mass of liner element 

Am variation in mass of liner element 

p initial  pressure of explosive behind detonation 

p(t) pressure in explosive gases at liner interface 

Ap variation in initial pressure, p 

b, b constant appearing in pressure function p(t) 

X distance liner element travels to cone axis 

a half angle of conical liner 

H height of cone 

(j) initial bending angle of liner after passing of detonation 
wave 

e metal liner thickness 

p density of Composition B for a given % RDX 

R radius of cone base 

e explosive thickness at a point along charge 

v velocity of metal liner as determined by Gurney formulae 
m (G.F.) 

m/c metal mass to charge mass ratio used in G.F. 

n/c tamper mass to charge mass ratio used in G.F. 

p density of metal liner used in G.F. 
m 

p density of tamper used in G.F. 
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p density of charge used in G.F. 

r radius of metal liner used in G.F. m 

r radius of tamper used in G.F. 

t thickness of explosive used in G.F, 

t thickness of liner used in G.F. m 

t thickness of tamper used in G.F. 

c charge mass used in G.F. 
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