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ABSTRACT

This thesis proposes the architecture of a personal computer that
provides better support than conventional architectures for recently
developed concepts of structured programming. The architecture
separates implementation and high level language issues. The
architecture eliminates the need for an operating system by including,
in a language independent manner, the features normally found in
operating systems. The architecture allows multiple languages to
coexist safely. It is complete; the user has no need to leave the world
defined by the architecture to solve a problem, including the important
case of executing untrusted programs.

The architecture provides the semantic base needed by most
languages. It supports a flexible execution environment that treats
executable code and naming environments as objects. It explicitly
supports the termination model of exception handling. A new mechanism,
object viewers, provides type extension, access restriction and access
revocation. The operating system features of process, inter-process
communication/synchronization, permanent storage, I/0 and system
initialization/shutdown are provided.

An efficient implementation of the architecture is presented that
is suitable for a personal computer. The implementation provides a
large, real-time garbage collected object heap built out of a physical

multi-level memory system.

Some ways in which the architecture can be used are shown. The
focus is on showing how some problems of language implementation can be
handled.
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Chapter One

Introduction

In recent years there has been great interest in structured

programming and in higher level languages that support the notions of

structured programming. This thesis will describe a machine

architecture that provides high level support for such languages,

support much higher than the low level support provided by traditional

Von Neumann computers. The thesis also will explore the inclusion of

various operating system notions into such a high level architecture.

The architecture will be designed for a personal computer both because

such an environment is simpler than a time-sharing environment and

because personal computers are likely to be the predominant form of

computer resource in the future.

The major goal of the thesis, the design of a high level

architecture, can be looked at in three ways. First there Is the view

that it is the architecture of an actual processor, e.g. the design of a

piece of hardware that could be buiit. This viewpoint Imposes both

complexity constraints and completeness requirements on the

architecture. The second view is that the architecture specifies an

intermediate language that compilers for high level languages could use

in compiling those languages. This viewpoint provides insights into the

functionality that is needed in the architecture. A third, and

unifying, view is that the architecture defines an interface that

-9-

- 9 - I



septrates high level language issues (e.g. Syntxi× issues, owa variables

and the degree of type c hec king prov i ded by t he I anguage) f rom

implementat ion issues (e.g. the repr.sentat Ion of procedures, the

control stick and managing the logi cal memory provided by the language).

When viewed in this way, it is clear that the aru-hitecture should not

,'ontain language specific or implementation specific features as such

features would reduce the architecture' s itil ity as an interface

spec if icat ion.

1.1 Overview of the Thesis

The thesis will describe the design of a high level architecture

for a personal computer. As motivated later in this chapter, the

complexity of the personal computer must be limited due to economic

constraints. The resources on a personal computer are noticeably

finite; the user of the personal computer must frequently be aware of

these bounds and be able to cope with them. The architecture must

support the execution of multiple languages. Finally, the architecture

must allow the user to run programs that he does not trust.

The architecture provides a garbage collected heap of objects of

both built-in and user defined types, and provides facilities for

flexibly constructing and executing programs. A built-in exception

handling mechanism for the termination model of exceptions[30] is

provided. The operating system notions of process, Inter-process

communication/syrchronization, 1/0, protection (including access

-!0-



revocation), storage quotas and system initialization/shutdown are

',upported in a consistent, language independent fashion.

The thesis also presents a sample implementation of the

architecture; the implementation is based upon the work of Bishop[5] and

Baker[3] for managing the logical memory provided by the architecture,

and upon classical virtual memory techniques for mapping that logical

memory onto a physical memory. Finally, the thesis provides examples of L
the utility of the architecture. First, though, the remainder of this

chapter will motivate the need for the features described above and

present concrete goals for the architecture.

1.2 The Personal Computing Environment

A current trend in the computer industry is the continuing decline

in the cost of hardware due to the evolution of integrated

circuits[4,46]. This trend indicates that the day when a computer can

be given to every worker in an office (i.e. a personal computer) is

approaching; the end of the shared, general purpose computer is near.

Thus the architecture presented in the thesis will be designed with the

needs of a personal computer in mind and not the needs of a shared

computer. The personal computing environment has a profound effect on

both the goals of the thesis and the ways in which those goals are met.

This section presents the details and implications of the assumed

personal computing environment.

II
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1.2.1 Economic Considerations

A computer supplied to every person in an office must not cost a

great deal; a computer that costs hundreds of thousands of dollars will

never be a candidate for a personal computer. A realistic measure is

that the computer must have a cost comparable to the cost of the

terminal typically provided to users (e.g. on the order of a few

thousand dollars). 1

This economic constraint forces the architecture to be fairly

simple; that is, the complexity of the hardware necessary to implement

the architecture must be small. If the architecture is too complex, the

implementation will be too expensive for a personal computer. However,

the complexity constraint must not be taken to mean that the

architecture must be as simple as current microprocessors. One of the

purposes of the thesis is to set architectural sights somewhat higher

and present an architecture that could be provided by hardware five to

ten years in the future.

1. These numbers must be considered only as estimates as the economic
effect of eliminating a large central facility must be considered as
must the factor of the economy of scale provided by such a facility. It
is beyond the scope of this thesis to determine the break-even point.
For this thesis It is only important to note, or perhaps hope, that a
break-even point does exist and will be reached in the future.

- 12 -



1.2.2 The Use of Multiple Languages

The variety of languages that are to be executed on an

architecture is an important design parameter of that architecture. An

architecture designed to support only one language will differ from an

architecture that supports many languages. Supporting only one language

requires a great deal of confidence that future requirements will be met

by that language. Moreover, the restriction to one language means that

previously written programs can not be reused and makes it difficult to

borrow programs since, in both cases, the programs may have been written

In a language other than that chosen for the personal computer. This

thesis takes the conservative approach of allowing multiple languages to

be used on the personal computer. 
I

The architecture will be best suited to supporting languages such

as Alphard(52], CLU(31] and Euclid(26], which are strongly typed

languages that support user defined types, since they seem to be typical ~

of languages of the future. Tn addition, more traditional languages !

such as Algol and Pascal, which provide no general type extension

facility, should be executable since their use is widespread. Finally,

the architecture must consider the possibility that the user will write

in assembly language.

There are two major implications of the assumption to support the

execution of multiple languages. First, the architecture must have

sufficient computational power to support the languages of interest.

Simple computational completeness is not the issue, however. To permit

- 13-



reasonable language implementations, the architecture should provide the

types and operations that are common to many languages.

Second, the key to supporting multiple languages is the amount of

checking performed by the architecture. Possibilities for such checking

are enforcing strongly typed variables, the "sealing" of extended type

objects and access control checking. If the architecture only supported

a single language, one that was capable of performing all needed

checking at compile time, then the architecture would not need to

perform any checking. On the other hand, attempting to perform all

possible checks at run time is impossible in the case of multiple

languages due to conflicting demands for checking. Also, providing too

many checking features may so complicate the architecture that it is no

longer economically viable as a personal computer.

Given these needs, there are two major ways to support multiple

languages. First, a virtual machine architecture could be provided in

which each language exists in its own, isolated virtual machine.

Communication between languages would be by a built-in message passing

mechanism that only permits communication using some built-in set of

types (e.g. using ASCII text files to communicate between virtual

machines). Such isolation does ensure the integrity of each language.

Its one disadvantage appears to be the cost of transmitting large data

structures between languages. This thesis takes the alternative

approach of designing in architecture in which multiple languages can

coexist. The architecture must supply checking facilities that permit

one language to protect itself from other, untrusted, languages while,

- 14 -



at the same time, being lax enough so that many languages are not

excluded from using the architecture.

The architecture should provide both required and optional

checking facilities for maximum flexibility. Since required checks are

always performed, they must be compatible with all languages. The

required checks must be sufficient to protect the integrity of the

implementation of the architecture so as to .preserve the architecture's

utility as an interface specification (i.e. it must not be possible for

malicious programs to cause the implementation to fail) . These two

requirements can be met by ensuring that all architecturally supplied

operations are only invoked with valid operands. Such checking is

sufficient to protect the integrity of the implementation but does

constrain languages to live with these checks. Any other checks would

further constrain languages but not aid in protecting the integrity of

the architecture so they are not included in the architecture.

All other run-time checks are optional, to be performed when

needed and otherwise avoided. Optional checks have two characteristics.

first, the overhead associated with them must not be excessive when they

are not being used. Second, the cost of using the facilities may be

commensurate with their frequency of use; that is, if the checking is

done infrequently-, it can be space/time inefficient (perhaps with a very

simple implementation) whereas if the checking is frequently performed,

it should be space/time efficient (perhaps with a very clever

implementation). The optional checks must be sufficient to allow one

language to protect itself from the actions of other languages (e.g.

- 15 -



CLU must be able to protect CLU objects from being manipulated by

Fortran programs except through the appropriate cluster interface).

1.2.3 The Issue of Trust - the User Versus Himself

One of the most striking features of the personal computing

environment is the fact that it is personal; the computer is "owned" by

one person who is the only user of that machine. There is no sharing of

resources (e.g. the computer) by mutually suspicious users (although see

Kent[231 for an alternative viewpoint), As a result, the traditional

protection and resource allocation functions of operating systems become

much less important in this environment.

The actual allocation of resources by an operating system is

relatively easy; attempting to insure some degree of fairness ro the

user community as a whole leads to complexity in operating systems. In

a personal computer there is only one user, the owner of the personal

computer, so that any request to allocate some resource is being made on

behalf of that user. As .- result, the allocation mechanism can be very

simple in most cases since any allocation decision Is fair.

In a shared computer it is important that protection constraints

be provided by the system and enforced at all times. Failure to do so

may lead to one user interfering, possibly in a malicious manner, with

another user. In the personal computing environment such protection is

unnecessary since there is only one user.

16-



The previous paragraphs have implied that there is no need for

architecturally provided resource allocation and protection mechanisms

within a personal computer. However, this discussion has implicitly

assumed that the user always trusts himself which is, unfortunately, not

always the case. There are two cases of mistrust: while debugging

programs and while running borrowed programs. In both cases there is a

program running whose effect on the world is not known either due to

possible incorrectness (the debugging case) or to lack of trust (a

borrowed program). The importance of these two cases is unknown at this

time since this kind of programming environment has not been available

before. This thesis assumes that these will not be the normal case;

rather, the user will usually be running programs that he trusts.

Although most programs are trusted, the architecture still must

provide optional resource allocation and protection mechanisms that

allow the user to protect himself against the potentially dangerous

execution of untrusted programs. Due to the assumed infrequency of use

of these mechanisms, they need not be extremely efficient in either

space or time. However, their impact on the execution of trusted

programs, the normal case, must be minimal.

1.3 The Nature of a High Level Architecture

The architecture presented in the thesis will be a high level one.

This goal has two aspects. First, the architecture must meet the needs

of the languages that are being developed today by supporting the

notions of structured programming since that is the driving force behind

- 17 -
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most current language development efforts. Support for other, older

languages is not a goal but, rather, is only desirable (i.e. attaining

such support should not compromise the support for more modern

languages).

Second, the thesis will explore partitioning the functions of an

operating system into two classes. First, there are

language/application independent features, which will be placed in the

architecture itself. Second, there are language/application specific

features, which will be built out of the features provided by the

architecture. This partitioning allows traditional operating system

features to be presented in a way that fits naturally into the rest of

the architecture and in a way that is compatible with many languages and

applications. Moreover, this partitioning will eliminate one part of

the user's world, the operating system, leaving him with only the

architecture, a language run-time system and an application.

These two issues are discussed in greater detail in the following

sections. First, the implications of structured programming will be

presented by discussing data and control abstractions as well as the

issues of exception handling and storage semantics. Second, the

implications of providing operating system features will be discussed.

The issues of importance here are processes, inter-process

communication/synchronization, permanent storage and resource

allocation.

- 18 -



1.3.1 Structured Programming

Since the earliest days of computing the production of correct

programs has been of major concern. Recently there has been increasing

concern over the cost of software development and maintenance. These

concerns have resulted in the programming philosophy known as structured

programming.

Structured programming has frequently been referred to as "go-to

less" programming[9] although it is better regarded as a philosophy of

programming centered on the notion of abstraction[13]. An abstraction

of an entity X is another entity Y whose properties are precisely those

of X that are of interest to the user of Y. For instance, a television

is a very complicated electronic device but the consumer sees a very

simple abstraction of the actual device (on/off, channel selector,

volume control, speaker and picture tube).

In the structured programming environment, the programmer first

expresses problem solutions in terms of abstractions that closely model

the application rather than in terms of the primitives of the

programming environment. These high level abstractions are then

implemented in terms of lower level abstractions. This process

continues until the programmer has expressed the problem solution in

terms of the primitives of the language being used. This method of

program development, variously referred to as top-down design or

stepwise refinement[6,8,511, is claimed to lead to programs that are

easy to develop, show correct and maintain.

-i



The languages associated with structured programming have two

other important attributes: a well defined storage semantics and a

built-in exception handling mechanism. The storage semantics of a

language are of importance since they predefine the lifetime of objects

and thus define the extent to which the user is responsible for managing

the logical memory provided by the language.

Exceptions (or abnormal conditions) are to be expected during

program execution since, occasionally, an unusual condition will arise

(e.g. divide by zero, out of storage). Programmers must be aware that

they may occur so as to produce correct programs. The inclusion of an

exception handling mechanism in a high level language, and its use by

the built-in features of the language, results in the user being aware

of exceptions while writing his programs, thus leading to more correct

programs.

The next four sections will discuss each of these issues of high

level languages in turn. Each will motivate the need for some of the

features of the architecture to be presented in chapter two.

1.3.1.1 Data Abstractions

A data abstraction is a collection of objects (data entities) and

a set of operations on those objects, that models the application at

hand so as to make the programming of that application easier. They are

built out of previously defined data abstractions, including the

primitive data types of the programming environment.

- 20 -



Data abstractions have been used for program construction since

the earliest days of computers. The nature of data abstractions within

programming languages has evolved since then resulting in their

increased utility to aid in the production of correct programs. This

utility means that any new computer system should support and encourage

the use of data abstractions. This is done in three ways.

First, to support the use of data abstractions, the architecture

must provide the programmer with the ability to create his own data

abstractions. There should be no user visible distinction between the

data abstractions provided as part of the architecture and those created

by the programmer since any such distinctions will tend to give user

defined abstractions second class status and thus discourage their use.

Second, the architecture must provide the means for objects of

abstract type to be "sealed"; that is, provide a mechanism so that the

underlying representation of objects may be manipulated only by the

programs implementing objects of that type, that type's type manager.

Such protection is important both for insuring the integrity of the type

manager and for limiting errors caused by programs using objects of

incorrect type. Although some languages provide this protection via

compile time checking, sealing is a facility that is needed when

multiple languages are present since all languages do not perform such

checking.

-21-



Third, the architecture must encourage the programmer to use

objects of abstract type so that the programmer can benefit from their

advantages. By defining an object oriented world in which everything is

an object, the architecture causes the programmer to think in terms of

objects in order to use the architecture. Thus the use of objects will

be "natural". The lack of distinction between built-in and user defined

data abstractions, and the ability to easily construct new data

abstractions, tends to enforce this pattern of thinking.

1.3.1.2 Control Abstractions

Structured programming has also considered the nature of the flow

of control in programs. In fact, Dijkstra's concern in his original

letter on structured programming[91 was control flow.

Through the years, the methods for specifying the flow of control

within programs have evolved. The procedure has been constant through

the years. It has changed in small ways, especially in regards

parameter passing mechanisms, but the procedure has basically remained

the same - a parameterized piece of code. There seems little need to

change the procedural model for this thesis.

The means of controlling the flow of control within a procedure

has, however, undergone a major philosophical change - the go to

statement has been replaced with a rich collection of mechanisms to

specify control flow in more structured ways. The effect of this

philosophical change is that the code the user writes is linear since

constructs such as while loops and if statements can be regarded as just
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single statements. This linear code results in a program that is easier

to understand and write correctly.

The mechanism chosen to specify control flow must meet three

criterion. First it must be complete. That is, it must be easy for the

user of the architecture to represent the linear, conditional and

iterative patterns of control flow needed to write programs. Second,

the mechanism must be efficient. Since the mechanism will constantly be

used, it is essential that it impose as little storage and execution

time overhead as possible. Third, the mechanism should be restrained in

its power by the lessons taught by structured programming. In

particular, transfers of control should be regarded as actions local to

a procedure and not as global, inter-procedural actions.

There are two possibilities for an intra-procedural control

mechanism. One possibility is to derive a new control mechanism that is

powerful, simple to use and efficiently implementable. Such a

derivation is not, however, central to this thesis and so is rejected.

The second choice, and the one taken in this thesis, is to use o to

semantics. They are powerful, easy to Use and can be efficiently

implemented. The power of the o to will be tempered by only allowing

transfers within the currently executing procedure, thus eliminating the

most undesirable features of the o to, the non-local transfer of

control.
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1.3.1.3 Exceptions and Exception Handling

Procedure calls in early languages such as Algol and Fortran were

always assumed to return with no error. Erroneous conditions were

handled, if at all, by returning error codes to the caller. Since

errors are a fact of life, it is essential that programmers be aware of

them In writing programs. An exception handling mechanism that is

supplied and used by the architecture encourages the user to be aware of

exceptions in writing programs since the mechanism must be dealt with in

order to use the architecture.

PL/l[22] introduced the notion that a procedure could signal a

condition to inform a caller that something has gone wrong and allow the

caller to fix the problem, If possible. After the handler for the

condition finishes execution, the program raising the condition is

allowed to continue execution. Since abnormal conditions do occur and

the programmer should be aware of them, their introduction by PL/1 is an

important contribution to the production of correct software.

CLU takes an alternative approach to exceptions by allowing a

procedure call to terminate either normally or abnormally. A normal

termination allows the caller to continue at the statement following the

call. An abnormal termination indicates that the call has resulted in

some unusual condition; the caller continues in an exception handler

that is chosen based upon the name of the exception raised and a set of

handlers associated with the abnormally returning call statement. The
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handler is responsible for evaluating the error and determining the

appropriate action of the calling procedure.

There thus seem to be two models of exception handling in

languaF,es[12,28,30: the termination model as in CLU and the

continuation model as in PLI or Mesa[36]. There does not seem to be any

agreement in the language community as to the proper manner in which

exceptions should be handled. For that reason the architecture should

support both exception handling models. Moreover, the built-in

operations of the architecture should raise exceptions so that the user

is forced to be aware of them while programming.

1.3.1.4 Storage Semantics

The nature of the storage provided by a language is an important

parameter of that language. Since the architecture presented in this

thesis must be amenable to the various storage models of high level

languages (recall that multiple languages are to be supported), it is

important to review the various storage semantics of languages to be

sure that the architecture supports the various storage models.

There are three classes of storage provided by languages: static,

stack and heap. Static storage is storage that is associated with all

invocations of a procedure. Every invocation of a procedure will have

access to the same storage. The per-procedure storage in Fortran and

Algol's own storage are examples of static storage.
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Stack storage Is data that is local to a particular invocation of

a procedure. It is dynamically allocated when the procedure is called

and destroyed when that invocation returns. Dynamic allocation is

essential in languages with recursive procedures such as Algol. A stack

al location/ deal location strategy is frequently used to implement this

type of storage, thus its name.

Finally, languages such as Lisp[33] and CLH have a heap oriented

storage semantics. in these languages objects are created when needed

and have a lifetime that is independent of the procedure that created

them. The objects are deallocated only when all references to them have

disappeared, this reclamation taking place through a process known as

garbage collection[32].

The architecture should support all three types of storage. Of

the three, the most general is heap storage. Given a heap oriented

storage system, stack storage is provided by discarding all references

to the dynamically allocated objects when the creating procedure

terminates. Stack storage can thus be regarded as an implementation

optimization of a particular pattern of use of a heap storage. Static

storage is provided by arranging that all Invocations of a procedure

that has static data be given access to that data, which resides in the

heap, whenever the procedure is invoked. As a result of its generality,

a heap scheme will be used in the architecture presented in this thesis.
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1.3.2 Operating System Issues

Usec programs typically do not run in the environment provided by

the bare hardware. Rather, the hardware environment has been enhanced

by the imposition of two layers of software, the operating system and a

language run-time system, between the user and the hardware. The

operating system serves three purposes. First, it serves to isolate the

user from the inelegant aspects of the hardware such as I/O and managing

the virtual memory. Second, it allocates resources to itsusers and

does so ia a way that attempts to be fair to all users. Third, it

provides protection between users to protect one user from the erroneous

or malicious programs of another user.

A language run-time system takes the environment provided by the

operatin7 system and adapts it to the particular needs of that language.

In doing so, the run-time system may need to hide or drastically enhance

and modify the semantics provided by the operating system. For

instance, the operating system might provide block/wakeup as an

interprocess synchronization mechanism while the language provides

message passing semantics.

The thesis will explore eliminating the operating system and

moving its functionality elsewhere. There are four reasons for doing

so. First, the operating system frequently gets in the way of language

run-time systems. Thus its elimination will simplify the job of these

systems. Second, the features of operating systems that are moved into

the architecture may be presented in a manner that is consistent with
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the way in which all other architecturally supplied entities are

provided. Third, architecturally supplied features can be represented

in a language independent fashion. Finally, it simplifies the users

world by giving him two entities, the architecture and the language, to

consider instead of three, these two and the operating system.

An operating system feature should be placed in the architecture

if it is independent of both languages and applications. If a function

is common to many languages, providing it in the architecture simplifies

the implementation of those languages. When an operating system

function involves a shared resource, e.g. a processor, languages can not

be permitted to completely manage that resource due to possible errors

in the implementat on of those languages and due to the assumed mistrust

of one language for another. Thus the management of shared resources

must be architecturally provided. Finally, some features, e.g. 110,

must be provided by the architecture as no software is capable of

providing it (i.e. the basis of some functions must be in the

architecture even if in a primitive form). Languages and applications

will provide the remaining functionality of operating systems by

building upon the architecturally provided facilities.

The separation of function has the following effects. If the

architecture *is implemented as a piece of hardware, there should be

little need for an operating system (and if it is needed it should be

small and easy to implement). If the architecture is regarded as a

compiler intermediate language, a certain degree of operating system

independence for programs will result. Both occur because language
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independent operating system features will have been specified by the

architecture; any mismatches between the hardware underlying the

architecture and the architecture itself will have been handled by the

implementation of the architecture and will not be of concern to the

users of the architecture. The languages will be providing the language

dependent features usually associated with an operating system.

1.3.2.1 Processes and Interprocess Communication

Operating systems provide processes (or tasks or jobs) that

provide each user with one or more loci of control and, possibly, a

separate address space in which each of the loci executes.

Processes are important to users for structuring problem

solutions. They allow the specification of parallelism in the solution

of a particular task and they allow the execution of multiple tasks in

parallel. The first aids the user in solving the many tasks that have

inherent parallelism and asynchrony in them. The second allows for more

efficient use of resources. For instance, processes allow the user to

perform a compilation in the background while interacting with a second

process to edit a file. At the same time a third process could be

listening to a communications network waiting for mail to arrive. The

possibilities are numerous for the use of processes and allowing for

them is important.

To be useful to the user, processes must be cheap. That is, the

user should be able to utilize processes wherever they are natural with

little performance penalty. This does not mean that the process model
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should be carried down to the level of very small activities as in

Hewitt's actor model[17J since an efficient implementation of them is

unknown; instead processes should be used for somewhat larger tasks.

The correct size for processes seems to be somewhere between Hewitt's

approach in which, conceptually, a process (called an actor in Hewitt's

terminology) exists that adds two integers together and the Multics

process[37], which is such a large entity that the user generally can

only have one of them. Such a middle ground might be processes that

correspond to the execution of a task such as an editor or compiler as

in Unix[43].

Processes must be pro.ided at the architectural level in order to

allow multiple languages to coexist. If languages provided all

processes, there would be no way to guarantee that once one language

began running, it would ever let other languages run. This is

unacceptable in th, assumed environment where trust is not always

present.

I.
Parallel processes need to coordinate their activities (e.g.

access to shared objects) as otherwise chaos results. The architecture

must provide the basis for an inter-process synchronization mechanism

as, ultimately, all inter-process synchronization mechanisms depend on

some architecturally supplied facility, no matter how primitive.

- 30 -



1.3.2.2 Permanent Storage

In language systems, all of the storage associated with a program

is destroyed when that program terminates. Long term storage is

provided by the operating system and is outside of the scope of the

language system. Since the user lives in a world in which long term

storage is important (e.g. for inventory records or programs), it Is

important that the architecture provide the user with a notion of long

term storage.

In traditional systems the user gets long term storage either via

operating system guarantees (e.g. the programmer gives a file to the

operating system and the operating system guarantees that the file will

be there so long as the user desires it to be) or by gaining access to a

raw storage medium (e.g. disk or magnetic tape). The first provides for

permanent storage within the system while the second provides a means to

transfer data outside of the system for safe keeping (or for simple

transferal to another site). As both forms of permanent storage are

important to users, the architecture must provide both.

The question is how to provide both forms of permanent storage.

Due to the wide variety of 1/0 devices, the architecture must provide a

means for the user to interact with each device individually to store

and retrieve da ta. For system supplied permanent storage, it is
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sufficient for the architecture to treat any information given to it as

permanent and keep it in as safe and permanent a manner as possible.1

1.3.2.3 Resource Allocation

A prime task of an operating system is to allocate the available

resources to its users. Resources of potential interest include

processor time, primary memory, permanent storage and peripheral

devices.

Since processor and memory resources are provided by the

architecture and since, even in the personal computing environment,

their use needs to be controlled, the architecture must provide the

means for controlling their allocation (no program or language can be

entrusted with this task). The allocation of peripheral devices is not

as important since users seldom use them. As a result, the architecture

need only provide the means for resource allocation primitives for them

to be constructed either by language systems or by applications. Again,

due to mistrust, no program or language run-time system can be allowed

to provide this basic function.

1. The issue of backup and recovery is deliberately avoided here. It
represents a research problem in and of itself and so is beyond the
scope of this thesis.
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1.4 Efficiency Considerations

If the architecture of the thesis is to be practical, it must be

possible to efficiently implement it. An implementation need not run as

fast as a large vector processor but it can not be as slow as a hand

calculator either. A reasonable goal is that programs running on an

implementation of the architecture run with a speed that is competitive

with their execution time on more traditional architectures.

In judging the speed of an implementation, it must be remembered

that this architecture is a higher level architecture when compared to

present day processors. As a result, the comparison of average

instruction execution times is not the right metric; the correct

procedure Is to compare instruction sequences that perform comparable

tasks.

Another aspect of efficiency is memory utilization. The amount of

physical memory required to perform some task while using the

architecture should be comparable with the amount of memory required to

perform the same task on a conventional computer. Inefficient use of

memory comes from implementation overhead (information stored for the

use of the implementation and not for the user) and from implementation

inefficiencies (being unable to use all of the memory potentially

available to store user data).

Both storage and processor inefficiencies are inevitable in

providing the kind of environment proposed in this thesis. Overhead

must, however, be minimized to make an implementation viable. Its
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impact, however, must only be judged in relation to the corresponding

inefficiencies on conventional systems and not in an absolute manner.

1.5 Summary of Goals and Assumptions

This chapter has explored a number of issues related to the design

of a high level architecture for a personal computer. This section will

review the various assumptions and goals that have been presented.

The architecture of the thesis can be regarded as the

specification of a structured programming machine. It must support the

notions of structured programming that have been found most important:

data abstractions and control abstractions. An exception handling

mechanism is needed since abnormal conditions are a fact of life that

programmers should be aware of. A heap storage will be provided by the

architecture since it is the most general of the various possible

storage semantics. Other storage semantics, such as stack and static

storage, will be built using the basic heap mechanism.

The traditional operating system will disappear. Its functions

(processes, inter-process communication/synchronization, permanent

storage and resource allocation) will reappear In three places: the

architecture itself, language run-time systems and in applications. The

separation of traditional operating system function into
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language/application independent and dependent parts will be an

important result of the thesis.

The architecture is being designed in the context of a personal

computer. This means that the architecture must be economically

feasible to build, thus limiting its potential complexity. This thesis

assumes that multiple languages will be run on the personal computer

resulting in the need for architecturally supplied checking to protect

objects created by one language from unauthorized manipulation by

programs written in another language.

Even in the personal computing environment, the user does not

always trust himself or the programs he is running (e.g. debugging a

program or running a borrowed program). As a result, the architecture

must allow the user to execute such programs in a way so that they can

only cause limited damage. This facility is assumed to be used

infrequently so that its impact on normal operation must be limited.

An overriding assumption throughout this chapter, never explicitly

stated, has been that of completeness. Basically, this thesis assumes

that the user of the architecture only runs in the environment provided

by the architecture; the user can not step outside of the architecture

to fix a problem as he can in most language systems (where he can escape

to an operating system provided interface). Thus the user must be able

to prevent, detect and fix any and all problems that might arise while

using the architecture itself. This implies the need for computational

completeness as well as mechanisms for allowing the user to protect
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himself from himself. To a very great extent it is the completeness

requirement that forces the various protection oriented facilities

previously motivated to be provided.

1.6 Other Related Work

The previous sectiotns have described the motivation, assumptions

and goals of the thesis. In that process a variety of related work has

been mentioned. This section will examine the relation between this

thesis and other related work.

1.6.1 High Level Machine Architectures

This thesis is proposing the design of a high level architecture.

A number of other researchers have investigated the area of higher level

machine architectures.

McKeeman[34] has argued rather forcibly for machine architectures

that are at a higher level than traditional von Neumann architectures.

Others have proposed, and in some cases built, high level machines.

McMaban[35], in his PhD thesis, explored the design and

implementation of an architecture that was oriented around Algol-68.

Hoch(21] in his PhD thesis discussed an architecture that is designed to

support the Gypsy language[l]. In 1973 a conference was held at the

University of Maryland(38] to discuss high level language machine

architectures. The architectures discussed in this conference were

designed to primarily support one language with APL being particularly

popular. All of the work described above has the property that the
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architecture is designed to primarily support a single language. The

architecture of this thesis will be applicable to a wide variety of

languages (although it would be improper to suggest that the

architecture is not oriented towards a particular language, CLU in this

case). This thesis also differs from the cited work in that it

addresses a wider variety of issues than just language oriented ones -

in particular, the various operating system issues mentioned earlier are

of importance.

Bishop[5] and Snyder[47] have designd systems for supporting an

object oriented style of programming. in both cases, however, the

principle concern has been the solution of the memory management problem

- the management of a large heap of objects that reside both in primary

and secondary memory. In both cases, the architecture is just a

framework for posing the memory management problem. In this thesis, the

principle concern is the architecture itself; the implementation

concerns are of a secondary nature.

1.6.2 Capability Machines

This thesis also is related to the various work that has been done

on capabilities and capability based machines. Capabilities were

originally proposed by Dennis and Van Horn[7] as a protection mechanism

and are nothing more than unforgeable pointers to objects (segments in

the cited paper). Fabry[11] investigated the use of capabilities as an

addressing mechanism.
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There have been (at least) three capability based systems reported

in the literature. The Cal-TSS system[25] was a capability based system

that ran on top of a CDC-6600. All of the capability mechanism was

provided by software. The CAP system[50] runs on a special purpose

processor that implements capabilities in hardware. Hydra[53] is an

operating system that runs on a multiprocessor configuration of PDP-11's

that provide minimal support for capabilities in the form of address

mapping hardware. All three of these systems have taken a conventional

architecture and added capabilities to that architecture for the purpose

of providing protection facilities. For the most part, user programs

see a conventional execution environment. This thesis differs from

these machines in that capabilities form the basic addressing

architecture at all times during the execution of user programs.

Moreover, the approach of this thesis has roots both in language

considerations and in operating systrio issues.

1.7 Thesis Outline

The remainder of the thesis presents an architecture that meets

the goals presented in this chapter. The nature of the thesis is such

that a great deal of material must be presented in order to demonstrate

that the goals of the thesis have been met. The reader is asked to be

patient until the end when the entire thesis can be placed in

perspective.
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Chapter two will present the architecture itself. Chapters three

and four will demonstrate one possible implementation of the

architecture. Chapter three will concentrate on the logical memory

management issues involved in implementing the architecture. These are

the hardest implementation problems as they require the creation of

algorithms, rather than simply data structures. The algorithms

presented are based upon the work of Bishop[5] on garbage collecting

large address spaces and the real time garbage collector of Baker[3].

Chapter four will concentrate on the remaining issues involved in the

implementation: management of physical resources, especially memory,

implementing the basic types of the architecture and some possible

hardware assists to produce an efficient implementation. Chapter five

will show some ways in which the architecture can be used. The focus is

demonstrating the unusual aspects of the architecture, especially in

regards to the implementation of languages on the architecture. Chapter

six will review the results of the thesis and attempt to show why the

goals of the thesis have been met. It will also propose some areas for

further research.
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Chapter Two

The Architecture

4

Chapter one has presented the primary goal of the thesis- the i4

design of a high level machine architecture. This chapter presents an

architecture that conforms to this goal.

A major goal is to provide support for objects at all levels. In

fact, the goal is to present users with an object oriented view of the

world that includes both large objects, such as files as in CAP and

Hydra, but most importantly very small objects, such as integers as in

CLU. For this reason, this architecture can be characterized as a small

object processor and thus will be named AESOP (An Experimental Small

Object Processor). 

In AESOP, everything will be an object. This includes not only I

integers, booleans and vectors, but also unexpected things such as

processes and procedures. Even operations that control execution (e.g.

procedure calls and go-to statements) will be provided as operations on

some object. Thus AESOP is defined by the types it provides and the

operations provided on objects of those types.

The set of proposed basic types and operations is intended to be

representative of the types that the architecture should, and in some

cases must, support and not a definitive set. The computational data

types (e.g. booleans) may be modified or replaced so long as sufficient
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computational power remains to meet the needs of users. The remaining

types are essential as each is representing some part of a complete

system as a type. However, the reader should feel free to augment or

modify this set so long as the various parts of a computer system

continue to be represented.

In discussing the basic types, two liberties are taken for

expository simplicity. First, not all operations on a given type are

presented in this chapter or in one place. Instead, only the operations

essential to the current discussion are given. Appendix A should be

consulted for a complete list. Second, the description of operations

ignores the possibility of an operation returning abnormally (e.g.

attempt to divide by zero). All operations detect and signal, via a

built-in exception handling mechanism, all of the errors that the reader

would expect. Again, Appendix A should be consulted for a complete

listing.

The following syntax will be used to present operations:

type_name$operation (input parameters) returns (results)

For example, A$B(W, X) returns(Y, Z) defines the B operation on objects

of type A to take two input values (W and X) and return two values (Y

and Z). Each parameter (result) may have a type specification to

indicate an expected (returned) type (e.g. X:integer specifies X as an

Integer). If no such specification exists, the type of the argument

(result) is not constrained by the architecture.
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This chapter is divided into two distinct parts. The first three

sections discuss basic AESOP semantics. The remaining sections discuss

higher level notions that are needed to meet the completeness goals of

chapter one. Section one discusses naming in AESOP - what it means to

say that one object contains a reference to a second object. Section

two presents AESOP's computational data types. Section three discusses

execution in AESOP: what is executable and how it executes. Section

four presents a mechanism that uniformly treats the creation of objects

of extended type, control of access to objects and the revocation of

access to objects. Section five discusses those features of AESOP that

are subsuming traditional operating systems: processes, interprocess

synchronization, storage management, I/O, system initialization and

system shutdown.

2.1 The Naming Architecture

A fundamental architpctural decision is how objects are named by

other objects. The basic naming mechanism will define the extent to

which two objects can share access to a third oblect and will define the

ability of programs to acquire the names of objects.

AESOP allows an object to directly refer to any other objects

within AESOP by containing the names of those objects. A name is an

unforgeable pointer to an object (i.e. names are like capabilities).

Unforgeable names have been chosen since they limit errors by preventing

the construction of arbitrary pointers and provide a limited form of

protection since a program can not access an object unless it has been
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given the name of that object. Unforgeable pointers are one tool used

in AESOP to aid the user in not injuring himself.

Note that objects contain the names of objects and not the values

of objects. As a result, two objects may share access to a third

object. This permits the construction of arbitrary graphs of objects,

including the important case of cyclic data structures such as circular

lists. Chapter four shows how objects may efficiently refer to certain

built-in objects (e.g. integers) so that the indirection implied by this

naming scheme is not an efficiency problem.

2.2 The Basic Computational Data Types

To support effective computation, AESOP must provide some data

types to compute with and a data aggregation facility to allow the

creation of complex data structures. This section describes a set of

types for AESOP that meets these needs.

For computational purposes, AESOP will provide booleans,

characters (which are not character strings) and a possibly finite

subset of the mathematical integers. All of the expected operations

will be provided. In addition, the null type, which has one object

(nil), exists. The only operation on nil is to ask if it is nil so a

reference to nil is, in essence, a reference to nothing. It is useful

for cyclic data structures (e.g. for marking a leaf node of a tree).
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A vector, AESOP's data structuring facility, is used to aggregate

a number of objects into a larger one. It is an ordered sequence of

names, referring to objects of potentially arbitrary type that is

indexed by positive integars. Thus i character string would be formed

by creating a vector of some length and then filling in the entries in

the vector with the names of characters.

Some operations on vectors are presented in Figure 2.1. There are

two aspects of vectors that are of note. First, an initial value must

be supplied whenever a vector is created or its length increased (by a

modify operation) so that all elements of a vector are always

initialized. This permits an AESOP implementation to be more space and

time efficient since it need not be concerned with uninitialized vector

entries.

Second, vectors may be restricted to objects of one type through

the nature and new nature arguments. If these are nil, v may refer to

objects of arbitrary type. Otherwise nature refers to a type manager,

the AESOP object that implements objects of a given type (see section

vector$create(size:integer, nature:tm, initial-value) returns(v:vector)

vector$newstatus(v:vector, new nature:tm, new_size:integer,

initialvalue)

vector$ref(v:vector, i:integer) returns(value)

vector$status(v:vector) returns(size:integer, nature:tm)

vector$store(v:vector, i:integer, value)

Figure 2.1. Some of the operations on vectors.
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2.3.2.3), and all elements of v are restricted to refer to objects of

that type. The ability to restrict the types of vector entries is

included for two reasons. First, it permits the architecture to perform

same checking for the programs running on AESOP. Second, it permits the

implementation to optimize the storage of certain vectors (e.g. a vector

of booleans) as will be seen in chapter four when the implementation of

vec tors is discussed.

2.3 Execution in AESOP

The basic executable unit in AESOP is called an execution triple

for reasons that will be clear shortly. This section will answer three

questions: What can be executed? How does execution begin? Once begun,

how is control flow within an execution triple handled?

The discussion has three distinct parts. First, the fundamental

components of execution are discussed by describing the nature of code1

and the way in which executing code refers to objects. Second, the

ability of the user to treat these components as objects, to create an

execution triple from such objects and to cause the execution triple to

begin execution is discussed. Third, the means by which control flow

within an execution triple is controlled is discussed including how an

execution triple ceases execution, either normally or abnormally, and

returns values to its invoker.
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2.3.1 The Execution Triple

An execution triple is the basic executable unit of AESOP. It is

not an AESOP object but is, rather, an object that is conceptually

hidden by AESOP and simply used to express execution in AESOP.

Conceptually, an execution triple is presented to the code interpreter

of a process for execution so as to change the state of that process.

Thus the process type manager is responsible for executing execution

triples.

An execution triple consists of three components. First is a code

segment, an object that contains the actual instructions executed by an

AESOP processor. The second and third components specify the naming

environment in which that code will execute.

2.3.1.1 Code Segments

Objects of type code segment contain the instructions that are

executed in an execution triple. Code segments are created via the

operation:

code seg$create(rep) returns(cs:codeseg)

where rep describes the contents of the code segment. The form of the

input to create is discussed later in this chapter. Create is the only

operation on code segments, so code segments are immutable, and the

errors self-modifying code can cause are avoided.
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A code segment is an ordered sequence of instructions each of

which is a call on some type manager. In AESOP, an object can only be

manipulated by its type manager and not by any program that decides it

should examine the object. Thus it makes no sense to have an

instruction that is not a call on a type manager as it could not do

anything. At first the reader might object that an operation such as

procedure call is needed. However a procedure is just an object and, as

such, operations on it are provided by its type manager. So, in fact,

the only possible instruction is a call type manager instruction.

2.3.1.2 The Naming Environment for Execution Triples

Since a code segment is an object, it may contain the names of

other objects. Thus ohjects may be referred to directly during

execution. In addition, a code segment may refer indirectly to objects

by using the other two components of the execution triple, the local

name space (LNS) and the global name space (GNS).1  Such a reference is

an ordered pair of the form (name-space, index) where name-space

specifies either the current LNS or the current GNS and index is a small

integer used to select the index'th name from the indicated name space.

Figure 2.2 shows an example of an execution triple P that is executing

in an environment with the given code, LNS and GNS. By executing using

a different INS and/or GNS, the indirect object references in a code

segment change meaning (i.e. they are context dependent names with the

1. Name spaces are similar to Hydra C-lists[54] and CAP
indirectories[501.
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Exec ut ion
Triple

X <--- refers to X directly

(LNS, 1) <--- refers to X

(GNS, 2) <--- refers to Y

(LNS, 4) h
--- refer te Z

(GNS, 3)

Code

2 2 Y

3 3 Z

4 0
Local Global

Name Space Name Space

Figure 2.2. An example of the use of name spaces.

LNS and GNS as the context) while the direct references are unchanged

(i.e. they are context independent).

A name space is nothing more than a vector of names of objects of

arbitrary type. A name space is distinguished from other vectors only

by its use in an execution triple; it may still be manipulated as a
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vector. The ability to treat vectors as name spaces and conversely is

very useful as will be seen in the next section.

The importance of name spaces becomes most clear when procedures

are considered. As will be seen later in this section, invocatio- of a

procedure causes execution to continue in a new execution tript, that

has a newly created LNS in it. The per-invocation LNS means that

procedures are reentrant since the LNS may contain the names of objects

that are local to the current invocation of the procedure (e.g. local

variables and parameters) by reserving an entry in the LNS for each of

the procedure's local variables and parameters.

The GNS will contain references to objects that need to be known

to most procedures within a process (e.g. operating system interfaces

and language run-time support routines). This use of the GNS represents

an important space optimization - "factoring" common object references

out of the LNS's and code segments of a collection of procedures. More

importantly, the resulting GNS is a virtual machine interface for those

procedures since they expect certain GNS entries to contain references

to objects with certain properties (e.g. entry 3 might be a log

routine). By creating a name space containing the names of a new set of

support routines and running a procedure with that name space as a GNS,

it is possible to present a new virtual machine interface to that

program. This feature is useful for debugging programs and for

encapsulating programs. For instance, while debugging a new database

manager, a user might want to give that program access to the file

system through a program that filters requests to the file system for
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validity and generates an audit trail for debugging purposes. By

running the database manager in a GNS that contains the name of the

filtering file system interface, and not the regular file system

interface, the filtering and auditing is accomplished in a simple manner

that is transparent to the database manager. Thus the GNS is another

means for the user to protect himself from himself.

2.3.2 The Creation of Execution Triples

The creation of an execution triple requires the specification of

a code segment and two vectors, one to act as an LNS and one to act as a

GNS. AESOP provides three means of creating execution triples: by

explicitly specifying all three components, by procedures and by type

managers.

2.3.2.1 Closures and Components as Objects

Closures are the first means of creating an execution triple. A

closure is a triple consisting of a code segment and two vectors, one an

LNS and one a GNS. Closures are, in essence, pieces of code that come

with a fixed, unchanging naming environment. The operations on closures

are given in Figure 2.3. The create operation makes a new closure out

of its arguments. The run operation causes closure cl to be executed

closure$create(cs:code segment, lns:vector, gns:vector)
returns( cl :closure)

closure$run(cl:closure) returns(res(l), .... res(N))

Figure 2.3. The operations on closures.
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with its component objects forming the execution triple. Conceptually,

the closure is unpacked and an execution triple created and passed to

the process code interpreter for execution. Any results returned by cl

are placed in the res as described later in this section.

Closures provide two facilities. First, they provide protection

when an executable body of code needs to be passed through an untrusted

intermediary since closures are inviolate. Second, programs can create

vectors and code segments of any sort a ,d pass them to closure$create to

create a closure that can subsequently be executed. The resulting

execution triple can be of arbitrary form, thus giving programs complete

control over the contents of execution triples. This can be used both

to create execution triples for immediate execution and to permanently

bind a code segment to an execution environment for subsequent

execution.

2.3.2.2 Procedures

Procedures provide procedural abstractions (i.e. parameterized

pieces of code) and are the second way to create execution triples.

From the point of view of execution, procedures provide a simple way of

creating a particular stylized execution triple, one with a

per-invocation LNS to handle parameters and local variables.

A procedure is a pair of elements: a template LNS and a code

segment. When the procedure is called, the template LNS is copied into

a newly created vector and the copy becomes the LNS for the procedure

activation. (Note that this allows procedures to be reentrant.) The
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code segment in the procedure's representation is the code segment that

will be executed when the procedure is called and is the body of the

procedure. The operations on procedures are given in Figure 2.4.

The create operation creates a new procedure, p, with cs as its

body and t ins as its template LNS. P requires at least mmnargs

arguments but no more than maxargs arguments (if maxargs is nil, an

arbitrary number of arguments are permitted). Start specifies the

location in p's LNS where its parameters are to be placed when it is

invoked.

The call operation invokes p, passing the arguments (arg(i)} as

parameters to p, by the following scheme. First, an LNS, call it L, for

the invocation of p is created by copying p's template LNS. Next, L[]3

is set to L to allow the procedure to refer to its own LNS. Next,

L[start] is set to the actual number of arguments passed. The arguments

are passed to p by setting L[start+i] to arg(i). An execution triple

consisting of code segment cs, L as its LNS and the GNS of p's caller as

its GNS now begins execution. Any return values are placed in locations

in the caller's naming environment as specified by (res(i)). When P

proc$call(p:proc, arg(1), .... arg(N)) returns(res(l), .... res(M))

proc$call_with_gns(gns:vect.r, p:proc, arg(1), ..., arg(N))

returns(res(l), ..., res(M))

proc$create(cs:code_segment, tlns:vector, mi args:integer,
maxargs:integer, start:integer) returns(p:procedure)

Figure 2.4. Some of the operations on procedures.
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manager, and thus a new type, that has proc(i) as the procedure

implementing its i'th operation. Operations provided by type managers

are invoked by AESOP instructions (recall that every instruction invokes

a type manager).

2.3.3 Control Flow

The previous section showed how new execution triples are

submitted for execution. When an execution triple begins execution, the

first instruction of its code segment is executed. This section

discusses the subsequent flow of control, i.e. which instruction is

executed next and how an execution triple ceases execution and returns

values to its caller.

2.3.3.1 Returns from Execution Triples

An execution triple can return to its caller in one of two ways:

normally or abnormally. A normal return is effected either by executing

the operation process$return(<results>) l or by falling off of the end of

the code segment. In either case, execution of the caller resumes at

the instruction immediately after the call. The first may return

results to the caller while the second does not. If the number of

returned results (say R) does not match the number of results that the

invoker expected (say M), only min(M, R) results are actually returned.

1. Recall that all operations concerning execution triples are
provided by the process type manager. The process type manager is
discussed further in Section 2.5.1.
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The invoker is responsible for detecting that a mismatch in the number

of returned arguments has occurred.

An abnormal return (i.e. "raising" an exception) is effected by

the operation process$signal(signal, argument). It causes the caller to

be returned to at its abnormal return point. The argument signal is

returned as the signal name and argument is returned as the argument to

the handler. Only a single argument is provided to simplify the

architecture; more complicated signal arguments must be provided for by

"packaging" multiple values into a vector and returning that vector.

Exception handling is discussed in more detail after discussing

intra-procedural control flow.

2.3.3.2 Intra-procedural Flow Control

The basic unit of execution in AESOP is the code segment, a

linearly ordered sequence of instructions. As a code segment is being

executed, the normal course of action is to execute the instructions in

order, starting with the first one. There is, however, a need for

non-sequential execution to handle the conditional execution of code.

As motivated in chapter one, AESOP uses a restricted form of

"Igo-to" semantics in which transfers are only permitted to another

instruction within the same code segment. Transfer of control within a

code segment occurs in either a conditional or unconditional fashion.

Unconditional transfers are handled by the operation:

process$transfer(offset:integer)

which causes execution of the current code segment to continue at the
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instruction that is "offset" instructions (positive or negative offset)

from the current instruction. Thus process$transfet(+2) skips execution

of the next instruction while process$transfer(O) is a null, infinite

loop. No explicit process or code segment argument is given so that

only execution of the current code segment, in the current process, is

effected. This restriction eliminates the most dangerous aspect of

go-to semantics, the non-local go-to.

Conditional transfers are also provided by the process type

manager. For example, the operation:

process$boolean-branch(b:boolean, if-true:integer, if_false:integer)

branches using either if true or iffalse as the offset depending on the

value of b. Other, similar operations, can be imagined but will not be

discussed here - see Appandix A for a complete proposed list.

2.3.3.3 Exceptions and Exception Handling

Chapter one motivated the need for AESOP to provide the means for

handling exceptional conditions during execution. There are two models

of exception handling: the continuation model (as in Mesa[36] for

instance) in which the program raising the exception continues after the

handler for that exception terminates and the termination model (as in

CLU for instance) in which the program raising the condition terminates

by the act of raising the exception.

In the continuation model, exception handlers are little more than

procedures. This model can be achieved by passing along with every call

a procedure that will handle any exceptions that are raised. The act of
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raising an exception becomes the calling of the procedure that was

passed as an argument. Since it is so easy to obtain, the continuation

model is dismissed at this point from an architectural point of view.

The termination model can, however, use some architectural help

since the only means to implement it within the mechanisms thus far

presented is to pass error codes as return arguments and check them on

return (i.e. call P( .... code); if code -- 0 then <error handler>).

This is a workable, but inelegant, scheme. It is also probably not as

space or time efficient as a scheme built into the architecture. So

instead, associated with every instruction will be the offset of the

instruction that should be transferred to (via a forced "go-to"

operation) whenever the called procedure makes an abnormal return. For

instance, the "instruction":

integer$add(a,b,c) except(+10) normal(+1)

causes execution to continue at the next instruction whenever

integer$add returns normally but 10 instructions following this

instruction if integer$add returns abnormally. Thus the instruction 10

instructions after this one is the initial instruction of the exception

handler. Once the architecture does the forced transfer to the handler,

it forgets that the exception and subsequent transfer has occurred; it

acts as if the program itself had executed the transfer instruction.

When an execution triple returns abnormally (via the previously

described processsignal operation), the arguments to that operation are

placed in entries 2 and 3 of the LNS of the program that invoked the
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execution triple. This information allows the handler to determine what

the error was and act accordingly.

Note that if the exception handler should invoke a procedure that

returns abnormally, the information passed to the initial handler will

be overwritten by the information passed to the new handler. An

automatic stack of exception handler information is not provided as it

introduces a great deal of Implementation complexity to handle an event

that can be avoided by proper programming. Since most code segments

will be provided by compilers, the compilers can handle this problem in

a manner that is transparent to programmers.

2.3.4 The AESOP Instruction Set and Code Segments

Now that all of the parts of the AESOP execution environment have

been presented, the nature of AESOP instructions can be given.

Basically, an Instruction must specify a type manager to be called, an

operation to be performed, arguments to be passed, where results are to

be placed, a normal return point and an abnormal return point. This

section will discuss the information that must be supplied, in the rep

object, for each instruction in the code segment that codeseg$create

will create so as to permit subsequent execution of the code segment in

accord with the mechanisms presented earlier in this section.

The basic format of an Instruction is given in Figure 2.5. The

effect of the instruction is to call some type manager, passing the
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Type Operation Normal Abnormal Argument Result

Manager Number Return Return Spec. Spec.
Spec. Spec. Point Point (>0) (>0)

Complete set of operands to an instruction.

3 ~ "NS Index 1 litei~I ~ ral

The forms for all fields except results.

[F'S1 Iindexj B Si"

The forms for a results specification.

Figure 2.5. Complete options for instructions.

objects specified in the instruction as arguments and possibly returning

some objects as results.

The name of the type manager to be called is specified by the type

manager field. The first form permits explicit reference to the type

manager to be included in the instruction. The second form retrieves

the index'th entry from the current LNS, which must name a type manager,

and invokes that type manager. The third form works similarly by

retrieving a reference to a type manager from the current GNS. The

fourth form allows the specification of a literal (e.g. a character

string) that names a built-in type manager. In this case,

codeseg$create interprets that literal to determine which type manager
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to invoke and, conceptually, places a reference to that type manager in

the produced code segment.

The operation number, normal return point, abnormal return point

and arguments are specified in a similar manner. In these cases,

however, the literal may denote any built-in object (e.g. the character

string "7" may denote the integer 7). The presence of literals not only

permits easy access to built-in objects but also allows an

implementation of AESOP to optimize instructions based upon known values

passed to codeseg$create.

The operation number field specifies which operation is to be

performed, by giving the positive integer, call it i, that is the "name"

of the operation. The i'th procedure passed to the tm$create operation

that created the invoked type manager will be invoked.

The normal return point specifies, as an offset relative to the

current instruction, where execution should continue if the instruction

returns normally. It defaults to +1 (i.e. the next instruction).

The abnormal return point specifies where execution is to continue

if the instruction terminates abnormally. It specifies the offset of

the exception handler and defaults to the normal return point (i.e.

ignore the error) in which case the arguments normally supplied to an

exception handler are not supplied.

- 61 -



The argumnt fields, of which there may be zero or more, refer to

the objects to be passed, in the given order, as arguments. The form

for arguments allows them to either be fixed (the "name" and "literal"

options) or dynamically bound (the indirect through name space options).

The number of arguments must be acceptable to the invoked operation or

an exception is raised.

The result fields specify where the results of the call are to be

placed (i.e. where in the caller's LNS or GNS). The i'th result of the

invoked procedure is placed in the location as specified the i'th result

specification. If there are M results specified in the instruction and

R results actually returned, only min(M, R) of the result locations will

be assigned to.

The object rep passed to code.seg$create is nothing more than the

specification of a sequence of instructions of this form that are

sequentially numbered starting from one. The actual form of rep is

unspecified by the thesis as the possibilities are numerous and the

details irrelevant for the purposes of this thesis. The only constraint

is that all of the possibilities inherent in Figure 2.5 be allowed.

One final note on the execution environment is needed to complete

the discussion and this concerns assignment. The form of AESOP

instructions only allows accessing and setting LNS (GNS) entries as part

of invocation. Copying a reference in one LNS (GNS) slot to another

must be accomplished by using this basic mechanism; there is no

copyreference instruction. This is accomplished by acquiring a
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reference to the LNS (GNS) and then invoking vector$ref with that

reference to retrieve the object reference to be copied and placing the

result returned by that operation in the appropriate place.

2.4 Object Viewers

This section presents the AESOP mechanism used to implement

extended type objects and provide the capability for access restriction

and access revocation. The surprising fact is that these three

activities, seemingly different at first, can be regarded as being

special cases of the same general mechanism. The common property of

these activities is that they all permit different users of an object to

have different views of that object; extended type objects hide the

representation of an object from its users and allow only its interface

specifications to show through; access restriction presents an object

that does not support all of the operations normally associated with

objects of that type; and access revocation causes previously possible

operations to no longer be available. Since the common property of

these activities is that they present users with differing views of an

object, the mechanism used to implement these activities is called the

object viewer mechanism.

The basic object viewer mechanism, shown In Figure 2.6, is

inspired by the access revocation mechanism proposed by Redell(40]. An

object viewer is a triple whose first part is the name of a typeI
manager. This name specifies the type (i.e. the name of a type manager)

of the object that is seen when the object viewer is referred through.
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Viewed Type

Obj ec t
Reference

Access
Restrictions

Figure 2.6. An object viewer.

The second field refers to an object. The object viewer is providing a

new view of this object; it is the object "seen" in the object viewer.

The third field is a bit vector that specifies, by having true in its

entries, which operations can not be performed upon the viewed object.

The association of an operation with a bit of the access restriction

field is unspecified by AESOP; instead it is interpreted by the type

manager specified in the type field. A likely association is that the

i th bit controls access to the i'th operation. To illustrate the

interactions of the three fields in the object viewer, the next few

paragraphs will show how this basic mechanism can be used to achieve the

three effects previously mentioned.

First consider access restriction. Suppose a program wishes to

pass an object Y of type FOO to another program but does not wish

certain operations (e.g. modifications to Y) to be performed upon Y. In

this case the first program creates an object viewer with the structure

of objects illustrated in Figure 2.7 and passes the name X to the called
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FOO

X--- Y - Y, of type FOO

AR I 

Figure 2.7. Using an object viewer for access restriction.

program. The object viewer in this case specifies that the name X

refers to an object of type FOO (the same as that of Y) and the object

viewed when X is referred to is Y. The bit vector AR specifies the

restrictions upon the way that the called program may use the object it

has been passed.

Suppose the second program wishes to pass X to a third program and

restrict that program's access to X. It does so by creating a new

object viewer as shown in Figure 2.8 and passes the name W along to the

third program. When the third program uses W it "sees" the object Y (W

"sees" X which transparently "sees" Y) of type FOO so that any

FOOI FOO

W- XW Y Y, of type FOO

AR" AR

Figure 2.8. A chain of access restriction object viewers.
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operations performed using W result in operations on the object Y. The

access allowed to the object Y by users of the name W are specified by

the minimal access rights specified by AR and AR', AR or AR'. The

effect of object viewers is thus cumulative.

Another use of object viewers is for type extension. Suppose that

it is desired to create an extended type object, to be named X, of type

FOO from an object named Y of type BAR. Figure 2.9 illustrates how an

object viewer would be used to accomplish this. The reference X is a

reference to an object of type FOO with the access restrictions

specified by AR restricting which operations may be performed on the

viewed object (i.e. the object of type FOO). The presence of AR allows

the creation of objects of type FOO with varying restrictions on access

to that object. This permits, for instance, the file type manager to

also provide the "types" readonlyfile and streamfile. To have

operations performed on the extended type object X, the name X must be

passed to the type manager FOO. Thus the object X has been "sealed"

against unauthorized manipulation. Only the type manager FO0 can

"unseal" the object viewer and get at the representation object Y and

FO0

X -- 0. Y

Figure 2.9. Type extension using object viewers.
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the access restrictions AR. This allows the type manager to:

1. Determine which operations are permitted on the

object X by examining AR. 1

2. Perform operations on the representation object Y.

No other architectural facilities are necessary to allow the type

manager to perform its job.

If the object viewer named by X is to truly "seal" Y, permission

to perform the unseal operation must be restricted to the type manager

FOO. AESOP enforces this by ensuring that the procedure attempting to

perform the unseal operation has been invoked as part of a type manager

specified as the viewed type in the object viewer that is being

unsealed. Thus the name of the type manager is the "key" that allows

the object viewer to be unsealed. If this condition is satisfied,

unsealing is allowed; otherwise an exception is raised.

If the ability to perform the "seal" operation were not

restricted, any program could seal an object making an object of

arbitrary type. When this object is passed to the type manager for that

type, the representation of the extended type object might be incorrect

and could result in incorrect operation of the type manager. The type

manager could protect itself from this kind of misbehavior on the part

1. This interacts with using object viewers for access restriction.
The operations described below handle this case correctly, i.e. access
restrictions will be cumulative even in this case.
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of other programs; 1 however, this seetas to be an added burden on the

programmer that is best avoided (especially since the programmer is

unlikely to remember to perform the necessary checking at all of the

appropriate times). For this reason the seal operation, in which an

extended type object is being created, is restricted in the following

manner:

1. It may only be performed by a type manager.

2. The field "type" in the created object viewer may
only be filled in with the name of the type managerperforming the seal operation.

With this restriction, only a type manager may create an object viewer

that makes an object look like an object of that type.

Dynamically changing access is achieved by modifying object

viewers. Figure 2.10 shows the basic mechanism. X is an object viewer

Object FOO
Viewer

X- Y Z Zo y F

AR AR'

Figure 2.10. Modifying one object viewer with another.

1. This might be done by Including an unforgeable key in the

representation for each object (this is similar to the mechanism
proposed by Henderson[151). Such a key might be the name of an object
that the type manager never allows to be passed beyond its control.
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that has as its type field object viewer and its object reference field

names another object viewer, Y. Assume that the access restrictions

mentioned in X, AR, impose no restrictions on manipulating object viewer

Y. The name X then allows modification of the access restriction and

object reference fields in Y. Note, however, that the type field may

not be modified since such modification leads to the same problems, in I

regards to type managers, as mentioned in the case of restricting the

ability to perform the "seal" operation. Also, this would change the

type of a user's reference dynamically and, although potentially useful,

seems far too dangerous to allow. Even so, a program possessing the

name X has great power over the contents of the object viewer Y so

possession of X must be carefully controlled.

The question arises as to how the object X came into being. It

can not be created whenever desired, rather its creation must obey

restrictions so that the security provided by object viewers is not

compromised. To achieve this, objects such as X are only created as

part of the creation operation of other object viewers or as part of an

unseal operation performed by a type manager. Thus only the type

manager for a given type may manipulate the object viewers that seal

objects of that type. Similarly, a program restricting access to an

object by creating an object viewer is the only program that can modify

that object viewer. In this way the security provided by object viewers

depends upon the correctness of the procedures requesting the creation

of those object viewers (i.e. if the program gives away a reference to
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X, then AESOP can not make any guarantees about the ability to modify

y).

The way of performing access revocation should now be clear. To

give revocable access to the object Z in Figure 2.10, the object viewer

Y should be created and, at the same time, X should be created. The

name Y should be passed to the program that is to be given revocable

access and the name X should be remembered. Later when it is desired to

revoke some, or all, access to Z, X provides the means to do so. if

complete and permanent revocation is desired, X can be used to destroy

object Y, making any outstanding references to it invalid. if partial

(or non-permanent) revocation or if access enhancement is desired, X may

be used to modify the access restriction field in Y appropriately.

Up to this point this section has presented the basic object

viewer mechanism and examples of how to use it in solving various

problems. The next few paragraphs will present a few rules for using

object viewers.

Given an object reference X, it is necessary to resolve that

reference to determine the referenced object, the type of the referenced

object ani any restrictions on the use of the referenced object. To

find this information, it is necessary to follow a chain of object

viewers until one is found that is being used for type extension. Let

NAME be the record:

record(type:tm, object:any, ar:vector[boolean])

Resolving a reference X involves filling in NAME for X. If X does not
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refer to an object viewer then NAME (type-of-K, X, [1) (i.e. no type

extension and no access restrictions). Otherwise X names an object

viewer, call it ov. In this case set NAME =(ov.type, X, ov.ar) . Let

ov' - ov.object. Now as long as NAME.type =ov'.type and ov' Is an

object viewer do:

1. NAME.object - ov.object

2. NAME.ar - NAME.ar or ov .ar

3. ov ov'

4. ov' -ov'.object

When done, NAME will contain the desired information (i.e. object

referenced, its type and the restrictions on the use of that object).

Now that the concept of object viewers is understood, the

operations provided by the object viewer type manager, abbreviated by

ov, are presented in Figure 2.11. The seal operation creates an

ov$access(o) returns(ar:vector[boolean])

ov$extract(o) returns(sealed-object, ar:vector(boolean], revoker:ov)

ov$modify(revoker:ov, obj, ar:vector~boolean])

ov$restrict(viewed object, ar:vector[boolean]) returns(X, Y:ov)

ov$same-end-objecte~o~i), o(2)) returns(b:boolean)

ov$same-names(o(1), o(2)) returns(b:boolean)

ov$seal(sealed_object, ar:vector~boolean]) returns(X, Y:ov)

ov$type(o) returns(t:tm)

Figure 2.11. The operations on object viewers.
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extended type object, X, whose fields are set to the name of the current

type manager, sealed-object and the value of ar. The restrict operation

creates an object viewer, X, that permits restricted access to

viewedobject as specified by ar. In both these operations, Y permits

the object viewer X to be manipulated. The access and type operations

permit the determination of the type of an object reference o and the

access restrictions on using it. The extract operation is used by the

type manager that implements o to follow a chain of object viewers being

used as access restrictors and return the effective access (ar) allowed

to o in ar, the sealed object in sealedobject and a revoker that

permits modification of the object viewer sealing the extended type

object o in revoker. The type manager may then interpret ar to enforce

access restrictions and use sealedobject as the representation object

of o. The modify operation allows for the modification of an object

viewer, call it 0, referenced in the object viewer revoker (i.e. revoker

permits modification to 0) by setting O's object field to obj and access

restrictions field to ar. Obj must be nil or of the same type as O's

viewed type field or an exception is returned.

The user of AESOP may need to ask the question: do these two

object references refer to the same object? The object viewer type

manager answers this question. The samenames operation returns true if

and only if o(I) and o(2) refer to the same object; that is, it returns

true if they refer to the same non-object viewer object directly or they

refer to the same object viewer. If it returns true then the references

o(I) and o(2) will always refer to the same object with the same access
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(i.e. same-names does "pointer" equality). The same-end-obj ec ts

operation returns true if and only if oCI) and o(2) provide possibly

differing views of the same object; that is, it returns true if and only

if the chains of object viewers named by o(1) and o(2) eventually

converge. If it returns true then oCI) and o(2) currently refer to thefV

same objects, with possibly differing access restrictions, but there is

no guarantee that this equality will continue at any time in the future

due to the ability to modify the object and access restriction fields in

non-common object viewers.

Each, of the built-in type managers will enforce access

restrictions by associating one bit of the access restriction field in

object viewers with each operation they provide. In this way, access to

built-in operations can be individually controlled.

2.5 Operating System Related Features

This section describes the features provided by AESOP to meet the

goal of elimination of the operating system. In addition this section

describes architectural features usually hidden by operating systems

that are needed to make the architecture complete (e.g. what it means to

initialize the processor).

One operating system feature, protection, is provided by thej

object viewers described in the preceding section. This section

describes how the ope rating system notions of process, interprocess

communication/synchronization and storage management are provided.
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These features have been chosen for inclusion in AESOP as they

meet the high level criterion, presented in chapter one, of being

language and application independent. The motivation for processes and

inter-process communication/synchronization being in the architecture

have been presented in chapter one. Storage management must be provided

at the architectural interface since built-in operations consume storage

(e.g. vectors). Given that storage management is necessary (see

chapter one), the only alternative to an architecturally supplied

facility is a layer of software between users and those architectural

features that consume storage. This software is, however, nothing more

that a primitive operating system and so is rejected.

Every system needs to communicate with the rest of the world and

to start up and shut down. If they are not provided by the

architecture, in however a primitive a form, they can never occur. Thus

AESOP must provide an I/O facility and define the effects of starting

and stopping an AESOP processor.

2.5.1 Processes

AESOP allows the user to have multiple processes. An AESOP

process is the execution of a procedure in parallel with all other

processes running on the architecture. The architecture makes no

guarantees as to how this parallelism is achieved so that any

implementation from multiprocessing a single processor to providing a

single processor per process is acceptable. Some of the operations on
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processes are presented in Figure 2.11 (control flow instructions have

been described in section 2.3 and more are presented in appendix A).

A new process, pr, is created by the create operation. The

process pr begins execution by executing the instruction:

proc$call-withgns(gns, p, arg(1), ..., arg(n))

so that the execution of pr is exactly the same as the execution of p

with the given arguments. The process pr terminates when p returns (any

returned values are ignored). The argument Ica specifies the default

storage area, the place where newly created objects are placed by

default when pr creates them.1 Note that the creating and created

process share access to the objects gns, arg(l), .... arg(n) and all

objects accessible through them so that the problem of shared data must

be addressed.

process$create(p:proc, gns:vector, lca:storagearea, arg(1),

arg(n)) returns(pr:process)

process$maxpriority() returns(prior:integer)

process$schedule(pr:process, prior:integer, limit:integer, event:ec)

process$start(pr:process)

process$status(pr:process) returns(s:integer, cpu:integer,
prior:integer, ec:vector[event count], limit:integer,
event:event count, other)

process$stop(pr:process)

Figure 2.12. Some of the operations on processes.

1. Storage areas will be discussed later in section 2.5.3.
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Chapter one argued that the programmer requires some limited

control over the processor resources consumed by processes. Four

operations are provided for this purpose. The stop operation causes a

process to stop execution until a start operation Is executed on that

same process. (By convention every newly created process is created in

the "stopped" state.) To decide when to stop a process, it must be

possible to determine the status of that process. The status operation

returns the status of process pr as follows:

s indicates whether pr is runnable (e.g. is, in
principle, consuming processor cycles), stopped,
blocked waiting for some event or terminated.

CPU indicates, in implementation defined units, how much

CPU time pr has consumed.

prior is pr's current scheduling priority (see below).

ec is an array of event counts that pr is blocked on.'

limit is pr's execution time limit.

event is an event count that is to be incremented whenever

limit is exceeded.

other is an implementation defined object that an
implementation may use to return other status about pr
(e.g. how many page faults it has taken).

With this information intelligent decisions regarding pr should be

possible.

1. An ever.- count is AESOP's interprocess synchronization primitive
and is discussed later in this section.
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The ability to stop and start a process is a coarse means of

control and a finer grain of control may be needed. In choosing a finer

grain of control for processes, AESOP has to make a guess at what is

needed since there are no personal computers available today. A number

of systems provide the user with the ability to spawn multiple processes

(Tenex and Unix for instance). None of these, however, gives the user

much control over the spawned processes beyond the ability to destroy

and stop them.

Reed[411 has shown how a simple low level scheduling mechanism can

be used to construct complicated high level scheduling mechanisms. A

similar approach has been taken in Hydra[27]. AESOP will provide a

mechanism for controlling processes that is based upon Reed's work.

Every process will have associated with it a priority (with a maximum of

process$max_priorityo) and a CPU time limit. Within the class of

runnable processes the process with highest priority will always be

run. 1  A process will run until it is preempted by a higher priority

process entering the runnable queue or until it exceeds its CPU time

limit. When a process exceeds its CPU time limit, it enters the

"stopped" state and an event count is incremented so as to notify some

other process(es) that this event has occurred.

The schedule operation sets the priority and CPU time limit of a

process. It is the fourth, and last, operation provided by AESOP to

control processes. After any of these four operations is performed on a

1. In the case of ties, a round robin policy will be used.
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process, the set of all runnable processes is examined and the highest

priority process(es) are allowed to execute. Note that if the priority

of a process is set to max_prioro, that process is guaranteed to get

some processor resources due to the round robin tie breaking policy.

This permits the construction of "watch-dog" processes that, for

instance, watch for other processes that seem to be in an infinite loop.

2.5.2 Interprocess Communication and Synchronization

AESOP's processes can communicate with each other through the

objects that they share access to. Those processes not only need to

communicate but also to synchronize their activities including

synchronizing access to those shared objects. For these reasons, AESOP

must provide an interprocess synchronization mechanism.

Many mechanisms have been proposed for achieving interprocess

synchronization including block/wakeup[44], semaphores[lO,

messages[14,201, monitors[19], serializers[18] and event

counts/sequencers[42]. All of these are roughly equivalent in terms of

expressive power; they all permit processes to synchronize their

activities. Choosing amongst these is, to a first approximation, a

matter of personal taste.

AESOP makes the choice of event counts/sequencers as the basic

means for interprocess synchronization.1 Event counts have been chosen

not for their expressive power but, rather, because they capture the

1. See Reed(42] for detailed semantics of what follows.
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essence of the interprocess synchronization problem while minimizing the

communication aspects. This is desirable since AESOP provides

communication through shared memory, only a synchronization mechanism is

needed. The operations on event counts and sequencers are presented in

Figure 2.13.

An event count is a counter that may only be incremented. A new

event count, initialized to have value zero, is returned by the create

operation. The current value of an event count is returned by read.

The increment operation increments an event count. The await operation

causes the executing process to cease execution until ec$read(e(i))>c(i)

for some i and returns that i. When a process executes an await

operation it becomes unrunnable so that other, lower priority processes

may run. When ec$read(e(i))>c(i) for some i, this process becomes

runnable again so that it will preempt other, lower priority, processes.

This is the interaction between the process scheduler and the

event count$await(e(1):eventcount, c(1):integer, .... e(N):event count,

c(N):Integer) returns(i:integer)

eventcount$create() returns(e:event count)

eventcount$increment(e:eventcount, n:integer)

event count$read(e:eventcount) returns(count:integer)

sequencer $create() returns(s: sequencer)

sequencer$take(s:sequencer) returns( ticket: integer)

Figure 2.13. The operations on event counts and sequencers.
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synchronization mechanism. One of the reasons that event counts have

been chosen for AESOP is that this interaction can be efficiently

implemented (see chapter four).

AESOP does not predefine any event counts. However, a particular

implementation may choose to predefine some event counts s°ich as an

event count that serves as a calendar clock.

Event counts allow two processes to synchronize their parallel

activities through event counts that they both can access (e.g. they

have a common data base or were passed the event counts when they were

created). However, an additional mechanism is needed to permit general

access to shared data. The sequencer mechanism allows this. A

sequencer is an object that returns, via the take operation, a

monotonically increasing sequence of integers. The first take operation

on a sequencer returns, by convention, one. Controlled access to shared

information can be achieved by the appropriate use of sequencer$take and

ec$await as explained by Reed.

2.5.3 Storage Management

If there were infinite amounts of equally accessible storage on

AESOP, there would be no need for user visible storage management.

Implementation realities force the consideration of a finite,

multi-level memory.
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Two problems are of concern: storage quotas and efficient

inter-object references. Storage quotas are used to prevent a buggy or

untrusted program from consuming all available storage. If it were

allowed to do so, the system would stop as no program could run due to

lack of storage. More importantly, it is difficult to create a daemon

program that notices the situation and corrects it since any such

program would need storage to run and a great deal of privilege to

discover which programs were causing the problem and to correct the

problem. Outside intervention is traditionally used in language systems

to fix the situation (i.e. by returning to the operating system

interface to correct the problem). This solution is unacceptable in

AESOP as there is no operating system. Leaving the AESOP system to

solve the problem is unacceptable as it would violate the constraint

imposed on AESOP, in chapter one, that AESOP must be complete in and of

itself; there must be no need to leave AESOP to solve a problem,

including this one. As a result storage management must be present in

the AESOP interface.

An AESOP machine will likely consist of some amount of primary

memory and a larger amount of slower, secondary memory. References to

objects in primary memory are likely to be more efficient than

references to objects in secondary memory. Moreover, there is likely to

be a high cost associated with moving objects between primary and

secondary memory. As a result, an implementation must attempt to

maximize the chance that an object reference will refer to an object

that is in primary memory. With no other information this is likely to
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be difficult, so some information supplied by tile user through the

architectural interface to tile Implementation is appropriate.

Both ot these goals will be met by the introduction of a new type

of object, storage areas. A storage area is a quota pool . a pair of

positive integers reflecting tile amount of used and free storage in the

area. Whenever an object is created, it dcaws storage from some storage

pool causing the amount of free storage in that pool to change. To

account for space hungry programs, it is only necessary to arrange that

it draw storage from a storage pool of suitable size.

An object created In storage area s is said to be contained In s.

For the purposes of efficient multi-level memory management, all objects

in a storage area s are assumed to frequently refer to each other and

only infrequently refer to obj,!cts in other storage areas. That is, the

objects In a atorage area should exhibit locality of reference.

Objects in some storage areas may tend to refer frequently to

objects in a second area. If this relationship Is made explicit, an

implem.tntatton of AESOP may be better able to handle references from

area s to area s' in an effIcient manner and use this information to

improve the performance of the multi-level memory. For the reason, the

close relation on storage areas is defined, if area a is close to area

objects In s frequently refer to objcts in a'. The close relation

nelther reflexive, symmetric nor transitive.
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The operations on storage areas are presented in Figure 2.14. The

create operation creates a new storage area, new area, by withdrawing

size units of quota from parent-area. The close operation indicates

that area s is close to area s' . If, at a later time, the user should

decide that the close relation is no longer appropriate, the not-close

operation should be performed. The size operation returns the size and

current amount of free storage in a storage area.

Since every object must be created by drawing storage from some

area, the various operations of the built-in type managers that create

objects (e.g. vector$create) must, in principle, take an extra argument

that is the area the newly created object draws quota from. The

constant supplying of an area argument can get quite tiring. For this

reason, every process has a default storage area associated with it that

is used whenever a storage area argument is not supplied to a built-in

create operation. The default storage area is initially set for a

process by the Ica argument supplied to the process$create operation,

may be reset by the

process$setdefaultarea(s:storagearea, pr:process)

storage__area$close(s:storagearea, s':storagearea)

storagearea$create(size:integer, parent:storagearea)
returns(new area:storage area)

storageareaSnot close(s:storagearea, s':storage_area)

storagearea$size(s:storagearea) returns(size:integer, free:integer)

Figure 2.14. The operations on storage areas.
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operation and may be discovered by the

processSgetdefault area(pr:process) returns(s:storagearea)

operation.

Not all of the storage in AESOP will be consumed by AESOP objects,

some will be consumed by the implementation of AESOP. Because the needs

of an implementation may be highly variable, it is advantageous to

shield user programs from this variability since it may lead to programs

whose correctness is implementation dependent. Thus the storage the

implementation uses must not appear to the users of AESOP as consuming

part of a storage area. Instead, an implementation will draw storage

from an architecturally hidden pool of storage. The user shares use of

this pool with the implementation by creating storage areas out of it by

using the built-in procedure:

master alloc(size:integer) returns(s:storage_a"ea) signals(cant)

The exception cant is raised if the implementation should decide, for

whatever reason, that a new storage area of the specified size can not

be created now. This procedure is passed to the user at system

initialization time. Since this procedure essentially permits the

creation of storage areas out of nothing, the user must carefully

control its use so that the problem of storage hungry programs does not

arise.
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2.5.3.1 Storage Reclamation and Object Deletion

AESOP provides a heap oriented storage semantics - objects are

created in a storage area and remain there, drawing storage from that

storage area, until the object is no longer needed. This section

discusses the determination that an object is no longer needed.

An object is no longer needed when it is no longer accessible

(i.e. no longer referenced by a needed object). This is the case since

it is impossible for any references to that object to ever exist in the

future due to the capability-like nature of AESOP's naming mechanism.

Once an object has been determined to be no longer needed, the storage

consumed by that object is returned to the free pool of the storage area

that contained that object. Thus AESOP constrains an implementation to

reclaim the storage used by unneeded objects. This allows for the

carefree reclamation of storage.

The automatic reclamation of storage may not always be sufficient

to meet the user's needs when the problem of buggy or untrusted programs

is considered. Although the basic storage area mechanism allows the

amount of storage usable by such programs to be controlled, the user may

wish all of the objects created by that program to be immediately

discarded. The user may be experiencing a space shortage and simply

need that storage or the user may not believe that whatever objects that

program created are correct and does not ever want to reference them.

As a result, the user has a need to explicitly delete the objects that a

program has created.
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Explicit object deletion creates the problem of dangling

references to deleted objects. The system is responsible for ensuring

that all outstanding references to a deleted object are invalidated.

The invalidation consists of marking those references as

"reference-to-deleted-object".1  Any future attempt to use one of those

references will result in an unexpecteddeleted operand exception so

that the user must be prepared for his programs to fail in this way if

they happen to reference a deleted object. To allow for explicit object

deletion, the following operations are provided. The operation

storage_area$deleteall(s:storagearea)

deletes all of the objects that are in area s. In addition, type

managers may provide operations to delete their objects. Most of the

built-in type mangers do just this (see Appendix A).

2.5.4 1/0

To be useful, AESOP must provide the means for the user to write

programs that communicate with I/O devices (e.g. a network, a terminal

or a disk drive). Due to the diversity of I/O devices, it is

undesirable to specify device specific I/O. Rather, this section will

present a general framework in which I/0 in AESOP will occur.

1. An implementation problem is to find all of these references. A
means for doing this is discussed in chapter three.
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2.5.4.1 Object Oriented I/0

Since AESOP is an object oriented architecture, it is reasonable

to consider having I/O closely follow that model. Object oriented I/O

would allow I/O devices to access all of the objects in the object

memory provided by AESOP as objects (i.e. through the type manager

corresponding to the object). Although appealing, this approach must be

rej ected.

This approach implies that the I/0 devices must not only be

prepared to deal with the built-in objects of AESOP but also with

extended type objects. This can be done in two ways. First, the AESOP

implementation could define an interface that allows a device to access

all objects. This, however, is just pushing the problem of I/O into the

implementation since I/O devices really only deal with bits and so is no

solution.

The second solution is to allow I/0 devices to be processors

capable of directly accessing and using all AESOP objects, including

type managers. This fails for three reasons. First an AESOP

implementation has been transformed from what can be a uni-processor

implementation to an implementation that inherently contains multiple

processors, the main AESOP processor plus I/O devices. This means that

the algorithms used to implement AESOP become more complicated to cope

with this parallelism. This extra complexity may very well mean that an

AESOP processor becomes uneconomical. Second, I/O devices may become

prohibitively expensive to attach to an AESOP system due to their
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complexity. Third, this approach violates one of the prime goals of

AESOP, the hiding of implementation issues by the architecture, since

I/O devices must be given the specification of the implementation of

AESOP so as to be constructed in a manner that is compatible with the

rest of the AESOP system. For all three reasons this approach is also

rejected. Since both solutions are unsatisfactory, object oriented I/O

is rejected for AESOP.

2.5.4.2 Bit Oriented I/O

The alternative to object oriented I/0 is a traditional approach

in which I/O devices are allowed to access memory as a collection of

bits and do not see any of the higher level features of AESOP. This

sort of interface can be provided in (at least) two ways: a channel

program interface as is done for IBM 360/370 systems or a device

register approach that models devices as a collection of registers that

are directly addressed and manipulated by user programs as in DEC's

PDP-11 family of computers.

The channel program approach consists of supplying a program to an

auxiliary processor, the channel, that actually moves data between the

I/O device and primary memory. This approach has the advantage that

multiple commands may be given to a device within a single channel

program, thus limiting the need for the CPU to intervene in I/O. The

device register approach, on the other hand, requires that each command

for a device be initiated individually by the processor. The channel
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program approach has the disadvantage of requiring the creation of a new

object, the channel program, for I/0 initiation.

On balance, the channel approach is rejected since the economics

that created it, expensive processor cycles, no longer exist - LST and

VLSI make processor cycles cheap. Also, the complexity of the channel

program objects themselves is unattractive.

AESOP will present I/0 devices at its interface as an array of

device registers that contain objects of restricted type. The

operations on I/0 devices are given in Figure 2.15. A newly attached

I/0 device is made known to AESOP by executing a new device operation

that takes the location, addr, of the device in an implementation

defined address space and a specification, spec, of the interface to

that device as arguments.

A device interface consists of a sequence of registers each of

which is either a status, event count or buffer register. A status

register consists of a sequence of bits through which the user and the

io$newdevice(addr:integer, spec:vector[integerl) returns(dev:io)

io$readregister(dev:io, i:integer) returns(register)

io$set statusabcd(dev:io, i:integer, bv:vector[boolean],
offset:integer, length:integer) returns(status:vector[boolean])
% This is a set of operations derived by setting
% a, b, c and d to 0 or I

io$set register(dev:io, i:integer, new)

Figure 2.15. The operations on I/0 devices
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I/O device communicate by setting and reading status registers. An

event count register contains a reference to an event count that the I/O

device may cause to be incremented so as to communicate the occurrence

of some event (e.g transfer complete) to a AESOP waiting process.'

Buffer registers contain the names of vector[boolean] objects that the

I/O device reads and writes as buffers. Once the user assigns a vector

to an I/O device's buffer register, the contents of the vector are

undefined until the device indicates to the user that the I/O is

complete. During this time, the user should not manipulate the vector

nor assign it to another buffer register. The effect of such actions is

not specified. However, if the device will only read the contents of

the bit vector, the user may also read the bit vector and get the

correct contents of the vector.

The device registers may be manipulated by a collection of

operations provided by the io type manager. The contents of the i'th

register are returned by the read-register operation which returns

either an event count, a vector[boolean] used as a buffer or a newly

created vector[boolean] that contains the value of a status register.

The contents of the i'th register is set to new by the setregister

operation which raises an exception if the type of new is not acceptable

as the contents of the i'th register of dev.

I. This is similar to the technique used in the Venus operating
system[291 where semaphores were used as the synchronization primitive.
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The set of operations set statusabcd permit the manipulation of

individual bits of a status register. The new value of the status

register is calculated by performing the boolean operation indicated by

abcd on a subvector of the status register (as indicated by offset and

length) and the vector by. In particular, bit j+offset-1 of the status

register, for j from I to length, is modified to have the value given by

the following table:

0 1

0 a b

1 cd

where x is the value of the J'th bit of bv and y is the value of the

j-offset+l'th entry of the status register. This operation i§ defined

to be atomic with respect to all other io$set status abcd operations on

the given status register.
1

It should be clear that this is only a framework in which I/0 in

AESOP will occur; it is not a detailed specification of the inner

workings of I/O as such details are very device specific. Rather, this

definition of the io type manager should give the programmer the ability

to control I/0 devices given the particular characteristics of that

device. The actual bits that a device reads/writes will be converted

1. It is not clear that this atomicity is absolutely necessary, but
defining things in this manner may permit some devices to be handled in
a cleaner manner. Also, since this definition does not specify the
effects of status register manipulation by the device, it is easy to
provide as will be seen later in the thesis.
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from/to AESOP objects by operations supplied either by the user or by

the architecture in a manner described by Herlihy[16] and Sollins[48].

2.5.5 System Initialization and System Shutdown

No system runs forever. Instead they are occasionally shutdown

and then restarted later. This section briefly discusses the issues of

starting up and shutting down an AESOP processor.

2.5.5.1 System Initialization

System initialization is the act of bringing a system from a state

of no activity, with no processes running or runnable, to the state of

having the system in normal operation. In the case of AESOP, system

initialization also brings out the problem of which objects in the

system are accessible when the system is restarted.

AESOP has a distinguished object, a vector named ROOT, to meet

these needs. It is distinguished in that it always considered a needed

object and is never garbage collected. Moreover it is an object that

can never be deleted. The set of needed objects in a newly started

AESOP is precisely the set of objects that are accessible from ROOT.

ROOT, by convention, will have the following form:

ROOT([] - p:proc

ROOT[2] - lca:storage.area

ROOT[3] - gns:vector
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ROOT(41 is reserved for AESOP's use

ROOT[i] for i>4 can be anything.

System initialization consists of the processor executing the following

built-in program:

pr:process := process$create(p, gns, Ica, ROOT,
masteralloc)

ROOT(4] := pr

process$schedule(pr, process$max_prior(), nil, nil)

process $star t(pr)

The effect of this program is to create a new process, pr, that executes

procedure p with gns as its GNS and lca as its default storage area.

The procedure p receives two parameters: ROOT and the built-in procedure

master alloc. ROOT[41 is then set to pr so that pr may manipulate

itself if needed. Finally pr begins execution with the maximum possible

priority. The process pr is responsible for performing any other

initialization activities that the user of AESOP feels are needed.

2.5.5.2 System Shutdown and Crashes

The companion activity to system initialization is system

shutdown. An unfortunate but probably inevitable event is a crash of

the system.

Shutdown in AESOP is accomplished by placing all processes in the

stopped state, thus stopping all activity in AESOP. When AESOP shuts

down, the implementation of AESOP is responsible for ensuring that all

objects in the system will still be around if the processor is now
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powered down. Thus the act of stopping the last runnable process on

AESOP, and thus shutting down AESOP, must be accomplished, by the

implementation of AESOP, by placing all objects in AESOP on non-volatile

storage.

A system crash is an unscheduled stopping of the system. When the

system crashes there will, in general, still be runnable processes and

objects that reside in volatile storage. Ideally the effect of such an

event would be specified by the architecture. Such a specification

might be of the form: all architecturally defined operations are atomic;

that is, every built-in operation either occurs or does not occur and if

it does occur, no crash can cause the action to be (partially) undone.

Unfortunately, such a specification is very difficult to meet in an

economical manner. The whole area of robustness to system failures is

an important one but its solution in the economically constrained

environment of a personal computer has not been achieved and It is

beyond the scope of this thesis to find a solution. Thus the effect of

system crashes is left unspecified in this thesis. Instead, each

implementation of AESOP will specify the effect of system crashes in an

ad hoc manner until an acceptable solution to the problem is found.

2.6 Conclusions

This chapter has presented AESOP - its built-in types and the

operations on them. There is nothing sacred about most of the

operations provided so that the reader should feel free to modify the

set of operations to provide any desired operations. What is important
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are the variety and capabilities of the built-in type managers. The

various features that were argued, in chapter one, as being necessary

have been presented. This is the first part of the demot.stration that

AESOP is a high level architecture. Chapter five will complete that

proof by showing how to use AESOP. First, however, the next two

chapters will show one possible implementation of AESOP. This will give

the reader reason to believe that AESOP can be efficiently implemented.

This belief will give the reader confidence that the uses of AESOP

presented later in the thesis are, in fact, reasonable to imagine.
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Chapter Three

The Implementation of Logical Storage Management

Chapter two described AESOP, an architecture that provides an

object based environment for program execution. This chapter, and the

next, present an implementation of AESOP to demonstrate that simple and

efficient implementations of AESOP exist. Since there are many possible

implementations of AESOP, this particular implementation should be

regarded only as an existence proof.

3.1 An Introduction to the Implementation

The fundamental goal of any implementation of AESOP is to

implement the particular semantics presented in chapter two. In a high

level sense nothing else matters, but from a practical point of view

efficiency is a major concern.

An implementation should be both space and time efficient. An

ideal implementation would use no storage beyond that needed to hold the

user's data and would allow the user's programs to execute at a speed

comparable to that of the underlying hardware. In practice these goals

are unrealizable; space and time overhead is inevitable in any

implementation. This implementation of AESOP is no different.
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This implementation of AESOP has, in general, been designed to

save storage at the possible expense of execution efficiency. This

choice has been made since personal computers tend to have a fairly

small amounts of storage while the user generally does not have enough

work to keep the machine busy (i.e. there are instructions to waste but

not memory). The impact of this assumption will primarily be seen in

the next chapter when physical memory management is discussed.

An AESOP implementation must manage the logical memory defined by

AESOP, map AESOP's logical memory onto a physical memory and implement

AESOP's basic types. This chapter discusses logical memory management.

This is primarily a problem in performing storage allocation and

reclamation. It is difficult due to the need to deal with a large

number of objects. Chapter four discusses how to map AESOP's logical

memory onto a physical memory. This involves allocating/reclaiming the

storage needed by AESOP's logical memory and mapping logical memory

addresses into physical memory addresses. This is a hard problem due to

the need to achieve reasonable space and time efficiency. The next

chapter also shows how to implement AESOP's basic types. For the most

part these are trivial. However, four types are of concern:

processes/event counts, code segments, I/O and storage areas. Processes

must be cheap so that they be used freely. Code segments must encode

AESOP instructions to permit the efficient execution of AESOP code. I/O

is important as it specifies the interface between an AESOP system and

the outside world. Storage areas embody the logical memory management

algorithms presented in this chapter.
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This chapter discusses the management of AESOP's logical memory.

AESOP defines a logical memory in which a large number of objects are

constantly being created, used and then discarded. Logical memory

management is keeping track of these objects and reclaiming their

storage when they are no longer accessible.

One assumption about the underlying hardware is crucial. AESOP is

assumed to be implemented as a uni-processor so that the algorithms

presented here need not be concerned with parallelism at the

implementation level, thus simplifying them considerably. It is left as

an exercise to modify these algorithms, or develop new ones, that are

appropriate for a multi-processor implementation.

The logical memory management algorithms presented in this chapter

are based upon the work of Bishop[5] on garbage collecting large address

spaces. Section two briefly reviews his storage management ideas. If

an architecture implemented using Bishop's techniques is used

incorrectly, poor performance may result. Section three presents a

particular pattern of use of AESOP, the subsystem model, that, when

followed, avoids these problems. It is the basis, in this thesis, for

believing that Bishop's techniques are practical. Section four presents

the garbage collection algorithm used for AESOP. It is unique in that

it combines Bishop's basic techniques with Baker's real-time garbage

collector[3]. Section five discusses object creation and deletion. As

it turns out, the basic garbage collection algorithm of section four

does not collect cycles of unneeded objects that span multiple storage

areas. Section six presents an algorithm to remedy this. This chapter
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concludes with a discussion of an efficient implementation of the stack

of LNS's and control information associated with invocation in AESOP.

3.2 Bishop's Mechanism for Logical Memory Management

The mechanism proposed in this thesis to reclaim storage occupied

by inaccessible objects, garbage collection, is based upon the ideas of

Bishop(5]. This section reviews the relevant aspects of his work and

points out some potential problems with his scheme.

An object reference in Bishop's scheme denotes an object by giving

its location in a large, linear address space and its type. The address

space is divided into a number of storage areas (a linear, connected

subset of the address space). Storage areas serve two purposes. First,

they serve as quota pools. Every object is created in a storage area,

is located entirely within that storage area and consumes the storage of

that area. Second, storage areas serve to limit the bounds of garbage

collection. The goal is to garbage collect a single storage area

without worrying about the contents of other storage areas. If an area

is small enough, a little smaller than the size of primary memory

according to Bishop, then garbage collecting that area is efficient

since secondary memory need not be accessed randomly or frequently to

perform the garbage collection.

There is a conflict between the ability of objects to refer to any

other object in the logical memory and the desire to garbage collect a

storage area without examining other storage areas. This conflict is

the dangling reference problem. Consider Figure 3.1. Assume that there

- 100 -



Area A Area B

Figure 3.1. An example of inter-area references.

are no references to Y except for the single reference from X. If an

attempt is made to garbage collect area B without examining other areas,

the object Y will seem to be garbage and its storage reclaimed. At this

point X will contain a dangling reference to Y. Any attempt to use it

is in error and the implementation must prevent such use. Bishop

prevents such dangling references via two mechanisms: inter-area links

and inter-area cables.

3.2.1 Inter-area Links

An inter-area link from area A to area B, referring to object X,

asserts that there exists at least one reference in A to X.

Furthermore, that reference is an indirect one through the inter-area

link itself, which resides in A. Each area, A, keeps all of the

inter-area links to A on a list. The garbage collector, when garbage

collecting A, uses this list to find all of the objects in A that are

referenced from other areas via inter-area links. In this way no

dangling pointers result since all accessible objects are marked as

used.
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The maintenance of the list of inter-area links is very simple.

Whenever an executing program attempts to store a pointer into some

area, the implementation checks to see if that pointer refers to an

object in another area. If it does, an inter-area link is created and

added to the list of incoming links for the referencei area. 1  The

reference itself is modified to refer indirectly through the newly

created inter-area link.

The use of inter-area links has three drawbacks. First, it

consumes storage at a large pace since every inter-area reference

requires the creation of an inter-area link. Second, the scheme slows

execution when an inter-area reference is used since two memory

references are required (one to the inter-area link and one to the

target object). Third, copying pointers may be expensive since an

inter-area link may need to be created and added to the list of incoming

references. For all three reasons, the use of inter-area links is

discouraged by Bishop.

3.2.2 Inter-area Cables

As an alternative to inter-area links, Bishop proposes inter-area

cables. An inter-area cable from area A to area B allows pointers in

objects in area A to refer directly to objects in area B without the

need for using inter-area links. In this case, area A is said to be

1. It is possible for multiple references from area A to area B to
share links at the expense of searching the set of all outgoing inks

from A to B when a new inter-area reference is created.
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cabled to area B. Cables make references from area A to area B cheap

both in terms of storage (no inter-area link is created) and in terms of

time (there is no overhead for copying such pointers or for using them).

Although cheaper than inter-area links, inter-area cables are not

free. Whenever an object reference to an object in storage area B is

copied into a storage area A it is still necessary to make sure that an

inter-area cable exists from area A to area BI by searching a table of

outgoing cables from area A. I a cable does not exist, a cable must be

added to that table to handle th; reference to area B. Another cost

associated with cables concerns the scope of garbage collection.

Whenever area B is garbage collected, all of the areas cabled to area B

must be garbage collected at the same time. This is necessary in order

to avoid the dangling reference problem mentioned previously since those

areas row have direct references into area B. This increases the amount

of storage that must be garbage collected at one time. In addition,

area B must maintain a list of all areas cabled to it so that it can

perform this garbage collection.

Two conclusions, one good and one bad, may be drawn from this

discussion. The good conclusion is that the basic mechanism does work.

It allows for arbitrary references from one object to another; it

prevents dangling references; and it permits efficient garbage

collection. Unfortunately, the use of inter-area links and cables must

1. Assuming that a decision has been made to handle references from
area A to area B by cables and not by links.

- 103 -



be minimized for efficiency reasons. As the rate of creation and use of

links and cables increases, the performance of the system will slowly

(or perhaps not so slowly!) degrade.

3.3 The Subsystem Model of Storage Use

This section proposes a pattern of use of AESOP that minimizes the

use of the expensive mechanisms of Bishop's logical memory management

scheme. The subsystem model achieves this. It is hypothesized that

much of the use of AESOP will follow this pattern.

Under the subsystem model, the computations being run on AESOP

tend to be organized into one or more collections of one or more

processes. Each such collection of processes, called a subsystem, has a

set of data that all of the processes in that subsystem tend to use.

Each process in a subsystem has some private data. The processes in a

subsystem communicate with other subsystems via message passing.
1

A subsystem provides a service such as a file system. A subsystem

is a more useful model for services than, say, procedures since it makes

explicit the fact that there are many parallel users of the service. A

similar model, the guardian model[491, has been proposed for distributed

systems to, in part, also make this parallelism evident. Subsystems

differ from guardians in that subsystems may share memory but guardians

may not.

I. This is true at a high level, although the implementation of the
message passing will involve shared memory.
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The patterns of memory sharing under this model are fairly simple.

A process in a subsystem frequently uses the data local to that process.

The data common to the subsystem is accesses less frequently, although

its use is not insignificant. Occasionally a process in a subsystem

will need to communicate with other subsystems and, at such times, it

will access some memory that is common to those two subsystems. Access

to libraries, which contain objects such as language support routines

that are used by many subsystems, will also be fairly frequent.

To put this model into the terms of storage areas, see Figure 3.2

which depicts four types of storage areas. An LCA (Local Computation

Area) storage area contains the private storage for a process. The

subsystem area contains the objects that tend to be shared by the

processes of the subsystem possibly including the data that the

subsystem manages in providing its service. The library areas cuntain

those objects that are shared by many subsystems such as procedures and

type managers. The communication areas allow processes in different

subsystems to communicate with each other.

A process can refer to the objects in its LCA without the need for

links or cables. The cable from each LCA to the corresponding subsystem

storage area allows a process to efficiently access objects in its

subsystem area. Each LCA is also cabled to library areas to allow

processes to use the objects in those library areas with little penalty.

Cables are important in these two cases since a large fraction of the

references made by a process outside of its LCA will fall into one of
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these two categories. Less frequent inter-area references, for instance

from one LCA to another, are handled by inter-area links.

AESOP does not recognize the existence of subsystems. Instead,

the user will tell the AESOP implementation when a cable should be

created from area A to area B through the storage_area$close(A, B)

operation. By creating the correct cables, the user will, in effect,

identify subsystems to AESOP and thus aid efficient execution.

3.4 Garbage Collection in AESOP

The subsystem pattern of use means that Bishop's basic mechanism

for garbage collection is practical since inter-area links, which are

neither time nor space efficient, are used infrequently. Cables, when

used, are used in a manner that does not adversely effect the efficiency

of garbage collection since the most frequently garbage collected areas,

LCA's, do not have incoming cables so that most garbage collections only

have to deal with one area at a time.

Bishop's garbage collection scheme could be used with no changes.

However, his scheme results in processes being periodically delayed

while a garbage collection occurs; for many applications, this may be

unacceptable. This thesis proposes integrating Baker's real time

garbage collector(3] into Bishop's scheme. Such a garbage collector

allows AESOP to provide real time response to a user programs in that

they will seldom have to wait for a garbage collection to complete.
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3.4.1 Baker's Real-Time Garbage Collector

Baker's algorithm is a copying garbage collector that copies all

accessible objects from a source space, called FROM space, to a virgin

area of the same size called TO space. The garbage collector first

copies all objects known to be accessible (i.e. the roots of the graph

of accessible objects) from FROM space to the lower part of TO space.

The garbage collector then successively examines each object in TO space

and moves every object that it refers to from FROM space to TO space.

At the same time the reference in TO space is changed to refer to the

object's new location in TO space. When all objects in TO space have

been examined all objects remaining in FROM space can be deleted since

there are no valid references to those objects. The effect is that the

garbage in FROM space is collected into one large free area in TO space

since all referenceable objects will be at one end of TO space.

Baker's algorithm is "real-time" since it is interleaved with the

normal execution of the user's program. Whenever the user attempts to

create a new object (a LISP cons cell in his case), the new object is

placed at the upper end of TO space and a few cycles of the garbage

collector are run. In this way garbage is constantly being recovered

and the system is unlikely to ever have to pause in order to allow a

garbage collection to finish, thus the term real-time garbage collector.
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3.4.2 Real-Time Garbage Collection in AESOP

Garbage collection in AESOP will be a combination of Baker's

scheme, to get real-time response, and Bishop's ideas coupled with the

subsystem model to increase the efficiency of garbage collection.

3.4.2.1 TO Space

Whenever an area is to be garbage collected the system must first

find TO space. There are two choices for TO space. One possibility is

to preallocate TO space for each storage area, thus doubling the amount

of storage allocated to a storage area.1 This has the disadvantage that

storage areas have at most 50% storage utilization. Alternatively, TO

space could allocated at the time that the decision is made to garbage

collect a storage area. This has the disadvantage that a new storage

area must be created at the beginning of each garbage collection. A

mixed approach seems appropriate for AESOP since storage areas in AESOP

fall into two basic categories: small, very active areas (e.g. LCAs) and

large, slowly changing areas (e.g. library areas).

The very active areas tend to rapidly generate garbage so they

need to be constantly garbage collected. TO space should be

pre-allocated for these areas for two reasons. First, the delay and

overhead involved in creating TO space, even if small, is avoided.

1. This is the policy proposed by Baker. Also note that in this case

the roles of the two parts vis a vis TO and FROM space change after each
complete garbage collection.
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Second, the process can always perform a garbage collection - it never

dies because TO space could not be created.

For the less active areas, which also tend to be very large, TO

space should be created when the area is about to be garbage collected.

In this way the storage overhead associated with those areas is

relatively small (and certainly results in more than the 50% utilization

possible when TO space always exists). The danger with this scheme is

that there might not be enough free physical storage to allow TO space

to be allocated when the garbage collection is initiated. Although a

possibility, it will be ignored here and will be returned to when

physical memory management is discussed in the next chapter. 1

Handling TO space in this way is reasonable, but it is now

necessary to classify storage areas into these two categories. This can

either be done explicitly by the user or as a result of measurements

performed by the implementation. The first requires a new operation on

storage areas to allow declaring that a storage area should have a

pre-allocated TO space. This is a case where a particular choice of

implementation leads to a desire for new architectural operations. That

is, the separation between implementation and architecture breaks down

with this choice of implementation. The alternative is to have the

implementation make a decision based upon the size of an area and its

measured rate of garbage generation. The actual manner in which this

1. In the event that it does occur, it is possible, at the expense of
additional complexity in the implementation, to perform a classical
mark/sweep garbage collection on that area to avoid the problem.
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I
decision should be made is, however, a problem for further research.

This thesis will take a third approach. Any storage area that is used

as the default storage area for a process, either via a process$create

or a process$set-default-area operation, will have TO space reallocated.

This will cause garbage collection of the most active areas, LCA's, to

be most efficient. All other areas will have TO space dynamically

created.

3.4.3 The Roots of the Graph of Accessible Objects

To garbage collect an area it is necessary to find the graph of

objects accessible in that area. This graph has its roots in four

places. First the incoming inter-area links to that area name some of

the objects that are accessible from other areas.1 These objects are

easy to find since each area has a list of all of its incoming links.

The second source is a system maiatained list of all of the

processes in the system. If a process is potentially runnable (i.e. not

in the stopped state), the system must retain a reference to that

process so that it can be executed since there is no requirement in

AESOP that user programs retain such a reference. This reference

I. Of course, due to the asynchronous nature of garbage collection in
storage areas it is possible that at the time that one storage area
examines its incoming links, the area that claims to need the referenced
object may, in fact, no longer need it. Unfortunately, the area being
garbage collected can not know this and must assume that all objects
referenced by incoming links are needed.
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ensures that all of the processes and all of the objects that they

reference will not be garbage collected.

The third source is the distinguished object ROOT. It is defined

to always be accessible so that all objects referenced by it are also

accessible.

The fourth, and final, source of roots are the objects in storage

areas cabled to the area being garbage collected. To determine which

objects are accessible from a cabled area it is necessary to know which

objects are accessible in that area and then trace accessible objects

from those objects. In his thesis Bishop acquired this information by

garbage collecting all of the areas transitively cabled to the area that

needed the garbage collection at the same time as that area was garbage

collected (i.e. he treated this set of areas as one large area for

garbage collection purposes). Here a slightly different scheme is

proposed. Whenever a garbage collection is initiated in a storage area,

call it A, each incoming cable to A will have a flag gc-in-progress

associated with it that is set to true at this time. This flag informs

the areas cabled to A that, while garbage collecting, they must "mark"

all objects in A that they directly refer to by moving those objects

from FROM space to TO space. Whenever the cabled area completes its

garbage collection it sets the gc-in-progress flag to false. This

informs the garbage collector of A that all objects directly accessible

from the cabled area have been moved to TO space. Thus when all

gc-in-progress flags are turned off in incoming cables to A, all the

- 112-



roots of the graph of accessible objects in A have been marked so that

A's garbage collection may finish.

This technique requires that there be no cycles of storage areas.

Suppose area A was cabled to B which was cabled to A. Now suppose a

garbage collection of B is initiated. It can not finish until A is

garbage collected, but A can not finish until B is done. Obviously, the

cycle never ends. The storage area type manager is responsible for

ensuring that such cycles do not occur. Moreover, note that if the

subsystem model of execution is followed, no attempt will ever be made

to create a cycle.

The resulting garbage collector is space efficient. The working

set of the garbage collector when garbage collecting A is about the size

of A plus the very end of TO space for each area that A is cabled to (if

it is currently being garbage collected) plus the very end of A's own TO

space. Contrast this to Bishop's scheme in which the working set of the

garbage collector is the combined size of all of the areas transitively

cabled to the area being garbage collected.

3.4.4 The Garbage Collection Algorithm

This section describes the procedure for garbage collecting a

storage area A. This algorithm does not contain any synchronization to

handle parallelism because the parallelism present is only

pseudo-parallelism. This issue will be returned to below.
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First TO space is created as previously described. All incoming

cables to A now have their gc-in-progress flag set to true. For each

outgoing cable from A, associate a flag wasgcing that is now set to

true only if the area that A is cabled to is currently being garbage

collected otherwise it is set to false. This flag will be used by A to

correctly set the gc-in-progress flag in this cable when the garbage

collection of A finishes.

The garbage collector of A now moves all objects accessible

through inter-area links and from ROOT to the lower part of TO space.

These, in conjunction with the objects being moved by cabled areas being

garbage collected in parallel, define the roots of the graph of

accessible objects. The garbage collector now sequentially examines

every object in the lower part of TO space. For each such object it

examines all of the pointers, call one of them P, in that object.

If P refers to an object in FROM space then that object is moved

to the lower part TO space. The copy in FROM space is marked as

"forwarded" and its address in TO space stored in the old copy. Finally

the pointer P is changed to refer to the object's location in TO space.

If P refers to an object that has been forwarded, P is updated to refer

to its new location. If P refers directly to an object in TO space,

nothing need be done. If P refers directly (i.e. not through a link) to

an object that is in another storage area, call it B, and if B is being

garbage collected, P is handled as above except that TO/FROM space are

B's and not A's. If B is not being garbage collected then nothing need
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be done. If P refers to a link in FROM space, a copy of that link is

created in TO space and P modified to refer to it. 1

The garbage collector continues examining objects in TO space

until all gc-in-progress flags in all incoming cables to A have been set

to false so as to ensure that parallel garbage collections have marked

all accessible objects in A. All outgoing links from FROM space are

then removed from other area's lists of incoming links since they are no

longer needed by A. Once this is done, all of the objects remaining in

FROM space are known to be inaccessible so FROM space may be destroyed.

This collects the storage consumed by unused objects, including

inaccessible links, into one free area at the end of the upper end of TO

space

At this point, for each outgoing cable C from A to B, the garbage

collector sets C.gc-in-progress to C.gc_inprogress and not C.was_gcing.

This ensures that C.gc_in_progress is set to false only if all objects

in B that are directly referred to by objects in A have been marked. In

particular, if B began a garbage collection after A began its garbage

collection, there may be objects in B that are accessible from A but

have not been marked (recall that A will only mark objects if the target

I. The garbage collector can cause references from A to share links by
checking for the existence of this link in TO space before creating a
new one and using the old one if it exists. This results in greater
storage utility in A at the expense of additional complexity in the
implementation.
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area is beging garbage collected). The algorithm is summarized in

Figure 3.3 and given in more detail in Appendix B.

The algorithm is pseudo-parallel in that one or more cycles of theA

K garbage collector, a cycle being an execution of steps 7a and 7b, occur

on each reference to A. However, a step of no other garbage collector

can run while a step of this garbage collector is running so long as the

implementation prevents interrupts from occurring (recall that a

uni-processor implementation of AESOP has been assumed). The

pseudo-parallelism occurs since after a few cycles of the garbage

collector are run, references by user's programs are executed, which may

result in running a few cycles of the garbage collector in another area.

3.4.5 Initiation of Garbage Collection

This algorithm does not specify when to initiate the garbage

collection of a storage area. Garbage collection of an area A will be

initiated in five ways.

First, a garbage collection will be initiated when an attempt to

create an object fails due to lack of storage. This is an undesirable

technique if it is the only one used since processes may experience long

delays if a creation triggers a garbage collection.

Second, as proposed by Bishop, the system can measure the

creation/deletion activity in A and initiate a garbage collection when a

threshold is reached. A properly chosen threshold value will minimize
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The procedure to garbage collect storage area A.

I. If area A does not have a TO space associated with it, create one of
the same size as A.

2. Set all gc_in_progress flags in incoming cables to A to true.

3. For each outgoing cable C from A, set C.was__gcing to
C.gc_in progress.

4. Move all objects referred to by incoming links to TO space, leaving a
forwarding pointer to the object's new location in its old location

in FROM space.

5. Repeatedly perform step 6 until all incoming cables have their
gc_in_progress flags set to false and all objects in lower TO space
have been examined.

6. Examine the next object in lower TO space and for each pointer, P, in
it perform steps 7a and 7b.

7a. If P refers to an object, including a link, in A, ensure that the
object is in TO space, leaving behind a forwarding pointer in FROM
space, and update P to refer to the object's new location.

7b. If P directly refers to an object in another area and if that area

is being garbage collected, perform step 7a using that area's FROM
and TO space.

8. Remove all links in FROM space from the lists of incoming links to
areas.

9. FROM space now contains only free storage and may be destroyed.

10. For all outgoing cables C from A, set C.gc_inprogress to

C.gc_in_progress and not C.was_gcing.

Figure 3.3. The AESOP garbage collector.
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unnecessary garbage collection activity while also eliminating delays to

programs due to garbage collections.

Third, a garbage collection in all areas cabled to A will be

initiated whenever a garbage collection of A is begun. This causes the

garbage collection of A to finish as soon as possible and, to the extent

that the subsystem model of use is true, causes areas of maximum garbage

to be quickly garbage collected since areas with outgoing cables are

more active.

Fourth, the implementation can spontaneously initiate garbage

collections on storage areas when AESOP is likely to be idle for a

while. This allows garbage collection to impact the user of AESOP in a

minimal fashion. To provide this feature AESOP needs a new interface to

permit the user to say "I will not be needing the machine for a few

hours". Such a change to AESOP is easily made. It is yet another

example of a particular implementation of AESOP desiring specific

architectural features.

A fifth possibility is to garbage collect all areas at all times

as proposed by Baker. This has the advantage that AESOP will never

pause to complete a garbage collection. It is rejected as the general

policy since it results in unacceptably low storage utilization (at most

50% due to the presence of a TO space for all storage areas at all

times). Instead, only those areas that have an integral TO space (i.e.

LCA's) will be constantly garbage collected. Since these areas generate
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garbage rapidly, this should keep processes from having to pause for a

garbage collection on their LCA to occur.

3.5 Object Creation and Deletion

Running programs will request the creation and deletion of

objects. The program must specify the storage area in which a newly

created object is to be placed. When an object is deleted, its storage

is returned to the storage area the object belonged to. This section

discusses the implementation of object creation and deletion.

3.5.1 Object Deletion

Objects are deleted and their storage reclaimed by one of two

means: the garbage collector may determine that the object is no longer

referenceable and thus its storage is no longer needed or the user may

perform a delete operation on an object. The garbage collector case is

easy. When the garbage collector determines that an object is no longer

accessible, all of the storage used by that object is returned to the

free storage pool implicitly during the garbage collection process when

FROM space is destroyed.

AESOP allows the user to explicitly delete individual objects and

to delete objects implicitly by deleting all of the objects in a given

storage area. When an object is deleted there will, in general, still

be outstanding references to that object. The system is responsible for

invalidating those references. Moreover, the implementation should make

an effort to utilize storage freed as a result of these operations
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available as soon as possible, since one of the prime motivations for

including delete operations in AESOP was to regain the use of storage

quickly.

When an object is deleted in an area A, the implementation will

mark all of the storage associated with that object as free except for

its first word. This is done by first incrementing a counter of the

amount of free storage in A, total freewords, by the amount of freed

storage and then placing the freed storage on a list of free storage

that A maintains. The first word of the object is be marked as

"deleted" and any further attempts to reference the now deleted object

will result in the raising of the unexpecteddeletedoperand exception.

Thus the first word serves as a tombstone for the deleted object. The

storage occupied by the tombstone is later reclaimed by the garbage

collector for A. Whenever the garbage collector notices a reference to

a tombstone, that reference is changed to say "deleted". Thus after a

garbage collection is complete the storage occupied by the tombstone is

reusable since there will be no outstanding references to it.

3.5.2 Object Creation

When an object is created some storage must be allocated to hold

that object. The AESOP implementation is responsible for allocating

that object within a storage area; the user is responsible for choosing

which storage area it should be allocated in. This occurs since AESOP

has taken the point of view that users may be interested about storage

allocation in the large (i.e. deciding which objects belong in which
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storage areas) but they have no desire to participate in storage

management in the small (i.e. the placement of objects within a storage

area).

Numerous storage allocation strategies have been proposed in the

literature and their performance analyzed. The strategy chosen for the r
I,

implementation of AESOP must satisfy two criterion. First, the CPU time

required to perform an allocation must be small. If allocations were to

take a long time to perform, system performance would suffer due to

their frequent occurrence. Second, the allocation strategy must not use

large amounts of storage for bookkeeping purposes. Since there will be

large numbers of potentially small objects, a large overhead will

degrade memory utilization to an unacceptable extent. Any algorithm

that meets these two goals will do for an allocation strategy.

At any given time, the storage in an area A looks like that in

Figure 3.4. The partially allocated area contains both allocated

objects and, on the free list, the storage returned by the explicit

Free Area
Pointer

Partially Free
Allocated Storage
Storage

Storage Area A

Figure 3.4. The storage within a storage area.
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deletion of objects. Allocation of objects can take place either in the

free area or by taking space from the free list. To allocate an object

in the free area it is only necessary to remove an appropriate amount of

storage from the free area by moving the free area pointer. To allocate

storage from the free list, that list is searched for a suitably sized

free area which is removed from the list. The object is then created in

that area and any excess storage returned to the free list.

If the free area is not large enough to contain the new object,

and if no suitably sized area is found on the free list, then, in

general, a garbage collection must be performed on A to collect all of

the free area in A into one contiguous area so that the allocation may

be retried. If total free-words is at least as large as the size of the

object to be created, a new garbage collection cycle is initiated, the

new object allocated at the end of TO space and total free words

decremented by the size of the new object. The situation after this

allocation will be as in Figure 3.5. This is guaranteed to work since

the garbage collection will produce a compacted free area at least of

size totalfreewords at the end of TO space. It may, in fact, be

larger due to collected garbage. If, on the other hand, the size of the

new object would be greater than totalfree-words, the allocation

request can not yet be granted as there is no guarantee that sufficient

free storage exists in A to satisfy the request. There may, though, be

sufficient free area to satisfy the request once the area is garbage

collected. The implementation at this point has two choices. It can

refuse the allocation by signalling an error, say
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Free area
Pointer

Partially Free
Allocated Storage
Storage

Storage Area A, FROM space

Free area

Pointer

New Free Storage
Obj ec t

Storage area A, TO space

Figure 3.5. A storage area being garbage collected

insufficient space now, in which case the program may try again. later-.,

Alternatively, the implementation may wait until the next garbage

collection cycle terminates and try the allocation then. The allocation

may fail then since, due to the use of storage areas by parallel

processes, even if there is sufficient free storage (including the

garbage of the area) when the garbage collection is initiated, there is

no guarantee that it will be there when the garbaSe collection

terminates since those parallel processes may create objects and thus

use some of the free storage. This last occurrence will be rare since
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it will only occur when an area is very full.' This implementation

makes the second choice since it succeeds in most cases. If, just after

the garbage collection terminates, the allocation can not be performed,

an error is returned to the requestor.

3.6 Multi-Area Cycles of Garbage

The garbage collection algorithm just presented does not discover

all of the garbage in the system even if all programs in AESOP are

stopped and an infinite number of garbage collections performed. To see

this, consider Figure 3.6 in which the only accessible objects are ROOT,

A and B. However a garbage collection of SI will find that A and C are

both accessible while a garbage collection of S2 will find that B and D

are accessible. Thus neither C nor D will ever be considered garbage

and thus have their storage reclaimed. In a long running system such

ROOT A ~ A

Storage Storage
Area SI Area S2

Figure 3.6. An example of a multi-area cycle of garbage.

1. Since full areas will tend to be constantly garbage collected,
their presence will degrade system performance. Since users want good
performance, nearly full storage areas should occur only rarely.
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reclamation is vital. Since the garbage collection algorithm of this

thesis is based upon Bishop's work, it is reasonable to ask how he

solved the problem. Bishop solved it by associating a directory with

every storage area. The directories, as a group, are the roots of the

graph of accessible objects in the system and can be used, as shown by

Bishop, to eliminate inter-area cycles of garbage in a simple and

elegant manner. This scheme is not applicable to AESOP since there are

no directories provided by AESOP.

An algorithm to reclaim multi-area cycles of garbage must take

into account how frequently such cycles occur In order to limit, if

possible, '-he complexity of the algorithm. This thesis assumes that

long term inter-area cycles of garbage are rare. This comes from the

following consideration: storage areas are generally either temporary or

are long term. An inter-area cycle of garbage involving a temporary

area is unimportant since the cycle will be broken when the temporary

area is destroyed. Objects in long term storage are probably part of a

file system and cycles in Mie systems probably only occur as a result

of entries in directories and such loops will be broken when the

directory entry is deleted. The remaining inter-area cycles, which are

the ones of interest, should be rare so that the detection of inter-area

cycles of garbage need not occur rapidly. Since they are rare, it is

inappropriate to devote large amounts of resources to discovering them.

Thus a scheme with low overhead is desired.
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Inter-area cycles of garbage in AESOP viii be detected by

performing a mark/sweep garbage collection of the entire system. The

system-wide mark phase may take a long time to complete since it

requires all storage areas to be individually garbage collected at least

once. Since storage areas are garbage collected at varying rates, this

may take a long time. However, due to the assumed rarity of cycles,

this is not be a problem. The sweep phase occurs by making one, linear

pass over all of storage, reclaiming all unmarked objects.

The algorithm starts at ROOT and marks all objects accessible from

ROOT. It then recurses through the logical memory until all objects

have been marked at which point unmarked objects will be reclaimed.

This algorithm is unique in that no stack is used, nothing is done to

make the system unusable while the garbage collection is in progress and

it employs no centralized control mechanism. Instead, a distributed

control algorithm, distributed in the storage areas, is used in which

each storage area keeps two additional bits of information as state.

Associate with every object a single bit, its mark bit, that tells

whether the object is accessible from ROOT. With every storage area

associate two bits, ITID (for I Think I'm Done) and rescan. An area

turns on its ITID flag when it thinks that all accessible objects in it

have had their mark bit turned on. The rescan flag is turned on by

other areas to indicate that the area needs to be rescanned for

accessible objects before its ITID flag can be turned on. In addition,

there are two global (system wide) flags: global gc that indicates that

a mark/sweep garbage collection for inter-area cycles is underway and
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gc_sweep that indicates when the sweep phase of the mark/sweep garbage

collection is underway. What follows is a high level discussion of the

basics of the algorithm. Appendix B should be consulted for complete

details.

While an area is being garbage collected, whenever an object is

moved to TO space its mark bit is turned on if it was already on or if

it was referred to from an object whose mark bit was on. This results

in the mark bits propagating through the graph of accessible objects.

The ITID flag is turned on by an area whenever it finishes its garbage

collection so long as its rescan flag is off. The rescan flag is turned

on for an area A and its ITID flag turned off if a previously unmarked

object in TO space is marked and the garbage collector for A has a.ready

scanned that object and traced its references. This ensures that all

objects in an area are marked correctly before terminating the mark

phase. The mark phase ends when all ITID flags are turned on. At this

point the globalsweep flag is turned on to allow all unmarked objects

to be reclaimed and their storage added, in its entirety, to it's area's

free list (i.e. a tombstone is not left behind as there are known to be

no valid references left to this object). This sweep can occur without

stopping AESOP since it only touches inaccessible objects. The

following two points are also important:

1. A newly created object 0 should have O.mark set to
the value of global_gc at the time that the object
is created.

2. When garbage collecting an area, if globalsweep is
true, pointers from objects with their mark flag off
should not be followed.
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The first ensures that objects created after the initiation of a global

mark/sweep do not have their storage 'accidently, and incorrectly,

reclaimed. The second speeds up the reclamation of storage since

objects known to be inaccessible from ROOT (i.e. objects that do not

have their mark bit on) are not traced from. This is the basics of the

algorithm. Appendix B contains the complete algorithm and integrates it

into the basic AESOP garbage collector. it also contains an argument as

to why it terminates correctly.

This algorithm adds some complexity to the garbage collection

algorithm used by each storage area in order to handle mark bits but

this is a small burden, especially when implemented in hardware, since

it just involves setting some bits in objects and in storage areas.

3.7 A Stack Mechanism for Local Name Spaces and Control

Control flow within a process follows a strict stack discipline

(i.e. the call/return paradigm) indicating that a stack implementation

of control is optimal. The LNS for a procedure activation is, in

essence, the stack frame for that procedure so a stack mechanism for

local name spaces would also seem to be ideal. Integrating stack

allocation of local name spaces in the stack oriented control flow would

be the best of all possible worlds. Unfortunately, an LNS is an object

and, as such, arbitrary references to an LNS nay be stored within AESOP.

Such references are used, for instance, in creating closures to meet

various language needs as discussed in chapter five. The ability to

freely copy references makes a stack oriented deallocation scheme
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potentially unsafe since, when the stack algorithm says to deallocate

the LNS, there may still be outstanding references to the LNS. Leaving

behind a tombstone in the stack is unacceptable as it would prevent the

stack from easily growing again. However, this section shows how the

stack allocation of local name spaces can be made to work correctly and

effic iently.

When an AESOP process is created, a default storage area is

specified. That storage area will be used to hold the stack for the

newly created process by reserving a portion of it for the stack and

using the remainder for allocating objects. When a procedure is called,

an activation record is pushed onto the stack followed by the newly

created LNS. The activation record contains the address of the calling

instruction (a code segment and an offset within that code segment), a

back pointer to the previous activation record and a specification of

the GNS of the caller (to permit restoring the callers environment upon

return). The activation record is followed by a pointer (initially

null) to an LNS tombstone (to be described later), and, finally, the

LNS. Figure 7 shows the possible configurations.

In deallocating an INS in a stack manner it is necessary to ensure

that no references to the LNS remain after it is deallocated. To do

this in an optimal manner is probably hopeless; instead the common cases

will be covered here. This algorithm notes that the initial situation,

in which an LNS refers to itself as a result of the procedure call

mechanism, is safe and then notes some safe transitions from safe

states.-

- 129 -



Code Instruction Back .NS Ref. to LNS
Segment Offset Pointer Spec. an LNS

Tombstone

Basic format of an activation record

Code Instruction Back Null Ref. to LNS
Segment Offset Pointer Ref. an LNS I

Tombstone

The result of proc$call or a type manager call.
(the caller's GNS is the same as the called procedure's)

Code Instruction Back GNS Ref. to LNS
Segment Offset Pointer ref. an LNS

Tombstone

The result of a proc$call-with gns call.

Code Instruction Back GNS LNS
Segment Offset Pointer ref. ref.

The result of a closure$run operation

Figure 3.7. Formats of an activation record.

If a reference to an LNS is copied within that LNS, no problem

results since the new reference disappears when the LNS is deallocated.

A reference to an INS may also be placed into a closure. This is safe

so long as the closure is only known in that LNS.
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The LNS (or a closure referencing it) may also be passed as a

parameter. This is safe so long as the reference to the original LNS

does not leave the newly created LNS. Applying this argument

recursively, it can be seen that so long as references to an LNS stay

higher in the stack' than that INS, no problems result. Also, if a

reference to an LNS should get into a closure then everything is safe so

long as that closure is only known higher in the stack than the LNS it

refers to. It is claimed, based upon the examples of using AESOP that

are presented later in this thesis and upon consideration of the ways in

which languages generally need to treat naming environments, that the

vast majority of all references to local name spaces will fall into one

of these categories. Thus an implementation that traces these safe

transitions will greatly aid performance.

In consideration of the arguments of the last paragraph, every

object reference contains a stack reference flag that, when on,

indicates that this object reference is to an entity associated with the

stack allocation of local name spaces and so should be treated

carefully. Whenever an attempt is made to copy such a reference other

than within an LNS or as,-part of the procedure call mechanism, the

algorithm in Figure 3.8 should' be executed. The result might be as in

Figure 3.9.

1. A reference is higher in the stack if the LNS it resides in was
created after the LNS that it refers to. That is, its procedure
activation is more recent.
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1. Let OR be the object reference in question and 0 the
target of the copy operation.

2. If 0 is an LNS and OR refers to an LNS (either
directly or indirectly through a closure) no higher
than 0 in the stack then return as no further action

is needed.

3. If 0 is a closure that is being created then create
it, set the stack ref flag on in the reference
returned by closure~create and return.

4. At this point, OR is moving to a place which may
result in a dangling reference when the referenced
LNS is destroyed. Thus drastic action is called
for.

5. Create an "INS tombstone" for the LNS referred to by
OR off of the stack, if not already created. Place
a forwarding pointer to it in the LNS tombstone

reference field in the activation record
corresponding to the referenced LNS. Mark the
tombstone as "forwarded" and place a reference to
the INS in it.

6. If OR refers to an LNS, update it to refer to the LNS
tombstone for that LNS.

7. If OR refers to a closure, update the LNS reference
in the closure to refer to the LNS tombstone and set
OR's stack ref flag off.

Figure 3.8. The algorithm for handling the stack of LNS's.

A number of remarks about this algorithm are in order. This

algorithm looks for the movement of references to local name spaces to

places where a stack oriented deallocation for those local name spaces

might result In errors. At that point, a forwarding pointer for the LNS

in question is made out of the stack. The reference leaving the stack

then refers to this tombstone and will be forwarded to the correct LNS

when used. When the procedure corresponding to that LNS returns, the
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Any vector

INS "Forwarded"

GNS LNS tombstone
Spec.

Bac k
Ptr.

Code

Seg.

The INS

stack

Figure 3.9. An LNS reference moved from the stack

tombstone is found and marked "deleted" so that all remaining references

to that LNS will fail. Meanwhile, the stack area is uncluttered by the

tombstones that would adversely effect a stack allocation strategy.

Also, tombstones for an LNS are only created when needed so that the

remainder of the area containing the stack remains uncluttered from this

source.
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It should be noted that this algorithm is suboptimal. Consider

Figure 3.10 and suppose that it depicts all references in AESOP. As it

stands LNSI can be safely deallocated in a stack manner. Now suppose

that the procedure executing in LNS2 does V(P) :- LNS2() and then

returns. The above algorithm will cause a tombstone to be created for

LNSI off of the stack even though that is unnecessary since V is V

inaccessible once LNS2 is returned from. Thus the algorithm is not

optimal.

There is one remaining question concerning this algorithm - how

can the creation of a tombstone in step 6 be guaranteed to always be

possible? Could it not occur that there is insufficient free storage in

the storage area containing the stack to permit the copy? When an

activation record is pushed onto the stack, reserve enough free storage

to create an LNS tombstone by decrementing total free words for the

storage area containing the stack. Now when an attempt is made to

3 .
IANS2,

2

3 P
LNS 1

2

I .1 •

INS Stack Vector V

Figure 3.10. An example of suboptimality.
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create the tombstone for the LNS, it must succeed, perhaps after a

garbage collection, since storage has been reserved for it. When the

procev_ ure returns, if no tombstone has been created, the storage

reserved is returned to the free pooi by incrementing total free words.

3.8 Conclusions

This chapter has described a logical storage management

implementation that could be used in an implementation of AESOP. The

management of the logical memory, the memory that contains the AESOP

objects and the unused storage in AESOP, is done in terms of the storage

area mechanism using the hypothesized access patterns of the subsystem

model to improve performance.

Garbage collection proceeds on a per-area basis. Inter-area

references that effect the garbage collection process are handled either

by inter-area links, which have little effect on the garbage collection

process, or by garbage collecting areas that are cabled to the area

being garbage collected. This multiple garbage collection is not an

impediment to efficient system operation since areas with outgoing

cables tend to need to be more frequently garbage collected due to their

higher rate of activity under the subsystem model. This mechanism is

similar to that proposed by Bishop but differs in that a real-time

garbage collector is incorporated.

The problem of multi-area cycles of garbage has been addressed by

designing a mark/sweep garbage collection algorithm. This algorithm is

new in that it employs no centralized control and occurs during normal
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system operation. It has been designed to cost little by being made

part of the basic garbage collection mechanism within storage areas.

Finally, this chapter has shown how local name spaces can be

created and destroyed in an efficient and safe manner. This means that

the frequent use of procedures in AESOP is not an impediment to

efficient operation.

I:.

1
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Chapter Four

Other issues in Implementing AESOP

Chapter three has given an overview of the issues involved in

implementing AESOP and discussed the management of the logical memory

defined by AESOP. This chapter discusses the remaining issues

associated with implementing AESOP: managing the physical resources

underlying the AESOP implementation (especially memory) and implementing

AESOP's basic types.

This chapter first describes the hardware assumed to underly thi!n

implementation of AESOP. Next, the format of object references is

discussed. Object references must be small so as to minimize space

wastage within them since they make up every AESOP object while, at the

same time, must be large enough to permit referring to any AESOP object.

discussed next. The approach taken here is to treat the actual AESOP

memory as a paged, virtual memory. The problems associated with

allocating physical storage to storage areas are discussed next. Th Is

implementation allocates contiguous blocks of secondary storage to

storage areas so that the problem of memory fragmentation is of concerni.

Next, the implementation of AFSOP's basic types is discussed. Most of

the basic types are trivial. The io type manager Is discussed at lengthr

since its implementation allows I/O devices to interface with an AESOP

system. The storage area type manager is important since It embodies
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the logical storage algorithms. The process type manager is discussed

to show that AESOP processes can be provided cheaply. Finally, some of

the ways in which special hardware, such as associative memories, can

improve the performance of an AESOP processor are discussed.

4.1 Fundamental Hardware Assumptions

This implementation of AESOP is based upon a single, central

processor that manipulates a passive primary memory and a passive

secondary memory. The memories are passive in that they only store data

and do not provide other facilities.'

The processor is specially designed to implement the semantics of

AESOP as defined in chapter two. The processor is responsible for

managing both the multi-level physical memory and the logical memory

defined by AESOP. In general, it is responsible for using the physical

memory, a collection of uninterpreted bits, to create the object memory

defined by AESOP and for providing the facilities for manipulatiag that

memory.

Primary memory will consist of some quantity of 32 bit words.

This word size been chosen to be large enough to meet the perceived

addressing needs of AESOP while being small enough so that the overhead

of one object reference stored per word is not onerous. The actual

1. Later in this chapter it will be seen how some simple relaxations
of this assumption lead to more efficient implementations of AESOP.
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rI
quantity of primary memory will vary from machine to machine and will be

chosen to provide adequate performance for a particular user.

Secondary memory will consist of one or more large capacity

devices such as disks or bubble memories. The amount of secondary

storage will vary from one machine to the next; the only assumption is

that there is sufficient secondary memory to meet the user's needs. The

most important characteristic of secondary memory is its relatively slow

access time relative to primary memory access time (25 or more

milliseconds for accesses to a disk versus a microsecond or less to

access primary memory).

1/0 devices are attached to AESOP through the central processor.

The processor cooperates with those devices to meet the semantics

defined in chapter two, i.e. to allow the device to manipulate event

counts and bit vectors provided by the programs using those I/O devices

and to allow programs to access and manipulate a device's status

registers.

The entire system has the configuration shown in Figure 4.1.

Alternative hardware configurations involving multiple processors are

possible. However, such configurations increase the complexity of the

AESOP implementation since there is now parallelism within the

implementation. The configuration chosen here permits the critical

issues of implementing AESOP to be examined without the need to consider

the irrelevant issue of parallelism.
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1/0 1/0 ... 1/0
Device Dev ic e Device

Central
Processor

Primary Secondary
Memory Memory

=a data path.

Figure 4.1. The basic hardware configuration of AESOP.

4.2 Object References

Almost all objects in AESOP consist of a sequence of references,

called object reference, to other objects. As such, it is advantageous

to have all object references physically represented with entitles that

are all the same size to allow efficient random access to the references

within an object. The object references must be small in order to

minimize memory wastage within them (e.g. a 64 bit reference to a

boolean wastes 63 bits) but large enough to allow for a suitably large

space of objects since every object reference must be large enough to be

able to refer to any object within AESOP.
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This implementation of AESOP assumes that a physical address space

of 229 object references (approximately 500 million object references)

is a reasonable upper bound on the size of the logical memory needed in

most uses of AESOP, given that it is a personal computer. Obj ect

references are implemented in 32 bit words since, as will be seen below,

this allows references to some built-in objects to be efficiently

encoded while also allowing references to any other object within this

address space of 229 object references.

Object references may refer to the various built-in objects in the

system (the built-in type managers, integers, characters and booleans).

Some of these objects are immutable and their state small enough to be

encoded within an object reference itself so that space and time -

efficiency are increased. To do this, the high order bit of every

object reference is reserved for a tag bit that indicates whether that

object reference is to one of these special items or is to some other

object.

If the object referencs refers to one of these special items, the

tag bit is turned off and the remaining 31 bits of the object reference

are used to encode that special item as shown in Figure 4.2. In this

way these objects are represented in the references to the objects so

the objects themselves require no storage. Also, references to deleted

objects are represented in the object reference itself allowing for the

reclamation, as seen in chapter three, of the tombstones left behind

deleted objects.
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<"01"b, a 30 bit integer> a reference to the given integer

<"000"b, an 8 bit character> a reference to the given character

<"0010"b, a single bit> a reference to the given boolean

<"0011"b, data> for a reference to a built-in type manager or for

special object references. The field data is interpreted as

follows:

Value Reference interpreted as:

0 a reference to the boolean type manager

1 a reference to the character type manager

2 a reference to the closure type manager

3 a reference to the code segment type manager

4 a reference to the event count type manager

5 a reference to the integer type manager

6 a reference to the io type manager

7 a reference to the null type manager

8 a reference to the object viewer type manager

9 a reference to the procedure type manager

10 a reference to the process type manager

11 a reference to the sequencer type manager

12 a reference to the storage area type manager

13 a reference to the type manager type manager

14 a reference to the vector type manager

15 a reference to a deleted object

16 a reference to nil

Figure 4.2. The format of special object references.
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A reference to some other object is indicated if the tag bit is

on. In this case the remaining 31 bits of the object reference are the

29 bit address of an object (i.e. a reference to the storage

representing the object) and a two bit type ref field. These objects

require representation in memory for two reasons. First, their state is

too large to be represented within a 32 bit word. Second, and more

importantly, these objects tend to be mutable so that encoding their

state in the object reference is hopelessly inefficient - changing the

state of such an object would involve finding and updnting all

references to the object.

As will be seen in the next section the home of objects is on

secondary memory, primary memory is just a cache for objects. The 29

bit address in the object reference must name this object by, in

general, naming its home. There are two ways of doing this. First,

this address could be the secondary storage address of the object's

home. The second possibility is to have this 29 bit address be an index

into some indirection table. This implementation of AESOP will use the

first scheme to avoid the overhead and complexity involved with using an

indirection table. The penalty for this is that the allocation of

secondary memory becomes a little tricky, as will be seen later in this

chapter.
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The type_ref field in the object reference indicates whether the

object reference is:

1. A simple reference into the storage area containing
the reference.

2. A reference to an object associated with the stack
allocation of LNS's in the storage area containing
the reference.

3. A reference through an inter-area link to an object
in another sturage area.

4. A direct reference to an object in another storage
area that is cabled to the storage area containing
the reference.

T'his field allows for the correct handling of the stack allocation

strategy for local name spaces by allowing the simple detection of

references to objects associated with that strategy. This format also

allows an object reference to indicate that it refers to an object

outside of the referencing area, making it immediately known whether or

not an inter-area link or cable must be checked for when copying an

object reference. In addition, it permits the garbage collector to

discriminate between references through links and direct references to

cabled areas.

Note that this second format for object references does not allow

for type information in the reference itself. Thus, since AESOP

strongly types objects, it is necessary to place the type of the object

with the object itself. To accomplish this, every object in AESOP will

be prefixed by a header giving the type of the object. in addition, the

header will hold the per-object mark bit needed in the global mark/sweep
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garbage collection of chapter three as well as aiiy other object specific

information, such as the length of vectors, that is needed.

This format of object references has the advantage of being

relatively short (only 32 bits are required) while still allowing for

the space efficient encoding of some built-in objects and providing for

the efficient handling of inter-area references. The interpretation of

these object references might be difficult in a software implementation

of AESOP but is trivial in a hardware implementation. In either case,

the good points of these object references outweigh any implementation

difficulties.

4.3 Allocation of Physical Storage to Storage Areas

Storage must be allocated for storage areas whenever a new storage

area is created or an old area requires creation of TO space as part of

garbage collection. This storage must occupy contiguous segments of

address space since the logical memory management algorithms of chapter

three have assumed that consecutive words in a storage area have

sequential addresses. This implementation will use the physical

secondary memory address space as this address space. That is, storage

areas will occupy contiguous segments of secondary storage.

An alternative to contiguous allocation is to allocate storage

areas in a paged, virtual address space. This has been rejected for two

reasons. First, this layer of mapping takes time to perform and can

only adversely affect performance. Second, the mapping table consumes

large amounts of valuable storage. For instance, if pages are 256 words
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long, the 229 size address space requires about two million page table

entries - a large overhead for a personal computer.

Since storage areas are full fledged objects in AESOP, the

algorithms of chapter three are directly applicable to

allocating/reclaiming the storage of storage areas if all of secondary

storage is regarded as a single storage area with the other storage

areas considered as the objects residing i that single large storage

area. To apply them, though, requires dedicating half of physical

storage to FROM space and the other half to TO space. This results in

at most 50% utilization of secondary storage which is unacceptable.

Inst-ad, classical dynamic storage allocation techniqes for variable

sized blocks (e.g. first fit, best fit and buddy systems) will be used.

Dynamic storage allocation algorithms have the problem of external

fragmentation - as storage areas are created, destroyed and moved (as a

result of garbage collecting an area), the free storage in the system

becomes fragmented into small pieces and may result in the situation

where the total free storage in the system is large enough to satisfy an

allocation request but no single free storage area is large enough to

satisfy the request. This would stop the requesting process until the

pattern of secondary memory usage permitted the allocation - potentially

a long time. However, Knuth has discovered[24] that, in practice, this

is not a problem. A storage allocator that is in equilibrium (i.e. the

same number of bits are being created and destroyed each second) is

expected to run forever so long as the allocated objects are no larger

than 10% of memory size. Memory utilizations of 90% are possible in
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this case. As a result, so long as the user of AESOP does not create

storage areas that are too large, it is hypothesized that the only

complete solution to external fragmentation, dynamic storage compaction

in which storage areas are moved so as to collect all of free storage

into one contiguous area, is unneeded. Instead, if AESOP should ever

need to perform compaction, this implementation of AESOP will stop

executing all AESOP programs and perform a simple compaction of

secondary storage by moving all storage areas to one end of secondary

memory. This movement is easy to perform since it will be the only

activity in AESOP at that time. 1  Due to its rareness, the fact that

this approach stops the system is acceptable. It should be noted that

this particular implementation of AESOP could be modified, at a

considerable increase in complexity, to perform this compaction

dynamically. This has not been done here due to its great complexity

relative to its expected frequency of use.

A storage area may be destroyed, and its storage returned to the

free pool of secondary storage, by a storagearea$destroy operation or

it may be garbage collected when there are no references to objects

within the area and no references to the area itself. A garbage

collected area is destroyed by returning all of its storage to its

I. This compaction might also be done when the user says that the
system will not be used for a while. The ability to say this was
proposed for AESOP in chapter three.
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parent as a credit and returning the storage used by that area to the

free pool.

There are two possible ways to implement the storagearea$destroy

operation on an area A. First, all objects in A as well as A itself can

be marked as deleted. As garbage collection occurs in other areas, all

references to these will disappear. Eventually, they will all be

garbage collected. This method is simple but does not return storage

immediately. Alternatively, at the time that A is destroyed, all

references to A or the objects within A can be found and marked as a

reference to a deleted object by modifying all links to A and linearly

scanring all areas cabled to A. After this, A's storage may be returned

to the free pool as there no longer any references to it. This method

results in fast reclamation of storage at the expense of some delay

before the Qperation returns. The second method is chosen here because

a primary purpose of the delete operation is the rapid reclamation of

storage.

4.4 Physical Memory Management

Chapter three has discussed the management of AESOP's logical

memory. The previous sections have defined object references to contain

a 29 bit secondary storage address of objects and discussed the

allocation of secondary memory resources. This section will discuss the

manner in which the address in object references is used to find the

actual object and how the primary memory of AESOP is used to give
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reasonable efficiency. In essence, this section discusses a virtual

memory mechanism for the AESOP implementation.

Given the 29 bit secondary storage address of an object, the

implementation must find the contents of the object. The simplest

approach is to always go to the specified secondary storage location,

retrieve the object and, if necessary, modify it and immediately write

it back to secondary storage. Since secondary memory is slow, and there

do not appear to be any technologies that will change this, this would

result in a hopelessly slow implementation of AESOP. Instead this

implementation will use primary memory to encache objects likely to be

referenced in the near future. Thus the problem of migrating objects

between primary and secondary memory arises. This implementation takes

the traditional approach of encaching the most recently used objects in

primary memory, i.e. no prediction of future references is attempted.

There are two approaches to managing the physical memory: an

object based one and a page based one. An object based scheme would

bring an object into primary memory whenever referred to. This has the

advantage that only those objects known to be needed are brought into

primary memory so that I/O traffic to secondary memory can be minimized

and greater primary utilization is, at first glance, possible. It has

the disadvantage that a large amount of bookkeeping is needed to keep

track of which objects are actually in primary memory and where they are

in primary memory. This approach has been investigated by Snyder[47].

In a page based scheme memory is divided into contiguous blocks called

pages. Whenevei an object is referred to the page of storage that
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contains that object is brought into primary memory. This has the

advantage that if related objects are kept on the same physical page,

then a reference to one of those objects will cause all of them to be

brought into primary memory with one reference to secondary memory, thus

reducing the amount of secondary storage 1/0 traffic. If the mapping

from secondary storage address to page identifier, the name of the page

referred to, is simple, the overhead to keep track of the primary memory

location of objects is small. It has the disadvantage that unneeded

objects may be brought into primary memory unless the objects within a

page exhibit locality of reference.

This implementation will use a page based approach. This decision

has been made since the storage area mechanism and the method of garbage

collection combine to mi~ke locality of reference a likely occurrence.

In particular, a storage area, under the subsystem model of use, tends

to have related objects within it. The garbage collection mechanism

places objects that are within a single storage area physically close to

each other if they refer to each other since the garbage collection

scheme performs a breadth-first traversal of the graph of accessible

objects.

The degree of locality of reference depends upon two factors.

First, the branching factor of objects is important since an object that

references 100 other objects will not be close t- the 10O'th object as

the other 99 will physically be between them. However, as reported by

Snyderi47), branching tends to be small (3 in the prog-ams that he

measured) so this is not a significant factor. Second, as objects are
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29 bit object address

I typeref page identifier offset

I 8 bit offset in a page

21 bit page identifier

2 bit typeref field

4 bit tag, on to indicate a normal object reference

Figure 4.3. The format of a normal object reference.

Given a page identifier, derived from the secondary storage

address of the object, it is necessary to determine its location in

primary rnc mory, if any. One possibility is a table that tells, for all

page identifiers, where in primary memory the page is, if at all.

However, this is nothing more than the secondary memory mapping table

rejected earlier in this chapter for being too large so it is rejected

here also. Instead, the system will maintain a table of all pages that

are in primary memory that maps page identifiers into primary memory

addresses, and supports the insertion, deletien and lookup of entries.

This table is not too large since it need only map pages that Are in

primary memory.

There are numerous ways of implementing this table such as ordered

lists, b-trees and hash tables. The actual mechanism must provide all

three operations above in a speedy manner, with minimal storage overhead
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and without requiring a great deal of implementation complexity. An

additional factor to consider is the parallelism possible if primary

memory is divided into two or more modules, each of which contains one

or more pages, and each module maintains a table of the pages within it.

In this case the searching of these multiple tables can occur in

parallel. In consideration of these factors, this implementation

performs the page lookup function by a hash table since a hash table is

easily implemented. Since this algorithm is simple, the option of

placing the intelligence to manage it in every memory module is

available to permit the parallel searching of these tables. There is

nothing sacred in this choice; its important points are possible

parallelism in memory modules and the simplicity in every such module.

Another algorithm meeting these two points is equally acceptable.

Given the secondary storage address of an object (i.e. the address

in an object reference), it is often necessary to ask the question

"Which storage area is this object in?" This question must be asked, for

instance, whenever an attempt is made to copy an object reference from

one storage area to another. Answering this question efficiently is an

important consideration in implementing AESOP.

There are three possible ways to answer this question. First each

page of memory could be marked with an object reference to the storage

area to which it belongs. 1  This has the disadvantage that answering

1. For the time being the possibility of pages that are part of
multiple storage areas is ignored.

- 153 -

I-l-



this question requires that the page referred to must be brought into

primary memory. Alternatively the system could maintain a table that

contains, for every page in the system, an object reference to the

storage area that it belongs to. As seen in the previous section, this

requires a large table to be kept by the system. The third possibility

is to maintain a table mapping ranges of page iaentifiers into storage

area references. This is just a space optimization of the preceding

scheme that is achieved by compressing the table mapping page

identifiers into storage area references.

If usage follows the subsystem model the number of storage areas

in AESOP will be relatively small - a few subsystems with a few

processes in each, a few library areas and a few inter-subsystem

communication areas. This will result, most likely, in only a few

hundred storage areas in AESOP at any time. As a result, since storage

areas occupy contiguous sequences of pages, the compacted table of the

third scheme above is chosen in this implementation of AESOP. There are

many ways to arrange this table, such as b-trees and ordered lists, and

the possibilities are well documented in the literature. For

concreteness, this implementation will use b-trees since they provide

bounded lookup times while still being easy to manage. Again, the

reader may feel free to substitute an alternative choice that meets the

major criterion of implementation simplicity.

The problem of pages that belong to multiple storage areas will

now be addressed. The architecture as presented in chapter two allows

the creation of storage areas of arbitrary size so that they might not

- 154 -



use all of a page. As a result, the possibility of a page being used by

multiple storage areas exists. Although an algorithm for handling pages

that belong to multiple storage areas can be developed, the complexity

it adds to the AESOP implementation is non-trivial. This implementation

of AESOP avoids this problem by always allocating storage areas so that

they occupy an integral number of pages. User defined quotas will be

rounded up to an integral number of pages for storage allocation

purposes although the user specified quota limit will be enforced for

object creation. The only effect of this is that some part of the last

page of a storage area may never be used - a small price for the

benefits of page based physical memory management.

4.5 The Implementation of AESOP's Basic Types

The discussion of this implementation of AESOP will be completed

by describing the implementation of AESOP's basic types. The problems

here tend to be simpler than logical/physical memory management since

there are few difficult algorithmic problems.

Booleans, characters and integers are all represented in the

references to the objects themselves so no storage is associated with

them. The operations on these objects are trivially implemented. The

only minor complications are that these types, and all of the built-in

types, must check for correct access to perform the operation and to see

that their operands are of the correct type.
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Vectors must occupy storage so that their state may be remembered.

The create operation creates the representation of the vector by

employing the object creation algorithm described in chapter three. (In

fact all of the remaining types will also do this when they need to

create a representation for something.) The new status operation, when

it requires the lengthening of the vector, can either expand the vector

in place, if the pattern of free storage permits, or move the vector and

leave a forwarding pointer behind. The storage for vectors declared to

contain only booleans or to contain only characters should be minimized

since the use of a full object reference for these is not space

efficient. This is accomplished by noting, in the vector's header, that

it is one of these types of vectors and then allocating the minimum

number of bits per element. This works since the uniform types of these

vectors allows all type information to be kept in the object header.

Architecturally, a type manager is nothing more than an ordered

set of procedure references. The implementation of type managers need

be little more than that. Similarly, closures, procedures and

sequencers are architecturally defined to consist of a few object

references and their implementation needs do little more than store that

information. In all of these cases, the operations are trivial.

The code segment type manager is the basic instruction interpreter

of AESOP. This type manager is responsible for "compiling" the

representation passed to codesegment$create into some lower level form

most suitable to the AESOP implementation. Given this compilation

aspect of the code segment type manager, it is clear that this type
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manager may become arbitrarily complex as various optimizations on the

produced code are attempted. These result in increasingly complex

implementations of AESOP and so are not all desirable given the economic

constraints on a personal computer. However, all implementations of

AESOP should compile instructions that specify a literal built-in type

manager to be invoked along with a liteLal operation number and literal

locations of the operands (or literal data) into very efficient low

level code. This is possible since everything is known except the

actual values of the operands. For example, the instruction:

integer$add(<Ins, 1>, "9") return(<ins, 8>)

could be turned into a load from location 7 offset from a pointer

register to the current LNS followed by an add of 9 and then a store to

a location offset 8 from the LNS.1 As many instructions will have this

form, the result should be a reasonably efficient implementation of code

segments.

The remainder of this section discusses the implementation of the

io, storage area and process/event count type managers. In each case,

the issues involved are more complex than for the preceding types.

4.5.1 The Implementation of the 1O Type Manager

Chapter two presented the mechanism by which a program running on

AESOP controls I/O devices. This was done by modelling each physical

device as a logical device of type io that consisted of a set of mutable

1. Of course, this example has ignored type checking. This makes it
more complicated but the basic optimization remains.
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device registers. This section discusses one way to implement this

model.

An I/0 device interfaces to the AESOP system by plugging into one

of a number of plugs that are part of an AESOP processor. Internally

AESOP numbers these plugs and the address of an I/0 device, as specified

in an io$create operation, is the number of the plug that the device is

plugged into.

This section will specify the logical interface between the

processor and the I/0 device in the form of the commands that each can

issue and the possible responses. This interface must be realized as an

electrical interface at some point. However, the derivation of an

electrical interface once the logical interface is specified is easy and

is left as an exercise to the reader.

An io object consists of a sequence of event count, buffer and

status registers. The processor maintains the first two in a block of

storage that represents the device internally to AESOP since these

registers refer to AESOP objects. The device maintains status registers

since they reflect the status of the physical device.

The processor must be able to read and write the status register

in the I/0 device to implement the set-register and setstatusabcd

operations. This is the only activity that the processor initiates.

The set status abcd operation requires atomicity at the processor end

(two users can not simultaneously perform such an operation on the same

status register). This is accomplished by appropriate locking within
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the AESOP implementation -the device is not involved in the atomicity

property (it may modify the register while the user is performing his

operation).

The remaining activity on the interface plug is initiated by the

1/O device either spontaneously or as a result of AESOP programs setting

one of that device's status registers. This activity falls into two

categories: accessing user supplied buffers (as specified by setting a

buffer register in an io$set-register operation) and incrementing user

supplied event counts to signal the occurrence of some event to the

user.

All data transfers between the 1/O device and a user supplied

buffer are bracketed by the pair of device issued commands begin-dma and

end dma. The begin dma command selects one of the bit vector buffers

that the user has supplied to the 1/0 device and causes the processor to

make that buffer accessible to the device, presumably by transferring

the bit vector into primary memory and arranging that the device have

access to that part of memory. The device can then read and write bits

within the buffer, so long as the appropriate access to the accessed

buffer is permitted. An end dma command informs the processor that the

1/O device has completed the transfer and the buffer may resume

migration between primary and secondary memory. only after the

processor acknowledges the end-dma command may the device indicate to

the user that the 1/O has completed. This permits the data to be

transferred between AESOP system buffers, if any, and user bit vectors.
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To handle the problem of an 1/O device that never completes an 1/O

sequence, and thus ties up a primary memory buffer forever, the AESOP

implementation will associate a timeout with every buffer that has been

selected by a begin-dma command. If there are no transfers to or from

this buffer during the timeout period, the processor will unilaterally

act as if an end dma command had been issued. The next time the device

attempts to perform a transfer, a suitable error will be returned to the

device and the transfer not performed.

AESOP must handle the actual buffers used by the 1/O device very

carefully due to storage management problems. These buffers can either

be a system supplied buffer or the actual bit vector supplied by the

user. If a system buffer is used, it is necessary to copy the

information from the user's bit vector to the buffer before the I/O

begins (i.e. when the begin dma command is issued) and from the buffer

to the user's bit vector when the 1/0 completes (i.e. after the end -dma

command is issued) . This is adequate since the semantics of 1/0 are

defined so that the contents of the user's bit vector are not guaranteed

until after the end-dma command is issued and acknowledged by the

processor. This is, however, inefficient since it requires copying all

of the data between the user's buffer and the system's buffer.

Alternatively, the I/O device may deal directly with the user's

bit vector. This requires that the system wire the user's bit vector

into primary memory so that the I/O device can efficiently access the

buffer. This approach, however, interacts in an unfortunate way with

the storage management policies of this particular implementation of
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AESOP. Consider what would happen if the bit vector resided in a

storage area that was being garbage collected while 1/0 was being

performed. Since the garbage collection algorithm being used in this

implementation is a copying one, it is necessary, in general, to change

the secondary storage address of the bit vector as part of garbage

collection. In general such movement will mean that the position of the

start of this vector witain a primary memory page will change. This

means that it is impossible to just rename the primary memory page with

the name of a new virtual page, instead it is necessary to actually copy

the bit vector to a new page. Such copying is not, however, compatible

with efficient I/0 since I/0 may need to be stopped during such a copy.

Since neither of these buffer management strategies is adequate in

and of itself, a composite scheme is used. When I/0 begins, the user's

bit vector is locked into primary memory and I/0 begun using that bit

vector directly. If it becomes necessary to copy that bit vector due to

some storage management decision, that bit vector is copied to its new

location but the old copy is left behind and used as a system buffer

from this point on. When the I/0 completes the contents of the system

buffer are copied into the new location of the bit vector. This

approach allows the most common case, a bit vector that does not have to

be copied, to be handled very efficiently while allowing the handling of

a moving bit vector in a graceful manner.
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4.5.2 Storage Areas

Storage areas are the architecturally defined means for users of

AESOP to deal with physical storage problems. The implementation of

storage areas must first deal with the quotas that are the essence of

storage areas, the count of used and free storage. A storage area must

also manage its storage: object creation/deletion and garbage

collection. These are just the logical memory management functions

discussed in chapter three. Finally, storage areas must deal with the

"1close" relation and the inter-area cables that it implies. The

difficulty is that cycles of cabled areas must not appear; otherwise the

garbage collection algorithms of chapter three will fail.

It would be ideal to create cables whenever they do not create a

cycle. Unfortunately, this determination is difficult to make both in

space and in time since it amounts to computing the transitive closure

of the cabled-to relation. New cables can be checked for legality,

added and the new transitive closure computed in time 0(N) using space

0(N2 ) to hold the matrix that represents the transitive closure itself

where there are N storage areas in AESOP. The time is not excessive.

However, the space may be excessive (recall that there are expected to

be several hundred storage areas in AESOP). However, if the number of

cables is small, sparse matrix techniques can reduce the storage

requirements so this may not be a serious problem. So far this looks

feasible. Unfortunately, if a cable is deleted (by a

storage _area$not-close operation), the transitive closure matrix must be

recomputed which takes O(N3 log N) time. If N-500 and performing one
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operation takes one microsecond, it takes over 10 minutes to recompute!

Obviously this is unacceptable.

Instead, not all possible cables will be created - only those that

are easily checked for validity will be permitted. A cable created to

an area that has no outgoing cables can clearly never cause a cycle.

So, this implementation uses the simple to check rule that cables may

only be created to areas with no outgoing cables. Although this rule

seems restrictive, it is not so whev usage follows the subsystem model.

In that model, cables are created only to library and subsystem areas.

However, those areas are not cabled to anything so that the restriction

of this rule is not a detriment to efficient operation.

*If a cable is requested but cam not be created under this rule,

the storage area will note the request and, if later it can be granted,

it will do so. This may permit the eventual creation of the requested

cable as other cables are removed.

The storage_area$not-close operation requests, in this

implementation, the removal of a cable. The cable can not just be

removed, however, as there may be outstanding inter-area references that

are valid because the cable is present. Instead, the cable is miarked

"dettion-requ :ted . The next time the area cabled from is garbage

collected, the garbage collector ensures that all references to the

cabled area are by links, creating links if needed. Once the garbage

collector is done, the cable may be removed as no references require it.
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4.5.3 Processes and Event Counts

AESOP provides the user with the ability to easily create and use

processes. To be useful, these processes must be cheap to use. This

section discusses how to achieve this. Event counts are included here

since they can cause processes to begin and cease execution.

Process efficiency comes in three forms: the expense of creating a

process, the cost to choose a new process to run (scheduling costs) and

the cost to actually switch a physical processor from one process to

another. Process creation in AESOP is trivial. First a block ofI

storage is allocated for the process object and initialized with the

arguments passed to the create operation. An LNS stack is then created

in the default storage area for the process. Finally, the newly created

process is marked as being stopped and about to execute the

proc$call with-gns instruction that is the first instruction in every

process.

Irocess switching in AESOP is also easy. The physical processor

must know six things about a running process - current LNS and GNS,

current instruction (a code segment and an instruction offset), default

storage area and the location of the LNS stack. Process switching only

involves storing these six values for the current process in its

representation and restoring them for a second process. An associated

cost of process switching is the page faults a newly started process

tends to take. These can be minimized, if desired, by pre-loading the

pages of that process before starting it as Multics originally did[37J.
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Note, however, that AESOP need not be idle while satisfying these page

faults - lower priority processes may be run.l Moreover, there is

little performance impact if processes tend to wait on a single event

count at once or if all of the event counts waited on are part of a

single vector (in which case the garbage collector will tend to place

them physically near each other, thus minimizing the number of page

faults needed to access all of them).

Thus with proper implementation, processes in AESOP can be

relatively cheap. They are easy to create. Process switching is

trivial due to the small state of a process. Process scheduling is easy

due to the round robin, priority scheduler defined by AESOP.

4.6 Hardware Considerations

The discussion of the last two chapters has presented a high level

discussion of one possible implementation of AESOP. This discussion has

been at a fairly high, hardware independent level. This section points

out a few places where some special hardware assists could make the

implem.entation of AESOP more efficient.

One of the most frequent activities of the implementation is

determining whether or not a given page is in primary memory and, if so,

where it is. A small associative memory containing the addresses of the

I. The ability to run lower priority processes when page faults occur
is why there is no scheduling cost associated with an ec$wait operation
even though that operation may incur page faults to place the awaiting
process on these same lists.
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most recently referenced pages will be a significant aid to performance.

In fact, a 16 entry associative memory on Multics that performs a

similar function yields a 98% succesE; rate as reported by Schroeder[45].

Moreover, since page identifiers are system-wide, this associative

memory does not impose any overhead when the implementation switches

between processes (i.e. there is no need to clear or save/reload its

contents).

The implementation must map a secondary storage address to a

storage area to determine the actions necessary upon copying a reference

from one place to another. Due to the frequency of this mapping, there

should be an associative memory of the most recent such mappings.

The implementation frequently needs information about storage

areas. For instance, whenever an LNS is created/destroyed in procedure

calls, the quota information must be updated. For this reason there

should be a cache of the most recently referenced storage areas holding

the needed information about those areas. Such information should

include, at the least, the area's free storage information and its quota

information. The utility of this cache will depend on how frequently

programs actually tend to request object creation on AESOP.

The implementation, in general, is required to perform type

checking at run time. As references to built-in types are expected to

be most frequent, some hardware support to permit type checking of

operands to the built-in type managers at the same time as those type

managers are executing is important to efficient operation. The type
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manager should assume that its operands are of the correct type and

begin the operation. Meanwhile the type checking is performed by a

separate piece of hardware. If the type checking fails, the operation

is aborted, otherwise the type checking has cost nothing. The

operation, meanwhile, should make no modifications to objects until the

type checking has succeeded.

The garbage collection of storage areas is a very important

activity of the implementation. As described in this thesis, it has

been done by the central processor in the manner suggested by Baker

(i.e. incrementally). With the advent of cheap microprocessors, it is

reasonable to place such activities in the memory itself and allow

garbage collection to proceed in parallel with regular computations.

This would require some modifications to the basic algorithms presented

in the last two chapters, but should be possible with little problem.

This should result in a more efficient implementation at some additional

cost in complexity.

These are a few examples of the places in which specialized

hardware can help the AESOP implementation. These represent speedups

and are not essential. They should not significantly affect the cost of

the implementation and so are reasonable to consider in an

implementation.
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4.7 Conclusions

This chapter completes the description of one implementation of

AESOP. The major thrust of this chapter has been to bring the aspects

of the physical hardware that AESOP will be running on to light. This

chapter has discussed the management of the multi-level storage system

that AESOP will be running on. The implementation chosen uses secondary

storage addresses as the names of objects. Secondary storage is divided

into a number of fixed sized pages and an object is brought into primary

memory by bringing the page(s) that it resides on into primary memory.

As primary memory becomes filled, classical page replacement strategies

are employed to throw pages out of primary memory.

The problem of determining which storage area an address refers to

is important since this question must frequently be answered due to the

link/cable mechanism presented in chapter three. This question is

answered by maintaining a compressed table that maps ranges of secondary

storage addresses into the name of the corresponding storage area. To

make this mapping simple the allocated size of storage areas is always

rounded to an integral number of pages.

The major problem in allocating storage to storage areas is

external fragmentation of secondary storage. Although storage may be

wasted due to fragmentation, Knuth has found that the storage allocator

is unlikely to ever be unable to allocate storage. This policy is not

perfect as it is still possible for the system to be unable to satisfy

an allocation due to fragmentation. If this unlikely event should
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occur, AESOP will come to a temporary halt while secondary storage is

compacted. This is assumed to be such a rare event that this

interruption of service is preferable to the complexity needed to handle

it dynamically.

The implementation of the basic types has also been discussed.

For the most part these were seen to be trivial. The I/0 type manager

is of importance since it specifies a physical interface to AESOP.

Storage areas require care due to the need to prevent cycles of cabled

areas. Finally, AESOP processes were shown to be inexpensive to

implement.

This chapter concluded by listing some of the ways in which

special hardware can aid an implementation of AESOP. Of particular

importance are associative memories to remember the most recently

performed table lookups.
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Chapter Five

Using AESOP

Chapter two described the high level architecture AESOP. Chapters

three and four demonstrated that AESOP can be implemented in an

efficient manner. This chapter shows various ways in which AESOP can be

used. First, some language features are examined and an implementation

on AESOP shown. Second, a line printer example is presented that shows

how to use some of AESOP's operating system features. The various

examples presented in this chapter serve as paradigms for using AESOP.

In many ways AESOP is a very unusual architecture while in others

it is rather ordinary. AESOP's basic data types (booleans, characters,

integers and vectors) are not unusual, and AESOP uses traditional

go-tofs as its basic intra-procedural control flow mechanism. in both

of these cases the language problems they solve are neither easier nor

more difficult than on conventional architectures; the problems are

basically the same in both environments. Thus such problems are ignored

here.

However, AESOP has a number of unusual features; their use will be

demonstrated in this chapter. AESOP provides an execution environment

consisting of immutable code and two name spaces as a naming context,

all provided as objects. AESOP directly supports the termination model

of exception handling. Object viewers provide type extension, access
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restriction and access revocation in a uniform way. AESOP also contains

a number of features normally associated with operating systems:

processes, inter-process synchronization, storage management and I/O.

The first four sections of this chapter discuss some features of

high level languages and how AESOP supports them. The aim is to show

how AESOP's features can, in practice, be used to solve language

implementation problems. Section one discusses extended types and the

parameterized definition of procedures and type managers to demonstrate

AESOP's type manager mechanism. Section two presents four examples of f

using AESOP's flexibility in naming and execution. Dynamic and static

scoping are seen to be implementable in ways analogous to

implementations on conventional architectures due to this flexibility.

Algol call-by-name and CLU iterators show how AESOP's closures can be

used to solve language problems related to the execution environment of

code. A dynamic linking example shows how to use object viewers as an

indirection mechanism to extend the flexibility of AESOP's naming

mechanism. Section three showu how the continuation and termination

models of exception handling, as typified by Mesa and CLU, can be

implemented on AESOP. Section four examines some features of classical

Algol-like languages that AESOP handles deficiently.

This chapter concludes, in section five, with a line printer

example that demonstrates how to use some of AESOP's operating system

features: processes, I/O and inter-process synchronization.
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5.1 Extended Types and Parameterized Definitions

AESOP makes it easy to construct new procedures and types. This

section gives an example of creating procedures and type managers on

AESOP. Many languages provide type and procedure generators (i.e.

procedures that return types and procedures as results). This section

shows how to build these on AESOP. They appear here since the hardest

problem of parameterized definitions is parameterization by type. CLU

will be used for the examples although the results apply to other

languages that support type extension and type/procedure generators.

5.1.1 Extended Types

Many recently designed languages permit the programmer to create

new types, types beyond the set built into the language. These

languages are frequently designed so that the language is type safe; all

type checking can be performed at compile time. This section shows how

the type extension and run-time type checking mechanisms of AESOP can be

used to implement a language's type extension facility.

Figure 5.1 shows a CLU cluster that implements the type "foo"; it

provides two operations, a and b, and has an internal procedure c.

Creating the AESOP type manager for foo involves creating the code

segments for a, b and c, then creating the template LNS for each

procedure and finally creating the procedures a, b and c. The

procedures a and b are then passed to tm$create to create the type

manager foo shown in Figure 5.2. Note that procedure c is really an

internal procedure to foo as only a and b may refer to it.
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foo = cluster is a, b

a = proc(x:foo)

y:rep := down(x)c (y) -

end a

b = proc() returns(foo)

y:rep rep$create()
c (y)

x:foo := up(y)
return(x)

end b

c = proc(w:rep)

end c

end foo

Figure 5.1. Foo, an example of a CLU cluster.

Foo may convert its objects between abstract type (i.e. type foo)

and representation type (i.e. the type of object used by foo to

represent foo objects) by using the u_1 and down operations. Invoking up

on a representation object produces a foo object; invoking down on a foo

object produces a representation object. The implementation, on AESOP,

of u and down within foo depends upon the intended environment of foo

and the objects it provides. If foo and the objects it provides never

leave the compile time type safe CLU world, then 2k and down simply

represent different views of the representation object of foos - there

is no need to protect the representation object from unauthorized
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fo0

l ~type manager i

obj ec t

Procedure Procedure
b

template template
LNS LNS

~rocedure

template
LNS

Figure 5.2. The AESOP type manager corresponding to cluster foo.

manipulation as the compiler can do this at compile time. Thus no code

need be generated to perform up and down.

If, on the other hand, foo and foo objects are accessible beyond

the CLU world, then foo objects must be protected from languages that

are not type safe. The danger is that a foo object might be manipulated

in ways that violate its semantics. Foo objects can be protected from
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such manipulation by making them into AESOP extended type objects by

sealing the representation of a foo object in an object viewer. A

sealed object and the code for up and down in this case are shown in

Figure 5.3. Because only foo can perform U and down (due to the

restrictions on using ov$seal and ov$extract), foo and its objects are

protected from the actions of unsafe languages; only foo can perform

down on an object that it has performed ER on.

This protection is gained at some cost. First, extra space is

needed for the object viewer sealing each foo object. Since object

viewers are small (only three references), this is not a problem except

for very small objects. Outside of foo, the use of sealing impcses no

time penalty since only a reference is being passed around in any case.

foo

x -a rep object
of a foo

nil Q

An object y
Viewer

AESOP code for AESOP code for
y:rep := down(x:foo) x:foo := u(y:rep)

y :- ov$extract(x) except(lose) ov$seal(y,nil)

lose:
process$signal("failure", ... )

Figure 5.3. The code for CLU's up and down operations.
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Within foo, the expense is small. Only one instruction is needed to

perform up or down and, typically, it only occurs at entrance to or exit

from foo (i.e. only one yj or down is performed per object per call).

For all but the most trivial of operations these costs will be small in

relation to the total cost of the operation. Thus the cost of this

protection, in both space and time, is acceptable.

Only the person using AESOP can decide whether or not to seal foo

objects. The ease of copying object references within AESOP means that

it is extremely difficult, if not impossible, for either the CLU

compiler or for foo itself to make this decision (except to always make

the conservative choice of sealing). Thus the human user of AESOP must

specify which option is to be used when creating a new type manager.

5.1.2 Parameterized Definitions

Many languages support parameterized generators of procedures and

types (i.e. type managers). Conceptually, when supplied with

parameters, they produce a procedure (type manager) as a result. Thus a

procedure (type) generator defines a class of procedures (types) that

are distinguished by the parameters given to the generator. This

section will discuss only parameterized procedures since parameterized

type are just a collection of parameterized procedures.

The most interesting and most difficult of procedure generators

are those that are parameterized by types. For example, the procedure

generator sort(T) might produce procedures that sort vectors of type T.

Thus sort(real) would produce a procedure that sorted vectors of reals.
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For concr'-teness, the sort procedure generator will be used in the

following discussion.1 A name of the form sortT will be used in the

following discussion to name the procedure produced by sort when I
supplied with T as a parameter.

To sort its vector argument, sortT must be able to compare the

elements of its vector argument. Thus sort must require that a type T

passed to it provide a compare operation on objects of type T so that

sortT can work correctly. The problem addressed in this section is the

manner in which members of the family of procedures sort T refer to the

compare operations of the various T's. Although each T passed to sort

will provide a compare operation, the operation index of compare may

differ among the T's. This is the crux of the problem.

The procedures generated by sort can be implemented on AESOP in

three ways as described by Atkinson[2) in relation to CLU. First, an

entirely new procedure can be constructed for each invocation of sort.

This results in a procedure that is maximally efficient; all

dependencies on sort's parameter can be accounted for in the code for

sortT. Thus if the integer and real type managers provide compare

operations with different operation numbers, the procedures sortinteger

and sort-real will be specialized as needed.

1. For expository simplicity, only single parameter generators such as
sort are considered here. The extension to multiple parameter
generators is simple.
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The second possibility is to create sort T as shown in Figure 5 .4.

In tll s case, the v ar io us procedures t ha t so rt m igh t 1)rodutcte

(sort-integer and sort-real are shown in this f igure) share code which

reduces spoice requirements compared wi th the prev ius scheme (each

procedure was completely distinct there). However, there is a problem

when sort T invokes the compare operation onl the objects it is sortinug.

In the code segment c , the Instruct ion that Invokes compare must specify

the operat ion number of compare. Since the operat ion number of the

compare operation can be different for the real and integer type

managers,* p lac ing any coinstant operation number in c ts Incorrect.

Thiis problem can he solved in twt- ways. First, it could be

required that the type passed to sort use certatn operation numbers for

certa in semnantitc operat ions (e.g. operation- one must he the compare

Procedure Code o rocod ur v
sort integer Se gmevn t sort real

int eger I rca

r.'mp Iate Tom p1 ant v'
I sl IN S

'tO ~. Aparameterized procedure inst uce in AES011.
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operation). This has the disadvantage of restricting the types that can

be passed to sort. However, this can be programmed around by creating a

new type manager that maps the operation numbers required by sort into

the operation numbers of some other type manager. This is undesirable

as it involves the creation and use of an otherwise unnecessary type

manager. The second possibility is to pass an extra argument to sort

that specifies the mapping of operation numbers from those sort desires

to those sort's argument provides. In this case, the template LNS for

each sortT would retain a reference to (a copy of) this mapping for use

at the time the procedure is running.

Finally, the procedure sortT(<args>) could be mapped into the

procedure sort'(T, <args>). In this case there is only one procedure,

sort', that implements all of the sort T's so that space usage is

minimized (the previous two schemes had a procedure for each sortT).

On the other hand, an extra argument must be passed on every invocation

of a sort T which increases the space and time overhead associated with

calling a sortT. Moreover, the problem of invoking, within sort', the

correct semantic operation on T arises once again. Thus, either T must

be restricted to a certain class of types or a second parameter must be

passed to sort' that maps operation numbers. Both choices further

reduce the desirability of this scheme.

The characteristics of the family of sortT's determines which of

these three schemes should be used. If there are only a few sort T's

(i.e. sort itself is invoked only a few times) but they are called

frequently, then the first scheme's low execution overhead is desirable.

- 180 -



If there are many sortT's that are called infrequently, the third

scheme's low space overhead is desirable. In all other cases the second

scheme represents a reasonable compromise.

5.2 Using AESOP's Flexibility in Naming and Execution

AESOP provides flexible means for creating and manipulating the

components of execution (code segments and name spaces). This

flexibility is useful in implementing those language features that

require special handling of a program's environment. Moreover, AESOP's

object viewer mechanism can be used to provide a general indirection

facility in naming on AESOP.

This section presents four examples to demonstrate these points.

First, the problems of dynamic and static scoping are addressed.

Second, the use of closures to implement Algol-60 s call-by-name

parameter passing demonstrates how to dynamically create and modify

naming environments and how procedure-like entities might be passed as

arguments in AESOP. Third, the implementation of CLU iterators on AESOP

shows how coroutine-like structures can be created using closures. This

further demonstrates the use of closures for passing procedure-like

entities as parameters. The fourth example shows how to implement

dynamic linking by using object viewers as an indirection mechanism and

using exception handling to detect breaks in the indirection chain.
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5.2.1 Dynamic and Static Scoping

In AESOP, a variable is a slot in an LNS. A procedure may

directly refer only to entries in its own LNS. Thus AESOP provides no

non-local scoping for binding variable names. However, AESOP provides

facilities that are powerful enough to support classical implementation

techniques for both dynamic scoping (as in Lisp) and static scoping (as

in Algol-60).

Dynamic scoping entails binding a free variable to the first

variable of that name found by tracing backwards through the call chain.

In general, this can only be done in an interpretive manner due to its

dynamic nature. AESOP provides no help here beyond the ability to build

and maintain any appropriate databz ,. The ability to treat LNS's as

objects in AESOP is, however, essential to making these techniques work.

Static scoping entails binding a free variable, at compile time,

to a variable in a statically enclosing scope. At run-time the correct

instance of this scope must be found when referring to that variable.

AESOP allows any of the classical implementation techniques, such as

displays, to be used to do this since AESOP allows naming environments

to be treated as objects and thus stored in databases and passed as

parameters.
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5.2.2 Algol-60 Call-by-name Parameters

Algol-60's call-by-name parameter passing mechanism is a more

complicated parameter mechanism than the normal AESOP parameter

mechanism as it permits arbitrary computation upon each reference to an

argument. The implementation of call-by-name parameters on AESOP is a

second example of using AESOP's flexibility in naming and execution, in

particular the use of closures.

Call-by-name parameters can be implemented on AESOP in the same

way as they are provided in many Algol implementations - by

"thunks"(39]. Every call-by-name parameter to a procedure P is replaced

with a pair of parameters, both closures, one of which performs

references to the parameter and the other which performs assignments to

the parameter. Closures are passed instead of procedures both as in

efficiency measure to avoid the overhead of creating a new LNS for the

thunk on each use and as it is the simplest way to permit the thunk to

execute in the correct naming environment. Parameters are passed to the

thunk through a vector "value" that is also passed to P. Thus the

procedure P = proc(a:by-name)1  is transformed by the Algol compiler

into:

P = proc(value:vector, aget:cl, a set:cl)

P refers to "a" by executing a closure$run(a_get) operation. The

closure a_get, whose encapsulated naming environment permits it to run

1. Single parameter procedures are considered here for expository
simplicity.
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in the environment required by Algol semantics, computes the value of a

and returns the result. In essence, aget is a parameterless procedure

that returns a's value as far as P is concerned. F

To perform a:fx, P invokes a__get by passing, in value, x. That

is, P executes:

value(i) := x
closure$run(a_set)

The closure aset, whose encapsulated environment permits it to run in

the correct environment, modifies the value of a in P's caller to be the

same as value(i). Essentially the shared object "value" is being used

to pass parameters from P to the "procedure" aset.

Alternatively, P could be given the components of a-set as

arguments (i.e. asetcode, a set ins and asetgns). P can now pass

parameters to aset by setting conventional locations in asetIns and

a_set_gns. P then invokes aset by first creating a closure out of

these three components and then invoking closure$run on that closure.

This scheme has the advantage that a set may directly refer to its

parameters in its LNS and GNS instead of copying them into its LNS and

GNS from another vector (i.e. from the vector "value" in the above

example).

5.2.3 Iterators

CLU provides iterators as a control abstraction. They allow a

piece of code, the body of a for loop, to be executed with differing

values of its loop control variables as yield'ed by an iterator. This
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section uses CLU iterators as the canonical example of iterator-like

programs. Two factors concerning iterators are of particular concern:

the body of a loop must have access to the variables in the procedure

containing it and the iterator must retain its state after yield'ing a

value.

Since iterators and for loops have coexisting environments, a

coroutine implementation seems natural. AESOP, however, does not

provide a coroutine mechanism. Instead, iterators and for loops must be

implemented using the hierarchical control mechanisms of AESOP.1 A key

to the correct functioning of the implementation below is the CLU

restrictions that result in nesting of iterators.

One possible implementation of iterators is the following. A CLU

iterator, I, of the form:

T = iter(a(1):T(1), ... , a(N):T(N)) yields(T(Rl), ... , T(Rm))

end I

Is transformed by the CLU compiler into the AESOP procedure:

I = proc(body:closure, commvec:vector[1:m], a(1):T(1), ....
a(N) :T(N))

end I

where body s a closure consisting of the code that is the body of the

for loop and its naming environment (i.e. the LNS and GNS of the

1. Theoretically processes and message passing could )e used.
However, even though AESOP processes are cheap, they are not cheap
enough to permit creation of a process for every for loop.
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program containing the for loop) and comm vec is used by I to yield

values to the loop body. 1 Inside I, the CLU yield statement:

yield(o(l), ..., o(m))

is transformed by the compiler into the AESOP code:

comm vec(1) : o(I)

comm vec(m) :- o(m)

clo sure$run(body)

Thus the iterator yields values to the body of the loop through the

communication vector comm vec and the loop body runs in the correct

environment (so long as body was correctly constructed). Executing the

for loop simply involves creating the correct closure "body" and

invoking I with the appropriate arguments.

The body of a for loop may do one of four things while it is

executing: return to the iterator for new objects (by falling off the

end of the loop or by executing a continue statement), break from the

loop (causing execution to continue at the statement following the for

statement) or cause the procedure containing the loop to return (either

normally or abnormally). In AESOP, a return to the iterator occurs when

the body executes a process$return operation. This causes the iterator

to continue immediately after the closure$run operation that caused an

iteration of the loop body to be run. The iterator may then yield new

objects to the body of the for loop or it may return to its caller (thus

terminating the CLU for statement). The other three activities of the

1. The loop body accesses comm vec using a reference that the
procedure invoking I placed In the LNS in body.
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loop body, however, require the cooperation of the iterator since they

embody the concept of a non-local go-to, something AESOP has

deliberately prevented since it is a source of many program errors.

Non-local go-to's are implemented by having the body abnormally return

to the iterator with the break, return or signal exception to indicate

the corresponding request of the loop body. For a break exception, the

iterator returns to its caller, thus terminating the loop. For the

return and signal exceptions, the iterator resignals the exception to

its caller who performs the appropriate action (i.e. a normal or

abnormal return).

Thus control structures similar to CLU iterators are easily

implemented on AESOP. This example shows the utility of using closures

to package a piece of code with the naming environment in which it

should eventually run. This implementation of iterators is fairly

efficient since yielding to the body, the frequent inter-procedural

transfer of control in this implementation, only involves pushing a

small activation record onto the control stack (recall the

implementation in chapter three). The storage requirements are small:

the one time creation of the loop body's code segment and the dynamic

need to create closures. Moreover, the implementation presented here

has two additional advantages.

First, this implementation allows the iterator to clean up when

the iteration is about to terminate since only it can terminate the for

loop (i.e. by returning); the loop body can only request termination of

the iteration. This is useful in an environment with parallelism such
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as in AESOP where a data item might be shared by concurrent processes.

If an iterator-like program has locked a database so as to yield a

consistent set of objects from that database, then it must unlock that

database before being terminated (otherwise deadlock will eventually

result). 1

Second, AESOP assumes that mistrust may be present. Suppose that

an iterator-like program is not trusted so that its potential damage

needs to be controlled; that is, it may only modify objects accessible

through its arguments, the a(i) in the above example, and not through

the extra information passed as part of the implementation of iterators

(the body and commvec arguments in the above example). This is ensured

by this implementation of iterators since the environment of the body,

which might be a gateway to the world, is inaccessible to the iterator

because closures are inviolate. If comm vec is initialized to nil or

passed to the iterator as write only (by using an object viewer for

access restriction), then the iterator can never access anything Lhrough

commvec. The iterator's potential to cause damage is thus severely

limited.

5.2.4 Dynamic Linking

An unusual use of AESOP is to implement dynamic linking. This

example further demonstrates AESOP's naming flexibility by showing how

object viewers can be used as an indirection mechanism.

1. Note that this issue never comes up in CLU; since there is no
parallelism to deal with, no locking is needed.
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Dynamic linking permits the binding of a character string

procedure name, say S, to an actual procedure to be delayed until the

first time the procedure containing the reference to S attempts to

access the procedure "named" S. At that time, S is bound to an actual

procedure, call it P, which is then called.

The scope of the binding of S to P is one of the means of

classifying dynamic linking mechanisms. In Multics[37], this binding is

for a given process, other processes are unaffected by this particular

binding.1  Other durations of this bindings are possible, such as

binding S to P for an entire subsystem or only for this particular call

on S in this invocation of Y. In this section, the term scope (or

binding scope) will refer to the range of invocations over which a

particular binding of name to procedure is to be valid. The

implementation presented in this section will permit efficient binding

for various scopes.

This section develops a dynamic linking facility for AESOP in two

stages. First a very simple mechanism will be presented. The flaws in

this scheme will be pointed out and corrected. The dynamic linking

facility that results will be efficient and will allow links (i.e. calls

with character string names that need to be bound to an actual

procedure) to be snapped for a given scope.

I. This is not strictly true since the user can take actions to
prevent the binding from being per-process. However, this technicality
is unimportant for the current discussion.
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Consider a procedure Y that needs to contain a "call x(...)"

statement where the name x' is to be dynamically bound. Suppose that

Y's code segment contains the instruction:

proc$call(<lns, i x>, ... )

where i x is an integer associated with calls on x by Y. The dynamic

linking facility must ensure that the correct procedure for the current

scope is called whenever this instruction is executed.

Consider the procedure Y in Figure 5.5. When the call instruction

is executed, an unexpected-niloperand(1) exception will occur since

entry i x of Y's LNS contains nil as its object reference and not the

name of a procedure. If the code around the proc$call is as in Figure

5.6, the unexpectednil operand(1) exception that occurs will cause this

code to call auxiliary procedure resolve-name to find a procedure, call

it P, that is to be bound to the name "x" in the current scope.

(Resolve-name will maintain a data base, if necessary, to ensure that

this binding is maintained for the duration of the current scope). The

ProcdurelipCode Segment

i-x nil

LNS

Figure 5.5. Executing Procedure Y before snapping the link.
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instr:proc$call(<Ins, i x>, ...) normal ok

% Let S be the signal name
% Let Op be the signal operand

% Is it a linkage fault? (Note that we are only interested in
% the first parameter to proc$call since it is the procedure
% to be invoked.)
if S unexpectednil-operand then go to other

if Op 1 then go to other

% It is a linkage fault so resolve it
% Resolve "x" to an actual procedure by calling resolve name.
% Use the returned procedure to snap the link.
<lns, i x> := resolve name("x")

go to instr
other:...

ok:...

Figure 5.6. The code to handle a linkage fault.

i-x'th entry in Y's LNS is changed to a reference to P so that, when

reexecuted, the proc$call at instr proceeds correctly. 1  After this

exception handler executes, the situation will be as in Figure 5.7.

Note that the link, which is the i x'th entry in Y's LNS, has only been

snapped in this invocation of Y. All future calls on "x" by

instructions using entry ix of this LNS will proceed very efficiently

with no interpretation involved. All calls on "x" in other invocations

of Y (current or future) are unaffected.

I. In a more general situation where the link is being snapped to an
arbitrary object and passed to an arbitrary invocation, reexecuting the
instruction always works for the built-in types (they check their
arguments before doing anything). If user written programs clean up
before returning the unexpected-nil operand exception it is also true
for them.
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Procedure Code Segment

LNS

Figure 5.7. Executing Procedure Y after snapping the link.

Note that binding x to the correct procedure in the current scope

is easily done with this mechanism since the link is resnapped in every

invocation. The problem with this scheme is efficiency since a link

must be snapped in every new invocation. This amounts to an

interpretive solution of unacceptably high execution time overhead. An

alternative is needed.

An efficient dynamic linking mechanism will do two things. First,

a link will be snapped to the correct procedure for the executing scope

(i.e. a correctness requirement). Second, the number of times that a

particular name must be bo-.nd to the procedure it represents will be

minimized. This will minimize the number of times links to the

procedure a name represents must be snapped. The second is accomplished

by using object viewers as an indirection mechanism while the first is

ensured by limiting those object viewers to a single scope.
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These goals are met by causing Y to execute as shown in Figure 5.8

where 0 is the link. If the ? in 0 is nil then the link is unsnapped

since a proc$call(<tns, i x> ... ) instruction produces an

unexpected nil_operand(l) exception. In this case, the handler for the

linkage fault will use 0' to set the object field in 0 to the procedure

returned by resolve-name, thus snapping the link. The code in the

handler is then:

p_var :- resolvename()

ov$modify(<lns, r_x>, p_var)

where r x is an integer associated with calls on x by Y and p._var is a

temporary variable. If the ? in 0 refers to a procedure, the proc$call

instruction proceeds normally.

Executing
Procedure Cde Segment

ov

proc nilr x objec

Viewer

LNS Object
Viewer
0

Figure 5.8. An executing procedure Y that binds names correctly.
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To ensure that the link 0 is per-scope and thus snapped in only a

single scope, two things must be done. First, Y must only be called in

a single scope (by making copies of Y in all invoking scopes). Second,

both 0 and 0' must be per-scope to ensure that the link 0 is per-scope.

However, it is still desirable for all of the copies of Y to share the

code segment c. This does effect per-scope binding if the shared data,

c, contains no direct references to the link or link snapping

information.

To make Y per-scope, a special object, of a new type tproc, is

stored in the file system. Y will be represented as a tproc as shown in

Figure 5.9. Resolve name must now perform some additional work when it

decides to bind a tproc from the file system to a name within the

current scope. When resolve-name decides to use tproc Y in some scope,

tproc rx nil 2n+l r.x
for Y

2n i x

ix nil

* Linkage
Section

prototype

LNS

Figure 5.9. The tproc for Y.
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it uses the tproc for Y from the file system to produce the procedure Y

of Figure 5.8 as follows. First, resolve-name copies the prototype LNS

into a new vector v. Then, for each pair of entries in tproc Y's

linkage section, it creates an object viewer, call it 0, with nil as its

object field and a second object viewer, call it 0', that permits

modification of 0. In the case at hand, resolve name then does:

% Let ls be the linkage section for the tproc for Y
v(ls(2n)) := 0
v(ls(2n+l)) :- 0'

This permits Y, when invoked, to refer to a procedure indirectly through

an object viewer (i.e. through a link) and to modify that object viewer

for the purpose of snapping the link. Once object viewers have been

created for all pairs of entries in the linkage section, resolvename

creates the procedure Y of Figure 5.8 using c as Y's code segment and v

as its template LNS. By creating 0 and 0' at this time, it can be

ensured that all invocations of Y in the current scope will have a

reference to 0 and thus have x bound to an actual procedure the first

time that the name x is used by an invocation of Y. Thus the link 0

will only be snapped once per scope. Moreover, if resolvename

allocates the object viewers for the link to the procedure named x only

once and makes the references in the template LNS's of procedures such

as Y refer to these shared object viewers, then every procedure within

the scope using the name x will have the name x bound the first time

that any procedure within the scope references x.
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With this last modification, the dynamic linking mechanism is

complete. First, and foremost, it is per-scope - a link snapped in one

scope does not effect, in any way, the bindings in other scopes.

Second, it is efficient. Once a link associated with the procedure Y is

snapped within a scope, it is snapped for all current and future

invocations of Y so the relatively expensive link snapping process is

not repeated unnecessarily. Moreover, if multiple procedures share a

link, snapping this link once snaps it for all of those procedures thus

further improving efficiency. Third, dynamically bound references

*impose only the small overhead of an indirection through an object

*viewer. Fourth, the name resolution mechanism can be very flexible

since the linkage fault is handled at the site of the fault. By passing

additional information to resolve name (or, in fact, by using different

name resolution procedures at every proc$call site), it is possible to

make the name resolution mechanism dependent upon the dynamic site of

the fault within a scope (e.g. it can depend upon which process is

running, which procedure is running and upon the actual call within the

procedure that produced the fault). Fifth, the link can be unsnapped by

using 0' to modify the object field in 0 to nil. This is a feature

occasionally found useful when a name has been bound to the incorrect

procedure or needs to be rebound for any reason.1

1. Multics, for instance, uses this facility to unsnap links to
procedures that are recompiled.
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5.3 Exception Handling on AESOP

An important attribute of many recent languages is the inclusion

of an exception handling mechanism. Such languages cause users to be

aware of unusual conditions simply because an exception handling

mechanism is there. As a result, users write programs that are more

robust in the face of failure than they would have been otherwise.

There are two models of exception handling: the termination model and

the continuatio model. This section will consider each in turn and

show how they might be implemented on AESOP.

5.3.1 The Termination Model

In the termination model, as typified by CLU, a procedure may

return either normally or abnormally. The caller continues at the

statement following the invocation if the return was a normal one.

Otherwise, the caller receives control in some exception handler that is

responsible for dealing with the exception.

The set of handlers in a CLU program P is known at compile time;

given an invocation within P and a possible exception returned by that

invocation, the correct handler to invoke is known to the compiler. At

run time it is only necessary for P to determine the exception and

branch to the correct handler. Once in control, the handler may do some

processing and then either perform a local transfer or cause P to

return, either normally or abnormally.
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AESOP contains an explicit mechanism for coping with the

termination model - the ability to cause a forced go-to whenever an

invocation returns abnormally. For every invocation within a program,

the compiler causes abnormal returns to go to a handler that is

responsible for handling all exceptions from that invocation. This

handler transfers to the code that corresponds to the handler for the

particular exception raised by the abnormally returning invocation.

This is nothing more than a simple series of tests and transfers. The

resulting implementation is cross between the branch table and handler

table implementations proposed for CLU[2]. Within a handler the

implementation of local transfers is trivial since AESOP provides

go-to's. The handler simply does a process$return or process$signal

operation to cause the procedure it is part of to return.

Thus the termination model of exception handling is easily handled

by AESOP. Fundamentally, AESOP has provided a built-in means for

terminating the signaller and entering a handler with the exception name

and operands as implicit arguments whenever an exception occurs. The

program must still discriminate based upon the identity of the

exception.

5.3.2 The Continuation Model

In the continuation model, as typified by Mesa, a handler for a

signalled exception is found by tracing backwards through the call chain

until an appropriate handler is found. That handler is then invoked.

The handler, perhaps after some processing, may then either resume or
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terminate the signalling procedure. If the signalling procedure is

terminated, control continues in the procedure that contains the

handler.

The first problem in implementing continuation model exceptions is

discovering the handler to invoke. There are two ways to do this.

First, a per-process database of enabled exception handlers, a condition

stack, could be maintained. Whenever a handler is enabled, an

(exception name, handler) pair is pushed onto the condition stack. When

a handler is disabled, the corresponding entry on the condition stack is

popped.1 Signalling an exception involves searching the condition stack

in LIFO order until a handler is found for the exception being raised

and then invoking that handler. The execution cost of this method is

small since only those procedures that enable handlers need be concerned

with the whole mechanism. However, this method has the disadvantage

that a per-process database is needed.

Alternatively, a special handler can be passed as an additional

parameter with every procedure call. Whenever a procedure needs to

raise an exception, it invokes the handler, H, passed to it, giving it

the exception name and operands as arguments. H may then handle the

exception or it may continue signalling the exception by invoking the

handler passed to the procedure that H is associated with. In this way,

the exception propagates backwards through the call chain until an

appropriate handler is found. This method has the advantage of no

1. Mesa guarantees this LIFO ordering.
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per-process database but the disadvantage that every procedure must pass

and accept this extra parameter. This is basically the implementation

for Mesa outlined in the Mesa manual[36].

The first scheme is preferred when there are relatively few

handlers as most procedures can then ignore the entire issue of

exception handling. The second method is preferred when there are many

handlers which are frequently enabled/disabled since there is no need to

constantly manipulate the condition stack.

There are two other issues of concern in implementing the

condition model: the form of a handler and the means by which handlers

terminate the signalling procedure. Handlers must be able to access the

environment of the procedure they are associated with as well as the

name and operands of the exception currently being signalled. The

handler is thus basically a procedure that executes in a special naming

environment. It is implemented in either of the ways that the procedure

that performed Algol call-by-name assignments in section 5.2.2 was

performed.

The signaller is terminated by making a non-local go-to out of the

exception handler to the procedure that contains the handler. They are

implemented analogously to go-to's out of the body of a for loop, that

is, the handler returns abnormally (using AESOP's built-in exceptions)

with an unwind(target) exception. All procedures will resignal this

exception until the procedure being transferred to (i.e. target) gains

control. At this point, that procedure performs the actual transfer,
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now a local go-to. Note that a handler for the unwind condition may

perform a local clean-up before passing the exception along. Moreover,

by refusing to propagate the unwind exception, a procedure terminates

the non-local transfer as allowed by Mesa.

Thus the continuation model is seen to be easily implemented on

AESOP because of AESOP's naming and execution flexibility. This

implementation is analogous to implementations on conventional

architectures. Thus AESOP neither helps nor hinders the implementation

of the continuation model.

5.4 Some Deficiencies in Handling Classical Languages

AESOP has been designed to support a certain class of languages

very well. This section presents some ways in which AESOP is deficient

in supporting classical languages such as Algol or Fortran. Two issues

are discussed: the unnecessary cost of garbage collection and the

difficulty of doing call-by-reference parameters.

5.4.1 Garbage Collection Costs

Many classical languages have either a stack or a static storage

semantics. They have no need for a heap in their implementation so that

AESOP's heap storage may reduce performance.

Scalar types (e.g. booleans and integers) are handled efficiently

by AESOP since the variables (i.e. LNS slots) that refer to them

contain the value of the object (recall the implementation of object
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references in chapter four); no storage is ever allocated for these

objects. Aggregates (e.g. arrays and records) are another matter.

A rccord is nothing more than an array of values of differing type

with the character string selectors being mapped by a compiler into

integer indices. Thus only arrays will be considered here. An array is

an AESOP object that resides in the heap. Thus, even though an array is

inaccessible after the procedure that created it returns, the

implementation of AESOP's heap proposed in this thesis means that it's

storage will not be reclaimed then - it will be reclaimed later by the

garbage collector.

Thus the AESOP heap results in inefficient use of storage

(inaccessible arrays) and in wasted time (running the garbage collector

to retrieve objects "known" to be inaccessible). Storage inefficiency

can be reduced by having each procedure explicitly destroy its arrays

just before returning. This reclaims most of the storage for arrays at

the earliest possible time (only the tombstone left behind after object

deletion by the AESOP implementation will not be immediately reclaimed).

The cost of running the garbage collector is, however, unavoidable in

the long run as tombstones accumulate.

5.4.2 Call-by-reference Parameters

Many languages use call-by-reference for parameter passing. This

allows the called procedure to directly read and write an array,

variable, array element or record component of its caller. This

semantics is difficult to achieve efficiently on AESOP.
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AESOP's basic parameter passing mechanism is what CLU has termed

call-by-sharing; a formal parameter is caused to refer to the object

that an actual argument refers to. Call-by-reference is achieved by

passing an argument that permits accessing an array or a particular

entry in an LNS or vector (i.e. a variable) so that the called procedure

may access and manipulate the caller's variable. The difference between

these two parameter passing mechanisms is illustrated in Figure 5.10.

Passing arrays by reference is trivial on AESOP since only the

name of the array is being passed and this is AESOP's basic parameter

passing mechanism. The passing of variables (or array/record

components) is, however, non-trivial since AESOP provides no means of

passing vector entries as arguments.

Variables can only be passed by reference interpretively in AESOP

since variables are not objects in AESOP. Every procedure P

proc(a:by_ref) must be transformed into the procedure:

P = proc(a vec:vector, aoffset:integer)

where entry a offset of a vec is the variable a of P's caller. P

P ; proc Q = proc(i:int)
a:int print i

a := 7 i := i+l
Q(a) end Q
print a

end P

If i was passed by: the output would be:
call-by-reference 7 8

call-by-sharing 7 7

Figure 5.10. An example of call-by-reference and call-by-sharing.
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manipulates a by reading and writing entry aoffset of a vec. This

works semantically but is inefficient since any attempt to use "a"

results in copying a's object reference into P's LNS. That is, if a is

an integer variable, then the assignment a := a+7 turns into:

temp a vec(aoffset)

temp := temp+7

a_vec(aoffset) := temp

The resulting inefficiency of this interpretation in both space and time

can be high. Moreover, all of a vec is accessible to P so that P can,

if malicious or undebugged, cause damage to P's caller through avec.

5.5 ITsing AESOP's Operating System Features

This chapter concludes with an example of how to use some of

AESOP's operating system features: I/O, processes, inter-process

communication/synchronization and protection. The example chosen is a

line printer driver - a program that prints a vector of characters on a

printer.

This section shows how a line printer driver might be implemented

in AESOP. This is a simple driver, implemented as a new type lpt, that

accepts a vector(char] that is to be printed and places the characters

on the printer as soon as it is the turn of the current process to

access the printer.

There are assumed to be two types of physical line printers, both

to be supported by lpt. The first accepts characters one at a time for

printing. The second accepts all of the characters of a vector at once
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for printing. Every line printer w.1 consist of a status reister

(logical device register one) and two event count registers (logical

device registers two and three). The second type of printer also has a

buffer register (logical device register four). Bit one of a printer's

status register tells which type of printer it is. If true, the printer

accepts 8 bit characters one at a time in bits three through ten of

register one. Otherwise, the printer prints all of the characters in

the buffer named in register four by picking up the characters in that

buffer with 8 bits per character. In either case, the setting of bit

two of register one to true initiates the printing by the physical

printc . The event count in register two (three) is incremented by the

printer whenever an operation completes successfully (unsuccessfully).

The line printer cluster, which provides the logical line printer

device and which interfaces with the physical printer, is shown in

Figures 5.11, 5.12, 5.13 and 5.14. Three high level comments are in

order. First, the procedure char to bits (chars to bits) is not shown

here as it simply converts a character (vector[char]) to a

vector[boolean] representation. Second, these programs ignore the

possibility of error returns from the built-in type managers for

expository simplicity since the consideration of such errors would

needlessly complicate the programs. Finally, every statement in these

programs corresponds to one or two AESOP instructions even though some

syntactic sugaring has been used (e.g. vector references and if
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ipt = tm is create, destroy, print

rep = vectorfl:4] % first entry is an io object
% second entry is an event count
% third entry is a sequencer
% fourth entry is a revoker for the
% object viewer sealing an Ipt

create f proc(addr:integer) returns(lpt)

% Create the rep object
v := vector$create(4, nil, nil)

% Initialize v
v(1) :- io$create(addr, (1, 1, 2, 2, 3])
v(2) := ec$create()
v(3) := sequencer$create()

% Seal v and return the sealed object
a, v(4) := objectviewer$seal(v, nil)

return(a)
end create

destroy proc(l:lpt) signals no access

% Unseal 1
v, ar, a :- object viewer$extract(l)

% Check for sufficient access to destroy 1
if ar(2) - true then go to no access

% destroy the actual io object
io$destroy(v(1))

% Destroy 1 and we are done
ov$destroy_viewed(v(4))
return

no access:
signal no access
end destroy

print = % see Figures 5.12, 5.13 and 5.14
end print

end lpt

Figure 5.11. The lpt cluster.
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print - proc(l:lpt, c:vector[charj)
signals no-access, error

% Unseal I

v, ar := ov$extract(l)

% Check for sufficient access to print

if ar(3) - false then go to ok

signal no-access

% Wait until it is our turn to use the printer

ok:ec$await(v(2), sequencer$take(v(3)))

% Set the event count registers in the device

el :- ec$create()

e2 := ec$create()
io$setregister(v(l), 2, el)

io$setregister(v(i), 3, e2)

% See what type of LPT it is and call the appropriate

% procedure to actually print the vector c.

bv := io$read-register(v(1), 1)

if bv(1) - true
then call unbuffered(v(1), c, el, e2) except error
else call buffered(v(l), c, el, e2) except error

% release I and return normally

ec$increment(v(2))

return

% release 1 and return abnormally

error:ec$increment(v(2))

signal error
end print

Figure 5.12. The print procedure of the lpt cluster.

statements). I Thus the simplicity of this program directly reflects the

simplicity of the AESOP implementation of a line printer driver.

1. Multiple AESOP instructions are needed only where temporary

variables are needed to hold the results of an invocation for passing to

a subsequent invocation.
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buffered - proc(device:io, c:vector[char], el:ec, e2:ec)
signals error

% Vector c is printed on printer device which is assumed
% to accept a whole buffer at once.
% Event count el (e2) is the event count that the printer
% will signal normal (abnormal) completion on.

% Convert c to bits and give to the printer
io$set register(device, 4, chars to bits(c))

% Set bit 2 of register 1 to start the printer
io$setstatusl111(device, 2, true, 2, 1)

% Now wait for the printer to complete and
% check to see if an error occurred
if 2 = ec$await(el, 1, e2, 1) then signal error
return
end buffered

Figure 5.13. The auxiliary procedure buffered.

unbuffered = proc(device:io, c:vector[char]) signals error

% Vector c is printed on printer device which is assumed
% to accept characters one at a time.
% Event count el (e2) is the event count that the printer
% will signal normal (abnormal) completion on.

% get the length of c
length :- vector$status(c)
j :- I

loop:if j > length then return

% Now print the J'th character of c
io$setstatus_OO11(device, 1, char to bits(c(j)), 3, 8)
io$set status_1ll1(device, 1, true, 2, 1)

% Now wait for the printer to finish and
% check to see if an error occurred
if 2 - ec$await(el, J, e2, 1) then signal error
j :- J+I
go to loop
end unbuffered

Figure 5.14. The auxiliary procedure unbuffered.
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There are three points to note in this example. First, event

counts and sequencers meditate concurrent access to the printer in a

simple fashion. Admittedly this problem requires little in the way of

synchronization, but the availability of event counts and sequencers to

solve the problem at hand is indicative of the utility of AESOP.

Second, note the interface between print and the actual device. The

device register model permits the lpt cluster to communicate with the

device in a simple manner. There are no interrupts from the printer to

signal events; instead, the process waits for an indication from the

device, via event counts, when the process is ready to look at the

results of operations (the Venus operating system[29] works in a similar

way using semaphores). This synchronous nature of processes leads to

more easily understood programs in a parallel application such as this

line printer driver.

Now suppose that a process wants to print vector c in parallel

with further computation. Furthermore, suppose that c should not be

modified by the lpt cluster. The solution is to spawn a second process

to do the printing as shown in Figure 5.15. This permits the executing

program to continue execution while the vector is being printed.

Moreover, the process pr may only reference c (through the object viewer

c'); it may not modify it in any way.
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% There are 7 operations on vectors. Assume that vector$get
% is controlled by entry one of access restriction
% vectors in object viewers.

% Create a read-only view of c, call it c'
ar :- vector$create(7, boolean, true)
ar(1) :- false
c' :- ov$restrict(c, ar)

% Create a process to do the printing. Let it run in
% the default storage area for the current process
% and use the current CNS as its CNS.

pr :=process$create(temp proc, nil, process$get-default-areao, c')

% Start the process with default priority and no CPU
% time limit imposed upon it.
process$start( pr)

% where temp-proc is tthe procedure:
tempL_proc - proc(c:vector(char])

lpt $print Cc)
end temp_proc

Figure 5.15. Using Processes and Access Restriction.

5.6 Conclusions

This chapter has examined several ways to use AESOP. The first

four sections examined AESOP from the point of view of languages.

Section one showed how to use AESOP's type mechanism to build objects of

extended type. It also showed how parameterized definitions, in

particular definitions parameterized by a type, can be achieved.

Section two presented four examples of how AESOP's flexibility in naming

and execution, especially the closure facility, can be used in language

applications. The use of object viewers for indirection also was

presented here. Section three showed how to implement exception

handling using AESOP. The termination model was seen to be easily
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implemented while the implementation of the continuation model had

complexity comparable to that of an implementation on a conventional

architectures. Section four examined two ways in which AESOP is

deficient in handling classical languages such as Algol: unneeded

garbage collection and the difficulty of doing call-by-reference

parameters and the restrictions imposed by AESOP's local scoping of

variables. Finally, section five presented a line printer driver to

demonstrate some of AESOP's operating system features.

- 211 -



Chapter Six

Conclusions

This thesis has explored the design of a high level architecture

for a personal computer. This chapter examines AESOP and how it has met

the goals outlined in chapter one. Some areas for further investigation

are also presented.

The primary goal for AESOP was to separate implementation issues

from high level language issues. A high level architecture such as

AESOP has tw demands imposed upon it, both attempting to distort the

architecture from the theoretical ideal. Many languages need special

features placed in the architecture to accomodate a particular language

construct. These influences must be resisted since they conflict with

the goal of language independence. On the other hand, many

implementations of the architecture need features that allow that

implementation to be efficient. These influences must be resisted since

they detract from the implementation independence of the architecture.

One of the most important results of this thesis concerns the extent to

which the design of AESOP has been affected by both of these influences

and the subsequent lessons for the designers of other high level

architectures.

2
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The influence of languages has been the easiest to resist. The

vast majority of languages have the same semantic base. As a result, by

providing this semantic base, AESOP is able to support many languages.

For instance, capability based naming seems to be the most general of

the various naming environments provided by languages. The heap based

storage of AESOP seems to be more general than other possibilities (i.e.

stack or static storage). The most significant decision that has made

AESOP language independent is the decision to treat everything in AESOP

as an object. This permits the user to manipulate all aspects of the

programming environment. In particular, code and name spaces are full

fledged objects in AESOP to allow many language features to be

implemented in a simple manner (e.g. CLU iterators, Algol call-by-name).

However, the object model is not a panacea. It is a feature of recent

languages, so that modeling AESOP after it creates problems in

supporting some older languages, as was seen in chapter five.

Resistance to implementation specific features in AESOP has proven

to be more difficult. The correctness of an implementation is not at

issue. Rather, to be efficient, most implementations need architectural

features that collect information from the user. Such information is

needed primarily to deal with the physical limitations of the hardware

underlying the implementation. It is also needed to suggest

optimizations to the implementation. For instance, information about

the expected locality of reference aids an implementation based upon a

multi-level memory with a slow secondary memory in migrating information

within that memory system efficiently. The ability to create vectors of
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only booleans or of only characters allows an implementation to optimize

the storage used for those vectors.

Implementations can acquire the information needed for an

efficient implementation in two ways. First, there may be explicit

operations in the architecture to aid efficient implementation. For

instance, the storage__area$close operation of AESOP exists to provide

information about the expected locality of reference in the object

memory. Second, an implementation may attach additional semantics to

built-in features (including built-in operations). For instance,

storage areas are nothing more than quota pools in AESOP. However, the

implementation in this thesis assumes that the objects that draw quota

from a particular storage area exhibit locality of reference, so that

information can be migrated between primary and secondary memory

efficiently.

Both techniques detract from implementation independence. The

first clutters the architecture with features that are, in some sense,

not relevant to solving the task that the user of the architecture has

before him. The second approach may result in the user writing programs

in a style that is attuned for efficient performance on a particular

implementation. Although those programs will be correct on other

implementations of the architecture, they may not be as efficient as

possible when executed there. Moreover, if the implementation adds very

unusual semantics to a built-in feature and the program has been

optimized to accomodate those semantics, the program may be hopelessly

inefficient on other implementations.
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However, some information from the user is essential for efficient

implementation. The goal is to acquire it in a way that minimizes the

impact of these problems. This is done by making the information

sources apply to as many implementations as possible (i.e. to the normal

or average implementation). That is, the explicit operations should

supply information that most implementations are likely to find useful.

The additional semantics that an implementation attaches to

architectural features should be chosen to be similar to those that the

average implementation adds. In this way, programs written assuming

these information sources will run reasonably well on most

implementations although their performance may not be as good on the

rare or unusual implementation. AESOP's efficiency oriented features

meet this goal. Storage areas and the "close" relation on them deal

with the multi-level memories that will underly most AESOP

implementations. Boolean and character only vectors allow most

implementations to perform an important space optimization.

The high level goal of implementation independence was a unifying

way of looking at two other views of AESOP: as an actual piece of

hardware and as a compiler intermediate language. The next few

paragraphs will examine how AESOP has met these goals.

Viewing AESOP as a piece of hardware is associated with two other

goals: AESOP should be economically suitable for a personal computer and

its efficiency should be comparable to that of a conventional

architecture when performing similar tasks. The implementation

presented in chapters three and four should meet these goals. If one
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imagines building AESOP on a microcoded processor, the implementation

consists of a large amount of code to perform the various functions

outlined in chapters three and four. Some cases are fairly easy (e.g.

allocation of storage within a storage area, process management,

vectors) while others are more difficult (e.g. physical memory

management, garbage collection), but in all cases chapters three and

four have described a method of implementation. Since only code is

involved, this implies that AESOP becomes more economical as a personal

computer as the size of microstores increases. However, as pointed out

at the end of chapter four, there are a few places where special

hardware (in particular associative memories) will significantly aid the

efficiency of an AESOP implementation. These assists seem to be well

within the ability of projected and probably current technology to

supply cheaply. As a result of these considerations, it is reasonable

to expect that AESOP will be economically viable to build as a personal

computer at some point in the future. However, its efficiency relative

to conventional architectures must be examined more closely.

The implementation presented in chapters three and four should

give reasonable efficiency compared to conventional architectures if

programs performing similar tasks are compared. AESOP provides a

programming environment that permits, as seen in chapter five, many

language features to be supported in a straightforward manner. Many of

AESOP's features that permit this are gained at no cost compared to

conventional architectures. A few of AESOP's features provide

facilities not found in conventional architectures (e.g. protection
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oriented features) but they are provided at some implementation cost.

The net effect is that AESOP's performance should be comparable to

conventional architectures but with a richer set of facilities. To see

this, the time and space efficiency of the implementation of AESOP will

be considered.

First, consider time efficiency. A large number of points of

comparison are possible of which only a few of the more prominent are

mentioned here. Variables are accessed on AESOP with a single memory

reference (by using an offset obtained from an instruction to index off

of a register pointing to a name space) just as on a conventional

architecture. If the value of a variable is a basic computational type

(e.g. booleans, characters, integers), retrieving the variable retrieves

its value in both AESOP and a conventional architecture. Accessing a

vector element in both cases involves retrieving a pointer to the vector

and then performing an indexed access. in both cases, invoking a

closure involves creating a small activation record, setting environment

pointers and branching, Processes on AESOP are likely to be cheaper

than on conventional architectures since AESOP processes embody little

state and are easy to schedule. The translation from page identifier to

primary memory address that the AESOP implementation performs is similar

to what a conventional processor with virtual memory does. Finally, the

implementation has been designed assuming that the use of AESOP will

follow the subsystem model and that the objects in a storage area will

exhibit locality of reference. Thus, to realize its potential
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efficiency, the user must use AESOP in a way that makes these

assumptions true.

There are a few ways in which AESOP may be less time efficient

than conventional architectures. In all cases, these inefficiencies

come from features that provide important functionality not found on

conventional architectures. AESOP's object viewers cost extra memory

references to refer through as opposed to directly referring to an

object. Conventional architectures avoid this by not providing the fine

grained access controls and type extension facilities that object

viewers provide. AESOP procedures are somewhat expensive to call

because the template LNS must be copied on each invocation.

Conventional architectures avoid this by ignoring the problem of

initializing a procedure's environment. If AESOP pointers are copied

from one storage area to another, cables/links must be searched for and

created if not found. While an area is being garbage collected, on

average half of all the references to objects in that area will require

an indirection through a forwarding pointer to TO space. Finally, the

AESOP garbage collector is likely to be more expensive than the garbage

collector on conventional systems due to the need to deal with a very

large, long term storage system instead of a small, isolated temporary

storage system. Thus, in some ways, AESOP may be less time efficient

than conventional architectures although this is offset by the gain of

some important functionality.
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Space efficiency is easier to deal with. The AESOP implementation

stores the value of computational variables in the variable itself as on

conventional systems. Vectors can be stored with equal efficiency in

both cases. This is especially important for the cases of boolean and

charact,±r vectors. There is no reason to believe that the storage for

the remaining types should significantly differ in the two cases since

the implementation of AESOP can use the same techniques to represent

them as on conventional architectures. In general, AESOP may make less

effective use of both logical storage (i.e. storage within a storage

area) and physical storage (i.e. the disk storage used to hold storage

areas) than programs on conventional architectures since an AESOP

implementation embodies general purpose storage management algorithms

and not the special purpose algorithms a particular application on a

conventional architecture might use.

The key question is how the space/time efficiencies/inefficiencies

of AESOP balance out in relation to conventional architectures. This

writer believes that, on balance, an AESOP processor should be able to

compete with conventional architectures on similar tasks. The value of

AESOP's facilities (e.g. support for multiple languages and for the

execution of untrusted programs) makes its efficiency acceptable. This

is, however, just an opinion and will remain so until AESOP is actually

built. The reader must make his own judgement.

AESOP has less successfully met the goal of being a compiler

intermediate language. This goal is related to the goal of supporting

multiple languages. AESOP does so by providing three features: the
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correct basic semantics, run-time checking of access to built-in types

and object viewers to permit a language system to protect its objects.

Chapter five has shown a number of examples of how these features might

be used. Supporting multiple languages in the way AESOP does has two

advantages over the alternative of having one virtual machine per

language system. First, languages can share all of AESOP's built-in

types. Moreover, languages can, by mutual agreement, share extended

types. Second, languages can share all of AESOP's memory. Thus

arbitrarily large data structures are trivially accessible from multiple

languages. In addition, shared type managers mean that this data can be

of arbitrary type for maximum flexibility. 44

Efficiency, however, may be a problem. Even though the comments

on AESOP's general efficiency mentioned above are true here. the V

hardware assists mentioned at the end of chapter four are essential to

achieving this performance. If the hardware and/or operating system

underlying the implementation of AESOP does not provide such assists,

programs may run inefficiently. In particular, run-time type checking

for the built-in operations, especially on computational data types

(e.g. integers), will cost a great deal. Object viewers impose the

overhead of additional memory references. Finally, user programs must

perform run-time type checking if they are to exist in a world of

multiple languages.

An overriding goal for AESOP was that of completeness. The user

of AESOP must be able to deal, within AESOP, with all of the realities

of computer systems and be able to deal with the many problems that
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arise in executing programs. In particular, the user must be able to

deal with finite resources, buggy or untrusted programs and crashes of

the system. The various features normally provided by operating systems

must be available or programmable. Also, the human user must be able to

interface to AESOP in a way that permits using all of its facilities

easily. The next few paragraphs will explore how well this goal has

been met.

Finite resources come in three general forms on AESOP: processor,

storage and other. AESOP provides a number of controls over processes:

starting/stopping, priority and time limits. Storage areas provide a

means for controlling the use of finite memory resources by providing a

quota mechanism. Other resources, such as I/0 devices, must be

controlled by user written programs that take advantage of AESOP's

treatment of everything as an object. By proper use of these facilities

the user is able to control the use of finite resources so as to meet

his needs.

Dealing with untrusted programs is just a special case use of the

facilities provided for multiple languages and for controlling the use

of finite resources. An untrusted program must access only a limited

set of objects in prescribed ways. Object viewers and capability-like

naming allow this to be enforced. The global name space permits

encapsulating such programs so they can have program controlled and

monitored access to objects. The resources consumed by an untrusted

program must be controlled so that it can not consume resources to the

point where the execution of other programs is prevented or adversely
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affected. AESOP's resource control mechanisms are adequate to prevent

this.

AESOP includes various features normally found in operating

systems. This is an important step in architectural design as it

simplifies the user's view of the world. AESOP provides processes.

storage areas, permanent storage, interprocess

synchronization/communication and protection. The effect of their

inclusion is to eliminate the need for most, if not all, of the

operating system normally associated with a computer system. This

results in a system that has only two major components (AESOP and the

language run tl-ie system) rather than the three components normally seen

(the hardware, the operating system and the language run time system).

The resulting simplicity of the programming interface is significant.

Thus AESOP is able to deal with three important aspects of

completeness: finite resources, untrusted programs and operating system

features. However, this thesis has left the problems of

backup/recovery, system "crashes" (and subsequent recovery) and reliable

programs to the implementation and to future research. These are

important parts of completeness and their proper solution essential to

providing reliable AESOP systems. They have been ignored in this thesis

as they are difficult research problems in and of themselves.

The last aspect of completeness is the software that must be

written for AESOP to allow human users to effectively interface to

AESOP. A command language system must be built to permit the human user
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to control his programs, create new programs and control the use of

AESOP resources. This interface should be designed to give the user

easy access to all of the features AESOP provides. The design and

construction of this interface represents another interesting research

problem. Various auxiliary software such as compilers, linkers and a

file system catalog must be written to create a more easily used

environment than the basic AESOP environment. These two issues relate

to system completeness, how to make AESOP usable, and not to

architectural completeness, As such, they are just a side issue to this

thesis, albeit an important one.

6.1 Directions for Future Research

This thesis has been a paper design - no implementation of AESOP

or of a large application using AESOP has been attempted. No paper

design can be completely convincing. As a result there. are two major

tasks that need to be done initially. First, a language using AESOP as

a base should be implemented. Such an endeavor would result in greater

confidence that AESOP has the features that are needed in high level

applications. A good choice for such an application would be the

construction of a cross-compiler to AESOP (e.g. adapt a CLU compiler to

produce AESOP code and write the corresponding run-time support that

would be needed). Second, AESOP itself should be implemented. It is

only in doing an actual implementation that complete confidence will be

gained that all of the issues in an AESOP implementation have been

addressed by this thesis. These two activities are essential to

verifying the ideas of the thesis.
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This thesis has brought up a number of related areas that require

further research. Perhaps the hardest and most interesting area is that

of reliability. AESOP has not provided any architectural features to

support reliable programs. Instead, the implementation has been allowed

to handle reliability. It is important to understand what features are

required in a high level architecture such as AESOP to allow the user to

construct his own reliable programs. This is a difficult task if the

goal of implementation independence is to be maintained. The complexity

and economic constraints of the personal computing environment further

complicate the issue.

Beyond this, there is the more basic question of the construction

of a reliable implementation of a capability bsed system as AESOP. The

problem concerns data that is damaged or lost (e.g. as in a crash of the

system). If one or more of the capabilities should be damaged, the

result may be chaos - objects that really should be accessible will no

longer be and some pointers will be changed to point to random places in

memory (possibly to other objects and possibly to random places in

memory that may result in failure of the implementation). This is a

serious problem whose solution in the cost and complexity constrained

environment of a personal computer seems to be difficult.

A related issue to these two is backup and recovery. How should

it work in an object based environment? What does it mean to backup the

system? Is it a snapshot of the system or does one dump individual

objects and somehow remember the relationship between them? How do

implementation provided backup/recovery mechanisms and architecturally
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supplied reliability mechanisms interact? Are they, in fact,

incompatible so that only one of them can appear in a given system?

Another research area is the garbage collector proposed in this

thesis. When should the garbage collection algorithms be invoked by the

system? Are the algorithms suggested in chapter three adequate? If so,

how should they be parameterized and what needs to be measured to impose

them? If not, what algorithms should be used and is their complexity

justified by the increased efficiency of the garbage collection process?

There are questions concerning alternative implementations of

AESOP. In many applications, the use of objects is likely to follow a

stack oriented discipline. Can an implementation be optimized around

that pattern of use in a profitable manner? Can the assumed locality of

reference within a storage area be used to compact the format of object

references by using so called "short pointer" techniques? In the longer

run, implementations of AESOP based upon a greater use of

microprocessors to provide additional loci of control for processes and

to provide processing power in traditionally passive devices (e.g.

primary memory and disk storage devices) need to be explored for their

potential exploitation of parallelism both within the implementation and

between processes running on the implementation.

A command processor must be built for use on AESOP. What features

must it have to permit easy but complete access to all of AESOP's

features? How are programs debugged? What should the file system look

like? How are the many processes AESOP permits controlled?
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This thesis has proposed a particular architectural model of

memory. Alternative models exist such as a classical primary/ secondary

memory of bits or an unstructured object heap as in Snyder's thesis.

What level should the model be at (i.e. how much should/can be hidden

from the user)? How do efficiency considerations effect the answer to

this question? Do better, alternative models exist that are abstract

enough to simplify the user's task while still permitting efficient

impl1ementa tions?

If one considers AESOP and its implementation together, a complete

system is seen. The semantics of that system contain implementation

independent and implementation dependent parts. How is a high level

architecture such as AESOP specified to reflect these differences? How

are the performance related features specified? Can their specification

be "modularized" so as to not effect the semantics of the rest of the

system?

AESOP is an interesting exploration into the area of a complete,

high level machine architecture. It is only a f irst attempt into this

area and additional work is needed. The readers of this thesis are

encouraged to continue exploration into high level architectures that

take into account the many issues that a complete computer system must

address.
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Appendix A

The Operations of the Basic Types

This appendix describes the operations provided by AESOP's

built-in type managers. In keeping with the warnings of chapter two,

these must be regarded as only suggestions. The reader should feel free

to substitute types and operations that suit his particular needs, such

substitution being done in the "spirit" of chapter two.

The description of the built-in type managers consists only of the

operations provided by those type managers; chapter two should be

consulted for a description of the type. The description of an

operation begins with a syntactic description of the form:

T$op (arg(l), arg(2), ..., arg(N))

returns (res(i), res(2), ... , res(M))

signals (sig(l), sig(2), .... sig(S))

This describes the operation named "op" provided by the type manager T.

The parameters accepted by the procedure are described by each of the

arg(i) and the results provided by the procedure are described by the

res(i). Any exceptions raised by this operation are described by the

sig(i). A parameter (or result) is described in the form

name: type

that assigns a name to the parameter for the purposes of the discussion

that follows and states that it is of the specified type. One caveat,
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some operations allow, as an option, a parameter to be nil to signify a

special action. An exception is described by the form name(<results>)

that states that the exception has the given name and returns the

specified results.1 Following this initial line is a description of

what the operation expects in the way of parameters, how it interprets

them and what the operation does.

Signal names are unique among all operations. If an exception is

raised by more than one operation then it has the same meaning in all

operations and is only described at its initial appearance. All

operations raise the following exceptions:

invalid_operand type (i(l), ... , i(N))

toomany arguments ()

too few arguments ()

unexpectednil operand (i(I), ..., i(N))

unexpected deleted-operand (i(l), ... , i(N))

insufficient access (i(1), ..., i(N))

insufficient storage

and so they will not be mentioned in the individual descriptions of the

operations. The invalid operand type exception indicates that the

specified arguments to this operation have an incorrect type. The

exceptions too many_arguments and too fewarguments indicate that the

number of arguments passed to this procedure was not within the limits

1. If more than one result is returned, they are packaged into a
vector and that vector is returned due to the restriction imposed by the

exception handling mechanism of only one parameter to an exception

handler.
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as specified by the procedure.' The exception unexpectednil__operand

indicates that the specified arguments to this procedure were

unacceptable since they referenced a nil object. The exception

unexpected deleted operand indicates that the specified arguments were

deleted objects and as such were unacceptable to this procedure. The

exception insufficient-access indicates that the caller has insufficient

access to perform the called operation on the specified arguments. The

condition insufficientstorage indicates that this operation attempted

to create za object but was unable to do so as there was insufficient

storage in the area where the create was attempted.

In the preceding discussion, and in the following, character

string names have been used for operations and for exceptions. A

particular implementation will bind these character string nanes to

integers.

Boolean

boolean$abcd (x :boolean, y :boolean) returns(z :boolean)

This is a set of 16 operations parameterized by assigning the

values 0 and I to a, b, c and d. It assigns a boolean value to z

based upon the following table:

1. This condition is raised by the instruction interpreter of the
implementation as part of the calling sequence. As such it will be
raised not only for built-in procedures but also for user defined ones.
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01

0Oa b

c d

Thus boolean$0001 performs an and on x and y.

boolean$istype(x) returns(b:boolean)

Returns true if and only if x is of type boolean.

Characters

char$equal(cl:char, c2:char) returns(b:boolean)

Returns true if and only if cl and c2 denote the same character.

char$is type(x) returns(b:boolean)

Returns true if and only if x is of type character.

char$ord(c:char) returns(z:integer)

Returns the index of the character c in the character set being

used by the implementation.

char$ordinv(z:integer) returns(c:char)

Returns the character whose index in the character set being used

by the implementation is z.

Ciosures

closure$create(cs:codesegment, Ins:vector, gns:vector)

returns(cl:closure)

Creates a new closure cl consisting of the three arguments as its
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components.1  The arguments ins and gns default, if nil, to the

LNS and GNS of the executable unit invoking closure$create.

closure$destroy( cl :closure)

Destroys the closure cl invalidating all outstanding references to

it.

closure$istype(x) returns(b :boolean)

Returns true if and only if x is a closure.

closure$run(cl:closure) returns(res(1),

res(M))signals(code_seg destroyed, ... )

Causes the closure cl to be executed and returns any results that

cl returns. The signal codeseg_destroyed is returned if the code

segment in cl is destroyed. In addition to raising the exceptions

based upon its argument, this operation may also raise any

exceptions that cl's execution may terminate with.

Code Segment

code seg$create(rep) returns(cs:codeseg)

Creates a new code segment, cs, from the representation in rep.

See chapter two for a discussion of rep.

code_seg$destroy(cs:code segment)

Destroys the code segment cs invalidating all references to it.

If this code segment is still being executed in some process, the

1. For this and subsequent create operations an optional final
argument may be given that denotes the storage area for the newly
created object. If omitted, the default storage area for the current
process is used.

- 233 -



operation that caused this code segment to be run will return a

codeseg_destroyed exception.

code_seg$is_type(x) returns(b:boolean)

Returns true if and only if x is a code segment.

Event Count

ec$await(e(1):ec, c(i):integer, .... e(N):ec, c(N):integer)

returns(which:integer)

Blocks execution of the current process until one of the event

counts e(j) has a value at least as large as the corresponding

c(j) in which case j is returned in which.

ec$create() returns(e:ec)

Creates a new event count e.

ecSdestroy(e :ec)

Destroys the event count e invalidating all outstanding references

to it. Any processes waiting on e will be resumed with the

ec$await operation signalling unexpected deleted operand.

ec$increment(e:ec, n:integer) signals(notplus, overflow)

Increments the event count e by n. Signals notplus if n is

non-positive. Overflow is signalled if incrementing e by n would

cause e to be larger than the implementation supports.

ec$istype(x) returns(b:boolean)

Returns true if and only if x is an event count.

ec$read(e:ec) returns(count:integer) signals(overflow)

Returns the value of e in count. Signals overflow if e is at its
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largest possible value.

Integer

integer$abs(x:integer) returns(z:integer) signals(overflow)

Returns x if x is non-negative otherwise returns -x. Overflow is

signalled if x is negative and -x is not representable by this

implementation.

integer$divide(x:integer, y:integer) returns(z:integer) signals

(zero-divide)

z := x/y. Signals zero divide if y is zero.

integer$equal(il:integer, i2:integer) return-(b:boolean)

Returns true if and only if iI and i2 denote the same integer.

integer$istype(x) returns(b:boolean)

Returns true if and only if x is of type integer.

integer$less or equal(x:integer, y:integer) returns(b:boolean)

Returns true if and only if x < y.

integer$less than(x:integer, y:integer) returns(b:boolean)

Returns true if and only if x < y.

integer$max(x(1):integer, ..., x(N):integer) returns(z:integer)

Returns the largest value from the set {x(i)) in z.

integer$maxinto returns(z:integer) signals(nonesuch)

Returns the maximum integer supported by this implementation in z.

The exception none such is raised if the implementation does not

impose such a limitation.
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integer$min(x(l):integer, .... x(N):integer) returns(z:integer)

Assigns the smallest value from the set {x(i)) to z.

integer$mininto returns(z:integer) signals(nonesuch)

Returns the minimum integer supported by this implementation in z.

integer$minus(x:integer, y:integer) returns(z:integer)

signals(overflow, underflow)

z := x-y. An overflow exception indicates that the result of this

operation, mathematically, is larger than this implementation can

represent. An underflow exception indicates that the result of

this operation, mathematically, is smaller than this

implementation can represent.

integer$mod(x:integer, y:integer) returns(z:integer)

signals(non-positiveinteger)

z is assigned the remainder of dividing x by y. If y is not

strictly greater than zero, the exception nonpositive-integer is

raised.

integpr$plus(x:integer, y:integer) returns(z:integer)

signals(overflow, underflow)

z := x+y.

integer$times(x:integer, y:integer) returns(z:integer)

signals(overflow, underflow)

z :- x*y.

Notes:

It is possible that a particular implementation will support

arbitrary precision arithmetic. If so, maxint and min int will

raise the none-such conditions. Additionally, all operations that
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produce an integer result may take an additional, optional

argument, a storage area, indicating where the integer may be

stored. If no such argument is given, the default storage area

for the current process is used.

I0

io$create(addr:integer, spec:vector[integer]) returns(dev:io)

signals(none such, toolate)

Creates a new io object dev whose address is given by addr. The

new device has N registers associated with it where N is the

length of spec. The vector spec specifies whether each of these N

device registers is a status register, an event count register or

a buffer register. The exception none such is raised if the

specified device does not exist. The exception too-late is raised

if an io$create operation has already been performed on the

specified device.

io$destroy(dev: io)

Destroys the logical device dev, invalidating all outstanding

references to it. The physical interface between the device and

AESOP is made inactive.

io$istype(x) returns(b:boolean)

Returns true if and only if x is of type io.

io$read_register(dev:io, i:integer) returns(register)

signals(nonesuch)

Returns the value of the i th device register of dev. If i is not
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the name of a valid device register then the signal none-such is

raised.

io$set_register(dev:io, i:integer, new) signals(nonesuch)

Sets the value of the i'th register of dev to new. Signals

invalid_operandtype if new is not of the appropriate type for the

i'th register of dev.

io$setstatus abcd(dev:io, i:integer, bv:vector(boolean],

offset:integer, length:integer) returns(status:vector[boolean])

signals(nonesuch)

This is a set of 16 operations parameterized by assigning 0 and 1

to a, b, c and d. For j from 1 to length the offset+J-1'th bit of

the i'th register of dev is changed to the value in the following

table:

01

0Oa

where x is the value of the J'th bit of bv and y is the value of

the offset--'th entry of the status register.

Null

null$is-type(x) returns(b :boolean)

This operation returns true if and only if X is of type null, i.e.

returns true only if x - nil.
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Object Viewers

ov$access(o) returns(ar:vector[boolean])

Returns, in ar, the access restriction vector associated with the

reference o.

ov$destroy(y:ov)

Destroys the object viewer named by y, invalidating all

outstanding references to or through it.

ov$destroy_viewed(y:ov)

Destroys the object viewer that y permits modification to,

invalidating all outstanding references to or through that object

viewer.

ov$extract(o) returns(sealed-object, ar:vector[boolean], revoker:ov)

This operation unseals o, returning the sealed object in

sealed-object, the accessrestrictions associated with the

reference o in ar and an object viewer that permits modifying the

object viewer sealing sealed-object in revoker. If the procedure

performing this operation is not part of the type manager returned

by ov$type(o) then the insufficient-access(1) exception is raised.

ov$istype(x) returns(b:boolean)

Returns true if and only if x is an object viewer; that is, if and

only if x is a reference that permits modification of some object

viewer.

ov$modify(y:ov, object, ar:vector[boolean])

Modifies the object viewer named by the revoker y so that its

viewed object is object and the access to the viewed object is ar.

Both object and ar default to nil. The value nil is always valid

- 239-



as an object field no matter what the type field in the object

viewer that y permits to be modified may be. Signals

invalid_operand type(2) if the type of object is not compatible

with the type field in the object viewer that y permits to be

modif ied.

ov$restrict(viewedobject, ar:vector[boolean]) returns(X, Y:ov)

This operation returns a new object, X, that represents a

restricted view of the object viewed-object. The restrictions are

specified by ar. The returned value Y permits modification of the

object viewer that is X. The argument ar defaults to nil (no

access restrictions).

ov$same end-objects(o(1), o(2)) returns(b:boolean)

Returns true if and only if o(I) and o(2) currently provide

different views of the same object; that is, it returns true if

and only if the chains of object viewers named by o(l) and o(2)

eventually converge.

ov$same-names(o(l), o(2)) returns(b:boolean)

Returns true if ind only if o(I) and o(2) refer to the same

object; that is, it returns true if and only if o(I) and o(2)

refer to the same non-object viewer object or refer to the same

object viewer (i.e. "pointer" equality).

ov$seal(sealedobject, ar:vector[boolean]) returns(X, Y:ov)

signals(notatnm)

This operation creates an object, X, of extended type from the

representation object sealedobject. The type manager for X, and

thus its type, is the type manager invoking this operation. If
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not invoked by a type manager, nota-tm is signalled. The

permissible operations on X are specified by ar. If ar is not

supplied, or is nil, all operations are permitted on X. The

returned value Y is a revoker that permits modification of the

object viewer that is X.

ov$type(o) returns(t:tm)

Returns the type of the object referenced by o in t. The

reference t does not permit the status or destroy operations on

the named type manager.

Procedures

proc$call(p:proc, arg(1), ..., arg(N)) returns(res(1), .... res(M))

signals(code seg _destroyed, ..

This operation invokes the procedure p and passes the arguments

{arg(i)} to it. The invoked procedure executes in an environment

with the global name space of its caller as the global name space

of the called procedure. Any results produced by p are returned

in {res(i)}. This operation raises various conditions if the

argument p is invalid and will also raise any exceptions that p

itself may raise.

proc$callwith gns(gns:vector, p:proc, arg(1), ..., arg(N))

signals(codeseg destroyed, ... )

This operation invokes p as for proc$call. In addition, p is

executed in an environment where gns is the invoked procedure's

global name space.
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proc$create(cs:codeseg, t_lns:vector, minargs:integer,

maxargs:integer, start:integer) returns(p:proc) signals(badspec)

Creates a new procedure with cs as its code segment and t ins as

its template local name space. The procedure requires at least

mn_.args arguments but no more than max args arguments. If

maxargs is nil, the procedure imposes no limit on the number of

arguments expected. The input arguments will be placed starting

at location start in the procedure's local name space at run time.

The exception bad spec is raised if any of the integer parameters

are non-positive or if max-args is less then min _args.

proc$destroy( p:proc)

Destroys the procedure p, invalidating all outstanding references

to it.

proc$is type(x) returns(b.:boolean)

Returns true if and only if x is a procedure.

proc$status(p:proc) returns(cs:code-segment, t_lns:vector,

mn _args:integer, max-args:integer, start:integer)

Returns the current status of the procedure p. The result

variables have the same meaning as for proc$create.

Process

process$booleanbranch(b:boolean, if true:integer, iffalse:integer)

signals(bad spec)

Branches to an offset if-true or if false locations from the

current instruction depending upon b being true or false. The
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exception bad spec is raised if the specified instruction does not

exist.

process$branchsameendobjects(o(1), o(2), equal:integer,

not_e qua I : integer)

Branches to offset equal (notequal) if ov$sameendobjects(o(1),

o(2)) returns true (false).

process$branch same names(o(1), o(2), equal:integer,

notequal :integer)

Branches to offset equal (notequal) if ov$samenames(o(I), o(2))

returns true (false).

process$create(p:proc, gns:vector, lca:storagearea, arg(l), ....

arg(n)) returns(pr :process)

Creates a new process pr in the stopped state with priority one

and no CPU time limit that executes with Ica as its initial

storage area and begins execution with the instruction

proc$call withgns(gns, p, arg(l), ... , arg(n)). If nil, gns

defaults to the current GNS and ica to the current default storage

area.

process$destroy(pr :process)

Destroys the process pr, invalidating all outstanding references

to it.

process$getdefaultarea(pr:process) returns(s:storage_area)

Returns the current default storage area for process pr. If pr is

nil, the current process is assumed.
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process$integercompare(a:integer, b:integer, lesstinteger,

equal:integer)

Branches to offset less (equal) if a is less than (equal to) b.

process$is type(x) returns(b:boolean)

Returns true if and only if x is a process.

process$maxyprior() returns(prior:integer)

Returns the maximum possible priority that a process may be

assigned. Processes with maximum priority are guaranteed to get

some CPU time by AESOP's round-robin scheduler.

process$multiway branch(i:integer, offset(1):integer,

offset(N):integer)

Branches to an instruction that is offset(i) instructions from the

current one.

process$return(res(l), ..., res(R))

Causes the current invocation to return normally with the results

{res(i)). If the invoker expects M results, min(M, R) results are

actually returned.

process$schedule(pr:process, prior:integer, limit:integer, event:ecj

signals(priority_,oo high)

Sets pr's scheduling priority to prior and its CPU time limit to

limit. If pr should consume limit units of CPU time total then it

enters the stopped state and event is incremented. If limit is

nil, no CPU time limit is imposed and event is ignored. Signals

priority toohigh if prior is greater than process$max_priorityO.
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process$setdefaultarea(s:storage_area, pr:process)

Sets the default storage area for the process pr to s. If pr is

nil, it defaults to the current process.

process$signal(signal, operand)

Causes the current invocation to return abnormally with signal as

the signal name and operand as the signal operand.

process $start( pr :process)

Causes the process pr to enter the runnable state and resume

execution.

process$status(pr:process) returns(s:integer, cpu:integer,

prior:integer, ec:vector[eventcount], limit:integer, event:ec,

other)

Returns the current status of pr as follows: current status

(runnable, stopped or blocked on some event(s)) in s, cpu time

consumed in cpu and current priority in prior. If status

indicates that the process is blocked, then an array, ec, of event

counts that this process is blocked on is returned (otherwise

nil). Also returned are the CPU time limit in limit and an event

count, event, that will be incremented when that time limit is

exceeded. If limit is nil, no limit is imposed and event is

returned as nil.

process$stop(pr :process)

Causes the process pr to cease execution and enter the stopped

state.
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process$transfer(offset:integer) signals(badspec)

Causes execution of the current code segment to continue at offset

instructions from the current one.

Sequencer

sequencer$create() returna~s :sequencer)

Creates a new sequencer a with initial value 0.

sequencer$destroy( s:sequencer)

Destroys the sequencer s invalidating all outstanding references

to it.

sequencer$is_type(x) returns(b :boolean)

Returns true if and only if x is a sequencer.

sequencer$take(s:sequencer) returns(i:integer) signals(overflow)

Returns the next value in s's sequence in i. The signal overflow

is raised if s is at its largest possible value.

Storage Area

storage_area$close(s:storage_area, s':storagearea)

Specifies that storage area s should be regarded as being close to

s .

storage_area$create(size:integer, parent:storage_area)

returns(s:storagearea)

Creates a new storage area s by drawing size units of quota from

parent.

i
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storagearea$deleteall(s:storagearea)

Deletes all objects in the storage area s invalidating all

outstanding references to them.

storage_area$destroy( s:s torage_area)

Destroys the storage area s and all objects in it invalidating all

references to the storage area and to those objects.

storage_area$is_type(x) returns(b:boolean)

Returns true if and only if x is a storage area.

storage_area$notclose(s:storagearea, s':storage_area)

Specifies that storage area s should no longer be regarded as

being close to s'.

storage__area$size(s:storage-area) returns(size:integer, free:integer)

Returns the current size of s in size and the current amount of

free quota in s in free.

Note:

masteralloc(size:integer) returns(s:storage_area) signals(cant)

The procedure master alloc is a built-in procedure that can

create storage areas out of nothing. Signals cant if an area

of the specified size can not be created. It is supplied at

initialization time to the initial process of AESOP.

Type Manager

tm$create(proc(l), ..., proc(N)) returns(t:tm)

Creates a new type manager with proc(i) as the procedure

implementing the i'th operation on the newly created type.
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tm$destroy( t :type-manager)

Destroys the type manager t, invalidating all outstanding

references to it.

tm$is-type(x) returns(b:boolean)

Returns true if and only if x is a type manager.

tm$status(t:tm, i(1):integer, ..., i(M)) returns(proc(1),

proc(M)) signals(bad spec)

Returns as proc(j) the procedure that implements operation i(j).

The exception bad spec is raised if there is no operation i(j) for

some j in [1,M].

Vector

vector$create(size:integer, nature:tm, initialvalue)

returns(v:vector) signals(bad size, bad-type)

Creates a new vector with "size" elements in it, all initialized

to the value initialvalue. Tne exception bad-size is raised if

size is non-positive or if size specifies a vector too large for

this implementation of AESOP. If nature is nil then v may contain

objects of any type otherwise they must be objects provided by the

type manager nature. (The parameter nature sets a property of v

known as its nature). The exception badtype is raised if

initial-value is not storable in v (i.e. if nature is not nil and

if the type of initialvalue is not nature).

vector$destroy( v :vector)

Destroys the vector v, invalidating all references to it.
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Appendix B

The Complete Garbage Collection Algorithm

This appendix describes in detail the garbage collection

algorithms used in the implementation of AESOP describel in chapter

three. The garbage collection algorithms used in AESOP have two parts:

the garbage collector used by each individual storage area and a second

garbage collector that drives the global mark/sweep garbage collection

used to reclaim inter-area cycles of garbage.

There are a few pieces of information that the system maintains

for the garbage collection algorithms. Associated with every object is

a single bit, its mark bit, that is used to mark objects for the global

mark/sweep garbage tollection. Each storage area has two flags and two

addresses associated with it. The ITID flag (for I Think I'm Done) and

the rescan flag are used as part of the global mark/sweep garbage

collection algorithm. The address TOspace gives the address of TO

space for the storage area while TO-limit is the address of the last

object reference in TO space that has been scanned. Every inter-area

cable has a gc__in_progress flag and a was__gcing flag associated with it.

There are two global flags used to indicate the state of the global

mark/sweep garbage collection. The globalgc flag is turned on when a

global mark/sweep garbage collection is in progress. The globalsweep
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flag is turned on when the sweep phase of the global mark/sweep garbage

collection is in progress.

There are three algorithms below. The procedure globalgc is

responsible for performing the global mark/sweep garbage collection

algorithm to reclaim the storage being used by inter-area cycles of

garbage. The procedure gc_area performs a garbage collection on a given

storage area. The procedure copyobject copies an object from FROM

space to TO space and handles the various flags associated with the

global mark/sweep garbage collection algorithm.

globalgc:procedure()

% This procedure is responsible for performing the global

% mark/sweep garbage collection.

forall S:storage_area

do S.ITID :- true

S.rescan :- false

do forall O:object in S

O.mark :- false

end

end

% Mark all objects accessible from ROOT

forall O;object accessible from ROOT

do Let S be the area that 0 is in.

O.mark :- true

S.ITID :- false

end
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global gc :- true

% Wait for the mark phase to end

while S. ITID - false for some area S

do skip end

% Now do the sweep phase

global-sweep :- true

forall S:storagearea

do forall O:object in S

do if O.mark = false

then Return the storage occupied by 0 to the free

pool.

else O.mark :- false

end

end

globalsweep, global__gc := false

end global_gc

All of the complexity of this algorithm is hidden in the mark phase

which requires a wait for all areas to come to an agreement that the

mark phase has completed - this complexity appears below in the

description of the gc_area procedure.

gc area:procedure(S:storage area)

% Garbage collects area S

if TO space does not exist

then Create To space and set TO_space to its address.

else Set TOspace to the address of TO space.

TO_limit :- TO_space-i
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S.ITID :- S.ITID and (not S.rescan)

forall c:inter-area-cable to S

do c.gc_inprogress :- true end

forall c:inter-area-cable from S

c.was gcing :- c.gc_inprogress

forall O:object accessible from an incoming link to S

do Let 0' be the inter-area link referencing 0.

call copy_object(O, 0')

end

while c.gcinprogress = true for some incoming cable c to S

and an object reference exists in TO space above TOlimit

do Let TO limit be incremented to the location of the next

object reference, P, beyond TO-limit in TO space.

Let P be part of object 0'.

if global sweep - true and O'.mark = false

then skip

else Let 0 be the object referenced by P.

call copy-object(O, 0')

S.ITID :- not S.rescan

forall c:inter-area-cable from S

do c.gc injprogress :- c.gc_inprogress and not c.was.gcing

end

end gc_area

copy object :procedure(O:object, O" :object)

Z copies the object 0, referenced by 0', to TO space
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Let S be the area 0 is in.

Let S' be the area that O resides in.

Let P be the reference in 0' to 0.

Let scanned(X) stand for the following predicate:

Let S be the area that object X is in.

Then scanned(X) is equivalent to: S.TO_space < address(X) <

S.TO limit

In other words, scanned(X) is true if and only if X has been

moved to TO space and any object references in X have been

scanned.

if 0 is a deleted object

then Set P to be a reference to a deleted object.

return

if S = S'

then if scanned(O)

then if O'.mark = true and O.mark = false and global_gc =

true

then S.rescan := true

return

else %have not yet scanned 0

if O .mark = false and globalsweep - true

then return

Copy 0 to TO space if not already there, leaving a

forwarding pointer behind.

Update P to refer to the copy in TO space.

O.mark :i (O.mark or O'.mark) and global_gc
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return

% Otherwise S and S' are different areas

if S is being garbage collected

then if 0 is not in TO space

then copy 0 to TO space, leaving a forwarding pointer

behind.

Update P to refer to the copy.

O.mark :- (O.mark or O'.mark) and globalgc

else Update P to refer to the copy in TO space.

if O.mark = false and O'.mark - true

then atomically do O.mark :f true

if scanned(O)

then S.rescan := true

e - true

then atomically do S'.ITID :- false

S'.rescan :- false

O.mark :- true

end atomically do

return

end copyobject

One final note: a newly created object should always have its mark bit

set to global gc to allow the global mark/sweep garbage collection

algorithm to always terminate.
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Two questions are of importance: Does this algorithm terminate?

And if it terminates, does it terminate correctly? Each of these will

be answered in turn, although a formal proof is beyond the scope of this

thesis.

Imagine that a global garbage collection is about to be begun. At

this point temporarily freeze the system. Every object in the system is

now either accessible or is garbage. The above algorithm ensures that

all of this garbage is discovered. For the purpose of the global

garbage collection any objects created after this point are considered

as accessible (this is ensured by the last point above). This algorithm

does a traversal, more or less breadth first, of the graph of accessible

objects. Whenever an unmarked object in that graph is discovered, it is

marked and, if necessary, the area containing that object is told (by

setting its rescan flag) that an object it has already examined during

its current garbage collection needs to be traced from again (i.e. have

its mark bit propagated). The algorithm terminates for two reasons.

First, the set of objects that need to be marked is finite and fixed in

size (since newly created objects are automatically marked and thus do

not increase the size of the set of accessible but unmarked objects).

Second, every object is only scanned once for marking purposes so that

no looping need be worried about. The algorithm terminates correctly

since it marks all accessible objects, the rescan flag being crucial in

preventing mistakes, by preventing the premature setting of ITID flags,

and collects all garbage in the sweep phase.
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