AD=ADB3 433 MASSACHUSETTS INST OF TECH CAMBRIDGE LAB FOR CONPUTE-ETC F78 9/2
THE ARCHITECTURE OF AN OBJECT BASED PERSONAL COHPUTER
MAR 80 A W LUNIEWSKI 001'-75—C-0661

UNCLASSIFIED lT/LCS/TR-232

LABORATORY FOR
COMPUTER SCIENCE

g Al INSTITUTE OF

TECHNOLOGY @

MIT/LCS/TR-232

THE ARCHITECTURE OF
AN OBJECT BASED
PERSONAL COMPUTER

Allen William Luniewski

This rescarch was supported by the Advanced Research Projects Agency of the
Department of Defense and was monitored by the Office of Naval Research under
Contract No. NO0OO14-75-C-0661

515 TFCHNOLOGY SQUARE, CAMBRIDGE. MASSACHUSETTS 02139

SECURNITY CLASSIFICATION OF THIS PAGE (When Dete Entered)

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
'me 7 7. GOVT ACCESSION NOJ 3. RECIPIENT'S CATALOG NUMBER — ———F- -
/ A [MIT/1CS/TR-232 ~AF3433 o)) S o LS
. A TITLE (and Subtitte) e T TYPE-OS-NEAOAT.A RERIOD COVERED 4 -
/,, The Architecture of an Object Based Personal ’ Ph.D.Thesis-Dec.6, 1379
"H Compu - S. PERFORMING ORG. REPORT NUMBER
~—1 ter e 'MTT/ICS/TR-232 v~
K —— e ey 8. CONTRACY OR GRANT NUMBER(s)
Allen William/Luniewski ' e ” NOOD14-75-C-0661

- S i
— '

M

9. PERFORMING ORGANIZATION NAME AND AODRESS
MIT/Laboratory for Computer Science v/

545 Technology Square
Canbridge, MA 02141

AREA & WORK UNIT NUMBERS

10. PROGRAM ELEMENT PROJECT, TASK

11. CONTROLLING OF FICE NAME AND ADDRESS 77, | J+-*EPORT BATE
ARPA/Department of Defense / _J __/ MardF398e
1400 Wilson Boulevard N[T3."NUM
Arlington, VA 22209 267
4 MONITORING AGENCY NAME & ADDRESS(If different from Controlling Oflice) | 15. SECURITY CL
ONR/Department of the Navy
Information Systems Program Unclassified
Arlington, VA 22217 Sa. gg&uégtlgcnwuloowucnwmc

DISTRIBUTION STATEMENT (of this Report)

This document has been approved for public release and sale;
its distribution is unlimited

17.

DISTRIBUTION STATEMENT (of the sbatract entered in Block 20, if dilferent from Report)

SUPPLEMENTARY NOTES

19.

KEY WORDS (Continue on reverse aide If necessary and identity by block number)
personal camputer

capability addressing

structured programming N

operating system

high level machine architecture

20.

ABSTRACT (Continue on reverse side If necessary and identify by block number)

This thesis proposes the architecture of a personal computer that
provides better support than conventional architectures for recently
developed concepts of structured progranming . The architecture
separates implementation and high level language issues. The
architecture eliminates the need for an operating system by including,
in a 1language independent manner, the features normally found in

DD , %%, 1473 ®oiTion oF 1 MOV #8 13 OBSOLETE

JAN 73

é/{ /(,’;“"/ /,)(

SECURITY CLASSIFICATION OF THIS PAGE (When Deta Batered)

A Y

\
A Y
AN
ik &

SECUMTY CLASSIPICATION OF THIS FASE(WRan Date Bnternd)
e

20.

\'5operating systems. The architecture allows multiple languages to
coexist safely. It is complete; the user has no need to leave the world
defined by the architecture to solve a problem, including the important
case of executing untrusted programs.

The architecture provides the semantic base needed by most
languages. It supports a flexible execution environment that treats
executable code and naming environmeats as objects. It explicitly
supports the termination model of exception handling. A new mechanism,
object viewers, provides type extension, access restriction and access
revocation. The operating system features of process, inter-process
communication/synchronization, permanent storage, 1/0 and system
initialization/shutdown are provided.

An efficient implementation of the architecture Is preseanted that
is suitable for a personal computer. The implementation provides a
large, real-time garbage collected object heap built out of a physical
multi-level memory system.

Some ways in which the architecture can be used are shown. The
focus is on showing how some problems of language implementation can be
handled.

“Accessicn For
NTIS GRAXI 1
pDC TAB
Unannovnced {
Jusiiriel vl

By S

--.niwc‘v"f*:' Tovn
Availa riov
i Dist special

1A

SECURITY CLASSIPICATION OF THIS PAGK(When Dete Entered)

. .

vt

THE ARCHITECTURE OF AN OBJECT BASED PERSONAL COMPUTER

ALLEN WILLIAM LUNIEWSKI

© Massachusetts Institute of Technology 1979

This research was supported by the Advanced Research Projects Agency of the
Department of Defense and was monitored by the Office of Naval Research under
Contract No. NO0O14-75-C-0661.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
LABORATORY FOR COMPUTER SCIENCE

CAMBRIDGE MASSACHUSETTS 02139

80 4 . 3

R o= e e ——w— -

RS T

e T e

The Architecture of an Object Based Personal Computer
by

ALLEN WILLIAM LUNIEWSKI 5

Submitted to the Department of Electrical Engineering and Computer

s

Science on December 6, 1979 in partial fulfillment of the t

requirements for the Degree of Doctor of Philosophy i
ABSTRACT

This thesis proposes the architecture of a personal computer that
provides better support than conventional architectures for recently ,
developed concepts of structured programming. The architecture i
separates implementation and high 1level 1language 1issues. The
architecture eliminates the need for an operating system by including,
in a language independent wmanner, the features normally found in
operating systems. The architecture allows multiple languages to
coexist safely., It is complete; the user has no need to leave the world
defined by the architecture to solve a problem, including the important ‘]
case of executing untrusted programs. |

The architecture provides the semantic base needed by most
languages. It supports a flexible execution environment that treats f
executable code and naming environments as objects. It explicitly 4
supports the termination model of exception handling. A new mechanism, !
object viewers, provides type extension, access restriction and access
revocation. The operating system features of process, inter-process
communication/synchronization, permanent storage, I1/0 and system
initialization/shutdown are provided.

An efficient implementation of the architecture is presented that
is suitable for a personal computer. The implementation provides a

large, real-time garbage collected object heap built out of a physical
multi-level memory system.

Some ways in which the architecture can be used are shown. The

focus is on showing how some problems of language implementation can be
handled.

Thesis Supervisor: David D. Clark, Research Associate in the Department
of Electrical Engineering and Computer Science

Keywords: personal computer, capability addressing, structured
programming, operating system, high level machine architecture.

- 3 - * . ,.).w:mhm~»~;~M .3

FRECEDING PAGE BLANK = NOT FliwkD
:;.;mz Yo les N . :

ACKNOWLEDGEMENTS

A five year PhD program is only completed with the aid and
encouragement of a number of people. This 18 to acknowledge those who

seem most ilmportant at this time. To those I have missed, I apologize
and give my warm thanks,

First and foremost I must thank Dr. David Clark, my thesis
supervisor, for his continual encouragement throughout my five years at
M.I.T. especially the last two while I was working on this thesis. His
many painful hours of reading and re-reading drafts of this document
have resulted in a much better document than 1 alone could have
produced. The remaining faults, of course, are my own. His help is
gratefully acknowledged.

Professors Liskov and Svobodova, my thesis readers, have also
contributed greatly to the production of a readable thesis. They have
made many suggestions that have improved the quality of the presentation
and the technical content of the thesis. Professor Svobodova’a
meticulous reading of two drafts of this thesis have been of particular
aid.

This thesis grew out of discussions held on Friday, January 13,
1978 between Warren Montgomery, Dave Reed, Karen Sollins and this author
to design an object based computer. That group designed a machine known
as the "510 Machine”. The architecture presented in this thesis
represents a significant evolutionary step from those initial
discussions but still embodies much of the original philosophical
approach. The help of this group of people is appreciated.

All of the members of CSR have, through the years, provided
encouragement, enlightenment and the periodically necessary comic
relief. In particular, I thank Steve Kent, Dave Reed and Karen Sollins
who helped a rather hesitant first year graduate student become much

more at ease in what was, at first, a new and unusual environment far
from home.

I would also like to thank my family, especilally my pareants, who
have been a source of strength throughout these five years. Their moral
support, especially through the last three grueling months, has been
cherished.

This research was supported by the Advanced Research Projects
Agency of the Department of Defense and was monitored by the Office of
Naval Research under Contract No. NOO0Ol4-75-C-0661.,

Abstract

CONTENTS

© 5 00 800000000000 E0EE0 0000000006300 00aa00000ses00ssst0sssBLRRTCTS

ACknOowledBemenELS .eveeceesnssosacvasacooscssassesocsnsnssesossssansncss

.3

. 4

Chapter One. IntroducCtion ieeceeeecseccesrecscesococsconnocossncnocsves 3

Overview of the ThesSiS ..ciceiercrseosssescnsssscssscsanaes
The Personal Computing Environmentc.eceecococscccces
The Nature of a High Level Architectureececeeceocecs
Efficlency Considerations ...eveeceecessonrsceesccccosccors
Summary of Goals and Assumptionscceccecccccccccanns
Other Related WOrK .ue.iceveccevoccessososcnassossnscvscanses
Thesis Outline ..eiiieieeceroenscacscssccccccaccscnsncnsee

Chapter Two. The Architecturecteeecceccscsscecccscoscscocsnans

The Naming Architectureecesevescecessorscscsasaes
The Basic Computational Data TYpPeS eeocevssscescccoascosces
Execution in AESOPccececcrennscssnneccensnscsrosaonsss
Object Viewers .soceceecevsosccsssccctsnsscssssessosnsannnns
Operating System Related FeaturesS ..c.eeoecescccesssecnces
ConclusSions ..ceeeeseerecsensosessscssssosocccssnsoscsnsnasnse

Chapter Three. The Implementation of Logical Storage Management

Wl W W W iwww

WO~ NEWN —

An Introduction to the Implementation ...ceeceeesccececsss
Bishop’s Mechanism for Logical Memory Management
The Subsystem Model of Storage US€ .ceeevcsecsccsascnnes
Garbage Collection in AESOP .e.vivvecscoccsossscnsocssas
Object Creation and Deletlonececcecescasassacvecca
Multi-Area Cycles of Garbageccceovveveoceorvosonsos
A Stack Mechanism for Local Name Spaces and Control
ConclusSions .iieereenrieeenonsncrsnsascssccncscsscssnanses

Chapter Four. Other Issues in Implementing AESOP .ccevececsonccscsne

Fundamental Hardware ASsSumptionsS ...ececssscccscsosccens
Object ReferenCes ...ceecsceccccocversocsnesssosssssnssnce
Allocation of Physical Storage to Storage Areas .eseesee
Physical Memory Management ...cccesseoseccscsssncscccnne
The Implementation of AESOP s Basic TypeS .ceeeeceocscves
Hardware Considerations ,...cecveeecscssescsescsssnconee
ConcluSions ..iceececececscssssasccsssossncsssnsssnanesee

10
11
17
33
34
36
38

41

43
44
46
63
73
94

97

97
100
104
107
119
124
128
135

137

138
140
145
148
155
166
169

Chapter Five. Using AESOPcccvvosessenncscososssccocnssesssnnnea 171

5.1 Extended Types and Parameterized Definitions 173 i
5.2 Using AESOP’s Flexibility in Naming and Execution ,..... 181 [
5.3 Exception Handling on AESOPcecsecsscssscscscessesss 197 g
5.4 Some Deficiencies in Handling Classical Languages 201 1
5.5 Using AESOP’s Operating System Featuresessseececss. 204 b
5.6 ConcluSsionsd ...veevreecscessnsscesrsssssanssvcscassanses 210 B

Chapter Six, ConcluSionsS .eieeeeeccocccereencesnssssssensssssosasssss 213

6.1 Directions for Future Researchceceeecrscvccecccccees 224
Appendix A. The Operations of the Basic TypeS ...eevevecscsccsceonss 229
Appendix B. The Complete Garbage Collection Algorithme000000.. 251
References ..

febseessevscatsecnesetennrennsssrsesessnsanassanscovese 209

Biographical NOte ...iiecevecensescassscossceasscssscccasassnscsneases 205

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

L] .
—_ e = = O 0 DN B WN
.

LW Q e
.

e s+ & + s e e e s e e s e « « s s s o & s e e = s = e e o e
—0 00 TS W W N O 00O BN
e o e s e e e e e e D s e e v e e e e e s e e & e »
.

LUV UVUVMUMUUVMUVME SO WWLWWWWWwWWwwLLeonmiolioloNntoRnre RN
.

.10.
5.11.
5.12.
5.13.

FIGURES

Some of the operations ON VECLOIrS .eeecessssnvococsanase
An example of the use of name SPACES .svereeverscrncescns
The operations on ClOSUIES .i.veveeocncanenansncrsssssos
Some of the operations on procedures c..eiesssoesssecessss
Complete options for Instructionscceceevescccnsnns
An object viewer ...iciecrecerctrresesessnssescarannanns
Using an object viewer for access restrictioncec.0
A chain of access restriction object viewersc00u0e
Type extension using object viewersiceeevececencass
Modifying one object viewer with another
The operations on object viewersceeeencevcecnesnes
Some of the operations On ProCeSSeS ...iceesesssossansos
The operations on event counts and Ssequencers
The operations On StOrage areas ...eeeseescssocsscssnes
The operations on I/0 devicCes ...ieevereencecensencanes
An example of inter-area referencescevvvevenenn
The subsystem model and StOrage areas ..c..sscvcscssesce
The AESOP garbage cOlleCtOr ..cecececeecesooncscacasnes
The storage within a storage areacecveeeveccocanss
A storage area being garbage collected cceeieenanns
An example of a multi-area cycle of garbage
Formats of an activation recordccevevercecesecnes
The algorithm for handling the stack of LNS's
An INS reference moved from the stackccevuve.s
An example of suboptimalitycccecevvrcccvacacecs
The basic hardware configuration of AESOPccc0nvee
The format of special object referencesceeveveens
The format of a normal object reference ..,..ieceveneens
Foo, an example of a CLU cluster c..eceviceccecnccccana
The AESOP type manager corresponding to cluster foo ...
The code for CLU’s up and down operationsceeeuves
A parameterized procedure instance in AESOP
Executing procedure Y before snapping the link
The code to handle a linkage faultcocceceecccccss
Executing procedure Y after snapping the link
An executing procedure Y that binds names correctly ...
The tproc fOr Y .eeveveesvssessnssecssscosnsscansnscnnas
An example of call-by-reference and call-by-sharing ..
The 1pt ClUSLEr .eiesecevrcrensessssrsasrsessoassonnsanns
The print procedure of the lpt clustercccceveness
The auxiliary procedure bufferedcvcveeunns

45
49
51
53
60
64
65
65
66
68
71
75
79
83
89
101
106
117
121
123
124
130
132
133
134
140
142
152
174
175
176
179
190
191
192
193
194
203
206
207
208

e

:
;
!
‘
!
i
‘|
|

e

Figure 5.14, The auxiliary procedure unbufferedc0c00veevee. ... 208
Figure 5.15. Using Processes and Access Restriction .,....ceeece... 210

o —————

1]
%

Chapter One

Introduction

In recent years there has been great interest {in structured
programming and in higher level languages that support the notions of
structured programming. This thesis will describe a machine
architecture that provides high 1level support for such 1languages,
support much higher than the low level support provided by traditional
Von Neumann computers. The thesis also will explore the inclusion of
various operating system notions into such a high level architecture.
The architecture will be designed for a personal computer both because
such an environment is simpler than a time-sharing environment and
because personal computers are likely to be the predominant form of

computer resource in the future.

The major goal of the thesis, the design of a high Ilevel
architecture, can be looked at in three ways. First there is the view
that it is the architecture of an actual processor, e.g. the design of a
piece of hardware that could be buiit. This viewpoint imposes both
complexity constraints and completeness requirements on the
architecture. The second view is that the architecture specifies an
intermediate language that compilers for high level languages could use
in compiling those languages. This viewpoint provides insights into the

functionality that 1is needed 1in the architecture. A third, and

unifying, view 1is that the architecture defines an interface that

»

separates high level language issues (e.g. syntax issues, own variables
and the degree of type checking provided by the language) from
implementation issues (e.g. the representation of procedures, the
control stack and managing the logical memory provided by the language).
When viewed in this way, it is clear that the architecture should not
contain language specific or implementation specific features as such
features would reduce the architecture’s utility as an interface

specification.

l.1 Overview of the Thesis

The thesis will describe the design of a high level architecture
for a personal computer. As motivated later 1in this chapter, the
complexity of the personal computer must be limited due to economic
constraints. The resources on a personal computer arvre noticeably
finite; the user of the personal computer must frequently be aware of
these bounds and be able to cope with them. The architecture must
support the execution of multiple languages. Finally, the architecture

must allow the user to run programs that he does not trust.

The architecture provides a garbage collected heap of objects of
both built-in and user defined types, and provides facilities for
flexibly constructing and executing programs. A built-in exception
handling mechanism for the termination model of exceptions[30] 1is
provided. The operating system notions of process, inter-process

communication/syrnchronization, 1/0, protection (including access

o

~—-

e S

revocation), storage quotas and system {nitialization/shutdown are

“upported in a consistent, language independent fashion.

The thesis also presents a sample implementation of the
architecture; the implementation is based upon the work of Bishop[5] and
Baker([3] for managing the logical memory provided by the architecture,
and upon classical virtual memory techniques for mapping that logical
memory onto a physical memory. Finally, the thesis provides examples of
the utility of the architecture. First, though, the remainder of this
chapter will motivate the need for the features described above and

present concrete goals for the architecture.

1.2 The Personal Computing Environment

A current trend in the computer industry is the continuing decline

in the cost of hardware due to the evolution of integrated

circuits{4,46). This trend indicates that the day when a computer can
be given to every worker in aa office (i.e. a personal computer) is
approaching; the end of the shared, general purpose computer is near. 3
Thus the architecture presented in the thesis will be designed with the

needs of a personal computer in mind and not the needs of a shared

computer. The personal computing environment has a profound effect on L}
both the goals of the thesis and the ways in which those goals are met.
This section presents the details and implications of the assumed 2

personal computing environment.

- 11 -

oA A A .

1.2.1 Economic Considerat{ons

A computer supplied to every person {n an office must not cost a
great deal; a computer that costs hundreds of thousands of dollars will
never be a candidate for a personal computer, A realistic measure is
that the computer must have a cost comparable to the cost of the

terminal typically provided to users (e.g. on the order of a few

thousand dollars).l

This economic constraint forces the architecture to be falrly
simple; that is, the complexity of the hardware nccessary to implement
the architecture must be small, TIf the architecture is too complex, the
implementation will be too expensive for a personal computer. However,
the complexity constraint must not be taken to mean that the
architecture must be as simple as current microprocessors. One of the
purposes of the thesis is to set architectural sights somewhat higher

and present an architecture that could be provided by hardware five to

ten years in the future.

1. These numbers must be considered only as estimates as the economic
effect of eliminating a large central facility must be considered as
must the factor of the economy of scale provided by such a facility. It
is beyond the scope of this thesis to determine the break-even point.
For this thesis it is only important to note, or perhaps hope, that a
break-even point does exist and will be reached in the future.

- 12 -

:
i

g e

1.2.2 The Use of Multiple Languages

The wvarlety of languages that are to be executed on an
architecture {s an important design parameter of that architecture. An
architecture designed to support only one language will differ from an
architecture that supports many languages. Supporting only one language
requires a great deal of confidence that future requirements will be met
by that language. Moreover, the restriction to one language means that
previously written programs can not be reused and makes it difficult to
borrow programs since, in both cases, the programs may have been written
in a language other than that chosen for the personal computer. This
thesis takes the conservative approach of allowing multiple languages to

be used on the personal computer.

The architecture will be best suited to supporting languages such
as Alphard[52], CLU(31] and Euclid{26], which are strongly typed
languages that support user defined types, since they seem to be typical
of languages of the future. TIn addition, more traditional languages
such as Algol and Pascal, which provide no general type extension
facility, should be executable since their use is widespread. Finally,
the architecture must consider the possibility that the user will write

in assembly language.

There are two major implications of the assumption to support the
execution of multiple languages. First, the architecture must have
suff{cient computational power to support the languages of interest,

Simple computational completeness is not the issue, however. To permit

- 13 -

ST TR T AL .

PR i

RN PRy SRR IR = Sy

RTINS S

G Sttt e MM AR RS AR A "

ESR poa e

[y
. ol - - v S S e, WA b — DA T

reasonable language implementations, the architecture should provide the

types and operations that are common to many languages.

Second, the key to supporting multiple languages is the amount of
checking performed by the architecture. Possibilities for such checking
are enforcing strongly typed variables, the "sealing" of extended type
objects and access control checking. If the architecture only supported
a single language, one that was capable of performing all needed
checking at compile time, then the architecture would not need to
perform any checking. On the other hand, attempting to perform all
possible checks at run time 1is impossible in the case of multiple
languages due to conflicting demands for checking. Also, providing too
many checking features may so complicate the architecture that it is no

longer economically viable as a personal computer,

Given these needs, there are two major ways to support multiple
languages. First, a virtual machine architecture could be provided in
which each language exists 1in its own, 1isolated virtual machine.
Communication between languages would be by a built-in message passing
mechanism that only permits communication using some built-in set of
types (e.g. using ASCII text files to communicate between virtual
machines). Such isolation does ensure the integrity of each language.
Its one disadvantage appears to be the cost of transmitting large data
structures between languages. This thesis takes the alternative
approach of designing an architecture in which multiple languages can
coexist. The architecture must supply checking facilities that permit

one language to protect itself from other, untrusted, languages while,

- 14 -

at the same time, being lax enough so that many languages are not

excluded from using the architecture.

The architecture should provide both required and optional
checking facilities for maximum flexibility. Since required checks are
always performed, they must be compatible with all languages. The
required checks must be sufficlent to protect the integrity of the
implementation of the architecture so as to preserve the architecture’s
utility as an interface specification (i.e. it must not be possible for
malicious programs to cause the implementation to fail). These two
requirements can be met by ensuring that all architecturally supplied
operations are only invoked with valid operands. Such checking 1is
sufficient to protect the integrity of the implementation but does
constrain languages to live with these checks. Any other checks would
further constrain languages but not aid in protecting the integrity of

the architecture so they are not included in the architecture.

All other run-time checks are optional, to be performed when
needed and otherwise avoided. Optional checks have two characteristics.
First, the overhead associated with them must not be excessive when they
are not belng used. Second, the cost of using the facilities may be
commensurate with their frequency of use; that is, 1f the checking is
done infrequently, it can be space/time inefficient (perhaps with a very
simple implementation) whereas 1if the checking is frequently performed,
it should be space/time efficient (perhaps with a very clever
implementation). The optional checks must be sufficient to allow one

language to protect itself from the actions of other languages (e.g.

- 15 -

Y a4

ST L LT R R

ST TmINET S

CLU must be able to protect CLU objects from being manipulated by

Fortran programs except through the appropriate cluster interface).

1.2.3 The Issue of Trust - the User Versus Himself

One of the most striking features of the personal computing
environment is the fact that it is personal; the computer is "owned" by
one person who is the only user of that machine. There is no sharing of
resources (e.g. the computer) by mutually suspicfous users (although see
Kent[23] for an alternative viewpoint), As a result, the traditional
protection and resource allocation functions of operating systems become

much less important in this environment.

The actual allocation of resources by an operating system is
relatively easy; attempting to insure some degree of fairness to the
user community as a whole leads to complexity in operating systems. In
a personal computer there is only one user, the owner of the personal
computer, so that any request to allocate some resource is being made on
behalf of that user. As a result, the allocation mechanism can be very

simple in most cases since any allocation decision is fair.

In a shared computer it is important that protection constraints
be provided by the system and enforced at all times. Failure to do so
may lead to one user interfering, possibly in a malicious manner, with
another user. 1In the personal computing environment such protection is

unnecessary since there is only one user.

—

The previous paragraphs have implied that there is no need for

architecturally provided resource allocation and protection mechanisms
within a personal computer. However, this discussion has implicitly
assumed that the user always trusts himself which is, unfortunately, not
always the case. There are two cases of mistrust: while debugging
programs and while running borrowed programs. In both cases there is a
program running whose effect on the world is not known either due to
possible incorrectness (the debugging case) or to lack of trust (a
borrowed program). The importance of these two cases is unknown at this
time since this kind of programming environment has not been available

before. This thesis assumes that these will not be the normal case;

rather, the user will usually be running programs that he trusts.

Although most programs are trusted, the architecture still must

i

provide optional resource allocation and protection mechanisms that

allow the user to protect himself against the potentially dangerous

R I

execution of untrusted programs. Due to the assumed infrequency of use

of these mechanisms, they need not be extremely efficient in either

space or time. However, their impact on the execution of trusted

programs, the normal case, must be minimal.

1.3 The Nature of a High Level Architecture

The architecture presented in the thesis will be a high level one.
This goal has two aspects. First, the architecture must meet the needs
of the languages that are being developed today by supporting the

notions of structured programming since that is the driving force behind

g
1
!
!
$

most current language development efforts. Support for other, older
languages is not a goal but, rather, is only desirable (i.e. attaining

such support should not compromise the support for more modern

languages).

Second, the thesis will explore partitioning the functions of an
operating system into two classes. First, there are
language/application independent features, which will be placed in the
architecture itself. Second, there are language/application specific
features, which will be built out of the features provided by the
architecture. This partitioning allows traditional operating system
features to be presented in a way that fits naturally into the rest of
the architecture and in a way that is compatible with many languages and
applications. Moreover, this partitioning will eliminate one part of
the user’s world, the operating system, leaving him with only the

architecture, a language run-time system and an application.

These two issues are discussed in greater detail in the following
sections, First, the implications of structured programming will be
presented by discussing data and control abstractions as well as the
issues of exception handling and storage semantics. Second, the
implications of providing operating system features will be discussed.
The issues - of importance here are processes, inter-process
communication/synchronfzation, permanent storage and resource

allocation.

- 18 -

iy vy

3 2 Ol

[P,

1.3.1 Structured Programming

Since the earliest days of computing the production of correct
programs has been of major concern. Recently there has been increasing
concern over the cost of software development and maintenance. These
concerns have resulted in the programming philosophy known as structured

programming.

Structured programming has frequently been referred to as '"go-to
less” programming[9] although it is better regarded as a philosophy of
programming centered on the notlon of abstraction{13]. An abstraction
of an entity X is another entity Y whose properties are precisely those
of X that are of interest to the user of Y. For instance, a television
is a very complicated electronic device but the consumer sees a very
simple abstraction of the actual device (on/off, channel selector,

volume control, speaker and picture tube).

In the structured programming environment, the programmer first
expresses problem solutions in terms of abstractions that closely model
the application rather than in terms of the primitives of the
programming environment. These high 1level abstractions are then
implemented 1in terms of lower level abstractions. This process
continues until the programmer has expressed the problem solution 1in
terms of the primitives of the language being used. This method of
program development, variously referred to as top-down design or
stepwise refinement[6,8,51), is claimed to lead to programs that are

easy to develop, show correct and maintain,

- i9 -

e, .

e e

o

The languages associated with structured programming have two

other important attributes: a well defined storage semantics and a
built-in exception handling mechanism, The storage semantics of a
language are of importance since they predefine the lifetime of objects
and thus define the extent to which the user is responsible for managing

the logical memory provided by the language.

Exceptions (or abnormal conditions) are to be expected during
program execution since, occasionally, an unusual condition will arise
(e.g. divide by zero, out of storage). Programmers must be aware that
they may occur so as to produce correct programs. The inclusion of an
exception handling mechanism in a high level language, and its use by
the built-in features of the language, results in the user being aware

of exceptions while writing his programs, thus leading to more correct

programs.

The next four sections will discuss each of these issues of high
level languages in turn. Each will motivate the need for some of the

features of the architecture to be presented in chapter two.

1.3.1.1 Data Abstractions

A data abstraction is a collection of objects (data entities) and
a set of operations on thnse objects, that models the application at
hand so as to make the programming of that application easier. They are
built out of previously defined data abstractions, including the

primitive data types of the programming enviromnment.

Data abstractions have been used for program construction since
the earliest days of computers. The nature of data abstractions within
programming languages has evolved since then resulting 1in their
increased utility to aid in the production of correct programs. This
utility means that any new computer system should support and encourage

the use of data abstractions. This is done in three ways.

First, to support the use of data abstractions, the architecture
must provide the programmer with the ability to create his own data
abstractions. There should be no user visible distinction between the
data abstractions provided as part of the architecture and those created
by the programmer since any such distinctions will tend to give user

defined abstractions second class status and thus discourage their use.

Second, the architecture must provide the means for objects of
abstract type to be "sealed'; that is, provide a mechanism so that the
underlying representation of objects may be manipulated only by the
programs implementing objects of that type, that type’s type manager.
Such protection is important both for insuring the integrity of the type
manager and for limiting errors caused by programs using objects of
incorrect type. Although some languages provide this protection via
compile time checking, sealing is a facility that 1is needed when
multiple languages are present since all languages do not perform such

checking.

- 21 -

RN IR .

Third, the architecture must encourage the programmer to use
objects of abstract type so that the programmer can benefit from thelr
advantages. By defining an object oriented world in which everything is
an object, the architecture causes the programmer to think in terms of
objects in order to use the architecture. Thus the use of objects will
be '"natural”. The lack of distinction between built-in and user defined
data abstractions, and the ability to easily construct new data

abstractions, tends to enforce this pattern of thinking.
1.3.1.2 Control Abstractions

Structured programming has also considered the nature of the flow
of control in programs. 1In fact, Dijkstra’s concern in his original

letter on structured programming[9] was control flow.

Through the years, the methods for specifying the flow of control
within programs have evolved. The procedure has been constant through
the years. It has changed in small ways, especially in regards
parameter passing mechanisms, but the procedure has basically remained
the same - a parameterized piece of code. There seems little need to

change the procedural model for this thesis.

The means of controlling the flow of control within a procedure
has, however, undergone a major philosophical change - the go to
statement has been replaced with a rich collection of mechanisms to
specify control flow in more structured ways. The effect of this
philosophical change 1s that the code the user writes is linear since

constructs such as while loops and if statements can be regarded as just

- 22 -

B

-1

79

;
i
.
i
i
i

single statements. This linear code results in a program that is easier

to understand and write correctly.

The mechanism chosen to specify control flow must meet three
criterfon. First it must be complete. That is, it must be easy for the
user of the architecture to represent the linear, conditional and
iterative patterns of control flow necded to write programs. Second,
the mechanism must be efficient. Since the mechanism will constantly be
used, it is essential that it impose as little storage and execution
time overhead as possible. Third, the mechanism should be restrained in
its power by the 1lessons taught by structured programnming. In
particular, transfers of control should be regarded as actions local to

a procedure and not as global, inter-procedural actions.

There are two possibilities for an intra-procedural control
mechanism. One possibility is to derive a new control mechanism that is
powerful, simple to wuse and efficiently implementable, Such a
derivation is not, however, central to this thesis and so is rejected.
The second choice, and the one taken in this thesis, 1s to use go to
semantics, ' They are powerful, easy to use and can be efiiciently
implemented. The power of the go to will be tempered by only allowing
transfers within the currently executing procedure, thus eliminating the
most undesirable- features of the go to, the non-local transfer of

control.

- 23 -

1.3.1.3 Exceptions and Exception Handling

Procedure calls in early languages such as Algol and Fortran were
always assumed to return with no error. Erroneous conditions were
handled, 1if at all, by returning error codes to the caller. Since
errors are a fact of life, it is essential that programmers be aware of

them 1n writing programs. An exception handling mechanism that {is

supplied and used by the architecture encourages the user to be aware of
exceptions in writing programs since the mechanism must be dealt with in

order to use the architecture.

PL/1[22] introduced the notion that a procedure could signal a
condition to inform a caller that something has gone wrong and allow the

caller to fix the problem, if possible. After the handler for the

condition finishes execution, the program raising the condition 1is

allowed to continue execution. Since abnormal conditions do occur and

PV

the programmer should be aware of them, their introduction by PL/1 is an

important contribution to the production of correct software.

CLU takes an alternative approach to exceptions by allowing a

procedure call to terminate either normally or abnormally. A normal i
termination allows the caller to continue at the statement following the %
call. An abqormal termination indicates that the call has resulted in i
some unusual condition; the caller continues in an exception handler
that is chosen based upon the name of the exception raised and a set of }

handlers associated with the abnormally returning call statement. The

- 24 -

handler 1is responsible for evaluating the error and determining the

appropriate action of the calling procedure.

There thus secem to be two models of exception handling in
languas,es{12,28,307: the termination model as in CLU and the
continuation model as in PL1 or Mesa[36]. There does not seem to be any
agreement in the language community as to the proper manner in which
exceptions should be handled. For that reason the architecture should
support both exception handling models. Moreover, the built-in
operations of the architecture should raise exceptions so that the user

is forced to be aware of them while programming.

1.3.1.4 Storage Semantics

The nature of the storage provided by a language is an important

parameter of that langque. Since the architecture presented in this
thesis must be amenable to the various storage models of high level
languages (recall that multiple languages are to be supported), it is
important to review the various storage semantics .of languages to be

sure that the architecture supports the various storage models.

P .- s “‘”“ i a

There are three classes of storage provided by languages: static,
stack and heap. Static storage 1s storage that 1s associated with all b
invocations of a ‘procedure. Every invocation of a procedure will have *

access to the same storage. The per—procedure storage 1in Fortran and

—— -

Algol’s own storage are examples of static storage.

- 25 -

g e

Stack storage is data that is local to a particular {nvocation of
a procedure. Tt s dynamically allocated when the procedure is called
and destroyed when that 1invocation returns. Dynamic allocation is
essential in languages with recursive procedures such as Algol. A stack
allocation/deallocation strategy is frequently used to implement this

type of storage, thus its name.

Finally, languages such as Lisp[33] and CLU have a heap oriented
storage semantics. 1In these languages objects are created when needed
and have a lifetime that is independent of the procedure that created
them. The objects are deallocated only when all references to them have

disappeared, this reclamation taking place through a process known as

garbage collection[32].

The architecture should support all three types of storage. Of
the three, the most general 1s heap storage. Given a heap oriented
storage system, stack storage is provided by discarding all references
to the dynamically allocated objects when the creating procedure
terminates. Stack storage can thus be regarded as an implementation
optimization of a particular pattern of use of a heap storage. Static
storage is provided by arranging that all 1invocations of a procedure
that has static data be given access to that data, which resides in the
heap, whenever the procedure is invoked. As a result of its generality,

a heap scheme will be used in the architecture presented in this thesls.

- 26 -

1

XL AT

1.3.2 Operating System Issues

Useir programs typically do not run in the environment provided by
the bare hardware. Rather, the hardware environment has been enhanced
by the imposition of two layers of software, the operating system and a
language run-time system, between the wuser and the hardware. The
operating system serves three purposes. First, it serves to isolate the
user from the inelegant aspects of the hardware such as I/0 and managing
the virtual memory. Second, it allocates resources to 1its users and
does so {u a way that attempts to be fair to all users. Third, it
provides protection between users to protect one user from the erroneous

or malicious programs of another user.

A language run-time system takes the environment provided by the
operatins system and adapts it to the particular needs of that language.
In doing so, the run-time system may need to hide or drastically enhance
and modify the semantics provided by the operating system. For
instance, the operating system might provide block/wakeup as an
interprocess synchronization mechanism while the 1language provides

message passing semantics.

The thesis will explore eliminating the operating system and
moving its functionality elsewhere, There are four reasons for doing
so. First, the operating system frequently gets in the way of language
run-time systems. Thus {its elimination will simplify the job of these
systems. Second, the features of operating systems that are moved into

the architecture may be presented in a manner that {s consf{stent with

- 27 -

a

the way in which all other architecturally supplied entities are

provided. Third, architecturally supplied features can be represented E
in a language independent fashion. Finally, it simplifies the users
world by giving him two entities, the architecture and the language, to ?

consider instead of three, these two and the operating system.

An operating system feature should be placed in the architecture
if it is independent of both languages and applications. If a function
is common to many languages, providing it in the architecture simplifies
the implementation of those languages. When an operating system
function involves a shared resource, e.g. a processor, languages can not
be permitted to completely manage that resource due to possible errors
in the implementation of those languages and due to the assumed mistrust
of one language for another. Thus the management of shared resources
must be architecturally provided. Finally, some features, e.g. 1/0,
must be provided by the architecture as no software is capable of
providing it (i.e. the basis of some functions must be in the
architecture even if in a primitive form). Languages and applications
will provide the remaining functionality of operating systems by

building upon the architecturally provided facilities.

The separation of function has the following effects., If the
architecture is implemented as a piece of hardware, there should be
little need for an operating system (and if it is needed it should be
small and easy to implement). If the architecture is regarded as a
compiler intermediate language, a certain degree of operating system

independence for programs will result. Both occur because language

-~ 28 -

A Lmes T e

independent operating system features will have been specified by the
architecture; any mismatches between the hardware wunderlying the
architecture and the architecture itself will have been handled by the
implementation of the architecture and will not be of concern to the
users of the architecture. The languages will be providing the language

dependent features usually associated with an operating system.
1.3.2.1 Processes and Interprocess Communication

Operating systems provide processes (or tasks or jobs) that
provide each user with one or more loci of control and, possibly, a

separate address space in which each of the loci executes.

Processes are important to wusers for structuring problem
solutions. They allow the specification of parallelism in the solution
of a particular task and they allow the execution of multiple tasks in
parallel. The first aids the user in solving the many tasks that have
inherent parallelism and asynchrony in them. The second allows for more
efficient use of resources. For instance, processes allow the user to
perform a compilation in the background while interacting with a second
process to edit a file. At the same time a third process could be
listening to a communications network waiting for mail to arrive. The
possibilities are numerous for the use of processes and allowing for

them is important.

To be useful to the user, processes must be cheap. That is, the
user should be able to utilize processes wherever they are natural with

little performance penalty. This does not mean that the process model

- 29 -

XL

- Ty TR, e

W e g e

should be carried down to the level of very small activities as 1In
Hewitt’s actor model[17) since an efficient {implementation of them is
unknown; instead processes should be used for somewhat larger tasks.
The correct size for processes seems to be somewhere between Hewitt’s
approach in which, conceptually, a process (called an actor in Hewitt’s
terminology) exists that adds two Iintegers together and the Multics
process[37], which is such a large entity that the user generally can
only have one of them. Such a middle ground might be processes that
correspond to the execution of a task such as an editor or compiler as

in Unix(43].

Processes must be provided at the architectural level in order to

allow multiple languages to coexist. If languages provided all
processes, there would be no way to guarantee that once one language
began running, {t would ever 1let other languages run. This 1is

unacceptable fn th. assumed environment where trust 1is not always

present,

Parallel processes need to coordinate their activities (e.g. %
access to shared objects) as otherwise chaos results. The architecture l
must provide the basis for an inter-process synchronization mechaniem 1
as, ultimately, all inter-process synchronization mechanisms depend on

some architecturally supplied facility, no matter how primitive.

- 130 -

e LR SRR v

| -

1.3.2.2 Permanent Storage

In language systems, all of the storage associated with a program
1s destroyed when that program terminates, Long term storage is
provided by the operating system and 1is outside of the scope of the
language system. Since the user lives in a world in which long term
storage 1s important (e.g. for inventory records or programs), it is
important that the architecture provide the user with a notion of long

term storage,

In traditional systems the user gets long term storage either via
operating system guarantees (e.g. the programmer gives a file to the

operating system and the operating system guarantees that the file will

be there so long as the user desires it to be) or by gaining access to a
raw storage medium (e.g. disk or magnetic tape). The first provides for
permanent storage within the system while the second provides a means to !
transfer data outside of the system for safe keeping (or for simple
transferal to another site). As both forms of permanent storage are %

important to users, the architecture must provide both.

pparary

The question is how to provide both forms of permanent storage.

Due to the wide variety of I/0 devices, the architecture must provide a

means for the user to interact with each device individually to store

and retrieve data. For system supplied permanent storage, it 1is

- 131 -

p—

sufficient for the architecture to treat any information given to it as

permanent and keep it in as safe and permanent a manner as possible.l

1.3.2.3 Resource Allocation

A prime task of an operating system is to allocate the available

resources to 1its users. Regsources of potential interest include

processor time, primary memory, permanent storage and peripheral

devices.

Since processor and memory resources are provided by the
architecture and since, even in the personal computing environment,
their use needs to be controlled, the architecture must provide the
means for controlling their allocation (no program or language can be
entrusted with this task). The allocation of peripheral devices is not
as important since users seldom use them. As a result, the architecture
need only provide the means for resource allocation primitives for them
to be constructed either by language systems or by applications. Again,
due to mistrust, no program or language run-time system can be allowed

to provide this basic function.

1. The igssue of backup and recovery is deliberately avoidéa here, 1t
represents a research problem in and of itself and so is beyond the
scope of this thesis,

1.4 Efficiency Considerations

If the architecture of the thesis is to be practical, it must be
possible to efficiently implement it. An implementation need not run as
fast as a large vector processor but {t can not be as slow as a hand
calculator either. A reasonable goal is that programs running on an
implementation of the architecture run with a speed that is competitive

with their execution time on more traditional architectures.

In judging the speed of an implementation, 1t must be remembered
that this architecture is a higher ievel architecture when compared to
present day processors. As a result, the comparison of average
instruction execution times 1is not the right metric; the correct
procedure {8 to compare instruction sequences that perform comparable

tasks.

Another aspect of efficiency is memory utilization., The amount of
physical memory required to perform some task while wusing the
architecture should be comparable with the amount of memory required to
perform the same task on a conventional computer. Inefficient use of
memory comes from implementation overhead (information stored for the
use of the implementation and not for the user) and from implementation
inefficiencies (being unable to use all of the memory potentially

available to store user data).

Both storage and processor 1inefficiencies are inevitable 1in
providing the kind of environment proposed in this thesis. Overhead

must, however, be minimized to make an implementation viable. Its

- 33 -

impact, however, must only be judged in relat{on to the corresponding

inefficiencies on conventional systems and not in an absolute manner.
1.5 Summary of Goals and Assumptions

This chapter has explored a number of issues related to the design
of a high level architecture for a personal computer. This section will

review the various assumptions and goals that have been presented.

The architecture of the thesis can be regarded as the
specification of a structured programming machine. Tt must support the
notions of structured programming that have been found most important:
data abstractions and control abstractiouns. An exception handling
mechanism is needed since abnormal conditions are a fact of life that
programmers should be aware of. A heap storage will be provided by the
architecture since it is the most general of the various possible
storage semantics. Other storage semantics, such as stack and static

storage, will be built using the basic heap mechanism.

The traditional operating system will disappear. 1Its functions
(processes, inter-process communication/synchronization, permanent
storage and resource allocation) will reappear in three places: the
architecture {tself, language run-time systems and in applications. The

separation ~of traditional operating system function into

- 34 -

e

LR D (TRt

=

e .

T

language/application independent and dependent parts will be an

important result of the thesis.

The architecture {s being designed in the context of a personal
computer. This means that the architecture must be economically
feasible to build, thus limiting its potential complexity. This thesis
assumes that multiple languages will be run on the personal computer
resulting in the need for architecturally supplied checking to protect

objects created by one language from unauthorized manipulation by

programs written in another language.

Even in the personal compueing environment, tﬁe user does not
always trust himself or the programs he is running (e.g. debugging a
program or running a borrowed program). As a result, the architecture
must allow the user to execute such programs in a way so that they can
only cause limited damage. This facility is assumed to be wused

infrequently so that its impact on normal operation must be limited.

An overriding assumption throughout this chapter, never explicitly
stated, has been that of completeness. Basically, this thesis assumes
that the user of the architecture only runs in the environment prowvided
by the architecture; the user can not step outside of the architecture
to fix a problem as he can in most language systems (where he can escape
to an operating s&stem provided interface). Thus the user must be able
to prevent, detect and fix any and all problems that might arise while
using the architecture itself. This implies the need for computational

completeness as well as mechanisms for allowing the user to protect

- 35 -

o e g e

PO EN S DR PR ;‘;

Lo ik

A ER

himself from himself. To a very great extent it is the completeness
requirement that forces the various protection oriented facilities

previously motivated to be provided.
1.6 Other Related Work

The previous sectious have described the motivation, assumptions
and goals of the thesis. 1In that process a variety of related work has
been mentioned. This section will examine the relation between this

thesis and other related work.
1.6.1 High Level Machine Architectures

This thesis is proposing the design of a high level architecture.
A number of other researchers have investigated the area of higher level

machine architectures.

McKeeman[34) has argued rather forcibly for machine architectures
that are at a higher level than traditional von Neumann architectures.

Others have proposed, and in some cases built, high level machines.

McMahan[35), 1in his PhD thesis, explored the design and
implementation of an architecture that was oriented around Algol-68.
Hoch[21] in his PhD thesis discussed an architecture that {s designed to
support the Gypsy language(l]. 1In 1973 a conference was held at the
University of Maryland([38] to discuss high 1level language machine
architectures. The architectures discussed in this conference were
designed to primarily support one languige with APL being particularly

popular. All of the work described above has the property that the

- 36 ~

!

architecture is designed to primarily support a single language. The
architecture of this thesis will be applicable to a wide variety of
languages (although it would be 1improper to suggest that the
architecture is not oriented towards a particular language, CLU in this
case) ., This thesis also differs from the cited work in that it
addresses a wider variety of issues than just language oriented ones -~
in particular, the various operating system issues mentioned earlier are

of importance.

Bishop[5] and Snyder([47] have design:d systems for supporting an
object oriented style of programming. In both cases, however, the
principle concern has been the solution of the memory management problem
- the management of a large heap of objects that reside both in primary
and secondary memory. In both cases, the architecture is just a
framework for posing the memory management problem. In this thesis, the
principle councern 1is the architecture 1itself; the implementation

concerns are of a secondary nature.
1.6.2 Capability Machines

This thesis also {s related to the various work that has been done
on capabilities and capability based machines. Capabilities were
originally proposed by Dennis and Van Horn{7] as a protection mechanism
and are nothing more than unforgeable pointers to objects (segments in
the cited paper). Fabry(ll] investigated the use of capabilities as an

addressing mechanism.

- 37 -

c— s

s

8

There have been (at least) three capability based systems reported
in the literature. The Cal-TSS system{25] was a capability based system
that ran on top of a CDC~6600. All of the capability mechanism was
provided by software. The CAP system(50] runs on a special purpose
processor that implements capabilities in hardware. Hydra[53] 1is an
operating system that runs on a multiprocessor configuration of PDP-11's
that provide minimal support for capabilities in the form of address
mapping hardware. All three of these systems have taken a conventional
architecture and added capabilities to that architecture for the purpose
of providing protection facilities. For the most part, user programs

see a conventional execution environment. This thesis differs from

these machines 1in that capabilities form the ©basic addressing
architecture at all times during the execution of user programs.
Moreover, the approach of this thesis has roots both in language

considerations and in operating system issues.

1.7 Thesis Outline

The remainder of the thesis presents an architecture that meets

the goals presented in this chapter. The nature of the thesis is such i

that a great deal of material must be presented in order to demonstrate L
b
that the goals of the thesis have been met. The reader is asked to be \

patient wuntil the end when the entire thesis can be placed in

perspective.

- 38 -

A

'~

G-

optea il 2 N ke I Mot

R T N T e ey

5
|
|

Chapter two will present the architecture itself., Chapters three
and four will demonstrate one possible implementation of the
architecture. Chapter three will concentrate on the logical memory
management issues involved in implementing the architecture. These are
the hardest implementation problems as they require the creation of
algorithms, rather than simply data structures. The algorithms
presented are based upon the work of Bishop[5] on garbage collecting
large address spaces and the real time garbage collector of Baker(3].
Chapter four will concentrate oun the remaining issues involved in the
implementation: management of physical resources, especially memory,
implementing the basic types of the architecture and some possible
hardware assists to produce an efficient implementation. Chapter five
will show some ways in which the architecture can be used. The focus is
demonstrating the unusual aspects of the architecture, especially 1in
regards to the implementation of languages on the architecture. Chapter
six will review the results of the thesis and attempt to show why the
goals of the thesis have been met. It will also propose some areas for

further research.

- 39 -

e~ . e R P B T v Lo VPR N R

Chapter Two

The Architecture

Chapter one has presented the primary goal of the thesis - the
design of a high level machine architecture. This chapter presents an

architecture that conforms to this goal.

A major goal is to provide support for objects at all levels. 1In
fact, the goal is to present users with an object oriented view of the
world that {ncludes both large objects, such as files as in CAP and
Hydra, but most importantly very small objects, such as integers as in
CLU. For this reason, this architecture can be characterized as a small
object processor and thus will be named AESOP (An Experimental Small

Object Processor).

In AESOP, everything will be an object. This includes not only
integers, booleans and vectors, but also unexpected things such as
processes and procedures. Even operations that control execution (e.g.
procedure calls and go-to statements) will be provided as operations on
some object. Thus AESOP is defined by the types it provides and the

operations provided on objects of those types.

The set of proposed basic types and operations is intended to be
representative of the types that the architecture should, and in some
cases must, support and not a definitive set. The computational data

types (e.g. booleans) may be modified or replaced so long as sufficient

- 41 =

\ B ‘dm.'

FRECEDING PAGE BLANK - NOT FliskD

. SN

L oo i

P

o

computational power remains to meet the needs of users. The remaining
types are essential as each is representing some part of a complete
system as a type. However, the reader should feel free to augment or

modify this set so long as the various parts of a computer system

continue to be represented.

In discussing the basic types, two liberties are taken for
expository simplicity. First, not all operations on a given type are
presented in this chapter or in one place. Instead, only the operations
essential to the current discussion are given. Appendix A should be
consulted for a complete 1list. Second, the description of operatiomns
ignores the possibility of an operation returning abnormally (e.g.
attempt to divide by =zero). All operations detect and signal, via a
built-in exception handling mechanism, all of the errors that the reader

would expect, Again, Appendix A should be consulted for a complete

listing.

The following syntax will be used to present operations:
type_nameSoperation (input parameters) returns (results)
For example, ASB(W, X) returns(Y, Z) defines the B operation on objects
of type A to take two input values (W and X) and return two values (Y
and Z), ©Each parameter (result) may have a type specification to
indicate an expected (returned) type (e.g. X:integer specifies X as an
integer). TIf no such specification exists, the type of the argument

(result) is not constrained by the architecture.

- 42 -

/
1
i
\
3
4
i

This chapter is divided into two distinct parts. The first three
sections discuss basic AESOP semantics. The remaining sections discuss
higher level notions that are needed to meet the completeness goals of
chapter one. Section one discusses naming in AESOP - what it means to
say that one object contains a reference to a second object. Section
two presents AESOP’s computational data types. Section three discusses
execution in AESOP: what 18 executable and how it executes. Section
four presents a mechanism that uniformly treats the creation of objects
of extended type, control of access to objects and the revocation of
access to objects. Section five discusses those features of AESOP that
are subsuming traditional operating systems: processes, interprocess
synchronization, storage management, 1/0, system initialization and

system shutdown.
2.1 The Naming Architecture

A fundamental architectural decision is how objects are named by
other objects. The basic naming mechanism will define the extent to
which two objects can share access to a third obiect and will define the

ability of programs to acquire the names of objects.

AESOP allows an object to directly refer to any other objects
within AESOP by containing the names of those objects. A name 1{is an
unforgeable poinéer to an object (i.e. names are like capabilities).
Unforgeable names have been chosen since they limit errors by preventing
the construction of arbitrary pointers and provide a limited form of

protection since a program can not access an object unless it has been

- 43 -

given the name of that object. Unforgeable pointers are one tool used

o —

in AESOP to aid the user in not {njuring himself,

Note that objects contain the names of objects and not the values
of objects. As a result, two objects may share access to a third
object. This permits the construction of arbitrary graphs of objects, ‘
including the important case of cyclic data structures such as circular 4
lists. Chapter four shows how objects may efficiently refer to certain

built-in objects (e.g. integers) so that the indirection implied by this

naming scheme is not an efficiency problem.

2.2 The Basic Computational Data Types

To support effective computation, AESOP must provide some data
types to compute with and a data aggregation facility to allow the
creation of complex data structures. This section describes a set of

types for AESOP that meets these needs.

For computational purposes, AESOP will provide booleans,
characters (which are not character strings) and a possibly finite
subset of the mathematical integers. All of the expected operations
will be provided. In addition, the null type, which has one object
(511), exists. The only operation on nil is to ask if it is nil so a
reference to Eil is, in essence, a reference to nothing. 1t is useful

for cyclic data structures (e.g. for marking a leaf node of a tree).

- 44 -

A vector, AESOP’s data structuring facility, is used to aggregate
a number of objects into a larger one. It is an ordered sequence of
names, referring to objects of potentially arbitrary type that is
indexed by positive integers., Thus a character string would be formed
by creating a vector of some length and then filling in the entries in

the vector with the names of characters.

Some operations on vectors are presented in Figure 2.1, There are
two aspects of vectors that are of note. First, an initial value must
be supplied whenever a vector is created or its length increased (by a
modify operation) so that all elements of a vector are always
initialized. This permits an AESOP implementation to be more space and
time efficient since it need not be concerned with uninitialized vector

entries.

Second, vectors may be restricted to objects of one type through
the nature and new nature arguments. If these are nil, v may refer to
objects of arbitrary type. Otherwise nature refers to a type manager,

the AESOP object that implements objects of a given type (see section

vector$create(size:integer, nature:tm, initial value) returns(v:vector)

vector$new_status(v:vector, new_nature:tm, new size:integer,
initial_value)

vectorSref(v:vector, i:integer) returns(value)
vector§status{v:vector) returns(size:integer, nature:tm)
vector$store(v:vector, i:integer, value)

Figure 2.1. Some of the operations on vectors.

- 45 -

?
|
:

e ol eV 30 Gl L8

TLXTE

2.3.2.3), and all elements of v are restricted to refer to objects of
that type. The ability to restrict the types of vector entries is
included for two reasons. First, it permits the architecture to perform
some checking for the programs running on AESOP, Second, it permits the
implementation to optimize the storage of certain vectors (e.g. a vector
of booleans) as will be seen in chapter four when the implementation of

vectors is discussed.
2.3 Execution in AESOP

The basic executable unit in AESOP is called an execution triple
for reasons that will be clear shortly. This section will answer three
questions: What can be executed? How does execution begin? Once begun,

how 13 control flow within an execution triple handled?

The discussion has three distinct parts, First, the fundamental
components of execution are discussed by describing the nature of code
and the way in which executing code refers to objects. Second, the
ability of the user to treat these components as objects, to create an
execution triple from such objects and to cause the execution triple to
begin execution is discussed. Third, the means by which control flow
within an execution triple is controlled is discussed including how an
execution triple ceases execution, either normally or abnormally, and

returns values to its invoker.

- 46 -

= egres

i
'
‘

TR T ALY

LW 2y

WIS T

s ar i e B Ao m iR |

2.3.1 The Execution Triple

An execution triple is the basic executable unit of AESOP. It is
not an AESOP object but 1{is, rather, an object that 1is conceptually
hidden by AESOP and simply wused to express execution in AESOP.
Conceptually, an execution triple is presented to the code interpreter
of a process for execution so as to change the state of that process.
Thus the process type manager 18 respoansible for executing execution

triples.

An execution triple consists of three components. First is a code
segment, an object that contains the actual instructions executed by an
AESOP processor. The second and third components specify the naming

environment in which that code will execute.

2.3.1.1 Code Segments

Objects of type code segment contain the instructions that are
executed in an execution triple. Code segments are created via the
operation:

code_segScreate(rep) returns{cs:code_seg)
where rep describes the contents of the code segment. The form of the
input to create is discussed later in this chapter. Create is the only
operation on code segments, so code segments are immutable, and the

errors self-modifying code can cause are avoided.

- 47 -

o ne

¢

A code segment 18 an ordered sequence of instructions each of
which is a call on some type manager. In AESOP, an object can only be
manipulated by its type manager and not by any program that decides it
should examine the object. Thus it makes no sense to have an
instruction that is not a call on a type manager as it could not do
anything. At first the reader might object that an operation such as
procedure call is needed. However a procedure is just an object and, as
such, operations on it are provided By its type manager. So, in fact,

the only possible instruction is a call type manager instruction.

g s~

2.3.1.2 The Naming Environment for Execution Triples

Since a code segment is an object, 1t may contain the names of
other objects. Thus objects may be referred to directly during
execution. 1In addition, a code segment may refer indirectly to objects

by using the other two components of the execution triple, the local

name space (LNS) and the global name space (GNS).1 Such a reference is

an ordered pair of the form (name-space, index) where name-space

specifies either the current LNS or the current GNS and index is a small

integer used to select the index’th name from the indicated name space.

Figure 2.2 shows an example of an execution triple P that is executing

in an environment with the given code, LNS and GNS. By executing using

a different LNS and/or GNS, the indirect object references in a code

segment change meaning (i.e. they are context dependent names with the

1. Name spaces are similar "to Hydra C-lists[54] and CAP f
indirectories(50]. :

- 48 - '

Execution
Triple
P

F_- X <-~- refers to X directly

(LNS, 1) <--- refers to X

(GNS, 2) <--- refers to Y

(LNS, &)

(-—- refer tc Z
(GNS, 3)

Code

1 X 1

2 @ I S
3 3 wz <::>
424;\\“@/

Local Global
Name Space Name Space

Figure 2.2. An example of the use of name spaces.

LNS and GNS as the context) while the direct references are unchanged

({.e. they are context independent).

A name space is nothing more than a vector of names of objects of
arbitrary type. A name space is distinguished from other vectors only

by its use in an execution triple; it may still be manipulated as a

- 49 -

vector. The ability to rreat vectors as name spaces and conversely is

very useful as will be seen in the next section.

The importance of name spaces becomes most clear when procedures
are considered. As will be seen later in this section, invocatio of a
procedure causes execution to continue in a new execution triplc that
has a newly created LNS in it. The per-invocation LNS means that
procedures are reentrant since the LNS may contain the names of objects
that are local to the current invocation of the procedure (e.g. local
variables and parameters) by reserving an entry in the LNS for each of

the procedure’s local variables and parameters.

The GNS will contain references to objects that need to be known
to most procedures within a process (e.g. operating system interfaces
and language run-time support routines). This use of the GNS represents
an important space optimization - "factoring"” common object references
out of the INS’s and code segments of a collection of procedures. More
importantly, the resulting GNS is a virtual machine interface for those
procedures since they expect certain GN3 entries to contain references
to objects with certain properties (e.g. entry 3 might be a log
routine). By creating a name space containing the names of a new set of
support routines and running a procedure with that name space as a GNS,
it is possible to present a new virtual machine interface to that
program. This feature is wuseful for debugging programs and for
encapsulating programs. For instance, while debugging a new database
manager, a user might want to give that program access to the file

system through a program that filters requests to the file system for

- 50 -

——s

validity and generates an audit trail for debugging purposes. By
running the database manager in a GNS that contains the name of the
filtering file system 1interface, and not the regular file system
interface, the filtering and auditing is accomplished in a simple manner
that 1is transparent to the database manager. Thus the GNS 1is another

means for the user to protect himself from himself.
2.3.2 The Creation of Execution Triples

The creation of an execution triple requires the specification of
a code segment and two vectors, one to act as an LNS and one to act as a
GNS. AESOP provides three means of creating execution triples: by
explicitly specifying all three componeats, by procedures and by type

managers.

2.3.2.1 Closures and Components as Objects

'h
Closures are the first means of creating an execution triple. A

closure is a triple consisting of a code segment and two vectors, one an
INS and one a GNS. Closures are, in essence, pileces of code that come
with a fixed, unchanging naming environment. The operations on closures
are given in Figure 2.3. The create operation makes a new closure out

of its arguments. The run operation causes closure cl to be executed

closure$create(cs:code_segment, lns:vector, gns:vector)
returns(cl:closure)

closureSrun(cl:closure) returns(res(l), ..., res(N))

Figure 2.3. The operations on closures.

- 51 -

Ny
i
‘A
H
i

AKX

RN

with its component objects forming the execution triple. Conceptually,
the cliosure is unpacked and an execution triple created and passed to
the process code interpreter for execution. Any results returned by cl

are placed in the res as described later in this section.

Closures provide two faciliries. First, they provide protection
when an executable body of code needs to be passed through an untrusted
intermediary since closures are inviolate. Second, programs can create
vectors and code segments of any sort aid pass them to closureScreate to
create a closure that can subsequently be executed. The resulting
execution triple can be of arbitrary form, thus giving programs complete
control over the contents of execution triples. This can be used both
to create execution triples for immediate execution and to permanently
bind a code segment to an execution environment for subsequent

execution.
2.3.2.2 Procedures

Procedures provide procedural abstractions (i.e. parameterized
pleces of code) and are the second way to create execution triples.
From the point of view of execution, procedures provide a simple way of
creating a particular stylized execution triple, one with a

per-invocation LNS to handle parameters and loral variables.

A procedure is a pair of elements: a template LNS and a code
segment. When the procedure is called, the template LNS is copied into
a newly created vector and the copy becomes the LNS for the procedure

activation. (Note that this allows procedures to be reentrant.) The

- 52 -

PP T S S

o ot s A e

N R T

o i e

g 4 s rmim

L

code segment in the procedure’s representation is the code segment that
will be executed when the procedure is called and 1is the body of the

procedure. The operations on procedures are given in Figure 2.4.

The create operation creates a new procedure, p, with cs as its
body and t_lns as its template LNS. P requires at least min_ args
arguments but no more than max _args arguments (if max args is nil, an

arbitrary number of arguments are permitted). Start specifies the

location in p°s LNS where its parameters are to be placed when it is

invoked.

The call operation invokes p, passing the arguments {arg(i)} as
parameters to p, by the following scheme. First, an LNS, call it L, for
the invocation of p is created by copying p’s template LNS. Next, L[1]
is set to L to allow the procedure to refer to its own LNS. Next,
Listart] 1is set to the actual number of arguments passed. The arguments
are passed to p by setting L([start+i] to arg(i). An execution triple
consisting of code segment cs, L as its LNS and the GNS of p“s caller as
its GNS now begins execution. Any return values are placed in locations

in the caller’s naming environment as specified by {res(i)}. When P

proc$call(p:proc, arg(l), ..., arg(N)) returns(res(l), ..., res(M))

proc$call with gns(gns:vectcr, p:proc, arg(l), ..., arg(N))
returns(res(l), ..., res(M))

proc$create(cs:code_segment, t_lns:vector, min_args:integer,
max_args:integer, start:integer) returns(p:procedure)

Figure 2.4. Some of the operations on procedures.

- 53 -

%3 T

L

EiR—-ro oy

-

teturng, efther normally or abnormally, 1 (a dentroyed, taval tdating all
outsatanding reterencea to 1t The dentruction ot L petmlts an AESOP

fmplementatton to handle the INS s associated with procedure (avocation

fn a stack manner tor etticiency, It N {a not within the tange ot
expected number ot arguments to P,oan exception s valsed and Ponot
fuvoked, 1 P retwran notmally with R venulta, only the fliat mla(M, R ’

res(1Y ave ansigued to, '

The call with gan operation calla poan tor the call operatton '
except that the procedure tuns with gan oas Ltn CNS, This allows p to be
executed using a apecially conatiucted ONS tot debugp tong ot

cncapsulat {on purposes,
R0V Type Manageus

A tyvpe manager fa o oset ot proceduren, one tor cach operat fon that
the (ype manager gupportsa, that detfoes o type. AESOP provides type
managers (o permit the conntructton of exteaded typen, tyvpes not bullt
futo AESOP. When an attempt (s made to use an operat fon on a tvpe, the
procedure that tmplements that operation s extracted trom the set oaand

called to pertorm the operation, Type maagers ate thun a thitd means

tor apecitying an executfon tulple, this time by fadfrectly specitving a

|||'ﬂt‘|‘\hll'«‘ . {

The fmportant opetation on tyvpe managers {82 the create opevat fou:

tmSereate(proc(D iproc, .., proc(NY:proc) returus(titmd g

whete tm tn an abbreviatfon tor type manager. U creates a wew {ype
B \

manager, and thus a new type, that has proc(i) as the procedure
implementing its i"th operation. Operations provided by type managers
are invoked by AESOP instructions (recall that every instruction invokes

a type manager).
2.3.3 Control Flow

The previous section showed how new execution triples are
submitted for execution. When an execution triple begins execution, the
first instruction of 1ts code segment 1is executed. This section
discusses the subsequent flow of control, i.e. which instruction is
executed next and how an execution triple ceases execution and returns

values to its caller.
2.3.3.1 Returns from Execution Triples

An execution triple can return to its caller in one of two ways:
normally or abnormally. A normal return is effected either by executing
the operation processSreturn(<results>)1 or by falling off of the end of
the code segment. In either case, e;ecution of the caller resumes at
the 1instruction immediately after the call. The first may return
results to the caller while the second does not. If the number of
returned results (say R) does not match the number of results that the

invoker expected (say M), only min(M, R) results are actually returned.

1. Recall that all operations concerning execution triples are
provided by the process type manager. The process type manager 1is
discussed further in Section 2.5.1.

-~ 55 -

A P g e

T ST e e i bt

o e ——
By 5

o e e

The invoker is responsible for detecting that a mismatch in the number

of returned arguments has occurred.

An abnormal return (i.e. "raising” an exception) is effected by
the operation process$signal(signal, argument). It causes the caller to
be returned to at its abnormal return point. The argument signal is V

¥
3
returned as the signal name and argument is returned as the argument to f

the handler. Only a single argument is provided to simplify the F
architecture; more complicated signal arguments must be provided for by
"packaging” multiple values into a vector and returning that vector.

Exception handling is discussed in more detail after discussing

intra-procedural control flow. !
i
2.3.3.2 1Intra-procedural Flow Control

The basic unit of execution in AESOP is the code segment, a
linearly ordered sequence of instructions. As a code segment is being
executed, the normal course of action is to execute the instructions in
order, starting with the first one. There 1s, however, a need for

non-sequential execution to handle the conditional execution of code.

As motivated in chapter one, AESOP uses a restricted form of
"go~to" semantics 1in which transfers are only permitted to another
instruction within the same code segment. Transfer of control within a
code segment occurs in either a conditional or unconditional fashion.
Unconditional transfers are handled by the operation:

process$transfer(offset:integer)

which causes execution of the current code segment to continue at the

- 56 -

instruction that is "offset" instructions (positive or negative offset)

from the current instruction. Thus process$transfer(+2) skips execution
of the next instruction while process$transfer(0) is a null, infinite
loop. No explicit process or code segment argument is given so that
only execution of the current code segment, in the current process, is

effected. This restriction eliminates the most dangerous aspect of

go-to semantics, the non-local go-to.

Conditional transfers are also provided by the process type
manager. For example, the operation:

process$boolean_branch(b:boolean, if_ true:integer, if false:integer)
branches using either if_ true or if false as the offset depending on the

value of b. Other, similar operations, can be imagined but will not be

discussed here - see Appendix A for a complete proposed list.

2.3.3.3 Exceptions and Exception Handling

Chapter one motivated the need for AESOP to provide the means for
handling exceptional conditions during execution. There are two models
of exception handling: the continuation model (as in Mesa[36] for
instance) in which the program raising the exception continues after the
handler for that exception terminates and the termination model (as in

CLU for instance) in which the program raising the condition terminates

by the act of raising the exception.

In the continuation model, exception handlers are little more than
procedures, This model can be achieved by passing along with every call

a procedure that will handle any exceptions that are raised. The act of

- 57 -

e, S

PR
T

W

raising an exception becomes the calling of the procedure that was

passed as an argument. Since it is so easy to obtain, the continuation

model is dismissed at this point from an architectural point of view.

The termination model can, however, use some architectural help

since the only means to implement it within the mechanisms thus far
presented is to pass error codes as return arguments and check them on

return (i.e. call P(..., code); if code "= 0 then <error handler>).

This is a workable, but inelegant, scheme. 1t is also probably not as

space or time efficient as a scheme built into the architecture. So

instead, associated with every instruction will be the offset of the

instruction that should be transferred to (via a forced '"go-to"

operation) whenever the called procedure makes an abnormal return. For

instance, the "instruction':

integer$add(a,b,c) except(+10) normal(+1)

causes execution to continue at the next 1instruction whenever

integerSadd returns normally but 10 instructions following this

instruction if integer$add returns abnormally. Thus the instruction 10

instructions after this one is the initial instruction of the exception
handler. Once the architecture does the forced transfer to the handler,
it forgets that the exception and subsequent transfer has occurred; it

acts as if the program itself had executed the transfer instruction.

When an execution triple returns abnormally (via the previously
described process$signal operation), the arguments to that operation are

placed in entries 2 and 3 of the LNS of the program that invoked the

~ 58 -

R ARV T AV

¥
-

Sams

T

- .

execution triple. This information allows the handler to determine what

the error was and act accordingly.

Note that if the exception handler should invoke a procedure that
returns abnormally, the information passed to the initial handler will
be overwritten by the information passed to the new handler. An
automatic stack of exception handler information is not provided as it
introduces a great deal of implementation complexity to handle an event
that can be avoided by proper programming. Since most code segments
will be provided by compilers, the compilers can handle this problem in

a manner that is transparent to programmers.
2.3.4 The AESOP Instruction Set and Code Segments

Now that all of the parts of the AESOP execution environment have
been presented, the nature of AESOP instructions can be given.
Basically, an instruction must specify a type manager to be called, an
operation to be performed, arguments to be passed, where results are to
be placed, a normal return point and an abnormal return point. This
section will discuss the information that must be supplied, in the rep
object, for each instruction in the code segment that code_seg$create
will create so as to permit subsequent execution of the code segment in

accord with the mechanisms presented earlier in this section.

The basic format of an {nstruction 1s given in Figure 2.5. The

effect of the instruction is to call some type manager, passing the

- 59 -

i
i
9

e

[P SO

.

TR R ke

e

Pt a

S - O S
PR ap U PP ST ATIIPIN-? -y e

Type Operation | Normal | Abnormal | Argument | Result

Manager Number Return | Return Spec. Spec.
Spec. Spec. Point Point 0) (>0)

i
Complete set of operands to an instruction.

Name "LNS" | Index "GNS" | Index a literal

The forms for all fields except results.

"LNS" | Index "GNS" | Index

The forms for a results specification.

Figure 2.5. Complete options for instructiomns.

objects specified in the instruction as arguments and possibly returning

some objects as results.

The name of the type manager to be called is specified by the type

manager field. The first form permits explicit reference to the type

manager to be included in the 1instruction. The second form retrieves
the index’th entry from the current LNS, which must name a type manager,

and invokes that type manager. The third form works similarly by

retrieving a reference to a type manager from the current GNS. The
fourth form allows the specification of a literal (e.g. a character
string) that names a built-in type manager. In this case,

code_seg$create interprets that literal to determine which type manager

- 60 -

to invoke and, conceptually, places a reference to that type manager 1in

the produced code segment.

The operation number, normal return point, abnormal return point
and arguments are specified in a similar manner. In these cases,
however, the literal may denote any built-in object (e.g. the character
string "7" may denote the integer 7). The presence of literals not only
permits easy access to built-in objects but also allows an
implementation of AESOP to optimize instructions based upon known values

passed to code_seg$create.

The operation number field specifies which operation is to be
performed, by giving the positive integer, call it i, that is the "name"
of the operation. The i°th procedure passed to the tm$create operation

that created the invoked type manager will be invoked.

The normal return point specifies, as an offset relative to the
current instruction, where execution should continue if the instruction

returns normally. It defaults to +1 (i.e. the next instruction).

The abnormal return point specifies where execution is to continue
1f the 1instruction terminates abnormally. It specifies the offset of
the exception handler and defaults to the normal return point (i.e.
ignore the error) in which case the arguments normally supplied to an

exception handler are not supplied.

- 61 -

The argum:=nt fields, of which there may be zero or more, refer to
the objects to be passed, in the given order, as arguments. The form
for arguments allows them to either be fixed (the “name" and “literal"
options) or dynamically bound (the indirect through name space options).
The number of arguments must be acceptable to the invoked operation or

an exception is raised.

The result fields specify where the results of the call are to be
placed (i.e. where in the callers LNS or GNS). The i°th result of the
invoked procedure is placed in the location as specified the i”th result
specification. If there are M results specified in the instruction and
R results actually returned, only min(M, R) of the result locations will

be assigned to.

The object rep passed to code seg$create is nothing more than the
specification of a sequence of 1instructions of this form that are

sequentially numbered starting from one, The actual form of rep is

unspecified by the thesis as the possibilities are numerous and the
details irrelevant for the purposes of this thesis. The only constraint

is that all of the possibilities inherent in Figure 2.5 be allowed.

One final note on the execution environment is needed to complete

the discussion and this concerns assignment. The form of AESOP
instructions only allows accessing and setting LNS (GNS) entries as part
of invocation. Copying a reference in one LNS (GNS) slot to another
must be accomplished by using this basic mechanism; there is no

copy_reference instruction. This 1s accomplished by acquiring a

- 62 -

I T Mk AN S A

reference to the LNS (GNS) and then invoking vector$ref with that
reference to retrieve the object reference to be copled and placing the

result returned by that operation in the appropriate place.
2.4 Object Viewers

This section presents the AESOP mechanism used to implement
extended type objects and provide the capability for access restriction
and access revocation. The surprising fact is that these three
activities, seemingly different at first, can be regarded as being
special cases of the same general mechanism. The common property of
these activities is that they all permit different users of an object to
have different views of that object; extended type objects hide the
representation of an object from its users and allow only its interface
specifications to show through; access restriction presents an object
that does not support all of the operations normally associated with
objects of that type; and access revocation causes previously possible
operations to no longer be available. Since the common property of
these activities is that they present users with differing views of an
object, the mechanism used to implement these activities is qalled the

object viewer mechanism,

The basic object viewer mechanism, shown in Figure 2.6, 1is
inspired by the access revocation mechanism proposed by Redell([40]. An
object viewer is a triple whose first part is the name of a type
manager., This name gpecifies the type (i.e. the name of a type manager)

of the object that is seen when the object viewer is referred through.

- 63 -

Viewed Type

Object
Reference

Access
Restrictions

Figure 2.6. An object viewer.

The second field refers to an object. The object viewer 1s providing a
new view of this object; it 18 the object 'seen" in the object viewer.
The third field is a bit vector that specifies, by having true in its
entries, which operations can not be performed upon the viewed object.
The association of an operation with a bit of the access restriction
field is unspecified by AESOP; instead it 1is interpreted by the type
manager specified in the type field. A likely association is that the
i"th bit controls access to the 1°th operation. To illustrate the
interactions of the three fields in the object viewer, the next few

paragraphs will show how this basic mechanism can be used to achieve the

three effects previously mentioned.

First consider access restriction. Suppose a program wishes to

pass an object Y of type FOO to another program but does not wish

certain operations (e.g. modifications to Y) to be performed upon Y. In ;
this case the first program creates an object viewer with the structure i

of objects illustrated in Figure 2.7 and passes the name X to the called 5

- 64 -

o gg

FOO

X—» | Y —»(Y, of type FOO

Figure 2.7. Using an object viewer for access restriction.

program. The object viewer 1in this case specifies that the name X
refers to an object of type FOO (the same as that of Y) and the object
viewed when X is referred to is Y. The bit vector AR specifies the

restrictions upon the way that the called program may use the object it

has been passed.

Suppose the second program wishes to pass X to a third program and
restrict that program’s access to X. It does so by creating a new
object viewer as shown in Figure 2.8 and passes the name W along to the
third program. When the third program uses W it "sees" the object Y (W

"sees" X which transparently "sees" Y) of type FOO so that any

FOO FOO

W—>»|X —p—»|Y —1—» (Y, of type FOO

AR’ AR

Figure 2.8. A chain of access restriction object viewers.

- 65 -

g e

operations performed using W result in operations on the object Y. The
access allowed to the object Y by users of the name W are specified by
the minimal access rights specified by AR and AR’, AR or AR’. The

effect of object viewers is thus cumulative.

Another use of object viewers is for type extension. Suppose that
it is desired to create an extended type object, to be named X, of type
FOO from an object named Y of type BAR. Figure 2.9 illustrates how an
object viewer would be used to accomplish this. The reference X is a
reference to an object of type FOO with the access restrictions
specified by AR restricting which operations may be performed on the
viewed object (i.e. the object of type FOO). The presence of AR allows
the creation of objects of type FOO with varying restrictions on access
to that object. This permits, for instance, the file type manager to
also provide the "types" read only file and stream file. To have
operations performed on the extended type object X, the name X must be
passed to the type manager FOO. Thus the object X has been "sealed"
agalnst unauthorized manipulation. Only the type manager FOO can

"unseal” the object viewer and get at the representation object Y and

FOO

X—»lY —» (Y, of type BAR

AR

Figure 2.9. Type extension using object viewers.

- 66 -

the access restrictions AR. This allows the type manager to:

1. Determine which operations are permitted on the
object X by examining AR,!

2. Perform operations on the representation object Y.

No other architectural facilities are necessary to allow the type

manager to perform its job.

If the object viewer named by X is to truly '"seal” Y, permission
to perform the unseal operatioﬁ must be restricted to the type manager
FOO. AESOP enforces this by ensuring that the procedure attempting to
perform the unseal operation has been invoked as part of a type manager
specified as the viewed type in the object viewer that is being
unsealed. Thus the name of the type manager is the "key" that allows
the object viewer to be unsealed. If this condition 1is satisfied,

unsealing is allowed; otherwise an exception is raised.

If the ability to perform the '"seal" operation were not
restricted, any program could seal an object making an object of
arbitrary type. When this object is passed to the type manager for that
type, the representation of the extended type object might be incorrect
and could result in incorrect operation of the type manager. The type

manager could protect itself from this kind of misbehavior on the part

1. This 1nteracts with using object viewers for access restriction,
The operations described below handle this case correctly, i.e. access
restrictions will be cumulative even in this case,

- 67 -

of other programs;1 however, this seews to be an added burden on the
programmer that is best avoided (especially since the programmer |is
unlikely to remember to perform the necessary checking at all of the
appropriate times). For this reason the seal operation, in which an

extended type object 1is being created, is restricted in the following

manner:

1. It may only be performed by a type manager.

2. The field "type" in the created object viewer may
only be filled in with the name of the type manager
performing the seal operation.

With this restriction, only a type manager may create an object viewer

that makes an object look like an object of that type.

Dynamically changing access {s achieved by modifying object

viewers. Figure 2.10 shows the basic mechanism. X 18 an object viewer

Object FOO
Viewer

X—» | Y —t | Z ——»(Z, of type FOO
AR AR’

Figure 2.10. Modifying one object viewer with another.

1. This might be done by 1including an unforgeable key 1in the
representation for each object (this 1is similar to the mechanism
proposed by Henderson[15]). Such a key might be the name of an object
that the type manager never allows to be passed beyond its control.

- 68 -

H

|
1
:

TIL e

that has as its type field object viewer and its object reference field
names another object viewer, Y. Assume that the access restrictions
mentioned in X, AR, impose no restrictions on manipulating object viewer
Y. The name X then allows modification of the access restriction and
object reference fields in Y. Note, however, that the type field may
not be modified since such modification leads to the same problems, in
regards to type managers, as mentioned in the case of restricting the
ability to perform the "seal" opera’tion. Also, this would change the
type of a user’s reference dynamically and, although potentially useful,
seems far too dangerous to allow. Even so, a program possessing the

name X has great power over the contents of the object viewer Y so

possession of X must be carefully controlled.

The question arises as to how the object X came into being. It
can not be created whenever desired, rather its creation must obey
restrictions so that the security provided by object viewers is not
compromised. To achieve this, objects such as X are only created as
part of the creation operation of other object viewers or as part of an
unseal operation performed by a type manager. Thus ouly the type
manager for a given type may manipulate the object viewers that seal
objects of that type. Similarly, a program restricting access to an
object by creating an object viewer is the only program that can modify
that object viewer. In this way the security provided by object viewers
depends upon the correctness of the procedures requesting the creation

of those object viewers (i.e. if the program gives away a reference to

- 69 -

T ARSI T R T T

PR 8

P

X, then AESOP can not make any guarantees about the ability to modify

Y)-

The way of performing access revocation should now be clear. To

i
b
3

i

give revocable access to the object Z in Figure 2,10, the object viewer

Y should be created and, at the same time, X should be created. The

-

Tiohets a

name Y should be passed to the program that is to be given revocable

access and the name X should be remembered. Later when it is desired to

revoke some, or all, access to Z, X provides the means to do so. If

o il ks

Py

complete and permanent revocation is desired, X can be used to destroy

s

object Y, making any outstanding references to it invalid. If partial

oo -

(or non-permanent) revocation or if access enhancement is desired, X may

A_‘L‘"' e ‘4&4.-"’.— ST ONEY

be used to modify the access restriction field in Y appropriately.

Up to this point this section has presented the basic object

viewer mechanism and examples of how to use 1t in solving various i

problems. The next few paragraphs will present a few rules for using ?

object viewers.

Given an object reference X, 1t 18 necessary to resolve that
reference to determine the referenced object, the type of the referenced
object ani any restrictions on the use of the referenced object. To

find this information, it 1is necessary to follow a chain of object 1

viewers until one 1is found that is being used for type extension. Let
NAME be the record:
record(type:tm, object:any, ar:vector[boolean])

Resolving a reference X involves filling in NAME for X. 1If X does not

- 70 -

ey

refer to an object viewer then NAME = (type-of-X, X, []) (i.e. no type

extension and no access restrictions). Otherwise X names an object

viewer, call it ov. In this case set NAME = (ov.type, X, ov.ar). Let

ov’ = ov.object. Now as long as NAME.type = ov’.type and ov’ 1is an

object viewer do:

1. NAME.object = ov.object
2. NAME.ar = NAME.ar or ov’.ar
3. ov = ov’

4, ov’ = ov’.object

When done, NAME will contain the desired information (i.e. object

referenced, its type and the restrictions on the use of that object).

Now that the concept of object viewers 1is understood, the
operations provided by the object viewer type manager, abbreviated by

ov, are presented in Figure 2.11,. The 8seal operation creates an

ovSaccess(o) returns(ar:vector[boolean})

ov$extract(o) returns(sealed object, ar:vector[boolean}], revoker:ov)
ovSmodify(revoker:ov, obj, ar:vector[boolean])

ov$restrict(viewed object, ar:vector[boolean]) returns(X, Y:ov)
ov$same_end objects(o(l), 0(2)) returns(b:boolean)

ov$same__names(o(1), 0(2)) returns(b:boolean)

ov$seal(sealed object, ar:vector{boolean]) returns(X, Y:ov)
ovStype(o) returns(t:tm)

Figure 2.11. The operations on object viewers.

- 71 -

-

vay eI

R -

IRlnaien? PR -~ lam proal

extended type object, X, whose fields are set to the name of the current
type manager, sealed object and the value of ar. The restrict operation
creates an object viewer, X, that permits restricted access to
viewed object as specified by ar. In both these operatioms, Y permits
the object viewer X to be manipulated. The access and type operations
permit the determination of the type of an object reference o and the
access restrictions on using it. The extract operation is used by the
type manager that implements o to follow a chain of object viewers being
used as access restrictors and return the effective access (ar) allowed
to o in ar, the sealed object in sealed object and a revoker that
permits modification of the object viewer sealing the extended type
object o in revoker. The type manager may then interpret ar to enforce
access restrictions and use sealed_object as the representation object
of o. The modify operation allows for the modification of an object
viewer, call it O, referenced in the object viewer revoker (i.e. revoker
permits modification to 0) by setting 0°s object field to obj and access
restrictions field to ar. Obj must be nil or of the same type as 0°s

viewed type field or an exception is returned.

The user of AESOP may need to ask the question: do these two
object references refer to the same object? The object viewer type
manager answers this question. The same names operation returns true if
and only if o(l) and o0(2) refer to the same object; that is, it returns
true if they refer to the same non-object viewer object directly or they
refer to the same object viewer. 1If it returns true then the references

o(1l) and 0(2) will always refer to the same object with the same access

- 72 -

(i.e. same names does "pointer" equality). The same_end objects

operation returns true if and only if o(l) and o(2) provide possibly

differing views of the same object; that is, it returns true if and only i
if the chains of object viewers named by o(l) and o(2) eventually ;
converge. If it returns true then o(l) and o(2) currently refer to the ﬁ
same objects, with possibly differing access restrictions, but there is E

no guarantee that this equality will continue at any time in the future
due to the ability to modify the object and access restriction fields in

non-common object viewers.

Each of the built-in type managers will enforce access “
restrictions by associating one bit of the access restriction field in i
s

object viewers with each operation they provide. 1In this way, access to i

built-in operations can be individually controlled. !
2.5 Operating System Related Features ¥

This section describes the features provided by AESOP to meet the
goal of elimination of the operating system. In addition this section
describes architectural features usually hidden by operating systems

that are needed to make the architecture complete (e.g. what it means to :

initialize the processor).

One operating system feature, protection, 1is provided by the
object viewers described in the preceding section. This section
describes how the opcerating system notions of process, interprocess

communication/synchronization and storage management are provided.

- 73 -

:
These features have been chosen for inclusion in AESOP as they ?
meet the high level criterion, presented in chapter one, of being ;
language and application independent. The motivation for processes and ?
inter-process communication/synchronization being in the architecture %ﬁ
have been presented in chapter one. Storage management must be provided {
at the architectural interface since built-in operations consume storage f
(e.g. vectors). Given that storage management 1s necessary (see ﬁ
chapter one), the only alternative to an architecturally supplied ?

facility is a layer of software between users and those architectural
features that consume storage. This software is, however, nothing more :

that a primitive operating system and so is rejected.

Every system needs to communicate with the rest of the world and
to start up and shut down, If they are not provided by the
architecture, in however a primitive a form, they can never occur. Thus
AESOP must provide an I/0 facility and define the effects of starting

and stopping an AESOP processor. 1

2.5.1 Processes

AESOP allows the user to have multiple processes. An AESOP
process 1s the execution of a procedure in parallel with all other

processes running on the architecture. The architecture makes no

P ISR CE 7 W I AR CiS TPAPMEEIES

guarantees as to how this parallelism is achieved so that any

implementation from multiprocessing a single processor to providing a

single processor per process 1is acceptable. Some of the operations on

- 74 -

N -

processes are presented in Figure 2.11 (control flow instructions have

been described in section 2.3 and more are presented in appendix A).

A new process, pr, is created by the create operation. The
process pr begins execution by executing the instruction:

proc$call with gns(gns, p, arg(l), ..., arg(n))

so that the execution of pr 1is exactly the same as the execution of p
with the given arguments. The process pr terminates when p returns (any
returned values are ignored). The argument lca specifies the default
storage area, the place where newly created objects are placed by

default when pr creates them.!

Note that the creating and created
process share access to the objects gns, arg(l), ..., arg(n) and all
objects accessible through them so that the problem of shared data must

be addressed.

process$create(p:proc, gns:vector, lca:storage area, arg(l), ...,
arg(n)) returns(pr:process)

process$max priority() returns(prior:integer)

process$schedule(pr:process, prior:integer, limit:integer, event:ec)

process$star t(pr :process)

process$status(pr:process) returns(s:integer, cpu:integer,
prior:integer, ec:vector{event count], limit:integer,
event:event_count, other)

process$stop(pr:process)

Figure 2.12. Some of the operations on processes.

1. Storage areas will be discussed later in section 2,5.3.

- 75 -

Chapter one argued that the programmer requires some limited
control over the processor resources consumed by processes. Four
operations are provided for this purpose. The stop operation causes a
process to stop executifon until a start operation is executed on that
same process. (By convention every newly created process is created in
the "stopped" state.) To decide when to stop a process, it must be

possible to determine the status of that process. The status operation

returns the status of process pr as follows:

s indicates whether pr is runnable (e.g. 1is, in
principle, consuming processor cycles), stopped,
blocked waiting for some event or terminated.

cpu indicates, in implementation defined units, how much
CPU time pr has consumed.

prior is pr’s current scheduling priority (see below).
ec is an array of event counts that pr is blocked on.!

limit i{s pr°s execution time limit.

event is an event count that is to be incremented whenever
limit is exceeded.

other is an implementation defined object that an
implementation may use to return other status about pr
(e.g. how many page faults it has taken).
With this 1information intelligent decisions regarding pr should be

possible,

1. An evest count is AESOP’s interprocess synchronization primitive
and is discussed later in this section.

- 76 -

e+ e e v e S o ot N— i

The ability to stop and start a process is a coarse means of

control and a finer grain of control may be needed. 1In choosing a finer

grain of control for processes, AESOP has to make a guess at what is
needed since there are no personal computers available today. A number

of systems provide the user with the ability to spawn multiple processes ;

(Tenex and Unix for instance), None of these, however, gives the user
much control over the spawned processes beyond the ability to destroy

and stop them.

Reed[41] has shown how a simple low level scheduling mechanism can

be used to construct complicated high level scheduling mechanisms. A A

similar approach has been taken in Hydra{27). AESOP will provide a

mechanism for controlling processes that is based upon Reed’s work.
Every process will have associated with it a priority (with a maximum of
process$max priority()) and a CPU time limit. Within the class of 3
runnable processes the process with highest priority will always be f
run.l A process will run until 1t is preempted by a higher priority (l’
process entering the runnable queue or until it exceeds its CPU time !
limit. When a process exceeds its CPU time 1limit, it enters the !
"stopped' state and an event count is incremented so as to notify some

other process(es) that this event has occurred.

The schedule operation sets the priority and CPU time limit of a
process, It 1is the fourth, and last, operation provided by AESOP to

control processes., After any of these four operations is performed on a

1. 1In the case of ties, a round robin policy will be used.

- 77 -

process, the set of all runnable processes 13 examined and the highest
priority process(es) are allowed to execute. Note that if the priority
of a process is set to max_prior(), that process is guaranteed to get
some processor resources due to the round robin tie breaking policy.
This permits the construction of “watch~dog"™ processes that, for

instance, watch for other processes that seem to be in an infinite loop.

2.5.2 1Interprocess Communication and Synchronization

AESOP°s processes can communicate with each other through the
objects that they share access to. Those processes not only need to
communicate but also to synchronize their activities including
synchronizing access to those shared objects. For these reasons, AESQP

must provide an interprocess synchronization mechanism.

Many mechanisms have been proposed for achieving interprocess
synchronization including block/wakeup[44], semaphores{10],
messages(14,20], monitors[19], serializers({18] and event
counts/sequencers[42]. All of these are roughly equivalent in terms of
expressive power; they all permit processes to synchronize their
activities. Choosing amongst these 1is, to a first approximation, a

matter of personal taste.

AESOP makes the choice of event counts/sequencers as the basic

1

means for interprocess synchronization. Event counts have been chosen

not for their expressive power but, rather, because they capture the

1. See Reed(42] for detailed semantics of what follows.

- 78 -

essence of the interprocess synchronization problem while minimizing the

communication aspects. This 1s desirable since AESOP provides
communication through shared memory, only a synchronization mechanism is
needed. The operations on event counts and sequencers are presented in

Figure 2.13.

An event count is a counter that may only be incremented. A new
event count, initialized to have value zero, is returned by the create
operation. The current value of an event count 1is returned by read.
The increment operation increments an event count. The await operation
causes the executing process to cease execution until ec$read(e(i))>c(i)
for some i and returns that i, When a process executes an await
operation it becomes unrunnable so that other, lower priority processes

may rut. When ec$read(e(i))3p(i) for some i, this process becomes

runnable again so that it will preempt other, lower priority, processes.

This 1is the interaction between the process scheduler and the

event_count$await(e(l):event_count, c(l):integer, ..., e(N):event_count,
c(N):integer) returns(i:integer)

event_ count$create() returns(e:event_pount)

event_pountSincrement(e:event_pount, n:integer)

event_count$read(e:event count) returns(count:integer)

sequencer$create() returns(s:sequencer)

sequencerS$take(s:sequencer) returns(ticket:integer)

Figure 2.13. The operations on event counts and sequencers.

- 79 -

synchronization mechanism. One of the reasons that event counts have
been chosen for AESOP i{s that this interaction can be efficiently

implemented (see chapter four).

AESOP does not predefine any event counts. However, a particular
implementation may choose to predefine some event counts siuch as an

event count that serves as a calendar clock.

Event counts allow two processes to synchronize their parallel
activities through event counts that they both can access (e.g. they
have a common data base or were passed the event counts when they were
created). However, an additional mechanism 1is needed to permit general
access to shared data. The sequencer mechanism allows this. A
sequencer 1s an object that returns, via the take operation, a
monotonically increasing sequence of integers. The first take operation
on a sequencer returns, by convention, one., Controlled access to shared
information can be achieved by the appropriate use of sequencer$take and

ec$Sawait as explained by Reed.

2.5.3 Storage Management

If there were infinite amounts of equally accessible storage on
AESQOP, there would be no need for user visible storage management.

Implementation realities force the consideration of a finite,

multi-level memory.

- 80 -

s

Two problems are of concern: storage quotas and efficlent

inter~object references. Storage quotas are used to prevent a buggy or i
untrusted program from consuming all available storage. If it were
allowed to do so, the system would stop as no program could run due to
lack of storage. More importantly, it is difficult to create a daemon

program that notices the situation and corrects it since any such

program would need storage to run and a great deal of privilege to
discover which programs were causing the problem and to correct the
problem. Outside intervention is traditionally used in language systems !
to fix the situation (1.e. by returning to the operating system
interface to correct the problem). This solution 1i8 unacceptable in i
AESOP as there 1s no operating system. Leaving the AESOP system to
solve the problem 1is unacceptable as it would violate the constraint
imposed on AESOP, in chapter one, that AESOP must be complete in and of
itself; there must be no need to leave AESOP to solve a problem,
including this one. As a result storage management must be present in

the AESOP interface.

An AESOP machine will likely consist of some amount of primary
memory and a larger amount of slower, secondary memory. References to
objects 1in primary wmemory are 1likely to be more efficient than
references to objects in secondary memory. Moreover, there is likely to
be a high cost assoclated with moving objects between primary and
secondary memory. As a result, an implementation must attempt to
maximize the chance that an object reference will refer to an object

that is in primary memory. With no other information this is likely to

- 81 -

R LU

<

be difftcult, so some Information supplied by the user through the

architectural interface to the implementation (s appropriate.

Both ot thesce goals will be met by the introduction of a new type
of object, storage areas. A storage area 13 a quota pool, a pair of
positive integers reflecting the amount of used and free storage in the
area, Whenever an object {s created, it draws storage from some storage
pool causing the amount of free storage in that pool to change. To
account for space hungry programs, it Is only necessary to arrange that

{t draw storage from a storage pool of suitable size,

An object created In storage area 8 18 sald to be contained in s.
For the purposcs of efffcient multi-level memory management, all objects
{in a storage area s are assumed to frequeuntly refer to each other and
only infrequently refer to objscts {n other storage areas. That is, the

objects {n a storage area should exhibit locality of reference.

Objects {n some staorage areas may teand to refer frequently to
objects In a second arca. If this relationship {s made explicit, an
{mplementation of AESOP may be better able to handle references from
area s to area s° 1in an efficlent manner and use this information to
improve the performance of the multi-level memory. For the reason, the
close relati{on on storage areas is defined. f avea 8 {s close to area

", objects in s frequently refer to objects {n 8. The close relation

ra neither reflexive, symmetric nor transitive.

Sp—

The operations on storage areas are presented in Figure 2.14. The

create operation creates a new storage area, new_area, by withdrawing
size units of quota from parent area. The close operation indicates

that area s 1is close to area s8°. 1f, at a later time, the user should

decide that the close relation is no longer appropriate, the not_close

operation should be performed. The size operation returns the size and

Ny

current amount of free storage in a storage area.

Since every object must be created by drawing storage from some
area, the various operations of the built-in type managers that create
objects (e.g. vector$create) must, in principle, take an extra argument .
that is the area the newly created object draws quota from. The
constant supplying of an area argument can get quite tiring. For this
reason, every process has a default storage area associated with it that
is used whenever a storage area argument is not supplied to a built-in
create operation. The default storage area is initially set for a
process by the lca argument supplied to the process$create operation,
may be reset by the ¥

process$set_default area(s:storage_area, pr:process)

storage area$close(s:storage area, s’ :storage area)

storage_area$create(size:integer, parent:storage_area)
returns(new_area:storage_area)

storage area$not close(s:storage area, s’:storage_prea)

storage_area$size(s:storage_area) returns(size:integer, free:integer)

e

Figure 2.14. The operations on storage areas. g

- 83 -

o e e N Ve« -y g,

operation and may be discovered by the
process$get_default area(pr:process) returns(s:storage area)

operation.

Not all of the storage in AESOP will be consumed by AESOP objects,
some will be consumed by the implementation of AESOP. Because the needs
of an implementation may be highly variable, it is advantageous to
shield user programs from this variability since it may lead to programs
whose correctness is implementation dependent. Thus the storage the
implementation uses must not appear to the users of AESOP as consuming
part of a storage area. Instead, an implementation will draw storage
from an architecturally hidden pocl of storage. The user shares use of
this pool with the implementation by creating storage areas out of it by
using the built-in procedure:

master_alloc(size:integer) returns(s:storage a ea) signals(cant)
The exception cant is raised if the implementation should decide, for
whatever reason, that a new storage area of the specified size can not
be created how. This procedure is passed to the wuser at system
initialization time. Since this procedure essentially permits the
creation of storage areas out of nothing, the user must carefully
control 1its use so that the problem of storage hungry programs does not

arise.

- 84 -

d

aa T

oo . 3

-

AW

TR

PP SRS

o va

2.5.3.1 Storage Reclamation and Object Deletion

AESOP provides a heap orilented storage semantics - objects are
created in a storage area and remain there, drawing storage from that
storage area, until the object is no longer needed. This section

discusses the determination that an object is no longer needed.

An object is no longer needed when it is no longer accessible
(i1.e. no longer referenced by a needed object). This is the case since
it is impossible for any references to that object to ever exist in the
future due to the capability-like nature of AESOP’s naming mechanism,
Once an object has been determined to be no longer needed, the storage
consuméd by that object is returned to the free pool of the storage area
that contained that object. Thus AESOP constrains an implementation to
reclaim the storage used by unneeded objects. This allows for the

carefree reclamation of storage.

The automatic reclamation of storage may not always be sufficient
to meet the user’s needs when the problem of buggy or untrusted programs
is considered. Although the basic storage area mechanism allows the
amount of storage usable by such programs to be controlled, the user may
wish all of the objects created by that program to be immediately
discarded. The user may be experiencing a space shortage and simply
need that storage or the user may not believe that whatever objects that
program created are correct and does not ever want to reference them.
As a result, the user has a need to explicitly delete the objects that a

program has created.

- 85 -

Sk

ot

re

Explicit object deletion creates the problem of dangling
references to deleted objects. The system is responsible for ensuring
that all outstanding references to a deleted object are invalidated.
The invalidation consists of marking those references as
"reference-to-deleted-object".! Any future attempt to use one of those
references will result 1in an unexpected deleted_operand exception so
that the user must be prepared for his programs to fail in this way if
they happen to reference a deleted object. To allow for explicit object
deletion, the following operations are provided. The operation

storage_area$delete_all(s:storage area)
deletes all of the objects that are in area s, In addition, type
managers may provide operations to delete their objects. Most of the

built-in type mangers do just this (see Appendix A).
2.5.4 1/0

To be useful, AESOP must provide the means for the user to write
programs that communicate with I/0 devices (e.g. a network, a terminal
or a disk drive). Due to the diversity of 1/0 devices, it 1is
undesirable to specify device specific I/O. Rather, this section will

present a general framework in which I/0 in AESOP will occur.

1. An implementation problem 1s to find all of these references. A
means for doing this is discussed in chapter three,

- 86 -

e s ey

el oka ned s

Jp———

AN

€W Rt

2.5.4.1 Object Oriented 1/0

Since AESOP is an object oriented architecture, it is reasonable
to consider having I/0 closely follow that model. Object oriented I/0
would allow I/0 devices to access all of the objects in the object
memory provided by AESOP as objects (i.e. through the type manager
corresponding to the object). Although appealing, this approach must be

rejected.

This approach implies that the I/0 devices must not only be
prepared to deal with the built-in objects of AESOP but also with
extended type objects. This can be done in two ways. First, the AESOP
implementation could define an interface that allows a device to access
all objects. This, however, is just pushing the problem of I/0 into the
implementation since I/0 devices really only deal with bits and so is no

solution.

The second solution 1is to allow I/0 devices to be processors
capable of directly accessing and using all AESOP objects, including
type managers. This fails for three reasons. First an AESOP
implementation has been transformed from what can be a uni-processor
implementation to an implementation that inherently contains multiple
processors, the main AESOP processor plus 1/0 devices. This means that
the algorithms used to implement AESOP become more complicated to cope
with this parallelism. This extra complexity may very well mean that an

AESOP processor becomes uneconomical., Second, I/0 devices may become

prohibitively expensive to attach to an AESOP system due to their

B el gk ia

complexity. Third, this approach violates one of the prime goals of

AESOP, the hiding of implementation issues by the architecture, since

1/0 devices must be given the specification of the implementation of

AESOP so as to be constructed in a manner that is compatible with the

rest of the AESOP system. For all three reasons this approach is also
rejected. Since both solutions are unsatisfactory, object oriented I/0

is rejected for AESOP,.
2.5.4.2 Bit Oriented I/0

The alternative to object oriented I/0 is a traditional approach
in which I/0 devices are allowed to access memory as a collection of
bits and do not see any of the higher level features of AESOP. This
sort of interface can be provided in (at least) two ways: a channel
program interface as 1is done for IBM 360/370 systems or a device
register approach that models devices as a collection of registers that

are directly addressed and manipulated by user programs as in DEC’s

PDP-11 family of computers. -

The channel program approach consists of supplying a program to an
auxiliary processor, the channel, that actually moves data between the
1/0 device and primary memory. This approach has the advantage that

multiple commands may be given to a device within a single channel

program, thus limiting the need for the CPU to intervene in I/0. The
device register approach, on the other hand, requires that each command

for a device be initiated individually by the processor. The channel

- 88 -

program approach has the disadvantage of requiring the creation of a new

object, the channel program, for I/0O initiation.

On balance, the channel approach is rejected since the economics
that created it, expensive processor cycles, no longer exist -~ LSI and
VLSI make processor cycles cheap. Also, the complexity of the channel

program objects themselves is unattractive.

AESOP will present I/O devices at its interface as an array of
device registers that contain objects of restricted type. The
operations on I/0 devices are given in Figure 2.15. A newly attached
I/0 device is made known to AESOP by executing a new_device operation
that takes the location, addr, of the device in an implementation

defined address space and a specification, spec, of the interface to

that device as arguments.

A device interface consists of a sequence of registers each of
which is either a status, event count or buffer register. A status

register consists of a sequence of bits through which the user and the

io$new_device(addr:integer, spec:vector[integer]) returns(dev:io)
io$read register(dev:io, i:integer) returns(register)
io$set_status abcd(dev:io, i:integer, bv:vector[boolean],

offset: 1nteger, length:integer) returng(status:vector[boolean])

Z This is a set of operations derived by setting

Z a,b,candd to 0 or 1

ifo$set_register(dev:io, {:integer, new)

Figure 2.15. The operations on I/0 devices

- 89 -

1/0 device communicate by setting and reading status registers., An
event count register contains a reference to an event count that the I/0
device may cause to be incremented so as to communicate the occurrence
of some event (e.g transfer complete) to a AESOP waiting process.l
Buffer registers contain the names of vector[boolean] objects that the
I/0 device reads and writes as buffers. Once the user assigns a vector
to an I/0 device’s buffer register, the contents of the vector are
undefined until the device indicates to the user that the I/0 1is
complete, During this time, the user should not manipulate the vector
nor assign it to another buffer register. The effect of such actions is
not specified. However, 1f the device will only read the contents of
the bit vector, the user may also read the bit vector and get the

correct contents of the vector.

The device registers may be manipulated by a collection of
operations provided by the io type manager. The conteats of the 1°th
register are returned by the read_register operation which returns
either an event count, a vector[boolean] used as a buffer or a newly
created vector{boolean] that contains the value of a status register.
The contents of the 1"th register is set to new by the set register
operation which raises an exception if the type of new is not acceptable

as the contents of the i"th register of dev.

1. This 1is similar to the technique used in the Venus operating
system[29] where semaphores were used as the synchronization primitive.

- 90 -

The set of operations set_status_abcd permit the manipulation of
individual bits of a status register. The new value of the status ?;
register is calculated by performing the boolean operation indicated by
abcd on a subvector of the status register (as indicated by offset and

length) and the vector bv. In particular, bit j+offset-1 of the status

register, for j from 1 to length, is modified to have the value given by

the following table:

01
0{ab
lJcd

where x is the value of the j’"th bit of bv and y is the value of the

j-offset+1’th entry of the status register. This operation i3 defined

to be atomic with respect to all other io$set_status_abcd operations on

the given status registet.l

It should be clear that this 1s only a framework in which I/0 in

AESOP will occur; it 1is not a detailed specification of the inner

workings of 1/0 as such details are very device specific. Rather, this
definition of the io type manager should give the programmer the ability
to control I/0 devices given the particular characteristics of that

device. The actual bits that a device reads/writes will be converted

1. It 1s not clear that this atomicity is absolutely necessary, but
defining things in this manner may permit some devices to be handled in
a cleaner manner. Also, since this definition does not specify the

effects of status register manipulation by the device, it is easy to
provide as will be seen later in the thesis.

- 9] -

from/to AESOP objects by operations supplied either by the user or by

the architecture in a manner described by Herlihy[16] and Sollins([48].
2.5.5 System Initialization and System Shutdown

No system runs forever. 1Instead they are occasionally shutdown
and then restarted later. This section briefly discusses the issues of

starting up and shutting down an AESOP processor.

2.5.5.1 System Initialization

System initialization 1is the act of bringing a system from a state
of no activity, with no processes running or runnable, to the state of

having the system in normal operation. 1In the case of AESOP, system

initialization also brings out the problem of which cbjects in the

system are accessible when the system is restarted. o

AESOP has a distinguished object, a vector named ROOT, to meet i
these needs. It is distinguished in that it always considered a needed :*
object and 1is never garbage collected. Moreover it is an object that ;
can never be deleted. The set of needed objects in a newly started i
AESOP 1is precisely the set of objects that are accessible from ROOT. {
ROOT, by convention, will have the following form: ;

ROOT (1] = p:proc

ROOT [2]) = lca:storage_area

ROOT[3] = gns:vector

- 92 -

ROOT (4] 1is reserved for AESOP’s use

ROOT[i] for 1>4 can be anything.
System initfalization consists of the processor executing the following
built-in program:

pr:process 1= process$create(p, gns, lca, ROOT,
master_alloc)

ROOT [4] := pr

process$schedule(pr, process$max_prior(), nil, nil)

process$start(pr)
The effect of this program is to create a new process, pr, that executes
procedure p with gns as its GNS and 1lca as its default storage area.
The procedure p receives two parameters: ROOT and the built-in procedure
master_alloc. ROOT[4] is then set to pr so that pr may manipulate
itself if needed. Finally pr begins execution with the maximum possible
priority. The process pr 1is responsible for performing any other

initialization activities that the user of AESOP feels are needed.

2.5.5.2 System Shutdown and Crashes

The companion activity to system initialization 1s system
shutdown. An unfortunate but probably inevitable event is a crash of

the system.

Shutdown in AESOP is accomplished by placing all processes in the
stopped state, thus stopping all activity in AESOP. When AESOP shuts
down, the implementation of AESOP is responsible for ensuring that all

objects in the system will still be around 1f the processor i3 now

- 93 -

powered down. Thus the act of stopping the last runnable process on
AESOP, and thus shutting down AESOP, must be accomplished, by the
implementation of AESOP, by placing all objects in AESOP on non-vclatile

storage.

A system crash 18 an unscheduled stopping of the system. When the
system crashes there will, in general, still be runnable processes and
objects that reside in volatile storage. Ideally the effect of such an
event would be specified by the architecture. Such a specification
might be of the form: all architecturally defined operations are atomic;
that is, every built-in operation either occurs or does not occur and if
it does occur, no crash can cause the action to be (partially) undone.
Unfortunately, such a specification is very difficult to meet in an
economical manner. The whole area of robustness to system failures 1is
an important omne but 1its solution in the economically constrained
environment of a personal computer has not been achieved and 1t is
beyond the scope of this thesis to find a solution. Thus the effect of
system crashes is left unspecified 1in this thesis. Instead, each
implementation of AESOP will specify the effect of system crashes in an

ad hoc manner until an acceptable solution to the problem is found.

2.6 Conclusions

This chapter has presented AESOP - its built-in types and the
operations on them. There 18 nothing sacred about most of the
operations provided so that the reader should feel free to modify the

set of operations to provide any desired operations. What is important

- 94 -

!
R VU, R S Y e .q;_n‘).'ﬁ

i

are the variety and capabilities of the built-in type managers. The
various features that were argued, in chapter one, as being necessary
have been presented. This is the first part of the demounstration that
AESOP is a high level architecture. Chapter five will complete that
proof by showing how to wuse AESOP. First, however, the next two
chapters will show one possible implementation of AESOP. This will give
the reader reason to believe that AESOP can be efficiently implemented.
This belief will give the reader confidence that the uses of AESOP

presented later in the thesis are, in fact, reasonable to imagine.

- 95 -

o s g

AD=AD83 433

UNCLASSIFIED

2%3

Rosasas

MASSACHUSETTS INST OF TECH CAMBRIDGE LAB FOR COMPUTE==EYC F/6 9/2 ‘
THE ARCHITECTURE OF AN OBJECT BASED PERSONAL COMPUTER, (U)

MAR 80 A W LUNIEWSKI NOOOLN=T75=C~0661

MIT/LCS/TR=232

Chapter Three

The Implementation of Logical Storage Management

Chapter two described AESOP, an architecture that provides an
object based enviromment for program execution. This chapter, and the
next, present an implementation of AESOP to demonstrate that simple and
efficient implementations of AESOP exist. Since there are many possible
implementations of AESOP, this particular implementation should be

regarded only as an existence proof,
3.1 An Introduction to the Implementation

The fundamental goal of any implementation of AESOP 1is to
implement the particular semantics presented in chapter two. 1In a high
level sense nothing else matters, but from a practical point of view

efficiency is a major concern.

An implementation should be both space and time efficient. An
ideal implementation would use no storage beyond that needed to hold the
user’s data and would allow the user’s programs to execute at a speed
comparable to that of the underlying hardware. In practice these goals
are unrealizable; space and time overhead 1is 1inevitable in any

implementation. This implementation of AESOP is no different.

- 97 -

S

Ly W

XN ey

h g

)

—
et T

> T ETTY

This implementation of AESOP has, in general, been designed to
save storage at the possible expense of execution efficiency. This
choice has been made since personal computers tend to have a fairly
small amounts of storage while the user generally does not have enough
work to keep the machine busy (i.e, there are instructions to waste but
not memory). The impact of this assumption will primarily be seen 1in

the next chapter when physical memory management is discussed.

An AESOP implementation must manage the logical memory defined by
AESOP, map AESOP’s logical memory onto a physical memory and implement
AESOP’s basic types. This chapter discusses logical memory management.
This 1is primarily a problem in performing storage allocation and
reclamation. It is difficult due to the need to deal with a large
number of objects, Chapter four discusses how to map AESOP’s logical
memory onto a physical memory. This involves allocating/reclaiming the
storage needed by AESOP’s logical memory and mapping logical memory
addresses into physical memory addresses. -This is a hard problem due to
the need to achieve reasonable space and time efficiency. The next
chapter also shows how to implement AESOP’s basic types. For the most
part these are trivial. However, four types are of concern:
processes/event counts, code segments, I/0 and storage areas. Processes
must be cheap so that they be used freely. Code segments must encode
AESOP instructions to permit the efficient execution of AESOP code. 1I/0
is important as it specifies the interface between an AESOP system and
the outside world., Storage areas embody the logical memory management

algorithms presented in this chapter.

- 98 -

This chapter discusses the management of AESOP’s logical memory.
AESOP defines a logical memory in which a large number of objects are
constantly being created, used and then discarded. Logical memory
management is keeping track of these objects and reclaiming their

storage when they are no longer accessible.

One assumption about the underlying hardware is crucial. AESOP is
assumed to be implemented as a uni-processor so that the algorithms
presented here need not be concerned with parallelism at the
implementation level, thus simplifying them considerably. It is left as
an exercise to modify these algorithms, or develop new ones, that are

appropriate for a multi-processor implementation.

The logical memory management algorithms presented in this chapter
are based upon the work of Bishop[5]) on garbage collecting large address
spaces. Section two briefly reviews his storage management ideas. If
an architecture implemented using Bishop’s techniques 1s used
incorrectly, poor performance may result. Section three presents a
particular pattern of use of AESOP, the subsystem model, that, when
followed, avoids these problems. It is the basis, in this thesis, for
believing that Bishop’s techniques are practical. Section four presents
the garbage collection algorithm used for AESOP. It is unique in that
it combines Bishop”s basic techniques with Baker’s real-time garbage
collector{3). Section five discusses object creation and deletion. As
it turns out, the basic garbage collection algorithm of section four
does not collect cycles of unneeded objects that span multiple storage

areas, Section six presents an algorithm to remedy this. This chapter

- 99 -~

concludes with a discussion of an efficlent implementation of the stack

of LNS’s and control information associated with invocation in AESOP.
3.2 Bishop’s Mechanism for Logical Memory ilanagement

The mechanism proposed in this thesis to reclaim storage occupied
by inaccessible objects, garbage collection, is based upon the ideas of
Bishop(5]. This section reviews the relevant aspects of his work and

points out some potential problems with his scheme.

An object reference in Bishop’s scheme denotes an object by giving
its location in a large, linear address space and its type. The address
space is divided into a number of storage areas (a linear, connected
subset of the address space). Storage areas serve two purposes. First,
they serve as quota pools. Every object is created in a storage area,
is locatgd entirely within that storage area and consumes the storage of
that area. Second, storage areas Serve to limit the bounds of garbage
collection. The goal 1s to garbage collect a single storage area
without worrying about the contents of other storage areas. If an area
is small enough, a 1little smaller than the size of primary memory
according to Bishop, then garbage collecting that area is efficient
since secondary memory need‘pot be accessed randomly or frequently to

perform the garbage collection,

There {8 a conflict between the ability of objects to refer to any
other object in the logical memory and the desire to garbage collect a
storage area without examining other storage areas. This conflict 1is

the dangling reference problem. Consider Figure 3.1. Assume that there

- 100 -

Area A Area B

Figure 3.1. An example of inter-area references.

are no references to Y except for the single reference from X. If an
attempt is made to garbage collect area B without examining other areas,
the object Y will seem to be garbage and its storage reclaimed. At this
point X will contain a dangling reference to Y. Any attempt to use it
is in error and the implementation must prevent such use, Bishop
prevents such dangling references via two mechanisms: inter-area links

and inter-area cables.

3.2.1 Inter-area Links

An inter-area link from area A to area B, referring to object X,
asserts that there exists at least one reference in A to X.
Furthermore, that reference is an indirect one through the inter-area
link itself, which resides in A. FEach area, A, keeps all of the
inter-area links to A on a list. The garbage collector, when garbage
collecting A, uses this list to find all of the objects in A that are
referenced from other areas via inter-area links. In this way no
dangling pointers result since all accessible objects are marked as

used.

- 101 -

The maintenance of the 1ist of inter-area links is very simple.

Whenever an executing program attempts to store a pointer into some
area, the implementation checks to see if that pointer refers to an
object in another area. If it does, an inter-area link is created and
added to the list of incoming links for the referenced area.l The
reference itself 1is modified to refer indirectly through the newly

created inter-area link.

The use of inter-area links has three drawbacks. First, 1t
consumes storage at a large pace since every inter-area reference
requires the creation of an inter-area link. Second, the scheme slows
execution when an inter-area reference 1is wused since two memory
references are required (one to the inter-area link and one to the
target object). Third, copying pointers may be expensive since an
inter-area link may need to be created and added to the list of incoming
references. For all three reasons, the use of inter-area links 1is

discouraged by Bishop.
3.2.2 Inter-area Cables

As an alternative to inter~area links, Bishop proposes inter-area
cables. An inter-area cable from area A to area B allows pointers in
objects in area A to refer directly to objects in area B without the

need for using inter-area links. In this case, area A is said to be

1. It is possible for multiple references from area A to area B to
share links at the expense of searching the set of all outgoing "inks
from A to B when a new inter-area reference is created.

- 102 -

T v S e AR AT R

pov N

. weng

-
i

cabled to area B. Cables make references from area A to area B cheap
both in terms of storage (no inter-area link is created) and in terms of

time (there is no overhead for copying such pointers or for using them).

Although cheaper than inter-area links, inter-area cables are not
free. Whenever an object reference to an object in storage area B is
copled into a storage area A it is still necessary to make sure that an
inter-area cable exists from area A to area Bl by searching a table of
outgoing cables from area A, 1 a cable does not exist, a cable must be
added to that table to handle th: reference to area B. Another cost
associated with cables concerns the scope of garbage collection.
Whenever area B is garbage collected, all of the areas cabled to area B
must be garbage collected at the same time. This is necessary in order
to avoid the dangling reference problem mentioned previously since those
areas row have direct references into area B, This increases the amount
of storage that must be garbage collected at one time. In addition,
area B must maintain a list of all areas cabled to it so that it can

perform this garbage collection.

Two conclusions, one good and one bad, may be drawn from this
discussion. The good conclusion is that the basic mechanism does work,
It allows for arbitrary references from one object to another; it
prevents dangling references; and 1t permits efficient garbage

collection. Unfortunately, the use of inter-area links and cables must

1. Assuming that a decision has been made to handle references from
area A to area B by cables and not by links.

- 103 -~

g o N wee s

vt g oo e

Lt T TN

Ry e T e U o

L]

be minimized for efficiency reasons. As the rate of creation and use of
links and cables increases, the performance of the system will slowly

(or perhaps not so slowly!) degrade.

3.3 The Subsystem Model of Storage Use

This section proposes a pattern of use of AESOP that minimizes the
use of the expensive mechanisms of Bishop’s logical memory management
scheme. The subsystem model achieves this, It {s hypothesized that

much of the use of AESOP will follow this pattern.

Under the subsystem model, the computations being run on AESOP
tend to be organized into one or more collections of one or more
processes. Each such collection of processes, called a subsystem, has a
set of data that all of the processes in that subsystem tend to use.
Each process in a subsystem has some private data. The processes in a

subsystem communicate with other subsystems via message passing.l

A subsystem provides a service such as a file system., A subsystem
is a more useful model for services than, say, procedures since it makes
explicit the fact that there are many parallel users of the service. A
similar model, the guardian model(49], has been proposed for distributed
systems to, 1in part, also make this parallelism evident. Subsystems
differ from guardians in that subsystems may share memory but guardians

may not.

1. This 1is true at a high level, although the implementation of the
message passing will involve shared memory.

- 104 -

I RRET. ST S

C—

———— =

;1

g

e o

PrORBOTY e PP

e —— -
—————-—

The patterns of memory sharing under this model are fairly simple.
A process in a subsystem frequently uses the data local to that process.
The data common to the subsystem is accesses less frequently, although
its use is not insignificant. Occasionally a process in a subsystem
will need to communicate with other subsystems and, at such times, it
will access some memory that is common to those two subsystems. Access
to libraries, which contain objects such as language support routines

that are used by many subsystems, will also be fairly frequent.

To put this model into the terms of storage areas, see Figure 3.2
which depicts four types of storage areas. An LCA (Local Computation
Area) storage area contains the private storage for a process. The
subsystem area contains the objects that tend to be shared by the

processes of the subsystem possibly including the data that the

subsystem manages in providing its service. The library areas countain
those objects that are shared by many subsystems such as procedures and
type managers. The communication areas allow processes in different \

| subsystems to communicate with each other,

A process can refer to the objects in its LCA without the need for

links or cables. The cable from each LCA to the corresponding subsystem

storage area allows a process to efficiently access objects in its
subsystem area. Each LCA 1is also cabled to library areas to allow N
processes to use the objects in those library areas with little penalty.
Cables are important in these two cases since a large fraction of the

references made by a process outside of its LCA will fall into one of

- 105 -

Subsystem 1|

LCA LCA

Subsystem
Area

Communication

unication Library
Area Area Area

h / ‘\ h

Subsystem
Area

LCA LCA

Subsystem 2

(:::) = storage area 1 = inter-area link

- = inter-area references ¢ = inter-area cable

Figure 3.2. The subsystem model and storage areas.

- 106 -

these two categories. Less frequent inter-area references, for instance

from one LCA to another, are handled by inter-area links.

AESOP does not recognize the existence of subsystems. Instead,
the user will tell the AESOP implementation when a cable should be
created from area A to area B through the storage area$close(A, B)
operation. By creating the correct cables, the user will, in effect,

identify subsystems to AESOP and thus aid efficient execution.

3.4 Garbage Collection in AESOP

The subsystem pattern of use means that Bishop”s basic mechanism
for garbage collection is practical since inter-area links, which are
neither time nor space efficient, are used infrequently., Cables, when
used, are used in a manner that does not adversely effect the efficiency
of garbage collection since the most frequently garbage collected areas,
LCA’s, do not have incoming cables so that most garbage collections only

have to deal with one area at a time.

Bishop’s garbage collection scheme could be used with no changes.
However, hils scheme results in processes being periodically delayed
while a garbage collection occurs; for many applications, this may be
unacceptable. This thesis preposes 1integrating Baker’s real time
garbage collector(3] into Bishop”s scheme. Such a garbage collector
allows AESOP to provide real time response to a user programs in that

they will seldom have to wait for a garbage collection to complete.

- 107 -

————— e -

3.4.1 Baker’s Real-Time Garbage Collector

Baker’s algorithm is a copying garbage collector that copies all
accessible objects from a source space, called FROM space, to a virgin
area of the same size called TO space. The garbage collector first
coples all objects known to be accessible (i.e. the roots of the graph
of accessible objects) from FROM space to the lower part of TO space.
The garbage collector then successively examines each object in TO space
and moves every object that it refers to from FROM space to TO space.
At the same time the reference in TO space is changed to refer to the
object’s new location in TO space. When all objects in TO space have
been examined all objects remaining in FROM space can be deleted since
there are no valid references to those objects. The effect is that the
garbage in FROM space is collected into one large free area in TO space

since all referenceable objects will be at one end of TO space.

Baker’s algorithm 1s "real-time" since it is interleaved with the
normal execution of the user’s program. Whenever the user attempts to
create a new object (a LISP cons cell in his case), the new object is
placed at the upper end of TO space and a few cycles of the garbage
collector are run. In this way garbage is constantly being recovered
and the system is unlikely to ever have to pause in order to allow a

garbage collection to finish, thus the term real-time garbage collector.

- 108 -~

s s -

i el i

-

g

3.4.2 Real-Time GCarbage Collection in AESOP

Garbage collection in AESOP will be a combination of Baker’s
scheme, to get real-time response, and Bishop’s ideas coupled with the

subsystem model to increase the efficiency of garbage collection.

3.4.2.1 TO Space

Whenever an area 1is to be garbage collected the system must first
find TO space. There are two choices for TO space, One possibility is
to preallocate TO space for each storage area, thus doubling the amount
of storage allocated to a storage area.! This has the disadvantage that
storage areas have at most 50% storage utilization, Alternatively, TO
space could allocated at the time that the decision is made to garbage
collect a storage area. This has the disadvantage that a new storage
area must be created at the beginning of each garbage collection. A
mixed approach seems appropriate for AESOP since storage areas in AESOP
fall into two basic categories: small, very active areas (e.g. LCAs) and

large, slowly changing areas (e.g. library areas),.

The very active areas tend to rapidly generate garbage so they
need to be constantly garbage collected. TO space should be
pre-allocated for these areas for two reasons. First, the delay and

overhead involved in creating TO space, even if small, is avoided.

1. This is the policy proposed by Baker. Also note that in this case
the roles of the two parts vis a vis TO and FROM space change after each
complete garbage collection.

- 109 -

e

Second, the process can always perform a garbage collection - it never

dies because TO space could not be created.

For the less active areas, which also tend to be very large, TO
space should be created when the area is about to be garbage collected.
In this way the storage overhead associated with those areas is
relatively small (and certainly results in more than the 50% utilization
possible when TO space always exists). The danger with this scheme is
that there might not be enough free physical storage to allow TO space
to be allocated when the garbage collection is initiated. Although a
possibility, it will be ignored here and will be returned to when

physical memory management is discussed in the next chapter.l

Handling TO space in this way is reasonable, but it is now
necessary to classify storage areas into these two categories. This can
either be done explicitly by the user or as a result of measurements
performed by the implementation. The first requires a new operation on
storage areas to allow declaring that a storage area should have a
pre-allocated TO space., This is a case where a particular choice of
implementation leads to a desire for new architectural operations. That
is, the separation between implementation and architecture breaks down
with this choice of implementation., The alternative is to have the
implementation make a decision based upon the size of an area and its

measured rate of garbage generation. The actual manner in which this

1. In the event that it does occur, it is possible, at the expense of
additional complexity in the iImplementation, to perform a classical
mark/sweep garbage collection on that area to avoid the problem.

- 110 -

g
¥
B
4
i

TSR

JEPPY B

[TV -y TR

i

decision should be made 1is, however, a problem for further research.

by 4

This thesis will take a third approach. Any storage area that is used

as the default storage area for a process, either via a process$create

or a process$set_default_area operation, will have TO space reallocated.
This will cause garbage collection of the most active areas, LCA’s, to

be most efficient. All other areas will have TO space dynamically

AT TmL T

created.

e

iy

3.4.3 The Roots of the Graph of Accessible (Objects

e

To garbage collect an area it 1s necessary to find the graph of

objects accessible in that area. This graph has its roots in four ‘

places, First the incoming inter-area links to that area name some of

PRy

1

the objects that are accessible from other areas. These objects are

easy to find since each area has a list of all of its incoming links.

The second source 1is a system maiutained 1list of all of the
processes in the system. If a process is potentially runnable (i.e. not
in the stopped state), the system must retain a reference to that

process so that it can be executed since there is no requirement in

AESOP that wuser programs retain such a reference. This reference

1. Of course, due to the asynchronous nature of garbage collection in
storage areas it 1s possible that at the time that one storage area
examines its incoming links, the area that claims to need the referenced
object may, In fact, no longer need it. Unfortunately, the area being
garbage collected can not know this and must assume that all objects
referenced by incoming links are needed.

- 111 -

ensures that all of the processes and all of the objects that they

reference will not be garbage collected.

The third source is the distinguished object ROOT. It is defined

to always be accessible so that all objects referenced by it are also

accessible.

The fourth, and final, source of roots are the objects in storage
areas cabled to the area being garbage collected. To determine which
objects are accessible from a cabled area it 1s necessary to know which
objects are accessible in that area and then trace accessible objects
from those objects. 1In his thesis Bishop acquired this informatiom by
garbage collecting all of the areas transitively cabled to the area that
needed the garbage collection at the same time as that area was garbage
collected (i.e. he treated this set of areas as one large area for
garbage collection purposes). Here a slightly different scheme is
proposed. Whenever a garbage collection is initiated in a storage area,
call it A, each incoming cable to A will have a flag gc-in-progress
associated with it that is set to true at this time. This flag informs
the areas cabled to A that, while garbage collecting, they must "mark"
all objects in A that they directly refer to by moving those objects
from FROM space to TO space. Whenever the cabled area completes its
garbage collection it sets the gc-in-progress flag to false. This
informs the garbage collector of A that all objects directly accessible
from the cabled area have been moved to TO space. Thus when all

gc~in-progress flags are turned off in incoming cables to A, all the

- 112 -

roots of the graph of accessible objects in A have been marked so that

A’s garbage collection may finish.

This technique requires that there be no cycles of storage areas.
Suppose area A was cabled to B which was cabled to A. Now suppose a
garbage collection of B is initiated. It can not finish until A is
garbage collected, but A can not finish until B is done. Obviously, the
cycle never ends, The storage area type manager 1s responsible for
ensuring that such cycles do not occur. Moreover, note that if the
subsystem model of execution is followed, no attempt will ever be made

to create a cycle.

The resulting garbage collector is space efficient. The working
set of the garbage collector when garbage collecting A is about the size
of A plus the very end of TO space for each area that A is cabled to (if
it is currently being garbage collected) plus the very end of A’s own TO
space. Contrast this to Bishop”s scheme in which the working set of the
garbage collector is the combined size of all of the areas transitively

cabled to the area being garbage collected.
3.4.4 The Garbage Collection Algorithm

This section describes the procedure for garbage collecting a
storage area A. This algorithm does not contain any synchronization to
handle parallelism because the parallelism present is only

pseudo-parallelism, This issue will be returned to below.

- 113 -

e - B e

e ——— TN

First TO space 1is created as previously described. All incoming
cables to A now have their gc-~in-progress flag set to true. For each
outgoing cable from A, associate a flag was_gcing that is now set to
true only if the area that A is cabled to is currently being garbage
collected otherwise it is set to false. This flag will be used by A to
correctly set the gc-in-progress flag in this cable when the garbage

collection of A finishes.

The garbage collector of A now moves all objects accessible
through inter-area links and from ROOT to the lower part of TO space.
These, in conjunction with the objects being moved by cabled areas being
garbage collected 1in parallel, define the roots of the graph of
accessible objects. The garbage collector now sequentially examines
every object in the lower part of TO space. For each such object it

examines all of the pointers, call one of them P, in that object.

If P refers to an object in FROM space then that object is moved
to the lower part TO space. The copy in FROM space 1is marked as
"forwarded" and its address in TO space stored in the old copy. Finally
the pointer P is changed to refer to the object’s location in TO space.
If P refers to an object that has been forwarded, P is updated to refer
to its new location. 1If P refers directly to an object in TO space,
nothing need be done. If P refers directly (i.e. not through a link) to
an object that is in another storage area, call it B, and if B is being
garbage collected, P is handled as above except that TO/FROM space are

B’s and not A’s, 1If B is not being garbage collected then nothing need

- 114 -

= v

be done. If P refers to a link in FROM space, a copy of that link is

created in TO space and P modified to refer to 1.1

The garbage collector continues examining objects in TO space
until all gc~in-progress flags in all incoming cables to A have been set
to false so as to ensure that parallel garbage collections have marked
all accessible objects in A. All outgoing links from FROM space are
then removed from other area’s lists of incoming links since they are no
longer needed by A. Once this is done, all of the objects remaining in
FROM space are known to be inaccessible so FROM space may be destroyed.
This collects the storage consumed by unused objects, including
inaccessible links, into one free area at the end of the upper end of TO

space

At this point, for each outgoing cable C from A to B, the garbage
collector sets C.gc-in-progress to C.gc_in_progress and not C.was_gcing.
This ensures that C.gc_in_progress is set to false only if all objects
in B that are directly referred to by objects in A have been marked. 1In
particular, if B began a garbage collection after A began its garbage
collection, there may be objects in B that are accessible from A but

have not been marked (recall that A will only mark objects if the target

1. The garbage collector can cause references from A to share links by
checking for the existence of this link in TO space before creating a
new one and using the old one if it exists, This results in greater
storage utility in A at the expense of additional complexity in the
implementation.

- 115 -

Opee n.

area 1s beging garbage collected). The algorithm is summarized in

Figure 3.3 and given in more detail in Appendix B.

The algorithm is pseudo-parallel in that one or more cycles of the
garbage collector, a cycle being an execution of steps 7a and 7b, occur
on each reference to A. However, a step of no other garbage collector
can run while a step of this garbage collector is running so long as the
implementation prevents interrupts from occurring (recall that a
uni-processor implementation of AESOP has been assumed). The
pseudo~parallelism occurs since after a few cycles of the garbage
collector are run, references by user’s programs are executed, which may

result in running a few cycles of the garbage collector in another area.

3.4.5 Initiation of Garbage Collection

This algorithm does not specify when to initiate the garbage
collection of a storage area. Garbage collection of an area A will be

initiated in five ways.

First, a garbage collection will be initiated when an attempt to
create an object fails due to lack of storage. This is an undesirable
technique if it is the only one used since processes may experience long

delays 1f a creation triggers a garbage collection.

Second, as proposed by Bishop, the system can measure the
creation/deletion activity in A and initiate a garbage collection when a

threshold 1is reached. A properly chosen threshold value will minimize

- 116 ~

The procedure to garbage collect storage area A.

1. If area A does not have a TO space associated with it, create one of
the same size as A.

2, Set all gc_in_progress flags in incoming cables to A to true.

3. For each outgoing <cable C from A, set C.was_gcing to
C.gc_in_progress.,

4. Move all objects referred to by incoming links to TO space, leaving a
forwarding pointer to the object’s new location in its old location
in FROM space.

5. Repeatedly perform step 6 until all incoming cables have their
gc_in progress flags set to false and all objects in lower TO space
have been examined.

6. Examine the next object in lower TO space and for each pointer, P, in
it perform steps 7a and 7b.

7a. If P refers to an object, including a link, in A, ensure that the
object is in TO space, leaving behind a forwarding pointer in FROM
space, and update P to refer to the object’s new location.

7b. If P directly refers to an object in another area and if that area
is being garbage collected, perform step 7a using that area’s FROM
and TO space.

8. Remove all links in FROM space from the lists of incoming links to
areas.

9. FROM space now contains only free storage and may be destroyed.

10. For all outgoing cables C from A, set C.gc_in progress to
C.gc_in_progress and not C.was_gcing.,

Figure 3.3. The AESOP garbage collector.

- 117 -

iR S e, A

TR R s s

unnecessary garbage collection activity while also eliminating delays to

programs due to garbage collections.

Third, a garbage collection 1in all areas cabled to A will be
initiated whenever a garbage collection of A is begun. This causes the
garbage collection of A to finish as soon as possible and, to the extent
that the subsystem model of use is true, causes areas of maximum garbage
to be quickly garbage collected since areas with outgoing cables are

more active.

Fourth, the implementation can spontaneously initiate garbage
collections on storage areas when AESOP is likely to be 1idle for a
while. This allows garbage collection to impact the user of AESOP 1in a
minimal fashion, To provide this feature AESOP needs a new interface to
permit the user to say "I will not be needing the machine for a few
hours". Such a change to AESOP is easily made. It 1is yet another
example of a particular implementation of AESOP desiring specific

architectural features.

A fifth possibility is to garbage collect all areas at all times
as proposed by Baker. This has the advantage that AESOP will never
pause to complete a garbage collection. It is rejected as the general
policy since it results in unacceptably low storage utilization (at most
507 due to the presence of a TO space for all storage areas at all
times). Instead, only those areas that have an integral TO space (i.e.

LCA’s) will be constantly garbage collected. Since these areas generate

- 118 -

garbage rapidly, this should keep processes from having to pause for a

garbage collection on their LCA to occur,

3.5 Object Creation and Deletion

Running programs will request the creation and deletion of
objects. The program must specify the storage area 1in which a newly
created object is to be placed. When an object is deleted, its storage
is returned to the storage area the object belonged to. This section

discusses the implementation of object creation and deletion.

3.5.1 Object Deletion

Objects are deleted and their storage reclaimed by one of two
means: the garbage collector may determine that the object is no longer
referenceable and thus its siorage is no longer needed or the user may
perform a delete operation on an object. The garbage collector case is
easy. When the garbage collector determines that an object is no lounger
accessible, all of the storage used by that object is returned to the
free storage pool implicitly during the garbage collection process when

FROM space is destroyed.

AESOP allows the user to explicitly delete individual objects and
to delete objects implicitly by deleting all of the objects in a given
storage area. When an object is deleted there will, in general, still
be outstanding references to that object. The system is responsible for
invalidating those references. Moreover, the implementation should make

an effort to utilize storage freed as a result of these operations

- 119 -

P s il

i-

available as soon as possible since one of the prime motivations for

including delete operations in AESOP was to regain the use of storage

quickly.

When an object 1is deleted in an area A, the implementation will
mark all of the storage associated with that object as free except for
its first word. This is done by first incrementing a counter of the
amount of free storage in A, total_free_yords, by the amount of freed
storage and then placing the freed storage on a list of free storage
that A maintains. The first word of the object is be marked as
"deleted" and any further attempts to reference the now deleted object
will result 1n.the raising of the unexpected_deleted_operand exception.
Thus the first word serves as a tombstone for the deleted object. The
storage occupied by the tombstone 1is later reclaimed by the garbage
collector for A. Whenever the garbage collector notices a reference to
a tombstone, that reference is changed to say "deleted". Thus after a
garbage collection is complete the storage occupied by the tombstone is

reusable since there will be no outstanding references to it.

3.5.2 Object Creation

When an object is created some storage must be allocated to hold
that object. The AESOP implementation is responsible for allocating
that object within a storage area; the user 1s responsible for choosing
which storage area it should be allocated in. This occurs since AESOP
has taken the point of view that users may be interested about storage

allocation in the large (i.e. deciding which objects belong in which

- 120 -

¥
%
1
:

storage areas) but they have no desire to participate in storage
management in the small (i.e. the placement of objects within a storage

area).

Numerous storage allocation strategies have been proposed in the
literature and their performance analyzed. The strategy chosen for the
implementation of AESOP must satisfy two criterion. First, the CPU time
required to perform an allocation must be small. 1If allocations were to
take a long time to perform, system performance would suffer due to
their frequent occurrence. Second, the allocation strategy must not use
large amounts of storage for bookkeeping purposes. Since there will be
large numbers of potentially small objects, a large overhead will
degrade memory utilization to an unacceptable extent. Any algorithm

that meets these two goals will do for an allocation strategy.

At any given time, the storage in an area A looks like that in
Figure 3.4. The partially allocated area contains both allocated

objects and, on the free list, the storage returned by the explicit

Free Area

Pointer
Partially Free
Allocated Storage

Storage

Storage Area A

Figure 3.4. The storage within a storage area.

- 121 -

R AR U O

F—'—-————"————'_‘

deletion of objects. Allocatlion of objects can take place either in the
free area or by taking space from the free list. To allocate an object
in the free area it is only necessary to remove an appropriate amount of
storage from the free area by moving the free area pointer. To allocate
storage from the free list, that list is searched for a suitably sized
free area which is removed from the list. The object is then created in

that area and any excess storage returned to the free list,

If the free area is not large enough to contain the new object,
and if no suitably sized area is found on the free 1list, then, in
general, a garbage collection must be performed on A to collect all of

the free area in A into one contiguous area so that the allocation may

be retried. 1f total free_words is at least as large as the size of the
object to be created, a new garbage collection cycle is initiated, the
new object allocated at the end of TO space and total free words
decremented by the size of the new object. The situation after this

allocation will be as in Figure 3.5. This is guaranteed to work since

the garbage collection will produce a compacted free area at least of
size totay_freg_WOrds at the end of TO space. It may, in fact, be E%
larger due to collected garbage. If, on the other hand, the size of the !
new object would be greater than total free words, the allocation !
request can not yet be granted as there is no guarantee that sufficient ‘
free storage exists in A to satisfy the request. There may, though, be -

sufficient free area to satisfy the request once the area is garbage

e T

collected. The implementation at this point has two choices. It can

refuse the allocation by signalling an error, say

- 122 -

Free area

Pointer
Partially Free
Allocated Storage
Storage

Storage Area A, FROM space

Free area
Pointer

New Free Storage
Object

Storage area A, TO space

Figure 3.5. A storage area being garbage collected

insufficient_space now, in which case the program may try aga}g,iateqﬁ
Alternatively, the implementation may wait until the next garbage
collection cycle terminates and try the allocation then. The allocation
may fail then since, due to the use of storage areas by parallel
processes, even if there is sufficient free storage (including the
garbage of the area) when the garbage collection is initiated, there is
no guarantee that it will be there when the garbage collection
terminates since those parallel processes may create objects and thus

use some of the free storage. This last occurrence will be rare since

- 123 -

it will only occur when an area is very full.! This implementation
makes the second choice since it succeeds in most cases. If, just after
the garbage collection terminates, the allocation can not be performed,

an error 1is returned to the requestor,
3.6 Multi-Area Cycles of Garbage

The garbage collection algorithm just presented does not discover

all of the garbage in the system even if all programs in AESOP are

stopped and an infinite number of garbage collections performed. To see

this, consider Figure 3.6 in which the only accessible objects are ROOT,

A and B. However a garbage collection of S1 will find that A and C are
both accessible while a garbage collection of S2 will find that B and D 3
are accessible. Thus neither C nor D will ever be considered garbage

and thus have their storage reclaimed. In a long running system such

ROOT ——p» A » B

Storage Storage
Area Sl Area S2

Figure 3.6. An example of a multi-area cycle of garbage.

1. Since full areas will tend to be constantly garbage collected,
their presence will degrade system performance. Since users want good
performance, nearly full storage areas should occur only rarely.

- 124 -

B

reclamation 1s vital. Since the garbage collection algorithm of this
thesis is based upon Bishop’s work, it 1is reasonable to ask how he
solved the problem. Bishop solved it by associating a directory with
every storage area. The directories, as a group, are the roots of the
graph of accessible objects in the system and can be used, as shown by
Bishop, to eliminate inter-area cycles of garbage in a simple and
elegant manner. This scheme 18 not applicable to AESOP since there are

no directories provided by AESOP.

An algorithm to reclaim multi-area cycles of garbage must take
into account how frequently such cycles occur in order to limit, 1if
possible, *he complexity of the algorithm. This thesis assumes that
long term inter-area cycles of garbage are rare. This comes from the
following consideration: storage areas are generally either temporary or
are long term. An inter-area cycle of garbage 1involving a temporary
area 1is unimportant since the cycle will be broken when the temporary
area is destroyed. Objects in long term storage are probably part of a
file system and cycles in fiie systems probably only occur as a result
of entries 1in directories and such loops will be broken when the
directory entry is deleted. The remaining inter-area cycles, which are
the ones of interest, should be rare so that the detection of inter-area
cycles of garbage need not occur rapidly. Since they are rare, it is
inappropriate to devote large amounts of resources to discovering them,

Thus a scheme with low overhead is desired.

- 125 -

Inter-area cycles of garbage 1in AESOP will be detected by
performing a mark/sweep garbage collection of the entire system. The
system-wide mark phase may- take a long time to complete since it
requires all storage areas to be individually garbage collected at least
once. Since storage areas are garbage collected at varying rates, this
may take a long time, However, due to the assumed rarity of cycles,

this is not be a problem. The sweep phase occurs by making one, linear

pass over all of storage, reclaiming all unmarked objects.

The algorithm starts at ROOT and marks all objects accessible from
ROOT. It then recurses through the logical memory until all objects
have been marked at which point unmarked objects will be reclaimed.
This algqrithm is unique in that no stack is used, nothing is done to
make the system unusable while the garbage collection is in progress and
it employs no centralized control mechanism. Instead, a distributed
control algorithm, distributed in the storage areas, is used in which

each storage area keeps two additional bits of information as state.

Associate with every object a single bit, its mark bit, that tells
vhether the object 18 accessible from ROOT. With every storage area
associate two bits, ITID (for I Think I’m Done) and rescan. An area
turns on its ITID flag when it thinks that all accessible objects in it
have had their mark bit turned on. The rescan flag is turned on by
other areas to indicate that the area needs to be rescanned for
accessible objects before its ITID flag can be turned on. In addition,
there are two global (system wide) flags: global gc that indicates that

a mark/sweep garbage collection for inter-area cycles is underway and

- 126 -

r—

gc_sweep that indicates when the sweep phase of the mark/sweep garbage
collection is underway. What follows is a high level discussion of the

basics of the algorithm. Appendix B should be consulted for complete

details.

While an area 1is being garbage collected, whenever an object is
moved to TO space its mark bit is turned on if it was already on or if
it was referred to from an object whose mark bit was on. This results
in the mark bits propagating through the graph of accessible objects.
The ITID flag is turned on by an area whenever it finishes its garbage
collection so long as its rescan flag is off. The rescan flag is turned
on for an area A and its ITID flag turned off if a previously unmarked
object in TO space is marked and the garbage collector for A has a.ready
scanned that object and traced its references. This ensures that all
objects in an area are marked correctly before terminating the mark
phase. The mark phase ends when all ITID flags are turned on. At this
point the global sweep flag is turned on to allow all unmarked objects
to be reclaimed and their storage added, in its entirety, to it’s area’s
free list (i.e. a tombstone is not left behind as there are known to be
no valid references left to this object). This sweep can occur without
stopping AESOP since it only touches inaccessible objects. The
following twc points are also important:

1. A newly created object O should have O.mark set to
the value of global_gc at the time that the object
is created.

2. When garbage collecting an area, if global sweep is

true, pointers from objects with their mark—flag off
should not be followed.

- 127 -

4

The first ensures that objects created after the initiation of a global
mark/sweep do not have their storage accidently, and incorrectly,
reclaimed. The second speeds up the reclamation of storage since
objects known to be 1inaccessible from ROOT (i.e. objects that do not
have their mark bit on) are not traced from. This is the basics of the
algorithm, Appendix B contains the complete algorithm and integrates it
into the basic AESOP garbage collector. It also contains an argument as

to why 1t terminates correctly.

This algorithm adds some complexity to the garbage collection
algorithm used by each storage area in order to handle mark bits but
this is a small burden, especially when implemented in hardware, since

it just involves setting some bits in objects and in storage areas.

3.7 A Stack Mechanism for Local Name Spaces and Control

Control flow within a process follows a strict stack discipline
(i.e. the call/return paradigm) indicating that a stack implementation
of control 1is optimal. The LNS for a procedure activation is, in
essence, the stack frame for that procedure so a stack mechanism for
local name spaces would also seem to be ideal. Integrating stack
allocation of local name spaces in the stack oriented control flow would
be the best of all possible worlds. Unfortunately, an LNS 1is an object
and, as such, arbitrary references to an LNS may be stored within AESOP,
Such references are used, for instance, in creating closures to meet
various language needs as discussed in chapter five. The ability to

freely copy references makes a stack orilented deallocation scheme

~ 128 -

K a3

kit A

potentially unsafe since, when the stack algorithm says to deallocate
the LNS, there may still be outstanding references to the LNS. Leaving
behind a tombstone in the stack is unacceptable as it would prevent the
stack from easily growing again. However, this section shows how the
stack allocation of local name spaces can be made to work correctly and

efficiently,.

When an AESOP process is created, a default storage area lis
specified. That storage area will be used to hold the stack for the
newly created process by reserving a portion of it for the stack and
using the remainder for allocating objects. When a procedure is called,
an activation record is pushed onto the stack followed by the newly
created INS. The activation record contains the address of the calling
instruction (a code segment and an offset within that code segment), a
back pointer to the previous activation record and a specification of
the GNS of the caller (to permit restoring the callers environment upon
return). The activation record is followed by a pointer (initially
null) to an LNS tombstone (to.be described later), and, finally, the

ILNS. Figure 7 shows the possible configurations.

In deallocating an LNS in a stack manner it is necessary to ensure
that no references to the INS remain after it is deallocated. To do
this in an optimal manner is probably hopeless; instead the common cases
will be covered here. This algorithm notes that the initial situation,
in which an INS refers to itself as a result of the procedure call
mechanism, 1is safe and then notes some safe transitions from safe

gstates.-

- 129 -

Code Instruction | Back GNS Ref. to LNS
Segment Offset Pointer Spec. | an LNS
Tombstone

Basic format of an activation record

Code Instruction Back Null

Ref. to LNS
Segment Of fset

Pointer | Ref. | an LNS
Tombstone

The result of proc$call or a type manager call.
(the caller’s GNS is the same as the called procedure’s)

Code Instruction | Back GNS

Ref. to LNS
Segment Offset Pointer

ref.| an LNS
Tombstone

The result of a proc$call with gns call.

Code Instruction Back GNS

LNS
Segment Offset

Pointer ref. ref.

The result of a closure$run operation

Figure 3.7. Formats of an activation record.

If a reference to an LNS 18 copied within that LNS, no problem

results since the new reference disappears when the LNS is deallocated.

A reference to an LNS may also be placed into a closure. This is safe

8o long as the closure is only known in that LNS.

- 130 -

The LNS (or a closure referencing it) may also be passed as a
parameter. This 1s safe so long as the reference to the original LNS
does not 1leave the newly created LNS. Applying this argument
recursively, it can be seen that so long as references to an LNS stay
higher in the stack! than that INS, no problems result, Also, 1if a
reference to an INS should get into a closure then everything is safe so
long as that closure is only known higher in the stack than the LNS it
refers to., It is claimed, based upon the examples of using AESOP that
are presented later in this thesls and upon consideration of the ways in
which languages generally need to treat naming environments, that the
vast majority of all references to local name spaces will fall into one
of these categories. Thus an implementation that traces these safe

transitions will greatly aid performance.

In consideration of the arguments of the last paragraph, every
object reference contains a stack reference flag that, when on,
indicates that this object reference is to an entity associated with the
stack allocation of 1local name spaces and so should be treated
carefully, Whenever an attempt is made to copy such a reference other
than within an INS or as‘part of the procedure call mechanism, the

algorithm in Figure 3.8 should be executed. The result might be as in

Figure 3.9.

1. A reference is higher 1in the stack if the LNS it resides in was
created after the INS that it refers to. That 1s, 1its procedure
activation is more recent.

- 131 -

W,

AT o vy S O

o £

1. Let OR be the object reference in question and O the
target of the copy operation.

2. If 0 is an INS and OR refers to an INS (either
directly or indirectly through a closure) no higher
than O in the stack then return as no further action
is needed.

3. If 0 is a closure that is being created then create
it, set the stack ref flag on in the reference
returned by closure$create and return.

4, At this point, OR is moving to a place which may
result in a dangling reference when the referenced
INS 1is destroyed. Thus drastic action 1is called
for.

5. Create an "INS tombstone" for the LNS referred to by
OR off of the stack, if not already created. Place
a forwarding pointer to it in the LNS tombstone
reference field in the activation record
corresponding to the referenced LNS. Mark the
tombstone as '"forwarded" and place a reference to
the INS in it.

6. If OR refers to an LNS, update it to refer to the LNS
tombstone for that LNS.

7. If OR refers to a closure, update the LNS reference

in the closure to refer to the LNS tombstone and set
OR‘s stack ref flag off.

Figure 3.8. The algorithm for handling the stack of LNS’s.

A number of remarks about this algorithm are in order. This
algorithm looks for the movement of references to local name spaces to
places where a stack oriented deallocation for those local name spaces
might result in errors. At that point, a forwarding pointer for the LNS
in question is made out of the stack. The reference leaving the stack
then refers to this tombstone and will be forwarded to the correct LNS

when used. When the procedure corresponding to that LNS returns, the

- 132 -

TG+ ki

1

Any vector

LNS \ "Forwarded"

GNS INS tombstone
Spec.

Back
Ptr.

Code
Seg.

The LNS
stack

Figure 3.9. An INS reference moved from the stack

Foo-—

tombstone is found and marked '"deleted" so that all remaining references
to that INS will fail. Meanwhile, the stack area is uncluttered by the
tombstones that would adversely effect a stack allocation strategy.
Also, tombstones for an INS are only created when needed so that the

remainder of the area containing the stack remains uncluttered from this

source,

- 133 -

V2

v C

It should be noted that this algorithm is suboptimal. Consider
Figure 3.10 and suppose that it depicts all references in AESOP. As it
stands INS! can be safely deallocated in a stack manner. Now suppose
that the procedure executing in LNS2 does V(P) := LNS2(1) and then
returns. The above algorithm will cause a tombstone to be created for
INS1 off of the stack even though that 1is unnecessary since V {is

inaccessible once INS2 is returned from, Thus the algorithm is not

optimal.

There is one remaining question concerning this algorithm - how
can the creation of a tombstone in step 6 be guaranteed to always be
possible? Could it not occur that there is insufficient free storage in
the storage area containing the stack to permit the copy? When an
activation record is pushed onto the stack, reserve enough free storage
to create an LNS tombstone by decrementing total free_words for the

storage area countaining the stack. Now when an attempt is made to

3
LNS2 .
2 —_— .
1 | .
3 P
LNS1
2 .
l £]
< .
INS Stack Vector V

Figure 3.10. An example of suboptimality.

- 134 -

N T

o™ e ST, SRS

e W TR

create the tombstone for the LNS, it must succeed, perhaps after a
gartage collection, since storage has been reserved for it. When the
procedure returns, 1if no tombstone has been created, the storage

reserved is returned to the free pool by incrementing total free_words.
3.8 Conclusions

This chapter has described a 1logical storage management
implementation that could be used in an implementation of AESOP. The
management of the logical memory, the memory that containe the AESOP
objects and the unused storage in AESOP, is done in terms of the storage
area mechanism using the hypothesized acress patterns of the subsystem

model to improve performance.

Garbage collection proceeds on a per-area basis. Inter-area
references that effect the garbage collection process are handled either
by inter-area links, which have little effect on the garbage collection
process, or by garbage collecting areas that are cabled to the area
being garbage collected. This multiple garbage collection is not an
impediment to efficient system operation since areas with outgoing
cables tend to need to be more frequently garbage collected due to their
higher rate of activity under the subsystem model. This mechanism is
similar to that proposed by Bishop but differs in that a real-time

garbage collector is incorporated.

The problem of multi-area cycles of garbage has been addressed by
designing a mark/sweep garbage collection algorithm. This algorithm is

new in that it employs no centralized control and occurs during normal

- 135 - ‘

i
i
é

system operation. It has been designed to cost little by being made

part of the basic garbage collection mechanism within storage areas.

Finally, this chapter has shown how local name spaces can be
created and destroyed in an efficient and safe manner. This means that
the frequent use of procedures in AESOP is not an impediment to

efficient operation.

- 136 -

e e v -

{
’
t.
b
i
!.

Chapter Four

Other Issues in Implementing AESOP

Chapter three has given an overview of the 1issues involved in
implementing AESOP and discussed the management of the logical memory
defined by AESOP. This chapter discusses the remaining issues
associated with implementing AESOP: managing the physical resources
underlying the AESOP implementation (especially memory) and implementing

AESOP’s basic types.

This chapter first describes the hardware assumed to underly this
implementation of AESOP. Next, the format of object references is
discussed., Object references must be small so as to minimize space
wastage within them since they make up every AESOP object while, at the
same time, must be large enough to permit referring to any AESOP object.
The problem of managing the physical memory wunderlying AESOP is
discussed next. The approach taken here is to treat the actual AESOP
memory as a paged, virtual memory. The problems associated with
allocating physical storage to storage areas are discussed next. This
implementation allocates contiguous blocks of secondary storage to
storage areas so that the problem of memory fragmentation is of concern.
Next, the implementation of AFSOP’s basic types 1is discussed. Most of
the basic types are trivial. The 1o type manager is discussed at length
since its implementation allows I/0 devices to interface with an AESOP

system. The storage area type manager {s {mportant since it embodies

- 137 -

¥
i
'[.

IR 3

v v g 4

o R I I

the logical storage algorithms. The process type manager is discussed

to show that AESOP processes can be provided cheaply. Finally, some of
the ways in which special hardware, such a&s assoclative memories, can

improve the performance of an AESOP processor are discussed.

. |

4.1 Fundamental Hardware Assumptions g
14

This implementation of AESOP 1is based upon a single, central Q
processor that manipulates a passive primary memory and a passive i
secondary memory. The memories are passive in that they only store data E

and do not provide other facilities.!

The processor is specially designed to implement the semantics of

AESOP as defined in chapter two. The processor is responsible for

managing both the multi-level physical memory and the logical memory

defined by AESOP. 1In general, it is responsible for using the physical

memory, a collection of uninterpreted bits, to create the object memory

defined

|

!

f

by AESOP and for providing the facilities for manipulatiag that !

i

memory. ‘
|

Primary memory will consist of some quantity of 32 bit words.
This word size been chosen to be large enough to meet the perceived
addressing needs of AESOP while being small enough so that the overhead

of one object reference stored per word is not onerous. The actual

1. Later in this chapter it will be seen how some simple relaxations
of this assumption lead to more efficient implementations of AESOP.

- 138 ~

quantity of primary memory will vary from machine to machine and will be

chosen to provide adequate performance for a particular user.

Secondary memory will consist of one or more large capacity
devices such as disks or bubble memories. The amount of secondary
storage will vary from one machine to the next; the only assumption is
that there is sufficient secondary memory to meet the user’s needs. The
most important characteristic of secondary memory is its relatively slow
access time relative to primary memory access time (25 or more
milliseconds for accesses to a disk versus a microsecond or less to

access primary memory).

1/0 devices are attached to AESOP through the central processor.
The processor cooperates with those devices to meet the semantics
defined in chapter two, i.e. to allow the device to manipulate event
counts and bit vectors provided by the programs using those I1/0 devices
and to allow programs to access and manipulate a device’s status

registers,

The entire system has the configuration shown in Figure 4.1.
Alternative hardware configurations involving multiple processors are
possible. However, such configurations increase the complexity of the
AESOP implementation since there 1is now parallelism within the
implementation. The configuration chosen here permits the critical
issues of implementing AESOP to be examined without the need to consider

the irrelevant issue of parallelism.

- 139 -

1/0 1/0 cee 1/0
Device Device Device
Central
Processor
Primary Secondary
Memory Memory
---- = a data path.

Figure 4.1. The basic hardware configuration of AESOP.

4.2 Object References

Almost all objects in AESOP consist of a sequence of references,

called object reference, to other objects. As such, it is advantageous

to have all object references physically represented with entities that
are all the same size to allow efficient random access to the references

within an object. The object references must be small in order to

minimize memory wastage within them (e.g. a 64 bit reference to a

boolean wastes 63 bits) but large enough to allow for a suitably large

space of objects since every object reference must be large enough to be

able to refer to any object within AESOP.

- 140 -

=

o —

This implementation of AESOP assumes that a physical address space
of 229 object references (approximately 500 million object references)

is a reasonable upper bound on the size of the logical memory needed in

most uses of AESOP, given that it is a personal computer. Object

references are implemented in 32 bit words since, as will be seen below,

this allows references to some built-in objects to be efficiently

encoded while also allowing references to any other object within this

address space of 229 object references.

Object references may refer to the various built-in objects in the
system (the built-in type managers, integers, characters and booleans).
Some of these objects are immutable and their state small enough to be

encoded within an object reference itself so that space and time

efficiency are increased. Te do this, the high order bit of every
aobject reference is reserved for a tag bit that indicates whether that

object reference is to one of these special items or is to some other

object.

If the object referenc= refers to one of these special items, the
tag bit is turned off and the remaining 31 bits of the object reference
are used to encode that special item as shown in Figure 4.2, 1In this
way these objects are represented in the references to the objects so
the objects themselves require no storage. Also, references to deleted

objects are represented in the object reference itself allowing for the

reclamation, as seen in chapter three, of the tombstones left behind

deleted objects.

- 141 -

<"01"b, a 30 bit integer> a reference to the given integer
<"000'"b, an 8 bit character> a reference to the given character
<"0010"b, a single bit> a reference to the given boolean
<"p011"b, data> for a reference to a built-in type manager or for

special object references. The field data is interpreted as

follows:

Value Reference interpreted as:

0 a reference to the boolean type manager
1 a reference to the character type manager
2 a reference to the closure type manager
3 a reference to the code segment type manager 5
{

4 a reference to the event count type manager l
5 a reference to the integer type manager i
6 a reference to the io type manager E
7 a reference to the null type manager a
8 a reference to the object viewer type manager i
9 a reference to the procedure type manager
10 a reference to the process type manager !
11 a reference to the sequencer type manager
12 a reference to the storage area type manager ;
13 a reference to the type manager type manager ‘
14 a reference to the vector type manager
15 a reference to a deleted object
16 a reference to nil

Figure 4.2. The format of special object references.

- 142 -

A reference to some other object is indicated if the tag bit is
on., In this case the remaining 31 bits of the object reference are the
29 bit address of an object (i.e. a reference to the storage
representing the object) and a two bit type_ref field. These objects
require representation in memory for two reasons. First, their state is
too large to be represented within a 32 bit word. Second, and more
importantly, these objects tend to be mutable so that encoding their
state in the object reference is hopelessly inefficient - changing the
state of such an object would 1involve finding and wupdating all

references to the object.

As will be seen in the next section the home of objects 1is on
secondary memory, primary memory is just a cache for objects. The 29
bit address in the object reference must name this object by, in
general, naming its home. There are two ways of doing this. First,
this address could be the secondary storage address of the object’s
home. The second possibility is to have this 29 bit address be an index
into some indirection table. This implementation of AESOP will use the
first scheme to avoid the overhead and complexity involved with using an
indirection table. The penalty for this is that the allocation of

secondary memory becomes a little tricky, as will be seen later in this

chapter.

The type ref field in the object reference indicates whether the

object reference is:
1. A simple reference into the storage area containing
the reference.
2. A reference to an object associated with the stack
allocation of LNS°s in the storage area containing

the reference.

3. A reference through an inter-area link to an object
in another stourage area.

4. A direct reference to an object in another storage
area that is cabled to the storage area containing
the reference.
This field allows for the correct handling of the stack allocation
strategy for local name spaces by allowing the simple detection of
references to objects associated with that strategy. This format also
allows an object reference to indicate that it refers to an object
outside of the referencing area, making it immediately known whether or
not an inter-area link or cable must be checked for when copying an
object reference. In addition, it permits the garbage collector to
discriminate between references through links and direct references to

cabled areas.

Note that this second format for object references does not allow
for type information in the reference itself, Thus, since AESOP
strongly types objects, it is necessary to place the type of the object
with the object itself. To accomplish this, every object in AESOP will
be prefixed by a header giving the type of the object. 1In addition, the

header will hold the per-object mark bit needed in the global mark/sweep

- 144 -

T

e N

e N R e 2

P T YT

A — | A P

garbage collection of chapter three as well as auy other object specific

information, such as the length of vectors, that is needed.

This format of object references has the advantage of being
relatively short (only 32 bits are required) while still allowing for
the space efficient encoding of some built-in objects and providing for
the efficient handling of inter-area references. The intecrpretation of
these object references might be difficult in a software implementation
of AESOP but is trivial in a hardware implementation. In either case,
the good points of these object references outweigh any implementation

difficulties.
4.3 Allocation of Physical Storage to Storage Areas

Storage must be allocated for storage areas whenever a new storage
area is created or an old area requires creation of TO space as part of
garbage collection. This storage must occupy contiguous segments of
address space since the logical memory management algorithms of chapter
three have assumed that consecutive words in a storage area have
sequential addresses. This implementation will use the physical
secondary memory address space as this address space. That is, storage

areas will occupy contiguous segments of secondary storage.

An alternative to contiguous allocation 1is to allocate storage
areas in a paged, virtual address space. This has been rejected for two
reasons. First, this layer of mapping takes time to perform and can
only adversely affect performance. Second, the mapping table consumes

large amounts of valuable storage. For instance, if pages are 256 words

- 145 -~

long, the 229 size address space requires about two million page table

entries - a large overhead for a personal computer.

Since storage areas are full fledged objects in AESOP, the
algorithms of chapter three are directly applicable to
allocating/reclaiming the storage of storage areas if all of secondary
storage 1is regarded as a single storage area with the other storage
areas considered as the objects residing i.. that single large storage
area. To apply them, though, requires dedicating half of physical
storage to FROM space and the other half to TO space. This results in
at most 50% utilization of secondary storage which 1s unacceptable.
Inst ad, classical dynamic storage allocation techniqes for variable

sized blocks (e.g. first fit, best fit and buddy systems) will be used.

Dynamic storage allocation algorithms have the problem of external
fragmentation - as storage areas are created, destroyed and moved (as a
result of garbage collecting an area), the free storage in the system
becomes fragmented into small pieces and may result in the situation
where the total free storage in the system is large enough to satisfy an
allocation request but no single free storage area is large enough to
satisfy the request. This would stop the requesting process until the
pattern of secondary memory usage permitted the allocation - potentially
a long time. However, Knuth has discovered[24] that, in practice, this
is not a problem. A storage allocator that is in equilibrium (i.e. the
same number of bits are being created and destroyed each second) is
expected to run forever so long as the allocated objects are no larger

than 102 of memory size. Memory utilizations of 90% are possible in

- 146 -

— e i e ey
’vqmo«w»fwmiuw"ﬂ'm o clioh e odioes s

A T

e S e

this case. As a result, so long as the user of AESOP does not create
storage areas that are too large, it is hypothesized that the only
complete solution to external fragmentation, dynamic storage compaction
in which storage areas are moved so as to collect all of free storage
into one contiguous area, is unneeded. Instead, if AESOP should ever
need to perform compaction, this implementation of AESOP will stop
executing all AESOP programs and perform a simple compaction of
secondary storage by moving all storage areas to one end of secondary
memory. This movement is easy to perform since it will be the only
activity in AESOP at that time.1 Due to its rareness, the fact that
this approach stops the system is acceptable. It should be noted that
this particular implementation of AESOP could be modified, at a
considerable increase in complexity, to perform this compaction
dynamically. This has not been done here due to its great complexity

relative to its expected frequency of use.

A storage area may be destroyed, and its storage returned to the
free pool of secondary storage, by a storage_ area$destroy operation or
it may be garbage collected when there are no references to objects
within the area and no references to the area itself. A garbage

collected area is destroyed by returning all of its storage to its

l. This compaction might also be done when the user says that the
system will not be used for a while. The ability to say this was
proposed for AESOP in chapter three.

- 147 -

DRI 2 g m ST SN LT AP Y R

5,

T S T,

e

s s

S,

-
&

o

. oug ol

o TR

e -

parent as a credit and returning the storage used by that area to the

free pool.

There are two possible ways to implement the storage_ area$destroy
operation on an area A. First, all objects in A as well as A itself can
be marked as deleted. As garbage collection occurs in other areas, all
references to these will disappear. Eventually, they will all be
garbage collected. This method is simple but does not return storage
immediately. Alternatively, at the time that A 1s destroyed, all
references to A or the objects within A can be found and marked as a
reference to a deleted object by modifying all links to A and linearly
scanring all areas cabled to A. After this, A’s storage may be returned
to the free pool as there no longer any references to it. This method
results in fast reclamation of storage at the expense of some delay
before the qperation returns. The second method is chosen here because
a primary purpose of the delete operation is the rapid reclamation of

storage.
4.4 Physical Memory Management

Chapter three has discussed the management of AESOP’s logical
memory. The previous sections have defined object references to contain
a 29 bit secondary storage address of objects and discussed the
allocation of secondary memory resources. This section will discuss the
manner in which the address in object references is used to find the

actual object and how the primary memory of AESOP is used to give

-~ 148 ~

RS TN L T

. W

reasonable efficiency. In essence, this section discusses a virtual

memory mechanism for the AESOP implementation.

Given the 29 bit secondary storage address of an object, the
implementation must find the contents of the object. The simplest
approach is to always go to the specified secondary storage location,
retrieve the object and, if necessary, modify it and immediately write
it back to secondary storage. Since secondary memory is slow, and there
do not appear to be any technologies that will change this, this would
result in a hopelessly slow implementation of AESOP., Instead this
implementation will use primary memory to encache objects likely to be
referenced in the near future. Thus the problem of migrating objects
between primary and secondary memory arises, This implementation takes
the traditional approach of encaching the most recently used objects in

primary memory, i.e. no prediction of future references is attempted.

There are two approaches to managing the physical memory: an
object based one and a page based one. An object based scheme would
bring an object into primary memory whenever referred to. This has the
advantage that only those objects known to be needed are brought into
primary memory so that I/0 traffic to secondary memory can be minimized
and greater primary utilization is, at first glance, possible. It has
the disadvantage that a large amount of bookkeeping is needed to keep
track of which objects are actualiy in primary memory and where they are
in primary memory. This approach has been‘investigated by Snyder[47].
In a page based scheme momory is divided into contiguous blocks called

pages. Wheneve: an object is referred to the page of storage that

- 149 -

contains that. object 1is brought 1into primary memory. This has the
advantage that if related objects are kept on the same physical page,
then a reference to one of those objects will cause all of them to be
brought into primary memory with one reference to secondary memory, thus
reducing the amount of secondary storage I/0 traffic. If the mapping
from secondary storage address to page identifier, the name of the page
referred to, is simple, the overhead to keep track of the primary memory
location of objects is small. It has the disadvantage that unneeded
objects may be brought into primary memory unless the objects within a

page exhibit locality of reference.

This implementation will use a page based approach. This decision
has been made since the storage area mechanism and the method of garbage
collection combine to make locality of reference a likely occurrence.
In particular, a storage area, under the subsystem model of use, tends
to have related objects within 1it, The garbage collection mechanism
places objects that are within a single storage area physically close to
each other 1if they refer to each other since the garbage collection
scheme performs a breadth~-first traversal of the graph of accessible

objects.,

The degree of locality of reference depends upon two factors.
First, the branching factor of objects is important since an object that
references 100 other objects will not be close t~ the 100°th object as
the other 99 will physically be between them. However, as reported by
Snyder{47), branching tends to be small (3 in the programs that he

measured) so this is not a significant factor. Second, as objects are

- 150 -

=

e A

i
i
i
|

moved to T space as a result of arcas cabled to the one belng garbapge
collected and as uew objects are created, the loeality of reference
bedng produced by the garbage collector of this area Is reduced stace
these objects are placed in the wrong part ot TO space from the point of
view of locality of reference. So long as oblect creation is not too
trequent and inter-arca references occur less frequently than fatra-area
references, this effect should be small. Thus locality of refereuce

within a storage area sihould be good,

The final aspect of this scheme (s the specification of a page
replacement algovithm, Any of the many alporithms that have been used
in other virtual memory systems or presented in the literature are
appropriate so long as the scheme {5 not too complex 8o as to be a

burden on a persounal computer,

To make the translation from secondary storage address to o page
fdentitier casy, fixed s{zed pages are used. Thus a page stze must be
chosen, 11 the page slze (s too small, the stovage needed to vemember
the wmapping from page ldeatifier to primary aemory address will be
excessive, n the other hand, {f the page size fs too large, the
advantages of localfty of reference will be lost since too much primauy
memory will be consumed by objects that are not Yikely to be referved to
soon, The proper cholee of page size will depend upon the actual
character{st{es of AESOP systems. At this writing such information is
mavaflable and fs subject tor future favest igation, Fov
concreteness, a page stze of 5% words will be chosen. Figure 4.3 shows

the form of a normal object veterence that results trom these decisions,

. edm

e ——

29 bit object address
r——/\——-—\

1 1 type_ref page identifier offset

-8 bit offset in a page
21 bit page identifier

2 bit type_ref field

1 bit tag, on to indicate a normal object reference

Figure 4.3, The format of a normal object reference.

Given a page {dentifier, derived from the secondary storage
address of the object, it 1s necessary to determine its location in
primary wmomory, if any. One possibility is a table that tells, for all
page identifiers, where in primary memory the page 1is, 1f at all.
However, this 1s nothing more than the secondary memory mapping table
rejected earlier in this chapter for being too large so it is rejected
here also. 1Instead, the system will maintain a table of all pages that
are in primary memory that maps page identifiers into primary memory
addresses, and supports the insertion, deleticn and lookup of entries.
This table is not too large since it need only map pages that are in

primary memory.

There are numerous ways of implementing this table such as ordered
11sts, b-trees and hash tables. The actual mechanism must provide all

three operations above in a speedy manner, with minimal storage overhead

- 152 -

‘

- A

-~ v~

;
e

—_e

T

b

=

S

C e qomEea-

and without requiring a great deal of implementation complexity. An

additional factor to consider 1is the parallelism possible if primary
memory is divided into two or more modules, each of which contains one
or more pages, and each module maintains a table of the pages within it.
In this case the searching of these multiple tables can occur in
parallel. In consideration of these factors, this implementation
performs the page lookup function by a hash table since a hash table is
easily implemented. Since this algorithm 1is simple, the option of
placing the intelligence to manage it in every memory module 1is
available to permit the parallel searching of these tables. There 1is
nothing sacred in this choice; 1its important points are possible

parallelism in memory modules and the simplicity 1n every such module.

Another algorithm meeting these two points is equally acceptable.

Given the secondary storage address of an object (i.e. the address
in an object reference), it 1is often necessary to ask the question
"Which storage area is this object in?" This question must be asked, for
instance, whenever an attempt is made to copy an object reference from
one storage area to another. Answering this question efficiently is an

important consideration in implementing AESOP.

There are threeé possible ways to answer this question. First each
page of memory could be marked with an object reference to the storage

area to which it belongs.1 This has the disadvantage that answering

1. For the time being the possibility of pages that are part of
multiple storage areas 1s ignored.

- 153 ~

s
ol

~
.

- T

this question requires that the page referred to must be brought into
primary memory. Alternatively the system could maintain a table that
contains, for every page in the system, an object reference to the
storage area that it belongs to, As seen in the previous section, this
requires a large table to be kept by the system. The third possibility
is to maintain a table mapping ranges of page iaentifiers into storage
area references. This is just a space optimization of the preceding
scheme that 1s achieved by compressing the table mapping page

identifiers into storage area references.

If usage follows the subsystem model the number of storage areas
in AESOP will be relatively small - a few subsystems with a few
processes in each, a few library areas and a few inter-subsystem
communication areas. This will result, most likely, in only a few
hundred storage areas in AESOP at any time. As a result, since storage
areas occupy contiguous sequences of pages, the compacted table of the
third scheme above is chosen in this implementation of AESOP. There are
many ways to arrange this table, such as b-trees and ordered lists, and
the possibilities are well documented in the literature. For
concreteness, this implementation will use b-trees since they provide
bounded lookup times while still being easy to manage. Again, the
reader may feel free to substitute an alternative choice that meets the

major criterion of implementation simplicity.

The problem of pages that belong to multiple storage areas will
now be addressed. The architecture as presented in chapter two allows

the creation of storage areas of arbitrary size so that they might not

- 154 -

-
¥
¥

use all of a page. As a result, the possibility of a page being used by
multiple storage areas exists. Although an algorithm for handling pages
that belong to multiple storage areas can be developed, the complexity
it adds to the AESOP implementation is non-trivial. This implementation
of AESOP avoids this problem by always allocating storage areas so that
they occupy an integral number of pages. User defined quotas will be
rounded up to an integral number of pages for storage allocation
purposes although the user specified quota limit will be enforced for
object creation. The only effect of this is that some part of the last
page of a storage area may never be used - a small price for the

benefits of page based physical memory management.

4.5 The Implementation of AESOP’s Basic Types

The discussion of this implementation of AESOP will be completed
by describing the implementation of AESOP’s basic types. The problems
here tend to be simpler than logical/physical memory management since

there are few difficult algorithmic problems.

Booleans, characters and integers are all represented in the
references to the objects themselves so no storage is associated with
them. The operations on these objects are trivially implemented. The
only minor complications are that these types, and all of the built-in
types, must check for correct access to perform the operation and to see

that their operands are of the correct type.

- 155 -

e e e

Vectors must occupy storage so that their state may be remembered.
The create operation creates the representation of the vector by
employing the object creation algorithm described in chapter three. (In
fact all of the remaining types will also do this when they need to
create a representation for something.) The new _status operation, when
it requires the lengthening of the vector, can either expand the vector
in place, if the pattern of free storage permits, or move the vector and
leave a forwarding pointer behind. The storage for vectors declared to
contain only booleans or to contain only characters should be minimized
since the wuse of a full object reference for these is not space
efficient. This 1is accomplished by noting, in the vector’s header, that
it is one of these types of vectors and then allocating the minimum
number of bits per element. This works since the uniform types of these

vectors allows all type information to be kept in the object header.

Architecturally, a type manager 1s nothing more than an ordered
set of procedure references, The implementation of type managers need
be 1little more than that,. Similarly, closures, procedures and
sequencers are architecturally defined to consist of a few object
references and their implementation needs do little more than store that

information. 1In all of these cases, the operations are trivial.

The code segment type manager is the basic instruction interpreter
of AESOP. This type manager 1is responsible for '"compiling" the
representation passed to code_segment$create into some lower level form
most suitable to the AESOP implementation. Given this compilation

aspect of the code segment type manager, it is clear that this type

- 156 -

T Y T T T W N e B ————— o an.

LR

oY o Ll) P -

manager may become arbitrarily complex as various optimizations on the
produced code are attempted. These result in increasingly complex
implementations of AESOP and so are not all desirable given the economic
constraints on a personal computer. However, all implementations of
AESOP should compile instructions that specify a literal built-in type
manager to be invoked along with a literal operation number and literal
locations of the operands (or literal data) into very efficient low
level code. This is possible since everything is known except the
actual values of the operands. For example, the instruction:
integer$add(<lns, 7>, "9") return(<lns, 8>)

could be turned into a load from location 7 offset from a pointer
register to the current LNS followed by an add of 9 and then a store to
a location offset 8 from the LNS.1 As many instructions will have this

form, the result should be a reasonably efficient implementation of code

segments.

The remainder of this section discusses the implementation of the
io, storage area and process/event count type managers. In each case,

the issues involved are more complex than for the preceding types.
4.5.1 The Implementation of the I0 Type Manager

Chapter two presented the mechanism by which a program running on
AESOP controls 1/0 devices. This was done by modelling each physical

device as a logical device of type io that consisted of a set of mutable

1. Of course, this example has ignored type checking. This makes it
more complicated but the basic optimization remains.

- 157 -

device registers. This section discusses one way to implement this

model.

An 1/0 device interfaces to the AESOP system by plugging into one
of a number of plugs that are part of an AESOP processor. Internally
AESOP numbers these plugs and the address of an I/0 device, as specified
in an io$create operation, is the number of the plug that the device is

plugged into.

This section will specify the logical interface between the
processor and the I/0 device in the form of the commands that each can
issue and the possible responses. This interface must be realized as an
electrical interface at some point. However, the derivation of an
electrical interface once the logical interface is specified is easy and

is left as an exercise to the reader.

An io object consists of a sequence of event count, buffer and
status registers. The processor maintains the first two in a biock of
storage that represents the device internally to AESOP since these
registers refer to AESOP objects. The device maintains status registers

since they reflect the status of the physical device.

The processor must be able to read and write the status register
in the I/O device to implement the set_register and set_status_abcd
operations. This 1is the only activity that the processor initiates.
The set_status abcd operation requires atomicity at the processor end
(two users can not simultaneously perform such an operation on the same

status register). This {is accomplished by appropriate locking within

- 158 -

the AESOP implementation - the device is not involved in the atomicity
property (it may modify the register while the user is performing his

operation).

The remaining activity on the interface plug is initiated by the
I/0 device elither spontaneously or as a result of AESOP programs setting
one of that device’s status registers. This activity falls into two
categories: accessing user supplied buffers (as specified by setting a
buffer register in an io$set_register operation) and incrementing user
supplied event counts to signal the occurrence of some event to the

user.,

All data transfers between the I/0 device and a user supplied
buffer are bracketed by the pair of device issued commands begin_dma and
end_dma. The begin _dma command selects one of the bit vector buffers

that the user has supplied to the 1/0 device and causes the processor to

make that buffer accessible to the device, presumably by transferring 4
the bit vector into primary memory and arranging that the device have

access to that part of memory. The device can then read and write bits

within the buffer, so long as the appropriate access to the accessed
buffer is permitted. An end dma command informs the processor that the

I1/0 device has completed the transfer and the buffer may resume

migration between primary and secondary memory. Only after the
processor acknowledges the end_dma command may the device indicate to
the user that the I/0 has completed. This permits the data to be

transferred between AESOP system buffers, if any, and user bit vectors.

- 159 -

To handle the problem of an I/0 device that never completes an I1/0

sequence, and thus ties up a primary memory buffer forever, the AESOP
implementation will associate a timeout with every buffer that has been
selected by a begin_dma command. 1If there are no transfers to or from
this buffer during the timeout period, the processor will unilaterally
act as if an end_dma command had been issued. The next time the device
attempts to perform a transfer, a suitable error will be returned to the

device and the transfer not performed.

AESOP must handle the actual buffers used by the I/0 device very
carefully due to storage management problems. These buffers can either
be a system supplied buffer or the actual bit vector supplied by the
user. If a system buffer is wused, it 1is necessary to copy the
information from the user’s bit vector to the buffer before the I/0
begins (i.e. when the begin dma command is issued) and from the buffer
to the user’s bit vector when the I/0 completes (i.e. after the end dma
command is issued). This is adequate since the semantics of 1/0 are
defined so that the contents of the user’s bit vector are not guaranteed
until after the end dma command is issued and acknowledged by the
processor. This is, however, inefficient since it requires copying all

of the data between the user’s buffer and the system’s buffer.

Alternatively, the I/0 device may deal directly with the user’s
bit vector. This requires that the system wire the user’s bit vector
into primary memory so that the I/0 device can efficiently access the
buffer. This approach, however, interacts in an unfortunate way with

the storage management policies of this particular implementation of

- 160 -

AESOP. Consider what would happen if the bit vector resided in a
storage area that was being garbage collected while I/0 was being
performed. Since the garbage collection algorithm being used in this
implementation is a copying one, it is necessary, in general, to change
the secondary storage address of the bit vector as part of garbage
collection. 1In general such movement will mean that the position of the
start of this vector witain a primary memory page will change. This
means that it is impossible to just rename the primary memory page with
the name of a new virtual page, instead it is necessary to actually copy
the bit vector to a new page. Such copying is not, however, compatible

with efficient I/0 since I/0 may need to be stopped during such a copy.

Since neither of these buffer management strategies is adequate in
and of itself, a composite scheme is used. When I/0 begins, the user’s
bit vector is locked into primary memory and I/0 begun using that bit
vector directly. If it becomes necessary to copy that bit vector due to
some storage management decision, that bit vector is copied to its new
location but the old copy is left behind and used as a system buffer
from this point on, When the I/0 completes the contents of the system
buffer are copied into the new location of the bit vector. This
approach allows the most common case, a bit vector that does not have to
be copied, to be handled very efficiently while allowing the handling of

a moving bit vector in a graceful manner.

- 161 -

4.5.2 Stordge Areas

Storage areas are the architecturally defined means for users of
AESOP to deal with physical storage problems. The implementation of
storage areas must first deal with the quotas that are the essence of
storage areas, the count of used and free storage. A storage area must
also manage 1its storage: object creation/deletion and garbage
collection. These are just the logical memory management functions
discussed in chapter three. Finally, storage areas must deal with the
"close” relation and the inter-area cables that it implies. The
difficulty 1is that cycles of cabled areas must not appear; otherwise the

garbage collection algorithms of chapter three will fail.

It would be ideal to create cables whenever they do not create a
cycle. Unfortunately, this determination is difficult to make both in
space and in time since it amounts to computing the transitive closure
of the cabled-to relation. New cables can be checked for legality,
added and the new transitive closure computed in time O(N) using space
O(NZ) to hold the matrix that represents the transitive closure itself
where there are N storage areas in AESOP. The time is not excessive.
However, the space may be excessive (recall that there are expected to
be several hundred storage areas in AESOP). However, if the number of
cables 1is small, sparse matrix techniques can reduce the storage
requirements so this may not be a serious problem. So far this looks
feasible. Unfortunately, if a cable is deleted (by a
storage_area$not_close operation), the transitive closure matrix must be

recomputed which takes O(N3 log N) time. If N=500 and performing one

- 162 -

operation takes one microsecond, it takes over 10 minutes to recompute!

Obviously this is unacceptable.

Instead, not all possible cables will be created - only those that
are easily checked for validity will be permitted. A cable created to
an area that has no outgoing cables can clearly never cause a cycle.
So, this implementation uses the simple to check rule that cables may
only be created to areas with no outgoing cables. Although this rule
seems restrictive, it is not so when usage follows the subsystem model.
In that model, cables are created only to library and subsystem areas.
However, those areas are not cabled to anything so that the restriction

of this rule is not a detriment to efficient operation.

If a cable is requested but can not be created under this rule,
the storage area will note the request and, if later it can be granted,
it will do so. This may permit the eventual creation of the requested

cable as other cables are removed.

The storage_areaS$not_close operation requests, in this
implementation, the removal of a cable. The cable can not just be
removed, however, as there may be outstanding inter-area references that
are valid because the cable is present. Instead, the cable is marked
"deletion~reque zted”, The next time the area cabled from is garbage
collected, the garbage collector ensures that all references to the
cabled area are by links, creating links if needed. Once the garbage

collector is done, the cable may be removed as no references require it.

- 163 -

[t Salt

4,5.3 Processes and Event Counts

AESOP provides the user with the ability to easily create and use
processes. To be useful, these processes must be cheap to use. This
section discusses how to achieve this. Event counts are included here

since they can cause processes to begin and cease execution.

Process efficiency comes in three forms: the expense of creating a
process, the cost to choose a new process to run (scheduling costs) and
the cost to actually switch a physical processor from one process to
another. Process creation in AESOP is trivial. First a block of
storage 1is allocated for the process object and initialized with the
arguments passed to the create operation. An LNS stack is then created
in the default storage area for the process. Finally, the newly created
process 1is marked as being stopped and about to execute the

procScall with gns instruction that is the first instruction in every

process.

trocess switching in AESOP is also easy. The physical processor
must know six things about a running process - current LNS and GNS,
current instruction (a code segment and an instruction offset), default
storage area and the location of the LNS stack. Process switching only
involves storing these six values for the current process in its
representation and restoring them for a second process. An associated
cost of process switching is the page faults a newly started process
tends to take. These can be minimized, if desired, by pre-loading the

pages of that process before starting it as Multics originally did[37].

- 164 -

€
aan el

g NN

NVREE RN 7Y

R

~

i o T

i

S

Provens scheduling (e, choonfag which Provess o otun next) {n
Almont an cdanv, The fmplementatton fa dequised to . the highent
Priottey vunmable procensn at all times o that g prtocdtveordered quene
ot tunnable procennen tn the appropfate databane tony the
h:\p‘h-nu'nl atton’n procean acheduler. Choosdag o procens to tun avolves
neatching thian Vs, tound tobin within procenstsen of the same priority,
tor o nuitable process. When the priortey ot a process Pota changed by
A nchedule operatton, the quews wuat be teordered (o rtetlect thits, 1
the vew priovity ot P s wreater than that ot the cimvtent process, U
precmpts the cutrent procensda, othetwtne o preemption occur s, When o a
frrtocens Pobecomes untunnable Tor any aeason, the gqueune dn neatched
stanting with 1 ter a tuanuable process (atoee the highenst prlogdty
provess tn alwavae tonutng, no bhiigher prfor ey procesnen aeed e
exvamiuned) . a0 procesa Poahould become tannable (hy a stant opetat fon
ot by a page tault Potook bedng natiatied)) (1t preempts the catrent Ly
toandne proveds ondy LD PP opriov ity (s gher than that ot the cunaent
Provenn, Fiuallyv, when an event count 4o focremented, one or move
provesdse:c watting on t become tunnable, Thitsn wet can be touwnd by
matutaintng, with every event count, a st ot provesies wattioe on t hat
event count, o dncreansing onder of awatted valoe, The bitghest prdocity
procvesn (u thia aet ot aewly cunnable procenses ts the only one elipgtibie
fo preempt the cuttently tonnfug process, However, when b procens
Becomens vwmmable (o thits wav, (0 wmant be remeved o the Ting of
walttug procesnes on all o ot the event counta (0 g watting on,
Accvenatuy those Tiats mav canne page tanlta oo that theve may be oo detay

o opiving the proceasor to a0 funt awahened) hitgh prtoc bty provenss,

1on

Note, however, that AESOP need not be idle while satisfying these page
faults - lower priority processes may be run.! Moreover, there 1is
little performance impact if processes tend to wait on a single event
count at once or if all of the event counts waited on are part of a
single vector (in which case the garbage collector will tend to place
them physically near each other, thus minimizing the number of page

faults needed to access all of them).

Thus with proper implementation, processes in AESOP can be
relatively cheap. They are easy to create. Process switching 1is
trivial due to the small state of a process. Process scheduling is easy

due to the round robin, priority scheduler defined by AESOP.

4.6 Hardware Considerations

The discussion of the last two chapters has presented a high level
discussion of one possible implementation of AESOP. This discussion has
been at a fairly high, hardware independent level. This section points
out a few places where some special hardware assists could make the

implementation of AESOP more efficient.

One of the most frequent activities of the implementation {is
determining whether or not a given page is in primary memory and, if so,

where it is. A small associative memory containing the addresses of the

1. The ability to run lower priority processes when page faults occur
is why there {s no scheduling cost associated with an ecS$wait operation
even though that operation may incur page faults to place the awaiting
process on these same lists.

- 166 -

T e

most recently referenced pages will be a significant aid to performance.

In fact, a 16 entry associative memory on Multics that performs a

similar function yields a 98% success rate as reported by Schroeder(45].

Moreover, since page identifiers are system-wide, this associative

memory does not impose any overhead when the implementation switches

between processes (i.e. there is no need to clear or save/reload its

contents).

The implementation must map a secondary storage address to a

storage area to determine the actions necessary upon copying a reference

from one place to another. Due to the frequency of this mapping, there

should be an associative memory of the most recent such mappings.

The implementation frequently needs information about storage

areas. For instance, whenever an LNS is created/destroyed in procedure

calls, the quota information must be updated. For this reason there

should be a cache of the most recently referenced storage areas holding

the needed information about those areas. Such information should

include, at the least, the area’s free storage information and its quota

information. The utility of this cache will depend on how frequently

programs actually tend to request object creation on AESOP.

The implementation, 1in general, 1is required to perform type

checking at run time. As references to built-in types are expected to

be most frequent, some hardware support

to permit type checking of

operands to the built-in type managers at the same time as those type

managers are executing 1s important to efficient operation.

The type

- 167 -

DR NIy

e

- TR .)
R e e

JORYSPNGE

R e cadi

e nn

manager should assume that {its operands are of the correct type and
begin the operation. Meanwhile the type checking is performed by a
separate piece of hardware. If the type checking fails, the operation
is aborted, otherwise the type checking has cost nothing. The

operation, meanwhile, should make no modifications to objects until the

type checking has succeeded.

The garbage collection of storage areas 1is a very important
activity of the implementation. As described in this thesis, it has
been done by the central processor in the manner suggested by Baker
(i.e. incrementally). With the advent of cheap microprocessors, it 1is
reasonable to place such activities in the memory itself and allow
garbage collection to proceed in parallel with regular computations.
This would require some modifications to the basic algorithms presented
in the last two chapters, but should be possible with little problem.

This should result in a more efficient implementation at some additional

cost in complexity.

These are a few examples of the places in which specialized
hardware can help the AESOP implementation. These represent speedups
and are not essential. They should not significantly affect the cost of
the implementation and so are reasonable to consider in an

implementation.

- 168 -

4.7 Conclusions

This chapter completes the description of one implementation of
AESOP. The major thrust of this chapter has been to bring the aspects
of the physical hardware that AESOP will be running on to light. This
chapter has discussed the management of the multi-level storage system
that AESOP will be running on. The implementation chosen uses secondary
storage addresses as the names of objects, Secondary storage is divided
into a number of fixed sized pages and an object is brought into primary
memory by bringing the page(s) that it resides on into primary memory.
As primary memory becomes filled, classical page replacement strategies

are employed to throw pages out of primary memory.

The problem of determining which storage area an address refers to
is important since this question must frequently be answered due to the
link/cable mechanism presented in chapter three. This question 1is
answered by maintaining a compressed table that maps ranges of secondary
storage addresses into the name of the corresponding storage area. To
make this mapping simple the allocated size of storage areas is always

rounded to an integral number of pages.

The major problem in allocating storage to storage areas is
external fragmentation of secondary storage. Although storage may be
wasted due to fragmentation, Knuth has found that the storage allocator
is unlikely to ever be unable to allocate storage. This policy is not
perfect as it 1is still possible for the system to be unable to satisfy

an allocation due to fragmentation. If this unlikely event should

- 169 -

Bind- % 4 Sy S A AN

f- i drasalin- ngel

TTEET TR T IR L LVOITOREL T

occur, AESOP will come to a temporary halt while secondary storage is
compacted. This 1s assumed to be such a rare event that this
interruption of service is preferable to the complexity needed to handle

it dynamically.

The implementation of the basic types has also been discussed.
For the most part these were seen to be trivial. The I/0 type manager
is of importance since it specifies a physical interface to AESOP.
Storage areas require care due to the need to prevent cycles of cabled

areas. Finally, AESOP processes were shown to be inexpensive to

implement.

This chapter concluded by listing some of the ways 1in which
special hardware can aid an implementation of AESOP. Of particular
importance are associative memories to remember the most recently

performed table lookups.

- 170 -

A SR

Chapter Five

Using AESOP

Chapter two described the high level architecture AESOP. Chapters
three and four demonstrated that AESOP can be implemented in an

efficient manner. This chapter shows various ways {n which AESOP can be
used. First, some language features are examined and an implementation
on AESOP shown. Second, a line printer example is presented that shows
how to use some of AESOP’s operating system features, The various

examples presented in this chapter serve as paradigms for using AESOP.

In many ways AESOP is a very unusual architecture while in others
it is rather ordinary. AESOP’s basic data types (booleans, characters,
integers and vectors) are not unusual, and AESOP uses traditional
go-to’s as its basic intra-procedural control flow mechanism. In both
of these cases the language problems they solve are neither easier nor
more difficult than on conventional architectures; the problems are
basically the same in both environments., Thus such problems are ignored

here.

However, AESOP has a number of unusual features; their use will be
demonstrated in this chapter. AESOP provides an execution environment
consisting of immutable code and two name spaces as a naming context,
all provided as objects., AESOP directly supports the terminat{on model

of exception handling. Object viewers provide type extension, access

- 171 -

restriction and access revocation in a uniform way. AESOP also contains
a number of features normally associated with operating systems:

processes, inter-process synchronization, storage management and I/0.

The first four sections of this chapter discuss some features of
high level languages and how AESOP supports them. The aim is to show
how AESOP’s features can, 1in practice, be used to solve language
implementation problems. Section one discusses extended types and the
parameterized definition of procedures and type managers to demonstrate
AESOP’s type manager mechanism. Section two presents four examples of
using AESOP’s flexibility in naming and execution. Dynamic and static
scoping are seen to be implementable 1in ways analogous to
implementations on conventional architectures due to this flexibility.
Algol call-by-name and CLU iterators show how AESOP’s closures can be
used to solve language problems related to the execution environment of
code. A dynamic linking example shows how to use object viewers as an
indirection mechanism to extend the flexibility of AESOP’s naming
mechanism, Section three showy how the continuation and termination
models of exception handling, as typified by Mesa and CLU, can be
implemented on AESOP. Section four examines some features of classical

Algol-like languages that AESOP handles deficiently,

This chapter concludes, in section five, with a 1line printer
example that demonstrates how to use some of AESOP’s operating system

features: processes, I/0 and inter-process synchronization.

- 172 -

5.1 Extended Types and Parameterized Definitions

AESOP makes it easy to construct new procedures and types. This
section gives an example of creating procedures and type managers on
AESOP. Many languages provide type and procedure generators (i.e,
procedures that return types and procedures as results)., This section
shows how to build these on AESOP. They appear here since the hardest
problem of parameterized definitions is parameterization by type. CLU
will be wused for the examples although the results apply to other

languages that support type extension and type/procedure generators.

5.1.1 Extended Types

Many recently designed languages permit the programmer to create
new types, types beyond the set built 1{into the language. These
languages are frequently designed so that the language is type safe; all
type checking can be performed at compile time. This section shows how
the type extension and run-time type checking mechanisms of AESOP can be

used to implement a language’s type extension facility.

Figure 5.1 shows a CLU cluster that implements the type "foo"; it

provides two operations, a and b, and has an 1internal procedure c.

Creating the AESOP type manager for foo involves creating the code
segments for a, b and ¢, then creating the template LNS for each
procedure and finally creating the procedures a, b and c, The

procedures a and b are then passed to tm$create to create the type

manager foo shown in Figure 5.2, Note that procedure c¢ is really an

internal procedure to foo as only a and b may refer to it.

-173 -

foo = cluster is a, b

22=".

a = proc(x:foo0)

y:rep := down(x)

c(y)
end a

b = proc() returns(foo)
y:rep := repS$create()
c(y)
x:foo := up(y)
return(x)
end b

¢ = proc(w:rep)
end c

end foo

Figure 5.1, Foo, an example of a CLU cluster.

Foo may convert its objects between abstract type (i.e. type foo)
and representation type (i.e. the type of object used by foo to
represent foo objects) by using the up and down operations. Invoking up
on a representation object produces a foo object; invoking down on a foo
object produces a representation object. The implementation, on AESOP,
of up and down within foo depends upon the intended environment of foo
and the objects it provides. If foo and the objects it provides never
leave the compile time type safe CLU world, then up and down simply
represent different views of the representation object of foos - there

is no need to protect the representation object from unauthorized

- 174 -

foo

type manager
object

i
TG o3 —

,..ﬁy___
Procedure Procedure
a b
* e ® <_ "“‘» * o
template | template
LNS l LNS
c
template
LNS

Figure 5.2. The AESOP type manager corresponding to cluster foo.

manipulation as the compiler can do this at compile time. Thus no code

need be generated to perform up and down.

1f, on the other hand, foo and foo objects are accessible beyond
the CLU world, then foo objects must be protected from languages that
are not type safe. The danger is that a foo object might be manipulated

in ways that violate 1its semantics, Foo objects can be protected from

- 175 -

such manipulation by making them into AESOP extended type objects by
sealing the representation of a foo object in an object viewer. A
sealed object and the code for up and down in this case are shown in
Figure 5.3. Because only foo can perform up and down (due to the
restrictions on using ov$seal and ovS$extract), foo and its objects are
protected from the actions of unsafe languages; only foo can perform

down on an object that it has performed up on.

This protection is gained at some cost. First, extra space is
needed for the object viewer sealing each foo object. Since object
viewers are small (only three references), this is not a problem except
for very small objects. OQutside of foo, the use of sealing impcses no

time penalty since only a reference is being passed around in any case.

foo
X ———— 1 (3 Tep object
of a foo
nil T
An object y
Viewer
AESOP code for AESOP code for
y:rep := down(x:fo0) x:foo := up(y:rep)
y := ov$extract(x) except(lose) ov$seal(y,nil)

lose:
process$signal("failure", ...)

Figure 5.3. The code for CLU’s up and down operations.

- 176 -

Py WS+

o -

TR TN N

!
|

Within foo, the expense is small. Only one instruction is needed to
perform up or down and, typically, it only occurs at entrance to or exit
from foo (i.e. only one up or down is performed per object per call).
For all but the most trivial of operations these costs will be small in
relation to the total cost of the operation., Thus the cost of this

protection, in both space and time, is acceptable.

Only the person using AESOP can decide whether or not to seal foo
objects. The ease of copying object references within AESOP means that
it 1is extremely difficult, if not impossible, for either the CLU
compiler or for foo itself to make this decision (except to always make
the conservative choice of sealing). Thus the human user of AESOP must

specify which option is to be used when creating a new type manager.

5.1.2 Parameterized Definitions

Many languages support parameterized generators of procedures and
types (i.e. type managers). Conceptually, when supplied with
parameters, they produ;e'a procedure (type manager) as a result. Thus a
procedure (type) generator defines a class of procedures (types) that
are distinguished by the parameters given to the generator. This

section will discuss only parameterized procedures since parameterized

type are just a collection of parameterized procedures.

The most interesting and most difficult of procedure generators
are those that are parameterized by types. For example, the procedure
generator sort(T) might produce procedures that sort vectors of type T.

Thus sort(real) would produce a procedure that sorted vectors of reals.

- 177 -

For concr~teness, the sort procedure generator will be used in the

following discussion.! A name of the form sort T will be used in the

following discussion to name the procedure produced by sort when

supplied with T as a parameter.

To sort its vector argument, sort T must be able to compare the
elements of its vector argument. Thus sort must require that a type T
passed to it provide a compare operation on objects of type T so that
sort_T can work correctly. The problem addressed in this section is the
manner in which members of the family of procedures sort T refer to the
compare operations of the various T’s. Although each T passed to sort
will provide a compare operation, the operation index of compare may

differ among the T°s. This is the crux of the problem.

The procedures generated by sort can be implemented on AESOP in
three ways as described by Atkinson{2] in relation to CLU. First, an
entirely new procedure can be constructed for each invocation of sort.
This results in a procedure that 1isg maximally efficient; all
dependencies on sort’s parameter can be accounted for in the code for
sort T. Thus if the integer and real type managers provide compare
operations with different operation numbers, the procedures sort_integer

and sort_real will be specialized as needed.

1. For expository simplicity, only single parameter generators such as

sort are considered here. The extension to multiple parameter
generators is simple.

- 178 -

!
3
"
K]
'y
]

i

- mp——apr——p—a

The second possibility {s to create sort_T as shown in Flgure S.4.
In this case, the varlous procedures that sort might produce
(sore_integer and sort_real are shown in this figure) share code which
reduces space requirements compared with the previous scheme (ecach
procedure was completely distinct there). However, there i{s a problem
when sort T i{nvokes the compare operation on the objects it s sorting.
In the code segment ¢, the {nstruction that invokes compare must specify
the operation number of compare. Since the operation number of the

compare operation can be different for the real and ({nteger type

managers, placing any constant operation number in ¢ {s incorrect,

This problem can be solved in tww ways. First, {t could be
required that the type passed to sort use certaln operation numbers for

certaln semantic operations (e.g. operation one must be the compare

S DA :

L T R b

Procedure Code Frocedure :

sort_integer Segment sort_real H

c h

i

LI LI I ?j

integor | oal Z

nteger < - rea i

]

Template Template |
INS INS

care b oa, A parameterized procedure fnstance {n AESOP.

- 179 -

operation). This has the disadvantage of restricting the types that can
be passed to sort, However, this can be programmed around by creating a
new type manager that maps the operation numbers required by sort into
the operation numbers of some other type manager. This {is undesirable
as it involves the creation and use of an otherwise unnecessary type
manager. The second possibility is to pass an extra argument to sort
that specifies the mapping of operation numbers from those sort desires
to those sort’s argument provides. In this case, the template LNS for

each sort T would retain a reference to (a copy of) this mapping for use

at the time the procedure is running,

Finally, the procedure sort_T(<args>) could be mapped into the
procedure sort’(T, <args>). In this case there is only one procedure,
sort”, that implements all of the sort T's so that space usage {s
minimized (the previous two schemes had a procedure for each sort_T).

On the other hand, an extra argument must be passed on every invocation

of a sort_T which increases the space and time overhead associated with

calling a sort_T. Moreover, the problem of invoking, within sort’, the

T T

correct semantic operation on T arises once again. Thus, either T must

be restricted to a certain class of types or a second parameter must be

—7

passed to sort’ that maps operation numbers. Both choices further

TR

reduce the desirability of this scheme,

o

The characteristics of the family of sort_T’s determines which of
these three schemes should be used., If there are only a few sort T's
(1.e. sort {itself is invoked only a few times) but they are called

frequently, then the first scheme’s low execution overhead is desirable.

- 180 -

If there are many sort T"s that are called infrequently, the third
scheme’s low space overhead is desirable. 1In all other cases the second

scheme represents a reasonable compromise.
5.2 Using AESOP’s Flexibility in Naming and Execution

AESOP provides flexible means for creating and manipulating the
components of execution (code segments and mname spaces). This
flexibility is useful in implementing those language features that
require special handling of a program;s environment, Moreover, AESOP’s
object viewer mechanism can be used to provide a general indirection

facility in naming on AESOP.

This section presents four examples to demonstrate these points.
First, the problems of dynamic and static scoping are addressed.
Second, the use of closures to implement Algol-60°s call-by-name
parameter passing demonstrates how to dynamically create and modify
naming environments and how procedure~like entities might be passed as
arguments in AESOP. Third, the implementation of CLU iterators on AESOP
shows how coroutine-like structures can be created using closures. This
further demonstrates the use of closures for passing procedure-like
entities as parameters. The fourth example shows how to implement
dynamic linking by using object viewers as an indirection mechanism and

using exception handling to detect breaks in the indirection chain.

- 181 -

P e 1

r—

5.2.1 Dynamic and Static Scoping

In AESOP, a variable 1is a slot in an LNS. A procedure may
directly refer only to entries in its own LNS, Thus AESOP provides no
non-local scoping for binding variable names. However, AESOP provides
facilities that are powerful enough to support classical implementation
techniques for both dynamic scoping (as in Lisp) and static scoping (as

in Algol-60).

Dynamic scoping entails binding a free variable to the first
variable of that name found by tracing backwards through the call chain.
In general, this can only be done in an interpretive manner due to its
dynamic nature. AESOP provides no help here beyond the ability to build
and maintain any appropriate databez .. The ability to treat LNS’s as

objects in AESOP is, however, essential to making these techniques work.

Static scoping entails binding a free variable, at compile time,
to a variable in a statically enclosing scope. At run-time the correct
instance of this scope must be found when referring to that variable.
AESOP allows any of the classical implementation techniques, such as
displays, to be used to do this since AESOP allows naming environments
to be treated as objects and thus stored.in databases and passed as

parameters.

- 182 -

T, e e e

———

S

LT

e

5.2.2 Algol-60 Call-by-name Parameters

Algol-60°s call-by-name parameter passing mechanism is a more

complicated parameter mechanism than the normal AESOP parameter

r mechanism as 1t permits arbitrary computation upon each reference to an
argument. The implementation of call-by-name parameters on AESOP is a
second example of using AESOP’s flexibility in naming and execution, in

}‘ particular the use of closures,

Call-by-name parameters can be implemented on AESOP in the same
way as they are provided in many Algol implementations - by

"thunks" [(39]. Every call-by-name parameter to a procedure P is replaced

o

with a pair of parameters, both closures, one of which performs
references to the parameter and the other which performs assignments to
the parameter. Closures are passed instead of procedures both as an
; efficiency measure to avoid the overhead of creating a new LNS for the

‘ thunk on each use and as it is the simplest way to permit the thunk to

execute in the correct naming environment, Parameters are passed to the

thunk through a vector "value" that is also passed to P, Thus the
procedure P = _p_ggg(a:by-name)1 is transformed by the Algol compiler
into:

P = proc(value:vector, a_get:cl, a_set:cl)
P refers to "a" by executing a closureSrun(a_get) operation. The

closure a_get, whose encapsulated naming environment permits it to run

1. Single parameter procedures are considered here for expository
simplicity.

- 183 -

¥

in the environment required by Algol semantics, computes the value of a
and returns the result. 1In essence, a_get is a parameterless procedure

that returns a’s value as far as P is concerned.

To perform a:=x, P invokes a_get by passing, in value, x. That
is, P executes:

value(l) := x
closure$run(a_set)

Tre closure a_set, whose encapsulated enviromment permits it to run in
the correct enviromment, modifies the value of a in P’s caller to be the
same as value(l). Essentially the shared object "value" is being used

to pass parameters from P to the "procedure" a_set.

Alternatively, P could be given the components of a_set as
arguments (i.e. a_set_code, a _set lns and a_set_gns). P can now pass
parameters to a_set by setting conventional locations in a_set lns and
a_set_gns. P then invokes a set by first creating a closure out of
these three components and then invoking closure$run on that closure,
This scheme has the advantage that a_set may directly refer to its
parameters in its LNS and GNS instead of copying them into its LNS and
GNS from another vector (i.e. from the vector "value" in the above

example) .
5.2.3 1Iterators

CLU provides iterators as a control abstraction. They allow a
piece of code, the body of a for loop, to be executed with differing

values of its loop coantrol variables as yield’ed by an iterator. This

- 184 -

-

section uses CLU iterators as the canonical example of iterator-like
programs. Two factors concerning iterators are of particular concern:
the body of a loop must have access to the variables in the procedure

containing it and the iterator must retain its state after yield"ing a

value.

Since iterators and for loops have coexisting environments, a
coroutine 1implementation seems natural, AESOP, however, does not
provide a coroutine mechanism. Instead, iterators and for loops must be
implemented using the hierarchical control mechanisms of AESOP.! A key
to the correct functioning of the implementation below 1is the CLU

restrictions that result in nesting of iterators.

One possible implementation of iterators is the following. A CLU

iterator, I, of the form:

T = iter(a(l):T(1), ..., a(N):T(N)) yields(T(R1l), ..., T(Rm))
end I
13 transformed by the CLU compiler into the AESOP procedure:
I = proc(body:closure, comm_vec:vector([]l:m], a(l):T(1), cerny

a(N):T(N))

end 1

where body is a closure consisting of the code that is the body of the

for loop and its naming environment (i.e. the LNS and GNS of the

1. Theoretically processes and message passing could he used.
However, even though AESOP processes are cheap, they are not cheap
enough to permit creation of a process for every for loop.

- 185 -

R S i S

g T ey

By vivin AR

program containing the for loop) and comm vec is used by I to yield
values to the loop body.l Inside I, the CLU yield statement:
yield(o(1l), ..., o(m))
is transformed by the compiler into the AESOP code:
comm_vec(1l) := o(1l)
;;;m_vec(m) := o(m)
closureS$run(body)
Thus the iterator yields values to the body of the loop through the
communication vector comm vec and the loop body runs in the correct
environment (so long as body was correctly constructed). Executing the

for loop simply involves creating the correct closure "body" and

invoking I with the appropriate arguments.

The body of a for loop may do one of four things while 1t is
executing: return to the iterator for new objects (by falling off the
end of the loop or by executing a continue statement), break from the
loop (causing execution to continue at the statement following the for
statement) or cause the procedure containing the loop to return (either
normally or abnmormally). In AESOP, a return to the iterator occurs when
the body executes a process$return operation. This causes the iterator
to continue immediately after the closure$run operation that caused an
iteration of the loop body to be run, The iterator may then yield new
objects to the body of the for loop or it may veturn to its caller (thus

terminating the CLU for statement). The other three activities of the

1. The loop body accesses comm vec using a reference that the
procedure invoking I placed in the LNS in body.

- 186 -

loop body, however, require the cooperation of the iterator since they
embody the concept of a non-local go-to, something AESOP has
deliberately prevented since it is a source of many program errors.
Non-local go~to’s are implemented by having the body abnormally return
to the iterator with the break, return or signal exception to indicate
the corresponding request of the loop body. For a break exceptiom, the
iterator returns to its caller, thus terminating the loop. For the
return and signal exceptions, the iterator resignals the exception to
its caller who performs the appropriate action (i.e. a normal or

abnormal return).

Thus control structures similar to CLU iterators are easily
implemented on AESOP. This example shows the utility of using closures
to package a plece of code with the naming environment in which it
should eventually run. This implementation of iterators 1is fairly
efficient since yielding to the body, the frequent inter-procedural
transfer of control in this implementation, only involves pushing a
small activation record onto the control stack (recall the
implementation in chapter three). The storage requirements are small:
the one time creation of the loop body’s code segment and the dynamic
need to create closures. Moreover, the implementation presented here

has two additional advantages.

First, this implementation allows the iterator to clean up when
the iteration is about to terminate since only it can terminate the for
loop (i.e. by returning); the loop body can only request termination of

the iteration. This 1is useful in an environment with parallelism such

- 187 -

as in AESOP where a data item might be shared by concurrent processes.
If an iterator-like program has locked a database so as to yield a
consistent set of objects from that database, then it must unlock that
database before being terminated (otherwise deadlock will eventually

result).1

Second, AESOP assumes that mistrust may be present. Suppose that
an iterator-like program is not trusted so that its potential damage
needs to be controlled; that is, it may only modify objects accessible
through its arguments, the a(i) in the above example, and not through
the extra information passed as part of the implementation of iterators
(the body and comm_vec arguments in the above example). This is ensured
by this implementation of iterators since the environment of the body,
which might be a gateway to the world, is inaccessible to the iterator
because closures are inviolate. If comm _vec 1is initialized to nil or
passed to the iterator as write only (by using an object viewer for
access restriction), then the iterator can never access anything through
comm vec., The iterator’s potential to cause damage 1is thus severely

limited.

5.2.4 Dynamic Linking

An unusual use of AESOP is to implement dynamic linking. This
example further demonstrates AESOP’s naming flexibility by showing how

object viewers can be used as an indirection mechanism,

1. Note that this 1issue never comes up in CLU; since there is no
parallelism to deal with, no locking is needed.

- 188 -

Dynamic linking permits the binding of a character string
procedure name, say S, to an actual procedure to be delayed until the
first time the procedure containing the reference to S attempts to
access the procedure "named" S. At that time, S is bound to an actual

procedure, call it P, which is then called.

The scope of the binding of S to P is one of the means of
classifying dynamic linking mechanisms. In Multics[37]), this binding is
for a given process, other processes are unaffected by this particular
binding.l Other durations of this bindings are possible, such as
binding S to P for an entire subsystem or only for this particular call

on S in this invocation of Y. 1In this section, the term scope (or

binding scope) will refer to the range of invocations over which a
particular binding of name ¢to procedure is to be valid. The
implementation presented in this section will permit efficient binding

for various scopes.

This section develops a dynamic linking facility for AESOP in two
stages. First a very simple mechanism will be presented, The flaws in
this scheme will be pointed out and corrected. The dynamic linking

facility that results will be efficient and will allow links (i.e. calls

with character string names that need to be bound to an actual

procedure) to be snapped for a given scope,

1. This 1is not strictly true since the user can take actions to
prevent the binding from being per-process. However, this technicality
{8 unimportant for the current discussion.

- 189 -

Consider a procedure Y that needs to contain a "call x(...)"
statement where the name "x" is to be dynamically bound. Suppose that
Y’s code segment contains the instruction:

proc$call(<lns, i x>, ...)
where 1 x 1is an integer associated with calls on x by Y. The dynamic
linking facility must ensure that the correct procedure for the current

scope is called whenever this instruction is executed.

Consider the procedure Y in Figure 5.5. When the call instruction
is executed, an unexpected nil_operand(l) exception will occur since
entry i x of Y’s LNS contains nil as its object reference and not the
name of a procedure, If the code around the proc$call 1is as in Figure
5.6, the unexpected_nil_operand(l) exception that occurs will cause this
code to call auxiliary procedure resolve name to find a procedure, call
it P, that is to be bound to the name "x" in the current scope,
(Resolve name will maintain a data base, if necessary, to ensure that

this binding is maintained for the duration of the current scope). The

Executing
Procedure
Y

Code Segment
c "xll

LNS

Figure 5.5, Executing Procedure Y before snapping the link.

- 190 -

instr:proc$call(<lns, i x>, ...) normal ok

Let S be the signal name
Let Op be the signal operand

%
%
%
if
%

8 e

Is it a linkage fault? (Note that we are only interested in
the first parameter to proc$call since it is the procedure
to be invoked.)

S "= unexpected _nil operand then go to other
if Op "= 1 then go to other

It is a linkage fault so resolve it
% Resolve "x" to an actual procedure by calling resolve name.
% Use the returned procedure to snap the link.

<lns, { x> := resolve name("x")
go to instr
other:...

ok:...

Figure 5.6. The code to handle a linkage fault.

i x"th entry in Y’s LNS is changed to a reference to P so that, when
reexecuted, the proc$call at instr proceeds correctly.1 After this
exception handler executes, the situation will be as in Figure 5.7.
Note that the link, which is the i_x“th entry in Y’s LNS, has only been
énapped in this 1invocation of Y. All future calls on "x" by
instructions using entry i_x of this LNS will proceed very efficiently

with no interpretation involved. All calls on "x" in other invocations

of Y (current or future) are unaffected.

1. In a more general situation where the link is being snapped to an
arbitrary object and passed to an arbitrary invocation, reexecuting the
instruction always works for the built-in types (they check their
arguments before doing anything). T1If user written programs clean up
before returning the unexpected nil _operand exception it is also true
for them.

¥

¥

[ON—

- A——

Executing
Procedure
Y

Code Segment
C llxll
~C

LNS

Figure 5.7. Executing Procedure Y after snapping the link,

Note that binding x to the correct procedure in the current scope
is easily done with this mechanism since the link is resnapped in every
invocation. The problem with this scheme is efficiency since a 1link
must be snapped in every ne; invocation. This amounts to an
interpretive solution of unacceptably high execution time overhead. An

alternative is needed.

An efficient dynamic linking mechanism will do two things. First,
a link will be snapped to the correct procedure for the executing scope
(i.e. a correctness requirement). Second, the number of times that a
particular name must be bo'ad to the procedure it represents will be
minimized. This will minimize the number of times 1links to the
procedure a name represents must be snapped. The second is accomplished
by using object viewers as an indirection mechanism while the first is

ensured by limiting those object viewers to a single scope.

- 192 -

AD-ADB3 433 MASSACHUSETTS INST OF TECH CAMBRIDGE LAB FOR COMPUTE=-ETC F/§ 9/2
THE ARCHITECTURE OF AN OBJECT BASED PERSONAL COMPUTER, (U)
MAR 80 A W LUNIEWSKI NO 001'-7”-0“1
UNCLASSIFIED IT/LCS/TR-ZJZ

303

ap
5083283

EN D
oare
[t

6-80
omie

These goals are met by causing Y to execute as shown in Figure 5.8

where O is the link, If the ? in 0 is nil then the link is unsnapped
since a proc$call(<lns, x>, ...) instruction produces an
unexpected nil operand(l) exception. In this case, the handler for the
linkage fault will use 0° to set the object field in O to the procedure
returned by resolve name, thus snapping the link. The code in the

handler is then:

p_var := resolve name()

ov$modify(<lns, r_x>, p_var)
where r_x is an integer associated with calls on x by Y and p var is a
temporary variable. 1If the ? in O refers to a procedure, the proc$call

instruction proceeds normally.

Executing
Procedure
Y

Code Segment
C llxll

ov
PR —
r_Xx ___J ‘,
proc nil
?
i x I ? Object
Viewer
nil 0’
LNS Object
Viewer
0

Figure 5.8. An executing procedure Y that binds names correctly.

- 193 -

To ensure that the link O is per-scope and thus snapped in only a
single scope, two things must be done. First, Y must only be called in
a single scope (by making copies of Y in all invoking scopes). Second,
both O and 0° must be per-scope to ensure that the link O is per-scope.
However, it 1is still desirable for all of the coples of Y to share the
code segment c. This does effect per-scope binding if the shared data,
¢, contains no direct references to the 1link or 1link snapping

information.

To make Y per-scope, a special object, of a new type tproc, is
stored in the file system. Y will be represented as a tproc as shown in
Figure 5.9. Resolve _name must now perform some additional work when it
decides to bind a tproc from the file system to a name within the

current scope. When resolve name decides to use tproc Y in some scope,

e @
°

__—-—’ LI (] o 0 g
tproc r_x nil 2n+1 r_x
for Y

2n ix
i x nil
. Linkage
Section
prototype
LNS

Figure 5.9. The tproc for Y.

- 194 -

L

it uses the tproc for Y from the file system to produce the procedure Y

of Figure 5.8 as follows. First, resolve name copies the prototype LNS
into a new vector v. Then, for each pair of entries in tproc Y’s
linkage section, it creates an object viewer, call it 0, with nil as its
object field and a second object viewer, call it 0°’, that permits
modification of 0. In the case at hand, resolve name then does:

2 Let 1s be the linkage section for the tproc for Y

v(1s(2n)) :=

v(1ls(2n+l)) := O°
This permits Y, when invoked, to refer to a procedure indirectly through
an object viewer (i.e. through a 1ink) and to modify that object viewer
for the purpose of snapping the link. Once object viewers have been

created for all pairs of entries in the linkage section, resolve name

creates the procedure Y of Figure 5.8 using ¢ as Y's code segment and v

as its template LNS. By creating O and 0" at this time, it can be -
ensured that all 1invocations of Y in the current scope will have a
reference to O and thus have x bound to an actual procedure the first
time that the name x 1is used by an invocation of Y. Thus the link O
will only be snapped once per scope. Moreover, 1if resolve name
allocates the object viewers for the link to the procedure named x only
once and makes the references in the template LNS’s of procedures such
as Y refer to these shared object viewers, then every procedure within
the scope using the name x will have the name x bound the first time

that any procedure within the scope references x.

- 195 -

i
j
i
|
]
i
\

With this last modification, the dynamic linking mechanism 1s
complete., First, and foremost, it 1s per-scope - a link snapped in one
scope does not effect, in any way, the bindings in other scopes.
Second, it is efficient. Once a link associated with the procedure Y is
snapped within a scope, it 1is snapped for all current and future
invocations of Y so the relatively expensive link snapping process is
not repeated unnecessarily. Moreover, 1f multiple procedures share a
link, snapping this link once snaps it for all of those procedures thus
further improving efficiency. Third, dynamically bound references
impose only the small overhead of an indirection through an object
viewer. Fourth, the name resolution mechanism can be very flexible
since the linkage fault is handled at the site of the fault. By passing
additional information to resolve name (or, in fact, by using different
name resolution procedures at every procScall site), it is possible to
make the name resolution mechanism dependent upon the dynamic site of
the fault within a scope (e.g. it can depend upon which process 1is
running, which procedure is running and upon the actual call within the
procedure that produced the fault)., Fifth, the link can be unsnapped by
using O0° to modify the object field in O to nil. This 1is a feature
occasionally found useful when a name has been bound to the incorrect

procedure or needs to be rebound for any reason.!

1. Multics, for instance, uses this facility to wunsnap links to
procedures that are recompiled.

- 196 -

A e WT P S

T eI YT AR TSR P T TN A . ey

5.3 Exception Handling on AESOP

An important attribute of many recent languages is the inclusion
of an exception handling mechanism. Such languages cause users to be
aware of wunusual conditions simply because an exception handling
mechanism {8 there. As a result, users write programs that are more
robust in the face of faillure than they would have been otherwise.
There are two models of.exception handling: the termination model and
the continuatior model. This section will consider each in turn and

show how they might be implemented on AESOP.

5.3.1 The Termination Model

In the termination model, as typified by CLU, a procedure may
return either normally or abnormally. The caller continues at the
statement following the invocation if the return was a normal one.
Otherwise, the caller receives control in some exception handler that is

responsible for dealing with the exception.

The set of handlers in a CLU program P is known at compile time;
given an invocation within P and a possible exception returned by that
invocation, the correct handler to invoke is known to the compiler. At
run time it is only necessary for P to determine the exception and
branch to the correct handler. Once in control, the handler may do some
processing and then either perform a local transfer or cause P to

return, either normally or abnormally.

- 197 -

AESOP contains an explicit mechanism for coping with the
termination model - the ability to cause a forced go-to whenever an
invocation returns abnormally. For every invocation within a program,
the compiler causes abnormal returns to go to a handler that Iis
responsible for handling all exceptions from that invocation. This
handler transfers to the code that corresponds to the handler for the
particular exception raised by the abnormally returning invocation,
This is nothing more than a simple series of tests and transfers. The
resulting implementation is cross between the branch table and handler
table implementations proposed for CLU[2]. Within a handler the
implementation of local transfers is trivial since AESOP provides
go-to”s. The handler simply does a process$return or process$signal

operation to cause the procedure it is part of to return.

Thus the termination model of exception handling is easily handled
by AESOP. Fundamentally, AESOP has provided a built-in means for
terminating the signaller and entering a handler with the exception name
and operands as implicit arguments whenever an exception occurs. The

program must still discriminate based upon the 1identity of the

exception,

5.3.2 The Continuation Model

In the continuation model, as typified by Mesa, a handler for a
signalled exception is found by tracing backwards through the call chain
until an appropriate handler 1is found. That handler is then invoked.

The handler, perhaps after some processing, may then either resume or

- 198 -

terminate the signalling procedure. 1f the signalling procedure is
terminated, control continues in the procedure that contains the

handler.

The first problem in implementing continuation model exceptions is
discovering the handler to invoke. There are two ways to do this.
First, a per-process database of enabled exception handlers, a condition
stack, could be maintained. Whenever a handler 1is enabled, an
(exception name, handler) pair is pushed onto the condition stack. When
a handler is disabled, the corresponding entry on the condition stack is

popped.1

Signalling an exception involves searching the condition stack
in LIFO order until a handier is found for the exception being raised
and then invoking that handler. The execution cost of this method is
small since only those procedures that enable handlers need be concerned

with the whole mechanism. However, this method has the disadvantage

that a per-process database 1s needed.

Alternatively, a special handler can be passed as an additional
parameter with every procedure call. Whenever a procedure needs to

raise an exception, it invokes the handler, H, passed to it, giving it

the exception name and operands as arguments. H may then handle the

exception or it may continue signalling the exception by invoking the
handler passed to the procedure that H is associated with. In this way,
the exception propagates backwards through the call chain until an

appropriate handler 1is found. This method has the advantage of no

1. Mesa guarantees this LIFO ordering.

- 199 -

per-process database but the disadvantage that every procedure must pass
and accept this extra parameter, This {s basically the implementation

for Mesa outlined in the Mesa manual[36].

The first scheme is preferred when there are relatively few
handlers as most procedures can then ignore the entire 1issue of
exception handling. The second method is preferred when there are many
handlers which are frequently enabled/disabled since there is no need to

constantly manipulate the condition stack.

There are two other issues of concern in implementing the
condition model: the form of a handler and the means by which handlers
terminate the signalling procedure. Handlers must be able to access the
environment of the pr;cedure they are associated with as well as the
name and operands of the exception currently being signalled. The
handler is thus basically a procedure that executes in a special naming
environment. It is implemented in either of the ways that the procedure
that performed Algol call-by-name assignments 1in section 5.2.2 was

performed.

The signaller is terminated by making a non-local go-to out of the
exception handler to the procedure that contains the handler. They are
implemented analogously to go-to’s out of the body of a for loop, that
is, the handler returns abnormally (using AESOP’s built-in exceptions)
with an unwind(target) exception. All procedures will resignal this

exception until the procedure being transferred to (i.e. target) gains

control. At this point, that procedure performs the actual transfer,

- 200 ~

now a local go-~to., Note that a handler for the unwind condition may
perform a local clean-up before passing the exception along. Moreover,
by refusing to propagate the unwind exception, a procedure terminates

the non-local transfer as allowed by Mesa.

Thus the continuation model is seen to be easily implemented on
AESOP because of AESOP’s naming and execution flexibility. This
implementation 1is analogous to implementations on conventional
architectures. Thus AESOP neither helps nor hinders the implementation

of the continuation model.

5.4 Some Deficiencies in Handling Classical Languages

AESOP has been designed to support a certain class of languages
very well. This section presents some ways in which AESOP is deficient
in supporting classical languages such as Algol or Fortran., Two issues
are discussed: the unnecessary cost of garbage collection and the

difficulty of doing call-by-reference parameters,

5.4.1 Garbage Collection Costs

Many classical languages have either a stack or a static storage
semantics. They have no need for a heap in their iwplementation so that

AESOP’s heap storage may reduce performance.

Scalar types (e.g. booleans and integers) are handled efficiently
by AESOP since the variables (i.e. LNS slots) that refer to them

contain the value of the object (recall the implementation of object

- 201 -

references 1in chapter four); no Storage is ever allocated for these

objects. Aggregates (e.g. arrays and records) are another matter.

kol

A record is nothing more than an array of values of differing type

with the character string selectors being mapped by a compiler into

integer indices. Thus only arrays will be considered here. An array is
an AESOP object that resides in the heap. Thus, even though an array is
inaccessible after the procedure that created it returns, the
implementation of AESOP’s heap proposed in this thesis means that it’s 3
storage will not be reclaimed then - it will be reclaimed later by the y

garbage collector.

Thus the AESOP heap results 1in inefficient use of storage
(inaccessible arrays) and in wasted time (running the garbage collector
to retrieve objects "known" to be inaccessible). Storage inefficiency
can be reduced by having each procedure explicitly destroy its arrayé
just before returning. This reclaims most of the storage for arrays at
the earliest possible time (only the tombstone left behind after object
deletion by the AESOP implementation will not be immediately reclaimed).
The cost of running the garbage collector is, however, unavoidable in

the long run as tombstones accumulate,

5.4.2 Call-by-reference Parameters

Many languages use call-by-reference for parameter passing. This

allows the called procedure to directly read and write an array,
variable, array element or record component of its caller. This

semantics is difficult to achieve efficiently on AESOP.

- 202 -

T AR Tt T o T

AESOP’s baslic parameter passing mechanism is what CLU has termed
call-by~sharing; a formal parameter is caused to refer to the object
that an actual argument refers to. Call-by-reference is achieved by
passing an argument that permits accessing an array or a particular
entry in an LNS or vector (i.,e. a variable) so that the called procedure
may access and manipulate the caller’s variable. The difference between

these two parameter passing mechanisms is illustrated in Figure 5.10.

Passing arrays by reference 1s trivial on AESOP since only the
name of the array is being passed and this is AESOP’s basic parameter
passing mechanisn, The passing of variables (or array/record

components) 1is, however, non-trivial since AESOP provides no means of

passing vector entries as arguments,

Variables can only be passed by reference 1nterpretiveiy~iﬁ AESOP
since variables are not objects in AESOP. Every procedure P =
Ezgs(a:bx_ref) must be transformed into the procedure:

P = proc(a_vec:vector, a_pffset:integer)

where entry a_offset of a_vec is the variable a of P’s caller. P

P = proc Q = proc(i:int)

a:int print i

a =7 i = i+1

Q(a) end Q

print a

end P
If { was passed by: the output would be:
call-by-reference 7 8
call-by-sharing 7 7

Figure 5.10. An example of call-by-reference and call-by-sharing.

- 203 -

it

R~ Rt

manipulates a by reading and writing entry a offset of a_vec. This
works semantically but 1is inefficient since any attempt to use '"a"
results in copying a’s object reference into P’s LNS, That is, if a is
an integer variable, then the assignment a := a+7 turns into:

temp := a_vec(q_offset)

temp := temp+7

a_vec(a_offset) := temp

The resulting inefficiency of this interpretation in both space and time
can be high. Moreover, all of a vec is accessible to P so that P can,

if malicious or undebugged, cause damage to P’s caller through a_vec.

5.5 llsing AESOP’s Operating System Features

This chapter concludes with an example of how to use some of
AESOP’s operating system features: 1/0, processes, inter-process
communication/synchronization and protection. The example chosen is a

line printer driver - a program that prints a vector of characters on g

2
printer. i

This section shows how a line printer driver might be implemented

in AESOP. This is a simple driver, implemented as a new type 1lpt, that

accepts a vector{char] that is to be printed and places the characters
on the printer as soon as it 1s the turn of the current process to .

access the printer.

There are assumed to be two types of physical line printers, both T
to be supported by lpt. The first accepts characters one at a time for

printing. The second accepts all of the characters of a vector at once It

- 204 -

w—m .» m—— =

for printing. FEvery line printer w!ll consist of a status reqister

(logical device register one) and two event count registers (logical

device registers two and three). The second type of printer also has a
buffer register (logical device register four). Bit one of a printer’s
status register tells which type of printer it is. If true, the printer .1

accepts 8 bit characters one at a time in bits three through ten of

register one. Otherwise, the printer prints all of the characters in ’

the buffer named in register four by picking up the characters in that

buffer with 8 bits per character. 1In either case, the setting of bit
two of register one to true initiates the printing by the physical
printe-. The event count in register two (three) is incremented by the

printer whenever an operation completes successfully (unsuccessfully).

The line printer cluster, which provides the logical line printer
device and which interfaces with the physical printer, 1is shown in

Figures 5.11, 5.12, 5.13 and 5.14, Three high level comments are in

order. First, the procedure char_to_bits (chars_to_bits) 1is not shown
here as it simply <converts a character (vector[char]) to a
vector[boolean] representation, Second, these programs ignore the
possibility of error returns from the built-in type managers for

expository simplicity since the consideration of such errors would

needlessly complicate the programs., Finally, every statement In these
programs corresponds to one or two AESOP instructfons cven though some

syntactic sugaring has been used (e.g. vector references and {f

- 205 -

lpt = tm is create, destroy, print

rep = vector[l:4] ¥ first entry is an io object d
X second entry is an event count ;
% third entry is a sequencer ‘e
% fourth entry is a revoker for the "

% object viewer sealing an lpt
create = proc(addr:integer) returns(lpt)

%2 Create the rep object
v := vector$create(4, nil, nil)

% Initialize v

v(l) := ioScreate(addr, [1, 1, 2, 2, 31)
v(2) := ecScreate()

v(3) := sequencerScreate()

'

o Yy

o

% Seal v and return the sealed object
a, v(4) := object viewer$seal(v, nil)

return(a)
end create

R et

destroy = proc(l:lpt) signals no_access

% Unseal 1
v, ar, a := object_viewerS$extract(l) i

!
% Check for sufficient access to destroy 1 t
if ar(2) = true then go to no_access

% destroy the actual 1o object 1
io$destroy(v(l))

% Destroy 1 and we are done
ov$destroy viewed(v(4)) £
return

no_access: ;
signal no_access ;
end destroy

print = 2 see Figures 5.12, 5.13 and 5.14%
end print
end lpt

Figure 5.11. The 1lpt cluster,

- 206 -

AN R

print = proc(l:lpt, c:vector[char])
signals no_access, error

% Unseal 1
v, ar := ovlextract(l)

% Check for sufficient access to print
1f ar(3) = false then go to ok
signal no_access

2 Wait until it is our turn to use the printer
ok:ecSawait(v(2), sequencer$take(v(3)))

% Set the event count registers in the device
el := ec$create()

e2 := ec$create()

io$set_register(v(l), 2, el)
io$set_register(v(l), 3, e2)

% See what type of LPT it is and call the appropriate
% procedure to actually print the vector c.
bv := jo$read_register(v(l), 1)
if bv(l) = true
then call unbuffered(v(l), c, el, e2) except error
else call buffered(v(l), c, el, e2) except error

% release 1 and return normally
ecSincrement (v(2))
return

%Z release 1 and return abnormally
error:ec$increment(v(2))

signal error
end print

Figure 5.12. The print procedure of the lpt cluster,

statements).1 Thus the simplicity of this program directly reflects the

simplicity of the AESOP implementation of a line printer driver.

1. Multiple AESOP 1instructions are needed only where temporary

variables are needed to hold the results of an invocation for passing to
a subsequeat invocation.

- 207 -

! Ui

X

e —— ——— T TTTYWRTIC €T T

buffered = proc(device:io, c:vector{char], el:ec, e2:ec)

signals error

% Vector ¢ is printed on printer device which is assumed
A to accept a whole buffer at once.

% Event count el (e2) is the event count that the printer
Z will signal normal (abnormal) completion on.

% Convert c to bits and give to the printer
io$set_register(device, 4, chars_to_bits(c))

%Z Set bit 2 of register 1 to start the printer
io$set_status_1111(device, 2, true, 2, 1)

% Now wait for the printer to complete and

% check to see {f an error occurred
if 2 = ecSawait(el, 1, e2, 1) then signal error
return

end buffered

Figure 5.13. The auxiliary procedure buffered.

unbuffered = proc(device:io, c:vector[char]) siguals error

% Vector ¢ 1is printed on printer device which is assumed
y4 to accept characters one at a time.

X Event count el (e2) is the event count that the printer
4 will signal normal (abnormal) completion on.

2 get the length of ¢
length := vector$status(c)
J =1

loop:if j > length then return

% Now print the j’th character of c
io$set_status_0011(device, 1, char_to_bits(c(j)), 3, 8)
io$set_status_11li(device, 1, true, 2, 1)

X Now wait for the printer to finish and

4 check to see if an error occurred

1f 2 = ecSawait(el, j, e2, 1) then signal error
J = i+l

go to loop

end unbuffered

Figure 5.14. The auxiliary procedure unbuffered.

- 208 -

Tt e g N SRR W

o

A3 e S o IRy

There are three points to note in this example. First, event

counts and sequencers meditate concurrent access to the printer in a

simple fashion., Admittedly this problem requires little in the way of
syncaironization, but the availability of event counts and sequencers to
solve the problem at hand 1is indicative of the utility of AESOP.
Second, note the interface between print and the actual device. The
device register model permits the 1lpt cluster to communicate with the
device in a simple manner. There are no interrupts from the printer to
signal events; instead, the process waits for an indication from the
device, via event counts, when the process is ready to look at the
results of operations (the Venus operating system[29] works in a similar

way using semaphores). This synchronous nature of processes leads to

more easily understood programs in a parallel application such as this

line printer driver.

Now suppose that a process wants to print vector ¢ in parallel
with further computation. Furthermore, suppose that c¢ should not be

modified by the 1lpt cluster. The solution is to spawn a second process

to do the printing as shown in Figure 5.15. This permits the executing
program to continue execution while the vector 1s being printed.
Moreover, the process pr may only reference ¢ (through the object viewer

¢’); it may not modify it in any way.

- 209 -

L e RIAR NS eR T T CA D T Ol A

% There are 7 operations on vectors. Assume that vector$get
% is controlled by entry one of access restriction
% vectors in object viewers,

%2 Create a read-only view of ¢, call it ¢’
ar := vector$create(7, boolean, true)
ar(l) := false

.

¢’ := ovSrestrict(c, ar)

%2 Create a process to do the printing. Let it run in

Z the default storage area for the current process

4 and use the current GNS as its GNS.

pr := process$create(temp_proc, nil, process$get_default area(), c’)

%Z Start the process with default priority and no CPU
Y4 time limit imposed upon it.
process$start(pr)

% where temp_proc is tue procedure:
temp proc = proc(c:vector[char])
lpt$print(c)
end temp proc

Figure 5.15. Using Processes and Access Restriction.

5.6 Conclusions

This chapter has examined several ways to use AESOP. The first
four sections examined AESOP from the point of view of languages.
Section one showed how to use AESOP’s type mechanism to build objects of
extended type. It also showed how parameterized definitions, in
particular definitions parameterized by a type, can be achieved.
Section two presented four examples of how AESOP’s flexibility in naming
and execution, especially the closure facility, can be used in language
applications, The use of object viewers for indirection also was
presented here. Section three showed how to implement exception

handling using AESOP. The termination model was seen to be easily

- 210 -

implemented while the implementation of the continuation model had
complexity comparable to that of an implementation on a conventional
architectures. Section four examined two ways in which AESOP is
deficient in handling classical languages such as Algol: unneeded
garbage collection and the difficulty of doing call-by-reference
parameters and the restrictions imposed by AESOP’s local scoping of
variables. Finally, section five presented a line printer driver to

demonstrate some of AESOP’s operating system features.

Chapter Six

Conclusions

This thesis has explored the design of a high level architecture
for a personal computer. This chapter examines AESOP and how it has met
the goals outlined in chapter one. Some areas for further investigation

are also presented.

The primary goal for AESOP was to separate implementation issues
from high level language 1issues. A high level architecture such as
AESOP has two demands imposed upon it, both attempting to distort the
architecture from the theoretical ideal. Many languages need special
features placed in the architecture to accomodate a particular language
construct. These influences must be resisted since they conflict with
the goal of language independence. On the other hand, many
implementations of the architecture need features that allow that
implementation to be efficient. These influences must be resisted since
they detract from the implementation independence of the architecture.
One of the most important results of this thesis concerns the extent to
which the design of AESOP has been affected by both of these influences
and the subsequent lessons for the designers of other high level

architectures.

- 213 -

e g e

The influence of languages has been the easiest to resist, The
vast majority of languages have the same semantic base. As a result, by
providing this semantic base, AESOP is able to support many languages.
For instance, capability based naming seems to be the most general of
the various naming enviromnments provided by languages. The heap based
storage of AESOP seems to be more general than other possibilities (i.e.
stack or static storage). The most significant decision that has made
AESOP language independent is the decision to treat everything in AESOP
as an object. This permits the user to manipulate all aspects of the
programming environment, In particular, code and name spaces are full
fledged objects in AESOP to allow wmany language features to be
implemented in a simple manner (e.g. CLU iterators, Algol call-by-name).
However, the object model is not a panacea. It is a feature of recent
languages, so that modeling AESOP after it creates problems in

supporting some older languages, as was seen in chapter five.

Resistance to implementation specific features in AESOP has proven
to be more difficult, The correctness of an implementation is not at
issue. Rather, to be efficient, most implementations need architectural
features that collect information from the user, Such informatiom is
needed primarily to deal with the physical limitations of the hardware
underlying the implementation. It 1s also needed to suggest
optimizations to the implementation, For instance, information about
the expected locality of reference aids an implementation based upon a
multi-level memory with a slow secondary memory in migrating information

within that memory system efficiently. The ability to create vectors of

- 214 -

SRS ¥ More s L wen o B2 oEREE SEEE

only booleans or of only characters allows an implementation to optimize

the storage used for those vectors.

Implementations can acquire the information needed for an
efficient implementation in two ways. First, there may be explicit
operations in the architecture to aid efficient implementation. For
instance, the storage_ area$close operation of AESOP exists to provide
information about the expected locality of reference in the object
memory. Second, an implementation may attach additional semantics to
built-in features (including built-in operations). For instance,
storage areas are nothing more than quota pools in AESOP. However, the
implementation in this thesis assumes that the objects that draw quota
from a particular storage area exhibit locality of reference, so that
information can be migrated between primary and secondary memory

efficiently,.

Both techniques detract from implementation independence. The
first clutters the architecture with features that are, in some sense,
not relevant to solving the task that the user of the architecture has
before him. The second approach may result in the user writing programs
in a style that is attuned for efficient performance on a particular
implementation. Although those programs will be correct on other
implementations of the architecture, they may not be as efficient as
possible when executed there. Moreover, if the implementation adds very
unusual semantics to a built-in feature and the program has been
optimized to accomodate those semantics, the program may be hopelessly

inefficient on other implementatiomns.

- 215 -

However, some information from the user is essential for efficient
implementation., The goal is to acquire it in a way that minimizes the
impact of these problems. This is done by making the information
sources apply to as many implementations as possible (i.e. to the normal
or average implementation), That is, the explicit operations should
supply information that most implementations are likely to find useful,
The additional semantics that an implementation attaches to
architectural features should be chosen to be similar to those that the
average implementation adds. 1In this way, programs written assuming
these information sources will run reasonably well on most
implementations although their performance may not be as good on the
rare or unusual implementation. AESOP’s efficiency oriented features
meet this goal. Storage areas and the 'close" relation on them deal
with the multi-level memories that will underly most AESOP
implementations. Boolean and character only vectors allow most

implementations to perform an important space optimization.

The high level goal of implementation independence was a unifying
way of looking at two other views of AESOP: as an actual piece of
hardware and as a compiler intermediate language. The next few

paragraphs will examine how AESOP has met these goals.

Viewing AESOP as a piece of hardware 1is associated with two other
goals:.AESOP should be economically suitable for a personal computer and
its efficiency should be comparable to that of a conventional
architecture when performing similar tasks, The implementation

presented in chapters three and four should meet these goals. If one

- 216 -

Y P T RN &

T

PR v

imagines building AESOP on a microcoded processor, the implementation
consists of a large amount of code to perform the various functions
outlined in chapters three and four. Some cases are fairly easy (e.g.
allocation of scorage within a storage area, process management,
vectors) while others dre more difficult (e.g. physical memory
management, garbage collection), but in all cases chapters three and
four have described a method of implementation. Since only code is
involved, this implies that AESOP becomes more economical as a personal
computer as the size of microstores increases., However, as pointed out
at the end of chapter four, there are a few places where special
hardware (in particular associative memories) will significantly aid the
efficiency of an AESOP implementation., These assists seem to be well
within the ability of projected and probably current technology to
supply cheaply. As a result of these considerations, it is reasonable
to expect that AESOP will be economically viable to build as a personal
computer at some point in the future. However, its efficiency relative

to conventional architectures must be examined more closely.

The implementation presented in chapters three and four should
give reasonable efficiency compared to conventional architectures if
programs performing similar tasks are compared. AESOP provides a
programming environment that permits, as seen 1in chapter five, many
language features to be supported in a straightforward manner. Many of
AESOP’s features that permit this are gained at no cost compared to
conventional architectures. A few of AESOP's features provide

facilities not found in conventional architectures (e.g. protection

- 217 -

e

T AT R

oriented features) but they are provided at some implementation cost.
The net effect is that AESOP’s performance should be comparable to
conventional architectures but with a richer set of facilities., To see
this, the time and space efficiency of the implementation of AESOP will

be considered.

First, consider time efficiency. A large number of points of
comparison are possible cf which only a few of the more prominent are
mentioned here. Variables are accessed on AESOP with a single memory
reference (by using an offset obtained from an instruction to index off
of a register pointing to a name space) just as on a conventional
architecture. 1If the value of a variable is a basic computational type
(e.g. booleans, characters, integers), retrieving the variable retrieves
its value in both AESOP and a conventional architecture. Accessing a
vector element in both cases involves retrieving a pointer to the vector
and then performing an indexed access, In both cases, invoking a
closure iavelves creating a small activation record, setting environment
pointers and branching. Processes on AESOP are likely to be cheaper
than on conventional architectures since AESOP processes embody little
state and are easy to schedule. The translation from page identifier to
primary memory address that the AESOP implementation performs is similar
to what a conventional processor with virtual memory does. Finally, the
implementation has been designed assuming that the use of AESOP will

follow the subsystem model and that the objects in a storage area will

exhibit 1locality of reference. Thus, to realize 1its potential

-~

SOP NE P I

ey

[U,

LR ke

efficiency, the wuser must use AESOP in a way that makes these

assumptions true.

There are a few ways in which AESOP may be less time efficient
than conventional architectures. In all cases, these 1inefficiencies
come from features that provide important functionality not found on
conventional architectures. AESOP’s object viewers cost extra memory
references to refer through as opposed to directly referring to an
object. Conventional architectures avoid this by not providing the fine
grained access controls and type extension facilities that object
viewers provide, AESOP procedures are somewhat expensive to call
because the template LNS must be copied on each invocation,
Conventional architectures avoid this by ignoring the problem of
initializing a procedure’s environment. If AESOP pointers are copied
from one storage area to another, cables/links must be searched for and
created if not found. While an area is being garbage collected, on
average half of all the references to objects in that area will require
an indirection through a forwarding pointer to TO space. Finally, the
AESOP garbage collector is likely to be more expensive than the garbage
collector on conventional systems due to the need to deal with a very
large, long term storage system instead of a small, isolated temporary
storage system. Thus, in some ways, AESOP may be less time efficient
than conventional architectures although this 1is offset by the gain of

some important functionality.

Space efficiency is easier to deal with. The AESOP implementation
stores the value of computational variables in the variable itself as on
conventional systems, Vectors can be stored with equal efficiency in
both cases. This is especially important for the cases of boolean and
character vectors., There is no reason to believe that the storage for
the remaining types should significantly differ in the two cases since
the implementation of AESOP can use the same techniques to represent
them as on conventional architectures. In general, AESOP may make less
effective use of both lecgical storage (i.e. storage within a storage
area) and physical storage (i.e. the disk storage used to hold storage
areas) than programs on conventional architectures since an AESOP
implementation embodies general purpose storage management algorithms
and not the special purpose algorithms a particular application on a

conventional architecture might use.

The key question is how the space/time efficiencies/inefficiencies
of AESOP balance out in relation to conventional architectures. This
writer believes that, on balance, an AESOP processor should be able to
compete with conventional architectures on similar tasks. The value of
AESOP’s facilities (e.g. support for multiple languages and for the
execution of untrusted programs) makes its efficiency acceptable, This
is, however, just an opinion and will remain so until AESOP is actually

built. The reader must make his own judgement.

AESOP has less successfully met the goal of being a compiler
intermediate language. This goal is related to the goal of supporting

multiple languages. AESOP does so by providing three features: the

- 220 -

PRI PO s s ot Sy

correct basic semantics, run-~time checking of access to built-in types
and object viewers to permit a language system to protect 1its objects.
Chapter five has shown a number of examples of how these features might
be used. Supporting multiple languages 1in the way AESOP does has two
advantages over the alternative of having one virtual machine per
language system, First, languages can share all of AESOP’s built-in
types. Moreover, languages can, by mutual agreement, share extended

types. Second, languages can share all of AESOP’s memory. Thus

arbitrarily large data structures are trivially accessible from multiple
languages. In addition, shared type managers mean that this data camn be

of arbitrary type for maximum flexibility.

Efficiency, however, may be a problem. Even though the comments
on AESOP’s general efficiency mentioned above are true here, the
hardware assists mentioned at the end of chapter four are essential to i
achieving this performance. 1If the hardware and/or operating system L
underlying the implementation of AESOP does not provide such assists, :
programs may run inefficiently., 1In particular, run~time type checking
for the built-in operations, especially on computational data types
(e.g. integers), will cost a great deal. Object viewers impose the
overhead of additional memory references., Finally, user programs must
perform run-time type checking if they are to exist in a world of

multiple languages,

An overriding goal for AESOP was that of completeness. The user
of AESOP must be able to deal, within AESOP, with all of the realities

of computer systems and be able to deal with the many problems that

- 221 -

arise in executing programs. In particular, the user must be able to
deal with finite resources, buggy or untrusted programs and crashes of
the system. The various features normally provided by operating systems
must be available or programmable., Also, the human user must be able to
interface to AESOP in a way that permits using all of its facilities
easily. The next few paragraphs will explore how well this goal has

been met.

Finite resources come in three general forms on AESOP: processor,
storage and other. AESOP provides a number of controls over processes:
starting/stopping, priority and time limits. Storage areas provide a
means for controlling the use of finite memory resources by providing a
quota mechanism, Other resources, such as 1I/0 devices, must be
controlled by user written programs that take advantage of AESOP’s
treatment of everything as an object. By proper use of these facilities
the user is able to control the use of finite resources so as to meet

his needs.

Dealing with untrusted programs is just a special case use of the
facilities provided for multiple languages and for controlling the use
of finite resources. An untrusted program must access only a limited
set of objects in prescribed ways. Object viewers and capability-like
naming allow this to be enforced. The global name space permits
encapsulating such programs so they can have program controlled and
monitored access to objects. The resources consumed by an untrusted
program must be controlled so that it can not consume resources to the

point where the execution of other programs is prevented or adversely

- 222 -

—

—~—-

affected., AESOP’s resource control mechanisms are adequate to prevent

this.

AESOP includes various features normally found in operating
systems, This 1is an important step in architectural design 'as it
simplifies the user’s view of the world. AESOP provides processes,
storage areas, permanent storage,) interprocess

synchronization/communication and protection, The effect of their

inclusion 1is to eliminate the need for most, 1f not all, of the

operating system normally associated with a computer system. This
results in a system that has only two major components (AESOP and the
language run time system) rather than the three components normally seen
(the hardware, the operating system and the language run time system).

The resulting simplicity of the programming interface is significant,

Thus AESOP is able to deal with three important aspects of
completeness: finite resources, untrusted programs and operating system
features. However, this thesis has left the problems of
backup/recovery, system "crashes'" (and subsequent recovery) and reliable
programs to the implementation and to future research. These are
important parts of completeness and their proper solution essential to
providing reliable AESOP systems., They have been ignored in this thesis

as they are difficult research problems in and of themselves,

The last aspect of completeness 1is the software that must be
written for AESOP to allow human users to effectively interface to

AESOP. A command language system must be built to permit the human user

- 223 -

to control his programs, create new programs and control the use of
AESOP resources. This interface should be designed to give the user
easy access to all of the features AESOP provides, The design and
construction of this interface represents another interesting research
problem, Various auxiliary software such as compilers, linkers and a
file system catalog must be written to create a more easily used
environment than the basic AESOP enviromment. These two issues relate
to system completeness, how to make AESOP wusable, and not to
architectural completeness, As such, they are just a side issue to this

thesis, albeit an important one.

6.1 Directions for Future Research

This thesis has been a paper design - no {implementation of AESOP
or of a large application using AESOP has been attempted. No paper
design can be completely convincing. As a result there are two major
tasks that need to be done initially, First, a language using AESOP as
a base should be implemented. Such an endeavor would result in greater
confidence that AESOP has the features that are needed in high level
applications. A good choice for such an application would be the
construction of a cross-compiler to AESOP (e.g. adapt a CLU compiler to
produce AESOP code and write the corresponding run-time support that
would be needed). Second, AESOP itself should be implemented. It is
only in doing an actual implementation that complete confidence will be
gained that all of the issues in an AESOP implementation have been
addressed by this thesis. These two activities are essential to

verifying the ideas of the thesis,

- 224 ~

- N

- T

This thesis has brought up a number of related areas that require

further research. Perhaps the hardest and most interesting area is that ¢
of reliability. AESOP has not provided any architectural features to |

support reliable programs. 1Instead, the implementation has been allowed

to handle reliability. It is important to understand what features are
required in a high level architecture such as AESOP to allow the user to
construct his own reliable programs. This is a difficult task if the
goal of implementation independence is to be maintained. The complexity
and economic constraints of the personal computing environment further

complicate the issue.

Beyond this, there is the more basic question of the construction

of a reliable implementacion of a capability bsed system as AESOP. The

problem concerns data that is damaged or lost (e.g. as in a crash of the

system). If one or more of the capabilities should be damaged, the i

result may be chaos - objects that really should be accessible will no

R

longer be and some pointers will be changed to point to random places in

memory (possibly to other objects and possibly to random places in

(R e >y

memory that may result in failure of the implementation). This is a
serious problem whose solution in the cost and complexity constrained

environment of a personal computer seems to be difficult,

A related issue to these two is backup and recovery. How should
it work in an object based environment? What does it mean to backup the
system? 1Is it a snapshot of the system or does one dump individual
objects and somehow remember the relationship between them? How do

implementation provided backup/recovery mechanisms and architecturally

- 225 - |

supplied reliability mechanisms interact? Are they, 1in fact,

incompatible so that only one of them can appear in a given system?

Another research area 1is the garbage collector proposed in this
thesis. When should the garbage collection algorithms be invoked by the
system? Are the algorithms suggested in chapter three adequate? If so,
how should they be parameterized and what needs to be measured to impose
them? 1I1f not, what algorithms should be used and is their complexity

justified by the increased efficiency of the garbage collection process?

There are questions concerning alternative implementations of
AESOP. In many applications, the use of objects is likely to follow a
stack oriented discipline. Can an implementation be optimized around
that pattern of use in a profitable manner? Can the assumed locality of
reference within a storage area be used to compact the format of object
references by using so called "short pointer" techniques? 1In the longer
run, implementations of AESOP based upon a greater wuse of

microprocessors to provide additional loci of control for processes and

to provide processing power in traditionally passive devices (e.g.
primary memory and disk storage devices) need to be explored for their
potential exploitation of parallelism both within the implementation and

between processes running on the implementation.

A command processor must be built for use on AESOP. What features
must it have to permit easy but complete access to all of AESOP’s
features? How are programs debugged? What should the file system look

like? How are the many processes AESOP permits controlled?

- 226 -

This thesis has proposed a particular architectural model of
memory. Alternative models exist such as a classical primary/secondary
memory of bits or an unstructured object heap as in Snyder’s thesis.
What level should the model be at (i.e. how much should/can be hidden
from the user)? How do efficiency considerations effect the answer to
this question? Do better, alternative models exist that are abstract

enough to simplify the user’s task while still permitting efficient

implementations?

If one considers AESOP and its implementation together, a complete
system is seen., The semantics of that system contain implementation
independent and implementation dependent parts., How 1is a high 1level
architecture such as AESOP specified to reflect these differences? How
are the performance related features specified? Can their specification
be "modularized" so as to not effect the semantics of the rest of the

system?

AESOP is an interesting exploration into the area of a complete,

high level machine architecture. It is only a first attempt into this

area and additional work is needed. The readers of this thesis are
encouraged to continue exploration into high level architectures that
take into account the many issues that a complete computer system must

address,

- 227 -

Appendix A

The Operations of the Basic Types

This appendix describes the operations provided by AESOP’s
built-in type managers. In keeping with the warnings of chapter two,
these must be regarded as only suggestions. The reader should feel free
to substitute types and operations that sult his particular needs, such

substitution being done in the "spirit" of chapter two.

The description of the built-in type managers consists only of the
operations provided by those type managers; chapter two should be
consulted for a description of the type. The description of an
operation begins with a syntactic description of the form:

TSop (arg(l), arg(2), ..., arg(N))

returns (res(l), res(2), ..., res(M))

signals (sig(l), sig(2), ..., sig(s)) 1

This describes the operation named "op" provided by the type manager T.
The parameters accepted by the procedure are described by each of the
arg(i) and the results provided by the procedure are described by the
res(i). Any exceptions raised by this operation are described by the
sig(i). A parameter (or result) is described in the form

name:type
that assigns a name to the parameter for the purposes of the discussion

that follows and states that it is of the specified type. One caveat,

- 229 - i Lo
B PY RS

F
PRECEDING PAGE BLANK = NOT F1LMED|

some operations allow, as an option, a parameter to be nil to signify a
special action. An exception is described by the form name(<results>)
that states that the exception has the given name and returns the
specified results.! Following this initial line is a description of
what the operation expects in the way of parameters, how it interprets

them and what the operation does.

Signal names are unique among all operations. If an exception is
raised by more than one operation then it has the same meaning in all
operations and is only described at {its initial appearance. All
operations raise the following exceptions:

invalid _operand_type (i(1), ..., i(N))

too_many arguments ()

too_few arguments ()

unexpected nil_operand (i(1l), ..., 1(N))

unexpected deleted operand (i(1), ..., 1(N))

insufficient_access (i(l), ..., 1(N))

insufficient_storage
and so they will not be mentioned in the individual descriptions of the
operatiouns. The 1invalid operand type exception indicates that the
specified arguments to this operation have an incorrect type. The
exceptions too_many_arguments and too_few arguments indicate that the

number of arguments passed to this procedure was not within the limits

1. If more than one result is returned, they are packaged into a
vector and that vector is returned due to the restriction imposed by the
exception handling mechanism of only one parameter to an exception
handler.

- 230 -

as specified by the procedure.l The exception unexpected_nil operand
indicates that the specified arguments to this procedure were
unacceptable since they referenced a nil object. The exception {
unexpected deleted operand indicates that the specified arguments were
deleted objects and as such were unacceptable to this procedure. The
exception insufficient_access indicates that the caller has insufficient
access to perform the called operation on the specified arguments. The
condition insufficient_storage indicates that this operation attempted
to create un object but was unable to do so as there was insufficient

storage in the area where the create was attempted.

In the preceding discussion, and in the following, character
string names have been used for operations and for exceptions. A
particular implementation will bind these character string names to

integers.

Boolean

boolean$abcd(x:boolean, y:boolean) returns(z:boolean)
This is a set of 16 operations parameterized by assigning the
values 0 and 1 to a, b, ¢ and d. It assigns a boolean value to z

based upon the following table:

1. This condition 1is raised by the instruction interpreter of the
implementation as part of the calling sequence. As such it will be
raised not only for built-in procedures but also for user defined ones.

i - 231 -

Gttt . . o et

Thus boolean$0001 performs an and on x and y.
boolean$is_type(x) returns(b:boolean)

Returns true if and only if x is of type boolean.

Characters
char$equal(cl:char, c2:char) returns(b:boolean)

Returns true 1if and only if cl and c2 denote the same character.

char$is_type(x) returns(b:boolean)

Returns true if and only if x is of type character.

char$ord(c:char) returns(z:integer)

Returns the index of the character ¢ in the character set being

used by the implementation,
char$ord_inv(z:integer) returns(c:char)
Returns the character whose index in the character set being used

by the implementation is z.

Closures

closure$create(cs:code_segment, lns:vector, gns:vector)

returns(cl:closure)

Creates a new closure cl consisting of the three arguments as its

- 232 -

PR M MM T I

- g e o

[N ——
el e &

T T L

1

components, The arguments 1lns and gns default, if nil, to the
LNS and GNS of the executable unit invoking closure$create.
closureSdestroy(cl:closure)
Destroys the closure cl invalidating all outstanding references to
it.
closure$is_type(x) returns(b:boolean)
Returns true if and only if x is a closure.
closure$run(cl:closure) returns(res(l), ...,
res(M))signals(code_seg destroyed, ...)
Causes the closure cl to be executed and returns any results that
cl returns. The signal code seg destroyed is returned if the code
segment in cl is destroyed. 1In addition to raising the exceptions

based upon 1its argument, this operation may also raise any

exceptions that cl’s execution may terminate with,

Code Segment
code_seg$create(rep) returns(cs:code_seg)
Creates a new code segment, cs, from the represeantation in rep.
See chapter two for a discussion of rep.
code_seg$destroy(cs:code_segment)
Destroys the code segment c¢s invalidating all references to it.

If this code segment is still being executed in some process, the

1. For this and subsequent create operations an optional final
argument may be given that denotes the storage area for the newly
created object. If omitted, the default storage area for the current
process 1is used.

L amam oo

-

4

operation that caused this code segment to be run will return a

code_seg destroyed exception.
code_seg$is type(x) returns(b:boolean)

Returns true if and only if x is a code segment.

Event Count

ecSawait(e(l):ec, c(l):integer, ..., e(N):ec, c(N):integer)
returns(which:integer)
Blocks execution of the current process until one of the event
counts e(j) has a value at least as large as the corresponding
c(j) in which case j is returned in which.

ecScreate() returns(e:ec)
Creates a new event count e,

ec$destroy(e:ec)
Destroys the event count e invalidating all outstanding references
to 1it. Any processes waiting on e will be resumed with the
ec$await operation signalling unexpected deleted operand.

ec$increment(e:ec, n:integer) signals(not_plus, overflow)
Increments the event count e by n. Signals not_plus if n is
non-positive. Overflow is signalled if incrementing e by n would
cause e to be larger than the implementation supports.

ec$is type(x) returns(b:boolean)
Returns true if and only if x 1s an event count,

ec$read(e:ec) returns(count:integer) signals(overflow)

Returns the value of e in count. Signals overflow if e is at its

- 234 -

"

L e

largest possible value.

Integer

integer$abs(x:integer) returns(z:integer) signals(overflow)

Returns x if x 1s non-negative otherwise returns -x. Overflow is

signalled if x 1s negative and -x 18 not representable by this
implementation.
integer$divide(x:integer, y:integer) returns(z:integer) signals
1 (zero_divide)
z := x/y. Signals zero_divide if y is zero.
integerSequal(il:integer, i2:integer) return-(b:boolean)
Returns true if and only if {1 and {2 denote the same integer.
integer$is_type(x) returns(b:boolean)
Returns true if and only if x is of type integer.
integer$less_or_equal(x:integer, y:integer) returns(b:boolean)
Returns true if and only if x < y.

3 integer$less_than(x:integer, y:integer) returns(b:boolean)

Returns true if and only if x < y.
integer$max(x(1):integer, ..., x(N):integer) returns(z:integer)
% Returns the largest value from the set {x(1i)} in z.

integer$max_int() returns(z:integer) signals(none_such)

Returns the maximum integer supported by this implementation in z. 4
The exception none_such is raised if the implementation does not

§ impose such a limitation.

- 235 -

integer$min(x(1l):integer, ..., x(N):integer) returns(z:integer)
Assigns the smallest value from the set {x(1)} to z. f
integerS$min_int() returns(z:integer) signals(none_such)
Returns the minimum integer supported by this implementation in z. %

integer $minus(x:integer, y:integer) returns(z:integer)

signals(overflow, underflow) i
z := x-y. An overflow exception indicates that the result of this !
operation, mathematically, is larger than this implementation can f
represent. An underflow exception indicates that the result of i

this operation, mathematically, is smaller than this
implementation can represent. l
integer$mod(x:integer, y:integer) returns(z:integer)
signals(non_positive integer)
z is assigned the remainder of dividing x by y. If y is not
strictly greater than zero, the exception non_positive integer is
raised.
integer$plus(x:integer, y:integer) returns(z:integer)
signals(overflow, underflow)
z := xty.
integer$times(x:integer, y:integer) returns(z:integer)
signals(overflow, underflow)
z := xky,
Notes:
It 1s possible that a particular implementation will support
arbitrary precision arithmetic. If so, max_int and min_int will

raise the none_such conditions., Additionally, all operations that

- 236 -

I0

produce an 1integer result may take an additional, optional

argument, a storage area, indicating where the integer may be
stored. If no such argument is given, the default storage area

for the current process is used.

io$create(addr:integer, spec:vector[integer]) returns{dev:io)

signals(none_such, too_late)

Creates a new 1o object dev whose address is given by addr. The
new device has N registers associated with it where N is the
length of spec. The vector spec specifies whether each of these N
device registers is a status register, an event count register or
a buffer register. The exception none_such is raised 1if the
specified device does not exist. The exception too_late is raised
if an 1io$create operation has already been performed on the

specified device.

io$destroy(dev:io)

Destroys the 1logical device dev, 1invalidating all outstanding
references to it. The physical interface between the device and

AESOP is made inactive.

i08is_type(x) returns(b:boolean)

Returns true if and only if x 1is of type {o.

io$read_register(dev:io, i:integer) returns(register)

signals(none_such)

Returns the value of the i“th device register of dev. 1If i is not

- 237 -

the name of a valid device register then the signal none_such 1is

~—rer—

raised.

io$set_register(dev:io, i:integer, new) signals(none_such)

Sets the value of the 1i°th register of dev to new. Signals '

invalid_operand_type if new is not of the appropriate type for the

1°th register of dev.

io$set_status abcd(dev:io, 1:integer, bv:vector(boolean],
offset:integer, length:integer) returns(status:vector[boolean}) ‘
signals(none_such) \
This 1s a set of 16 operations parameterized by assigning O and 1
to a, b, ¢ and d. For j from 1 to length the offset+j-1°"th bit of

the i’th register of dev is changed to the value in the following

table:
01
0la
lle d
where x is the value of the j’th bit of bv and y is the value of

the offset+j-1°th entry of the status register.

Null
null$is_type(x) returns(b:boolean)
This operation returns true if and only if X is of type null, 1i.e.

returns true only if x = nil.

- 238 -

Object Viewers
ov$access(o) returns(ar:vector[boolean])
Returns, in ar, the access restriction vector associated with the
reference o.

ov$destroy(y:ov)

Destroys the object viewer named by vy, 1nvalidating all
outstanding references to or through 1it,

ov$destroy viewed(y:ov)
Destroys the object viewer that y permits modification to,
invalidating all outstanding references to or through that object
viewer,

ov§extract(o) returns(sealed object, ar:vector[boolean}, revoker:ov)
This operation unseals o, returning the sealed object 1in
sealed object, the access restrictions associated with the
reference o in ar and an object viewer that permits modifying the
object viewer sealing sealed object in revoker. If the procedure
performing this operation is not part of the type manager returned
by ov$type(o) then the insufficient_access(l) exception is raised.

ov$§is_ type(x) returns(b:boolean)
Returns true if and only if x is an object viewer; that is, if and
only if x is a reference that permits modification of some object
viewer,

ov$modify(y:ov, object, ar:vector[boolean])
Modifies the object viewer named by the revoker y so that Iits
viewed object is object and the access to the viewed object is ar.

Both object and ar default to nil. The value nil is always valid

- 239 -

as an object field no matter what the type field in the object
viewer that y permits to be modified may be. Signals
invalid_operand_type(2) 1if the type of object is not compatible

with the type field in the object viewer that y permits to be

modified.

ovirestrict(viewed object, ar:vector[boolean]) returns(X, Y:ov)
This operation returns a new object, X, that represents a
restricted view of the object viewed object. The restrictions are
specified by ar. The returned value Y permits modification of the
object viewer that is X. The argument ar defaults to nil (no
access restrictions).

ov$same_end objects(o(1l), o(2)) returns(b:boolean)
Returns true 1if and only if o(l) and o(2) currently provide
different views of the same object; that is, it returns true 1if
and only 1if the chains of object viewers named by o(l) and o(2)
eventually converge.

ov$same names(o(l), o(2)) returns(b:boolean)
Returns true if and only 1if o(l) and o0(2) refer to the same
object; that is, it returns true if and only if o(l) and o(2)
refer to the same non-object viewer object or refer to the same
object viewer (i.e. "pointer" equality).

ov$seal(sealed_object, ar:vector[boolean]) returns(X, Y:ov)
signals(not_a tm)
This operation creates an object, X, of extended type from the
representation object sealed object. The type manager for X, and

thus {its type, is the type manager invoking this operation, If

- 240 -

not invoked by a type manager, not_a tm is signalled. The
permissible operations on X are specififed by ar. 1If ar 1s not

supplied, or 1s nil, all operations are permitted on X. The

returned value Y is a revoker that permits modification of the
object viewer that is X.

ov$type(o) returns(t:tm)
Returns the type of the object referenced by o in t. The
reference t does not permit the status or destroy operations on

the named type manager.

Procedures
proc$call(p:proc, arg(l), ..., arg(N)) returns(res(l), ..., res(M))

signals(code_seg destroyed, ...)

This operation invokes the procedure p and passes the arguments
{arg(1)} to it. The invoked procedure executes in an environment
with the global name space of its caller as the global name space
of the called procedure. Any results produced by p are returned
in {res(1)}. This operation raises various conditions 1if the
argument p is invalid and will also raise any exceptions that p
itself may raise.

proc$call_with_gns(gns:vector, p:proc, arg(l), ..., arg(N))

signals(code seg destroyed, ...)
This operation invokes p as for proc$call. 1In addition, p is
executed in an environment where gns is the invoked procedure’s

global name space.

- 241 -

procScreate(cs:codg_seg, t_lns:vector, min_args:integer,
max_args:integer, start:integer) returns(p:proc) signals(bad_spec)
Creates a new procedure with cs as its code segment and t_lns as
its template local name space. The procedure requires at least

min_args arguments but no more than max_args arguments. If

max_args is nil, the procedure imposes no limit on the number of

arguments expected. The input arguments will be placed starting

at location start in the procedure’s local name space at run time.
The exception bad_spec is raised if any of the integer parameters
are non-positive or if max-args is less then min_args.
proc$destroy(p:proc)
Destroys the procedure p, invalidating all outstanding references
to it.
proc$is_type(x) returns(b:boolean)
Returns true if and only if x is a procedure.
proc$status(p:proc) returns(cs:code segment, t_lns:vector,
miq_prgs:intéger. max_args:integer, start:integer)
Returns the current status of the procedure p. The result

variables have the same meaning as for proc$create.

Process
process$boolean branch(b:boolean, if true:integer, 1f_ false:integer)
signals(bad_spec)
Branches to an offset if true or if_false locations from the

current instruction depending upon b being true or false. The

- 242 -

exception bad_spec is raised if the specified instruction does not

exist.

s g et T

process$branch_§ame_gnq_pbjects(o(l), o(2), equal:integer,
not_equal :integer)
Branches to offset equal (not_equal) if ov$same_end_objects(o(l),
0o(2)) returns true (false).

process$branch_same_names(o(l), o(2), equal:integer,
not_equal :integer)
Branches to offset equal (not equal) if ov$same_names(o(1), 0(2))
returns true (false).

process$create(p:proc, gns:vector, lca:storage area, arg(l), ...,

arg(n)) returns(pr:process)
Creates a new process pr in the stopped state with priority one
and no CPU time limit that executes with lca as its inictial
storage area and begins execution with the instruction
proc$call_with_gns(gns, p, arg(l), ..., arg(n)). 1If nil, gns
defaults to the current GNS and lca to the current default storage
area.

process$destroy(pr :process)
Destroys the process pr, invalidating all outstanding references
to it.

process$get_default area(pr:process) returns(s:storage_area)
Returns the current default storage area for process pr. If pr is

nil, the curreant process is assumed.

- 243 -

process$integer_compare(a:integer, b:integer, less:iinteger,
equal:integer)
Branches to offset less (equal) 1if a is less than (equal to) b.

processSiq_type(x) returns{b:boolean)
Returns true if and only if x is a process.

process$max_prior() returns(prior:integer)
Returns the maximum possible priority that a process may be
assigned. Processes with maximum priority are guaranteed to get
some CPU time by AESOP’s round-robin scheduler.

process$multi_way branch(i:integer, offset(l):integer, ...,
offset(N):integer)
Branches to an instruction that is offset(i) instructions from the
current one.

process$returun(res(l), ..., res(R))
Causes the current invocation to return normally with the results
{res(1)}. 1If the invoker expects M results, min(M, R) results are
actually returned.

process$schedule(pr:process, prior:integer, limit:integer, event:ec)
signalg(priority .oo_high)
Sets pr’s scheduling priority to prior and its CPU time limit to
limit. 1If pr should consume limit units of CPU time total then it
enters the stopped state and event 1is incremented. If limit is
nil, no CPU time limit is imposed and event 18 ignored. Signals

priority too_high if prior is greater than process$max_priority().

- 244 -

processSset_ﬁefaulq_area(s:storagg_area, pr:process)

Sets the default storage area for the process pr to s. 1If pr is
nil, it defaults to the current process.

process$signal(signal, operand)
Causes the current invocation to return abnormally with signal as
the signal name and operand as the signal operand.

process$start(pr:process)
Causes the process pr to enter the runnable state and resume
execution.

process$status(pr:process) returns(s:integer, cpu:integer,
prior:integer, ec:vector[event_count], limit:integer, event:ec,
other)
Returans the current status of pr as follows: current status
(runnable, stopped or blocked on some event(s)) in s, cpu time
consumed in c¢pu and current priority in prior.‘ If status
indicates that the process is blocked, then an array, ec, of event

counts that this process is blocked on is returned (otherwise

nil). Also returned are the CPU time limit in limit and an event
count, event, that will be incremented when that time limit is
exceeded, 1If limit is nil, no limit is imposed and event is
returned as nil.

process$stop(pr:process)
Causes the process pr to cease execution and enter the stopped

State.

- 245 -

process$transfer(offset:integer) signals(bad_spec)
Causes execution of the current code segment to continue at offset

instructions from the current one.

Sequencer

sequencer$create() returns(s:sequencer)
Creates a new sequencer s with initial value 0.

sequencer $destroy(s:sequencer)
Destroys the sequencer s invalidating all outstanding references
to it,

sequencer$is_type(x) returns(b:boolean)
Returns true if and only if x is a sequencer.

sequencer$take(s:sequencer) returns(i:integer) signals(overflow)
Returns the next value in s8’s sequence in i, The signal overflow

is raised 1f s is at its largest possible value.

Storage Area
storagq_areasclose(s:storagg_prea, s’:storagg_area)

Specifies that storage area s should be regarded as being close to

4

storage area$create(size:integer, parent:storage area)

returns(s:storage area)

Creates a new storage area s by drawing size units of quota from

parent.

- 246 -

I SO e e

D St 4

storagg_greaneletq_all(s:storaggQarea)
Delctes all objects in the storage area s invalidating all
outstanding references to them.
storage_area$destroy(s:storage _area)
Destroys the storage area s and all objects in it invalidating all
references to the storage area and to those objects.
storage_area$is_type(x) returns(b:boolean)
Returns true if and only if x is a storage area.
storage_area$not_close(s:storage area, s’:storage_area)
Specifies that storage area s should no longer be regarded as
being close to s’.
storage area$size(s:storage-area) returns(size:integer, free:integer)
Returns the current size of s in size and the current amount of
free quota in s in free.
Note:
master_alloc(size:integer) returns(s:storage area) signals(cant)
The procedure master_alloc is a built-in procedure that can
create storage areas out of nothing. Signals cant if an area
of the specified size can not be created., It is supplied at

initialization time to the initial process of AESOP.

Type Manager
tm$create(proc(l), ..., proc(N)) returns(t:tm)
Creates a new type manager with proc(i) as the procedure

implementing the i’th operation on the newly created type.

- 247 -

W A PRI 3 AT

B2

‘1)
R

e

~ =T

by

[

e LS Sl = i e S

tm$destroy(t:type manager)
Destroys the type manager t, invalidating all outstanding
references to it.

tm$is_type(x) returns(b:boolean)
Returns true if and only if x 1s a type manager.

tn$status(t:tm, i(l):integer, ..., 1(M)) returns(proc(l), ...,
proc(M)) signals(bad_spec)
Returns as proc(j) the procedure that implements operation 1(j).

The exception bad_spec is raised if there is no operation i(j) for

some j in [1,M].

Vector

vector$create(size:integer, nature:tm, initial_value)
returns(v:vector) signals(bad _size, bad_type)
Creates a new vector with "size'" elements in it, all initialized
to the value initial_value. The exception bad_size is raised if
slze is non-positive or if size specifies a vector too large for
this implementation of AESOP. If nature is nil then v may contain
objects of any type otherwise they must be objects provided by the
type manager nature. (The parameter nature sets a property of v
known as 1its nature). The exception bad_type 1is raised if
initial value is not storable in v (i.e. if nature is not nil and
if the type of initiai_value is not nature).

vector$destroy(v:vector)

Destroys the vector v, invalidating all references to it.

- 248 -

PRV (TR <, DR TP PRI

B P S '\i

e

e oty ot v ol =

vector$is type(x, spectficiboolean, nature:tm) returas(b:hoolean)
It specific is false then nature is dgnored and true s returned
Lt and only If x {s a vector. If specific is true then true fis
returned {f and only {f x {8 a vector with the same nature as
specified by nature,

voctannoq_stntuu(v:vcctnr. nature:tm, size:i{nteger, lnltlal_vuluc)
signals(bad_type, bad_nature)
Modifies v to have the specified nature and size. If the new sfze
ot v is smaller then the old slze, {nftial_value {s fgnored, 1f
an exception {s rafsed, then v I8 not moditfied.

vector$ref(vivector, {:integer) returns(value) signals(bad_index)
R‘vt,urus the value of the {“th eclement of v in value, The
ex eption bad_fndex {s ratsed {f { fs not {n the vange [1,size]
where sfze Is the curvent stze of v,

vector$status(vivector) returns(size:integer, nature:tm)
Returns the curcvent stze and wature of v In size and nature
respectively,

vector$store(vivector, (:integer, value) signals(bad_index, bad_type)
Stores value as the value of the (“th element of v, S{gnals

bad_type {f value’s type {s incompatible with v s nature,

- 249 -

Appendix B

The Complete Garbage Collection Algorithm

This appendix describes 1in detail the garbage collection

algorithms used in the implementation of AESQP described in chapter

three. The garbage collection algorithms used in AESOP have two parts:
the garbage collector used by each individual storage area and a second

garbage collector that drives the global mark/sweep garbage collection

used to reclaim inter-area cycles of garbage.

There are a few pieces of information that the system maintains

:
}
)
!

for the garbage collection algorithms. Associated with every object is

T

a single bit, its mark bit, that is used to mark objects for the global
mark/sweep garbage tollection. Each storage area has two flags and two
addresses associated with it. The ITID flag (for I Think I‘m Done) and
the rescan flag are used as part of the global mark/sweep garbage
collection algorithm. The address TO_space gives the address of TO

space for the storage area while TO limit is the address of the last

object reference in TO space that has been scanned. Every inter-area
cable has a gc_in _progress flag and a was_gcing flag associated with it.
There are two global flags used to indicate the state of the global
mark/sweep garbage collection. The global _gc flag is turned on when a

global mark/sweep garbage collection is in progress. The global sweep

)

FRECEDING PAGE BLANK - Not it
,W:_-wmm"“' m

flag is turned on when the sweep phase of the global mark/sweep garbage

collection is 1in progress.

There are three algorithms below. The procedure global_gc is
responsible for performing the global mark/sweep garbage collection
algorithm to reclaim the storage being used by 1inter-area cycles of
garbage. The procedure gc_area performs a garbage collection on a given
storage area. The procedure copy object copies an object from FROM
space to TO space and handles the various flags associated with the
global mark/sweep garbage collection algorithm.
global gc:procedure()

% This procedure is responsible for performing the global
2 mark/sweep garbage collection.
forall S:storage area
do S.ITID := true
S.rescan := false
do forall O:object in §
O.mark := false
end
end
Z Mark all objects accessible from ROOT
forall O:object accessible from ROOT
do Let S be the area that 0 is in.

O.mark := true

S.ITID := false

end

global_gc := true

% Wait for the mark phase to end

while S.ITID = false for some area S
do skip end
%2 Now do the sweep phase
global_ sweep := true
forall S:storage area
do forall O:object in §
do if O.mark = false
then Return the storage occupied by O to the free
pool.
glgg O.mark := false
end
end
global sweep, global gc := false
end global ge
All of the complexity of this algorithm is hidden in the mark phase
which requires a wait for all areas to come to an agreement that the
mark phase has completed - this complexity appears below in the
description of the gc_area procedure.
ge_area:procedure(S:storage area)
% Garbage collects area S
1f TO space does not exist
then Create To space and set TO_space to its address.
else Set TO_space to-the address of TO space.

TO_limit := TO_space-l

~ 253 -

; S.ITID := S.ITID and (not S.rescan)
; forall c:inter-area-cable to S
do c.gc_in_progress := true end
forall c:inter-area~-cable from S
c.was_gcing := c.gc_in_progress
forall O:object accessible from an incoming link to S

do let 0 be the inter-area link referencing O,

call copy object(0, 0°)
end
while c.gc_in progress = true for some incoming cable c to §
and an object reference exists in TO space above TO_limit
do let To_iimit be incremented to the location of the next
object reference, P, beyond TO limit in TO space.
Let P be part of object 0°.
if global sweep = true and 0°.mark = false
then skip
else Let O be the object referenced by P.
call copy_object(0, 07)
S.ITID := not S.rescan
forall c:inter-area-cable from S
do c.gc_in progress := c.gc_in progress and not c.was_gcing
end

end gc_area

copy_object :procedure(0:object, 0" :object)

% copies the object O, referenced by 0°, to TO space

- 254 ~

e - e ot

Let S be the area 0 is in.

Let S° be the area that 0’ resides 1in.

Let P be the reference in 0 to O.

Let scanned(X) stand for the following predicate:
Let S be the area that object X is in.

Then scanned(X) is equivalent to: S.TO_space < address(X) <

S.T0 limit
In other words, scanned(X) is true if and only if X has been
moved to TO space and any object references in X have been
scanned .
if 0 is a deleted object
then Set P to be a reference to a deleted object.
return
if s = 5°
then if scanned(0)

then if 0°.mark = true and O.mark = false and global gc =

true
then S.rescan := true
return
elge Zhave not yet scanned O

if 0" .mark = false and global_ sweep = true
then return

Copy O to TO space if not already there, leaving a
forwarding pointer behind.

Update P to refer to the copy in TO space.

O.mark := (O.mark or 0”.mark) and global_gc

- 255 -~

return

% Otherwise S and S° are different areas
1f S is being garbage collected
then if 0 is not in TO space
then copy O to TO space, leaving a forwarding pointer
behind.
Update P to refer to the copy.
O.mark := (O.mark or O’.mark) and global gc
else Update P to refer to the copy in TO space.
if O.mark = false and 0°.mark = true

then atomically do O.mark := true

if scanned(0)
then S.rescan := true
e = true

then atomically do S°.ITID := false

S’.rescan := false
O.mark := true

end atomically do

return

end copy_object
One final note: a newly created object should always have its mark bit
set to global gc to allow the global mark/sweep garbage collection

algorithm to always terminate.

- 256 -

T

Two questions are of importance: Does this algorithm terminate?
And if it terminates, does it terminate correctly? Each of these will

be answered in turn, although a formal proof is beyond the scope of this

thesis.,

Imagine that a global garbage collection is about to be begun. At
this point temporarily freeze the system. Every object in the system is
now either accessible or is garbage. The above algorithm ensures that
all of this garbage 1is discovered. For the purpose of the global
garbage collection any objects created after this point are considered
as accessible (this is ensured by the last point above). This algorithm
does a traversal, more or less breadth first, of the graph of accessible
objects. Whenever an unmarked object in that graph is discovered, it is
marked and, if necessary, the area containing that object is told (by
setting its rescan flag) that an object it has already examined during
its current garbage collection needs to be traced from again (i.e. have
its mark bit propagated). The algorithm terminates for two reasons.
First, the set of objects that need to be marked is finite and fixed in
size (since newly created objects are automatically marked and thus do
not increase the size of the set of accessible but unmarked objects).
Second, every object is only scanned once for marking purposes so that
no looping need be worried about. The algorithm terminates correctly
since it marks all accessible objects, the rescan flag being crucial in
preventing mistakes, by preventing the premature setting of ITID flags,

and collects all garbage in the sweep phase.

- 257 -

(1]

(2]

(3]

[4]

(5]

(6]

{71

(8]

(91

{10]

References

Ambler, A.L., et. al., "Cypsy: A Language for Specification
and Implementation of Verifiable Programs", SIGPLAN Notices
12, 3(March 1977), pp. 1-10.

Atkinson, R.R., et, al., "Aspects of Implementing CLU",
Proceedings of the ACM National Conference, Washington,
D.C., December 1978.

Baker, H.G. Jr., "List Processing in Real Time on a Serial
Computer", Communications of the ACM 21, 4 (April 1978), pp.
280-294.

Bhandarkar, D.P. and Juliussen, J.E., "Semiconductor
Technology: Trends and Implications", Computer Architecture
News 7, 1(August 1978), pp.4-1l4.

Bishop, P.B., "Computer Systems with a Very Large Address
Space and Garbage Collection," M.I.T. Laboratory for
Computer Science report TR~178, May 1977,

Dahl, 0.J., Dijkstra, E.W. and Hoare, C.A.R., Structured
Programming, Academic Press, Inc., New York, New York, 1973.

Dennis, J.B. and Van Horn, E.G., "Programming semantics for
multiprogrammed computations,” Communications of the ACM 9,
3 (March 1966), pp. 143-155.

Dijkstra, E.W., "A Constructive Approach to the Problem of
Program Correctness", BIT, 8 (1968), pp. 174~-186.

Dijkstra, E.W., "Go To Statement Considered Harmful",
Communications of the ACM 11, 3 (March 1968), pp. 147-148.

Dijkstra, E.W., Cooperating Sequential Processes, In
Programming Languages, F. Genuys, Ed., Academic Press, New
York, 1968.

utadiibdoniinisle:

{11]

(12]

[13]

{14]

{15]

(16}

(17]

(18]

(19]

(20]

[21]

Fabry, R.S., "Capability-based addressing," Communications
of the ACM 17, 7 (July 1974), pp. 403-412.

Goodenough, J.B., "Exception Handling: Issues and a Proposed
Notation," CACM 18, 12 (December 1975), pp.683-696.

Guarino, L.R., "The Evolution of Abstraction in Programming
Languages", Carnegie-Mellon University Department of
Computer Science Technical Report 78-120, May 22, 1978,

Hansen, P.B., Operating System Principles, Prentice Hall,
Inc., Englewood Cliffs, N.J., 1973.

Henderson, D.A., "The Binding Model: A Semantic Base for
Modular Programming Systems," MIT-LCS TR-145, February,
1975.

Herlihy, M.P., "Communicating Abstract Values in Messages",
SM thesis in the M.I.T. Department of Electrical Engineering
and Computer Science, expected date of completion January
1980.

Hewitt, C., "Viewing Control Structures as Patterns of
Passing Messages," M.I.T. Artificial Intelligence
Laboratory, A.1. Memo #410, December, 1976.

Hewitt, C.E., and Atkinson, R., "Specification and Proof
Techniques for Serializers", IEEE Transactions on Software
Engineering SE-5, 1 (January 1979), pp. 10-23.

Hoare, C.A.R., "Monitors: an operating system structuring
concept,”" CACM 17, 5 (October 1974), pp. 549~557.

Hoare, C.A.R,, "Communicating Sequential Processes", CACM
_2_1, 8(August 1978)9 PP. 666-777.

Hoch, C.G., "Hardware Support for Modern Software Concepts",
The University of Texas at Austin, Institute for “Zomputing
Science and Computer Applications Technical Report, August
1978.

- 260 -

"llll!,lllllllllllllllIlllllIllllllllllllll"'!-""!'"""""""""‘“""L'

[(22]

{23]

[24]

{25]

[26]

[27]

[28]

[29]

[30]

(31]

(32]

--~--, "PL/l Language Manual", Honeywell Information Systems
Inc., Order nr. AG94, January, 1974.

Kent, S.T., " Implementing Protected Subsystems in
Decentralized Environments", M.I.T. Department of Electrical
Engineering and Computer Science, Ph.D. thesis in progress,
1979,

Knuth, D., The Art of Computer Programming, Volume 1,
Addison-Wesley Publishing Co., Reading, Mass., 1968.

Lampson, B. and Sturgis, H., "Reflections on an Operating
System Design", Communications of the ACM 19, 5 (May 1976),
pp. 251-265.

Lampson, B., et, al., "Report on the Programming Language
Euclid", SIGPLAN Notices 12, 2 (February 1977).

levin, R., et. al., "Policy/Mechanism Separation in Hydra",
Proceedings of the Fifth Symposium on Operating Systems
Principles, ACM Operating Systems Review 9, 5(November
1975), pp. 132-140.

Levin, R., "Program Structures for Exceptional Condition
Handling,” Ph.D. Thesis, Department of Computer Science,
Carnegie-Mellon University, June 1977.

Liskov, B.H., '"The Design of the Venus Operating System",
CACM 15, 3 (March 1972), pp. 144-149.

Liskov, B.H., and Snyder, A., "Structured Exception
Handling," M.I.T. Laboratory for Computer Science
Computation Structures Group Memo 155, December, 1977,

Liskov, B.H., et al., "The CLU Reference Manual," CSG Memo #
161, M.I1I.T. Laboratory for Computer Science, July, 1978.

McCarthy, J., "Recursive Functions of Symbolic Expressions
and Their Computation by Machine", Communications of the ACM
3, 4 (April 1960), pp.184-195.

- 261 -

s

(33]

(34]

(35]

[36]

{37)

(381

[39]

(401

[41]

[42]

[43)

McCarthy, J., et al., LISP 1.5 Programmer‘s Manual, 2nd
edition, M.I.T. Press, Cambridge, Mass. 1965.

McKeeman, W.M., "Language Directed Computer Design", AFIPS
Conference Proceedings, 1967 Fall Joint Computer Conference,

pp. 413417,

McMahan, Larry N., "Language Directed Computer
Architecture”, PhD Thesis, Rice University Department of
Electrical Engineering, 1975.

Mitchell, J.G., Maybury, W. and Sweet, R., '"Mesa Language
Manual, Version 5.0", Xerox Palo Alto Research Center,
report CSL-79-3, April, 1979,

Organick, E.I., The Multics System: An Examination of Its

Structure, The MIT Press, Cambridge, Mzgs., 1972.

----- » Proceedings of a Symposium on High-Level-Language
Computer Architectures, in SIGPLAN Notices 8, 1l1l(November

1973).

Randell, B. and Russell, L.J,, Algol 60 Implementation,
Academic Press, London and New York, 1964,

Redell, D.D., "Naming and Protection in Extendible Operating
Systems,” M.I.T. LCS Technical Report TR-140, November 1974.

Reed, D.P., "Processor Multiplexing in a Layered Operating
System," M.I,T. LCS Technical Report TR-164, June 1976,

Reed, D.P. and Kanodia, R.K., "Synchronization with
Eventcounts and Sequencers,” CACM 22, 2(February 1979), pp.
115-123.

Ritchie, D.M. and Thompson, K., "The UNIX Time-Sharing
System”, The Bell System Technical Journal, Volume 57, No.
6, Part 2, July-August 1978, pp. 1931-1946.

~ 262 -

TS

[(44)

{45]

(46}

(47]

(48]

[49]

(501

(51]

[52]

[53]

Saltzer, J.H., "Traffic Control in a Multiplexed Computer
System", MIT Project MAC Technical Report 30, July, 1966.

Schroeder, M.D., "Performance of the GE-645 Associative
Memory while Multics is in Operation," ACM SIGOPS Workshop
on System Performance Evaluation, Harvard University, (April
5-7, 1971).

Siewiorek, D.P., Thomas, D.E. and Scharfetter, D.L., '"The
Use of LSI Modules 1in Computer Structures: Trends and
Limitations", Computer, July 1978, pp. 16-25.

Snyder, A., "A Machine Architecture to Support an
Object-Oriented Language", M.I.T. Laboratory for Computer
Science Technical Report 209, March 1979.

Sollins, K.R., "Copying Complex Structures in a Distributed
System'", MIT Laboratory for Computer Science Technical
Report 129, May 1979,

Svobodova, L., Liskov, B., Clark, D., "Distributed Computer
Systems: Structure and Semantics,"” M.I.T. Laboratory for
Computer Science Technical Report TR-215, Massachusetts
Institute for Technology, March, 1979,

Walker, R.D.H., "The Structure of a Well Protected
Computer,”" Ph.D. Dissertation, University of Cambridge,
England, December, 1973.

wirth, N., "Program Development by Stepwise Refinement",
Communications of the ACM 14, 4 (April 1971), pp. 221-227.

Wulf, W.A,, "ALPHARD: Towards a language to support
structured programming,"” Carnegie-Mellon University Dept. of
Computer Science, April 1974.

Wulf, W., et. al,, "HYDRA: The Kernel of a Multiprocessor
Operating System", Communications of the ACM 17, 6 (June
1974), pp. 337-345,

- 263 ~

e SRR T

RN TS T)

{54] Wulf, W.A., Levin, R. and Pierson, C., "Overview of the
Hydra operating system development™, Proc. Fifth Symposium
on Operating Systems Principles, 131, November 1975.

0wk e ge o e

UNS SR e

o

- 264 -~

Blographfeal Note

Allen W.o Lunfewskl was born on August S, 1957 {u Pltesburgh,
Pennaylvanta. He grew up {n the Pittaburgh avea, graduating trom Pean
Hills Senfor High School (a June, 1970 where he was a member of the
Nattonal Honor Socioty.

I September, 1970 he entered Carnegfe~Mellon thfversity as a

Mathemat{cs major, He o wrs aupported by a Brunawick Foundation
Scholarship from the Brunswick Covporatfon and the George 5. Dyke St
Scholarship from Mine Satety Appliance Company while therve, He

araduated in May, 1974 with a B8 degree o Mathemat {es,

Iu September, 1974 he entered the Massachusetts Iastitute of
Technology as a praduate student in the Department of Electrical
Fag incering and Computer Scifeonce. buring his tive vears at M. 10T, he
wias supported as a vescarch assistant o the Computer Systems Rescarch
Croup ot M. LT."s laboratory tor Computer Scleace (tormevly Profect
MACY . 1a January, 1977 he completed his master’s depgree under e, D,
Clark with a thesis entftled "A Staple and Flexible Syatem
Imfttal{zation Mechantsm,” (n June, 1977 he was awavrded the degree ot
Flectrical Fngiuneer atter complet fug addit{fonal course work,

My tunfewskl (s a member of the Assoctiation tor Comput fng
Machinery and {ts Operating Systems and Programming languages special
fntevest groups, He {8 also a member ot the Stpma XT honorary soctety.,

Mro Lundtewskt {8 currvently employed by the Systems Developmeat
Department of Xerox Corporation in Palo Alto, Calftornia where he s
working on operating systems for personal computers,

OFFICIAL DISTRIBUTION LIST

Defense Technical Information Center

Cameyon Station
Alexandria, VA 22314
12 copies

Office of Naval Research
Information Systems Program
Code 437

Arlington, VA 22217

2 copies

Office of Naval Research
Branch Office/Boston
Building 114, Section D
666 Summer Street
Boston, MA 02210

1 copy

Office of Naval Research
Branch Office/Chicago
536 South Clark Street
Chicago, IL 60605

1 copy

Office of Naval Research
Branch Office/Pasadena
1030 East Green Street
Pasadena, CA 91106

1 copy

New York Area
715 Broadway ~ 5th floor
New York, N. Y. 10003

1 copy

Naval Research Laboratory
Technical Information Division
Code 2627

Washington, D. C. 20375

6 copies

Assistant Chief for Technology
Office of Naval Research

Code 200

Arlington, VA 22217

1 copy

Office of Naval Research
Code 455
Arlington, VA 22217

1 copy

Dr. A. L. Slafkosky
Scientific Advisor
Commandant of the Marine Corps
(Code RD-1)
Washington, D. C. 20380

1 copy

Office of Naval Research
Code 458
Arlington, VA 22217

1 copy

Naval Ocean Systems Center,Code 91
Headquarters-Computer Sciences &
Simulation Department
San Diego, CA 92152
Mr. Lloyd Z. Maudlin

1 copy

Mr. E. H. Gleissner

Naval Ship Research & Development Center

Computation & Math Department
Bethesda, MD 20084
1 copy

Captain Grace M. Hopper, USNR
NAVDAC-00H

Department of the Navy
Washington, D. C. 20374

1 copy

Mr. Kin B. Thompson
Technical Director
Information Systems Division
(oP-91T)
Office of Chief of Naval Operations
Washington, D. C. 20350

1 copy

R N REANERRS TT TTT T

