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ABSTRACT

This report explains the need for an Automated Test Case Generator and

presents a design approach which would fulfill this need. An example is

manually carried through the various steps which will be performed by the

proposed Automated Test Case Generator. The report closes with a survey

of the state of the art of program testing.
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EVALUATION

The purpose of this contractual effort was to advance the state-of-the-art

in the area of automated software testing. A critical problem addressed

by this effort was the specification of an automated system which provides

the capability to generate test cases and test data that cause the execution

of particular paths in a software program. This capability is of importance

during the testing phase of the software development life cycle because the

current manual generation of test cases and test data is difficult, and

expensive in terms of both personnel and computer costs. This effort

was responsive to the objective of the RADC Technology Plan, TPO R5A,

"Software Cost Reduction."

RANK S. LA MONICA

Project Engineer
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1. INTRODUCTION

1.1 Purpose of the Project

Software system certification is a critical information processing problem

facing the Air Force. Because software is a major element in military

systems, large amounts of time and money are currently spent by the Air

Force in an effort to correct, maintain, and certify software systems. In

spite of this investment, many times the results of testing are unsatis-

factory. Systems thought to be correct (and purchased as such by the Air

Force) may suddenly produce incorrect results, no results, or behave

erratically because special conditions in the data or in the operating

environment were not provided for in the program logic and were not

encountered in testing. Under a previous RADC procurement, an Automated

Verification System (JAVS) for the JOVIAL J3 language was developed. That

system provides the developer/tester with the capabilities to accurately

measure the effectiveness of a particular test and to determine whether

the set of test data has thoroughly exercised the software. A critical

problem which remains to be solved is the automated generation of test

cases and test data that will cause the execution of particular paths in

the code which were not previously tested. Another important problem area

is that of generating test data which correspond to special operating

conditions of the software for which there may not exist easily

identifiable paths in the source code. Current manual generation of test

cases and test data is difficult and expensive in terms of both personnel

and computer costs.

In the course of this project we have produced both Functional Descriptions

and System/Subsystem Specifications for Automated Test Case Generators

(ATCG)1 to operate in two different (though similar) environments.

1 ATCG is used throughout this document to refer both to the tool (Automated

Test Case Generator) and the process used by the tool (Automatic Test Case
Generation).

I-1
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The first version of the system which was specified is intended for

generation of test cases and test data for programs written in a general

algebraic language. This version presumes that an execution monitor for the

language exists in the environment in which ATCG is to be run. The second

version of the system is intended for the generation of test cases and test

data for programs written in the JOVIAL programming language and integrates

with the JOVIAL Automated Verification System (JAVS).

1.2 Purpose of ATCG

The purpose of ATCG is to automate the selection of test cases and the

generation of test data. The test data so generated will test those software

features which can be related to the program structure as well as other

software features which do not have a direct relationship to the program

structure but are inherent in the specific tasks performed by the software.

ATCG will choose one test case and one corresponding test data set each

time the program is submitted to it. Each such submission is termed a

"test case generation session." During the first session, a data base

will be built for the program being tested which will be used during

succeeding sessions. ATCG will have three O'Fferent methods of test case

selection and two modes of system operation.

The two modes of system operation will be batch and interactive. The

three methods used to generate new test cases will be path selection,

negation of previous constraints, and boundary condition analysis.1

Refer to glossary for definitions of terms.

1 Examinations of errors in operational software have shown a large

proportion to be the result of incorrect handling of data at extreme
values for the field or variable.
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In path selection, ATCG will select a path from the beginning of the
program up to a selected area which. has either been specified by the user

or has been chosen by the system. In the case where the system selects the

area, it will do this so as to maximize collateral testing (collateral

testing is the act of testing other untested areas of the program in

addition to the target area ). Test data which will cause program
execution to follow the selected path will then be generated. For further

details on path selection, see Section 2.5.2.

, In negating previous constraints, ATCG will generate new test data directly

on the basis of the path constraints of the previously completed test

cases in such a way as to force the new data to define a new path. The
4path will be determined by executing the program using the new data as

input. Since the path will be used in subsequent test data generation, it

will be necessary for an execution monitor to provide information on the
path followed. For further details on negating previous constraints,

see Section 1.4 and Section 2.5.3. Also see reference number 30.

The boundary condition analysis will involve generation of test data

directly from a previous test case that will be closely related to the
starting test case. Each test case generated by ATCG may be subjected to a

boundary condition analysis to provide added confidence in the program's

correct operation. For further explanation, see Section 2.5.4 and also

reference number 30.

For retesting a program which has been modified following its previous

testing by ATCG, the retesting analysis in ATCG will make maximum use of

the previous test data sets to generate initial test cases for the modified

code. In particular, some of the new test data will correspond to
modifications of the original test data whereby values for each new
additional variable (if any) in the modified program will be added to

the list of previous input values.

Figures 1 and 2 show the data flow and the major processing steps in

ATCG.

1-3



INPUTS OUTPUTS

USER COMMANDS USER INPUTS

SOURCE CODES AUTOMATED TEST DATA DEPENDENCY

OD-PATH SEQUENCE CASE GENERATOR REPORT
FROM LAST TEST
CASE EXECUTION LISTING OF

PROGRAM SEGMENTS
AND BRANCH
POINTS

LISTING OFDD-PATHS IN
TERMS OF SEGMENTS
AND BRANCH POINTS

FLOWCHARTS

PROGRAM GRAPHS

TEST DATA

POSSIBLE DATA
FLOW ANOMALIES

Figure 1. Data Flow for the Automated Test Case Generator

(see glossary for definitions of terms)
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PROCESS USER
COIWIANDS

ANALYZE
STRUCTURE

ANALYZE
DATA FLOW

PERFORM SYMBOLIC
ANALYSIS

GENERATE
CONSTRAINTS

GENERATE
DATA

Figure 2. Major Processing Steps in the
Automated Test Case Generator
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1.3 Producing Flowcharts

ATCG will produce a graphic flowchart for each user specified module.

The flowchart will identify each linear segment and branch point with

its identifying number and show the control transfer relationship. For

each node in the flowchart which corresponds to a segment, the starting

and the ending source line numbers of that segment will be indicated.

Similar information will be provided for each branch node.

Options will be provided to generate flowcharts which represent the program

structure in terms of higher level blocks, including the option of specifying

the deepest level of a block in the desired flowchart or the level of

expansion. Those blocks which are of lower level and are contained in a

larger block of the specified level will not appear explicitly in the

generated flowchart. In particular, if the program has the maximum block

level M and L equals the level of expansion, then the resulting flowchart

shall have maximum level M-L. Figures 3 through 5 illustrate the options of

high level flowcharts.

1.4 A New Algorithm for Test Case Selection

A new algorithm (negating previous constraints) for test case selection was

developed by Dr. Kundu. This will be incorporated in ATCG as one of the

means for test case selection.

There are two basic steps in this method. Assume, to begin with, that the

first test case is known a priori, this test case may be constructed by

simply assigning arbitrary values to each of the input variables of the

program. Each successive test case is obtained by applying the two following

steps in the given order.

Step 1 (Analysis of the last test case). Execute the program

with input equal to the most recently generated test case, and

determine its execution path. Then perform a partial symbolic

execution of that path to determine an approximation to the path-

condition of that test case.

1-6
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Si E

T11

-I r I
I 1I

T2 A

S4 I2 S5

L -II

r C

T5 Level i blocks:

I I S1, S2, S3, S4, S5, S6, S7
S8, S9, $10, S11, S12;

Level 2 blocks and their components:

* A: S4 (and T2);
B: S6. S7 (and T4);
C: SID, S11 (and T5);

Level 3 blocks and their components:

D: S5, B, S8 (and 13);

Level 4 blocks and their components:

E: S2. A, S9, S3, 0 (and TI);

Level 5 blocks and their components:

F: Si, E, C, S12;

Figure 3. A Detailed Flowchart and Its Block Structure
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-FA D

S9

C

S 12]

(All blocks of level > 3 are expanded.)

Figure 4. A High Level Formi of the Flowchart with Expansion Level 3
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S1

S2 S3

A T3

0] O

(All blocks of level > 2 are expanded. This form
immediately shows the blocks of level 2, namely,
blocks A, B,,and C.)

Figure 5. A High Level Form of the Flowchart with Expansion Level 2
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Step 2 (Selection of the next test case). Determine the test

data for the next test case such that it violates at least one

constraint in each of the path-conditions generated so far.

The path is determined from the test data. A specific path is not used

for finding input data that corresponds to that path. Also, previously,

we were selecting both the test paths and the test data, one within each

of the respective path domains. But now only the test data are being

selected. This gives us an extra degree of freedom. Each test case

generated by this method thus represents a distinct input class (that is,

corresponds to a distinct path) because of the requirements in Step

2.

For further explanation of this method, it is recommended that the reader

refer to reference number 30.

1.5 Test Data Generation

A machine is restricted, in the final analysis, to making simplistic

comparisons 0>, (, =, >-, <=, 0) of bit strings of fixed, finite length

(such as the length of one word of primary memory). Since bit strings

may be regarded as binary integers, it is possible to reduce much of the

- problem of general inequality solving to that of solving linear

inequalities over the set of integers. Thus a linear programming

method can be used in many cases for data generation. In particular, this (
method can easily be applied to the generation of logical and character

data. For example, the expression (AA or (NOT BB)) is replaced by ((AA EQ

1) or (BB EQ 0)). Character variables are treated as integer variables.

For those cases where this model cannot be applied, there is no general

solution and this is a topic of on-going research. However, much

progress has been made in recent years with non-linear programming

models. A further discussion of these models is provided in reference

number 42. Software packages are available for performing this analysis,

and some of these will be incorporated in ATCG.

1-10



1.6 Feasibility Analysis

The system as specified in the System/Subsystem Specification of ATCG is
primarily intended as a batch system, though it could be run online. Being

run online, the system could provide the user with an opportunity to supply

additional information. It would do this if the data generator runs into
trouble instead of simply requesting the constraint generator to try another

test case which meets the user's criteria.

It is estimated that ATCG will contain 60,000 to 80,000 lines of higher-
order language code. This estimate is based on the size of existing programs

which perform similar functions to those proposed for ATCG (e.g., the program

segmentation module in ATCG will be about the same size as the program

segmentation module in AMPIC). For a breakdown of the estimates, see the

Function Description of ATCG. ATCG can be developed so that memory resident

components contain not more than the object code equivalent of 10,000 to
20,000 lines of higher order language (HOL) code. If FORTRAN is assumed,

with four words per line of code, then the memory requirements are estimated

80K words 1. Memory requirements for intermediate files (excluding the

primary data base) will be of the order of 200K words.

It is further estimated that the data base will be on the order of ten
times the size of the program being tested and that intermediate files

used by ATCG will also be on the order of ten times the size of the program.

These estimates are based on reference number 23. The minimal memory buffer

requirements are 2000 words. The primary data base must be stored on a
random access storage median such as a disk.

1 For the purposes of this report, the letter "K" represents the numeral

1024. A word is defined as 4 bytes. A byte is defined as 8 bits. These

definitions are assumptions for sizing purposes and would possibly have to be

translated for some computer choices.
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Expected execution time will be approximately 20-30 minutes CPU time for a

typical job (approximately 500 lines of HOL code, 50 variables, 50

inequalities) on a computer with a 1 MIPS (millions of instructions per

second) capability.

,1-12
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2. MANUAL ANALYSIS OF AN EXAMPLE

In this section, we will manually carry out the proposed analysis on the

program shown in Figure 6.

2.1 Process User Commands

While the specific formats of the user interface language (in the JAVS

specific version, the user commands to ATCG would be processed by JAVS)
* have not been specified, the information which ATCG would need is specified

the System/Substyem Specification in Section 4.2.1.A. A possible set of user

commands for program SAMPLE might be the following:

INIT: SAMPLE

FLOWCHART: MAIN, SUB

GRAPH: MAIN, SUB

LISTSEGMENTS: SUB

MUSTTEST: SUB, DD3

The first line specifies that this is the first submission of SAMPLE to

ATCG and therefore the first test case generation session. Thus it is

necessary for ATCG to initialize a data base for SAMPLE.

The second and third lines specify that the user desires both flowcharts

and program graphs of MAIN and SUB.

The fourth line specifies that the user desires a segment listing of SUB.

The last line specifies that the user desires that the test case generated

test DD-path 3 in SUB. This implies that the user desires that path

selection be used as the means of test case selection.
A .

2-1
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1 START$
2 "PROGRAM SAMPLE"

3 ITEM FL F$
4 ITEM KK136 S$
5 FILE READ V(NORM) V(EOF)$
6 IN(1,READ)$
7 FILE PRINT V(OK)$
8 OUT(1,PRINT)$
9 I022(O,READ.O,FL,1)$
10 IF FL GT 7.$
11 GOTO LASTS
12 SUB(FL = KK)
13 1023(3,PRINT,O,KK,1)$

14 LAST.
15 IN(2,READ)$

*16 OUT(2,PRINT)$

*17 PROC SUB(INPUT1 = OUTPUT1)$
18 ITEM INPUT1 F$
19 ITEM OUTPUT1 I 36.S$
20 BEGIN "SUB"
21 IF INPUT1 LS 3.$
22 OUTPUT1 = 1$
23 IF INPUTI, GQ 3.$
24 OUTPUT1 = O$
25 RETURN$
26 END "SUB"

27 TERM$

figure 6: Program SAMPLE
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The Process User Commands function will extract this information from

the user commands and encode it into a user control vector. The user

control vector will then direct ATCG's subsequent functions.

2.2 Analyze Structure

This function shall analyze the structure of the source program, dividing

it into linear segments and branch points. It shall then organize these
into DD-paths. It shall also generate flowcharts and program graphs at the

user's direction. This function shall be performed only during the first

test case generation session, after program changes, or at the user's

direction. A detailed description of how each of these functions of

structural analysis would be applied to SAMPLE is given below.

2.2.1 Segment Program

This subfunction shall partition the source code into linear segments

and branch statements. Each segment and branch point shall be assigned

a unique identifying number within each module. In order to reference

any given segment or branch point, it will be necessary to give the module

name, whether it is a segment or a branch point (segments are designated S

elements and branch points are designated T elements), and the number of

that element. This information is then stored in the linear segments and
branch point table. It may also be printed (this is called a segment

listing) for any modules which the user desires. The segment listing which

will be printed for MAIN and SUB are shown in Figure 7.

2.2.2 Form DD-paths

This subfunction shall identify each DD-path in the source program, starting

with the results of program segmentation. The test itself will be referred

to asT followed by the test number. The two possible resolutions of that

test, true and false, will be refered to as 'R' and 'P' followed by the

2-3



SEGMENT LISTING OF MODULE MAIN IN SAMPLE

SI: IN (1, READ)

TI: IF FL GT 7. DO S2

S2: GOTO S4

S3: SUB (FL = KK)

S4: IN (2, READ)

OUT (2, PRINT)

SEGMENT LISTING OF MODULE SUB IN SAMPLE

Si: PROC SUB (INPUTI = OUTPUTI)

BEGIN

TI: IF INPUT1 LS 3. DO S2

S2: OUTPUT1 = 1

T2: IF INPUTI GQ 3. DO S3

S3: OUTPUT1 = 0
S4: RETURN

END

Figure 7: Segment Listings
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test number. Thus 'R1° would indicate that test number one for this module

was traversed and that the true branch of this test was followed. 'P1' would

indicate that the false branch of that test was followed. The reason for

this is that DD-paths are defined as being overlapping--one DD-path will

contain the test itself as its last element, while the two following DD-paths

will contain the resolutions of that test as their first elements.

A table (the DD-paths table) giving the sequence of identifying numbers of

the segments which comprise each DD-Path shall be generated. It may also

be printed (referred to as DD-path listings) for any modules which the

* user desires. The DD-path listings which would be produced for MAIN and
* SUB are shown in Figure 8.

2.2.3 Produce Flowcharts

This function shall produce a flowchart for each user specified module

The flowchart shall identify each linear segment and branch point with

its identifying number as determined in the Segment Program function and show

the control transfer relationship. The flowcharts that will be produced for

MAIN and SUB are shown in Figure 9.

2.2.4 Graph Program Using DD-paths

This subfunction shall generate a representation of the control transfer

relationships among the DD-paths for each user specified module. Each

DD-path shall be represented as an arc with a label indicating the DD-path

number. The control transfer points shall be shown as nodes. The program

graphs that will be produced for MAIN and SUB are shown in Figure 10.

2.3 Analyze Data Flow

The analysis of the flow of data in the program shall consist of two parts.

The first part shall analyze the source program text to determine whether

2-5



DD-PATI LISTING OF MODULE MAIN IN SAMPLE

DD1: Si. Ti

DD2: Ri. S2. S4

DD3: P1 .S3. S4

DD-PATH LISTING OF MODULE SUB IN SAMPLE

DDi: Si. Ti

DD2: Ri. S2.T2

DD3: Pi. T2

DD4: R2. S3. S4

DD5: P2. S4

Figure 8: DD-path Listings

2-6



Si Si

T1
Ti

S2 53S2

T2

S3
FLOWCHART OF

MAIN
IN SAMPLE

0S

FLOWCHART OF
SUB

-1N' SAMPLE

Figure 9. Flowcharts
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6 INV 11 PROC

10 IF21 IF

2 3 2 3

14 NV23 IF

4 5

PROGRAM4 GRAPH 2 N

OF MAIN
IN SAMPLE

PROGRAM GRAPH
OF SUB

IN SAMPLE

Figure 10. Program Graphs
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or not either of the following data flow rules have been violated:

(a) A reference to a variable should be preceded by an assignment

to that variable without an intervening undefinition (see

glossary).

(b) A definition of a variable should be followed by a

reference to that variable prior to a redefinition or an

undefi nition.

This analysis shall be performed first for the program segments. Then

the results shall be combined together to complete the analysis for the

whole program. A report indicating any violation of the rules (a) and

(b) above shall be generated. In the case of our program SAMPLE, no such

report would be produced. For further explananation see reference number

37.

The second part shall generate a table for each DD-path giving, for each

variable, the list of variables which may affect the value of that variable

This analysis shall be performed first for the program segments, and then

combined for each DD-path separately. The analysis shall identify, for

each DD-path, the variables that can potentially create "ambiguity" during

symbolic execution. Thus across DD-path 1 in MAIN, no variable depends on

any other variable. The same is true in MAIN across DD-path 2. Across

DD-path 3 in MAIN, KK depends on FL. For further explanation, see

reference number 29.

2.4 Perform Symbolic Analysis

This function shall prepare tables for each DD-path describing in algebraic

terms the effect of traversing that path. This function is performed first

for the program segments and then the results are combined for each DD-path

separately. For DD-path I in MAIN, the table will contain an entry noting

that FL had been input along that path. For DD-path 2 in MAIN, the table

will contain an entry noting that there had been no symbolic changes across

2-9
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that path. For DO-path 3 in MAIN, the table will contain an entry noting

that KK had been assigned a functional (SUB) value of FL. For DD-path 2 in

SUB, the table will contain an entry noting that OUTPUTI had been assigned

the value 1 across that path. The other entries in the tables will be

similar to these.

This function shall only be performed during the first test session or

after program changes. Potential symbolic execution ambiguities shall

be identified and flagged at this time. In the case of program SAMPLE,

nothing is flagged because SAMPLE contains no potential symbolic

ambiguities.

2.5 Generate Constraints

This function shall generate constraints which shall have to be

satisfied by the data for the test case being generated. If this is not the

first test case generation session, this function shall update the data base

prior to selecting new constraints. Such updating shall be accomplished by

symbolically traversing the path followed during execution of the last

test case that was generated. Following that, new constraints will be

generated using one of the following user selected methods:

(1) Path Selection: Constraints will be generated for data that

will cause execution of a specific path which crosses a selected

portion of code. In this, the user has the option of specifing

all or part of the path to be followed or allowing the system to

select it. See Section. 2.5.2.

(2) Negation of Previous Constraints: Constraints shall be

generated for data which will cause execution of a new (as of yet,

unknown) path. See Section 2.5.3.

(3) Special Value Constraints: Constraints shall be generated

for data near boundry conditions for selected variables across a

previously tested path. See Section 2.5.4.
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A detailed descripton of what each of these subfunctions will mean for

SAMPLE is given below.

2.5.1. Traverse Last Path

This function shall perform symbolic execution of the path followed by

the program execution of the last test case generated by ATCG. As a result,

this function will derive the full set of constraints which were true of the

last test case. This function will also derive a list of tested segments

and branch points. This function shall not be performed during the first

* test case generation.

Suppose that the DD-path sequence followed by our last test case was MAIN-

DD1, MAIN-DD3, SUB-DD1, SUB-DD2, SUB-DD5, MAIN-DD3. This corresponds

to the following segment and branch point sequence:

MAIN-S1. MAIN-Pi. MAIN-S3.

SUB-Si. SUB-Ri. SUB-S2. SUB-P2. SUB-S4.

MAIN-S3. MAIN-S4.

Thus our full set of constraints for this test case will be the following:

((NOT (FL GT 7.)) AND

(FL LS 3.) AND

(NOT (FL GQ 3.)))

This will be added to the list of previous constraints on previous test

cases in the constraints table. If there were no previous constraints,

the constraints table will be created at this point and this will become

its first entry.

Our list of tested segments and branch points will be:
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MAIN-Si

MAIN-P1

MAIN-S3

MAIN-S4

SUB-Si

SUB-R1

SUB-S2

SUB-P2

SUB-S4

Each of these will be checked off in the hit table if this is not the

second test case session. If it is the second test case session, the

hit table will first be created and then they will be checked off.

* 2.5.2 Select Path

This function shall generate constraints for data that shall cause execution

of a specific program path. This path will cross the area of the program

which has been designated as the section of code to be tested next. A

detailed description of what each of the subfunctions will mean for SAMPLE is

given below.

2.5.2.1 Select Segment: This function shall choose the next target segment

for testing. This will be done on the basis of one of two criteria:

(1) user has specified the segment

(2) otherwise the system will choose the most deeply nested

untested segment

If the user has specified the segment, then the identifying symbols of

that segment are the output of this function.

For a more interesting example, let us say that the user has specified

that the system will select the target segment. Let us also say that
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the test case discussed as the last test in the previous section is the

only test case run so far. This function will then derive a list of untested

program segments and branch points from the systems list of tested segments

and branch points. The list will consist of the following:

MAIN-R1

MAIN-S2

SUB-P1

SUB-R2

SUB-S3

Of these, all of the ones in SUB are more deeply nested than MAIN since

SUB is a called subroutine and MAIN is not. When examining the untested

segments and branch points in SUB, S3 will be chosen because both of the

other candidates are at level 0 while S3 is at level 1. Had this not

eliminated all but one segment, then the later of the two in the text

would have been chosen. Thus, in this case, SUB-S3 is our selected segment.

2.5.2.2 Select Reaching Set: This function shall choose a DD-path sequence

starting at the head of the program and ending at the selected segment,

including any portion of the path which the user has chosen to specify after

the first segment in the target area. The system shall begin by choosing a

calling sequence beginning at the main routine and ending at the routine

containing the selected text. The system shall then choose paths from the

beginning of each module in the calling sequence to call to the next module

in the sequence (in the lowest module, of course, we choose a path from the

beginning of the program to the first segment in the target area). If

parallel processing is available, these paths may be chosen in a simul-

taneous manner initially. In choosing all paths, the system shall choose

the path along the program graph working forward from the beginning of the

routine and backward from the selected call or target area. This will

significantly reduce the search space in the tree. Backtracking shall be

done along these paths breaking links (and forming new ones) from the middle

of the path towards its extremities. When the system is presented with a
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choice between an untried branch and an already tested branch, it shall
initially select the untried branch. When so instructed by the user, the

system shall either select loop branches to be executed a minimum number of
times or as close to a user-specified maximum number times as is possible

and still maintain a consistent set of constraints. As the path traverser

encounters inconsistencies, it shall call on this function to backtrack to

the inconsistency and patch the path if possible.

In our case, we have been passed SUB-S3 by the Select Segment function.

There is only one way to reach the call to SUB in the MAIN routine, namely

Main-DD1 followed by MAIN-DD3. Thus we select that path through MAIN the

* first time through.
4

In SUB, we select SUB-S1. Then, since SUB-R1 has been tried, we select

SUB-Pi. After that, since SUB-P2 has been tried, we select SUB-R2. Next is

SUB-S3. Thus our complete selected path is:

MAIN-S1. MAIN-Pi. MAIN-S3.
SUB-S1. SUB-Pi. SUB-R2. SUB-S3.

2.5.2.3. Traverse Selected Path: This function shall symbolically execute

the selected path using the forward substitution method. The forward

substitution method will be used because it allows early detection of

infeasible paths with contradicting input constraints; further, it has

advantages over backward substitution in handling arrays. For a discussion

of this point, see Sections III and IV.(ref. no. 40). The constraints

traversed shall be added to the pool one at a time. As each constraint is

added, it shall be checked to see if it conflicts with any of the existing

constraints. If it is not consistent, then the path traverser shall request

that the reaching set selector form a new path from where the inconsistency

was encountered to the target area.

In our case, the path we have been passed is consistent and the set of

constraints that we generate is the following:
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((NOT (FL GT 7.)) AND

(NOT (FL LS 3.)) AND

(FL GQ 3.))

2.5.3 Negate Previous Constaints

A detailed description of what each of the subfunctions of Negate Previous

Constraints means for SAMPLE is given below. For further explanation, see

reference number 30.

2.5.3.1 Select Target Constraints: This function shall select one

constraint from the constraint set of each of the previous test cases.

If no previous test cases are available, the target constraint set is

empty. It that case the first test data generation step shall assign

randomly selected values to the input variables.

Let us say that the test case described in Section 2.5.1 is the only test

case in the data base. Since there is only one set of constraints in the

data base, it is sufficient for us to violate only one constraint. We

choose the first constraint of the test case available. Had there been n

test cases, we would have selected the first constraint from the first case,

the first constraint from the second that was different from the constraint

we had already selected which was not inconsistent with the constraints

selected so far, and so on until we had n constraints (one from each test

case). For further explaination of this method, see reference number 30.

In this case, our output will be the single constraint (NOT (FL GT 7.)).

2.5.3.2 Generate Data Constraints: This function shall combine the logical

negation of the selected target constraints to form the constraints which

will have to be satisfied by the new test data in order for it to cause

the program execution to follow a path (not yet known) which is different
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from all previous test paths. For further explanation of this method see

reference number 30..

In this case, we will negate (NOT (FL GT 7.)) giving us (FL GT 7.) as our

output.

2.5.4 Analyze Boundary Conditions

This function shall assist the user in doing a detailed comparative study of

the program's input-output behavior on a set of closely related or

"neighboring" test cases. This analysis shall be performed as a user-

, selected option on each test data with respect to one or more variables that

* the user has selected for this purpose and with respect to critical areas of

the source which the user has also identified for this purpose. ATCG shall

then examine the branching expressions which involve the selected variable in

the critical area and select a new value for the variable near one of the

boundaries. All other input values for that set of test data so generated

shall be the same as those for the test case in question.

Let us say that the test case described in Section 2.5.1 has been selected

for this analysis. Furthermore, let us say that the selected variable is FL

(in this case, any other selected variable would result in an error message

since FL is the only one involved in branching constraints) and that the

critical area selected is MAIN-DD2. Thus the boundary condition which we

wish to be near is (FL LS 7.)

We do not wish to violate this condition, but merely come close to doing

so. Thus the constraint which we wish to generate is FL EQ (7. - E) where E

is a postive number and small with respect to 7. E will be calculated as a

percentage of 7. The percentage which will be used here will be decided on
at the time of implementation (perhaps the user may be allowed to specify

it). Let us say here that that percentage is .1%. Thus the constraint which

we generate is FL EQ 6.993.
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The conditions which will be output will be all the constraints up to the

critical area with the new condition substituted for the old one. (These

will be checked for consistency before being output.) For further

explanation, see reference number 30.

In this case, we will output the single condition FL EQ 6.993.

2.6 Generate Data

This function shall obtain a solution to the data constraints, by employing

linear/integer programming methods, numerical methods for constrained and

unconstrained optimizations, and other mathematical tools. It shall be

capable of generating real, integer, boolean, and character data.

Let us examine the constraints generated by each of the previous modes

of test case generation.

First recall that our constraints from Select Path were:

((NOT (FL GT 7.)) AND

(NOT (FL LS 3.)) AND

(FL GQ 3.))

We begin by combining the constraints on each variable into sets. In

this case, this is already done. Next we simplify these constraints giving

us:

((FL LQ 7.) AND

(FL GQ 3.) AND

(FL GQ 3.))

We now note that the third constraint is redundant and remove it. This

gives us:
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((FL LQ 7.) AND (FL GQ 3.))

or algebraically,

7. > FL > 3. or

4. > FL - 3. >0.

In this case, we can use a standard random number generator to generate

a number between 0. and I. We then multiply that by 4. We then add 3.

to that and we have a value of FL which satisfies the constraints.

*• Next, consider the constraints which we generated in negating previous

constraints. Recall that our output from that step was (FL GT 7.). Here

again we may use a random number generator to generate a value of FL which

satisfies the constraints.

Lastly, consider the constraints which we generated in boundary condition

analysis. Recall that our output was (FL EQ 6.993) Thus, the selection of

6.993 as FL is done trivially.

2.7 Subsequent Steps

This completes the manual analysis of the example program, SAMPLE. In

the practical application of the ATCG system, the next step will be computer

execution of the program, SAMPLE, using as input the data generated in

accordance with Section 2.6. Computer execution using this data will

accomplish the objective specified by the user. Execution of the program

will be carried out under the control of an execution monitor, such as JAVS.

The execution monitor will record in a file the order and number of times

which DD-paths are crossed. This file will provide input for the Generate

Constraints function (see Section 2.5) when the data base is updated during

the next test case generation session.
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3. SURVEY OF THE STATE OF THE ART OF PROGRAM TESTING

3.1 Prelude to Testing

Thoughts about program testing should not be put off until the program

is completed--they should begin with the program in the design phase and

should be kept in mind throughout implementation. The ideas presented

in this section will help to clarify classes of inputs to a program--and

will allow the user to select modules which will need retesting after

changes.

I

* 3.1.1 Hierachical Design

Hierarchical or top down design is the process of designing the top level (or

main features) of a task first and defining later how those subtasks will be

accomplished in terms of other smaller tasks.

This design of program structure is strongly recommended as it helps clarify

classes of inputs to the program. Tools currently exist to assist in this

type of design.

One such tool is Logicflow. This system was developed by Logicon under

contract number F04704-76-C-0001 for SAMSO/MNNC. The Logicflow language

helps a designer organize his ideas in a hierarchical fashion. It allows him

to automatically generate flowcharts at any desired level of detail from text

input. It also eliminates the need of redrawing flowcharts by hand every

time a minor change is made, thus allowing him to always have up to date
information about the design.

3.1.2. Structured Programming

Structured programming is the analog in the implementation phase to

hierarchical design in the design phase. It keeps the most important--

or primary tasks--of a program in the top level modules (procedures or
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routines) and the smaller tasks that comprise those tasks at a much lower

level. In this respect, it is not very different from the management of

well organized human systems.

This technique helps the programmer to grasp what he is doing at any given

level of detail. Tree structured module dependency is also invaluable when

deciding which routines should be retested after changes have been made to a

system.

3.1.3. Acceptance Criteria

One should decide between the many forms of acceptance criteria before

any actual testing begins. The major choices are the following:

1) Correct execution of an arbitrary

number of statements (e.g., 85 per

cent).

2) Correct execution of every statement

in the program at least once.

3) Correct execution of an arbitrary

number of control branches (or decision-

to-decision paths) (e.g., 90 per-cent).

4) Correct execution of every control

branch in the program or system at least

once, but not in every possible combination.

5) Correct execution of every control

branch in the program or system in every

possible combination at least once.

While (5) is obviously the strongest of the acceptance criteria, it is

not in general possible for even small programs. The best that can generally

be hoped for is (4)--though for an extremely large system, this might not

even be feasible.
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3.1.4 Test Beds

Before the analysis covered in Section 3.2 can begin, it may be necessary

to divide a large system into smaller subsystems. A test bed for a subsystem

consists of all the modules to be tested at this level plus "stubs" (dummy

modules) for any routines which are referenced by this system but not
contained in it. It also includes input data--either live or generated--for

the subsystem.

3.2 Data Flow Analysis

Data flows analysis is a way of examining how information flows through

a program. It searches particularly for two kinds of mistakes. These

are normally termed "type I" and "type II" data flow anomalies.

3.2.1 Type I Anomalies

Type I anomalies are constructions such that a reference to a variable

is not preceeded at some point in the module by a definition of that

variable. This is a fatal error on many systems. Even on systems

which allow the user to specify a preset value of all storage locations,

this is a bad programming practice as it can lead to unpredictable effects

*if the software is moved to another system.

3.2.2 Type II Anomalies
,1L

Type II anomalies are constructions such that a definition of a variable

is not followed by a reference prior to another definition of that variable
or prior to passing outside the scope of that variable. While this in itself

is not a fatal error, it is normally an indication of another error--such asLa mistyped variable name or a variable which is no longer used by the program

but which has not been removed.
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3.2.3 DAVE

DAVE is an automated data flow analysis tool. It was developed at the

University of Colorado for use on ANSII standard FORTRAN IV programs.

It performs an exhaustive search for data flow anomalies in a static fashion

(without execution of the program). The time that is takes to do this is

linearly proportional to the product of the number of edges in the program

graph and the number of variables in the program.

3.3 Structural Analysis

Structural analysis can provide us with flowcharts, program graphs, and
other information about the system.

3.3.1 Restructuring Programs

No matter how careful a programmer might (or might not) be, there are

usually some violations of structured programming rules in his code. Since

structural analysis is most easily performed on well structured code, it

would be useful if the code could be converted to a structured form before

attempting such an analysis. Fortunately, tools to do this are already in

existence. They are called "Restructuring Programs"

One such tool is contained within AMPIC. AMPIC was developed by Logicon as an

in house testing and debugging tool and is primarily applied to FORTRAN and

LITTON ASSEMBLY language programs currently, but could be expanded to handle

JOVIAL code. For further details on AMPIC, see Appendix C.

3.3.2 Code Instrumentation

Instrumentation is the process of placing software counters or probes in

each control branch in the program to perform such monitoring as path

execution and tracing, timing analysis, etc. This allows us to see if a
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given path was executed after a program run. (This is a facility currently

supported by JAVS).

3.3.3 Flowcharts

While it is true that Logicflow aids the designer in drawing flowcharts

of a system before its implementation, there is never any guarantee that
these were followed during the implementation. And even if they were

followed, they are undoubtably no longer an accurate representation of

the existing system. Fortunately, there are systems for producing
flow charts from existing code. In this way, we may see what the control

flow structure at any given level really is.

One such system for producing flowcharts is contained in AMPIC. Given

source code for programs written in several LITTON ASSEMBLY languages or
FORTRAN, it can produce a flowchart of that source text. The techniques

used in AMPIC could also be applied to JOVIAL. For further details on

AMPIC, see Appendix C.

3.3.4 Program Graphs

A program graph is a graphic representation of the control structure of

a program or module. A program graph differs from a flow chart in that

a program graph contains only structural information and carries no
information about the statements themselves. From this, one may deduce

a minimal covering set for the program.

A minimal covering set for a program Is the smallest set of paths (from

the beginning of a program to one of its exit points) which collectively

covers all the edges (or branches) of the program graph.

3.4 Symbolic Analysis

Symbolic analysis is the process of analysing how the symbols (variables)

In a program are related to one another in algebraic fashion.
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3.4.1 Program Proofs

Program proving is a validation technique which considers a program to

be a mathematical theorem and, on the basis of certain assumptions about

the state of the input variables, attempts to prove that theorem, with

techniques from algebra. This form of analysis is most often carried

out by hand. But even for modest sized programs, this can become extrememly

complex.

3.4.2 DPEN

DPEN is an algorithm used to perform a simple--but powerful--form of

symbolic analysis. Given the source text of a program, it will produce a

list of all the output variables of the program and the input variables that

each variable depends on (either as a result of an assignment statement or

the path condition). As an option, the user may specify that a restricted

form of the DPEN function, RDPEN, will be used instead of DPEN.

This restricted form of DPEN produces a list of the output variables and

the input variables that they depend on as a result of assignment statements.

See reference number 29 for a more detailed description.

3.4.3 Symbolic Execution

Symbolic execution might be thought of as an automated aid to program

proofs. With help from the user to make decisions at branch points (two

types of branching where user interaction is required will be discussed

in a moment), the system accumulates algebraic expressions for all variables

and path conditions in terms of the (symbolic) values of the input variables.

The following paragraphs describe issues involved in symbolic execution.

3.4.3.1 Binding: An issue of interest to us with regard to symbolic

evaluation is the binding of symbolic variables to their values. This

deals with storage of symbolic variables. There are two basic approaches:

3-6

-- ~~~ ~ m-oo. ,mm .....



shallow binding and deep binding. Shallow binding means that only the
most recent symbolic values for variables are maintained. This scheme is

used in ATTEST (a test case/test data generator reported by Clarke for

FORTRAN programs). Deep binding means that all symbolic values for

variables are kept along with information describing the area(s) of the

program in which those values are valid. This is the scheme used in

DISSECT (a symbolic execution system developed by Howden for FORTRAN

programs). The advantage of shallow binding is that it consumes less

memory and is faster if only one program path is to be considered at a

time. The advantage of deep binding is that previous program states are

* more easily restored if backtracking becomes necessary or if more than

one potential path is being considered at a time. Both SRI SELECT (a

test case/test data generator and symbolic execution system due to Boyer

et al for programs written in a subset of LISP) and EFFIGY (a symbolic

execution system reported by King for programs written in a subset of

PL/I) use hybrid schemes which maintain a certain amount of deep binding

information. That is, after the variable-value pair becomes "old"

(several nodes back in the execution tree) it is eliminated.

3.4.3.2 The Array Variable: The array variable problem occurs for

programs with subscripted variables whose subscripts are themselves

variables. Consider a program with the following statements in it:

1 =5

J=6

IF (N.GT.6) I = 6

X(I) = 3
X(J) = N/5

3-7
,q



If we were to do a purely symbolic execution of the above program, we

would be unable to determine whether X(I) was 3 or N/5 since this is

dependent on the input value of N.

3.4.3.3 The Loop Variable Problem: The loop variable problem occurs

when loop constructions are encountered in which the number of inter-

ations are input variables. Consider the following test-first loop

construction:

DO WHILE (1<0),

4

How do we decide when I is no longer less than the symbolic value of N?

" If we continue following both branches of a test as we do in pure

symbolic execution, the execution tree would become infinite.

3.4.3.4 Dealing with Symbolic Ambiguities: The array variable problem

and the loop variable problem are collectively termed symbolic

ambiguities. Systems differ with respect to their treatment of symbolic

ambiguities. In ATTEST, if a variable is assigned the value of an array

reference which has an ambigously defined index, then the variable Is

marked as having an undefined value. EFFIGY used an exhaustive case

analysis. In this approach, a path which contains a reference to an

ambiguously defined array reference is split into a collection of paths.

Each path in the collection is associated with a possible choice of the

array element. The SELECT system contains a sophisticated implementation
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of this idea. In DISSECT, if a variable is assigned an ambiguous array

reference, it is flagged as such. If the value of the variable is

referenced during the output phase of the symbolic evaluation, then the

deep binding value stack is used to construct a representation of the

different possible values.

In FACES, (a test case/test data generation and symbolic execution system

developed by Ramamoorthy), the user is allowed to select which variables

he would like to be symbolic. All the others will have test data

generated for them. If one of the variables designated as a symbolic

(sometimes called "primary") variable turns out to be a loop parameter or

a subscript, after that point in that program, it will be considered to

be a non-symbolic variable and will have a value assigned to it

accordingly. At the end of this type of an execution, the user will then

have a list of the non-symbolic variables (and the values generated for

those variables). In addition he will have a list of the symbolic

variables in terms of the non-symbolic variables and the other symbolic

variables.

In AMPIC, the user interactively defines certain variables as being

symbolic and supplies values for the other variables. AMPIC also allows

the user to make decisions in the program at ambiguous decision points. It

further allows the user to make certain assertions about the values of the

symbolic variables (e.g., "ASSERT N<S", where N is symbolic). AMPIC is

described further in Appendix C.

3.4.3.5 Consistency Checking: All of the symbolic evaluation systems

which have been constructed use a similar approach to building path-

conditions (see glossary). Each time a branch is traversed, the

condition associated with that branch is evaluated and added to a list

of branch conditions. Most systems contain facilities for checking the

consistency of or solving systems of predicates. ATTEST and SRI SELECT

contain linear programming packages which can be used to solve linear

systems of constraints. DISSECT contains facilities for checking

the consistency of a system but does not contain facilities for
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generating a solution.

3.5 Test Case Selection

There are three basic ways of selecting test cases. They all assume

that the first test case exists a priori- this may be constructed by

simply assigning arbitrary values to each of the input variables of the

program. The first selects new data from a path, the second selects a path

from new data, the third selects new data which are close to the boundary

conditions of the previous test case.

* 3.5.1 New Data from a Path

In this method, we first select a path which contains some statements or

branches which have not yet been executed. The most deeply nested

untested code is a reasonable choice for this since it typically provides

the most collateral testing. We then generate data to satisfy this

path. (This is generally done either with an inequality solver or through

manual analysis by trial and error.)

One of the problems with this selection is that such data might or might

not really exist depending on whether or not a randomly selected path is

executable.

3.5.2 Path from New Data

There are two basic steps in this method. Each successive test case is

obtained by applying the two basic steps in the given order.

* Step 1 (Analysis of ,the last test case). Execute the program with

*input equal to the most recently generated test case, and determine

its execution path. Then perform a (partial) symbolic execution of

that path to determine (an approximation to) the path-condition of

that test case.
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Step 2 (Selection of the next test case). Determine the test data
for the next test case such that it violates at least one constraint

in each of the path-conditions generated so far.

We see that the roles of the test path and the corresponding test data

have been simply reversed in this method. Here, the path is determined

from the test data in order to guide the next test case away from the

previous test cases, the path is not used for finding input data that

corresponds to that path. Also, previously, we were selecting both the

test paths and the test data, one within each of the respective path-

domains. But now only the test data are being selected. This gives us

an extra degree of freedom. Each test case generated by this method thus

represents a distinct input class (that is, corresponds to a distinct

path) because of the requirements in Step 2.

For further explanation of this method, it is recommended that the reader

refer to reference number 30.

3.5.3 Analyzing Boundary Conditions

In this method, we first select a previous test case which we want to

examine more closely. We then choose a critical area of the program

during that test case. Next we identify which variables and branching

conditions are to be studied more closely. Then, we modify the input
data which influence those variables so that when this point in the

execution path is reached again, the selected variables will have values

which are very close to the boundary defined by the selected branching

condition, (e.g., If X>7 were the branching condition, 7 would be the

boundary defined for X by that branching condition)
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3.6 Closing Remarks

Hierarchical design and structured programming help insure that the classes

of inputs to a program will be well defined--but even more importantly,

they insure that we will know which modules do and which don't need retesting

as a result of changes or corrections to the source code. Data flow analysis

insures that the symbolic execution of a program will be meaningful--

otherwise, we might be generating values for variables that should not exist

(or might be misspelled and therefore misinterpeted). Symbolic execution

then provides us with both a functional form of the program (output variables

expressed algebraically in terms of the input variables) and the path

-conditions that we need to generate the next test case. Linear and nonlinear

programming methods then allow us to generate data for these constraints.

These together constitute the state of the art of program testing.
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APPENDIX A

GLOSSARY OF TERMS

Algebraic Language

An algebraic language is an algorithmic language whose statements are

structured to resemble the structure of algebraic expression, e.g.,

ALGOL, FORTRAN.

Block Level

*The concept of block level is used to describe level of detail in software

description. The most detailed flow chart or software description is defined

as level one. Level two is derived by collapsing into a single block a pair

of linear code segments and the common preceeding branch point. Level three

is derived by applying the above procedure to the level two description.

Higher levels are similarly derived. A more formal statement of block level

is as follows: A program block is of level n ( 1) if it is minimal with

respect to the properties that (1) all of its subblocks are of level less

than n, and (2) at least one subblock is of level (n-1). A program block of

level 1 is the same as a linear segment, and all blocks of a given level are

disjoint.

Boundary Condition Analysis

Boundary condition analysis of a piece of software is the study of how

that software behaves at or near the limits of its constraints. In ATCG,

this would entail choosing a new set of test data from an old (user

specified) test case which would come within a user specified epsilon of

violating a constraint in a user specified critical area of the software

in the context of that test case.

Branch Point

A brancn point is a statement which transfers control to another linear

segment in the program which need not be the next sequential linear segment.

A-1



Debugging

Debugging is the process of isolating the source of an error and finding

a solution to the problem.

Decision-to-Decision Path (DD-path)

A decision-to-decision path is sometimes called a program edge or simply

an edge, also called a DD-path. It is a sequence of linear segments in

the program which may be executed as a result of the evaluation of a

predicate (conditional branch) in the program, but prior to a second

predicate evaluation.

Edge

See Decision-to-Decision Path.

Execution Monitor

An execution monitor is a program that instruments (inserts source code

statements) into a program being tested to enable counting of the number

of times each segment is executed by the particular test.

Flowchart

A flowchart is a directed graph representation of the program which shows

the linear program segments, the branch statements, and the control flow

among these elements.

Incompatible DD-path Sequence

An incompatible DD-path sequence is a sequence of DD-paths which are

contiguous (i.e., the terminal point of one edge is the starting point of

the next DD-path in the sequence) but not a part of any execution path in

the program. An example of this is where the initial DD-path in the
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sequence requires, say, X < 0 and the terminal DD-path requires an

incompatible condition, say, X > 2, without X being modified in-between

or by the initial DD-path. Each incompatible DD-path sequence is loop-

free in the sense that the sequence contains no repetitions.

Linear Segment

A linear segment or simply a segment is a sequence of statements in the

program such that in every execution of the program either all of them

are executed (in the given order) or none of them is executed.

Negating Previous Constraints

Negating previous constraints is the process of selecting a new set of

test data in such a way as to violate at least one constraint from each

set of constraints which were true of all previous data sets.

Path-Conditon

The path-condition is the set of constraints on the input variables that

must be satisfied in order for the program execution to follow the

specific path.

Path Selection

Path selection in ATCG is the process of choosing a path from the

beginning of the software to the end of a critical area (chosen on the

basis of user specified constraints) and then generating the constraints

which would have to be satisfied by a set of input data in order to force

the execution of that path.

Program Edge

See Decision-to-Decision path.
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Program Graph

A program graph is a simplified directed graph form of the flowchart

which has a node only corresponding to each DD-path in the flowchart.

The control transfers between DD-path (via branch points) are shown as

arcs between the corresponding nodes.

Reaching Set

A reaching set is a sequence of DD-paths which originates at the beginning of

the program and ends at a specified segment of the program A reaching set may

, be described alternatively as a sequence of linear segments and branch

* points.

Segment

See Linear Segment.

Target Area

The target area is the DO-path or sequence of DD-paths which should be

the ending sequence of the reaching set generated for a given test case.

Target Segment

The target segment is the linear segment selected by ATCG as the next

segment which should logically be tested next. The DD-path which contains

this segment will be the target area.

Test Case

A test case is synonymous with test path.
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Test Data

A set of test data is a vector of input values.

Test Path

A test path is a sequence of linear program segments which is traversed

as the result of a single test execution.

14 Testing

* Testing is the process of certifying that the program meets its requirements.

4For each requirement specification, one or more sets of inputs is applied to

the program and executed. The actions performed by the program are then

compared with the required actions.

Undefinition of a Variable

The undefinition of a variable occurs at a point in the source code that

is beyond the scope of that variable.

/i
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APPENDIX C

AMPIC

C-1 INTRODUCTION

Logicon has developed a software product called ANPIC that establishes a

solid foundation for meeting current and future needs in software verifi-

cation, documentation, maintenance, and development. AMPIC is based on a

technique that represents computer programs as "well-structured" programs

regardless of how they were actually programmed. The advantages of such a

*program representation are exploited by AMPIC to provide various program

analyses and user-oriented output that are difficult, if not impossible,

to obtain otherwise.

The existing AMPIC capability (for a special military computer) includes:

o Automatic structuring and flowcharting of assembler language

source programs

o Automatic translation of assembler language code into a

higher level ("functional") form

o Semi-automatic path analysis that provides various path-

oriented information, including the necessary conditions and

the functional result of traversing each path

o Useful data concerning program structure characteristics,

such as the relationship of code segments to loops and

branches, logically inconsistent paths, and Ill-structured

segments

o Details of deductions by which the translations are
produced
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AMPIC is an extremely valuable tool where software development, maintenance,

modification, integration, testing, and verification are conducted for

complex programs. The inevitable problems that arise in an environment such

as this can be attributed, to a large extent, to inadequate visibility into

the state of the program. Examples are as follows:

1) Software Development: Documentation does not keep up with the

changes made as the result of computer implementation

considerations. Consequently, the development programmer does

not really know his program when it is time to thoroughly test

or integrate it, thus increasing the time and effort necessary

to get a program accepted.
q

2) Software Testing/Verification: Test and verification personnel

cannot determine precisely what constitutes a comprehensive

test of a program. As a result, some segments of code are not

tested at all while other segments are tested redundantly.

3) Software Modification/Maintenance: Modification and

maintenance of software are typically given to personnel who

are not involved in the original program development. As

a result, much time is spent in becoming familiar with the

program and many changes are implemented incorrectly.

AMPIC can greatly alleviate these problems. Documentation can be kept

current thus enabling development, test, and verification personnel to

stay abreast of the program status and to determine whether changes have

adversely affected the original program specifications or negated other

program functions. With its extensive capabilities for path analysis,

AMPIC will greatly aid test and verification personnel in determining such

factors as what tests must be conducted and the percentage of code checked

out. For maintenance personnel, AMP-IC will not only allow them to become

familiar with the program more readily, but will also allow them to analyze
proposed program changes before the changes are implemented.
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The following is a brief introduction to the AMPIC approach. Section C-2

introduces the subject of program structure. It is followed in Section C-3

by an explanation of the concept of a well-formed structure. Functional

translations of program code utilizing the simplified structural

representation are provided in Section C-4. Section C-5 discusses how the

functional translations can be combined into meaningful descriptions of

each path through the program.

C-2 PROGRAM STRUCTURE

The term "program structure" refers to those properties of a computer

program that determine the starting and ending points of the program and

the routes that it is possible to traverse from starting to ending point.

The simplest structure exists in a program consisting of a linear sequence

of instructions that are to be executed from top to bottom. The total

effect of such a sequence of instructions could be rather complex, but in
structural terms it can be represented quite simply, as shown in Figure

C-I (a). Here the starting and ending points of the program are represented
by circles labeled "IN" and "OUT", respectively, and the sequence of

instructions is represented by a single rectangle labeled "S".

Program structures that contain single routes from start to end, regardless

of the number of instructions, are trivial for modern computers as such

programs do not utilize at all the computer's ability to make decisions.

Next, consider programs with two or more routes. An example is a program

that examines whether a number is positive or negative and then calculates
its square root if positive and does nothing if negative. The structure of
such a program could be shown as illustrated in Figure C-1 (b), where the
decision based on the sign criterion is representd by the rhombus labeled "T"

, and the entire square root calculation is represented by the rectangle

labeled "S". (It is assumed that the square root calculation is a simple
sequence of instructions.) This structure is obviously more complex than the

previous one. It contains new structural components represented by the
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rhombus and the dot. The former signifies route divergence and the latter

signifies route convergence. They correspond to conditional jump

instructions and jump destination location, respectively, in the computer

program. Moreover, there are two routes possible through this program.

By allowing the "T"s and "S"s to take on subscripts and by allowing the

lines emanating from the right side of rhombuses to go up as well as down,

depending on where the convergence point is located, any type of program

structure can be represented. Figure C-i (c) is a random example of a

program that has three routes, one of which contains a special kind of

sub-route called a "loop" consisting of T7 and S6. Since the convergence

point of the right side of T7 is at a point preceding S6, this path will

return to T7.

All "flowcharts" of computer programs employ variations of the above scheme

to represent the structural properties of computer programs. Instead of "T"s

and "S"s, however, a translation of the program instructions are inserted

within the rhombuses and rectangles. The nature of these translations and

the degree of structural detail presented in a flowchart are indications of

whether it is a "low" level or a "high" level flowchart. At the higher

flowchart levels, English language statements replace mathematical or

computer-oriented statements accompanied by a progressive degeneration of the

uniqueness of meaning maintained at the lower levels. On the other hand, the

more global meanings of programs are not apparent at the lower levels.

Another important consideration in describing a structural properties of a

computer program is the clarity with which each route in the program

structure is presented. A typical program structure is flow-charted either

by employing lines that cross over each other or by employing a set of

connector symbols to avoid crossovers. Neither technique conveys a clear

picture of the individual routes nor of their interrelationships.

Both the structural route problem and the higher level translation problem

mentioned above are attacked in the approach taken by. the AMPIC technique.

Each of these is discussed in the following two sections.
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C-3 WELL-FORMED PROGRAM REPRESENTATION

If computer programs were not limited by the physical limitations of the
hardware on which they are executed, their structures could be designed so

that all the routes through the programs would be easily recognizable

directly from their structural form. Unfortunately, execution speed and

memory capacity considerations often dictate that programs be optimized

for one or both of these. Hence, what is desirable for documentation,

verification, maintenance, and analysis are undesirable for the operational

configuration.

Suppose, however, that a computer program that has been optimized for
operational use could be shown to have an exact equivalent that is

optimized for the other activities and, moreover, that such an equivalent

program can be produced automatically from the original. If this could be

done, even with some limitations in extreme cases, it would no longer be

necessary to look at typical flowcharts, except as a reminder of what the

program could look like if not represented intelligibly.

AMPIC has been designed to produce such a logically equivalent progrcr

structure and to represent that structure in a systematic and convenient

form. The graphic portion of the AMPIC output portrays the program structure

in terms of the "T" and "S" elements discussed in Section C-2 in such a way

that each route through the structure is immediately recognizable. Moreover,

the program structure is in the form of a systematic hierarchy of

substructures each of which contains only the structural forms shown in

Figure C-2. (Readers who are familiar with tree structures may observe that

this type of representation preserves the clarity of the tree representation

without the tedious and space-consuming overhead inherent in the unfolding of

the entire structure into non-converging paths.) Figure C-3 is a

reproduction of an actual AMPIC output.

Although a representation such as Figure C-3 provides the structural proper-

ties of a computer program, it does not relate the structural elements to the
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Notes: 1) Any of the rectangles may be absent in special cases of
the above forms.

2) Any of the rectangles can itself be one of the above form.

Figure C-2. Basic Structural Forms of
AMPIC Representation
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program parts. Hence, AMPIC provides a mapping of the structural elements

(the "T" and "S" elements) to the appropriate program parts in the format
shown in Figure C-4. All instructions with no "T" or "S" number belong to
the previous "T" or "5" element, except that unconditional jump instructions

do not take part in this mapping.

C-4 TRANSLATION OF PROGRAM INSTRUCTIONS

The computer program shown in Figure C-4 is written in FORTRAN. The

instructions are executed in sequence from top to bottom until a branch type

instruction is encountered. A branch instruction may cause the sequence to
*• continue at an instruction other than the one following the jump instruction.

The translation of the program shown in Figure C-4 is shown in Figure C-5.

Translations of "S" elements are logical statements of the total effects

of program instruction sequences. The effect of any single instruction in
a sequence of instructions is not stated in the translation unless, of

course, it is the only instruction in the sequence. (AMPIC provides an
instruction-by-instruction translation as an option.) The translation of

each "S" element is a set of mathematical relations that hold as a
consequence of the corresponding instruction sequence.

Each variable appearing in any "T" or "S" element translation has an unstated
superscript, as follows: All variables in "T" type translations have the

superscript "OLD". All variables to the right of the equality (or
inequality) symbol of "S" element translations have the superscript "OLD".

All variables appearing in subscripts (i.e., within the outermost pair of

parentheses) of variables to the left of the equality (or inequality) symbol

of "S" element translations have the superscript "OLD." All other variables

have the superscript "NEW" ("NU>"). Keeping these superscripts in mind,
the translations can be read as would any mathematical or logical statenent.

In the example of Figure C-5, names containing dots and followed by an empty

pair of parentheses are functional symbols, not variables.

C-9

Jq "



SUBROUTINE ROOT TI IF(A.EQ.O.) GOTO S7
IMPLICIT INTEGER*2(1.K-N)
COMMON/ARGS/AB,C S2 TENPI=s4.*A*C
COMHON/VALUE/ROOT1,ROOT2,NROOT TEMP1-B*B-TEMP1
IF(A.EQ.0) GOTO 100
TEMPI = 4.*A*C T3 IF(TEMP1.LT.0.) GOTO S7
TEMPI - 8*8 - TEMPI
IF(TEMP1.LT.O) GOTO 100 S4 TEMP2-2.*A
TEMP2 - 2.*A ROOT2-B/TEMP2
ROMT - -(B/TEMP2)
IF(TEMP1.EQ.O) 6010 300 15 IF(TEMPI.EQ.0.) 6010 58

* TEMP2 - FSQRT(TEMPI)/TEMP2
ROOTI a ROOT2 + TEMP2 S6 TEMP2-FSQRT(TEMIP)/TEHP2
ROMT - ROMT - TEMP2 ROOT 1=ROOT2+TEMP2
NROOT - 2 ROOT2= ROOT2-TEI4P2
RETURN NROOT=2

100 NROOT a 0 GOTO OUT
RETURN

300 ROOT1 - ROOT2 S7 NROOT-O
NROOT 1 I6010 OUT
RETURN
END SO ROOT 1=ROOT2

NROOT= 1
GOTO OUT

Figure C-4. Mapping of Structural Element to Source Code
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TI: JUMP (A 0.)NO Jt1MP (A 0.

52: TENP<NU -B* B -4. *A*C

T3: JUMP (TEMPI < 0)
NO ARV ITENP 1 :0: 1

S 4: TENP2<NU> a-2. * A
ROOT2<NU> -- B 1(2'. * A)

T5: JU1MP (TEMPI 0.)
NO JUMP (TNPI p 0.)

56: TEMP2<NU> * FSQRT(TENPI) / TEMP2
ROOT1'NU> - ROOT2 + .FSQRT(TEMPI) / TEMP2
ROOT2<NU> - ROOT2 - FSQRT(TEMPI) / TEMP2
NROOTNKU> a 2

S7: NROOT<NU> a 0

S8: ROOT 1IU> a ROMT

NROOT0NU m 1

Figure C-5. Translations of Structural Elements
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C-5 COMBINING TRANSLATED ELEMENTS

The translations of Figure C-5 together with the structural representations

of Figure C-3 are suitable for those who wish to remain at a level just

above the program instruction level. Others will want to be at one or two

levels higher. AMPIC allows such a level to be chosen by the user.

For example, the user may wish to dispense with translations of individual

"T" and "S" elements but may be interested'in the complete translations of

each route through the program. In Figures C-6 and C-7, two of the possible

routes through the example program were processed by AMPIC. AMPIC will use

the previously derived information and provide input-output functional

expressions for entire paths through the input module.

The examples in Figures C-6 and C-7 show this for two of the four paths in

the FORTRAN language module.

The first example (Figure C-6) is the functional expression for the path that

goes straight down from Ti to OUT. The line labeled "PATH" identifies this

path. "Pn" means "go down" ("no jump") (take the false branch) at Tn. ("Rn"

means that the "jump" exit is taken at Tn.) Hence, (P1, S2, P3, S4, P5, S6,

OUT) is an ordered set that describes the path.

The "IF" statement describes the three conditions to be satisfied (PI, P3,

and P5) In order to traverse this path. The conditions are with respect to

the input values of A, B, and C.

The "THEN" statement describes the total input-output functional results of

traversing this particular path. (The "<N>" is now the output with respect

to the whole path. Variables without "N>" are Inputs with respect to the

whole path).

The second example (Figure C-7) shows a similar result of traversing another

route in the example program.

7
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PATH:. (P1,S2,P3,S4,P6,S6,OUT)

IF: (A 0 0.) & (B * - 4. *A *C 0.) & (B 8 4. *A *C 0.)

THEN: TEPN>J-B B -4. *A*C
TEMP2<NU> = .FSORT(B 8 - 4. *A Q C1(2. *A)
ROOT2N> --B / (2. *A) - FSQRT(B 8 -4. *A * C) 12 2* A
ROOT1<NU> - - B / (2. *A) + .FSQRT(BB 4. *A *C) : 2* A)
NROOT'NU> a 2

Figure C-6. Example of Combined Translation (Case 1)
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PATH: (PI,S2,P3S4,R5,S8,OUT)

IF: (A f 0.) &(B *B -4. * A *C 0.) & (B B -4. A *Cu 0.)

THEN: TEMP1NU> B B -4. * A*C
TEMP2'NU> u2. *A

ROOT2'NU> u- B I 2. *A)

ROOT1<NU> =- B 1 2. *Ai
NROOTCNU> 1

Figure C-7. Example of Combined Translation (Case 2)
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