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I. INTRODUCTION

Our previous numerical simulations of the nonlinear evolution of

the collisional Rayleigh-Taylor instability in the nighttime equatorial

ionosphere (spread F) were confined to small (- 3km) horizontal scale

length initial perturbations and hence to fuily developed spread F

"bubbles" of approximately the same size in horizontal extent [Scannapieco

and Ossakow, 1976; Ossakow et al., 1979], although spatially large

vertically. However, observations by McClure et al [1977] also indi-

cate ionospheric ion density "biteouts" of much larger horizontal extent

(10 - > 200 km) and greater intensity (ion density depletions up to

three orders of magnitude) than indicated by our small scale simulations.

Therefore, we have extended our previous calculations and have performed

a series of numerical simulations using much larger horizontal length scales

(i 75km) for our initial perturbations. These seed long wavelength

perturbations, for example, could be due to neutral atmosphere gravity

wave effects [Rottger, 1976; Klostermeyer, 1978; Booker, 1979]. At

the same time we have made very substantial improvements in the nu-

merical techniques used to perform the simulations, including the

utilization of the recently developed fully multidimensional flux-

corrected transport (FCT) techniques of Zalesak [1979] . The results

of our simulations indicate the following:

1) large horizontal scale length initial perturbations evolve

nonlinearly into large horizontal scale length equatorial

spread F "bubbles;"

2) these bubbles evolve on approximately the same time scale

as do their smaller horizontal scale length counterparts;

Note: Manuscript submitted December 4, 1979.
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3) the plasma comprising these bubbles has its origin at much

lover altitudes than that of the smaller horizontal scale

length bubbles, resulting in plasma density depletions of

very close to 100%.

This last result is due to the fact that the polarization fields

produced by ionospheric irregularities, aligned vertically, possess a

fringe field component whose vertical extent is proportional to the

horizontal extent of the irregularities producing the field. This is

quite similar in origin to the fringe field produced at the edge of

a parallel plate capacitor. Since the vertical extent of this fringe

field determines the minimum altitude from which the rising bubble can

draw plasma, it is not surprising that larger horizontal scale bubbles

are more severely depleted. In Section II we give a brief review of the

relevant theory, and of the basic equations used in our simulations.

Section III contains the numerical simulations and a physical inter-

pretation of the results is given. Section IV contains a summary, and

in the appendix we describe briefly the numerical techniques used in our

present computer code, emphasizing the differences between the present

code and our previous one.
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II. THEORY

The geometry of the physical problem we are modeling is the same

as in Ossakow et al. [1979J. All our simulations are carried out in

a two dimensional (x,y) coordinate system. The constant magnetic field

B is aligned along the i axis (pointing north). Gravity is directed

along the negative y axis. Since our equations are two dimensional,

n(y), v R(y), and vin(y) are taken to be representative values of the

ambient electron density, recombination coefficient, and ion-neutral

collision frequency (the result of integrating these quantities along

magnetic field lines and dividing by a normalizing scale length). Mag-

netic field lines are assumed to terminate at both ends in an electrically

insulated medium (currents must close in the two dimensional plane, not

in some distant E region).

Following Ossakow et al. [1979], we describe the system with the

two-fluid plasma continuity and momentum equations:

+ V . (ncv) = - VRn (1)

+v V -= 106 + a - + - v(v - U ) (2)

where the subscript a. denotes the species (i for ions, e for electrons),

n is the species number density, M is velocity, VR is the recombination

coefficient, E is the electric field, . is the gravitational acceleration,

q is the species charge, V is the species collision frequency with the

3



neutral atmosphere, U is the neutral wind velocity, c is the speed

of light, and m is the species mass.

Note that, in contrast to Ossakow et al [1979], we have dropped

the term + VRn o from (1). This is the equivalent of dropping the

assumption of the existence of an ionization source given by that

term. This ionization source was such that the ambient ionization

profile n (y) was an equilibrium profile (an /bt f 0). Our present

model therefore has instead

an
CLO U
tn (3)

Hence, when normalized results n (x,y)/n (y) are later presented,

it should be understood that both the numerator and denominator are

time dependent.

Figure I shows the recombination rate VR and ion-neutral collision

frequency Vin used in our simulations. It shall be seen presently

that Ven need not be specified as long as it is much smaller than

the electron gyro frequency 0e" For details on the form of Vin and

VR as depicted in Figure 1, see Ossakow et al.[1979]. If we neglect

the inertial terms (the left-hand side) of (2) by assuming the inertial

time scales are much larger than either the gyro periods or the mean

time between collisions, then the equation can be inverted to give an

algebraic expressions for v . In two-dimensional (x,y) geometry with

B along the z axis, the solution is for our problem, with m e << mi

V in/0 << 1, V en/Ce 0 (where 0 C eB/m c), and U = 0.

4



B
-e C E x z = (4)

c -i V --

EVn ++fl E) (5)

B~ B-
i i

We now make the electrostatic approximation,

E =v (6)

where V a x(a/ax) + y(O/cy),and the quasi-neutrality approximation1.

ne ni =n. We then have

V •j =0 (7)

-aen ( v -v) (8)

Substituting (4) and (5) into (8) and evaluating (7), we have for

the electrostatic potential:

mi V n(v.( vi~ 1, =i-n - (eVinn) -_ - (9)
c

As in Ossakow et al. [1979] we set * 0 + *Iwhere V ° A

2
(mig/e) y. Since V = 0, our final potential equation becomes

V n v. 1 ) = (10)
c x (i0)
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The effect of 0 is merely to superimpose a bulk westward plasma

velocity g/Oi on the electron velocity field determined from i'

without affecting the morphology of the developing structures.

Hence, we ignore this motion.

Our assumption of quasi-neutrality has made one of our two

continuity equations (1) redundant. We therefore choose the electron

equation for its simplicity:

Ct x+B y B x Rn (11)

III. NUMERICAL SIMULATION RESULTS AND DISCUSSION

Equations (10) and (11), together with appropriate boundary

conditions, constitute the nonlinear system of equations we shall solve

numerically. Note that in contrast to Ossakow et al. [1979], we

have chosen not to put the equations into a normalized form by dividing

through by n (y). The numerical techniques used to solve these equa-o

tions are discussed in the appendix.

The numerical calculations to be presented were performed on

a two-dimensional cartesian (x,y) mesh using 42 points in the x (east-

west) direction, and 142 points in the y (vertical)direction. The

(uniform) grid spacing was 2km in the y direction for all calcu-

lations. The grid spacing in the x direction was 200m in the "small"

horizontal scale length cases and 5km in the "large" cases. The

bottom of the grid corresponds to 252km altitude and the top of the

grid to 534km altitude in all simulations. Periodic boundary con-
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ditions were imposed on both n and in the x-direction. In the y4I
direction transmittive boundary conditions were imposed on n(an/by 0)

and Neumann ( = I/6y = 0) boundary conditions were imposed on i"

Three kinds of plots will be presented: (1) contours of con-

stant n(x,y,t); (2) contours of constant n(x,y,t)/n (y,t); and (3) con-

tours of constant electrostatic potential *. Superimposed on each

contour plot is a dashed line depicting n (y,t) for reference purposes.

Our n (y,o) profile is such that the F2 peak is located at 434km alti-

tude, and the minimum electron density scale length L = no( noc)y)-1

is 10km. The simulations are all identical except for the east-west

grid spacing Ax and the form of the initial perturbation. Two kinds

of initial perturbations were used:

n(x,y,O) -3 rxno0(Y,0 )  =i-e cos ,11A 0 :r<I x & 8Ax

Perturbation A: n(yO) i-e 23 [CIDS ]

8 Ax <Jxj< 16Ax

n(x,y,0) 1 1 x1 > 16 Ax

n (y,O)

(12)

Perturbation B: n(%,y,0) 1 -e 3 cos ( (13)

n 0 (y,) \2xm
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Perturbation A is exactly the form used in Ossakow et al. [1979],

and perturbation B is a pure sine wave of wavelength 40 Ax (our system

length in the x direction). Both represent maximum initial pertur-

bation amplitudes of approximately 5%. Four simulations have been run:

(i) lS-Perturbation A with Ax = 200m; (ii) iL-Perturbation A with

Ax = 5km; (iii) 2S-Perturbation B with Ax = 200 m; and (iv) 2L-Per-

turbation B with Ax = 5km. Calculation IS above is identical to

ESF III of Ossakow et al. [1979J. The "large" versus "small"

comparison obviously involves comparing calculation IS to calculation

iL, and calculation 2S to calculation 2L. One notes that for the

minimum L - 10km in our simulation, kL > 1 for the IS and 2S cases

and kL < 1 for the IL and 2L cases.

Figure 2 shows isodensity contours of calculation IS at times

300, 700, 1000, and 1200 seconds after initialization. Figure 3 shows

the same contours at the same times but for calculation 1L. The

presence of much lower density fluid in the bubble in calculation 1L

is obvious. Also obvious is a basic difference in the bubble mor-

phology at late times. At 1200 seconds, iS has pinched off into two

bubbles, with the more intense one below the initial central bubble.

In addition, another bubble has formed in the sides of the calcu-

lation . These structures are more obvious in the plot of n(x,y)/no(Y)

at 1200 seconds for IS shown in Fig. 4a. The maximum depletion levels

are 70% in the top central bubble,97% in the lower central bubble,

and 95% in the side bubble. Note that here and in all subsequent

plots of (n,x,z)/n (Z) the contour plotting is such that the first
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(outer) depletion contour n/n is 0.5 and each succeeding inner0

contour is 0.5 times the previous one. For example, the lower bubble

in Fig. 4a has five contours. The outermost would have n/n = 0.50
0

(50% depletion), the next inner one n/n° = 0.25 (75% depletion), the

second inner one n/n0 = 0.125 (87.5% depletion) and the innermost

n/n = 0.03 (97% depletion). For the enhancement contours (dashed0

lines) the first outer contour is 2.0 and the succeeding inner ones

are 2.0 times the previous ones. In obtaining percentage enhance-

ments and depletions one then subtracts 1.0.

Calculation 1L, on the other hand, shows a single plume of

depleted ionization at 1200 seconds, with no secondary central

bubble and no side bubble. There also is no indication of a widen-

ing of the top of the bubble, as there is in 1S. In Fig. 4b we

show a plot of n(x,y)/n (y) for IL at 1200 sec. The level of

depletion is greater than 99.9% for the entire 10km by 70km oval

"hole" located inside the tenth solid contour of Fig. 4b and

represents at least a three order of magnitude decrease (biteout)

in plasma density.

We now repeat the above comparison, but this time for per-

turbation B (calculations 2S and 2L).Figure 5 shows isodensity

contours of calculation 2S at times 300, 700, 1000, and 1091

seconds after initialization; while Figure 6 shows similar plots

of calculation 2L at times 700, 1000, 1200 and 1364 sec. Comparison

again shows the presence of much lower density plasma in the bubble

in the 2L calculation. Morphological differences are also present,

the most notable being the widening of the top of the bubble in 2S

9



4 which is not present in 2L. Figure 7 shows a comparison of the n/n
0

profiles at late time. Again maximum depletions in the 2S case are

about 97%, while a large portion of the 2L plume is 99.9% depleted or

greater.

We can also compare the effect of the form of the perturbation

by comparing 1S to 2S and 1L to 2L. The latter comparison shows striking

similarity, whereas the former shows some differences, the most notable

being the lack of central bubble "pinching" and the lack of lateral

bubbles in case 2S. We conclude that the morDhology of the late-time

bubbles is dependent, at least somewhat, on the form of the initial per-

turbation.

Bubble rise velocities are of some interest, and we give below the

average bubble rise velocity for each case, computed from the last two

frames of Figs. 2, 3, 5, and 6:

iS 210 m/sec

1L 230 m/sec

2S 420 m/sec

2L 280 m/sec

The rise velocity of an individual bubble is dependent upon the rela-

tive deDletion level of the bubble, its geometry, and upon interactions

with other plasma structure nearby. These first two effects are treated

in Ossakow and Chaturvedi [19783, and the present results above are con-

sistent with the results therein. For instance, the relatively high

10
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rise velocity associated with 2S is seen to be due to the fact that

the bubble is more severely depleted than that in 1S. Further, the

roughly equal rise velocities of the 1S, 1L, and 2L bubbles, in spite

of the fact that the 1L and 2L bubbles are much more severely depleted

than that in IS, is explained by noting that 1S actually approximates

the geometry of a "sheet" of depleted plasma, whereas the 1L and 2L

bubbles more closely resemble a cylindrical geometry (see Ossakow

and Chaturvedi [1978]).

In an attempt to understand the reasons for the differences

in the nonlinear evolution of small and large horizontal scale per-

turbations, we look at the potential equation:

V2 V(Vinn)€1+  n . V = -Bg 1
Vin 1 c V. n 6xin

At early times we expect V €i to be small with respect to B/cVin'

so we ignore the second term on the left hand side, giving a Poisson

equation for

2 _Bg 1 bn

V I CVn n 6x
in

We can now interpret the right hand side as simply the local charge

density p (such that V.E = p). Since we have initialized all of these

calculations with 1 an independent of y (see (12)), what we are deal-
n bx

ing with is a distribution of charge density that has the form of

diffuse "plates" aligned in the vertical direction. Noting that the

11



term vin decreases with altitude, we find that these diffuse "plates"

have an equally diffuse "edge" in the y direction. Taking the analogy

to its conclusion, we model our initial conditions, or any vertically

aligned structure for that matter, as an array of plates of charge

(non-conducting capacitor plates) with an edge somewhere in or above

our grid. Tn Figure 8 we show schematically the electric potential

field surrounding the edge of parallel plates of charge for two

different separation distances. Since there is only one scale length

in the configuration (the plate separation distance d), then all other

scale lengths must be proportional to this distance. In particular,

the characteristic distance parallel to the plates over which the

electric field outside the plates (the fringe field) falls off must be

proportional to d. Since in our problem the contours of electrostatic

potential are in fact streamlines (see (11)), this distance will

determine the maximum depth in the fluid from which the electrostatic

field will draw fluid into the bubble. Since the plasma density is

lower at greater depths, this distance will determine the minimum

plasma density inside the bubble. To test these ideas, we examine

the actual early time electrostatic potential fields from the cal-

culations we have presented. Fig. 9 shows contours of n and 0i

for the 1S initial conditions, and the same plots for 1L. A similar

comparison for cases 2S and 2L is shown in Fig. 10. All contour

plots of 0I are scaled in such a way as to evenly space exactly 12

contour lines between the maximum and minimum value of Oi to

normalize the plots so they can be compared without bias. The

increased vertical extent of the contours of $i (streamlines) for
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cases IL and 2L are evident.

Of course, the initial profile generating these aligned plates

of charge lasts only a short time. In the linear phase of growth,

the perturbation grows in the region of linear instability (the F region

bottomside), and damps elsewhere. Our "plates" therefore very quickly

become horizontally spaced regions of charge with a limited vertical

extent, confined to the region of steepest vertical gradient on the F

region bottomside. Nonetheless, the scaling arguments advanced above

still hold: the vertical extent of the polarization electric field

scales as the horizontal extent of the structure causing the field.

This is easily seen in Figure 11 and 12 where comparison is made of the

contours for 1S vs 1L and 2S vs 2L respectively, at a time of 700

sec. Cases 1S and 2S are seen to be mixing fluid over a fairly narrow

altitude range, while 1L and 2L have each formed a large convective

cell more than 150km in vertical extent, drawing plasma fluid into the

bubble from deep in the ionosphere. It is not surprising, then, that

the larger horizontal scale bubbles are more severely depleted at

late times.

IV. SUMMARY

On the basis of our numerical simulations, and of a qualitative

scale analysis of the driving electrostatic potential equation, we

conclude that the severe "biteouts" of three orders of magnitude and

bubble rise velocities of 150 m/sec reported by McClure et al [1977]

are completely consistent with large (-75-200km) horizontal bubble

13



size scales. In our simulations, the severe biteouts associated

with large horizontal scale lengths are due to the fact that the

plasma comprising these bubbles has its origin at much lower alti-

tudes then in the small horizontal length scale cases. Again, these

results are consistent with those of McClure et al. [1977], who

base their conclusions on ion mass spectrometer measurements of the

H+ - 0+ - N+ balance inside the bubbles, which they find to be

'haracteristic of undisturbed plasma found at lower altitudes."

The variation in the vertical velocities of various bubbles noted

by McClure et al. L1977] is probably due to interactions between

bubbles. Note, for example, that in Fig. 2, the secondary bubble

is rising at a much slower rate than is the central bubble. Bubble

interaction will be the subject of forthcoming theoretical and

numerical studies.

14



4APPENDIX: Numerical Solution of the Equations

Of the two partial differential equations we must solve,

(10) is elliptic and linear and (11) is hyperbolic and nonlinear.

Both equations represent numerical challenges, and we could easily

devote the bulk of this paper to the numerical techniques used for

their solution. However, as we stated in the introduction, we shall

confine ourselves to the improvements made in these techniques since

the calculations of Ossakow et al. 11979]. We begin with (11).

Equation (11) is solved in finite difference form

using a fully multidimensional second order in time, fourth order in

space, leapfrog-trapezoidal flux-corrected transport (FCT) scheme.

Both the higher order leapfrog-trapezoidal scheme itself, as well

as the fully multidimensional algorithm utilized in the critical

flux-limiting stage of FCT, are recent developments and are described

by Zalesak [1979]. These developments represent significant extensions

of the theory of FCT, a numerical technique originated by Boris and

Book [1973] to handle equations of the form (11) where steep gradients

are expected for form. By contrast, the calculations in Ossakow et al.

[1979] used a first order in time, second order in space FCT algorithm

which was only one-dimensional (since fully multidimensional FCT

algorithms did not exist at the time), and hence used time-splitting

(sequential x and y operators) to solve the two-dimensional equation

(11). It is known that time-splitting can introduce numerical

15



problems into an incompressible flow calculation (see Zalesak, 1979),

although our previous equatorial spread F calculations did not

exhibit any of the symptoms of these difficulties.

Equation (10) is the elliptic equation whose solution

gives us the electrostatic potential The right hand side is

known and the left hand side represents a Hermitian operator

operating on 0i' giving only real eigenvalues and apparently easing

the difficulty of solution. However, the extremely large range for

the values of the quantity V. n makes for an equally large span of
in

operator eigenvalues, and solution of the equation in this form

using iterative techniques has not been successful. We have found

one (and only one) method of direct solution, the stabilized error

vector propagation (SEVP) method of Madala [1978], but the execution

speeds for SEVP are not as favorable as for the method we now describe.

We start by expanding the operator and dividing through

by v in n, as was done by Ossakow et al. [19793, giving

2 +) Vinn )  = _ .i n

in in Zx

The equation is now in a form suitable for solution by the Chebychev-

iterative relaxation technique of McDonald [19773. However, great
1

care must be given to the differencing of the term --j V(V inn) and

Vin in

,n ,and this is the point we wish to address. We work with the

1 an
term n 6;- in one spatial dimension, since this example will make

the point. A straightforward second-order difference form for this

term is

16



I-n) i+l-i-i (A-2)
"((ox i 2Ax n

where the subscript i refers to grid point location in the x direction

and Ax is the (uniform) spacing between grid points. This is the

form used in Ossakow et al. [1979]. We shall show that this difference

form produces solutions with potentially undesirable properties,

and causes undue numerical hardship in finding those solutions.

Let us rewrite - 6 as (In n). A physical inter-
n isx a

pretation of the term is now much easier: the term tells us how

rapidly the logarithm of n is varying with respect to x. Suppose,

for argument's sake, that the smallest and largest values of n in

the problem are 101 and 105 respectively. On a grid of size Ax the

largest value representable for that term would occur when a fluid

element of density 101 and one of density 105 occupy adjacent grid

points. The value of A (In n) evaluated midway between these two
1 -- -

grid points would be L ( In 105 - in 101) = 9.2 Ax-
. Evaluation

1 1 5of (A-2) for ni 1 ,ni, and ni+1 having values of 10
I , 10I , and 10

1 an 4 -1
respectively gives a value for (- n ) of 5 x 10 Ax , far in

excess of the maximum value for this term given by the above argu-

ment. Logarithmic interpretation of this term would state that n

varied by more than 104 orders of magnitude over a single grid

spacing, a ridiculous statement in light of the fact that there

are only four orders of magnitude of n in the problem.

17
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The potentially large values of these terms, in particular
1

of the term Vinn V (v n) in (A-1), not only cause extremely slow
V n in

convergence of the iterative solution, but can also put spurious

oscillations into the exact finite difference solution *i due to

cell Reynolds number effects [Roache, 1976]. As shown by Roache

[1976] these oscillations can occur any time the value of the

term 1l  V (V i n ) in (A-l) exceeds a critical value of 2 Ax
v n I1 in
in

It is clear, then, that (A-2) represents an undesirable difference

form for these logarithmic terms. Better approximations are

1 n I (ln - n (A-3)
(n z . 2Lx ni+l nil

n -n2A

and (1 on I_ n i+l n i- (A-4)
n Zx. i x ni+ I +ni I

Equation (A-3) is probably the most accurate, but evaluation of

the logarithms at every time step is computationally expensive, and

for problems like the one at hand where n varies by many orders of

magnitude across the grid, there is still no guarantee that the

critical cell Reynolds number will not be exceeded. For these

reasons we use (A-4) for the present calculations.
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