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ARCHITECTURE RESEARCH FACILITY:
AN EXPERIMENT IN SOFTWARE ENGINEERING

L INTRODUCTION

Software developers often complain that researchers in the field of software engineering
propose new ideas without testing these ideas in practical applications. The Architecture
Research Facility (ARF) was developed utilizing several software engineering techniques in
order tc discover their usefulness in actual software system developments. This paper discusses
our experiences. We describe the motivation for using the various techniques, how these tech-
niques werz applied to ARF’s development, staff reactions to using these techniques, and an
evaluation of the usefulness of such software engineering technigues.

Our results would prove useful to software developers planning to use these new develop-
ment techniques since we highlight many of these techniques’ strengths and weaknesses.

The ARF is a general-purpose simulator for computer architectures. The formal descrip-
tion language, the Instruction Set Processor (ISP) (1], is translated by a compiler into a se-
quence of primitive instructions called register transfer modules (RTMs). The ARF interprets
the RTM instructions, thereby simulating the target machine whose architecture was originally
described in ISP.

ARF’s primary purpose was to provide software support to the Computer Family Archi-
tecture (CFA) project [2]. At the same time, the ARF development was used to gather infor-
mation about several software engineering techniques. These techniques were evaluated in the
context of software projects of ARF’s size.

ARF’s project personnel consisted of five full-time technical participants and two secre-
taries. As development progressed, this staff was reduced to three and then to two full-time
technical participants. Of the five technical participants, three were designers while two persons
were hired to code from detailed specifications.

I1. SOFTWARE ENGINEERING TECHNIQUES EMPLOYED

In addition to providing a support tool for selecting a standard computer architecture, the
ARF development was used to test several design and implementation techniques discussed in
the software engineering literature. The following techniques were used:

1. Design and documentation of the individual system components and interfaces prior to
coding [3). (See Section IV.)

*Manuscript submitted June 14, 1979,
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2. Design reviews prior to producing code specifications {4]. (See Section IV.)
3. Code specification in a pseudolanguage prior to coding [3]. (See Section V.)
4. Code writing by a staff member other than the designer or specifier. (See Section V1.)

S. Code reading prior to testing by at least one design-level project member other than
the programmer [5]. (See Section VII.)

6. Information-hiding modules [6). (See Section VIIL.)

7. Run-time error-checking mechanism designed into the system from the start [7]. (See
Section I1X.)

8. Run-time simulation of strong typing to aid in error detection [8,9]. (See Section X.)
9. A FORTRAN preprocessor and other support software [10]. (See Section XI.)

Several of the software development techniques listed above are more easily achieved
when an appropriate programming language is used during system development. Unfortu-
nately, it is not always possible to find programmers familiar with such languages. One require-
ment was that the ARF be developed on an in-house PDP-10 in a language that was transport-
able to a PDP-11. Although the PDP-10 supports many languages, our PDP-11 did not have
compilers for all of them. We were ailso not aware of existing cross compilers for any of the
languages. Consequently, our choice was limited to BLISS (the PDP-10 has a cross compiler)
or FORTRAN {the PDP-11 has a compiler). BLISS (11] is a sophisticated systems program-
ming language, possessing many useful capabilities for projects such as ARF. It is also a com-
plex and difficult-to-understand language. FORTRAN is widely known and widely used. Since
inexperienced programmers were to be hired to code from detailed coding specifications, FOR-
TRAN was chosen to implement the ARF.

III. THE ARCHITECTURE RESEARCH FACILITY

We define the architecture of a computer as the information that a programmer needs to
know in order to write all programs that will correctly run on the computer. For two computers
to have the same architecture, they must offer a common set of programmer-accessible regis-
ters and a common instruction set; execution of an instruction must affect the registers in the
same way in one computer as in the other. A family of computers having a common architec-
ture, but widely varying abilities, is IBM’s System/360 series.

A designer intending to use the ARF specifies an architecture in the Instruction Set Pro-
cessor (ISP) language. This description is translated by an ISP compiler 112} into a description
of a register structure called register transfer modules (RTM) (see Fig. 1), and a program for
the RTM machine that allows it to implement the proposed architecture. The RTM program
can be thought of as analogous to the firmware in a microprogrammed implementation of the
proposed architecture. An RTM simulator program running on an existing computer then in-
terprets the RTM instructions, thereby simulating the target machine (the machine whose ar-
chitecture is described in ISP) (see Fig. 2). A program written for the target machine would
be executed by the RTM instructions provided that these instructions were so designed. The
ARF's command language has the ability to load a target machine’s memory.
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The ARF’s main data structures are simulation tables consisting of the following items:
1. Primitive RTM instructions constituting a program for simulating the target machine

2. Descriptors for various types of data items such as variable-length registers, arrays, or

3. Symbolic names with pointers to facilitate communication between ARF and the user
4. The actual values of the data items described by item 2.
These tables are produced by the reformat program from the output of the ISP compiler.

Since the ARF user may want to interact with the simulation, the Command Language In-
terpreter (CLI) program accepts commands and requests for information typed by the user at a
terminal. The CLI then uses the rest of the ARF to carry out the user’s requests. A user may
install a simulation from a file, start the simulation at any labeled point in the ISP description,
set and clear breakpoint conditions that specify when a simulation will be interrupted automati-
cally, restart a simulation, display or alter the contents of a register or elements of an array, etc.

IV. COMPLETE DESIGN DOCUMENTATION AND REVIEW

A detailed system design and extensive design documentation should exist prior to system
implementation [3]. We decided that the ARF design would be ti.oroughly documented and re-
viewed prior to any coding effort. The ARF design proceeded in two stages, producing two
types of design documents. First, the ARF was divided into modules and their interfaces were
defined. Then, the design and implementation of each module could proceed at different rates.
Detailed design documents were circulated to the ARF staff as well as to outside consultants for
review. Design review meetings, consisting of all ARF technical personnel, were held to dis-
cuss and resolve discrepancies. Design documents were updated to reflect design changes, and
the documents were then given a new version number and redistributed for additional criticism.
The design and review process continued until all of the designers were satisfied with the
design.

The documentation produced by the ARF project was detailed and voluminous (Table 1).
Criticism of the ARF’s design was solicited from persons working on all aspects of ARF as well
as from knowledgeable persons outside the system development. The criticism obtained was
quite useful and resulted in many valuable system changes made early in the design stages.
The design and review process required muitiple iterations; the time and effort involved in
preparing and distributing documents were tremendous. A major bottleneck in the document
revision and dissemination was secretarial support. The time to revise, retype, and release do-
cuments for subsequent reviews inhibited progress. This bottleneck was also present during the
code specification stages but by that time several secretaries were trained to use on-line text
editing; revision then proceeded more quickly, and designers were able to design rather than
perform on-line editing.

Obtaining design criticism from project personnel in a timely fashion was difficult. Most
personnel were assigned design tasks and had schedules to meet; design document review was
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Table 1 — Summary of the ARF Documentation

Number of | Number of
Document

TN M I A B it i T R W e £ e e S e e

Versions Pages

Simulator

Design 7 74

Code specification 8 102
CLI

Preliminary design 2 34

Design 4 52

Code specification 7 145
Table interface

Design 9 110

Code specification 6 116
Reformatter

Design 1

Code specification 8 81
Breakpoint flag utilities

Design & code specification 7 24
Register functions

Design 4 25

Code specification 4 44
Paging utilities

Code specification 4 31
Storage layouts 8 23

Miscellaneous utilities
Character functions 3
String functions 4
Byte functions 2 14
Error-handling functions 2
i

Interrupt-handling functions 3
Preprocessor utility 1 5
Testing utility 1 19
ISP Compiler 48
Running ISP at NRL - 29
Coding standards k) 7
User documentation

ARF User's Manual 2 32

ISP Primer 4 26
57 Miscellaneous memos - 347
A total of 83 documents - 1422

5
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usually given low priority. Finally, all participants exhibited a considerable amount of frustra-
tion at the apparent lack of progress during the early stages of the project. It seemed as though
only voluminous amounts of paper were produced: design documents, revision of design docu-
ments, memos about proposed design changes, and coding specifications. No code or coding
effort was evident.

Recommended solutions to most of the indicated problems can be offered.

1. Recognize the need for time to prepare documentation and plan for it in the project
schedule.

2. Hire trained personnel early to provide support for documentation production.
3. Use on-line document preparation and editing to alleviate revision bottlenecks.

4. Provide time for project personnel to read thoroughly and criticize designs of all sys-
tem components.

5. Recognize that design is an iterative process and plan the project schedule accordingly.

6. Be patient with the apparent lack of progress in producing code. Premature coding will
result in the recoding of redesigned modules.

V. CODING SPECIFICATION

Design decisions should not be made by the programmer [13]; coding specifications
should restrict the programmer’s freedom. Unfortunately, there is no standard coding
specification language.

Since clarity and ease of use are paramount in writing code specifications, we wanted to
eliminate obstacles to writing clear specifications. Inflexible syntax is one of those obstacles;
our designers wanted to concentrate on the unambiguous clear specification of the code rather
than the syntax of the specification language. The language had to be algorithmic in nature,
permitting specification to the level of detail necessary for the coder; this permits less experi-
enced personnel to code while releasing persons with more technical backgrounds to design and
specify. In addition we wanted the specifications readily understood; we did not intend to (and
did not) distribute specification language manuals.

Since there was no coding specification language that fulfilled our needs, we decided to ;
permit the designers, who were also our specifiers, to create their own specification languages. ﬂ
Three different languages resulted: one ALGOL-like (14], one BLISS-like [11], and one
SIMPL-like [15]. Appendix A has a sample of each coding specification language used.

Many bugs were found while reading specifications and translating them to FORTRAN
[16] that otherwise would not have been detected until testing. Perhaps, more importantly, the
use of coding specification permitted us to multiply our effective manpower. We were able to
use inexperienced personnel as coders while our more qualified personnel only designed and
specified, keeping the coders busy coding.

B i T e
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Based on the experiences and recommendations of our coders and specification readers,
we decided that the SIMPL-like language was the best of the three specification languages.
Although the ALGOL-like language was the most familiar, it lacked the ability 1o identify
throughout the specification the location of variables (common block, parameter file, or local
storage).

The BLISS-like language was difficult to read, with great possibility of ambiguous in-
terpretations. It possessed if-then-else structure with no end indication. Several errors resulted
when coders translated simple statements as part of the e/se block rather than as the next exe-
cutable statement. Our coders as well as the specification readers complained that the BLISS-
like specifications statements were closely crowded onto one page and indentions were not ade-
quately used.

The SIMPL-like language possessed several desirable add-on syntactic features. This
language had a mechanism for differentiating between local and global variables. Each
variable’s type could be clearly specified, along with the permitted type of access. Common
blocks and predefined files with parameter values (parameter file) had tc be identified, with a
clear indication as to who was responsible for declaring, defining, and initializing the files. All
global variable definitions contained an indication of the common block or file where the vari-
able was defined. Such features could casily have been included in any of the specification
languages.

We learned several things from our specification effort:

1. Use a uniform coding specification language. Use of three different coding
specification languages confused our coders.

2. Use a language with flexible syntax that clearly specifies the location of variables.

3. Use a language that is understandable and does not need a manual to explain its se-
mantics.

VI. CODING

Working from detailed coding specifications permits coders to implement a specified
module without designing the module and without much communication with other project
members. Our coders translated their assigned coding specifications into FORTRAN and syn-
tactically checked their results; they did not run the programs. While coding was in progress, a
detailed set of written project standards was followed. These standards outlined the format of
all source code produced for the project. For example, every variable used in a program had to
be declared. Variable declarations were required to appear in the same relative position in all
programs. The use of the documented standard was enforced by project members assigned to
reading the code (see Appendix B).

Coding from detailed specifications can be frustrating to coders who sometimes prefer ex-
pressing their creativity in code. We encouraged our coders to contribute to the project by
finding potential bugs in the specification rather than attempting to make design decisions and
change their code specifications. (One of our coders eventually became a designer.)

REITL R, SRV GG
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' VII. CODE READING
g To experiment with egoless programming [17], we adopted a policy that all code would be
read by at least one staff member other than the coder.
; After an ARF coder finished his assigned task, a different project member, preferably the
2 designer or code specifier, read the code. The code reader checked to see that no translation

errors, misunderstandings, or violations of the project’s coding standards occurred. If the code
reader found errors in the algorithm’s specification, the original designer and specifier were con-
sulted and the appropriate changes were made to the design, code specification, and code. The
coder made code changes that reflected code specification changes only. The entire code reading
process was repeated until no errors were detected by the code reader. The program was then
- 4 ready for run-time testing.

Twenty-four errors were found during the code specification reading and code reading
stages: 4 translation errors, 14 specification errors, 3 code errors, 2 typographic errors, and one
violation of the coding standards. For more detailed information about the errors occurring
during the ARF project see Ref. 16.

VIII. INFORMATION-HIDING MODULES

Parnas [6] has introduced the concept of information-hiding modules. To partition a
software system according to the information-hiding principle, one isolates (hides) each major
2 design decision from the rest of the system; each information-hiding module manages a facility
or resource for the remainder of the system. A module usually consists of a data structure and
the routines that access the data. Isolation of the data structure (resource) permits changes to
the managed resource with minimum effect on other system modules.

The ARF’s information-hiding decomposition resulted in four major modules, each
managing a separate ARF facility (see Fig. 2): the CLI provides all user communication, the
simulator executes the target machine instructions, the table interface module manages the
tables containing all simulation data, and the register functions provide all operations required .
to implement a 64-bit ARF register data type.

AREF project personnel designed and coded each module, making very few assumptions of
the other modules’ internals; any assumptions made were embodied in a well-defined and docu-
mented interface. Consequently, independent work was possible and little communication was
necessary after the interfaces were defined. The abstract interfaces [18] to a module was the
only information necessary for the implementors of other modules to know. The ease with
which the system changes can be shown by several examples below:

s

1. The ISP compiler translates the instructions of any machine being described into a
simple primitive set of operations called RTMs. These RTM instructions are reformatted into
the proper table format by the reformat program. Both the reformat program and the simulator
access the RTM instructions in the table interface module. Thus, the format and location of
the RTM instructions are hidden by the table interface module. The modifications to add
another RTM instruction were limited and easily recognizable, so that, once made, no side
effects resulted. The reformat program was modified to expect the new operation; a new rou-
tine to simulate the operation was added to the RTM simulator module; the table interface
module was supplemented with the necessary new functions. The modifications took one day
to implement including design, specification, review, coding, testing, and documentation
updates.

i - r P : N S
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2. The field size of one of the RTM operation addresses was enlarged to accommodate

: additional address space. We relocated the address field into an unused portion of another word

-3 in the table. This change did not affect any of the other system modules; the table interface

‘ module was modified so that only the routine accessing the field was aware of the new location.

The modification required less than half a day to implement. Other modifications such as rear-
A ranging the table structure, expanding fields, and adding entries were accomplished as easily.

IX. UNDESIRED EVENTS DURING RUNTIME

Even the best engineered system will contain system errors. In many situations, errors do

; not force a machine abort during execution, but cause incorrect results. We use the term un-

1 desired events (UEs) (7] to encompass run-time errors, incorrect program performance, un-

y desired external stimuli, as well as hardware errors. Ignoring UEs at a project’s beginning re-

quires the later addition of error handling. Such an ad-hoc design addition for handling UEs

can destroy a system’s structure. To avoid major redesign after the fact, the ARF developers
were concerned with making UE handling an integral part of the system.

The table interface module contains extensive error-checking code to prevent programs’
manipulating incorrect data or performing undesired operations. Whenever an attempt to per-
form an erroneous action was made, the table .interface module either returned to the caller
with an appropriate return code set or called a separate UE-reporting routine, which printed de-
bugging information and either continued or waited for a user response. Such information as
the calling routine’s name, the called routine’s name, and the kind of undesired event was re-
ported.

i The ARF handled two kinds of undesired events: ARF errors and user errors. ARF er-

‘ rors were system bugs; about 50% of the table interface module code was devoted to detecting
and reporting such errors. User errors were caused either by incorrect ISP programs or in-
correct target machine programs and data. For example, a divide by zero in ISP would create a
user error because of incorrect data.

[P T B

Many ARF errors were handled by debugging code designed into the system with the idea
that this code would be eliminated when ARF was correct and reliable. A preprocessor was im-
plemented to permit any ARF source code line to be prefixed by a D, causing the preprocessor
to convert such statements to FORTRAN comments. Non-error-checking ARF code was kept
from depending on the evaluation of error-checking code. In this way, when error-checking
code was eliminated, the remainder of the ARF code would still work properly. ARF code can
be recompiled with most of the error computation omitted. A disadvantage of the error
mechanism was the increased processing overhead; but the design permits the ARF code to be
recompiled without the error handling — typically halving execution times.

P e R T

The value of preplanning the error-detection mechanism is illustrated by the ease of
reducing processing overhead in a debugged system as well as the fact that 14 errors were
detected by the UE-handling mechanism [16].

e § e TN B Ty



e g

HONEY §. ELOVITZ

X. ABSTRACT DATA TYPES AND STRONG TYPING

Abstract data types have been recommended as a means for improving system reliability
and understandability [8,9,19,20). Proper use of abstract data types can simplify the
programmer’s task, high-level data objects can be specified without concentrating on detailed,
and perhaps machine-dependent, representations and operations.

In strongly typed languages, the data type of each variable must be explicitly declared.
The mixing of data types without explicit and well-defined type-conversion rules is prohibited.
These languages enforce a set of rules that define when one object can be bound to another ob-
ject, such as in parameter passing. Such rules protect the programmer from misuse of data
types. When an appropriate strongly typed language does not exist, type rules can be enforced
at run time with a corresponding processing overhead.

The implementation of strong-typing features in the ARF development helped in system
debugging. We also used abstract data types to enhance readability and changeability. The
table interface module’s responsibility was to provide access to and to manipulate the ARF
tables for the entire ARF system. Table entries can easily be likened to abstract data types {9].
All access to the table entries was controlled by the table interface module; each entry’s
representation was concealed from all programs external to the module, making data represen-
tations inaccessible to the using programs (and unnecessary for the using programmer to
know). We believe that concealing the data representation increased the system’s reliability and
changeability.

Because FORTRAN is not a strongly typed language, FORTRAN variables need not be
explicitly declared and mixed-mode expressions are not prohibited. Since the ARF development
used FORTRAN, we incorporated the most obvious strong-typing features by run-time check-
ing and by coding standards. Such enforcement would normally be done at compile time when
using a strongly typed language such as Pascal [21].

The ARF coding standards enforced explicit declaration of all variables. Since we could
not automatically verify that all variables were declared explicitly, code readers were required to
check for adherence to the coding standards. The standards required that each ARF routine
contain a FORTRAN statement that declared all variables complex unless explicitly declared
otherwise. The use of the FORTRAN "IMPLICIT COMPLEX (A—2Z)" statement fulfills this
requirement. Any variable not explicitly declared defaults to complex — a data type not used
in the ARF development. Most attempts to use a complex variable as a subscript or DO loop
index cause a compiler error.

The ARF design required four abstract data types:

LOG true or false

INT a 16-bit data word

REG a 64-bit data word

STRING a string of characters of a specifically

declared length.

10
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These types were used in the coding specifications. In the case of LOG, INT and REG,
the programmer was responsible for translating the type into the proper FORTRAN declaration:
LOG into LOGICAL, INT into INTEGER, and REG into DOUBLE PRECISION.

The STRING data type was handled somewhat differently. ANSI FORTRAN [22] pro-
vides few character and string manipulation facilities. Usually, programs using string or charac-
ter data are machine dependent, since the number of characters per word must be defined in a
FORTRAN DATA or FORMAT statement. We wanted to avoid machine dependencies so that
the system could be transported to a PDP-11. Consequently, the ARF programmers were not
permitted to use a DATA statement to declare strings. A preprocessor command was imple-
mented that would produce FORTRAN code for string definitions; the programmer declared
the name, length, and value of the string that was needed. An ARF utility module was imple-
mented that provided the functions necessary for manipulating the strings. In this way, an
abstract data type, STRING, was implemented through the preprocessor definition and an
information-hiding module that hid the representation of the string data type.

Not only were the programmers unaware of the string’s internal data representation, but
this string type could easily be transported to another machine without changing the ARF pro-
grams. A module for string manipulation was provided that performed all string accesses (e.g.,
substring, assignment, concatenation, appendage, etc.).

One ARF module defined a 64-bit REG data type and supplied all of the required type
conversion routines and primitive operations such as addition, subtraction, multiplication, and
division. FORTRAN primitives were used only for the INT types.

Some run-time verification of correct typing of passed parameters was accomplished via
the ARF's abstract data type definition for table entries. Each table entry had a specified field
for type identification set by the ARF module that formed the table. The table interface
module was the only run-time module that had access to or knowledge of the identification
field. Consequently, when a table interface subroutine was called with a table entry as a parame-
ter, the table interface routine checked the parameter’s identification field to verify that the
proper table entry type was passed. Since each table entry type had a unique identification field
value, an unexpected identification field value forced the ARF’s UE-handling routine to be in-
voked.

In summary, the ARF development implemented strong-typing features in three ways:
1. Al variables were required to be declared explicitly.

2. Four abstract data types were used in code specifications; one was defined at preprocess
time.

3. Type conversion and manipulation routines were provided.
We were pleased with the results of using strong typing and data abstractions in the ARF
development. These concepts helped in detecting approximately 50% of the errors in the table

interface module [16]. Use of both data abstractions and strong-typing rules increased the
readability of the ARF documentation as well as the ARF code.
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XI. SUPPORT SOFTWARE

Support software usually becomes a major aspect of software system developments [10],
especially if the software system will be used frequently or is expected to evolve to meet vary-
ing user requirements. Unfortunately, many software system developers do not plan their
software support package prior to starting a project.

We recognized the need for support software but unfortunately did not have the time to
anticipate this need prior to the start of the project. Consequently, several support tools were
designed and programmed in parallel with the ARF development. Limited time and manpower
precluded the development of many other desired tools.

This section discusses several tools that were developed for use during ARF's develop-
ment. We also present some capabilities that were not implemented because of lack of time
and personnel, although we believe that they would have been useful.

Preprocessor

The ARF was developed in ANSI FORTRAN [22]. Unfortunately, the current ANSI
FORTRAN lacks such desirable features as compile-time inclusion of source libraries, compile-
time parameters, and conditional compilation of code. Some FORTRAN implementations do
not enforce these limitations, but since most extensions are not part of the ANSI standard, they
cannot be used in software intended for use on more than one machine. The ARF runs on a
PDP-10, which does support the above features; but, ARF was intended to be transported to
the PDP-11, which does not support such extended FORTRAN capabilities. During the ARF's
development, we recognized the need for a limited capability preprocessor that would provide
some useful facilities lacking in ANSI FORTRAN.

Consequently, we designed and implemented a FORTRAN preprocessor; the FORTRAN
code produced was ANSI standard. The preprocessor, written in FASBOL, a string manipula-
tion language described in Ref. 23, was capable of running only on the PDP-10. We planned to
transmit the FORTRAN source code to the PDP-11 via a telephone link. With the preproces-
sor, ARF programmers were able to use several nonstandard FORTRAN features that
simplified their task and enhanced the readability of the FORTRAN code.

ANSI FORTRAN does not permit the definition of compile-time parameter constants,
although some machine-dependent FORTRANSs do permit such parameter definitions. Since
there were several advantages in requiring our designers and programmers to use compile-time
parameter definitions, we implemented this feature in our preprocessor. Compile-time parame-
ter definitions permitted decision deferral of the parameter values such as table sizes. In this
way, our designers determined the parameters’ values rather than the programmers’ "hard cod-
ing" the constants. Since our programmers were unaware of the actual parameter values, they
were unable to make use of such constants in devious ways in their code. Compile-time param-
eters also permitted the use of mnemonic names in place of the constant’s value.

The FASBOL preprocessor assisted in the implementation of a string data type. Although

moving the ARF to a different machine requires the preprocessor to produce slightly different
code for invocations of the string utility module, the ARF programs remain unchanged.
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X3 Another feature implemented in the FORTRAN preprocessor is the ability to flag specific

‘ FORTRAN statements as conditionally compiled debugging statements. The ARF preprocessor

permitted a programmer to flag any FORTRAN statements, including comments, as debugging

statements. All debugging statements were translated to FORTRAN code by the preprocessor

4 unless requested otherwise. The programmer could request that all debug statements appear as

comments in the source listing. A reader could see immediately those statements that are not

actually part of the ARF system code. This conditional compilation facility permits the debug-

ging code to remain with no overhead even after the system is running, insuring easy reinser-
tion at a later time.

A desirable feature not implemented in the preprocessor was the ability to use more than
3. six characters as a variable name. The usual FORTRAN six-character limitation hinders the
production of readable code by restricting the invention of mnemonic variable names. The
ARF preprocessor permitted ARF programmers to use more than six characters only for param-
eter names. The capability of using more than six characters for ARF variables was not imple-
mented in the ARF preprocessor because of a shortage of time and personnel. Had the prepro-
cessor implemented this capability the ARF code would have been more readable.

Many nonstandard FORTRAN compilers also provide the ability to specify a file to be in-
cluded in-line in a program. This was recognized as being a useful feature for the ARF
development, since the parameter definitions were built by persons other than the coder. The
designer built a parameter definition file and specified in the coding specifications the name of
the parameter file to be included in the code. An ARF coder used a preprocessor command at
the appropriate point in the code, and the preprocessor automatically produced ANSI FOR-
TRAN for the routine, using the specified parameter definition file. This required that the
preprocessor also process the contents of the file being included in the code.

A logical extension of the parameter-file-include capabiiity was to permit the specification
of any FORTRAN source file to be included in-line. This provides a minimum-capability
macro expansion facility. It was not possible to specify parameters to the expanded macro, and
consequently the preprocessor was not as versatile as we would have liked. A full macro capa-
bility would have been extremely useful, since many of the FORTRAN subroutines and func-
tions written to implement the information-hiding modules could have been implemented easily
and more efficiently as macros. A macro facility in the source language is a great asset in
implementing information-hiding modules. A macro facility was not provided in the preproces-
sor because of a lack of time and personnel to devote to an unbudgeted item.

Interactive Testing Package 1

Since the ARF is modularized according to the information-hiding principle, many of the
modules consist of numerous subroutines or functions that retrieve or set vaiues. The testing X
of so many different routines can be tedious, requiring many small driving programs whose
only purposes are to invoke the proper FORTRAN routine with the specified parameters to re-
port the results. Instead, the ARF project produced a general-purpose driver as a support tool.
This driver was called the Table Access Routine Interactive Tester and was written in the intial
stages of the ARF design,; its original purpose was to assist in testing the table interface module.
Any subroutine or function linked with the package can be invoked by specifying the routine
along with the parameter values. The testing package then calls the routine and displays all the
returned values.
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The ARF UE reporting routine invoked the testing package when a UE occurred during
debugging, providing the tester with interactive facilities to call the suspect ARF routine with
various parameters to hetp discover the bug.

Without the support provided by this testing package, we would have required many indi-
vidualized driver routines to test the table interface module and the RTM simulator, substan-
tially increasing testing time and cost. Such a support tool can prove to be invaluable to any
software development [24,25].

Other Support Tools

In addition to the preprocessor and the testing package, the ARF team developed a pro-
gram that assigns unique identifiers to all ARF subprogram names. The ARF routines then had
a mechanism for uniquely identifying themselves to the UE reporting routine. In this way, the
UE reporting routine printed out diagnostics indicating the routine in which the error occurred.

Sometimes global definition changes, table size changes, and module modifications re-
quired large portions of the ARF to be recompiled. Since each module contained many subrou-
tines, each separately compiled, the task to compile the system was tremendous. A program
was written to preprocess and compile automatically all the routines in a specified module for
the entire system. This program was a valuable support tool during system development and
has remained useful throughout ARF maintenance.

Many PDP-10-supplied support tools such as text editors, linkers, listers, and the batch
monitor system were used throughout ARF’s development. The PDP-10 text editors were
especially invaluable to our project since all docurientation was prepared on-line, facilitating the
numerous changes that occurred during the system’s evolution.

Unavailable Support Tools

One of the most difficult development tasks is to prevent naming conflicts. A program
that keeps track of all the names used in the system and insures that no name is used more
than once as a subroutine or function name could easily reduce time and effort in project
development. Name information must be compiled from the beginning of the project develop-
ment or the task quickly gets out of hand. Another facility that would have been useful was a
program to identify all the variables defined in each common block and to list the modules us-
ing each common block variable.

Software projects producing large amounts of documentation usually release multiple ver-
sions of design documents and system code. An automatic method for version numbering
could permit project personnel to maintain up-to-date documentation with reduced technical
effort diverted to administrative duties. An automatic means to cross reference and index all
project-related documents assists in the understanding and reviewing of the system design as
well as the prevention of naming conflicts.

The ARF support tools proved to be useful in the ARF’s development, but more time
prior to the beginning of the project should have been devoted to identifying the necessary
tools and designing or acquiring the appropriate software from previous projects. Since initiat-
ing different procedures and using newly provided automated tools midway through the project
would have been disruptive, we chose not to expand the capabilities of already usable tools.
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Thus, many attractive preprocessor enhancements were not provided and other support tool
developments were not commenced after the ARF system development was under way.

XII. TESTING AND OPERATIONAL EXPERIENCES

The testing of a software system is influenced by the system’s structure. The modulari-
zation of the ARF clearly defined the lines along which the testing of the system components
proceeded. Each information-hiding module provided a clean, well-documented interface to the
other system modules. Each ARF program was tested by a staff member other than the origi-
nal programmer. Since the tester was usually unfamiliar with the code being tested, we hoped
that he would be unlikely to make assumptions about the code that would lead him to design
inaccurate or incomplete test data. The original programmer was responsible for changing code
in which translation errors were found; under no circumstances was he permitted to alter
designs or specifications. The original designer and specifier were responsible for adjusting
design and specification documentation when an error or ambiguity was discovered.

The use of information-hiding modules permitted the modules to be demonstrated correct
independently of each other. This reduced the combinatorial problem where each routine must
be tested in conjunction with all of the other routines. Consequently, after the table interface
module testing was completed, the testing of the RTM simulator and the CLI could proceed.

We intended to provide extensive test guidelines and data for the individual modules.
Unfortunately, this aspect of the ARF development was sorely neglected. Each module, after
being coded and read, was ready for testing. Ideally, the tester should have provided a test plan
prior to initiating any testing of the module; but, at this phase of the project, we were short of
manpower and time and were unable to expend the resources to provide a well-planned test
procedure.

In spite of a lack of test planning, the individual module testing, system integration, and
system testing proceeded quite smoothly. We attribute this to the use of information-hiding
modules and the detailed design documentation and review processes. Few difficult-to-fix er-
rors (taking more than one day to fix) were discovered, and integration took less than one
month to accomplish. Several errors that surfaced during ARF’s integration can be attributed to
misunderstanding in the ISP compiler’s interface.

Since the ARF system development was used as a software engineering experiment, an
error-reporting procedure was developed. Throughout ARF’s development and continuing dur-
ing operation and maintenance, data were collected on the errors encountered. Errors found
during specification review, coding, code reading, testing, and operation were reported on spe-
cially prepared error report forms. These forms contained information such as the error type,
where the error occurred, how it was detected, how long it took to find the cause of the error,
whether the cause was found, what the finder of the error thought was the cause, etc. All re-
ports were returned to an individual not involved in the ARF development. The reports were
reviewed and the reporter and the person responsible for the error were interviewed. All staff
members were encouraged to report all errors as part of the experiment.

Since there is no convenient way of enforcing error reporting, we relied on both the
staff’s interest in software engineering and their belief that errors would not be held against
them; error reports were not used to influence performance ratings. Initially, there was some
confusion about what constituted a reportable error, but within six to eight weeks all errors, as

far as we could tell, were being reported.
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During the testing of the RTM simulator module, approximately ten errors were found
[16). Of these, nine were errors caused by incorrect coding specifications (several were dupli-
cate errors found in routines doing similar tasks). The remaining error was caused by a FOR-
TRAN call with the incorrect number of parameters. Most of these errors were easily found
because of the previously discussed table interface module UE-handling.

In software systems consisting of many components (modules), the interfaces can be the
most critical and vulnerable elements in the design [3,6]. When such a software system is
developed solely in one installation, with exclusive control exercised by the project manager,
the interfaces can be well defined, documented, and consistent. But, when a component of the
system is developed elsewhere with the project manager exercising no control, interface
difficulty can easily result.

The ARF was developed in-house except for one major component—the ISP compiler.
The ISP compiler was developed at Carnegie-Mellon University (CMU) as a component of a
computer-aided design system. At the time, ISP was the only well-developed hardware descrip-
tion language with a compiler.

We believe that the weakest link in the ARF’s development was the interface between the
ISP compiler and the ARF simulator. Before the ARF was developed, the ISP compiler was
used in several other applications, so the ISP compiler’s interface was well defined although not
well documented. But, since we did not develop the ISP compiler, interface difficulties
resulted. During system integration and testing, inconsistencies in the semantics and the inter-
face were revealed. These difficulties did not create havoc with the ARF design, but they do
seem 10 indicate that caution should be used when undertaking a project that uses an aiready
produced software product that is not well documented.

' XIIl. SCHEDULING

Most software projects require schedules and milestones so that managers may judge the
progress of the project. Although the ARF project enjoyed an unusual lack of pressure to meet
a specific time schedule, we felt that to judge realistically the value of the software techniques
employed, a schedule and set of milestones were necessary. We were able to have our schedule
devised by staff members prior to starting the project. These persons were familiar with the
project’s goals and had previously participated in technical efforts.

With very little pressure to devise a schedule that would satisfy management’s plans at the 1
expense of realistic goals, the ARF staff was able to judge honestly the technical chores at hand
and estimate the time involved for each. We were very conscious of the failure of most
software projects to estimate time schedules accurately and hoped to avoid making similar mis-
takes. We attempted to be quite conservative in our estimates, but we had little previous ex-
perience with formulating schedules and milestones.

- s e e i

On reviewing our Schedule, some persons claimed that we were too conservative. They
were incorrect; like other software projects, our schedule slipped. But, unlike other software
projects, we did not slip in the coding and the testing stages of development, only in the design
stages. We spent more time in design than expected, although we had planned and scheduled
large portions of development time for design and specification. Some of the delay was caused
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by the documentation support bottleneck, but the main cause was that the design stage just re-
quired more than the allotted time. The effort in design was not wasted; less time was required
for integration and testing of the system than expected. ARF was operational about ten months
after development started rather than the originally estimated seven months,

Several factors caused our schedule slippage and should be considered when devising a
schedule.

1. Computer down-time. When designing and coding in parallel, computer down-time can
be devoted to design. But, when the ARF project was using the computer, the design was com-
plete and down-time was lost time.

2. Personnel sickness and vacation. A project’s schedule must take into account sick and
vacation time.

3. Delays in obtaining personnel. Plan to obtain all personnel prior to the project’s start;
otherwise, incorporate appropriate delays into the schedule to account for bringing new people
up to speed.

These "trivial" factors are rarely considered an important aspect of a project’'s time
schedule, but, as Brooks [13] points out, "Our techniques of estimating are poorly developed.”

X1V. CONCLUSION

After the Architecture Research Facility became operational, it was maintained by one of
the original staff members. Capabilities were added to expand the user interface. The software
principles originally used in the ARF development were maintained; proposed changes were
documented and coding specifications were written and reviewed prior to implementation. Sys-
tem modifications proceeded smoothly.

The ARF development error analysis has yielded interesting and informative results [16].
As for the influence of the sofiware techniques employed, our conclusions are as follows:

¢ The utility of well-designed support tools should not be underestimated. The kind of
support tools that are currently available as well as the support tools that will be required must
be determined prior to the project’s start. The project’s schedule should be adjusted to take
into account the support tools that must be developed in parallel with the project.

® Modularization along information-hiding lines is not only a useful principle but aids in
documentation, understan-ling, testing, and integration of the system. The UE-handling per-
mitted debugging to proceed smoothly for the entire system as well as the individual modules.
These techniques permitted more manpower to be devoted to design and specification—the
most important aspect of the system development. Detailed system documentation is a must
and must be prepared before implementation starts; the precise specification of the system re-
quires the emphasis in a project, not the coding.

17
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Appendix A
SAMPLES OF CODE SPECIFICATIONS

This appendix includes samples of three code specification formats: SIMPL-like, ‘
ALGOL-like, and BLISS-like. ]
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CODE SPECIFICATION
Routines to clear access counters

[PHYSICAL FIELD]

I[READ COUNT]
[WRITE COUNTI
[MONITOR COUNT]

Routines to increment access counters

[PHYSICAL FIELD])

[READ COUNT]
(WRITE COUNT]

li

&

N
=X 1. SIMPL-like Code Specifications
1

3

: <ROUTINE>
3 >CLRDCT<

: >CLWTCT<
: >CLMOCT<
]

y <ROUTINE>
! >INRDCT<
3 > INWTCT<

> INMOCT<

PARAMETER FILES:

ACERRI.REQ
ACNAM.REQ

ACATTP.REQ
ARFSIZ.REQ

(MONITOR COUNT]

ERRINC Codes for calling > ERR<

parameter definitions for routine name codes
used for calling > ERR<

ATRTAB entry type code

parameters for array size declarations and
table entry size definition

COMMON BLOCK DEFINITION FILES:

ACSTOR.REQ

primary data structure for support of table

access routines

EXTERNAL REFERENCES:

>ERRK
(Byte and
Halfword
routines)

-—e
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for error reporting
as required to extract table entries
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{ ALGORITHM
- /* <ROUTINE> is the parameter containing the name of the
routine being coded. */
lif 'DEBUG
then /* code the following with ‘D’ in column 1 */
¥ if ATRBD = -1
then
F { call ERR(ERRCODE,<NOBIND> + <ERRCSZ>*<ROUTINE>)
return
» end :
if ATRTP is not appropriate for the desired [PHYSICAL FIELD] i
b | then
call ERR(ERRCODE,<ILLTYP> + <ERRCSZ>*<ROUTINE>) ;
return 1
end 1

lend /* 'DEBUG */

lif routine being coded clears a counter
then

[PHYSICAL FIELD] := 0
telse /* routine must increment a counter*/

if CTSTAT{ACSTOR}
then /* Counting will be effective */

[PHYSICAL FIELD] := [PHYSICAL FIELD] + 1
end i

lend
return

T e R,
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2. ALGOL-like Code Specifications

>XATINF<

FUNCTION: Binds a scalar ATRTAB entry and retrieves the length (LEN), RBIT, and value of
the entry before unbinding it. ,

COMMENTS AND DESCRIPTION: This function combines a set of operations that are fre-
quently repeated within the RTM sequencer.

SPECIAL MACHINE OR OTHER DEPENDENCIES: None

EXTERNAL REFERENCES:

> ATRBND<

>GATRLN<

>GRDBIT<

>GSCVAL< Table Interface Functions
>INRDCT<

> ATRUBD<

EXTERNAL PARAMETERS: FILE NAME
< XATINF> ACNAM REQ function identifier

CALLING ROUTINE: Various functions within the RTM sequencer > XIF<, > XBRANC<,
>XWBYTE<, >XREAD<, > XWRITE<, >XCLONE<,
>XCLTWO<, >XCLTHR<, >XCLFOU<, >XCLFIV<

CALLING SEQUENCE:

CALL XATINF (ATRAD, ATRLEN, ATRVAL, RMON)

PARAMETERS:
ATRAD INT;R ATRTAB address of desired entry
ATRLEN INT:W length, in bits, of data item whose
ARTARB address is ATRAD
ATRVAL REG,W value of entry describ2d by ATRTAB
entry whose address is ATRAD
RMON INT.W RBIT of entry

GLOBAL DEFINITIONS: None

LOCAL DEFINITIONS:

ATYPE INT,W contains the type of ATRTAB entry at
address ATRAD
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VL ALGORITHM
i s
~ ATYPE — ATRBND(ATRAD, <XATINF>) bind ATRTAB entry
ATRLEN — GATRLN(< XATINF>) retrieve length of entry (LEN)
.‘j RMON — GRDBIT(< XATINF>) retrieve RBIT
ATRVAL — GSCVAL(< XATINF>) retrieve RTMSTO value of entry
j call INRDCT(< XATINF>) increment RCOUNT counter *
call ATRUBD(< XATINF>) unbind entry 3
- return
end
]
.
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3. BLISS-like Code Specifications
CSYMB
FUNCTION: CSYMB converts the output of the NRL ISP compiler symbol to
ATRTAB/SYMTAB/RTMSTO format.
DESCRIPTION: The output structure of the NRL ISP compiler is described in
NRL1.REQ(252,1111]. CSYMB sequences through the symbao! table converting an entry at a
time until the entire symbol table has been converted. The TABEL INTERFACE functions are
used to establish these tables. BLISS/FORTRAN functions are provided to interface to the
NRL ISP compiler symbol table.
] CALLING SEQUENCE:
"1 CALL CSYMB
= NOTE: Left-hand definition refers to the register or array name on the left side of a
- redefinition, i.e. in
A<15:0>:=B<30:15>
‘A’ is the left hand side. ‘B’, the right hand side, refers 10 a previously defined register
(or array).
CODE SPECIFICATION
PARAMETER FILES:
ACSPAC REQUIRE ACcess functions SPACe codes
ACATTP REQUIRE ACcess functions ATtribute TyPes
ACNAM REQUIRE ACcess functions Subroutine NAMes
FORMAL PARAMETER: NONE
COMMON FILES: NONE
LOCAL STORAGE:
ATPAGE INT;R,W ATRTAB Page number
SYPAGE INT.R,W SYMTAB Page number
STPAGE INT;R, W RTMSTO page number
1 INT;R,W Index in SYmbol table of NRL ISP
compiler output
ATRADR INT,R,W Address of currently bound ATRTAB/
SYMTAB entry
REG INT(Q2):R,W Contains constant value to be stored
NAME STRING(var) R, W NAME of entry (string format)
SYTTOP INT,R,W SYmbol Table TOP
25
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EXTERNAL REFERENCES:

RGPAGE
GSYTMA

GSYTRI

RRESAT
GSYTCO
RGNAME
SIXASC
GSYTAR

GSYTRE
GSYTTR

SATRLN
SARDIM
SSYPNM
SNAME

GSYTLE

GSYTLA

RRESST
SCNVAL
RREDEF
GSYSYT
ATRUBD
GSYPNM
GSYBCT
GSYWCT
GSYWPT

FUNCTION
FUNCTION

FUNCTION

FUNCTION
FUNCTION
SUBROUTINE
SUBROUTINE
FUNCTION

FUNCTION
FUNCTION

SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
FUNCTION

FUNCTION

SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
FUNCTION
FUNCTION
FUNCTION
FUNCTION
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Reformat Get PAGE
Get SYmbol Table entry and Test 1
for MAsk
Get SYmbol Table entry and Test
for Right-hand definition
Reformat REServe ATribute table entry
Get SYmbol Table entry and est for COnstant
Reformat Generate NAME
convert SIXbit to ASCii
Get SYmbol table entry and Test
for ARray
Get SYmbol table entry and Test
for REgister
Get SYmbol table entry and Test
for Temporary Register
Set ATRibute table LeNgth ;
Set ARray DIMension !
Set SYmbol table Print NaMe
Set NAME
Get SYmbol table entry and Test
for LEft hand definition
Get SYmbol table entry and Test
for LAbel
Reformat REserve STorage
Set ConstaNt VALue
Reformat REDEFine symbol :
Get SYmbol table SYmbol Table top i
ATRibute Table entry UnBinD o
Get SYmbol table PriNt Name ‘
Get SYmbol table Bit CounT
Get Symbol table Word CounT
Get SYmbol table Word PaTh
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‘ ALGORITHM
! \GET TOP OF SYMBOL TABLE
* SYTOP< —GSYSYT(0)
IGET FTRST PAGES FOR ATRTAB/SYMTAB/RTMSTO ]

- ATPAGE< —RGPAGE(< ATRTAB>)
' SYPAGE< —RGPAGE(<SYMTAB>)
: STPAGE< —RGPAGE(<RTMSTU>)

'GO THROUGH SYMBOL TABLE AND BUILD AIRTAB/SYMTAB ;

FOR I=1 TO SYTTOP DO !IGNORE FIRST DUMMY ENTRY

iy BEGIN -

IF NOT GSYTMA(I) INOT MASK?? ;
THEN 4

b BEGIN
k- ATRADR < —RRESAT(ATPAGE,SYPAGE,I) 'RESERVE AND BIND ATRIBUTE

'TABLE ENTRY

'NOW FILL IN INFORMATION IN THE ATTRIBUTE/SYMBOL TABLE
'DEPENDING ON THE ENTRY TYPE

'GSYPNM WILL RETURN THE CONSTANT LENGTH, OR SIXBIT NAME
'OF REGISTER OR ARRAY AT THIS POINT.

'IF THE ENTRY IS A CONSTANT, GENERATE A UNIQUE STRING
'NAME FOR IT. OTHERWISE, CONVERT THE SIXBIT REPRESENTATION

'TO STRING FORMAT.

IF GSYTCO(I) 'CONSTANT??
THEN
g BEGIN
CALL RGNAME(NAME,GSYPNM (1)) 'GENERATE NAME
] NOW SINCE CONSTANT VALUE IS KNOWN, STORE THE VALUE
IFIRST MUST LOAD A REGGSTER WITH THE VALUE z
I'THE FOLLOWING IS NOT RECOMMENDED PRACTICE IN
IGENERAL, BUT ALLOWABLE HERE BECAUSE THE REFORMATTER
'RUNS ONLY ON THE 10.
REG[1]< —0 IMUST USE  REGISTER!!!
REG[2]< —GSYPNM(D)
END
ELSE CALL SIXASC(NAME,GSYPNM(1)) !CONVERT SIXBIT TO STRING
IF GSYTAR(I) OR GSYTRE(I) OR GSYTIR(I) !ARRAY,REG,OR TREG??
THEN CALL SATRLN(GSYBCT(I),< CSYMB>) !SET REG LENGTH :
ELSE !NOTHING
IF GSYTAR(I) 'ARRAY?7? |
THEN
BEGIN
REG(1)< —0
REG(2) < —GSYWCT(D)
CALL SARDIM(REG,<CSYMB>) !STORE ARRAY DIMENSION

A T e,

REG(1)< -0
REG(2) < —GSYWPT(1,2)
CALL SARBAS(REG,<CSYMB>) !STORE BASE
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IF REG(2) GT GSYWPT(1,0) !'SEE WHICH WAY IT GOES
THEN
CALL SARDIR(1,<CSYMB>)!ITS BACKWARDS

END

ELSE 'NOTHING
CALL SNAME(NAME,<CSYMB>) !SET THE NAME FIELD
IF NOT (GSYTLE(I) OR GSYTLA(I)) !NOT LEFT HAND DEFINITION
'AND NOT LABEL
THEN CALL RRESST(STPAGE) 'RESERVE STORAGE
ELSE !INOTHING

IF GSYTCO(D)

THEN CALL SCNVAL(REG,<CSYMB>)
!SINCE THE RTM OPERATIONS REFERENCE INDICIES IN THE
INRL SYMBOL TABLE, AND THE TABLE ACCESS FUNCTIONS DEAL
'WITH A ATTRIBUTE TABLE ADDRESSES, AND THE RTMSTO IS
!GENERATED AFTER THE ATRTAB/SYMTAB, THE ADDRESSES OF
'THE CURRENTLY BOUND ENTRY MUST BE SAVED IN AN UNUSED
'FIELD THE PRINT NAME FIELD HAS ALREADY BEEN PROCESSED
'AT THIS POINT, THEREFORE IT IS USED TO SAVE THE
'ADDRESS OF THE CORRESPONDING ATRTAB ENTRY.

CALL SSYPNM(I,ATRADR) !SAVE ATRTAB ADDRESS

CALL ATRUBD(<CSYMB>) !UNBIND ENTRY

: CALL SYMUBD (<CSYMB>)

-] END

. ELSE 'IGNORE RIGHT HAND DEFINITION-ALREADY PROCESSED
ELSE !DO MASKS LATER

CALL ATRUBD(<CSYMB>) !UNBINDS THE ENTRY

END

'NOW HANDLE REDEFINITIONS. SINCE THE SYMBOL TABLE IS HASHED WE HAVE
'NO WAY OF KNOWING THAT THE BASE HAS ALREADY BEEN PROCESSED.

P oy Iy 3 SN

CALL RREDEF !'HANDLE REDEFINES FOR ENTIRE SYMBOL TABLE




Appendix B
THE ARF CODING STANDARDS*

3 INTRODUCTION

Most of the code for the Architecture Research Facility (ARF) is to be written in Ameri-
can National Standard FORTRANTY. This standard is considerably more restrictive than most
FORTRAN implementations, and certain extensions common to both the PDP-10 and PDP-11
versions of FORTRAN will be permitted. The second section identifies the permitted exten-
sions.

The third section imposes some restrictions on the types of FORTRAN statements that
may be used. These restrictions are imposed in the interests of uniformity of style and reada-
bility of the FORTRAN code. The fourth section provides an organization guide for FOR-
TRAN main and subprograms produced for the ARF to insure a uniform format. The last sec-
tion provides procedures and conventions to be followed during coding.

! 4 The motivation for this document is twofold. The primary purpose is to assure that as
) much of the ARF system as possible will run without change on both the PDP-10 and the
4 PDP-11. The secondary purpose is to establish a uniform style and format for the subprograms
E | that are to make up the ARF. This in turn will greatly simplify maintenance and modification of
! the system. All designers and coders for the ARF system should strive 1o make their code as
3 readable as possible. The amount of supplementary material necessary for the understanding of
: a particular section of code should be kept to a minimum. While the algorithms used in
, developing the code should be designed in an efficient manner, it should not be necessary to
use "cute" coding tricks to realize the algorithm. Larmouth’s article, "Serious FORTRAN,"** is
recommended reading for all ARF coders and designers.

As noted above, ANSI FORTRAN is considerably more restrictive than most implemen-
tations. Were the ARF intended to run on any computer with a FORTRAN compiler, it would
be necessary to adhere strictly to the letter and spirit of the standard. Since only the PDP-10
and PDP-11 are involved, some extensions common to both versions are permitted. In gen-
eral, only those extensions that are known to have the same effect in both implementations
have been permitted. Because both compilers optimize to different degrees, coders are urged to

’ remember that the FORTRAN standard does not require that variables local to a subprogram
‘ retain their values between calls.

In any case, where doubt exists as to the compatibility of a construct between implemen-
tations, it is the responsibility of the coder to devise a test of the construct and to show that it
produces the same result on both machines. Coders should become familiar with both FOR-
TRAN implementations prior to writing any code.

*The contents of this appendix were originally drafted by John McHugh.
+ American National Standard FORTRAN, ANSI X3.9-1966, Mar. 1966.
**J. Larmouth, "Serious FORTRAN," Software Practice and Experience 3, 87-107, 197-225 (1973).
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PERMITTED EXTENSIONS
1. The use of the IMPLICIT statement will be permitted.

2. Quoted strings of characters will be permitted in FORMAT and DATA statements. In
DATA statements the strings may be no longer than the number of characters held by one
word of the data type being initialized. For compatibility, this shall be as foliows: Integer, 2
characters/word; real, 4 characters/word; double precision, 8 characters/word; complex, 8
characters/word. Character string manipulation must be done by supplied subroutines to
preserve machine independence.*

3. Expressions of arbitrary complexity may be used as array subscripts.

4. Arrays may be initialized with DATA statements, but the whole array must be initial-
ized in a single statement. The "implied DO" form of array initialization is not permitted.

RESTRICTIONS AND CONVENTIONS
1. Three-branch or arithmetic IF statements are not permitted without special permission.

2. Statement labels or statement numbers can appear only on CONTINUE and FORMAT
statements.

3. The DIMENSION statement is not to be used.
4. Special permission is required to use the EQUIVALENCE statement.

5. All variables must be declared as to type. This will be enforced by requiring the state-
ment

IMPLICIT COMPLEX (A-2)
to appear in every program unit.
6. All 1/0 unit specifiers must be defined as PARAMETERS or held in variables.

7. The PREPROCESSOR/INCLUDE must be used for all declarations of COMMON
blocks used in more than one routine.

8. The PREPROCESSOR/PARAMETER statement must be used in all instances where
DO indices depend on array dimensions.

9. Program units must not exceed 100 executable statements and units exceeding 50 lines
must be justified to the project management. An ideal program unit is one to two pages long
including comments, declarations and code.

10. INTEGERS can contain, at most, 16 bits of information. Any quantities with more
than 16 bits of information must be represented as RTM registers implemented as DOUBLE

*These standards were devised prior to the conception of the ARF preprocessor STRING facility. Afterward (and be-
fore any code was written) the use of the STRING facility was required.
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- PRECISION and must be operated on only by subroutines and functions. (Routines restricted
-2 to the reformat program may use 36-bit integers internally.*)

PROGRAM FORMAT
Each program or subprogram for the ARF will adhere to the following format:

1. SUBPROGRAM or FUNCTION statement (omitted for main program).

2. Comments giving the function of the program unit in as few words as possible.
3. IMPLICIT COMPLEX (A~-2).

4. /INCLUDE statements for /PARAMETER files.

5. Local /PARAMETER declarations with appropriate comments.

6. Type declarations for subprogram parameters with comments identifying the purpose
of each parameter and whether read or written or both.

7. EXTERNAL declarations for any subprograms used along with type statements for
functions, and comments specifying the purpose of the subprogram.

8. /INCLUDE statements for common block declarations.

B g gD

9. Type declarations for local variables and comments to indicate their uses.

10. DATA statements for local variables (if any).

PR O 3 DT T

11. All FORMAT statements (if any).
' 12. Executable code with appropriate comments.
CODING PROCEDURES AND CONVENTIONS

The following conventions should be followed for file name extensions on files used in
the ARF.

.ARF for FORTRAN routines requiring use of the preprocessor

.FOR for preprocessor output or FORTRAN routines not requiring the
use of the preprocessor

.MAC for MACRO-10 assembly routines
.REQ for files to be /INCLUDED by the preprocessor
.CMP for COMPIL class command files

.CTL for BATCH control files

.DOC for specifications, memos, etc.
*The reformat program was never planned to run on the PDP-11,
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