
D-AU83 380	NATIONA FEB 80 DACW31-	F FUTC	INSPECTI	ION PRO	GRAM. M	TER INC	KE DAM.	SHURG P DELAWA	RE RIV	/8 13/13 ER-+ETC NL	(U)	
1 o∈ 40 4083380												
i												
											DTIC	

6 North & Turn Er per Marine Lain Trend 11 1 DELAWARE RIVER BASIN 🔬 STOFFLE-DENMARK CREEK, PIKE COUNTY . PENNSYLVANIA MAPLE LAKE DAM (NDI ID NG. PA-00766, DER ID NG. 52-170), Numper PINE RIDGE COMMUNITY ASSOCIATION . PHASE I INSPECTION REPORT NATIONAL DAM INSPECTION PROGRAM 25/ F. . . / F. T. 11 Prepared by 1- [DACW31-80-C-0017 GANNETT FLEMING CORDDRY AND CARPENTER, INC. Consulting Engineers P.O. Box 1963 Harrisburg, Pennsylvania 17105 - 181 For DEPARTMENT OF THE ARMY Baltimore District, Corps of Engineers Baltimore, Maryland 21203 /; _FEBRUARY 1980 lor put in relation and sale; is distribution is unlitalited. 121

PREFACE

This report is prepared under guidance contained in the Recommended Guidelines for Safety Inspection of Dams, for Phase I Investigations. Copies of these guidelines may be obtained from the Office of Chief of Engineers, Washington, D.C. 20314. The purpose of a Phase I investigation is to identify expeditiously those dams which may pose hazards to human life or property. The assessment of the general condition of the dam is based upon available data and visual inspections. Detailed investigation, and analyses involving topographic mapping, subsurface investigations, testing, and detailed computational evaluations are beyond the scope of a Phase I investigation; however, the investigation is intended to identify any need for such studies.

In reviewing this report, it should be realized that the reported condition of the dam is based on observations of field conditions at the time of inspection along with data available to the inspection team. In cases where the reservoir was lowered or drained prior to inspection, such action, while improving the stability and safety of the dam, removes the normal load on the structure and may obscure certain conditions which might otherwise be detectable if inspected under the normal operating environment of the structure.

It is important to note that the condition of a dam depends on numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam will continue to represent the condition of the dam at some point in the future. Only through frequent inspections can unsafe conditions be detected and only through continued care and maintenance can these conditions be prevented or corrected.

Phase I inspections are not intended to provide detailed hydrologic and hydraulic analyses. In accordance with the established Guidelines, the spillway design flood is based on the estimated "Probable Maximum Flood" for the region (greatest reasonably possible storm runoff), or fractions thereof. The spillway design flood provides a measure of relative spillway capacity and serves as an aid in determining the need for more detailed hydrologic and hydraulic studies, considering the size of the dam, its general condition and the downstream damage potential.

1

DELAWARE RIVER BASIN

STOFFLE-DENMARK CREEK, PIKE COUNTY

PENNSYLVANIA

PRELIMINARY

MAPLE LAKE DAM

NDI ID No. PA-00766 DER ID No. 52-170

PINE RIDGE COMMUNITY ASSOCIATION

PHASE I INSPECTION REPORT

NATIONAL DAM INSPECTION PROGRAM

FEBRUARY 1980

CONTENTS

Description

Page

		Project Information 1	
SECTION 2	-	Engineering Data 7	
		Visual Inspection 9	
		Operational Procedures	
		Hydrology and Hydraulics 12	
		Structural Stability 15	
		Assessment, Recommendations, and	
		Proposed Remedial Measures 17	

APPENDICES

Appendix

<u>Title</u>

Α	Checklist - Engineering Data.
В	Checklist - Visual Inspection.
С	Photographs.
D	Hydrology and Hydraulics.
Е	Plates.
F	Geology.

ii

i

「北京人民」をものいたい

برون والاجم

States Action

PHASE I INSPECTION REPORT

NATIONAL DAM INSPECTION PROGRAM

BRIEF ASSESSMENT OF GENERAL CONDITION

AND

RECOMMENDED ACTION

Name of Dam:

Maple Lake Dam NDI ID No. PA-00766 DER ID No. 52-170

Size:

<u>Hazard</u> Classification:

Owner:

Pine Ridge Community Association Adam Skarzenski, Board Member R.D. 1 Box 224 Bushkill, Pa. 18324

Small (35 feet high; 128 acre-feet)

State Located: Pennsylvania

County Located:PikeStream:Stoffle-Denmark Creek

High

Date of Inspection: 24 October 1979

Based on visual inspection, available records, calculations, past operational performance, and according to criteria established for these studies, Maple Lake Dam is judged to be in good condition. Based on existing conditions, the main and auxiliary spillways will pass an approximate minimum of 48 percent of the Probable Maximum Flood (PMF) before overtopping of the dam occurs. The PMF is the Spillway Design Flood (SDF) for Maple Lake Dam. The SDF is based on the criteria and the downstream conditions. It is judged that the dam could withstand the depth and duration of overtopping that would occur for the 1/2 PMF. Since the dam cannot pass its SDF but would not fail by overtopping during the 1/2 PMF, the spillway capacity is rated as inadequate, but not seriously inadequate.

· Conternation faire

The auxiliary spillway was not constructed to its design dimensions and will not pass its design discharge.

ı

こうちものないでないとう

10

X

No stability problems were evident for the embankment at the time of the visual inspection, but a potential hazard to stability exists due to erosion that might occur when there is flow in the auxiliary spillway.

The following studies and remedial measures are recommended to be undertaken by the Owner, in approximate order of priority, immediately:

(1) Perform a study to determine a means of completing the auxiliary spillway so that it will pass, as a minimum, its design discharge. As part of the study, the Owner should assess the need for protective measures and/or realignments that might be required to prevent erosion of the dam by auxiliary spillway discharges. Take appropriate action as required.

(2) Repair areas of surface erosion on the downstream slope of the embankment.

(3) Remove brush from the embankment.

All investigations, studies, designs, and supervision of construction should be performed by a professional engineer experienced in the design and construction of dams.

In addition, the Owner should institute the following operational and maintenance procedures:

(1) Develop a detailed emergency operation and warning system for Maple Lake Dam.

(2) During periods of unusually heavy rains, provide round-the-clock surveillance of Maple Lake Dam.

(3) When warnings of a storm of major proportions are given by the National Weather Service, the Owner should activate his emergency operation and warning system.

(4) Institute an inspection program such that the dam is inspected frequently. As presently required by the Commonwealth, the inspection program should include a formal annual inspection by a professional engineer experienced in the design and construction of dams. Utilize the inspection results to determine if remedial measures are necessary.

iv

(5) Expand the existing maintenance program so that all features of the dam are properly maintained.

Submitted by:

GANNETT FLEMING CORDDRY AND CARPENTER, INC.

FREDERICK FUTCHEO

ENGRAFLE

No. 251551

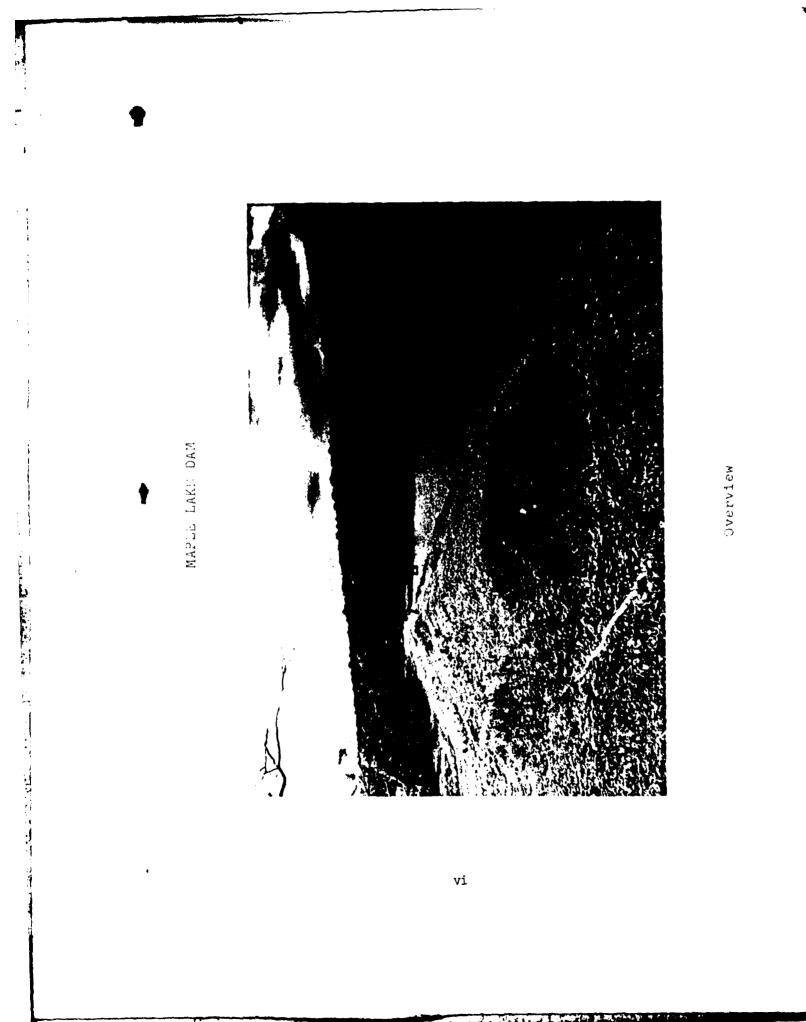
ł

Kinch FREDERICK FUTCHKO

Project Manager, Dam Section

Date: 21 March 1980

Approved by:


DEPARTMENT OF THE ARMY BALTIMORE DISTRICT, CORPS OF ENGINEERS

JAMES W. PECK

۷

Colonel, Corps of Engineers District Engineer

Date: 10 APR 1980

DELAWARE RIVER BASIN

STOFFLE-DENMARK CREEK, PIKE COUNTY

PENNSYLVANIA

MAPLE LAKE DAM

NDI ID No. PA-00766 DER ID No. 52-170

PINE RIDGE COMMUNITY ASSOCIATION

PHASE I INSPECTION REPORT

NATIONAL DAM INSPECTION PROGRAM

FEBRUARY 1980

SECTION 1

PROJECT INFORMATION

1.1 General.

16. 10 A Sec.

Í

State State State

1

X

a. <u>Authority</u>. The Dam Inspection Act, Public law 92-367, authorized the Secretary of the Army, through the Corps of Engineers, to initiate a program of inspection of dams throughout the United States.

b. <u>Purpose</u>. The purpose of the inspection is to determine if the dam constitutes a hazard to human life or property.

-1-

1.2 Description of Project.

a. Dam and Appurtenances. Maple Lake Dam is a homogeneous, earthfill embankment. It is 35 feet high at its maximum section and 685 feet long. A cutoff trench, 10 feet wide and about 6 feet deep, is located just upstream from the axis of the dam. A rock toe drain is located at the downstream toe of the dam. The embankment is on an earthen foundation.

The main spillway is located at the maximum section of the dam. It consists of a reinforced concrete riser structure near the upstream toe of the dam, a 24-inch diameter conduit, and a concrete outlet structure at the downstream toe of the dam. The riser structure has two weirs, each 4 feet long, located 5.4 feet below the top of the dam. The conduit through the embankment is a corrugated metal pipe encased in reinforced concrete.

The auxiliary spillway is an excavated, trapezoidal channel at the left abutment of the dam. The outlet channel parallels the toe of the dam along the abutment.

The outlet works is located at the main spillway riser. A 12-inch diameter cast-iron pipe, encased in reinforced concrete, extends from the upstream toe of the dam to the riser structure. A sluice gate for controlling flow through the 12-inch pipe is located on the inside face of the riser. A gate operating mechanism is located atop the riser structure.

The various features of the dam are shown on the Photographs in Appendix C and on the Plates in Appendix E. A description of the geology is included in Appendix F.

b. Location. Maple Lake Dam is located on Stoffle-Denmark Creek in Lehman Township, Pike County, Pennsylvania, approximately 3 miles north of Bushkill. Maple Lake Dam is shown on USGS Quadrangle, Lake Maskenozha, Pennsylvania - New Jersey, at latitude N 41° 08' 20" and longitude W 74° 59' 10". A location map is shown on Plate E-1.

-2-

c. <u>Size Classification</u>. Small (35 feet high, 128 acre-feet).

d. <u>Hazard Classification</u>. High hazard. Downstream conditions indicate that a high hazard classification is warranted for Maple Lake Dam (Paragraphs 3.1e and 5.1c (4)).

e. <u>Ownership</u>. Pine Ridge Community Association, Adam Skarzenski, Board Member, R.D. 1 Box 224, Bushkill, Pennsylvania 18324.

f. Purpose of Dam. Recreation.

なるからないで、このではなるないないで、ないないないないであるとなったのであるというというというという

g. <u>Design and Construction History</u>. Pine Ridge, Inc. constructed a dam at the site in 1968. The dam was an earthfill structure about 30 feet high. The dam failed on the night of August 13, 1969 and caused significant property damage. Investigations by the Commonwealth indicated that the cause of failure was piping (internal erosion) in the vicinity of the outlet conduit. The investigations cited generally poor construction as a contributing cause.

Edward C. Hess Associates, Consulting Engineers and Surveyors, of Stroudsburg prepared plans for a new dam at the same site in 1971. Soil and foundation investigations were performed by Northeastern Engineering Company, Inc. of Clarks Summit. Both Northeastern Engineering Company and D'Appolonia-Moody-Hess, Geo-Environmental Services, of Pittsburgh worked on the design of the embankment. Construction work began in 1971 and was completed in 1972 under the supervision of C. L. Dennis of Hess Associates. The original embankment was entirely removed and a new one was constructed.

h. <u>Normal Operational Procedure</u>. The pool is maintained at the main spillway crest level with excess inflow discharging through the conduit. The sluice gate at the outlet works is normally closed. Spillway discharge flows downstream to the confluence with the Delaware River.

-3-

1.3 Pertinent Data.

-

「「「」」と、「「」」

A MARKANING

a.	<u>Drainage Area</u> . (square miles)	0.34 (See Section 5)
b.	Outlet works at maximum pool elevation Spillway capacity at	Unknown. 20
	maximum pool elevation Main spillway Auxiliary spillway Design conditions	57 375
	Existing conditions Combined capacity Design conditions Existing conditions	325 432 382
с.	<u>Elevation</u> . (feet above msl.) Top of dam Design conditions	1004.0
	Existing conditions Maximum pool Design conditions Existing conditions	1004.4 1004.0 1004.4
	Normal pool (main spillway crest) Upstream invert riser Downstream invert outlet conduit Streambed at toe of dam	999.0 972.5 972.0 969.7
d.	<u>Reservoir Length</u> . (miles) Normal pool Maximum pool	0.13 0.23
e.	<u>Storage</u> . (acre-feet) Normal pool Maximum pool	68 128
f.	<u>Reservoir Surface</u> . (acres) Normal pool Maximum pool	7 16

-4-

6. P.

g.	Dam.	
	Type	Homogeneous earthfill.
	Length (feet)	685
	<u>Height</u> (feet)	35
	<u>Topwidth</u> (feet)	17
	<u>Sides Slopes</u> Upstream Downstream	1V on 2.5H 1V on 2.5H
	Zoning	None.
	Cutoff	Cutoff trench.
	<u>Grout Curtain</u>	None.
h.	Diversion and Regulating Tunnel.	None.
i.	Spillway (Main and Auxiliary).	
	<u>Type</u> Main	Drop inlet riser and
	Auxiliary	conduit. Trapezoidal channel.
	Length of Crest (feet) Main	Two weirs at 4.0 each.
	Auxiliary Design Existing	25 18
	<u>Crest Elevation</u> Main Auxiliary	999.0
	Design Existing	1002.0 1001.3

h

i

-5-

i.	Spillway (Main and Auxiliary)	(cont'd.)
	<u>Upstream Channel</u> Main Auxiliary	Reservoir. Reservoir.
	Downstream Channel Main	Original stream channel.
	Auxiliary	Excavated trapezoidal channel.
j.	Regulating Outlets. Type.	One 12-inch dia. cast-iron pipe.
	Length (feet)	36
	Closure	Sluice gate at main spillway riser.
	Access	By boat.

ł

Ċ.

and the second second second second

SECTION 2

ENGINEERING DATA

2.1 Design.

a. <u>Data Available</u>. Design data available for review included the following: approved design drawings and specifications; a soils investigation report prepared by Northeastern Engineering Company, Inc.; a letter report prepared by D'Appolonia-Moody-Hess, Geo-Environmental Services, concerning the embankment design; and the permit application report prepared by the Commonwealth.

b. <u>Design Features</u>. The project is described in Paragraph 1.2a. The various features of the dam are shown on the Photographs in Appendix C and Plates E-2 and E-3 in Appendix E. The embankment is shown on Photographs A and B. The main spillway is shown on Photographs C and D. The auxiliary spillway is shown on Photographs E and F.

c. <u>Design Considerations</u>. Hydraulic and structural design considerations are covered in Sections 5 and 6, respectively.

2.2 Construction.

a tring a spring of an antipology and the second second second second second second second second second second

a. <u>Data Available</u>. The only construction data available was a dam completion report submitted to the Commonwealth by the engineer who supervised construction. The engineer certified that the dam was constructed in accordance with the approved plans and specifications. Telephone conversations with the engineer indicate that no unusual problems were encountered during construction.

b. <u>Construction Considerations</u>. The available data indicate that the construction of the dam was satisfactory.

2.3 <u>Operation</u>. There are no formal records of operation. Conversations with the Owner indicate that all features have performed satisfactorily since the dam was completed in 1972.

-7-

2.4 Evaluation.

and a product spectral sector and

a. <u>Availability</u>. Engineering data were provided by the Bureau of Dams and Waterway Management, Department of Environmental Resources, Commonwealth of Pennsylvania (PennDER), and by the Design Engineer, E. C. Hess Associates. The Owner made available his Caretaker and a Board Member for information during the visual inspection. He also researched his files for information at the request of the inspection team.

b. <u>Adequacy</u>. The type and amount of available design data and other engineering data are sufficient, and the assessment is based on the combination of available data, visual inspection, performance history, hydrologic assumptions, and hydraulic assumptions.

c. <u>Validity</u>. There is no reason to question the validity of the available data.

as attent to a

SECTION 3

VISUAL INSPECTION

3.1 Findings.

a. <u>General</u>. The overall appearance of the dam is good. Deficiencies were observed as noted below. A sketch of the dam with the locations of deficiencies is presented on Exhibit B-1 in Appendix B. Survey information acquired for this Report is summarized in Appendix B. On the day of the inspection, the pool was 0.1 foot above the main spillway crest.

b. <u>Embankment</u>. Most of the upstream slope was submerged on the day of the inspection. The exposed portion of the slope is protected by riprap and vegetation (Photograph A). No areas of erosion were observed.

The downstream slope is covered with grass except near the toe of the slope, where the rock toe drain was constructed. Some surface erosion of the toe drain material has occurred (Photograph B). No seepage or wet areas were observed. A minor amount of brush is growing at the left end of the embankment at its junction with the auxiliary spillway.

The survey performed for this inspection shows that the entire top of the dam is slightly above its design elevation. The measured topwidth and side slopes of the embankment conform to the design values.

c. <u>Appurtenant Structures</u>. No deficiencies were apparent for the main spillway. Both the riser structure and the outlet structure are in good condition (Photographs C and D). The 24-inch diameter main spillway conduit could not be inspected due to the flow of water through it. The outlet works conduit, a 12-inch diameter cast-iron pipe located upstream from the main spillway riser structure, was submerged and could not be inspected. The Owner stated that the sluice gate for the 12-inch conduit was operated recently and was in good working condition.

-9-

The auxiliary spillway is a trapezoidal channel at the left abutment (Photograph E). The outlet channel parallels the toe of the dam along the abutment at a distance of 6 to 10 feet from it (Photograph F). The side slopes of the auxiliary spillway and its outlet channel are protected by vegetation. It appeared that most portions of the bottom of the auxiliary spillway outlet channel are exposed bedrock. The survey performed for this inspection indicates that the auxiliary spillway was not constructed to its design template. The actual bottom width is 18 feet instead of 25 feet, which is the design width listed in the permit application report. However, the crest is lower than its design elevation. The existing auxiliary spillway section is shown on the survey data in Appendix B.

d. <u>Reservoir Area</u>. The slopes surrounding the reservoir are relatively mild. The watershed has some minor residential development within it, but the watershed is almost entirely wooded.

e. <u>Downstream Channel</u>. The confluence of Stoffle-Denmark Creek with the Delaware River is about 2.5 miles downstream from the dam. Between the dam and the confluence, there are at least two dwellings, one commercial structure, and one cottage that could be flooded if a failure of Maple Lake Dam were to occur. The downstream area is shown on Exhibit D-1 in Appendix D.

1

A COMPANY AND A COMPANY AND A COMPANY

SECTION 4

OPERATIONAL PROCEDURES

4.1 <u>Procedure</u>. The reservoir is maintained at the main spillway crest level with excess inflow discharging through the main spillway conduit and into the downstream channel. The outlet works is used to drawdown the pool level for shoreline maintenance.

4.2 <u>Maintenance of Dam</u>. Grass on the embankment is cut annually. Informal inspections of the dam are made by the Owner about every two weeks.

4.3 <u>Maintenance of Operating Facilities</u>. The sluice gate on the outlet works is occasionally opened by the Owner to check its operational adequacy. The Owner stated that it was last opened during the summer prior to the inspection.

4.4 <u>Warning Systems in Effect</u>. There is no emergency operation and warning system. The Owner stated that the condition of the dam is checked during periods of heavy rain.

4.5 <u>Evaluation of Operational Adequacy</u>. The maintenance program is generally satisfactory, but a few deficiencies exist and require attention. Formal inspections are necessary to detect hazardous conditions at the dam. An emergency operation and warning system is necessary to reduce the risk of dam failure should adverse conditions develop and to prevent loss of life should the dam fail.

-11-

SECTION 5

HYDROLOGY AND HYDRAULICS

5.1 Evaluation of Features.

a. <u>Design Data</u>. The available data indicate that the design crest elevations of the main spillway and the auxiliary spillway were established to provide sufficient storage capacity to contain the runoff from a 100-year rainfall. The auxiliary spillway was designed to discharge 375 cfs, which was the Commonwealth's requirement for a 0.25 square mile drainage area. Data obtained for this Report indicate that there are a number of differences between the design elevations and dimensions and the existing conditions. The differences are shown on the survey data at the end of Appendix B. The spillway capacity used in this Report, 382 cfs, is the combined capacity of the main and auxiliary spillways for the existing conditions.

A drainage area of 0.25 square mile was used in the design of the dam. For this Report, the drainage area was checked using the 7.5-minute USGS Quadrangle. It was found that the available mapping is not sufficiently detailed to provide accurate resolution of the drainage area. The drainage area is not well-defined because a swamp exists at the headwaters. Because of the large contour interval of 20 feet of the USGS mapping, it is uncertain whether runoff into the swampy area would drain into the Maple Lake watershed or into the adjacent watershed. The value used for design, 0.25 square mile, is an acceptable estimate. However, other acceptable estimates determined from the same mapping are as great as 0.34 square mile. The procedures used in the analysis to evaluate the spillway adequacy are described in Appendix D.

b. <u>Experience Data</u>. No records of maximum pool levels are available. The Owner stated that there has been no flow over the auxiliary spillway since the dam was completed in 1972.

-12-

The existing dam is on the same site as a previous dam. The original dam was earthfill and about 30 feet high. It was constructed in 1968 and failed by piping in 1969. The breach that developed during failure was about 20 feet wide. The time required to develop the breach is unknown. A newspaper account indicates that the failure caused substantial property damage and caused evacuation of two dwellings. Neither dwelling was flooded, but water levels were within 0.5 foot of the first floor level of one dwelling.

c. Visual Observations.

(1) <u>General</u>. The visual inspection of Maple Lake Dam, which is described in Section 3, resulted in a number of observations relevant to hydrology and hydraulics. These observations are evaluated herein for the various features.

(2) <u>Embankment</u>. The survey performed during this inspection indicates that the entire top of the embankment is above its design elevation. The existing top of dam elevations were used for the hydraulic analyses.

(3) <u>Appurtemant Structures</u>. The actual dimensions and grades of the auxiliary spillway differ from the design values. The actual values were used for the hydraulic analyses.

(4) <u>Downstream Conditions</u>. No conditions were observed downstream from the dam that would reduce the hydraulic capacity of the spillway. Experience data, described in Paragraph 5.1b., and visual observations indicate that failure of Maple Lake Dam could cause flooding of at least two dwellings located along Stoffle-Denmark Creek. The downstream conditions indicate that a high hazard classification is warranted for Maple Lake Dam.

d. Overtopping Potential.

(1) <u>Spillway Design Flood</u>. According to the criteria established by the Office of the Chief of Engineers (OCE), the Spillway Design Flood (SDF) for the size (Small) and hazard potential (High) of Maple Lake Dam is between one-half of the Probable Maximum Flood (PMF) and the PMF. Because of the downstream conditions and the height of the dam. the PMF is selected as the SDF for Maple Lake Dam. The

-13-

watershed was modeled with the HEC-1DB computer program. A description of the model is included in Appendix D. As discussed in Paragraph 5.1a., the available mapping is not adequate to accurately define the drainage area. The two possible extremes for the size of the drainage area are 0.25 square mile and 0.34 square mile. An analysis was performed for each of the extreme values. The assessment of the dam is based on existing conditions, and the effects of future development are not considered.

(2) <u>Summary of Results</u>. Pertinent results are tabulated at the end of Appendix D. The analyses reveal that for a 0.25 square mile drainage area, which is the design value, Maple Lake Dam can pass about 62 percent of the PMF before overtopping of the dam occurs. For a 0.34 square mile drainage area, Maple Lake Dam can pass about 48 percent of the PMF before overtopping of the dam occurs. In each case, the dam is rated using the existing lines and grades of its features.

(3) <u>Spillway Adequacy</u>. The criteria used to rate the spillway adequacy of a dam are described in Appendix D. The analyses indicate that the spillway can pass an approximate minimum of 48 percent of the PMF without overtopping of the dam. The analyses also indicate that an occurrence of the 1/2 PMF would cause a maximum depth of overtopping of 0.12 foot for a duration of 1.25 hours. It is judged that this depth and duration of overtopping would not cause failure of the dam. Since an occurrence of the 1/2 PMF would not cause failure of the dam, the spillway capacity is rated as inadequate, but not seriously inadequate.

SECTION 6

STRUCTURAL STABILITY

6.1 Evaluation of Structural Stability.

a. Visual Observations.

(1) <u>General</u>. The visual inspection of Maple Lake Dam, which is described in Section 3, resulted in a number of observations relevant to structural stability. These observations are evaluated herein for the various features.

(2) <u>Embankment</u>. The surface erosion near the toe of the dam was not a serious problem at the time of the inspection, but continued erosion is likely. Similarly, the growth of brush at the left end of the embankment is only a minor problem at present, but the root systems can eventually cause damage to the embankment.

During the visual inspection it was observed that the outlet channel of the auxiliary spillway is steep and that neither the end of the embankment adjacent to the auxiliary spillway nor the side slopes of the outlet channel are protected against erosion. A substantial portion of the bottom of the outlet channel is bedrock and would not be susceptible to erosion, but the end of the embankment and the channel side slopes consist of erodible soil materials. High velocities in the auxiliary spillway might cause lateral erosion. Erosion could occur either at the end of the dam or along its downstream toe. Erosion at either location would be a significant hazard to the dam.

b. <u>Design and Construction Data</u>. Stability analyses were performed during the design of the embankment. Soil investigations, soil testing, and preliminary design of alternate embankment sections were performed by Northeastern Engineering Company, Inc. of Clarks Summit, Pennsylvania. Their findings, which included recommended embankment sections and factors of safety for stability, were presented in a report to E. C. Hess Associates. The findings were later reviewed by D'Appolonia-Moody-Hess, Geo-Environmental Services, of Pittsburgh, Pennsylvania. D'Appolonia Moody-Hess prepared a letter report to E. C. Hess Associates and recommended a revised embankment section. The revised

-15-

section was adopted and is shown on Plate E-2 in Appendix E. The stability analyses performed for the adopted section indicate factors of safety of 1.65 for a steady seepage condition and 1.3 for a rapid drawdown condition. During construction, the embankment that had previously been constructed and that had failed was completely removed. The soil materials were stockpiled and re-used for the new construction. Surveys performed for this inspection indicate that the embankment slopes were constructed in accordance with the design drawings. The design and construction data indicate that Maple Lake Dam has adequate factors of safety for stability.

c. <u>Operating Records</u>. There are no formal records of operation. The embankment dam that failed in 1969 was completely removed prior to construction of the existing dam, and, as such, its failure is not relevant to the existing dam. According to available data, no stability problems have occurred over the operational history of the dam.

d. <u>Post-construction Changes</u>. There have been no post-construction changes to the dam.

e. <u>Seismic Stability</u>. Maple Lake Dam is located in Seismic Zone 1. Normally it can be considered that if a dam in this zone has adequate factors of safety under static loading conditions, it can be assumed safe for any expected earthquake loading. Since the available stability analyses for the embankment indicate that the dam has adequate factors of safety for static loading conditions, it is assumed that the seismic stability is also adequate.

SECTION 7

ASSESSMENT, RECOMMENDATIONS, AND PROPOSED REMEDIAL MEASURES

7.1 Dam Assessment.

a. Safety.

(1) Based on available records, visual inspection, calculations, and past operational performance, Maple Lake Dam is judged to be in good condition. Based on existing conditions, the main and auxiliary spillways will pass an approximate minimum of 48 percent of the PMF before overtopping of the dam occurs. The PMF is the SDF for Maple Lake Dam. The SDF is based on the criteria and the downstream conditions. It is judged that the dam could withstand the depth and duration of overtopping that would occur for the 1/2 PMF. Since the dam cannot pass its SDF but would not fail by overtopping during the 1/2 PMF, the spillway capacity is rated as inadequate, but not seriously inadequate.

(2) The auxiliary spillway was not constructed to its design dimensions and will not pass its design discharge.

(3) No stability problems were evident for the embankment at the time of the visual inspection, but a potential hazard to stability exists due to erosion that might occur when there is flow in the auxiliary spillway.

(4) A summary of the features and observed deficiencies is listed below:

Feature and Location	Observed Deficiency
Embankment:	Surface erosion at downstream toe; brush.
Auxiliary Spillway:	Not constructed to design dimensions.

b. <u>Adequacy of Information</u>. The information available is such that a preliminary assessment of the condition of the dam can be inferred from the combination of visual inspection, past performance, and computations performed prior to and as part of this study.

-17-

c. <u>Urgency</u>. The recommendations in Paragraph 7.2 should be implemented immediately.

d. <u>Necessity for Further Investigations</u>. In order to accomplish some of the remedial measures outlined in Paragraph 7.2, further investigations by the Owner will be required.

7.2 Recommendations and Remedial Measures.

a. The following studies and remedial measures are recommended to be undertaken by the Owner, in approximate order of priority, immediately:

(1) Perform a study to determine a means of completing the auxiliary spillway so that it will pass, as a minimum, its design discharge. As part of the study, the Owner should assess the need for protective measures and/or realignments that might be required to prevent erosion of the dam by auxiliary spillway discharges. Take appropriate action as required.

(2) Repair areas of surface erosion on the downstream slope of the embankment.

(3) Remove brush from the embankment.

All investigations, studies, designs, and supervision of construction should be performed by a professional engineer experienced in the design and construction of dams.

b. In addition, the Owner should institute the following operational and maintenance procedures:

(1) Develop a detailed emergency operation and warning system for Maple Lake Dam.

(2) During periods of unusually heavy rains, provide round-the-clock surveillance of Maple Lake Dam.

(3) When warnings of a storm of major proportions are given by the National Weather Service, the Owner should activate his emergency operation and warning system.

-18-

Children an anna an an

Contraction in

(4) Institute an inspection program such that the dam is inspected frequently. As presently required by the Commonwealth, the inspection program should include a formal annual inspection by a professional engineer experienced in the design and construction of dams. Utilize the inspection results to determine if remedial measures are necessary.

ľ

ĩ

(5) Expand the existing maintenance program so that all features of the dam are properly maintained.

10 43 69

14145.000 2 1

APPENDIX A

a she was she w

K

A CONTRACTOR OF A CONTRACTOR A

191 6 The 1 Be 1

CHECKLIST - ENGINEERING DATA

TA NDI ID NO.: PA-00766 DER ID NO.: 52-17 D OPERATION Sheet 1 of 4	Design drawings only. See Plates E-2 and E-3 in Appendix E.	See Plate E-1 in Appendix E.	Original dam at site failed Aug. 13, 1969. Dam entirely removed and new dam constructed 1971. No modifications since completion of construction.	See plate E-2 in Appendix E.	No dischange ratings. Details
CHECKLIST ENGINEERING DATA DESIGN, CONSTRUCTION, AND PHASE I	ITEM AS-BUILT DRAWINGS	REGIONAL VICINITY MAP	CONSTRUCTION HISTORY	TYPICAL SECTIONS OF DAM	OUTLETS: Plan

3

ENGINEERING DATA	Sheet 2 of 4
ITEM	REMARKS
RAINFALL/RESERVOIR RECORDS	None.
DESIGN REPORTS	" Soils Investigation Report " by Northeastern Engineering Co. Inc.; Letter report by D'Appolonia-Moody-Hess Geo-environmental Services; Permit application report by Commonwealth.
GEOLOGY REPORTS	Included in "Soils Investigation Report" by Northeastern Engineering Co., Inc.
DESIGN COMPUTATIONS: Hydrology and Hydraulics Dam Stability Seepage Studies	No H& H comps. Permit application report indicates riser set to store 100-year flood and emergency spillway capacity is 375 fs (cure c). Stability and supage computations
MATERIALS INVESTIGATIONS: Boring Records Laboratory Field	See "Soils Investigation Equat"
POSTCONSTRUCTION SURVEYS OF DAM	Nove.

Ч., Т.,

Contraction of the local division of the loc

A-2

-16

Sheet 3 of 4 Utilized material from original dam. construction history. REMARKS None. None. None. None. See PRIOR ACCIDENTS OR FAILURE OF DAM: Description Reports POSTCONSTRUCTION ENGINEERING STUDIES AND REPORTS ENGINEERING DATA ITEM MONITORING SYSTEMS HIGH POOL RECORDS BORROW SOURCES **MODIFICATIONS**

La BANARANA

• 1

et 4 of 4

	TEM REMARKS OPERATION RECORDS None.	see survey data at end of Appendix B.	See Plate E-3 in Appendix E.	None .	
ENGINEERING DATA	MAINTENANCE AND OPERATI	SPILLWAY: Plan Sections Details	OPERATING EQUIPMENT: Plans Details	PREVIOUS INSPECTIONS Dates Deficiencies	

A -4

APPENDIX B

Ì.

CHECKLIST - VISUAL INSPECTION

Mepection Personnel: A.H. Whitmann (GECC) C. Litts (Caretaker for Princ Ridge Community Assoc D.C. Ebersele (GECC) A Skarzenski (Member - Beard of Directors)
Pool Elevation at Time of Inspection: <u>999.1</u> msl/Tailwater at Time of Inspection: 969.8 msl
Type of Dam: Homogeneous earthfill Hazard Category: High Date(s) Inspection: 24 Ortober 1919 Weather: Clear Temperature: 55°F
Name of Dem: Maple Lake Dam County: Pike State: Dronsylvenia.
VISUAL INSPECTION

14 - 149 A. H

and the second secon

EMBANKMENT

Sheet <u>1</u> of <u>2</u>

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
SURFACE CRACKS	None.	
UNUSUAL MOVEMENT OR CRACKING AT OR BEYOND THE TOE	None.	
SLOUGHING OR EROSION: Embankment Slopes Abutment Slopes	Slight surface eroston of toe drain material left of outlet works.	Areas should be filled and seeded.
CREST ALIGNMENT: Vertical Horizomal	See Eurry data at end of Appendix B.	
RIPPAP FAILURES	No erosion on upstream slope. Pretection is regetation and riprap.	

B-2

EMBANKMENT

and the state of the second second second

Sheet 2 of 2

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
JUNCTION OF EMBANKMENT WITH: Abutment Spillway Other Features	Slight amount of brush at junction of embankment and emergency spillwows.	
ANY NOTICEABLE SEEPAGE	None.	
STAFF GAGE AND RECORDER	None.	
DRAINS	Toe drain - no discharge observed.	

· · ·

UNGATED SPILLWAY (EMERCIENCY SPILLWAY)

Sheet 1 of 1

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
CONCRETE WEIR	No weir - trapezoidal section excavated into earth at left abutment.	No riprap is possible eroston hazard.
APPROACH CHANNEL	No obstructions.	
DISCHARGE CHANNEL	Trapezoidal channel excavated into earth - follows toe of dam at b'-10' from toe.	No riprap; possible erosion hazard. Very slight amount of exposed bedrock.
BRIDGE AND PIERS	None.	

в-4

n nite his

OUTLET WORKS (MAIN SPILLWAY)

ÿ

ł

1.0

Sheet 1 of 1

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
OUTLET CONDUIT	24 - inch Die . CMP encased in concrete. Slight flow during inspection.	
INTAKE STRUCTURE (SERVICE SPILLWAY)	Concrete riser with trashracks. Good Condition	Access by boot
OUTLET STRUCTURE	No deficiencies.	
OUTLET CHANNEL	No deficiencies.	
EMERGENCY GATE	Located at riser.	Did not open during inspection. Owner stated it was operated during summer and in good condition.

B-5

.

- 6 - 2N - K

REMARKS OR RECOMMENDATIONS **OBSERVATIONS** None. None. None. None. None. MONUMENTATION/SURVEYS VISUAL EXAMINATION OF **OBSERVATION WELLS** PIEZOMETERS WEIRS OTHER

INSTRUMENTATION

WW WE ON STRAN

Sheet 1 of 1

B-6

RESERVOIR AND WATERSHED

÷

and the set of the set

- 19 Cen

Sheet 1 of 1

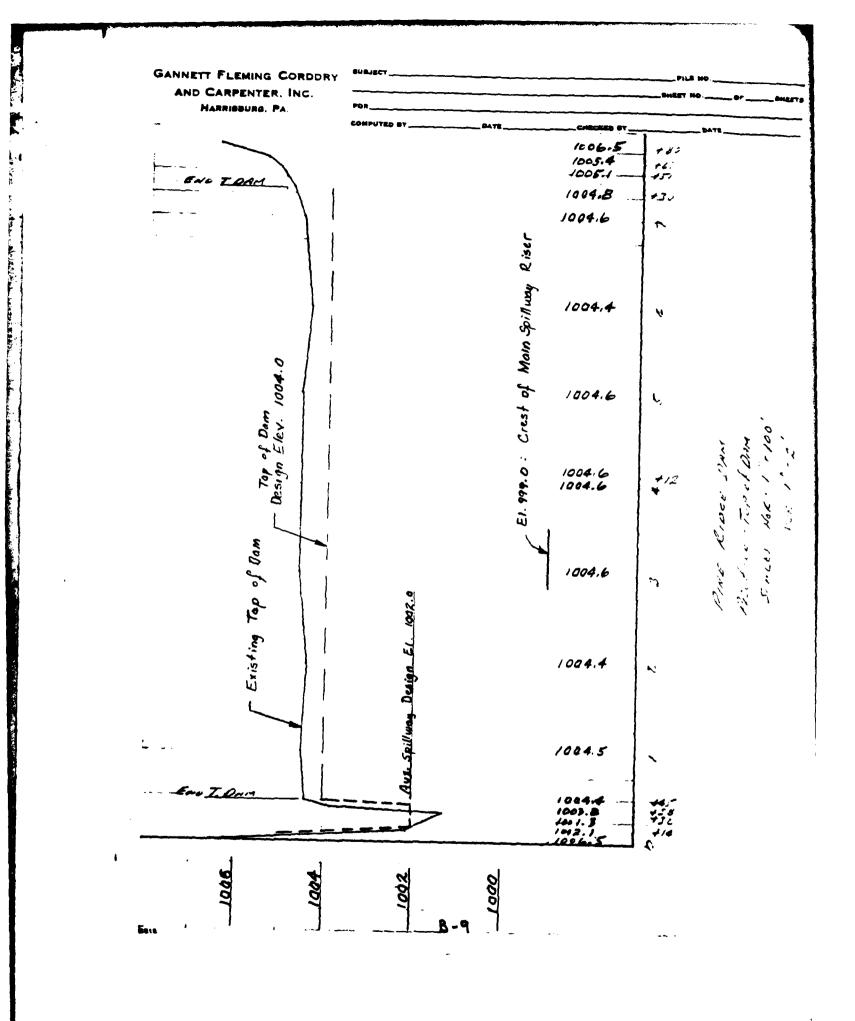
VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
SLOPES	No evidence of stability problems.	
SEDIMENTATION	None reprised.	
WATERSHED DESCRIPTION	Entirely wooded; minor residential development.	

B-7

102565 SPT #1

T. FR. LOL

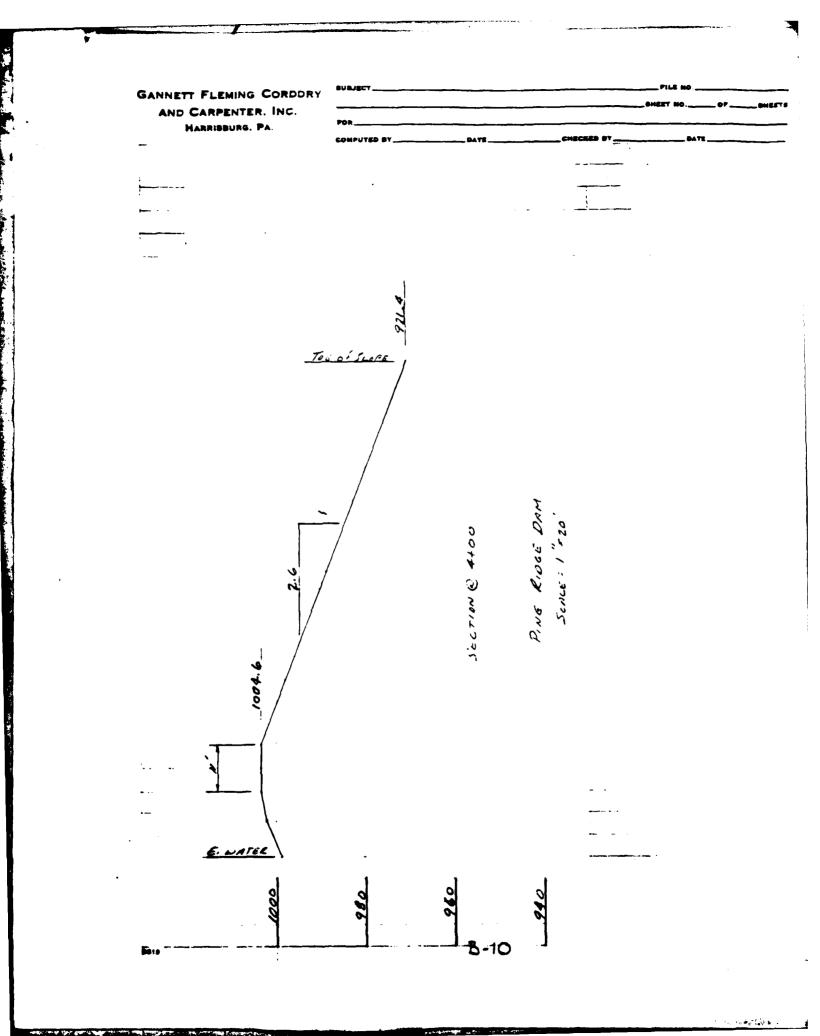
1.1

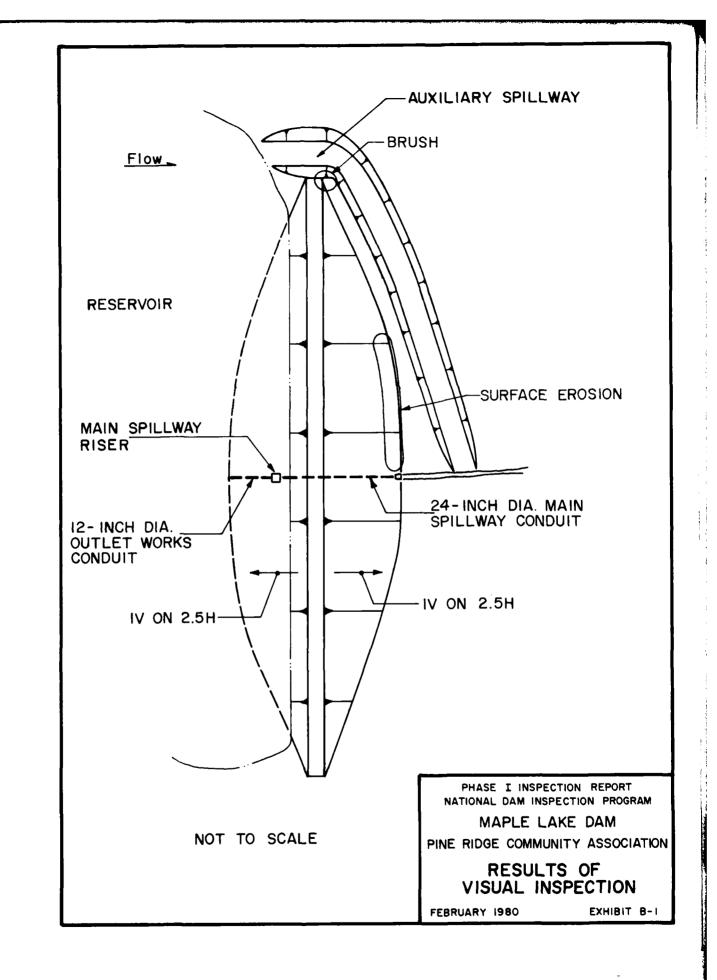

DOWNSTREAM CHANNEL

V

Sheet 1 of 1

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
CONDITION: Obstructions Debris Other	None.	
SLOPES	Relatively mild.	-
APPROXIMATE NUMBER OF HOMES AND POPULATION	2 Dwellings, 1 Commercial Structure, and 1 Cottage would be affected by failure of dam.	Failure of previous clam at site indicates high harmed classification is worranted.


B-B



THE LETTE THE PERSON

TO PERSONAL

The second second

APPENDIX C PHOTOGRAPHS

のないという

Č,

and you want to have a second chance of

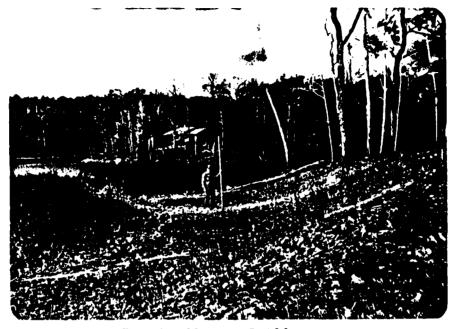
MAPLE LAKE DAM

A. Upstream Slope.

B. Downstream Slope.

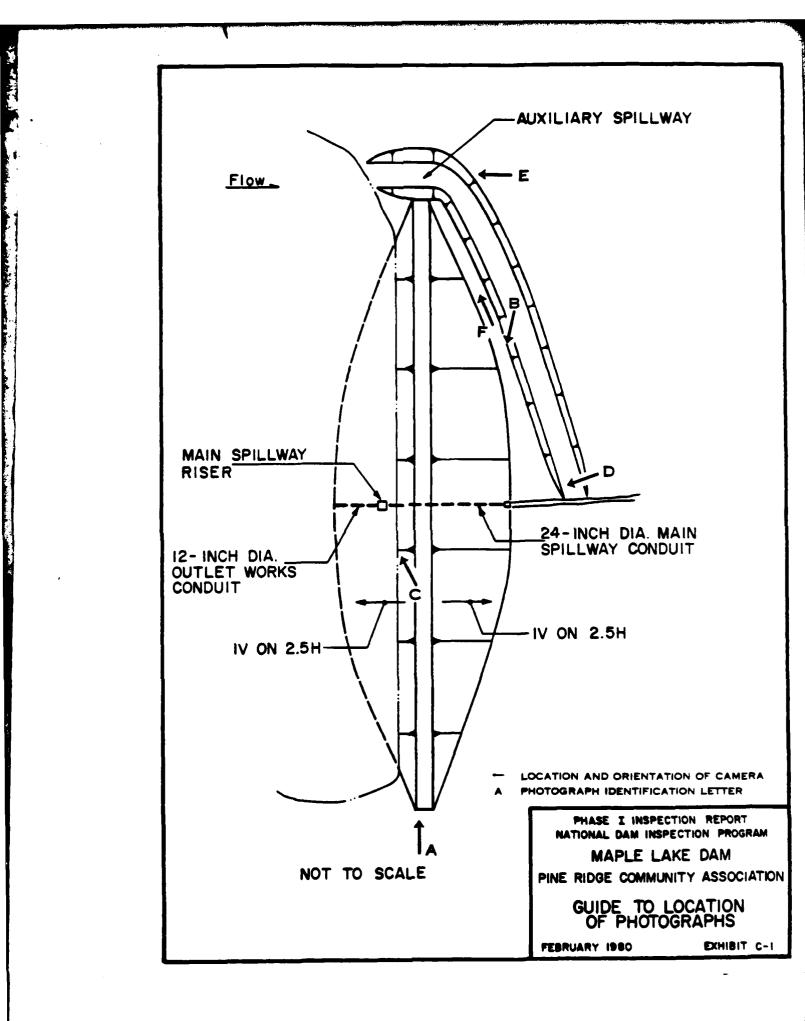
MAPLE LAKE DAM

C. Main Spillway Riser Structure.


D. Main Spillway Outlet Conduit.

C-2

the state of the second states


at we as the

E. Auxiliary Spillway.

F. Auxiliary Spillway Outlet Channel.

nd 197 - -----

WELL PROPERTY.

APPENDIX D

pf

5

-

HYDROLOGY AND HYDRAULICS

W WE W B

APPENDIX D

HYDROLOGY AND HYDRAULICS

Spillway Capacity Rating:

In the recommended Guidelines for Safety Inspection of Dams, the Department of the Army, Office of the Chief of Engineers (OCE), established criteria for rating the capacity of spillways. The recommended Spillway Design Flood (SDF) for the size (small, intermediate, or large) and hazard potential (low, significant, or high) classification of a dam is selected in accordance with the criteria. The SDF for those dams in the high hazard category varies between one-half of the Probable Maximum Flood (PMF) and the PMF. If the dam and spillway are not capable of passing the SDF without overtopping failure, the spillway capacity is rated as inadequate. If the dam and spillway are capable of passing one-half of the PMF without overtopping failure, or if the dam is not in the high hazard category, the spillway capacity is not rated as seriously inadequate. A spillway capacity is rated as seriously inadequate if all of the following conditions exist:

(a) There is a high hazard to loss of life from large flows downstream of the dam.

(b) Dam failure resulting from overtopping would significantly increase the hazard to loss of life downstream from the dam from that which would exist just before overtopping failure.

(c) The dam and spillway are not capable of passing one-half of the PMF without overtopping failure.

Description of Model:

and the set of the set

If the Owner has not developed a PMF for the dam, the watershed is modeled with the HEC-1DB computer program, which was developed by the U.S. Army Corps of Engineers. The HEC-1DB computer program calculates a PMF runoff hydrograph (and percentages thereof) and routes the flows through both reservoirs and stream sections. In addition, it has the capability to simulate an overtopping dam failure. By modifying the rainfall criteria, it is also possible to model the 100year flood with the program.

D-1

APPENDIX D

and the second

Ę.

all and a second state

S No Barrows

18 073

and the same state that the same same

THE REAL PROPERTY OF

_			Delaware		River Ba	isin
N	ame of Str	eam:	ffle - Den	mark Cre	ek	
N	ame of Dam	: Maple	Lake D	am		
N	DI ID No.:	PA-0071				
D	ER ID No.:	52 - 170				
Latitude:			Longitude	: W 74.	59' 10"	
Cop of Dam 1	Elevation:	1004.				
Streambed E	levation:	969.7		f Dam:	35	ft
Reservoir S	torage at					-ft
Size Catego						
lazard Cate		iah		(see	Section	5)
Spillway De	sign Flood	: Varies 1	rom 12 Pr		NF; Scie	
			d on heigh			

UPSTREAM DAMS

Name	Distance from Dam (miles)	Height (ft)	Storage at top of Dam Elevation (acre-ft)	Re marks
	N	one.		
				
		- <u></u>	<u></u>	
	DC	WNSTREAM	DAMS	
	ĸ	Jone.		
		a <u>une.</u>		
	·			
			<u></u>	

D-2

A ANTE COMPANY & S.C. IN

GANNETT FLEMING CORDDRY	NUMBER HYDROLOGY AND HYDRAULICS	
AND CARPENTER, INC. Harrisburg, Pa.	MAPLE LAKE DAM	
-	COMPUTED BY DATE CHECKED BY	DATE

DESCRIPTION OF ANALYSIS PROCEDURE

THE HEH ANALYSIS FOR MAPLE LAKE DAM IS COMPLICATED BY TWO FACTORS :

1. GEOMETRY OF FEATURES DIFFERS FROM DESIGN: (a) TOP OF DAM 15 0.4 FOOT HIGHER THAN THE DESIGN TOP OF DAM ELEVATION.

(E) AUXILIARY SPILLWAY CREST IS 0.7 FOOT LOWER THAN ITS DESIGN ELEVATION, BUT THE CREST LENGTH IS 7 FEET LESS THAN THE DESIGN LENGTH.

2. WATERSHED CANNOT BE ACCURATELY DEFINED BY EXISTING MAPPING. THE CONTOUR INTERVAL AND THE TOPOGRAPHY ARE SUCH THAT ACCEPTABLE ESTIMATES OF THE DRAINAGE AREA RANGE FROM 0.25 SQ. MI. TO 0.34 SQ. MI. ALTHOUGH THIS IS ONLY A 60 ACRE DIFFERENCE, IT AMOUNTS TO A 36 PERCENT VARIATION FOR THE SMALL WATERSHED.

THE PROCEDURES ADOPTED FOR ANALYSIS AND THE REASONS THEREFORE ARE AS FOLLOWS: 1. BASE HYDRAULIC ANALYSIS ONLY ON EXISTING CONDITIONS (i.e. ACTUAL GEOMETRIC CONDITIONS). AN ANALYSIS OF DESIGN CONDITIONS IS WARRANTED ONLY WHEN IT APPEARS THAT RESTORING THE FEATURES TO DESIGN CONDITIONS WOULD BE REASONABLE ALTERNATIVE (I.C. FILLING A A LOW AREA). BECAUSE OF THE NATURE OF THE VARIATIONS FROM DESIGN FOR MAPLE LAKE DAM, A "DESIGN CASE" IS NOT WARRANTED. FURTHERMORE, THE UNCERTAINTY FOR THE DEAINAGE AREA WOULD STILL EXIST.

2. PELFORM HYDROLOGIC ANALYSES FOR BOTH EXTREME VALUES FOR THE DRAINAGE AREA. FOR THIS REPORT, RATE THE SPILLWAY ADEQUACY USING THE LARGER VALUE OF 0.34 SQ. MI.

0-3

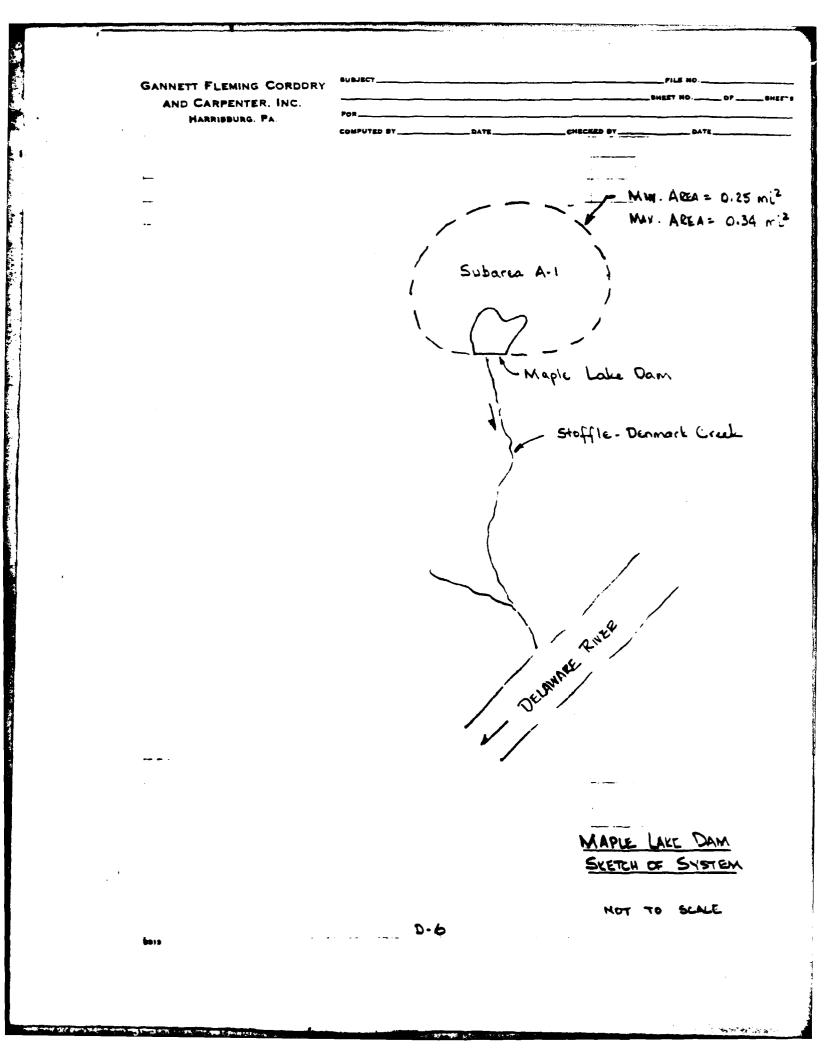
818

				De	laware	R	iver Ba	isin	
	Name	of St	ream			enmark	Cree	K	
	Name	of Da	im :	Maole	Lake	. Dam	_		
	DETERMI	INATIC				& UNIT	HYDROGE	RAPH	
			UNI	<u>T HYDRO</u>	GRAPH I	ATA:			
Cub	Drainage				(,			l Maa	101
Sub-	Area	Ср	Ct	L miles	Lca	L' miles	Тр	•	Plate
area	(square miles)	(1)	(2)		(4)	(5)	hours (6)	Area (7)	(8)
	miles)		(2)						
A-1	0.25	0.45	1.23	0.64	0.25		0.7		A
									
					ĺ				
		<u>ل</u>		L		· · ·		L	
Total		1				et D-6)			
	(1) & (2)								
						Enginee	ers on n	naps a	na
	The follow				7) & (8		at of 1	the cu	haras
	(3): Leng								Darea:
	(4): Leng								
	The follow	sino i	s me	asured	from th	e upstr	eam end	i of t	he
	reservoir	at no	rmal	pool:		.e epoer			
	(5): Leng	th of	mai	n water	course	extende	d to di	ivide	
	(5): Leng (6): Tp=0	C+ X (Lx	L_{2}) 0.	3. exce	pt when	e the d	centro	id of
	the subare	ea is	loca	ted in	the res	ervoir.	Then		
	$Tp=C_{t} \times (I$	Ľ') ⁰ .	6						
Initi	al flow is	s assu	med	at 1.5	cfs/sq.	mile			
Compu	iter Data:	QRCS	SN =	-0.05 (5% of p	eak flo	w)		
_		RTIC)R =	2.0					
				<u>FALL DA</u>					
PMF R	Rainfall In	ndex=_	22	<u>. </u>	1., 24 ł	ir., 200) sq. mi	ile	
			10			Hy			
-			(Su		ina Basi	.n) (Ut	her Bas	sins)	
Zone:				N/	A		<u> </u>		
Geogr	aphic Adju	uscmer	16	v 1.			1.0		
Port -	Factor: ed Index			4 [א	1		1.0		
	.nfall:			NIA			22.1		
Nal	RA1		. DT <u>S</u>	TRIBITI	ON (per	cent	661		
	101.		Time		Percer				
		<u></u>	6 ho		111	<u> </u>			
		1	2 ho		123				
			4 ho		133				
		4	8 ho	urs	142				
		7	2 ho	u.s					
			6 ho			_			
						_			

D-4

				De	laware		iver Ba	sin	
	Name	of St	ream	: 5+0 [1	fle - De	nmark	Creek		
	Name	of Da	IM :	Maple	Lake D	am			
	DETERM.	LNATIO			INFALL		HYDROGE	APH	
,	Drainage	1	UNI		GRAPH D				
Sub-	Area	Cp	Ct	L	Ι Τ	L'	Тр	Map	Plate
area	(square	, or		miles	L _{ca} miles	miles		•	LIALE
	miles)	(1)	(2)		(4)	(5)	(6)	(7)	(8)
	•								
A-1	0.34	0.45	1.23	0.80	0.34		0.8	1	A
T		 	1800	Clean al	on Cha	· · ·			
Total	0.34 (1) & (2)] . Sou			on She				lied by
	() G (2) Baltir	. Shy nore D	lietr	ict Co	rps of	n coerr Frainea	re on T	ane ar	d
	plate	s refe	renc	ed in ((7) & (8)	Ding Tinee	.15 011 11	iaps ai	.10
	The follow						et of t	he sul	латеа∙
	(3): Leng								Jui Citt
	(4): Leng								
	The follow								ne
	reservoir	at no	rmal	pool:		-			
	(5): Leng (6): Tp=0	th of	mai	n water	course	extende	d to di	vide	
	(6): Tp=0	Č ₊ x (Lx	$L_{ca}) 0.$	³ , exce	pt wher	e the c	entro	id of
	the subar	ea 15	Joca	ted in	the res	ervoir.	Then		
•	Гр=С _t х (]	') ⁽ '	6						
Initi	al flow is								
			N =	-0.05 (5% of p	eak flo	>		
Compu	ter Data:	QRCS			278 Of P	Car IIO	w)		
Compu	ter Data:	RTIO	R = 1	2.0	•		w)		
•		RTIO	R = RAIN	2.0 <u>FALL DA</u>	<u>.TA</u> :				
-	ter Data: ainfall In	RTIO	R = RAIN	2.0 FALL DA	<u>.TA</u> : 1., 24 h	r., 200	sq. mi		
•		RTIO	R = RAIN 22	2.0 <u>FALL DA</u> ./ in Hydrom	<u>.TA</u> : 1., 24 h let. 40	r., 200 Hy	sq. mi dromet.	33	
PMF R		RTIO	R = RAIN 22	2.0 <u>FALL DA</u> ./in Hydrom squehan	<u>.TA</u> : 1., 24 h let. 40 lna Basi	r., 200 Hy	sq. mi dromet.	33	
PMF Razone:	ainfall In	RTIO	PR = <u>RAIN</u> 22 (Su	2.0 <u>FALL DA</u> ./ in Hydrom	<u>.TA</u> : 1., 24 h let. 40 lna Basi	r., 200 Hy	sq. mi dromet.	33	
PMF Ra Zone:	ainfall In aphic Adju	RTIO	PR = <u>RAIN</u> 22 (Su	2.0 FALL DA I in Hydrom squehan N/	<u>TA</u> : 1., 24 h met. 40 ma Basi A	r., 200 Hy	sq. mi dromet. her Bas	33	
PMF Ra Zone: Geogra	ainfall In aphic Adju Factor:	RTIO	PR = <u>RAIN</u> 22 (Su	2.0 <u>FALL DA</u> ./in Hydrom squehan	<u>TA</u> : 1., 24 h met. 40 ma Basi A	r., 200 Hy	sq. mi dromet.	33	
PMF R Zone: Geogra Revis	ainfall In aphic Adju Factor: ed Index	RTIO ndex= ustmen	$R = \frac{RAIN}{22}$ (Su	2.0 FALL DA I in Hydrom squehan N/	<u>TA</u> : 1., 24 h et. 40 ina Basi A	n, 200 Hy n) (Ot	sq. mi dromet. her Bas I 1.0	33	
PMF R Zone: Geogra Revis	ainfall In aphic Adju Factor: ed Index	RTIO ndex= ustmen	$R = \frac{RAIN}{22}$ (Su	2.0 FALL DA I in Hydrom squehan N/	<u>TA</u> : 1., 24 h let. 40 ina Basi A	n, 200 Hy n) (Ot	sq. mi dromet. her Bas	33	
PMF R Zone: Geogra Revis	ainfall In aphic Adju Factor: ed Index	RTIO ndex=_ ustmen	R = RAIN 22 (Su at DIS	2.0 FALL DA I in Hydrom squehan N/	<u>TA</u> : ., 24 h et. 40 ma Basi A <u>ON</u> (per	r., 200 Hy n) (Ot	sq. mi dromet. her Bas I 1.0	33	
PMF R Zone: Geogra Revis	ainfall In aphic Adju Factor: ed Index	RTIO ndex= ustmen <u>INFALL</u>	R = RAIN 22 (Su t DIS Time	2.0 FALL DA Hydrom squehan N/ N/A N/A TRIBUTI	<u>TA</u> : 1., 24 h 1., 24 h 1., 40 1.,	r., 200 Hy n) (Ot	sq. mi dromet. her Bas I 1.0	33	
PMF R Zone: Geogra Revis	ainfall In aphic Adju Factor: ed Index	RTIO ndex= ustmen <u>INFALL</u>	R = <u>RAIN</u> 22 (Su t <u>DIS</u> <u>Time</u> 6 ho	2.0 FALL DA Hydrom squehan N/ N/A N/A TRIBUTI	<u>TA</u> : 1., 24 h 1., 24 h 1., 40 1.,	r., 200 Hy n) (Ot	sq. mi dromet. her Bas I 1.0	33	
PMF R Zone: Geogra Revis	ainfall In aphic Adju Factor: ed Index	RTIO ndex= ustmen <u>INFALL</u> 1	PR = <u>RAIN</u> 22 (Su t <u>DIS</u> <u>Time</u> 6 ho 2 ho	2.0 FALL DA I in Hydrom squehan N/ <u>N/A</u> <u>N/A</u> TRIBUTI urs urs	<u>TA</u> : 1., 24 h 1., 24 h 1., 24 h 1., 40 1., 40 1., 124 1., 123 1., 123	r., 200 Hy n) (Ot	sq. mi dromet. her Bas I 1.0	33	
PMF R Zone: Geogra Revis	ainfall In aphic Adju Factor: ed Index	RTIO ndex= ustmen <u>INFALL</u> 1 2	RAIN 22 (Su t <u>DIS</u> Time 6 ho 2 ho 4 ho	2.0 FALL DA Hydrom squehan N/ N/A N/A TRIBUTI urs urs urs urs	<u>TA</u> : 1., 24 h 1., 24 h 1., 24 h 1., 40 Ina Basi A <u>ON</u> (per <u>Percen</u> <u>III</u> <u>123</u> <u>IJ3</u>	r., 200 Hy n) (Ot	sq. mi dromet. her Bas I 1.0	33	
PMF R Zone: Geogra Revis	ainfall In aphic Adju Factor: ed Index	RTIO ndex= ustmen <u>INFALL</u> 1 2 4	PR = <u>RAIN</u> 22 (Su t <u>DIS</u> <u>Time</u> 6 ho 2 ho	2.0 FALL DA Hydrom squehan N/ N/A N/A IRIBUTI urs urs urs urs urs	<u>TA</u> : 1., 24 h 1., 24 h 1., 24 h 1., 40 1., 40 1., 124 1., 123 1., 123	r., 200 Hy n) (Ot	sq. mi dromet. her Bas I 1.0	33	

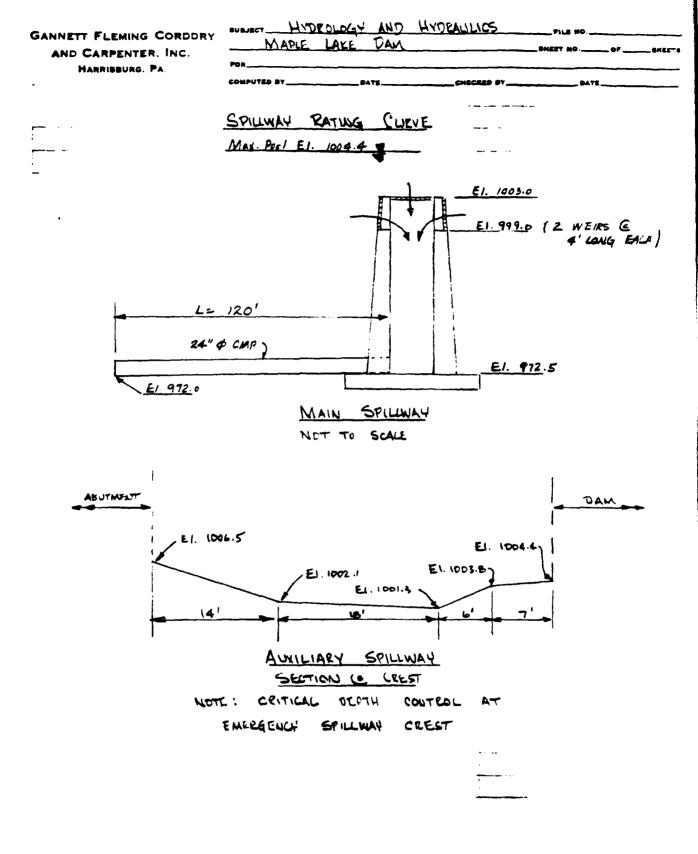
D-Ş


I

and the second second

States and a second

.


رعمية مودد مراعدة والمراجب

Name of Da	m: <u>Maple</u>	Lake Do	M	
SPILLWAY I	ATA:		Existing Conditions	Design <u>Condition</u>
Spillway C	n Elevation Crest Elevatio		449.0	<u> </u>
	iead Available	e (ft)	5.4	5.0
Type Spill "C" Value	- Spillway		<u> </u>	<u>vcture and condu</u>
	th - Spillway	/ (ft)	NIA	
	eak Discharge		51	<u>57</u>
Auxiliary	Spillway Cres	st Elev.	1001.3	1062.0
	Spill. Head A			2.0
	iary Spillway			earthen channel
	- Auxiliary S			<u> </u>
	th - Auxil. S	spill. (ft.)18	25
Auxiliary	<u>Spillway</u> Peak Discharge			
	Spillway Disch		325	<u>315</u>
<u>comprised</u> 2	piliway Disci.	large (CIS)382	432
999.0	Q Spillway (O 25	<u>(cfs)</u> <u>Sp:</u>	<u> </u>	Combined (cfs)
999.0	0	<u>(cfs)</u> <u>Sp:</u>	0	0
<u>999.0</u> <u>1000.5</u> <u>1001.3</u> <u>1002.0</u> <u>1003.0</u> <u>1004.4</u> <u>1005.0</u> <u>1006.0</u> <u>0UTLET WOF</u> Invert of	0 25 46 54 55 56 51 58 59 59 8KS RATING: 0utlet	<u>Outlet 1</u>	0 0 0 23 76 325 460	0 25 46 54 78 132 302 518
<u>999.0</u> <u>1000.5</u> <u>1001.3</u> <u>1002.0</u> <u>1003.0</u> <u>1004.4</u> <u>1005.0</u> <u>1006.0</u> OUTLET WOF Invert of Invert of	0 25 46 54 55 56 51 58 59 59 8KS RATING: 0utlet	Outlet 1 976.0	0 0 0 23 76 325 460 693	0 25 46 54 78 132 382 518 752
<u>999.0</u> <u>1000.5</u> <u>1001.3</u> <u>1002.0</u> <u>1003.0</u> <u>1004.4</u> <u>1005.0</u> <u>1006.0</u> OUTLET WOF Invert of Invert of Type	0 25 46 54 55 56 51 56 51 58 59 59 6 KS RATING: 0utlet Inlet	<u>Outlet 1</u>	0 0 0 23 76 325 460 693	0 25 46 54 78 132 382 518 752
<u>999.0</u> <u>1000.5</u> <u>1001.3</u> <u>1002.0</u> <u>1003.0</u> <u>1004.4</u> <u>1005.0</u> <u>1006.0</u> OUTLET WOF Invert of Invert of Type Diameter (<u>C</u> 25 46 54 55 56 51 56 51 58 59 59 	<u>Outlet 1</u> <u>976.0</u> <u>CIP</u>	0 0 0 23 76 325 460 693	0 25 46 54 78 132 382 518 752
<u>999.0</u> <u>1000.5</u> <u>1001.3</u> <u>1002.0</u> <u>1003.0</u> <u>1004.4</u> <u>1005.0</u> <u>1006.0</u> OUTLET WOF Invert of Invert of Type Diameter (O 25 46 54 55 56 51 58 59 6000000000000000000000000000000000000	Outlet 1 976.0	0 0 0 23 76 325 460 693	0 25 46 54 78 132 382 518 752
<u>999.0</u> <u>1000.5</u> <u>1001.3</u> <u>1002.0</u> <u>1003.0</u> <u>1005.0</u> <u>1004.4</u> <u>1005.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1007LET WOF</u> Invert of Invert of Type Diameter (Length (ft Area (sq.	O 25 46 54 55 56 51 58 59 6000000000000000000000000000000000000	<u>Outlet 1</u> <u>976.0</u> <u>1</u> <u>36</u>	0 0 0 23 76 325 460 693	0 25 46 54 78 132 382 518 752
<u>999.0</u> <u>1000.5</u> <u>1001.3</u> <u>1002.0</u> <u>1003.0</u> <u>1004.4</u> <u>1005.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1007LET WOF</u> Invert of Invert of Type Diameter (Length (ft Area (sq. N K Entrance	$\frac{O}{25}$ $\frac{46}{54}$ $\frac{54}{55}$ $\frac{56}{57}$ $\frac{57}{58}$ $\frac{59}{59}$ $\frac{59}{59}$ $\frac{6}{59}$ $\frac{59}{59}$ $\frac{6}{59}$ $\frac{59}{59}$ $\frac{59}{5$	Outlet 1 976.0 CIP 1 36 0.19	0 0 0 23 76 325 460 693	0 25 46 54 78 132 382 518 752
<u>999.0</u> <u>1000.5</u> <u>1001.3</u> <u>1002.0</u> <u>1005.0</u> <u>1004.4</u> <u>1005.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>100</u>	$\frac{0}{25}$ $\frac{46}{54}$ $\frac{54}{55}$ $\frac{51}{56}$ $\frac{51}{58}$ $\frac{59}{59}$ $\frac{6}{59}$ $\frac{6}{59}$ $\frac{1}{59}$ $\frac{1}{58}$ $\frac{59}{59}$ $\frac{59}{59}$ $\frac{59}{59}$ $\frac{1}{51}$ $\frac{6}{51}$ $\frac{1}{51}$ \frac	<u>Outlet 1</u> <u>976.0</u> <u>CIP</u> <u>1</u> <u>36</u> <u>0.19</u> <u>0.014</u> <u>0.5</u>	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 23 \\ 76 \\ 325 \\ 460 \\ 693 \\ \end{array} $	0 25 46 54 78 132 382 518 752
<u>999.0</u> <u>1000.5</u> <u>1001.3</u> <u>1002.0</u> <u>1003.0</u> <u>1004.4</u> <u>1005.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>100</u>	$\frac{0}{25}$ $\frac{46}{54}$ $\frac{54}{55}$ $\frac{56}{54}$ $\frac{51}{56}$ $\frac{59}{59}$ $\frac{59}{59}$ $\frac{1}{58}$ $\frac{59}{59}$ $\frac{59}{$	Outlet 1 976.0 CIP 1 36 0.19 0.014 0.5 1.0 1.3	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 23 \\ 76 \\ 325 \\ 460 \\ 693 \\ \end{array} $	0 25 46 54 78 132 382 518 752
<u>999.0</u> <u>1000.5</u> <u>1001.3</u> <u>1002.0</u> <u>1003.0</u> <u>1003.0</u> <u>1004.4</u> <u>1005.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>100</u>	$\frac{0}{25}$ $\frac{46}{54}$ $\frac{54}{55}$ $\frac{56}{54}$ $\frac{51}{56}$ $\frac{59}{59}$ $\frac{59}{59}$ $\frac{1}{58}$ $\frac{59}{59}$ $\frac{59}{$	Outlet 1 976.0 CIP 1 36 0.19 0.014 0.5 1.3 2.8	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 23 \\ 76 \\ 325 \\ 460 \\ 693 \\ \end{array} $	0 25 46 54 78 132 382 518 752
<u>999.0</u> <u>1000.5</u> <u>1001.3</u> <u>1002.0</u> <u>1003.0</u> <u>1004.4</u> <u>1005.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>100</u>	$\frac{0}{25}$ $\frac{46}{54}$ $\frac{54}{55}$ $\frac{56}{59}$ $\frac{59}{59}$ $\frac{6}{59}$ $\frac{59}{59}$ $\frac{6}{59}$ $\frac{59}{59}$ $\frac{6}{59}$ $\frac{59}{59}$ $\frac{59}{59$	Outlet 1 976.0 CIP J 0.014 0.5 1.3 2.8 0.6	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 23 \\ 76 \\ 325 \\ 460 \\ 693 \\ \end{array} $	0 25 46 54 78 132 302 518 752
<u>999.0</u> <u>1000.5</u> <u>1001.3</u> <u>1002.0</u> <u>1003.0</u> <u>1004.4</u> <u>1005.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>100</u>	$\frac{O}{25}$ $\frac{46}{54}$ $\frac{54}{55}$ $\frac{56}{59}$ $\frac{57}{58}$ $\frac{59}{59}$ $\frac{59}{59}$ $\frac{6}{59}$ $\frac{59}{59}$ $\frac{6}{59}$ $\frac{59}{59}$ $\frac{58}{59}$ $\frac{59}{59}$ $\frac{59}{59}$ $\frac{58}{59}$ $\frac{59}{59}$ $\frac{59}{59}$ $\frac{58}{59}$ $\frac{59}{59}$ $\frac{59}{59}$ $\frac{58}{59}$ $\frac{59}{59}$ $\frac{59}{59}$ $\frac{59}{59}$ $\frac{58}{59}$ $\frac{59}{59}$ $\frac{59}{5$	Outlet 1 976.0 CIP 1 36 0.19 0.014 0.5 1.0 1.3 2.8 0.6 21.9	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 23 \\ 76 \\ 325 \\ 460 \\ 693 \\ \end{array} $	0 25 46 54 78 132 382 518 752
<u>999.0</u> <u>1000.5</u> <u>1001.3</u> <u>1002.0</u> <u>1003.0</u> <u>1005.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1005.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>1006.0</u> <u>100</u>	$\frac{0}{25}$ $\frac{46}{54}$ $\frac{54}{55}$ $\frac{56}{56}$ $\frac{51}{56}$ $\frac{51}$	Outlet 1 976.0 CIP J 0.014 0.5 1.3 2.8 0.6	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 23 \\ 76 \\ 325 \\ 460 \\ 693 \\ \end{array} $	0 25 46 54 78 132 382 518 752

D-7

and a set of the second second second second and second and second second second second second second second se

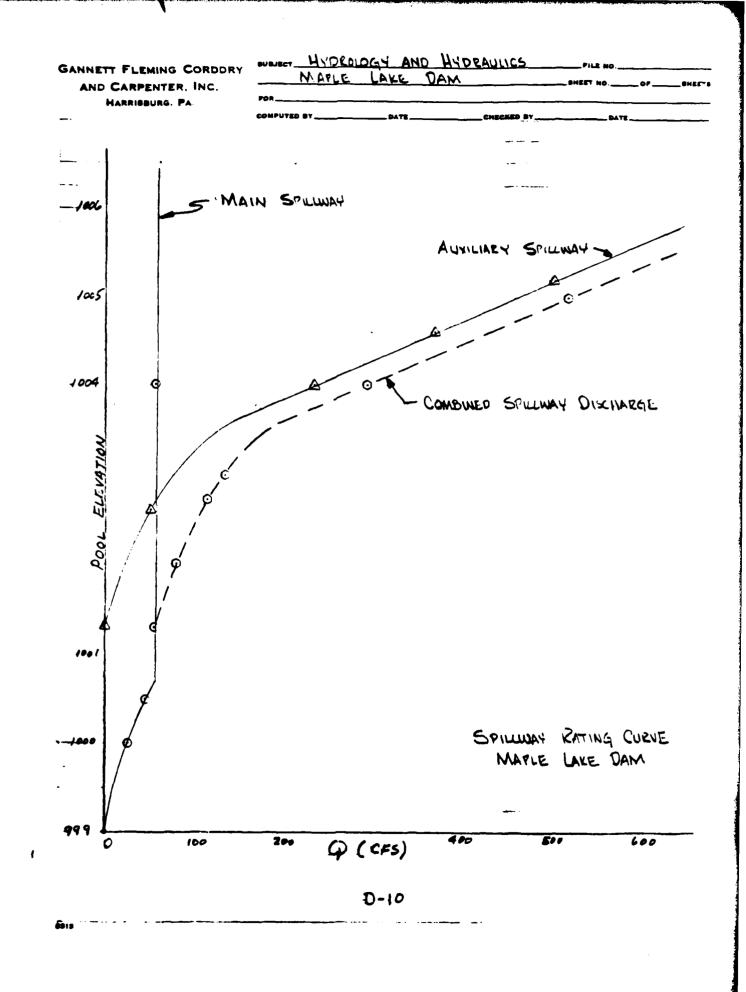
D-B

.....

1

GANNETT FLEMING CORDERY AND CARPENTER, INC.	NAPLY	eology a e lake t	NO HUDBAUL		NOOF SHEE
HARRISSURG. PA	POR	BATE	CHBC <u>F</u> L	ED \$1	
	MAIN	SPILLWAY			
	anteol at Qn = Clh		STENCTURE		2 43/2
•	LAN = LLF Control by			-1	
	QC= CA				
C =	(1/K)0.5				
•				(29.1)(.024)* ((120) (650) 413
C=	0.4	K = 6.5			-
	() = (0.4	N 2 14 1 (64.4 H1 2	= 10.1 1 +	4
	Qc= (0.4)(5-14)(64.4 H) ^{1/2}	= 10.1 \ +	4
POOL EL.	Qc = (0.4 <u>Hweir</u>	<u>_Qw</u>	64.4 H) 2 <u>Heonovit</u>	= 10.1 \ F	۲ و
POOL EL.				= 10.1 + 	Q o efs
	HWEIR	Qw	HEONOVIT	<u>ac</u>	<u> </u>
ୱୱବ .୦	<u>Hweir</u> Oft	Qw O cfs	<u> Нсоночіт</u> 0 А	<u>o</u> c.	G O efs
999.0 1000.0	<u>Hweir</u> 0 ft. 1.0	Qw 0 cfs 25	<u>Heonourr</u> 0 A 27.0	<u>o</u> c o.fs 52	م د در، 25
999.0 1000.0 1000.5	<u>HWEIR</u> 0 ft. 1.0 1.5	Qw 0 cfs 25 46	<u>Нсомонт</u> 0 fi 27.0 27.5	0 fs 52 53	0 efs 25 46

.


ورهة

AUXILIARY SPILLWAY

<u>X</u> e	_A	<u> </u>	Q*	<u>_</u>	N2/29	Pool EI
0	Ģ	0	0	0	0	1001.3
١	12	21	51	9.25	Q.3	1002.6
2	35.9	26.6	236	6.57	0.7	1004.0
2.5	49.9	29.4	369	7.39	Q.8	1004.6
3.1	64.5	36.8	506	7.61	a .9	1005.2

* Q = $\left(\frac{gA^{3}}{T}\right)^{1/2}$ * Y Pool El. = $\frac{gc}{V^{2}} + \frac{V^{2}}{2g} + 1001.35$

D-9

Data for Dam at Outlet of Subarea A-1 (See sketch on Sheet D-6) Name of Dam: Maple Lake Dam

STORAGE DATA:

D1	Area	Stora million		
Elevation	(acres)	_gals	<u>acre-ft</u>	Remarks
<u>969.9</u> = ELEVO <u>999.0</u> = ELEV1 <u>1004.4</u> <u>1019.0</u>	0 =A1 	0 <u>- 22</u> - <u>42</u> - <u>82</u>	0 66=S1 [*] <u>138</u> _ 252	SURFACE AREA AT ELEV 1 FREM DESIGN DRAININGS ELEVO ESTIMATED
				ELLM SURVEY DATA
$* S_{1} = \frac{(ELEV1 - ELE)}{3}$	VO)A,	 5		

Planimetered contour at least 🗃 feet above top of dam **

Reservoir Area at Normal Pool is _ _ percent of subarea watershed.

BREACH_DATA:

See Appendix B for sections and existing profile of the dam. Soil Type from Visual Inspection: <u>Silty sand</u> Maximum Permissible Velocity (Plate 28, EM 1110-2-1601) 2 fps (from Q = CLH³/2 = V·A and depth = (2/3) x H) & A = L·depth

HMAX = $(4/9 \ V^2/C^2) = 0.2$ ft., C = 3.1 Top of Dam El.= 1004.4

HMAX + Top of Dam El. = 1004.6 = FA (Above is elevation at which failure would start) = FAILEL

Dam Breach Data:

D-11

Ī

A.

••••

and the second

Selected Computer Output	
Item	Page
Multi-ratio Analysis (0.25 mi ² D.A.) :	١
Input	D-13
Summary of Peak Flows	D-14
Maple Lake Dam	D-15
Multi-ratio Analysis (0.34 mi2 D.A.)	
Input	D-16
Summary of Peak Flows	D-17
Maple Lake Dam	D-18

. .

. . .

.

:

. . . .

₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽	
DAM SAFETY VEPSION JULY 1978	
LAST MOPIFICATION 17 JAW AN	
1 A1	NATEONAL DAM INSPECT
;;	TARTER - DE MAAR

:

·-- :

0

•	1 4		Ż	IT CONAL D	NATIONAL DAM INSPECTION PPOGRAM	CTION PF	POCKAM		
~	85 82			S10F	STOFFLE-DENMARK CREEK	ARK CRFF	×		
-	F.4			Ĩ	MAPLE LAVE DAM	DAM			
	P 300	6	÷	c	c	Ð	6	0	4
	R 1 5								
•	-	*	-						
~	•	~	<.	ř.	4.	٣.	~•		
æ	د ۲	-					•		
•	4 H	KUNDEF IN	INTO MAPLE	LAKE					
Ę	-	-	• 25		•2•				•
=	٩	1.25	111	123	1 H E	147			
2	-						••	50.	
	× ×	-45							
16		5U • 1	2.0						
ž	*	-					-		
16		RONTE THRONGH MAPLE LAKE DAM	DUCH HAP	LE LAKF	140				
17	•			-					
-	• • • •						666-	7	
•	44 900	1000		1n01.3	1002	1003	1004 .4	1005	1006
02	15 0	×	44	54	7.8	521	382	518	757
	0 V1		16	2					
22	3E 969*0	046	1004.4	1010					
52	500 55								
72	10104.4								
×	31	245	450	695	110	720	282		
	4 1004 A	1004 •5	1004.6	1004.8	1005.1	1005 .4	1006.5		
2)-1	K0 X								

9

•

)-13

-

1 L 19

 RATIOS APPLIED TO FLOUS

 Flaw
 Ratio
 Ratio
 Ratio
 Ratio
 Composition
 PEAK FLOW AND STOPAGE (FUN DE PEPIDD) SUMMARY FOR MULTIPLE PLAN-RATIO ECOMOMIC COMPUTATIONS Flows in cualc fee per sfond (cupic meter feond) Apea in source miles (square kilometer) 8 E 8 STATION OPF RA TION

D-14

.

.

. . . .

_

.

.

174.

261. 7.3936

348. 9. P6 30

435. 12.0710

522. 14.79)(

600. 17.25.16

R 70. 24.643(

•

•22

NYARACRAPH AT

- '

• •

.

·____

•

•

77. 2.1735

124. 3.653(

219. 6.21)(

298. 8.44)(

371. 10.5130

403. 11.9676

871. 24.66)(

. ~

•2* •65 •

-~

ROUTED TO

.

- - -

:

				MAPLE	LAKE	DAM (0.2	S MIL D.A	(-1	
2874	-		ELEVATION Stopage Dutelou	1 N 1 1 1 A L 000	VALUE 00 18. 0.	111111 VALUE SPILLWAY CRFST TOP DF 909-00 909-00 1006 68- 68- 73 0- 73	101	10P nf nam 1004.41 129. 342.	
		R AT 10 05 PMF	MAXJMUN RFSFRV0JR V.S.FLEV	14 KI MUM 15 F TH 10 C D A H	MAX 1 MIIM 5 TORAGE AC -FT	май] мин 901 ff L Пи СF S	PURATION Over Top Hours	11MF OF Max Outflov Hours	TIME OF Fallurf Houps
		00°t 12'	1004 . 97 1004 . 61	- 4 7 - 4 7 - 4 7	136.	871. 693.	3.00 1.50	40-50 41-00	00°0
		05.	1004 • 34 1007 • 93	00°0	127.	371. 298.	00°0	41-50 61-50	00°1
		6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	1005.49 1002.94 1001.96	00*0 00*0	115. 107. 94.	290. 129. 77.	00°0 00°0	41.75 42.25 42.50	

- -

.

D-15

. . .

7

:

: : : :

:

515

٢

. :

. •

to Alexandria

•

-

4 1006 75.2 0 tons sta •0• -999 1004.4 0 735 ~--NATICWAL DAM INSPETION PROGRAM Stoffle-denwark Cpfek Maple Iaff Dam 1001 0 605 710 720 1004.4 1005.1 1005.4 ٣, 142 0 *** 1007 4 POUTE TURNIGH MAPLE LAKE DAN 1001.5 54 29 1010 c 123 ۲. LAKF #APLF • 16 111 10r0.5 66 4 5 0 10 14 • 6 2•0 16 1004 • 4 £ - ç PUINTE TNED 10 CL 2#5 1004 •5 c 1.54 - ns 666 ~ ~ ELOID HURBERS AND ALL AND A C 000 א ^{מס} גי מים גי געווייא 001 c ••• -000 \$ 90 1 F 04 .4 **** Ę Ň e . 5 Ξ > × ££\$£\$£\$£\$\$\$£\$\$\$\$\$\$\$ 6 m .

> : • ; ;

:

. 1 : :

•

1.00

.

0

•01

• •

D-16

:

. • £ • Ŧ ÷ -.

.

FLAW RATIN 1 RATIN 2 RATIN 3 RATIN 4 PALIOUS 1.00 .70 .60 .50 .50 .30 .30 .20 .20 PEAK FLOW AND STORAGE (END OF PERIDD) SUMMAPY FOR MULTIPLE PLAM-RATIN FCONOMIC COMPUTATIONS Flows in curic fift per second curic meters per second) Area in source miles (source kilometers) A RF A STATION STATION OPT RATION

•

28 0

.

.--- :

221.

9.3736 9.3730

641. 12.6976

551. 15.61)(

662. 18.7330

772. 21.863(

1101. 31.2226

۔ ۲

, 34 (88.

WYDROCRAPH AT

112. 3.1736

217. 6.143(

317. .8.0735

425.

595. 16.8630

749. 21.22.15

1005. 31.0030

- ~

.34 .88.

- ~

ROUTED TO

4

D-	<mark>ו</mark> ז
U -	•••

1

:

:

:

- name to take a lin

PLAN 1		ELFVATION StogAGE Districu	INITIAL VALUE 699,00 68.		MARLE LALE VAN U.S. U.S. M.C. M.C. <thm.c.< th=""> M.C. M.C. <thm< th=""><th></th><th>4 mu) DF PAM NG4.40 123. 392.</th><th></th></thm<></thm.c.<>		4 mu) DF PAM NG4.40 123. 392.	
	RATIO 0F PHF	M&XT4JM RFSEFVNTR W_SGEEEV	MARIMUM Pepin Over Dam	MARINUM Stopage ac-ft	MAFIMUM Outflow Cf S	Z E	TIME OF Max Outflov Hours	TIME OF Failure Pours
	1.00 .70	1004 .07 1004 .90	-57 •40	138.	1095 . 740 .	4 - MO 3 - DO	40+50 40+75	00°0
	0., . 0., .	1004.70 1004.52	10 10	133.	505. 425.	2.25	41.50 41.50	00.0
	0.7	1004.03	00•0	123.	112	0.0	41°75	00°u
	u.c.•	1007.63	0.00	103.	112.	0.00	62.50	U U U

.

D-18

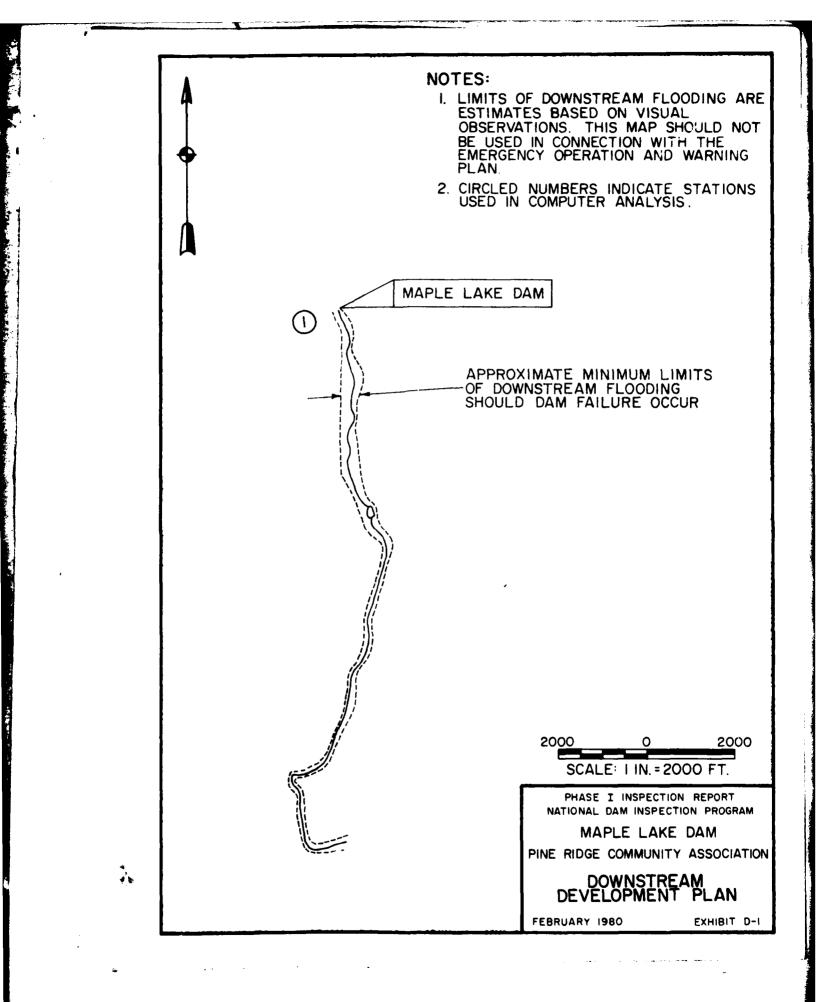
- tu m at int are

GANNETT FLEMING CORDDRY	SUBJECT	PILE NO	
AND CARPENTER, INC. Harrisburg, Pa.	PGR		
TARRIEDONG, TA	COMPUTED BY DATE	CHECKED BY BATE	
		÷	
	<u>.</u>	·	
		1	
	Maple Lake Da	<u>.</u>	
5	ummary of Pertinum	+ Results	

PMF Rainfall = 25.11 inches

Multi-ratio Analysis (0.25	5 mi ² Draina	ge Area)
Mople Lake Dam	PMF	12 PMF
Runoff (inches)	22.B	11.4
Inflow (cfs)	B 70	435
Outflow (cfs)	870	298
Depth of Quertopping (ft)	0.47	0.00
Duration of Overtopping (hr)	3.00	0.00
Multi-ratio Analysis (0.34 m	i ² Drainage	Area)

TUTTE TUTTE ANALIS LOUST M	S VIRTINGE M	
Maple Lake Dam	PMF	12 PMF
Runoff (inches)	22.B	11.4
Inflow (cfs)	1,103	551
outflow (cfs)	1,095	425
Depth of Overtopping (ft)	0.57	0.12
Duration of Questopping (hr)	4.00	1.25

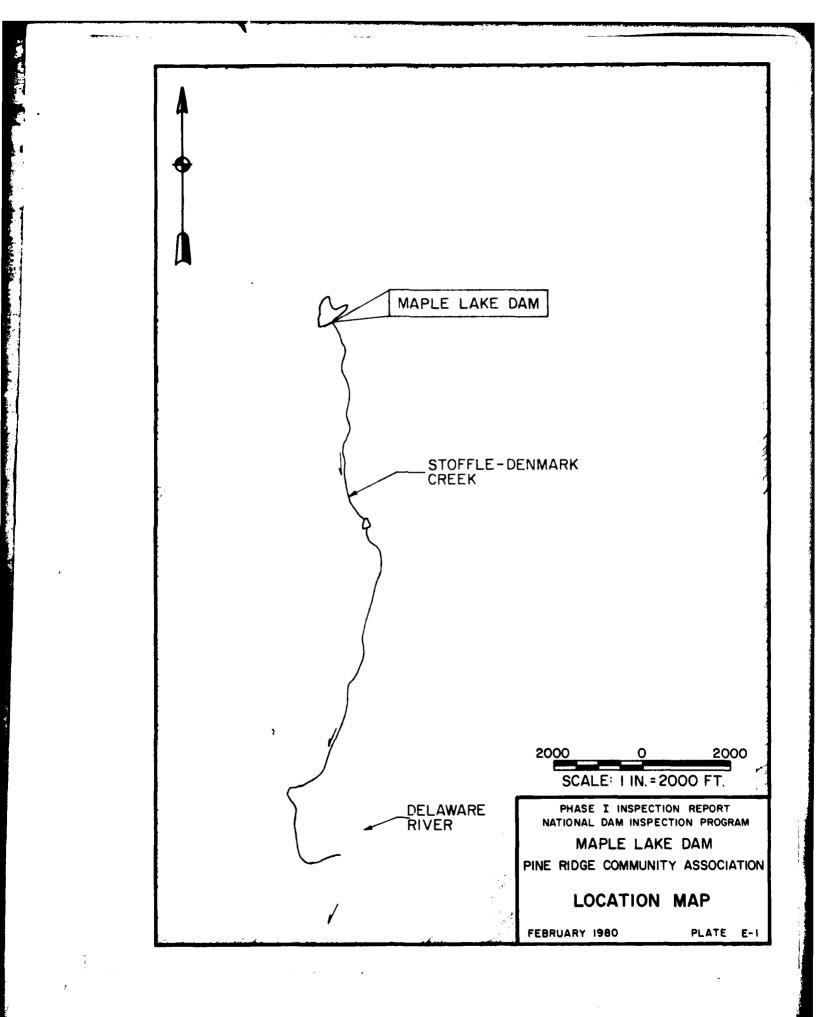

. .

5....

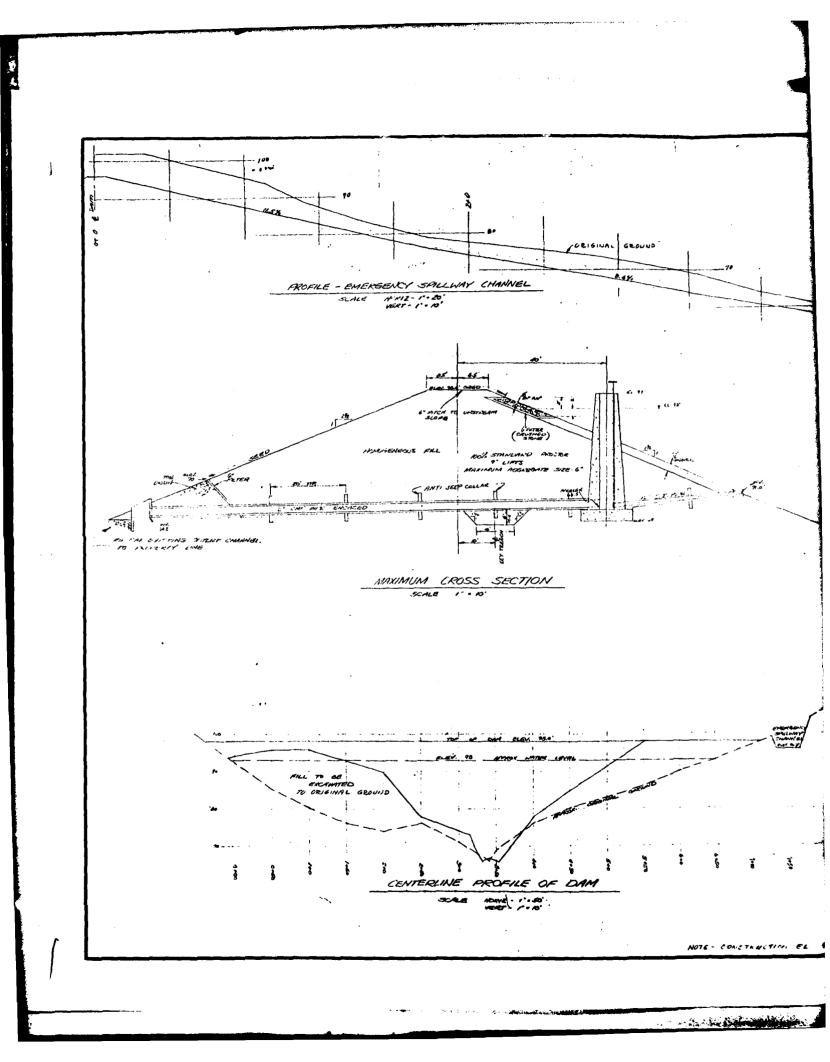
NOTE: SOF FOR MAPLE LAKE DAM = PMF

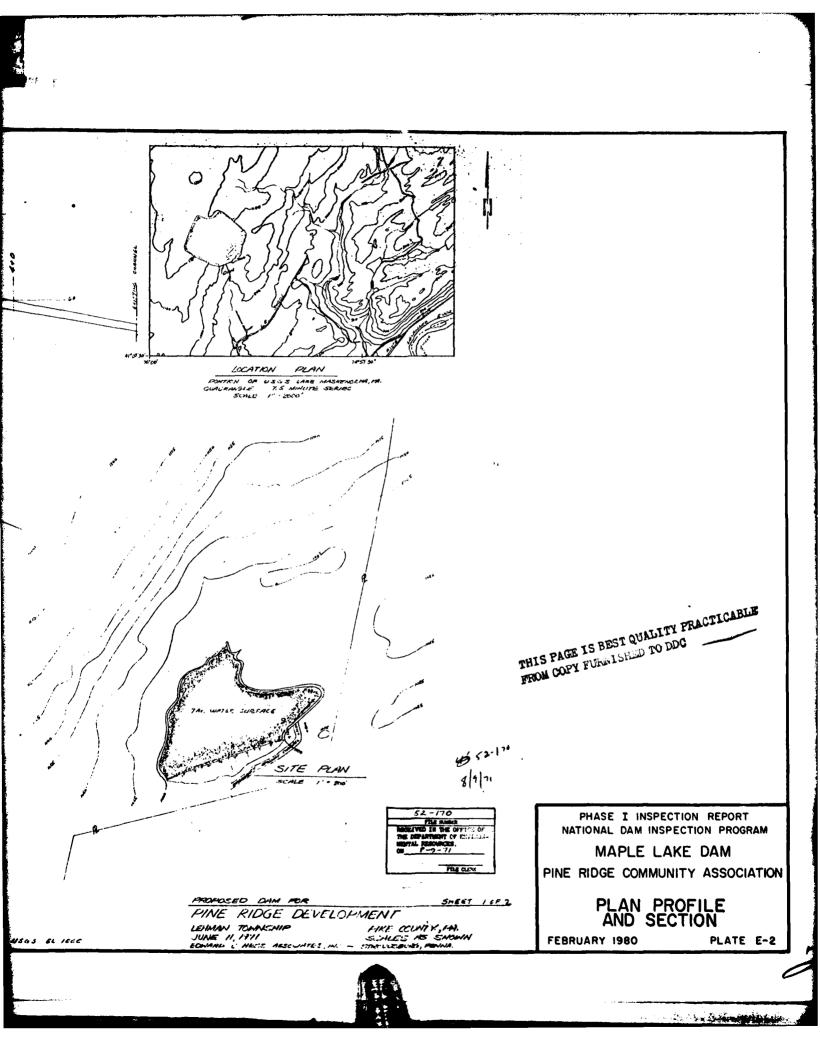
ましてものです。

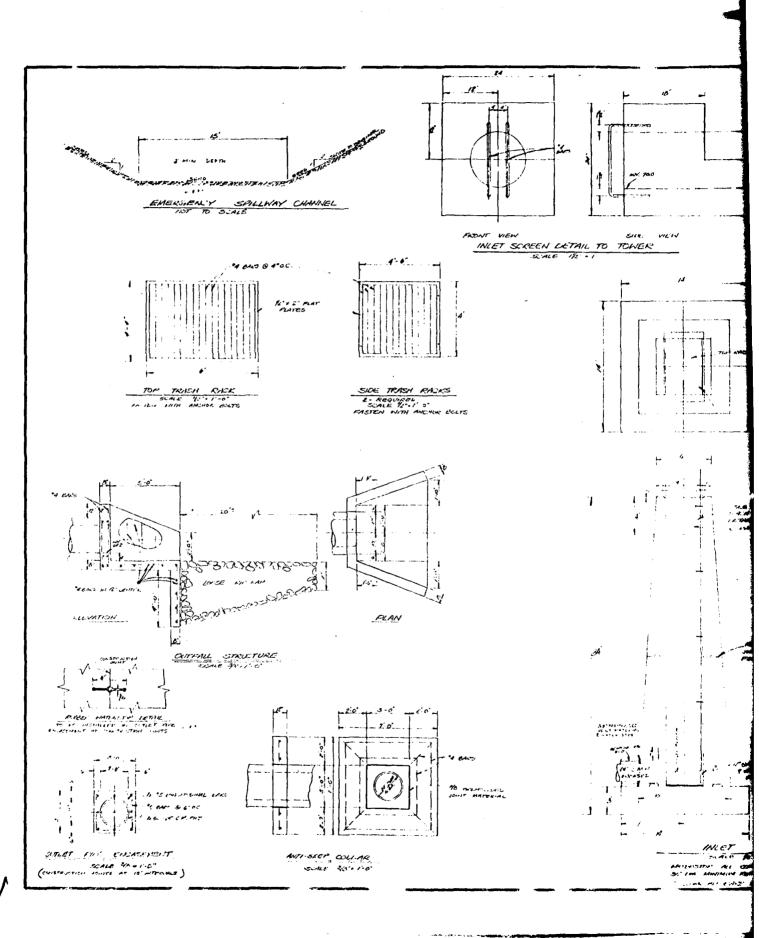
D-19

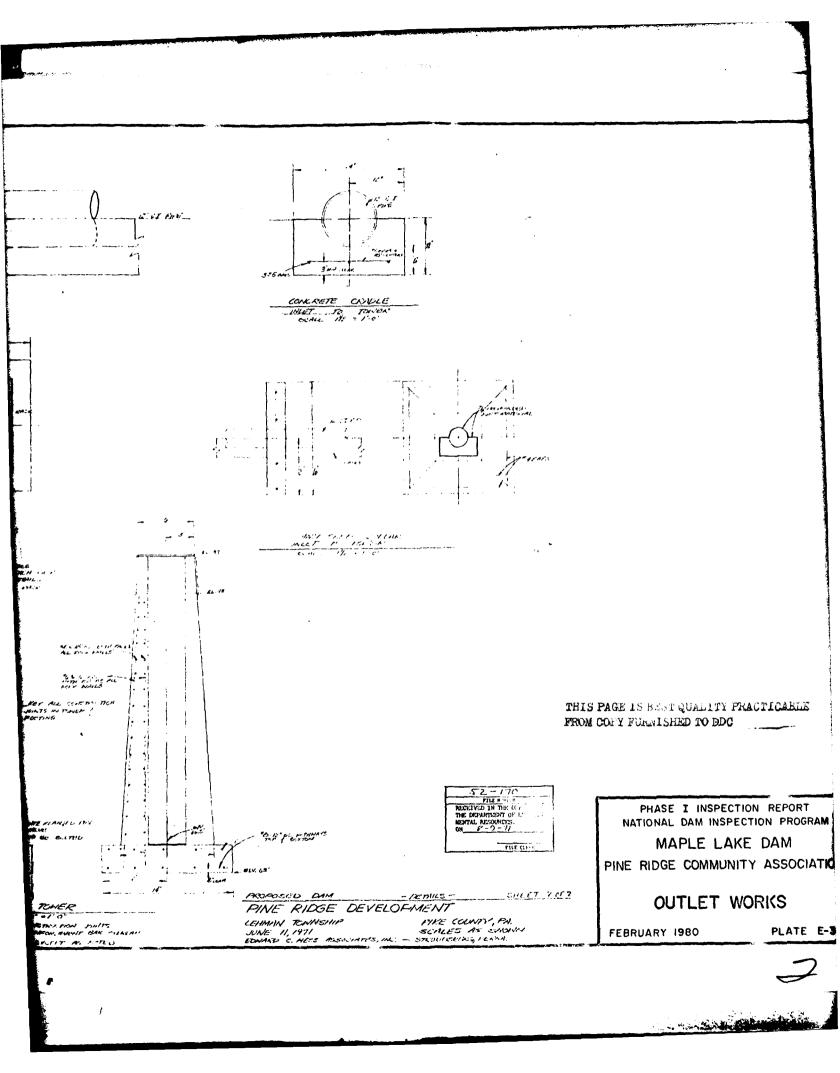


the see Entering the first


APPENDIX E PLATES


ž


(÷


....

A Star Star Star Star

APPENDIX F

į.

Sec. 1. 1. 1.

MAPLE LAKE DAM

APPENDIX F

GEOLOGY

Maple Lake Dam is located in Pike County within the Appalachian Plateau Province. The most pronounced topographic feature in the area is Camelback Mountain, which is a part of the Pocono Plateau Escarpment. The escarpment is well-defined southwestward from Camelback Mountain, but is more irregular between Camelback Mountain and Mt. Pocono, which lies to the north. Streams east of the escarpment drain directly to the Delaware River, while those to the west drain to the Lehigh River.

The Pocono Plateau Section lies west of the escarpment. This area is relatively flat, with local relief seldom exceeding 100 feet. The topography has been greatly influenced by continental glaciation. Many features were created by deposition of glacial materials. The entire plateau lacks well-developed drainage.

East of the escarpment is the Glaciated Low Plateaus Section of the province. This area is characterized by pre-glacial erosional topography with locally-thick glacial deposits. Local relief is generally 100 to 300 feet.

Bedrock units of the sections described above are the lithified sediments of offshore marine, marginal marine, deltaic and fluvial environments associated with the Devonian Period. These units include siltstones of the Mahantango Formation, siltstones and shales of the Trimmers Rock, and seven mapped members of the Catskill Formation. These members include sandstones, siltstones, and shales of the Towamensing Member; sandstone, siltstone and shale of the Walcksville Member; sandstones, siltstones and shale of the Beaverdam Run Member; sandstone and shale in the Long Run Member; sandstones and conglomerates in the Packerton Member; and sandstones and conglomerates in the Duncannon Member. Maple Lake Dam is underlain by the Walcksville Member of the Catskill Formation. The Walcksville Member is a cyclic sequence of sandstones and shales with some interbedded siltstones. Sandstones in this member are predominantly medium-to thick-bedded, well-sorted quartz grains in a clay matrix with a silica cement. Within the sandstone there are a few interbedded shale chip conglomerates. Shales occur primarily as non-fissile to sub-fissile thin beds, with some grading into siltstone. All lithologies in this member exhibit low porosity except where fractured by cleavage and jointing.

Sandstones and siltstones associated with the Walcksville Member are reported to maintain steep cut slopes. However, the shales weather rapidly when exposed. Slopes cut parallel to bedding strike may result in block slides on interbedded shales. The sandstones are good foundations for heavy structures.

Bedrock in the area is almost entirely overlain by glacial till of Late Wisconsin Age. This till is an unsorted mixture of clay, silt, sand, and gravel. It is moderately cohesive, and is derived locally from the sandstones of the Catskill Formation.

The records of foundation investigation for Maple Lake Dam indicate that bedrock at the site was overlain with 0 to 6.5 feet of the glacial till. The bedrock exposed at the site was reported to be a medium-hard sandstone with nearly horizontal bedding. The bedrock was reported to be fractured near the surface. The cutoff trench was designed to be constructed to a depth of one foot into sound rock to minimize seepage.
