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SECTION 1

INTRODUCTION

Although the literature is replete with analytical studies of the linear dynamic re-

sponse of submerged structures, the dynamic instability of such structures has received

relatively little attention [1]. In 1965, Di Maggio [2] studied the unstable dynamic

* response of an infinite flat plate with a sinusoidal imperfection in one direction sub-

* jected to an in-plane static loading in that same direction; the plate was suddenly re-

leased so as to interact with an acoustic medium on one side of the plate. He found that,

in the vast majority of cases, the acoustic medium may be treated in the incompressible

approximation. In 1972, Deng and Popelar [3] studied the parametric instability of a sub-

merged cylindrical shell initially undergoing sinusoidal breathing motions. They also

found that the acoustic medium could be accurately treated as imcompressible. References

[4-6] report analyses of dynamically excited, submerged shells that exhibit instability

characteristics. In all of these, however, approximate treatments of the fluid-structure

interaction are used, which raises questions regarding the accuracy of the results.

This report presents a rigorous treatment of the dynamic instability of an infinite,

elastic, circular cylindrical shell excited by a transverse transient acoustic wave. The

field quantities appearing in appropriate kinetic-energy, potential-energy, and work-poten-

tial functionals are expanded in circumferential Fourier series and high-order terms are

eliminated in a consistent manner. The residual potential formulation [7-9], which consti-

tutes an exact formulation, is used to treat the fluid-structure interaction. The result-

ing modal response equations provide a complete and rigorous description of the dynamic

processes.

The modal response equations are integrated numerically in time for excitation by plane

waves of rectangular and exponential pressure-profile. Transient response histories are

provided that portray: 1) modal response as a function of incident-wave magnitude, 2) the

effects of ambient hydrostatic pressure and "live-load" forcing terms (i.e., terms that

account for finite translations and rotations of the shell), 3) shell response at various

locations, 4) the impact of flexural stiffness on mode participation, and 5) the accuracy

of the doubly asymptotic approximation [8,10] for treatment of the fluid-structure interac-

tion in dynamic elastic instability analysis. Conclusions drawn from the examination of

these histories are listed in Section TV.

5
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The present report may be regarded as contributing to the second stage of a three-

stage study of the transient excitation of submerged, infinite cylindrical shells. The

first stage, exemplified by References [71 and [11], deals with linear-elastic shell re-

sponse. The second stage, exemplified by this report, deals with nonlinear-elastic shell

response. The last stage, exemplified by Reference [12], deals with nonlinear-inealstic

shell response. A corresponding study for spherical shells would be most useful, the first

stage of which is exemplified by References [131 and (10].
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SECTION 2

GOVERNING EQUATIONS

Consider the two-dimensional, plane-strain motions of the submerged, infinite, cir-

cular cylindrical shell shown in Figure 1. The shell is excited by a transient acoustic

wave that first contacts the shell at e = r: The shell is thin and remains elastic at all

times; geometric nonlinearity is considered, however, which introduces the possibility of

* dynamic instability.

* 2.1 ENERGY EXPRESSIONS

Kinetic and strain energy expressions for the cylindrical shell of Figure 1 are:

2
TT

T 2 h f (_2 + .2) ado

0

2*r h/2

U a e dz ado (1)

o -h/2

where i Zv/3t, etc., ( is the circumferential stress, e is the circumferential

strain and z is the thickness coordinate. Stress-strain and strain-displacement rela-

tions for the shell are [14]

aO= E

E 
2

1 + w) + 2 (.w._ v) 2 2 w (2)
2a a 2 2

where only first-order geometric nonlinearities are considered. The introduction of (2)

into (1) then yields

U I Eh 2 iT (++L v)212 + (3) V)
2 (lv 2 )a f a- 2aa6 +12a2 a( 2 a d (3)

0

, i .
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An expression for the work potential appropriate to a pressure field acting on

the surface of a smooth shell has been provided by Cohen [15]. Fjr the present problem,

that expression reduces to

2r

Tr p(a+ + w)w+i (a p) w 2 + Ipv 2 + vw ] dA (4)
be 2 r ber=a

0

where p - p(r, e,t) denotes the total pressure field. Although Cohen lists continuity

* of the pressure field as a requirement for the existence of the work potential, it is

easily shown that a more lenient requirement is satisfactory, viz., that the pressure

field contain a finite number of integrable discontinuities.

Now the displacement and pressure fields may be expanded in Fourier series as

follows:

v(9, 0) E vn (t) sin nP

n=l

co

w(Gt) Ewn(t) cos no

n= 0

p(r, A,t) Pn(r,t) cosnO (5)

n=0

Also, the n # 0 Fourier coefficients for v and w may be transformed into extensional

and flexural coefficients as follows [9]:

v n e f
n n n n

w = e + fn (6)
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The incorporation of (5) and (6) into (1), (3) and (4) then yields

T .2 + [(n2 +  2 n + 1 *27pah wo +~jLn)n 2 n

U ah2 0 2 h2  2 n- 2

U = w2 + [(n 2 + 1)2 e + h n (2n e + n f
i Eh/(ly 1)Eo 12a 2  n n n

)a - n=l

+ _a gn+ a (2+1) e 2 gg [6(r+)n+ 6 (m_2)n ]

n=l i=1 m=1 n=l

+ 2 La gkgggn [6(k-)o 6(m-n)o +a(k-t)(m+n)
32a 2. l ml n=1

- (k+k) (m-n) - 6 (k-i) (m+n) + 6 (k+t) (r+n)]

w ~a co

f 2po w + p (e + fn) + _ -r (e + f
Tr a o o F n n n 2 ar Fa n n

n=l - - n=l

a 2

+ - [(3 2 + 1) e2 + 2(n2  1) en fn " ) f 2 ]
nffi En n 2 f

n1l

a aaPa
o + o w2 + a

+ ( ItI... (p +I-)(e +f
/ ~a r 0 a n ~r n n
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T 4°.~~~. .. .. ..

CD co

+ 1: [: (Pa-n +  anF( + .1) em  f,.

n-l mI

+ n a + (e + f)J (e + f)

2 r rn-n br Pmi-n m m n +n)

+ -' ' 1 a a 1 1+ 2a E [ 2 m-n Pnr-n)(mem - m)( nen n

n=l m=l

* (7)
[(m-n) p- + (m+n) (mem- fm) (e n + fn)]

4- Pm+n m m n n

where a p ( t
where pn a Pn (a 't)  Pap/r = [aPn (rt)/3r] a gn = 2ne + [(n 2-1)/n] f n em-n = p 0

n n =m-n
for m :S n, and the 6 j are Kronecker deltas. Equations 7 constitute the basic energy

expressions required for the present study.

2.2 ELIMINATION OF HIGH-ORDER TERMS

It is now appropriate to-eliminate from (7) those terms of order higher than that

necessary for a consistent formulation. For this purpose, the n=0 pressure harmonic is

taken to be of the order of the critical buckling pressure for the shell, which is [161

Ehi3

PC 3 (8)
4 (l 2 )a

3

a 3Hence p0  E(h/a) , so that the two singly underlined terms in (7), which govern linear,
2static, axisymmetric response, yield w0 /a - (h/a) . Next, flexural displacements are taken

as fn/a - h/a, so that the doubly underlined terms, which govern linear, static, flexural

response, yield pn- E(h/a) 4 . Finally, the triply underlined terms, which govern linear,
n 3static, nonaxisymmetric-extensional response, yield e n/a - (h/a) . The use of these order-

or-magnitude relations in (7), followed by the elimination of terms of order (h/a)6  and

higher, yields the simplified energy expressions

T .2 + 1 1 + j2
TTPo0ah 0o : n

nw-I

2 02 2 2 n n 2 2 ktmn fkfZ.mfn

wEh/(l-v )a o12a 32 m an1k-l 9-1i m-I n-1
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aa

2p a w+ pa f o '~n f2 + lo 2(9-2P 0 0 + Pfn- 2 flF n 2nr- 2n (9)

n-i n-il

where cn = 2 kimn k Z mn (k-t)o (m-n)o (k-)(m-n) 6(k-t)(mn) +

6(k+ )(nrn)]. Note that, because = 0, the lower limits of six of the summations in (9)

may be changed from 1 to 2.

A few remarks about (9) are in order. First, nonaxisymmetric-extensional response

fais to appear as a significant energy contributor. Second,in the reduction of (7) to

(9), it has been assumed that aiap'/arI _ pal for all n. Third, the last of (9) contains

no nonlinear terms involving pn; this implies that the last term in the integrand of (4) is

unimportant. Fourth, a nondimensional parameter y has been introduced into the flexural

strain-energy term to permit consideration of a sandwich shell consisting of two concentric

j . shells of thickness h/2 separated by a uniform core of negligible mass and in-plane stiff-

ness. Such a shell serves as a convenient plane-strain model for a stiffened shell [7, 17].
With D as the sandwich shell's flexural stiffness, y 12(i_ )D/Eh3. Finally, the

simplified expression for the shell's strain energy is positive-definite; this is readily

seen by observing that, with w(e,t) = wo(t) + f(8,t), it constitutes a Fourier-series de-

composition of the expression [cf. (3)]

(1-v )a*)2]W 12a dIEh -v2)a (f' + f* +12a2 + f)2  (0

0

where a prime denotes a O-derivative and the asterisk a 8-integral. This corresponds to

the use of Rayleigh's inextensibility assumption, i.e., w - v/38 for nonaxisymmetric

shell response [18].

It is interesting to examine results produced by (9) in certain special circum-

stances. First, consider the nonaxisymmetric, linear, free vibrations of a hydrostatic-

ally pressurized shell. In this case, p0 (r,t) - PH' Pn(r,t) - 0 for n "0, and the

flexural displacements are infinitesimal. The application of Lagrange's equation [19]

d 8L 8L 0 (11)

where L - T - U - H, then yields, for q w 0

(l-v)a P (12)
1Eh



For q = fn' the application of Lagrange's equation yields

PI l f E [(yh)' n2 , wo. .2 _-V2pHa(n f 013
n n (1-v)a2 12a 2  a n n

The introduction of (12) into (13), followed by the assumption of sinusoidal free vibra-

tion, yields the modal natural frequency equation

q2

= hn (n 2 ( 1)2 (1-PHIPc) (14)

-fn a 12a 2

2 2

where c = E/o(1-v 2) is the plate velocity for the shell material and P p c (h/a).
0 / Cn =P0 0

(n -1) (yh) 2/12a2 is the critical pressure for the nth flexural mode; note that PC2 = PC

[cf. (8)]. Equation (14) clearly corresponds to the flexural frequency equation for a

pressurized ring (20].

Next, consider the response of an unpressurized shell to nearly uniform radial

impulse-excitation. The application of Lagrange's equation, (11), to the simplified

energy expressions, (9), yields for axisymmetric extensional and nonaxisymmetric flex-

ural response

2~ +L~ 2 2 =
(a/co2W + Wo + an fn 0

0 o 04a., n n
nR2

/ 22 2  + w 1 .( fkf f 0 (15)
2n~l~n [1222 2~> f k~2 Akrtm m(5

(a/) -f n o n n 2 Fa~L. =0n 1a32a2 k=2 k=2 m2

w re n (n) + An+ A m+ A and the discussion following (9) has been

where nmn k9nm knm nkm
utilized.

These equations are similar to equations presented in [21-23], which treat this partic-

ular problem in considerable detail. Equations (15) are superior, in fact, to the corres-

ponding equations in those references because only (15) exhibit all of the following

characteristics: 1) nl rigid-body motion is decoupled from n-0 breathing motion,

12
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2) linear-vibration frequencies for the flexural modes are given by the first of (14) with

PHffO, and 3) the associated strain energy expression is positive-definite.

From this brief examination of two special cases, it is concluded that (9) are

suitable for the present analysis. This suitability derives from the consistent elimina-

tion of high-order terms from appropriate energy expressions.

2.3 FLUID-STRUCTURE INTERACTION

A rigorous formulation of the fluid-structure interaction, which must be considered

in conjunction with (9), may be constructed as follows [7-9]. First, fluid pressure and

radial fluid-particle velocity are expressed as derivatives of a fluid velocity potential

4as

p= -pc

u= N/r (16)

Second, the total acoustic field is treated as the superposition of an acoustic field for

the (known) incident wave and an acoustic field for the (unknown) scattered wave, i.e.,

cp (r, , t) = (r , t) + cpS (r, e, t) (17)

Third, compatibility of radial fluid-particle velocity and radial shell velocity is en-

forced at the wet surface of the shell as

* u (a, q ,t) = w(R, t) (18)

Finally, the wave equation and radiation condition for each circumferential harmonic of

the scattered wave [see (5)] are replaced by the equivalent residual-potential relation

kPSn +1. 1 (..... --7-V- S +r -
ir c Sn Sn r Pn (19)

13



in which the residual potential tn is given by the convolution relation

t

(r t) f rn (r, t'
) 9Sn (r, t-t') dt (20)

0

where the rn are characteristic functions that resemble step-exponential functions [7].

Equations 16-19 may now be utilized to produce, for each circumferential harmonic,

the fluid-structure interaction relations

a *a -a
n 9In + 'PSn)

" a

'pn
6rn

l.a 1 a a + 1 a
+Un a n (21)

where =Rn 
fi Rn(a, t) is obtained from (20). These equations constitute the optimum

form of the information required for a rigorous treatment of the fluid-structure inter-

action.

2.4 MODAL RESPONSE EQUATIONS

Convenient nondimensional equations may be obtained through introduction of the

following convention:

2=pa/pc , w = w/a, £=ct/a (22)

Application of this convention to (9) yields

T2 - (Loh){,2 11 l+i) ;2~

Tip a c n 1

14



(P o )V2+1S (yh)r 2 2-~2+

- _a

lrpa c 2 \a11( 2 ~L2a 0Ja 2i~L~~intn
n=2 k=2 Z=2 m-2 n=2

2 2 0j o + - p)° f+ p(23)2rp 2 2Po o P+ n'n -2o n-- n 2 Po n
irpa c n=l n=2 n=1

where w dw /dn, f [di /3r]=l and the discussion following (9) has been
0 0 nl nl 0 0 1

utilized. In like fashion, nondimensionalization of (21) and (20) yields

Pn = - S+ n

nIn
p, = _-w

n ng

0+ + ^
Wn 'Sn + PPSn = Uln+ Rn

, = - r * (24)
Rn n Sn

where the asterisk denotes temporal convolution. Note that all nondimensional acoustic-

field quantities in (23) and (24) pertain to the wet surface of the shell.

The application of Lagrange's equation, (11), to (23), followed by the appropriate

utilization of (24) and the second of (6) with e neglected, yields the nondimensionaln

modal response equations for the submerged shell

* Ivtoo+ po +o P0

n=2

n2 + jI(n 2 -1) 2 + i +n ( +2 2 -1
+- (n n n 2- w f n

32 a a a kmkIm- n I

. k=2 L=2 m-2

15



+ So +0o + 2ps ISo Ulo R
U + qRo

n + tS + 'PSn In u +

cpRn = -r * (25)

where all circumflexes have been dropped, and 
where P - P h/pa, 8 (c/c)2 and - (yh) /

12a 2 . The nondimensional critical buckling pressure for the shell is, from (8), PC

3 8 .

Equations (25) constitute the modal response equations needed for a rigorous analy-

sis of the nonlinear dynamic response of a submerged, infinite, elastic, circular, cylin-

drical sandwich shell excited by a transverse, transient acoustic wave. They lend

themselves to step-by-step numerical integration in time, producing modal response his-

tories that, through (6) with en neglected and through (5), yield corresponding shell res-

ponse histories. From (2), (5), and (6) with en neglected, extensional and flexural

strain response histories may be obtained as

Ce MW + 2 nlfsin6260 0 no n

e nn=l

Le z2 (n2 l) fn cosn (26

n-i

where z is nondimensional [see (22)]. For the sandwich shell described after (9), the dis-

tance from the neutral axis to the outer shell fiber is given by

zi -X 4 +fI +4 (yl_1) 
(27)

16
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SECTION 3

NUMERICAL RESULTS

The numerical results presented in this section have been generated by the application

of fourth-order Runge-Kutta numerical integration to the first four of (25) and the use of

trapezoidal integration for the last of (25). A variable incrementing procedure with

0.002ZAt Z 0.2, has been used. Results have been obtained for two steel shells submerged in

sea water, all characterized by p0 /p = 7.72, c /c = 3.53 and a/h = 100. The two shells

* differ in terms of their y-values, which are 5 and 10; these values correspond to moderate

* and heavy stiffening of a uniform homogeneous shell. The shells are excited by plane acous-

tic waves of rectangular and exponential pressure profile that make initial contact at time

t 0 along the line e = n. The generalized excitation functions for these waves are given

by

(in(t) = (_1 )n+l .E
n WP j g(t-l+cos ) cosnC d(

(28)

IT

-tn P f g(t-l+cos ) cosC cosn dC

0

where e n  1 for n = 0 and e n = 2 for n 1 1, and P is the maximum value of the incident-

wave pressure profile. For the rectangular wave, g(t) = H(t) - H(t-T), where H(t) is the

Heaviside step-function and T is the pulse duration; for the exponential wave, g(t)

H(t) e , where X is the decay constant. Note that all of the preceding quantities are

nondimensional, having been normalized in accordance with (22).

3.1 MODAL RESPONSE

Figure 2 shows displacement response histories for the (n=O) breathing mode of the

y - 10 sandwich shell when excited by broad, rectangular, incident waves of duration T

10. The pressure magnitudes of these waves vary from 1% to 300% of the critical buckling

pressure for the shell [see (8), or the discussion following (25)]. Note that all re-

sponses are normalized to the magnitude of the incident wave, so that coalescence of re-

sponse histories implies linearity of response. In this connection, it is seen that the

response for P1 = PC and PI = 2P are virtually coincident with the (linear) response for

P0  0.01 PC; nonlinear effects are discernible for P, -
3PC' but they are relatively un-

important.
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Velocity response histories for the (n1l) translational mode are shown in Figure 3.

Nonlinear effects are barely discernible. This implies that the last term in the last of

(23) is of negligible importance because, without it, the n1l mode is totally uncoupled

from the other modes and is governed by purely linear equations [see (25) and the second

of (24)].

The n=2 lobar mode is the one that exhibits significant nonlinear behavior, as shown

by the displacement response histories of Fi-ure 4. The response nay be conveniently de-

* scribed as occurring in four phases: an "envelopment phase", which extends from t=0 to

t=2, a "pressurization phase", which extends from t=2 to t=T, a "development phase",

which extends from t=T to t=T+2, and a "free-vibration phase", which extends onward from

t=T+2. During the envelopment phase, in which the incident wave front is passing over the

shell, the response is essentially linear. The pressurization phase, in which the shell is

essentially hydrostatically pressurized by the incident wave, is characterized by either

oscillatory or exponential response, depending upon the magnitude of P 11During the devel-

opment phase, in which the back of the rectangular incident wave is passing over the shell,

the response exhibits sudden, but modest reversal. Finally, the free-vibration phase is

characterized by low-frequency sinusoidal motion. Clearly, the appearance of response

overshoot during the free vibration phase depends upon exponential growth experienced dur-

ing the pressurization phase, which, in turn, depends upon the magnitude of P I.

- Displacement response histories for the n=3 lobar mode are shown in Figure 5. The

preceding description of n=2 response is applicable here also. Especially visible in the

0 n=3 response histories is the virtually undamped nature of the sinusoidal motions during

the free-vibration phase. This indicates that the surrounding fluid provides very small

acoustic radiation damping f or these motions, which is to be expected when the characteris-

tic structural wavelength 2ira/n is much smaller than the acoustic wavelength c/f, where f

is the frequency of oscillation [ll. The n-4 and n=5 lobar modes have been included in

these y = 10 shell calculations, but exhibit peak displacements substantially smaller than

that of the n=3 mode. Hence response histories are not shown for these modes.

It is instructive to examine dynamic instability of the flexural modes during the

pressurization phase. During this phase, n-0 displacement is approximately equal to the

hydrostatic value

Als, fexual espnseisrelatively slow, so that Sn << VSn and, from the last of (29)

and [7]!,
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-- Sn rn(t')dt' = - (n- (30)

0

Hence the fourth of (25) yields, with u =n 0 for n _ 2, 2 t T [9],

o(31)

an n n n

Equations (29) and (31), along with the approximations So0 0, w°  0 and neglect
of the triple summation in the second of (25), yield for flexural response during the

pressurization phase

n + 1 +) f (n2 _ 1) (Pcn PI) f  0 (32)
n

where PCn = (n 2 
- 1)V$E. This equation exhibits the effect of added fluid mass associated

with low-frequency shell response; it also indicates that shell response is oscillatory for

PI < PCn and exponential for PI > PCn' as seen in Figures 4 and 5. It is worth noting that
with the removal of PI, (32) also governs flexural mode response during the free-vibration

phase.

Modal response histories for excitation by incident step-exponential waves with decay

constant X = 1 are shown in Figures 6-9. The normalized responsqs are substantially smal-

ler than their rectangular-wave-excitation counterparts in Figures 2-5 because of the re-

duction in pulse width. Otherwise, the behavior is similar, with significant nonlinear

effects appearing only in the n 5 2 harmonics.

3.2 AMBIENT HYDROSTATIC PRESSURE AND LIVE LOAD

It is interesting to examine the effects of ambient hydrostatic pressure on the shock

response of the y = 10 shell. The modifications in (25) required for such an examina-

tion merely involve the replacement of w0 by w0 - PH /V$ and of Po by 9Io - PH' where PH is

the magnitude of the hydrostatic pressure. With these replacements, the first of (25) re-

mains the same, except that it now pertains to breathing motions about a static equilibrium
2 2radius of 1 - PH /V. The second of (25) changes only to the extent that the term C(n -1)

is now multiplied by (1 - PH/Pcn), where PCn is given after (32).

For static stabilityP H must be less than the smallest of the P Cn which is PC2 ' PC

= 3P8E. Hence the reduction in static equilibrium radius cannot exceed 3E, which is very

small. Thus the principal effect of ambient hydrostatic pressure is the reduction of flex-

ural stiffness, which is a destabilizing influence.

S'" It is also interesting to examine inaccuracies introduced into transient response com-

putations by the neglect of the "live-load" terms in (4). These terms account for the
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effects of finite translations and rotations of the shell on the work done by the normal

pressure loading as referenced to the undeformed shell surface. All the terms in (4) ex-

cept p-aw are live-load terms; when processed through the Fourier-decomposition and term-

elimination operations of Subsections 2.1 and 2.2, they appear in nondimensional form as

the last two summation terms in the last of (23). Following the application of Lagrange's

equation (11) and the introduction of the fluid-structure interaction equations (24), live-
2_ 2 +q 0 an

load effects manifest themselves as the terms [(n -1)/n I1 o o)ad- ntescn

of (25).

Response computations designed to demonstrate the effects of ambient hydrostatic pres-

sure and live load have been performed for the y = 10 sandwich shell excited by both T = 10,

P 2PCrectangular and X = 1, P1I = 5P C exponential incident waves. As would be expected,

n0O and n1l response is unaffected by the introduction of ambient hydrostatic pressure or

the omission of live-load terms in (25). In contrast, the response behavior of the n=~2

flexural mode is substantially affected, as indicated in Figures 10 and 11. It is clear

from these figures that ambient hydrostatic pressure and live load are both significant de-

stabilizing influences for this mode*. The higher nodes are much less influenced, however,

as indicated by the n=3 response histories of Figures 12 and 13.

3.3 SHELL RESPONSE

Modal response histories for 0 :5 n _. 5 have been superposed in accordance with (5) and

*(26) to construct the shell response histories of Figures 14-19. Figures 14, 16 and 18

pertain to excitation by a T = 10, P, = 2P rectangular incident wave, while Figures 15, 17
I C

and 19 pertain to excitation by a X =1, P1I = 5P C exponential incident wave.

Shown in Figures 14 and 15 are deformational displacement histories, which constitute

displacement histories with rigid-body motion removed, i.e., wD (6,t) -w(6,t) - f 1(t) cose.

It is seen that the effects of ambient hydrostatic pressure and live load are significant

for excitation by the rather broad rectangular pulse, but are relatively minor for excita-

tion by the rather narrow exponential pulse.

Figures 16 and 17 show radial velocity histories at two points on the shell. The ef-

fects of the ambient hydrostatic pressure and live load are clearly negligible. Strain re-

sponse histories are shown in Figures 18 and 19 at locations selected to emphasize flexural

and nonlinear-extensional contributions to total strain. The coincidence of the w 0- and

C e~histories in the figures demonstrates that the nonlinear-extensional term in the first

* A development like that which produced (32), but which includes ambient hydrostatic pres-
sure and excludes live-load terms, leads to a prediction of the coalescence, for OZ tZ 10,
of the response histories of Figure 10 with the circle and triangle designators.
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of (26) is minuscule. This, along with the smallness of the flexural strain history, demon-

strates that the strain response of the shell is dominated by the n=O breathing mode. Hence,

peak strain in the shell is accurately estimated as

161max i (P I I 1w 0  1 NPc  (33)
max

where N = PI/P For the shell of Figure 2, for example, P1
1 wolmax = 1.125 and PC = 30

= 2.405 x 10-3; hence celmax 0.27N%, as suggested by Figure 18.

3.4 FLEXURAL STIFFNESS EFFECTS

It is informative to compare the response behavior of a moderately stiffened (Y = 5)

shell with that of the heavily stiffened (y = 10) shell of Figures 2-19. As the flexural

stiffness of a sandwich shell is proportional to y2 [see the discussion preceding (10)],

the P c-value for the moderately stiffened shell is only one-quarter of that for the heav-

ily stiffened shell. Hence, in order to maintain proper calibration between the excita-

tion levels for the two shells, P1 -Values of 0.04 PC, 4 PC, 8 PC' and 12 P C are used for

the moderately stiffened shell.

Figures 20-24 show modal response histories for the y = 5 shell. A comparison of the

first of these with Figure 2 indicates that nonlinear effects in n=O response are more pro-

nounced for the y = 5 shell than they are for the y = 10 shell; even so, they remain rela-

tively unimportant. Figure 21, which pertains to n=l response, is virtually a duplicate of

Figure 3, in which nonlinear effects are barely discernible.

Figure 22, which pertains to n=2 response, displays significant nonlinear behavior, as

does Figure 4 for the 1, =  0 shell. For the same value of PI k PC' an n=2 response peak

during the free-vibration phase for the y = 5 shell considerably exceeds its counterpart

for the y = 10 shell. This is suggested by (32), which predicts exponential response

growth for PI > P C2 = PC during the pressurization phase. For example, for the y = 5

shell with PI = 12 PC' the stiffness coefficient multiplying f2 is -3.11.PC = -99.p8.25h2/

12a 2 , which exceeds in magnitude its counterpart for the y = 10 shell with PI = 3 PC) which
2 2

is -3. 2 .PC = -18.4i.100h /12a . In contrast to the PI > PC results of Figure 22, the peak

free-vibration-phase response of the y = 5 shell for PI = 0.04 PC is only one-half that of

the y = 10 shell for P1 
= 0.01 PC" This may be explained as follows. An approximate ex-

pression for the linear, post-envelopment, n=2 response of a step-wave-excited shell is

given in [24]. This expression, in turn, leads to the following expression for n2, linear,

free-vibration-phase response appropriate to excitation by a rectangular incident wave

whose duration T is much smaller than the n=2 mode's natural period of oscillation during

the free-vibration phase:
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f2t 2P+4/5 P' 1 2 sin Q 2 (t - 1 )(34)

where Q 2= 36pa/(5p+2). Hence, inasmuch as for the y=10 shell is four times that for

the y = 5 shell, peak free-vibration response of the y =10 shell for P1 I«<PC is double

that of the y =5 shell, all other parameters being equal.

It is clear from the preceding paragraph that the nonlinear response of a flexural

mode to rectangular-wave excitation depends critically upon the "initial conditions" for

the pressurization and free-vibration phases and the value of the pressurization-phase :
"stiffness" parameter in (32). With P1I = NPC, (32) predicts exponential growth during the

* pressurization phase for those nodes whose modal index satisfies the inequality n < (3N+l)'.

Hence a large value of N implies that many flexural modes may contribute significantly to

shell response, while a small value of N implies that only the lowest flexural modes need

be considered. This is illustrated in Figures 23 and 24, which show modal response his-

* tories for n=3 and 4. Although the n=3 response peaks for the y = 5 shell are no larger

than their counterparts for the -y = 10 shell shown in Figure 5, the n=4 mode of the y = 5

shell responds strongly, especially for P1 = 12 P c. This is in contrast to n=4 response

for the y = 10 shell, which is so small that it is not even included in the discussion of

Subsection 3.1.

The increased participation of the higher flexural modes in the response of the y = 5

shell suggests that flexural strain might now play a much more important role than that
portrayed in Figure 18 for the y =10 shell. This is not the case, however, as shown in

Figure 25, because the increase in flexural node response is essentially negated by the

decrease in the distance between the outer fibers of the shell. There is a discernible

nonlinear-extensional contribution to total strain, but it is hardly significant.

The preceding comparison of y = 5 and y = 10 shell response illustrates the dissimilar-

ities between the response behavior of moderately stiffened and heavily stiffened shells to

a given incident wave. The contrast between an unstiffened shell and a moderately stiffened

shell is even greater. For example, P1I = 8 P C for y = 5 corresponds to P1I = 200 P C for

y = 1. Thus, while (32) predicts exponential growth during the pressurization phase for

* the n < 5 flexural modes of the y = 5 shell, it predicts such growth for the n < 25 flex-

ural modes of the y = 1 shell. Experimental observations of such short-structural-wave-

length instability are reported in [25, 26].

3.5 DOUBLY ASYMPTOTIC APPROXIMATION

As mentioned in Section 1, an aspect of particular interest in the present study has

been the accuracy of the doubly asymptotic approximation (DAA) [8, 10) for treatment of the

fluid-structure interaction. In the present context, such treatment involves replacement
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of the coefficient in the third and fourth of (25) by n, omission of (Rn in those equa-

tions, and omission of the last of (25) entirely. With these changes, modal response his-

tories have been calculated for direct comparison with the exact histories of Figures 2-9

produced by the residual potential formulation (RPF).

Modal response histories pertaining to rectangular-wave excitation of the Y = 10 shell

are shown in Figures 26-29. Two of the four histories in each figure pertain to the larg-

est incident-wave magnitude considered in Figures 2-5, while the other two pertain to an

incident-wave magnitude so small that linear shell response is assured. An examination of

Figures 26-29 reveals that discrepancies between the DAA and RPF histories for PI 3 PC

" are similar in nature and size to those between the DAA and RPF histories for P1 = 0.01 PC"

* This indicates, of course, that DAA accuracy for elastic dynamic instability calculations

is fully comparable to that for linear-elastic response calculations. In particular, the

tendency of the DAA to overestimate acoustic radiation damping for low-frequency free

vibration does not artificially suppress unstable shell response during the pressurization

phase.

A comparison of DAA and RPF response histories for exponential-wave excitation of the

y = 10 shell leads to the conclusions expressed in the previous paragraph. Hence exponen-

tial-wave counterparts to Figures 26-29 need not be shown. A thorough examination of the

accuracy of the DAA for linear-elastic shell response is provided in [27].
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SECTION 4

CONCLUSION

This study has dealt with the dynamic instability of an infinite, elastic, submerged,

circular cylindrical shell excited by a transverse, transient acoustic wave. Circumferen-

tial Fourier decomposition of the field quantities appearing in appropriate energy function-

als, followed by consistent elimination of high-order terms, has led to rather simple shell

* response equations with satisfactory attributes. The fluid-structure interaction has been

* treated rigorously in accordance with the residual potential formulation, which has been

used successfully inmanumber of previous studies.

Numerical results have been presented in the form of 117 transient response histories

pertaining to excitation by plane waves of rectangular and exponential pressure-profile.

Examination of these results has led to the following conclusions:

1. Dynamic instability effects are significant only with respect to flexural shell re-
sponse.

2. The dynamically unstable flexural response that occurs while the incident-wave profile
passes over the shell profoundly affects subsequent free-vibration flexural response.

3. For peak total strains smaller than 1%, only the lowest flexural modes of a heavily
stiffened shell experience dynamic instability; if the degree of stiffening is reduced,
however, higher flexural modes exhibit such instability until, in the limit of an un-
stiffened shell, numerous flexural modes are involved. Hence, the response
of an unstiffened shell to a given incident wave is significantly different than that

* of an appreciably stiffened shell to the same wave.

4. n0O breathing motion dominates strain response, and quasi-linear (especially n=1 trans-
lational) motions dominate velocity response; nonlinear flexural motions are important
only with regard to deformational displacement response, i.e., displacement response
exclusive of rigid-body translation.

5. As a consequence of the preceding conclusions, live-load forcing terms and ambient
hydrostatic pressure substantially affect deformational displacement response, but
have minor impact on velocity and strain response.

6. The live-load terms in the surface-pressure work potential that involve pressure grad-
ients may be neglected [see (4)).

7. The accuracy of the doubly asymptotic approximation for treatment of the fluid-struc-
ture interaction in dynamic elastic-instability calculations is fully comparable to
that observed in linear-elastic response calculations.
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Infinite Acoustic Medium.

29



O o:P 1  0.01

* 0: P1  2P

+: P1 = 3P
I C

0

......0. ..... ........ ......... . .... .

0.0 10.0 20.0 30.0 40.0 50.0

t
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FIGURE 13. n=3 Displacement Response of the y =10 Shell to an

Exponential Incident Wave with X~ 1, P1 I= 5P C
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FIGURE 14. Deformational Displacement Response of the y =10 Shell to
a Rectangular Incident Wave with T 10, P1  2PC.
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FIGURE 15. Deformational Displacement Response of the y =10 Shell to
an Exponential Incident Wave with A =1, P I 5P C
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FIGURE 16. Radial Velocity Response of the y 1 0 Shell to a
Rectangular Incident Wave with T 0, P I = 2P c"
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FIGURE 17. Radial Velocity Response of the y - 10 Shell to an Exponen-
tial Incident Wave with x = 1, PI 5Pc"
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FIGURE 18. Strain Response of the y -10 Shell to a Rectangular
Incident Wave with T - 10, P = 

2P C.
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FIGURE 19. Strain Response of the y -10 Shell to an Exponential
Incident Wave with X -1, P1 I 5PC.
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FIGURE 22. n-2 Displacement Response of the y 5 Shell to Rectangular
Incident Waves with T -10.
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FIGURE 23. n-3 Displacement Response of y 5 Shell to Rectangular
Incident Waves with T - 10.
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FIGURE 24. n-4 Displacement Response of the y =5 Shell to Rectangular
Incident Waves with T = 10.
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FIGURE 25. Strain Response of the y = 5 Shell to a Rectangular
Incident Wave with T = 10, P1 = 8P .
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FIGURE 26. Approximate and Exact n-0 Displacement Response of the
y - 10 Shell to Rectangular Incident Waves with T 10.
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FIGURE 28. Approximate and Exact n-2 Displacement Response of

the y - 10 Shell to Rectangular Incident Waves with

T 10.
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FIGURE 29. Approximate and Exact n-3 Displacement Response of
the y - 10 Shell to Rectangular Incident Waves with
T -10.
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